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Supergroup Actions and Harmonic Analysis

Alexander Alldridge

Abstract. Kirillov’s orbit philosophy holds for nilpotent Lie supergroups in a
narrow sense, but due to the paucity of unitary representations, it falls short
of being an effective tool of harmonic analysis in its present form. In this note,
we survey an approach using families of coadjoint orbits which remedies this
deficiency, at least in relevant examples.
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1. Introduction

The correspondence principle states that in the limit of large quantum numbers,
quantum mechanics should reproduce classical mechanics. Quantization is the en-
deavour of reverse-engineering this correspondence in order to produce viable quan-
tum models.

A prominent approach to this task is Geometric Quantization. Its notable
strength lies in its ability to associate, with non-linear phase-space symmetries
(a.k.a. symplectic Lie group actions), unitary symmetries of the quantum Hilbert
space (a.k.a. unitary representations). Taking this ideology to extremes, one may
entertain the idea that all irreducible unitary representations of some given Lie
group G might be obtained by the quantization of some universal homogeneous
symplectic G-spaces.

It is a famous result due to A.A. Kirillov [9] (partly reformulating earlier
results due to J. Dixmier [8]) that this sanguine assumption is a hard fact, at least
for nilpotent Lie groups.
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Theorem 1 (Kirillov 1962). Let G be a simply-connected and connected nilpotent
Lie group. There is a bijection between the isomorphism classes of irreducible uni-
tary representations of G and the orbits of G in the coadjoint representation on g∗.

Moreover, Kirillov showed that the regular representation of G decomposes in
a natural fashion as a direct integral over the orbit space g∗/G. His ideas have been
vastly extended and generalized, under the epithet of the “orbit method” or “orbit
philosophy”, thereby also shedding light on some older results. For example, the
Peter–Weyl decomposition for a compact Lie group G can be obtained by applying
Geometric Quantization to T ∗G.

It is with these applications to harmonic analysis in mind that we will
outline, in this survey, a new approach (developed jointly with J. Hilgert and
T. Wurzbacher) to bring the orbit philosophy to fruition for Lie supergroups. Lie
supergroups appear as the non-linear classical counterparts to the supersymme-
tries of quantum field theories, both fundamentally in high-energy physics and
as effective symmetries of quasiparticles in condensed matter theory. The lack of
a fully satisfactory theory of harmonic analysis for Lie supergroups is therefore
a major drawback. In fact, as B. Kostant notes in a fundamental paper on the
subject [11]: “[Lie supergroups are] likely to be [. . . ] useful [objects] only insofar
as one can develop a corresponding theory of harmonic analysis”.

We reassess this basic problem and extend the basic notion of “orbits” by
allowing for the presence of auxiliary parameters. This entails some necessary up-
grades to the terminology, which we motivate and explain at length in this survey.
As we show in examples, the resolution of the attendant technical difficulties dis-
pels some of the basic limitations of the more traditional approaches, hopefully
bringing us closer to the fulfilment of Kostant’s vision.

Let us close this introduction with a synopsis of the article. After a pedestrian
introduction to the wherewithal of supermanifolds in Section 2, we proceed to
illustrate the failure of the orbit philosophy (in its traditional sense) for Lie super-
groups in Section 3. We introduce our approach in Sections 4 and 5. In Section 6,
we show how these ideas help to overcome some of the apparent limitations of the
orbit philosophy, at least in some pertinent examples.

2. Supermanifolds in a nutshell

Supermanifolds arose in an attempt to define geometries supporting classical field
theories which correspond to the bosonic and fermionic fields encountered in quan-
tum field theory. In addition to the ordinary “even” (or bosonic) coordinates,
such geometries allow for “odd” (or fermionic) coordinates which mutually anti-
commute and commute with their even counterparts.

Formally, such geometries are modelled by extending the algebra of (smooth,
analytic, or holomorphic) functions to

F(M)[ξ1, . . . , ξq] = F(M)⊗∧
(ξ1, . . . , ξq)



Supergroup Actions 83

where F(· · · ) is the algebra the ordinary functions and
∧
(· · · ) denotes the Grass-

mann algebra in the generators ξμ. This is a superalgebra, i.e., it admits a grading
with respect to Z2 =

{
0̄, 1̄

}
.

Thus, a superspace X consists of the data of a) a topological space, denoted
by X0, and b) a sheaf of local algebras OX on X0 (where the ground field K is
C or R). Here, OX is an abstraction of the “algebra of functions”, assigning to
any open subset U ⊆ X0 the “functions” defined on U , and the word “local” is a
technical condition ensuring that the notion of the value (or “numerical part”) of
a function is well defined at every point x ∈ U .

The most basic example of a superspace is obtained as above, viz.

Ap|q =
(
(Ap|q)0,OAp|q

)
,

(Ap|q)0 := kp, OAp|q := Fkp(−,K)⊗∧
(ξ1, . . . , ξq).

Here, k ⊆ K is R or C and Fkp(−,K) is the sheaf of K-valued functions on kp

– where, according to our persuasion (which may vary over time), we take the
liberty to consider smooth or k-analytic functions. Given any superspace X and
an open subset U ⊆ X0, we may define the open subspace X |U on the set U to be
the pair (U,OX |U ).

Just as important as the notion of a “space” is the notion of a “map”, incorpo-
rating central physical concepts such as trajectory, field, and gauge transformation.
In local coordinates, maps of (smooth, analytic, or complex) manifolds take the
form

yμ = ϕμ(x1, . . . , xn)

where on the right are arbitrary (smooth, analytic, or holomorphic) functions.
This is no different for supermanifolds; the only new distinction is between

the parity (even/odd) assigned to the coordinates. Thus, grouping the coordinates
according to their parity as y = (v, η), x = (u, ξ), “maps” of supermanifolds are
of the form

va = ϕa(u1, . . . , up, ξ1, . . . , ξq),

ηb = ϕb(u1, . . . , up, ξ1, . . . , ξq),
(1)

where again, the functions on the right are arbitrary – up to their parity, which is
fixed by the left-hand side.

To make sense of this in our formal framework, we are faced with a conun-
drum: In order to speak of local coordinates, we need a notion of charts, so we need
to know what a map is in the first place. The solution is to change perspective
and consider maps as devices which pull back functions ; the statement that for
supermanifolds, the thus defined maps are indeed determined by the data in (1)
(that is, by the pullback of coordinates), is then a non-trivial fact, due to D. Leites
[12].

Thus, technically, a morphism ϕ : X −→ Y of superspaces comprises the
following data: a) a continuous map denoted by ϕ0 : X0 −→ Y0 and b) a local
morphism of superalgebra sheaves ϕ� : OY −→ (ϕ0)∗(OX). That is, on any open
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set V ⊆ Y0, to any function f ∈ OY (V ) defined on V is assigned the pulled back
function ϕ�(f) ∈ OX(ϕ−1

0 (V )) – whilst preserving the algebra structure and the
grading. As before, the word “local” is a technical condition ensuring that the
pullback preserves values, that is, that the equality ϕ�(f)(x) = f(ϕ0(x)) holds
whenever it makes sense.

As an example, consider the morphism ϕ : A1|2 −→ A1|2 determined by the
assignment

ϕ�(u) = u+ ξ1ξ2, ϕ�(ξb) = ξb (b = 1, 2).

Its effect on a general function f =
∑

I fIξ
I ≡ f∅ + f1ξ

1 + f2ξ
2 + f12ξ

1ξ2 is

ϕ�(f) = f∅ +
∂f∅
∂u

ξ1ξ2 +
∑

I �=∅
fIξ

I .

With these notions in place, we may now pose the following definition.

Definition 2. A supermanifold X is a superspace whose underlying topological
space X0 is Hausdorff and which is locally isomorphic to Ap|q. Here, the latter
statement means that for any x ∈ X0, there are open sets U and V (with x ∈ U)
and an isomorphism X |U −→ Ap|q|V .

Notice that according to our persuasion (i.e., our choice of function sheaf on
the model space Ap|q), we have defined the notion of smooth, analytic, or complex
(i.e., holomorphic) supermanifold.

A popular example of a supermanifold is obtained thus: Take any manifold
X and define

ΠTX :=
(
X,Ω•

X

)
,

where Ω•
X is the sheaf of differential forms on X , with the exterior product as

algebra multiplication and the Z2-grading induced by the degree of differential
forms. This supermanifold is called the parity-reversed tangent bundle on X . Its
main distinction is that it carries a canonical odd vector field – i.e., a parity-
reversing endomorphism of the function sheaf OΠTX = Ω•

X following a graded
Leibniz rule – namely, the de Rham differential d.

Much of the local theory of manifolds goes through for supermanifolds with-
out essential changes; in-depth accounts can be found in Refs. [6, 7, 12, 13]. In
particular, supermanifolds admit direct products, and this allows us to define the
notion of a Lie supergroup, generalizing that of a Lie group.

Definition 3. A Lie supergroup is a group object in the category whose objects are
the supermanifolds and whose morphisms are the morphisms of superspaces. In
other words, a Lie supergroup is the datum of a supermanifold G, together with
morphisms m : G×G −→ G, 1 : ∗ −→ G (where ∗ = A0|0 is the singleton space),
and i : G −→ G, which respectively obey the defining equations of multiplication,
unit element, and inverse in a group.

Similarly, a (left) action of a Lie supergroup G on a supermanifold X is a
morphism a : G × X −→ X satisfying the defining equations of a group action
on a set. A way to express this formally is to postulate the commutativity of the
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following diagrams:

G×G×X G×X

G×X X

idG×a

m×idG

a

a

X G×X

X

(1,idX )

a

that express, respectively, the associative and unit laws for the action.

An example of a Lie supergroup structure on G = A1|2 is obtained by writing
its standard coordinates (u, ξ, η) in a matrix of the following shape:⎛⎝1 u −ξ

0 1 −η
0 0 1

⎞⎠ . (2)

Matrix multiplication and inversion will then define a Lie supergroup structure.
(The signs do not play a role here, but are vital in other contexts.) The Lie
supergroup thus determined will be called the Heisenberg supergroup with odd
centre. Explicitly, we have

m�(u) = u1 + u2, m�(ξ) = ξ1 + ξ2 + u1η2, m�(η) = η1 + η2,

and expressions for the inverse can be similarly derived. An example of an action
of G on X = A2|1 is given by writing its standard coordinates (s, t, θ) in a column
as follows: ⎛⎝ s

t
−θ

⎞⎠ ,

and multiplying from the left by the matrix in Equation (2). It is immediate that
this action fixes any point of the form (0, t0) ∈ A2|1

0 = k2, although the coordinate
t is not fixed, but instead mapped to t+ ηθ.

A less contrived example of an action is obtained by integrating the odd
vector field d on ΠTX (where X is any manifold) to an action of the additive Lie
supergroup G of A0|1: If θ is the coordinate on G = A0|1, then the action morphism
a is determined by

a�(ω) := ω + θdω

for any differential form ω on X . Notice that a0 is the identity of X , but the
action is far from trivial: The invariant functions on ΠTX are exactly the closed
differential forms on X .

It is instructive to write this in coordinates, say for X = A1. We have ΠTX ∼=
A1|1 with the coordinates (u, ξ = du) where u is the standard coordinate on X .
Then

a�(u) = u+ θξ, a�(ξ) = ξ. (3)

This can again be realized by matrix multiplication:(
1 −θ
0 1

)(
u
−ξ

)
=

(
u+ θξ
−ξ

)
.
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3. The orbit nightmare for Lie supergroups

While the basic definitions in the theory of supermanifolds appear innocent enough,
the simple examples discussed in the previous section may serve as an indication
to all that is not well in the world of Lie supergroup actions. Nonetheless, one may
still hope for a generalization of Kirillov’s orbit philosophy to this universe.

In fact, quite some work has been done in this direction, beginning with
B. Kostant, who, among other things, defined the coadjoint action of a Lie su-
pergroup more or less simultaneously with the introduction of the latter concept
[10]. He also defined homogeneous spaces of Lie supergroups, using the language
of Lie–Hopf algebras. This was later recast in the language we are using here by
Boyer–Sánchez-Valenzuela [4]. We briefly review the results.

Given an action a of a Lie supergroup G on a supermanifold X and a point
x ∈ X0, there is a natural notion of isotropy supergroup. (We will come back
to this later.) As the above authors show, it is a closed subsupergroup Gx of
G. Moreover, there is a natural supermanifold G/Gx and a surjective submersion
π : G −→ G·x := G/Gx satisfying the obvious universal property. In particular, the
inclusion ∗ −→ X of the point x factors through a natural G-equivariant injective
immersion G ·x −→ X – this is the orbit of x. In the case of the coadjoint action of
G of g∗, the orbits G · f carry a natural supersymplectic structure invariant under
the action.

Thus, coadjoint orbits are in place, and there is also a natural notion of
representation for a Lie supergroup. For the case of k = K = R, there is also a
natural notion of unitary representation [5].

The following striking result of H. Salmasian [15] shows that these concepts
are in unison, in perfect agreement with the orbit philosophy.

Theorem 4 (Salmasian 2010). Let G be a simply-connected and connected nilpotent
Lie supergroup. The orbits through points of the coadjoint action of G on g∗ are
in bijection with the irreducible unitary representations of G up to parity and
isomorphism.

Let us apply to the simplest possible example, the additive group G of the
affine supermanifold g = A0|q. The coadjoint action is trivial since G is Abelian.
There is only one point of g∗, so there is only one orbit, the singleton space. On
the other hand, there is up to parity and isomorphism only one irreducible unitary
representation, namely, the trivial one.

While this confirms Salmasian’s theorem and thereby in a narrow sense the
orbit philosophy, it shows also that a decomposition of the regular representation
on the space of functions OG into unitary irreducibles is not conceivable in the
traditional sense, as this representation is far from trivial.

What has gone wrong? The examples of Lie supergroup actions considered
above suggest that orbits through ordinary points retain only an insufficient frac-
tion of the information on the action. As we shall now argue, a remedy to this
defect is to generalize the notion of points.
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4. Points manifesto

In order to generalize the notion of points, it is first necessary to rephrase it. As
we observed above, a point x ∈ X0 of a supermanifold gives rise to a morphism
∗ −→ X from the singleton space ∗ = A0|0 which assigns to a function on X its
value at x. This actually sets up a bijection between the elements of X0 and the
morphisms ∗ −→ X .

X

pt
•

•
x ∈ X

Figure 1. A point is a map from the singleton space.

The problem with such simple-minded ordinary points is that they have no
“odd directions” with which to trace out those of X . So it is natural to allow
them to acquire further degrees of freedom, that is, to replace the singleton ∗ by
a general supermanifold T . This leads to the following notion.

Definition 5. Let X be a supermanifold. A T -point of X , where T is another
supermanifold, is a morphism x : T −→ X . We write x ∈T X and denote the set
of T -points of X by X(T ).

Intuitively, a T -point of X is a family of points in X parametrised by the
auxiliary space T – but this intuition has a limited validity, since a T -point carries
more information than the range of the underlying map.

X

T
• •

•

•x ∈T X

Figure 2. A T -point is a T -parameter family of points.

Working with T -points has many advantages: One is that it replaces the
supermanifolds and their morphisms by sets and maps of sets.

Indeed, the supermanifold X is replaced by sets of T -points, for any T . Sim-
ilarly, a morphism ϕ : X −→ Y is replaced by the maps X(T ) −→ Y (T ), defined
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by x �−→ ϕ(x) := ϕ ◦ x. The Yoneda Lemma from category theory states that
X is determined up to canonical isomorphism by the contravariant functorial as-
signment T �−→ X(T ), (ψ : S −→ T ) �−→ (x �−→ x ◦ ψ), called the functor of
points. Moreover, morphisms X −→ Y are in bijection with natural transforma-
tions (ϕT : X(T ) −→ Y (T )) of the functors of points.

Another advantage of T -points is that they lead to the notion of base change.
We will not discuss this in all generality, but instead apply it to extending the
notion of supergroup orbits, as we now explain.

5. Isotropies and orbits in families

Let us reconsider the notion of isotropy supergroups through ordinary points.
Thus, let a : G×X −→ X be an action of a Lie supergroup G on a supermanifold
X and let x be an ordinary point. The equation defining the isotropy can be
written out in terms of T -points as follows: A T -point g ∈T G is a T -point of the
isotropy supergroup if and only if

g · x = x.

Here, we write g · x for a(g, x) = a ◦ (g, x) and x is considered as a T -point of X
via the composition

T ∗ X,x

where the morphism T −→ ∗ is unique. Thus, the isotropy supergroup of Kostant
and Boyer–Sánchez-Valenzuela is the supergroup Gx, unique up to canonical iso-
morphism, whose functor of points is

Gx(T ) =
{
g ∈T G

∣∣ g · x = x
}
.

An equivalent way to state this is that Gx is the fibre product of the point map
x : ∗ −→ X and the orbit map ax : G = G×∗ −→ X , defined by ax := a◦(idG×x),
i.e., the following diagram is Cartesian:

Gx G

∗ X.

ax

x

That is, any pair of morphisms to ∗ and G that lie over the same morphism to X
factors uniquely through Gx.

In a similar vein, the orbit G · x := G/Gx is defined by the requirement that
the following diagram is a coequaliser:

G×Gx G G · x.m

p1

πx

That is, any morphism defined on G that yields the same morphism on G × Gx

when composed with m and p1 factors uniquely through πx.
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If now x is a T -point to start with, then the orbit map

a ◦ (idG × x) : G× T −→ X

is defined onG×T . (Actually, we prefer to put the T factor first, exchanging factors
in the definition.) Thus, the Lie supergroup G gets replaced by a “family” of Lie
supergroups GT = T ×G. Formally, this is captured in the following definition.

Definition 6. A superspace over T is a morphism X −→ T . A morphism of super-
spaces over T is a commutative square

X Y

T T.

A supermanifold over T is a superspace over T locally isomorphic to the model

space Ap|q
T := T × Ap|q with the projection onto T . (“Locally” here means locally

in the domain.) A Lie supergroup over T is a group object in the category of
supermanifolds over T and morphisms over T .

This definition actually makes sense for base superspaces T much more gen-
eral than supermanifolds, see Ref. [2].

With these notions, the definition of the isotropy supergroup through x is
immediate: It is the fibre product of (p1, x) : T −→ XT = T ×X and

ax := (p1, a ◦ (idG × x) ◦ (1 2)) : GT = T ×G −→ XT = T ×X,

with (1 2) denoting the flip. Thus, it makes the following diagram Cartesian:

Gx GT

T XT .

ax

(p1,x)

In terms of the functor of points, we have

Gx(R) :=
{
(t, g) ∈R GT

∣∣ g · x(t) = x(t)
}

for any supermanifold R over T . Here, recall that x(t) = x ◦ t.
The notion of isotropies through T -points was defined by Mumford [14] in

the context of group schemes. By the Yoneda Lemma, it is clear that Gx is indeed
a Lie supergroup over T if only it exists as a supermanifold over T .

A tame example of an action is given by G = GL(2,R) acting naturally on
X = A2 (where K = R). For T = A1 and

x(t) =

(
cos t
sin t

)
we obtain

Gx =

{(
t,

(
1 + s cos t sin t s cos2 t

−s sin2 t 1− s cos t sin t

)) ∣∣∣∣ s, t ∈ R
}
.
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In this case, the isotropy supergroup exists and is a Lie group over A1.
On the other hand, consider the action of G = A0|1 on X = A1|1 defined in

Equation (3). Let T = A0|1 with standard coordinate τ and define x by

x�(u) = 0, x�(ξ) = τ.

In this case, Gx does not exist as a supermanifold over T . However, it does exist
as a superspace which is locally finitely generated in the sense of Ref. [2]. One
computes easily that

Gx =
(∗,K[θ, τ ]/(θτ)

)
.

In any case, ifGx exists, then one may defineG·x := G/Gx by the requirement
that the following diagram is a coequaliser:

GT ×T Gx GT G · x,m

p1

πx

provided this exists as a supermanifold over T .
In order to understand when the isotropy supergroup exists, we need a piece

of data encoding the geometry of the action.

Definition 7. Let a : G × X −→ X be an action of a Lie supergroup G on a
supermanifold X . For v ∈ g, the fundamental vector field of v is the unique vector
field av on X such that

(v ⊗ 1) ◦ a� = (1⊗ av) ◦ a�.
The fundamental distribution Ag is the OX -submodule of the tangent sheaf TX

spanned by the fundamental vector fields.

X

Figure 3. The fundamental distribution Ag.

The following theorem is proved in Ref. [3].

Theorem 8 (Alldridge–Hilgert–Wurzbacher 2015). The following are equivalent:

(i) The isotropy supergroup Gx exists as a Lie supergroup over T .
(ii) The orbit morphism ax : GT −→ XT has constant rank over T . (That is, its

tangent map on the tangent sheaf over T has a locally free cokernel.)
(iii) The pullback x∗Ag is locally direct in x∗TX .

In this case, G · x is a supermanifold over T and the canonical morphism
G · x −→ XT is an injective immersion.



Supergroup Actions 91

We remark that the notion of constant rank morphisms of supermanifolds
is much more subtle than for manifolds; in particular, it is not implied by the
weaker condition that the rank of the tangent map on the level of tangent spaces
is constant.

The theorem subsumes the previous results by Kostant and Boyer–Sánchez-
Valenzuela. Moreover, it explains why the isotropy does not exist in the example
before Definition 7: the fundamental distribution is spanned by the differential
d = ξ ∂

∂u , and its pullback along x is spanned by τ
(
x� ◦ ∂

∂u

)
, so is not a direct

summand.
This phenomenon is not restricted to actions of Lie supergroups. The action

on X = A0|1 of the additive group of A1 that is generated by the even vector field
ξ ∂
∂ξ is also an example where the theorem’s assumption fails.

For the particular case of the coadjoint action of G on g∗, whenever an orbit
through a T -point f ∈T g∗ exists, it carries a symplectic structure (à la Kirillov–
Kostant–Souriau), as the following theorem from Ref. [3] shows.

Theorem 9 (Alldridge–Hilgert–Wurzbacher 2015). Let f ∈T g∗ be a T -point of
g∗. If the orbit morphism af with respect to the coadjoint action a = Ad∗ of G
has constant rank, then the coadjoint orbit G · f carries a canonical invariant
supersymplectic structure ωf over T .

Here, a supersymplectic structure is a non-degenerate super-antisymmetric
bilinear form on the tangent sheaf over T (whose sections are vector fields along
the fibres of the projection onto T ) that is closed for the relative differential dX/T .

We emphasize two points: a) The definition of ωf is the standard one (the
precise formulation is somewhat technical since one has to handle the sheaves
correctly), and b) in previous attempts by G.M. Tuynman [16] to handle coadjoint
orbits through T -points in a more ad hoc fashion, it was necessary to consider
symplectic forms that where no longer homogeneous with respect to parity. This
difficulty disappears in our systematic treatment.

6. Applications to harmonic analysis

We now illustrate in some examples how the point of view introduced in the two
previous sections resolves some of the issues around the orbit philosophy for Lie
supergroups.

We fix a Lie supergroup G and a T -point f of g∗. We think of representations
of GT as families over T . For several reasons, the simplest (and most general) way
to phrase its representation theory is in terms of contravariant functors on the
category SManT of supermanifolds over T . One basic such functor is O, defined by

O(U) := Γ(OU,0̄), O(f : U −→ U ′) := f � : O(U ′) −→ O(U).

Here, Γ denotes global sections and the subscript (−)0̄ the even part. Then O is
a ring object in the category of contravariant functors on SManT . The functor of
points of GT is a group object in this category.
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Definition 10. A representation (H, π) of GT consists of an O-module object H in
the category of contravariant functors on SManT and an O-linear action

π : GT ×H −→ H.

Let h be an OT -subalgebra of gT := OT ⊗g (preferably, one that is polarizing

in some sense). Then we define a representation
(
Q(f, h), πh

f

)
of GT as follows. On

(t : U −→ T ) ∈ SManT , we define

Q(f, h)(t) :=
{
ψ ∈ Γ(OU×T GT ,0̄)

∣∣ ∀v ∈ Γ((t∗h)0̄) : Rv = −i〈f(t), v〉ψ}.
Here, R denotes the right regular representation (by right translation). On mor-
phisms ϕ : U −→ U ′ over T , we set

Q(f, h)(ϕ) := (ϕ×T idGT )
�.

The action πh
f is given by restriction of the left regular representation, viz.

πh
f (g)ψ := ψ(−, g−1(−)) =

(
(idU ×T m) ◦ ((idU , g

−1)×T idG)
)�
(ψ)

for ψ ∈ Q(f, h)(t) and g ∈U G. When the coadjoint orbit G · f exists as a super-
manifold over T , Q(f, h) can be seen to define an OT -module. But it makes sense
as a functor in any case.

Let us come back to the most basic example of the Abelian supergroup G =
A0|q. Recall from Section 3 that this could not be handled satisfactorily in the
traditional approach.

In this case, we have Gf = GT , G · f = T , and the Kirillov–Kostant–Souriau
form ωf is zero. Thus, the only reasonable choice for h is gT . For any (t : U −→
T ) ∈ SManT , the O(t)-module Q(f, h) is generated by

ψt = e−i
∑

j tjξ
j

.

Here, t is determined by t�(ξj) = tj , where (ξj) is a basis of g and (ξj) the dual
basis. That is, Q(f, h) comes from a rank 1|0 locally free OT -module (or vector
bundle on T ). The action on ψt is given by

πh
f (g)ψt = ei〈t,g〉ψt.

These representations suffice for a decomposition of the regular representation
of G. In fact, taking T = g∗ and f = idT , one of them is enough.

Proposition 11 (Alldridge–Hilgert–Wurzbacher 2015). Denote πh
f by π. For any

superfunction h on G, we have∫
T

D(θ) str π(h) = (−1)n(n+1)/2inh0(0),

where π(h) is defined by

π(h) :=

∫
G

D(ξ)hπ,

and the integrals are Berezin integrals, cf. Refs. [7, 12, 13].
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This is just the standard inversion formula for the fermionic Fourier trans-
form. In our framework, it acquires an interpretation as the decomposition of the
function algebra as an odd direct integral of representations.

We end our discussion by a brief account of the representation theory of the
Clifford supergroup G in our framework. Recall that G is the simply-connected
Lie supergroup with Lie superalgebra g = 〈xj , yj, z|j = 1, . . . , q〉 where xj , yj are
odd, z is even, and the bracket is given by

[xj , yj] = z

with all other relations zero. If we choose T = A1 \0 and f = z∗, where (xj , yj, z∗)
is the dual basis, then the orbit G · f exists as a supermanifold over T . We choose
h =

〈
x1, . . . , xq, z

〉
OT

. Then we obtain the following nice characterization of the

representation attached to the orbit G · f .
Proposition 12 (Alldridge–Hilgert–Wurzbacher 2015). The representation π = πh

f

on Q(f, h) is the bundle of spinor modules over T of central character −it.

This result can also be reached by other methods, but it is still delightful to
see that the spinor module naturally comes out of our construction. Furthermore,
this fits nicely together with the following result from Ref. [1].

Theorem 13 (Alldridge–Hilgert–Laubinger 2013). For any f contained the
Schwartz space S (G), we have the Fourier inversion

f(1) =
(−1)q

2π

∫
A1

Dt

(2t)�(q+1)/2� τ
(
π(f)

)
, τ =

{
str 2 | q,
2(1−q)/2e−iπ/4 tr(ε·) 2 � q.

While a number of issues remain open, these examples may serve as a moti-
vation to study Kirillov’s orbit method for Lie supergroups from the more general
vantage point that we have suggested here.
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