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Quasi-classical Calculation of Eigenvalues:
Examples and Questions
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Abstract. We discuss the Maslov quantization condition, especially a method
of quasi-classical calculation of energy levels of Schrödinger operators. The
method gives an approximation of eigenvalues of operators in general. We give
several concrete examples of Schrödinger operators to which the quasi-classical
calculation gives the correct eigenvalues and pose some open problems.
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Introduction

Maslov introduces the so-called Maslov index and the quantization condition for
Lagrangian submanifolds and studies the “asymptotic solutions” of the eigenvalue
problems in quantum mechanics [7]. The Malsov quantization condition can be
regarded as a generalization of the Bohr quantization rule. By means of the quan-
tization condition we can obtain good approximate eigenvalues of Schrödinger
operators (see, for example, [4, 8–10]).

On the contrary, there exist several concrete quantum mechanical systems
where we obtain exact eigenvalues and multiplicities by means of the Maslov quan-
tization condition (see, for example, [1]). Thus, as far as these systems are con-
cerned, we need not to consider the operator theory to obtain the exact quantum
mechanical energy levels and their multiplicities. What we need is only classical me-
chanics, invariant Lagrangian submanifolds and Maslov’s quantization condition.

Our question is:

Why there is such a coincidence?

As far as we know, we have no mathematical proof of the coincidence at present.
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In this note, we explain a concept of quasi-classical calculation of eigenvalues
of Schrödinger operators. We also show examples for which the Maslov quantiza-
tion condition gives exact eigenvalues.

We should also mention the paper of Leray [6], inspired by Malsov’s theory,
where he constructed a theory of a Lagrangian analysis and treated such a kind
of concrete examples.

Maslov quantization condition

Let θ be the canonical 1-form of the cotangent bundle T ∗M of a smooth manifold
M and π : T ∗M → M be the canonical projection. We consider the symplec-
tic manifold (T ∗M,dθ). Consider a Lagrangian submanifold L of (T ∗M,dθ). The
Maslov quantization condition is then written as

1

2π�

∫
c

θ − 1

4
〈mL, [c]〉 ∈ Z,

where � (Planck constant) is a positive parameter, [c] ∈ H1(L,Z) and mL is the
Maslov class of L.

Example 1: Harmonic oscillator

We explain here how the Maslov quantization condition determines discrete en-
ergy levels of a Hamiltonian. We consider the case where M = R and then the
cotangent bundle is T ∗M = T ∗R = R2. We write points as (x, p) ∈ R2. Then
the cotangent bundle has the canonical symplectic form dθ, where θ = pdx. We
consider a Hamiltonian function H = 1

2 (p
2 + x2) of the harmonic oscillator.

Now we consider a level set of the function H for every constant E > 0, such
that

L(E) =
{
(x, p) ∈ R2 | H(x, p) = E

}
.

The level set L(E) is a Lagrangian submanifold of (R2, dθ). We consider the Maslov
quantization condition for the Lagrangian submanifold L(E). The equation of
motion is

ẋ = p, ṗ = −x

and an orbit in L(E) is

cE : x(t) = x0 cos t+ p0 sin t, p(t) = p0 cos t− x0 sin t,

where (x0, p0) is a point in L(E) and then E = H(x0, p0) =
1
2 (p

2
0+ x2

0). Hence the
action integral along cE is∫

cE

θ =

∫ 2π

0

p(t)ẋ(t)dt =
1

2
(p20 + x2

0) 2π = 2πE.

As to the Maslov index, we prepare the following lemma.
We consider the symplectic manifold (T ∗Rn, dθ). Let

H1(x, p), H2(x, p), . . . , Hn(x, p)
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be smooth functions on a domain D in T ∗Rn. Suppose they are in involution, or
Poisson commuting each other. We denote their level set by

L(c1, c2, . . . , cn) = {(x, p) ∈ D | H1(x, p) = c1, H2(x, p) = c2, . . . , Hn(x, p) = cn} .
We put H = (H1, H2, . . . , Hn) and define n× n matrices by

Hx =

(
∂Hj

∂xk

)
, Hp =

(
∂Hj

∂pk

)
, j, k = 1, 2, . . . , n.

Then we have (see [11])

Lemma 1. The Maslov form on L(c1, c2, . . . , cn) is given explicitly as

mL =
1

π
d (arg det(Hp + iHx)) .

For the harmonic oscillator H(x, p) = 1/2 (x2 + p2), we have

det(Hp + iHx) = p+ ix.

Hence, on the curve

cE : x(t) = x0 cos t+ p0 sin t, p(t) = p0 cos t− x0 sin t

we see mL = (1/π) d (arg det(Hp + iHq)) = (1/π) dt, and then the Maslov index
for cE is

〈mL, [cE ]〉 =
∫
cE

mL =
1

π

∫ 2π

0

dt = 2

Then the Maslov quantization condition for L(E) becomes

1

2π�

∫
c

θ − 1

4
〈mL, [c]〉 = E

�
− 1

2
∈ Z

and the level set L(E) satisfies the Malsov quantization condition if and only if
the parameter E is given as

E = En =

(
n+

1

2

)
�, n = 0, 1, 2, . . . ,

which gives exactly the eigenvalues of the Schrödinger operator of the harmonic
oscillator.

Example 2: the hydrogen atom

In this section, we see that the Maslov quantization condition determines the
eigenvalues of the Schrödinger operator of the hydrogen atom, the angular mo-
mentum operator and the Lenz operator, and also determines multiplicities of the
eigenspaces for the hydrogen atom.
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The operators of the hydrogen atom, the angular momentum operator and
the Lenz operator are respectively given by

Ĥ

(
x,

�
i

∂

∂x

)
= −�2

2
�− 1

|x| , |x| =
(

3∑
k=1

x2
k

)1/2

l̂1

(
x,

�
i

∂

∂x

)
= x2p̂3 − x3p̂2,

ê1

(
x,

�
i

∂

∂x

)
= x2p̂1p̂2 + x3p̂1p̂3 − x1(p̂

2
2 + p̂23) + p̂1 +

x1

|x| ,

where � is the 3-dimensional Laplacian and p̂k = �

i
∂

∂xk
, k = 1, 2, 3. These opera-

tors are mutually commuting. Denote the corresponding Hamiltonian functions of

Ĥ , l̂1 and ê1 by

H(x, p) =
1

2
|p|2 − 1

|x| ,
l1(x, p) = x2p3 − x3p2,

e1(x, p) = p1 〈x, p〉 − x1|p|2 + x1

|x| ,

where (x, p) ∈ T ∗(R3\0) and 〈x, p〉 = ∑3
k=1 xkpk. It is easy to see that the func-

tions H, l1 and e1 are in involution, or Poisson commuting, with respect to the
canonical Poisson bracket. We consider the level set of H, l1 and e1 such that

L(E, l1, e1) =

{
(x, p) ∈ T ∗(R3 − 0) | H(x, p) = −E (E > 0)

l1(x, p) = l1, e1(x, p) = e1

}
.

The functions H, l1 and e1 satisfy a priori inequality (see [11, Proposition 1.1])

1/
√
−2H(x, p) ≥ |l1(x, p)|+ |e1(x, p)|/

√
−2H(x, p)

for any (x, p) ∈ T ∗(R3−0). For parameters (E, l1, e1) satisfying an inequality such
that

1/
√
2E > |l1|+

(
|e1|/

√
2E

)
it is easy to see that the level sets L(E, l1, e1) are compact. Then we have

Proposition 2. The level sets L(E, l1, e1) are Lagrangian submanifolds and are
diffeomorphic to 3 torus generically.

Now we calculate action integrals and also the Maslov indices along certain
closed curves c1, c2, c3 on L(E, l1, e1) which generate H1(L(E, l1, e1),Z) as before,
and by a direct calculation we can check the Malsov quantization condition. We see

c1 :
1

2π�

∫
c1

θ − 1

4
〈mL, [c1]〉 = 1

2π�

(
1√
2E

+
|e1|√
2E

+ l1

)
− 1

2
∈ Z,
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c2 :
1

2π�

∫
c2

θ − 1

4
〈mL, [c2]〉 = 1

2π�

(
1√
2E

− |e1|√
2E

+ l1

)
− 1

2
∈ Z,

c3 :
1

2π�

∫
c3

θ − 1

4
〈mL, [c3]〉 = l1

�
∈ Z.

Then we have ([11])

Theorem 3. L(E, l1, e1) satisfies the Maslov quantization condition if and only if

E = En =
1

2n2�2
, l1 = l1,m = m�, e1 = e1,n1,n2 =

n1 − n2

n
,

where

n = n1 + n2 + |m|+ 1, n, n1, n2,m ∈ Z, n1, n2 ≥ 0.

Theorem 4. The numbers En, l1,m and e1,n1,n2 are just equal to the eigenvalues

of the operators Ĥ, l̂1 and ê1, respectively. Moreover, for each En = 1
2n2�2 , the

number of level sets L(En, l1, e1) satisfying the Maslov quantization condition n =

n1 + n2 + |m| + 1, n1, n2 ≥ 0 is equal to the multiplicity of the eigenspace of Ĥ
belonging to En.

Example 3: MIC-Kepler problem

The MIC-Kepler problem is the Kepler problem under the influence of Dirac’s
magnetic monopole. The quantized MIC-Kepler problem is formulated and solved
by Iwai–Uwano as follows [3]: For every m ∈ Z, Dirac’s monopole field is defined
by a closed two-form on R3\ {0}

Ω̃m = −(m/2)|x̃|−3(x̃1 dx̃2 ∧ dx̃3 + x̃3 dx̃1 ∧ dx̃2 + x̃2 dx̃3 ∧ dx̃1),

where x̃ = (x̃1, x̃2, x̃3) ∈ R3\ {0} and |x̃| = (
x̃2
1 + x̃2

2 + x̃2
3

)1/2
. A simple calculation

yields
∫
S2 Ω̃m = 2πm, where S2 is the unit two-sphere and Ω̃m is an integral. Then

we have a complex line bundle Em over R3\ {0} with a Hermitian inner product

〈 , 〉m and a linear connection ∇m with the curvature form Ω̃m. The Hamiltonian
of the quantized MC-Kepler problem is given by

Ĥm = −�2

2

3∑
j=1

(∇m
j

)2
+

(m/2)2

2|x̃|2 − 1

|x̃| ,

where ∇m
j stands for the covariant derivative in the direction of ∂/∂x̃j, j = 1, 2, 3.

The operator Ĥm has mutually commuting operators

l̂m,1 =
�
i
(x̃2∇m

3 − x̃3∇m
2 ) +

(m/2)

|x̃| x̃1,

êm,1 =
�
2i

(
l̂m,2∇m

3 − l̂m,3∇m
2 −∇m

2 l̂m,3 +∇m
3 l̂m,2

)
+

x̃1

|x̃| .
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The eigenvalue problem is exactly solved by Iwai–Uwano [3] as follows. Con-
sider a non-negative integer n subject to the condition: |m| ≤ n and n−m is even.

Then the eigenvalues of Ĥm and their multiplicities are

E(m)
n = − 2

(n+ 2)2�2
,

(n−m+ 2)(n+m+ 2)

4
,

respectively.
On the other hand, the corresponding classical mechanical system is the

following. The symplectic manifold is (T ∗(R3\ {0}), σm ), where

σm =
3∑

j=1

dp̃j ∧ dx̃j + π∗Ω̃m, (x̃, p̃) ∈ T ∗(R3\ {0}) = (R3\ {0})× R3

and π : T ∗(R3\ {0}) → R3\ {0} is the canonical projection. The classical Hamil-

tonian of the operators Ĥm, l̂m,1 and êm,1 are respectively given by

Hm(x̃, p̃) =
1

2
|p̃|2 + (m/2)2

2|x̃|2 − 1

|x̃| ,

lm,1(x̃, p̃) = x̃2p̃3 − x̃3p̃2 +
(m/2)

|x̃| x̃1,

em,1(x̃, p̃) = −x̃1|p̃|2 + p̃1 〈x̃, p̃〉+ (m/2)(x̃2p̃3 − x̃3p̃2)

|x̃| +
x̃1

|x̃| .

The classical Hamiltonian functions Hm, lm,1 and em,1 are in involution, and we
consider their level sets

L(E, lm,1, em,1) =

{
(x̃, p̃) ∈ T ∗(R3 − {0}) | Hm(x̃, p̃) = −E, (E > 0)

lm,1(x̃, p̃) = lm,1, em,1(x̃, p̃) = em,1

}
.

By a similar way as in the Kepler problem, we see that the parameters
(E, lm,1, em,1) satisfy a certain natural inequality, and generically the level set

L(E, lm,1, em,1) is diffeomorphic to 3-torus.
Iwai–Uwano [2] showed that the classical MIC-Kepler problem is obtained

by the Marsden–Weinstein reduction by U(1) action on the cotangent bundle
(T ∗(R4 − {0}), dθ ). Using this structure Yoshioka–Ii [12] defined a quantization
condition on the symplectic manifold (T ∗(R3\ {0}), σm ) which is regarded as a
U(1)-reduction of the Maslov quantization condition on the symplectic manifold
(T ∗(R4 − {0}), dθ ).

Similarly as before, we can check the quantization condition for the level set
L(E, lm,1, em,1) and we obtain ([12])

Theorem 5. The Lagrangian submanifold L(E, lm,1, em,1) satisfies the quantization

condition if and only if the parameters (E, lm,1, em,1) coincide with the eigenvalues

of the corresponding Hamiltonian operators. For each eigenvalue E = −E
(m)
n =

2
(n+2)2�2 , the number of the Lagrangian submanifolds L(E, lm,1, em,1) satisfying

the quantization condition is equal to the multiplicity of the operator Ĥm.
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Example 4: The Bochner-Laplacian associated with the harmonic connection
on the line bundle over CPn

In this section, we consider quasi-classical eigenvalues of the Bochner-Laplacian as-
sociated with the harmonic connection on the line bundle over CPn. The harmonic
connection is given as follows (see [5]).

We provide Cn+1 = {z = (z0, . . . , zn)} with the Hermitian inner product

〈z, z′〉 =
n∑

j=0

zjzj

and the real inner product 〈z, z′〉R = Re 〈z, z′〉. Consider the 2n+ 1-dimensional
sphere with radius 2,

S2n+1
[2] = {z = (z0, . . . , zn) | 〈z, z〉R = 4} ,

which is endowed with the canonical Riemannian metric g
S
induced from 〈z, z′〉R.

The action of U(1) = {λ ∈ C | |λ| = 1} on S2n+1
[2] denoted by R is given by

R(λ)z = λz, λ ∈ U(1), z ∈ S2n+1
[2] .

As a quotient space, we get the principal fibre bundle (Hopf fibre bundle) ν
P

:
S2n+1
[2] → CPn. We fix a Riemannian metric g on CPn so that ν

P
is a Riemannian

submersion. Define a connection on S2n+1
[2] by means of the Riemannian metric g

S

such that β = g
S
(γ, ∗)/|γ|, where γ is the fundamental vector field on S2n+1

[2] of

the action R. Its curvature form is denoted by Ω. For every m ∈ Z, we consider a
U(1) action ρ on C such that

ρ(λ)w = λmw, λ ∈ U(1), w ∈ C.

We then have a Hermitian line bundle (Em, 〈 , 〉m) associated with S2n+1
[2] by ρm.

The metric connection d̃m induced by β is called the harmonic connection in

(Em, 〈 , 〉m). We denote by Dm the Bochner-Laplacian associated with d̃m. The
eigenvalues and their multiplicities are already known ([5]).

Proposition 6. The eigenvalues of Dm are

λ(k)
m = (k + |m|/2)(k + |m|/2 + n)−m2/4, k = 0, 1, 2, . . .

and the multiplicity of λ
(k)
m is[

k + |m|+ n

k + |m|
][

k + n

k

]
−
[
k + |m|+ n− 1

k + |m| − 1

][
k + n− 1

k − 1

]
.

We consider the corresponding quasi-classical calculation. Consider the cotan-
gent bundle π : T ∗CPn → CPn. We denote the energy Hamiltonian of g by H .
We consider a symplectic structure on T ∗CPn such that σm = dθ+ π∗mΩ, where
θ is the canonical 1-form of T ∗CPn. The function H is completely integrable and
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we take certain functions H1, . . . , H2n−1, H2n = H , which are Poisson commuting.
Similarly as before, we consider a level set

L(E1, . . . , E2n) = {p ∈ T ∗CPn | Hj(p) = Ej , j = 1, 2, . . . , 2n} .
We check the quantization condition directly for the level sets L(E1, · · · , E2n) and
we obtain ([13])

Theorem 7. The quasi-classical eigenvalues of H are

λ̃(k)
m = (k + |m|/2)(k + |m|/2 + n)−m2/4 + n2/4

= λ(k)
m + n2/4, k = 0, 1, 2, . . .

Remark 8. As to multiplicities, we have that for each k the number of

L(E1, . . . , E2n)

satisfying the quantization condition is equal to the number of tuples of integers

(γ1, . . . , γn−1, p0, p1, . . . , pn)

such that
n∑

l=0

pl = m, k ≥ γn−1 ≥ · · · ≥ γ1 ≥
(

n∑
l=0

|pl| − |m|
)
/2.

(For details, see [13].) We can check directly the number of tuples is just equal to

the multiplicities of the kth eigenvalue of the Bochner-Laplacian λ
(k)
m for every k.

Question

Now we would like to ask:

• Can we find other examples which have such coincidence?
• Can we prove mathematically why such coincidence occurs?
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