
Geometric Methods in Physics. XXXIV Workshop 2015

Trends in Mathematics, 35–43
c© 2016 Springer International Publishing

Some Comments on Indistinguishable
Particles and Interpretation of the
Quantum Mechanical Wave Function

Gerald A. Goldin

Dedicated in memory of Professor Gérard G. Emch,
an inspiration, a mentor, and a friend

Abstract. This paper discusses some fundamental questions pertaining to the
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1. Questions motivating the discussion

Interesting questions arise in connection with the description of indistinguishable
particles in quantum mechanics. Let us consider several of them:

1. What meaning should we ascribe to the wave function (for example, in a
positional representation)?

2. How should we understand the construction of multiparticle states from
single-particle ones?

3. How dependent are our descriptions on assumptions of strict linearity in
quantum mechanics?
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4. What physical meaning attaches to the action of a group of permutations on
particle coordinates?

5. What are the relationships among: (a) the exchange statistics of indistin-
guishable particles (Bose, Fermi, or other) expressed through a symmetry
condition on the wave function; (b) configuration space topology; (c) self-
adjoint extensions of densely-defined operators describing momentum, an-
gular momentum, or energy; and (d) boundary conditions satisfied by wave
functions? Which of these constructs are physically fundamental?

6. What are the implications for exotic particle statistics (e.g., anyons, non-
abelian anyons, particles obeying parastatistics, configurations of extended
objects, or particles in non-simply connected spaces)?

Various standard, easy answers (and some not-so-easy answers) to these ques-
tions are to be found in many textbooks and articles. But certain subtleties are
overlooked in these answers, and I think there is something to be learned from
probing more deeply. This paper is intended to highlight some important distinc-
tions, and in so doing to stimulate possibly skeptical thinking about fundamental
issues in quantum mechanics. I think that is something Gérard Emch would en-
courage us to do from time to time.

In a short presentation I can touch on only some of the above questions, and
these these only partially; but I shall endeavor to provide a certain perspective from
which to approach them. I cannot here include adequate references to the many
researchers whose work should be cited; the reader is referred to more complete
citations in [1, 2], and [3].

2. Positional representation of operators

In the conventional quantum mechanical description of a single particle, or of N
particles, the interpretation of the wave function depends (of course) on how the
observables are represented.

In a “positional” representation, the single-particle (complex- or spinor-
valued) wave function is ψ(x), where x coordinatizes physical space; the operators
for position coordinates Qj are represented by multiplication, Qjψ(x) = xjψ(x);
and the operators for momentum coordinates P k are represented by differentiation,
P kψ(x) = −i�(∂/∂xk)ψ(x). In a “momentum” representation the single-particle

wave function is ψ̃(p), momentum coordinate operators are represented by multi-
plication, and those for position coordinates by differentiation. These are just two
unitarily equivalent representations of the Heisenberg algebra, with the Fourier
transform implementing the equivalence.

So to ask about an interpretation to be given to the wave function, we must
first specify how some set of observables is being represented; otherwise, the ques-
tion is not well posed. Here I focus on positional representations, partly because
there is a fundamental sense in which actual measurements may be reduced to
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sequences of positional measurements (at different times) [4]. Then we need to
describe the time-evolution of wave functions.

The time-evolution of the positional wave function ψ(x; t) (for a single par-
ticle) is governed by a Schrödinger equation established by our representation of
the Hamiltonian operator (corresponding to the energy observable). This time-
evolution preserves the L2 norm ‖ · ‖ of ψ. We then typically interpret ψ(x; t)
as a “probability amplitude;” i.e., |ψ(x; t)|2/‖ψ‖2 is the probability density for
an idealized measurement localizing the particle in the vicinity of x at time t.
To describe a sequence of two positional measurements, we must also specify the
continued time-evolution after an outcome of the first (idealized) measurement.
The initial condition after such a measurement localizes the particle in a region
X at time t is often assumed to be the orthogonal projection of the wave function
ψ(x, t) onto the subspace having support in X .

But the interpretation of the single-particle wave function ψ in a positional
representation does not end here. We must also say something about its phase.
The interpretation of the phase of ψ depends further on how we choose to rep-
resent observables such as momentum and energy. After a gauge transformation
ψ ′(x; t) = exp[iθ(x; t)]ψ(x; t), the representation is still positional, but the phase
of ψ has been modified (so its interpretation must also change). Likewise, the rep-
resentations of the Hamiltonian (energy) and momentum as differential operators
have also been changed by the gauge transformation. We refer explicitly to these
operators when we specify the gauge. While the modulus of ψ is gauge-invariant
(under the usual gauge transformations of quantum mechanics), its phase is not.

Nevertheless, a gauge-invariant (probability flux) current density may be con-
structed from the phase. Its specification becomes part of the physical interpreta-
tion of ψ. Thus we have, in a positional representation, the interpretation of the
single-particle wave function as describing a probability density and flux density
in the one-particle configuration space (often identified with the physical space),
providing predictions for the distribution of outcomes of positional measurements.

Let us also remark that use of a positional representation does not rule out
additional, “internal” degrees of freedom needed to describe observables such as
components of the particle spin. Then ψ is no longer scalar-valued, but may take
values in an inner product space carrying a representation of an internal symmetry
group (a Lie group) associated with the particle.

3. Many-particle systems

The conventional procedure for describing many-particle systems is to write the
wave function in the form ψ(x1, . . . , xN ), even in the case of indistinguishable
particles. That is, ψ is taken to be a complex-valued L2 function on the space of
ordered N -tuples of points (the particle coordinates) in the physical space.

When the particles are indistinguishable, one then imposes an additional
condition of exchange symmetry. Conventionally, one then interprets ψ as a prob-
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ability amplitude for finding (simultaneously) particle 1 at x1, particle 2 at x2, and
so forth. This motivates the need for an exchange symmetry condition – since the
particles are indistinguishable, the probability density for simultaneously finding
particle j at xj and particle k at xk (j �= k) must be the same as that of finding
particle k at xj and particle j at xk.

But this conventional interpretation raises some difficulties. Even in the case
of distinguishable particles (when no additional symmetry is imposed), the charac-
terization of “particle k,” for a specific k, depends on some other, not-yet-specified
measurement to be taken (e.g., of the particle mass) which distinguishes one par-
ticle from another. Furthermore, actual measurements take place in the physical
space, not in the configuration space. How should the latter limitation be ex-
pressed?

Returning to the situation of indistinguishable particles, the usual symmetry
condition imposed relates ψ(x1, . . . , xN ) to ψ(xσ(1) . . . xσ(N)), where σ ε SN (the
symmetric group) is a permutation of the N indices. The relationship is by means
of a unitary (typically, 1-dimensional) representation of SN . The trivial represen-
tation characterizes bosons (totally symmetric wave functions), the alternating
representation characterizes fermions (totally antisymmetric wave functions). A
fundamental difficulty with this description, however, is that one has artificially
labeled the indistinguishable particles with indices, and then introduced a sym-
metry to “undo” that step. What can this possibly mean physically?

An alternative approach is to refer to unordered configurations of particles
in physical space, since the ordering is unnatural for distinguishable particles and
unobservable for indistinguishable ones. Then a configuration is just an N -point
subset of the spatial manifold M . Note that it is not necessary to include con-
figurations where more than one particle occupy the same point. These form a
Lebesgue measure zero set.

We write γ̃ = (x1, . . . , xN ) for an ordered configuration, and γ = {x1, . . . , xN}
for an unordered configuration. Then γ̃ → γ is a projection from the coordinate
space Γ̃(N) (of ordered N -tuples of distinct points in physical space) to the con-
figuration space Γ(N) (of N -point subsets of physical space).

It is natural to consider writing wave functions for identical particles on
Γ(N) rather than Γ̃(N); indeed, Γ(N) is the physically relevant space. But we must
then find a different way to characterize the exchange symmetry – to describe
how bosons are to be distinguished from fermions, and what other particle sta-
tistics might be possible. This must now be done via representations of the op-
erators, as there is no way available to impose a symmetry condition on wave
functions on Γ(N).

We may also consider wave functions for distinguishable particles from this
point of view. Then one is led quite naturally to the idea of marked configurations.
A marked configuration is an N -point subset of a bundle B for which the base is
the physical space M , and for which a fiber is a space in which additional values
of particle attributes may be taken. This is discussed a little further below.
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4. Diffeomorphism group representations and particle statistics

Taking seriously the comment that measurements occur in physical space (rather
than configuration space), we observe that the mass density and momentum den-
sity operators form an infinite-dimensional Lie algebra of local currents modeled
on physical space. This current algebra describes a natural class of kinematical
observables. The group obtained by exponentiating the local currents is the group
of compactly-supported diffeomorphisms of M . [5]

Let us take M = Rd (d ≥ 2) for specificity. For a diffeomorphism φ of Rd,
one may write a unitary representation of the group on a space of wave functions
ψ(x1, . . . , xN ), xj ∈ Rd, as

[V̂ (φ)ψ](x1 , . . . , xN ) := ψ(φ(x1), . . . , φ(xN ))ΠN
k=1

√
Jφ(xk) . (1)

where Jφ(x) = [dμφ/dμ](x) is the Jacobian of φ at x (here μ is Lebesgue measure).

Note that the representation is unitary, and the exchange symmetry of ψ is
preserved. The representation V̂ acting on the Hilbert space of totally symmetric
wave functions is unitarily inequivalent to the representation acting on the Hilbert
space of totally antisymmetric wave functions.

Alternatively, suppose we consider representing the diffeomorphism group on
the space of unordered configurations, as suggested in earlier constructions. [5] To
do this, we set

[V (φ)ψ]({x1, . . . , xN})
:= χφ({x1, . . . , xN})ψ({φ(x1), . . . , φ(xN )})ΠN

k=1

√
Jφ(xk) ,

(2)

where χ obeys a 1-cocycle equation. Note that set brackets have replaced the
parentheses. In a shorter way, we can write

[V (φ)ψ](γ) := χφ(γ)ψ(φγ)Πxkεγ

√
Jφ(xk) , (3)

where γ denotes the unordered configuration.

In this construction, noncohomologous cocycles describe unitarily inequiv-
alent representations. The information regarding particle statistics has been en-
coded in the cocycle (i.e., in how the observables are represented), not in the wave
function symmetry! Thus we have a fundamental change in perspective on the
meaning of the wave function itself. On the left-hand side of Eq. (1), the expres-
sion xj (the jth entry in the N -tuple forming the argument of ψ) refers to the
location of particle j. In Eq. (2), the expression xj refers simply to the location
of a particle – any particle. The subscript j has no intrinsic meaning; it is just a
way to indicate that there are N elements in the configuration γ. No extraneous
labeling has been introduced.
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5. A comment about linearity vs. nonlinearity
in quantum mechanics

In exploring the possibility of nonlinear modifications of quantum mechanics, it
is of interest to examine the different ways in which the usual assumptions of
linearity are introduced [3, 4, 6].

One assumption of linearity inheres in the conventional method for con-
structing a theory of composite systems from their components – in particular,
constructing multiparticle states from single-particle states. The Hilbert space of
states describing the composite system is normally taken to be the tensor product
of the Hilbert spaces for the subsystems – i.e., the space constructed from lin-
ear combinations of product states. For indistinguishable particles, product states
are replaced by symmetric or antisymmetric linear combinations of product states,
leading to the symmetrized or antisymmetrized tensor product Hilbert space. Then
configurations for the composite system are ordered N -tuples, as discussed above.
Subsystem observables are extended by linearity from product states to the full
Hilbert space.

But adopting the perspective suggested here, one begins naturally with (spa-
tial) configurations for the subsystems (as subsets of the physical space, or subsets
of bundles over the physical space). One then constructs the configurations for
the composite system from generalized unions of these subsets. In particular, this
leads to a direct construction of Γ(N) from N copies of Γ(1). The state-space for
the composite system is the space of square-integrable functions on the composite
configuration-space. Linearity need not be assumed in the construction (and there
is no need for symmetrization or antisymmetrization of product states).

Without the initial assumptions of linearity, there is no obstacle to the dis-
cussion of the nonlinear gauge transformations introduced in [6]. Later, one can
describe the quantum kinematics on this space of generalized unions by unitary
representations of the group of compactly-supported diffeomorphisms of the physi-
cal space, identify irreducible representations, associate the particle statistics with
inequivalent cocycles, and so forth.

6. Induced representations and the homotopy
of configuration space

Select a particular configuration γ εΓ(N) and consider the stability subgroup Kγ .
This is the group of those (compactly supported) diffeomorphisms of Rd which
leave γ fixed. Note that a diffeomorphism can do this by implementing a permuta-
tion of the points in γ. For d ≥ 2, there is thus a natural homomorphism from Kγ

to SN . A unitary representation of SN thus defines a continuous unitary represen-
tation (CUR) of Kγ , which in turn induces a CUR of the diffeomorphism group.
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Such an induced representation may be regarded as acting on a Hilbert space

of equivariant wave functions on a covering space Γ̂(N) of Γ(N) – or, equivalently, as
acting directly on wave functions defined on Γ(N) but with a cocycle as in Eq. (3).

For d ≥ 3, SN is the fundamental group (first homotopy group) of Γ(N).

The coordinate space Γ̃(N) defined earlier is then the universal covering space,
and we recover the conventional description in terms of wave functions on ordered
N -tuples.

For d = 2, however, the fundamental group of Γ(N) is the braid group BN ,
and one obtains intermediate (or anyon) statistics [7] by inducing. This led to one
of the early discoveries of the possibility of intermediate statistics for particles in
two-space [8–10].

7. Label permutations and value permutations

Label permutations (also called index permutations) act on the indices of labeled
particle coordinates, so that σεSN takes xk to xσ(k). The label permutation σ(12),
for example, exchanges x1 with x2 in an ordered N -tuple, regardless of the actual
values of the two variables.

Value permutations (in certain contexts, called wave function permutations)
do not see the indices, but make reference to some specified ordering of points in the
physical space M . In an ordered N -tuple, the value permutation σ(12) exchanges
those entries having the two lowest values, regardless of where they occur in the
N -tuple.

This distinction does not show up in 1-dimensional representations of SN , so
it is easily overlooked in discussing bosons and fermions. But it matters essentially
if we want to consider higher-dimensional representations of SN , describing par-
ticles satisfying parastatistics [11]. Furthermore, diffeomorphisms “see” only the
values of the xk, not the labels. Thus, whether they are acting in Γ(N) or a cov-
ering space, the relevant permutations are the value permutations. The inducing
construction leading to anyon statistics involves discussion of homotopy classes of
paths in configuration space, which refer to the values of the particle coordinates,
not their labels (see also [10]). And it is clear why we require d ≥ 2; in one dimen-
sion, a compactly supported diffeomorphism can never exchange two points on the
real line.

8. Implications for exotic statistics

We have outlined a point of view that accommodates well the description of quan-
tum configurations obeying statistics other than those of bosons and fermions.
These include anyons and nonabelian anyons in two-space, distinguishable parti-
cles satisfying colored braid group statistics in two-space, and paraparticles when
the spatial dimension is 2, 3, or more. The key unifying idea is the nontrivial
homotopy of the respective configuration spaces, and how this allows particular
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classes of unitarily inequivalent diffeomorphism group representations modeled on
those spaces.

Likewise, the quantum mechanics of configurations in physical spaces which
themselves have nontrivial homotopy can be understood well from this point of
view. A well-known example is the Aharonov–Bohm effect. Different self-adjoint
extensions of densely-defined operators (describing, for example, kinetic angular
momentum) have different spectra, and arise from different sets of boundary con-
ditions satisfied by wave functions in their domains. These operators occur as the
infinitesimal generators of the unitarily inequivalent group representations associ-
ated with the nontrivial homotopy.

This approach extends naturally to the study of infinite but locally finite
particle configurations, as well as extended quantum configurations (embedded
submanifolds or fractals in the physical space) and their internal symmetry – e.g.,
closed and open strings, vortex filaments and ribbons, or knotted configurations.

9. The meaning of the wave function and the notion
of indistinguishability

We have seen that in a positional representation, the interpretation of ψ is quite
different if we consider it to be defined on the space of unordered configurations
(i.e., subsets of the physical space), rather than the space of ordered configurations.
This point of view actually extends to the description of “distinguishable” particles
via marked configurations.

Let us elaborate on this briefly. Consider a two-particle system, where the par-
ticles have distinct masses m and μ. Conventionally, one would interpret ψ(x1, x2),
as a probability amplitude for finding the first particle (the one with mass m)
at x1, and the second particle (having mass μ) at x2. But ψ makes no explicit
reference to these masses. Alternatively, consider (m,x) as an element of a real
bundle B over the physical space M , with fiber R+. A generalized configuration
is γ = {(m,x), (μ, y)}, where m,μ ∈ R+ and x, y ∈ M ; and ψ = ψ(γ). Now γ
can be understood as describing “indistinguishable” particles with distinct spatial
coordinates (when x �= y) and distinct mass coordinates (when m �= μ).

Another way of saying this is that in the perspective taken here, particles
can be “distinguished” by their coordinates. References to “the particle measured
to have mass m” are analogous to “the particle measured to be in position x.”
The philosophical meaning of “indistinguishable,” as well as the interpretation of
the coordinates that appear as the argument of the wave function, thus change
according to which view one chooses to take.
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