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Pseudo-bosons and Riesz Bi-coherent States

F. Bagarello

Abstract. After a brief review on D-pseudo-bosons we introduce what we
call Riesz bi-coherent states, which are pairs of states sharing with ordinary
coherent states most of their features. In particular, they produce a resolution
of the identity and they are eigenstates of two different annihilation operators
which obey pseudo-bosonic commutation rules.

Mathematics Subject Classification (2010). 46N50, 81R30.

Keywords. Pseudo-bosons, coherent states, Riesz bases.

1. Introduction

In a series of papers the notion of D-pseudo bosons (D-PBs) has been introduced
and studied in many details. We refer to [1] for a recent review on this subject,
and for more references. In particular, we have analyzed the functional structure
arising from two operators a and b, acting on a Hilbert space H and satisfying,
in a suitable sense, the pseudo-bosonic commutation rule [a, b] = 11. Here 11 is the
identity operator. We have shown how two biorthogonal families of eigenvectors of
two non self-adjoint operators can be easily constructed, having real eigenvalues,
and we have discussed how and when these operators are similar to a single self-
adjoint number operator, and which kind of intertwining relations can be deduced.
We have also seen that this setting is strongly related to physics, and in particular
to PT -quantum mechanics [2, 3], since many models originally introduced in that
context can be written in terms of D-PBs.

In connection with D-PBs, the notion of bicoherent states, originally intro-
duced in [6], has been considered in some of its aspects, see [4, 5]. Since a and
b are unbounded, several mathematical subtle points need to be considered when
dealing with these states, as it is clear from the treatment in [5]. However, it is
possible, and instructive, to consider a simpler situation, and this is exactly what
we will do in this paper: more explicitly, we will adapt the notion of Riesz bases
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to coherent states, introducing what we can call Riesz bicoherent states (RBCS),
and we will study some of their features.

This article is organized as follows: in the next section, to keep the paper self-
contained, we review few facts on D-PBs. In Section III we introduce our RBCS
and analyze their properties, while our conclusions and plans for the future are
discussed in Section IV.

2. A few facts on D-PBs

We briefly review here few facts and definitions on D-PBs. More details can be
found in [1].

Let H be a given Hilbert space with scalar product 〈., .〉 and related norm
‖.‖. Let further a and b be two operators on H, with domains D(a) and D(b)
respectively, a† and b† their adjoint, and let D be a dense subspace of H such that
a�D ⊆ D and b�D ⊆ D, where x� is x or x†. Of course, D ⊆ D(a�) and D ⊆ D(b�).

Definition 1. The operators (a, b) are D-pseudo bosonic (D-pb) if, for all f ∈ D,
we have

a b f − b a f = f. (1)

Our working assumptions are the following:

Assumption D-pb 1. – there exists a non-zero ϕ0 ∈ D such that aϕ0 = 0.

Assumption D-pb 2. – there exists a non-zero Ψ0 ∈ D such that b†Ψ0 = 0.

Then, if (a, b) satisfy Definition 1, it is obvious that ϕ0∈D∞(b) :=∩k≥0D(bk)
and that Ψ0 ∈ D∞(a†), so that the vectors

ϕn :=
1√
n!

bnϕ0, Ψn :=
1√
n!

a†
n
Ψ0, (2)

n ≥ 0, can be defined and they all belong to D and, as a consequence, to the
domains of a�, b� and N �, where N = ba. We further introduce FΨ = {Ψn, n ≥ 0}
and Fϕ = {ϕn, n ≥ 0}.

It is now simple to deduce the following lowering and raising relations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
b ϕn =

√
n+ 1ϕn+1, n ≥ 0,

a ϕ0 = 0, aϕn =
√
nϕn−1, n ≥ 1,

a†Ψn =
√
n+ 1Ψn+1, n ≥ 0,

b†Ψ0 = 0, b†Ψn =
√
nΨn−1, n ≥ 1,

(3)

as well as the eigenvalue equations Nϕn = nϕn and N †Ψn = nΨn, n ≥ 0. In
particular, as a consequence of these two last equations, choosing the normalization
of ϕ0 and Ψ0 in such a way 〈ϕ0,Ψ0〉 = 1, we deduce that

〈ϕn,Ψm〉 = δn,m, (4)

for all n,m ≥ 0. Hence FΨ and Fϕ are biorthogonal. Our third assumption is the
following:
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Assumption D-pb 3. – Fϕ is a basis for H.

This is equivalent to requiring that FΨ is a basis for H as well, [7]. How-
ever, several physical models suggest to adopt the following weaker version of this
assumption, [1]:

Assumption D-pbw 3. – For some subspace G dense in H, Fϕ and FΨ are G-quasi
bases.

This means that, for all f and g in G,
〈f, g〉 =

∑
n≥0

〈f, ϕn〉 〈Ψn, g〉 =
∑
n≥0

〈f,Ψn〉 〈ϕn, g〉 , (5)

which can be seen as a weak form of the resolution of the identity, restricted
to G. To refine further the structure, in [1] we have assumed that a self-adjoint,
invertible, operator Θ, which leaves, together with Θ−1, D invariant, exists: ΘD ⊆
D, Θ−1D ⊆ D. Then we say that (a, b†) are Θ-conjugate if af = Θ−1b†Θ f , for
all f ∈ D. One can prove that, if Fϕ and FΨ are D-quasi bases for H, then the
operators (a, b†) are Θ-conjugate if and only if Ψn = Θϕn, for all n ≥ 0. Moreover,
if (a, b†) are Θ-conjugate, then 〈f,Θf〉 > 0 for all non zero f ∈ D.

In the rest of the paper, rather than using Assumption D-pbw 3, we will
consider the following stronger version:

Assumption D-pbs 3. – Fϕ is a Riesz basis for H.

This implies that a bounded operator S, with bounded inverse S−1, exists
in H, together with an orthonormal basis Fe = {en, n ≥ 0}, such that ϕn = Sen,
for all n ≥ 0. Then, because of the uniqueness of the basis biorthogonal to Fϕ,
it is clear that FΨ is also a Riesz basis for H, and that Ψn = (S−1)†en. Hence,
putting Θ := (S†S)−1, we deduce that Θ is also bounded, with bounded inverse,
is self-adjoint, positive, and that Ψn = Θϕn, for all n ≥ 0. Θ and Θ−1 can be
both written as a series of rank-one operators. In fact, adopting the Dirac bra-ket
notation, we have

Θ =
∞∑

n=0

|Ψn 〉〈Ψn|, Θ−1 =
∞∑

n=0

|ϕn 〉〈ϕn|.

Of course both |Ψn 〉〈Ψn| and |ϕn 〉〈ϕn| are not projection operators1 since, in
general the norms of Ψn and ϕn are not equal to one.

Notice now that, calling Lϕ and LΨ the linear span of Fϕ and FΨ respec-
tively, both sets are contained in D and dense in H. Moreover, Θ : Lϕ → LΨ,
so that it is quite natural to imagine that Θ also maps D into itself. This is, in
fact, ensured if both S� and (S−1)� map D into D, condition which is satisfied in
several explicit models, and for this reason will always be assumed here. Hence,
both Θ and Θ−1map D into itself. Of course, this assumption also guarantees that
en ∈ D, for all n.

1Here (|f 〉〈 f |) g = 〈f, g〉 f , for all f, g ∈ H.
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The lowering and raising conditions in (3) for ϕn can be rewritten in terms
of en as follows:

S−1aSen =
√
n en−1, S−1bSen =

√
n+ 1 en+1, (6)

for all n ≥ 0. Notice that we are putting e−1 ≡ 0. It is now possible to check that

S†b†S−1f = S−1aSf, S†a†S−1f = S−1bSf,

for all f ∈ D. Also, the first equation in (6) suggests to define an operator c acting
on D as follows: cf = S−1aSf . Of course, if we take f = en, we recover (6).
Moreover, simple computations show that c† satisfies the equality c†f = S−1bSf ,
f ∈ D, which again, taking f = en, produces the second equality in (6). These
operators satisfy the canonical commutation relation (CCR) on D: [c, c†]f = f ,
∀f ∈ D.

We end this section by noticing that, since each pair of biorthogonal Riesz
bases are also D-quasi bases, Proposition 3.2.3 of [1] implies that (a, b†) are Θ-
conjugate: af = Θ−1b†Θf , ∀f ∈ D, and that Θ is positive, as we have already
noticed because of its explicit form.

3. Riesz bicoherent states

In [4, 5] we have considered the notion of bicoherent states, and we have deduced
some of their properties. Here we discuss a somehow stronger version of these
states, which we call Riesz bicoherent states (RBCS).

We start by recalling that, calling W (z) = ezc
†−z c, a standard coherent state

is the vector

Φ(z) = W (z)e0 = e−|z|2/2
∞∑
k=0

zk√
k!

ek. (7)

Here c and c† are operators satisfying the CCR, and Fe is the orthonormal basis
related to these operators as shown in Section 2. The vector Φ(z) is well defined,
and normalized, for all z ∈ C. This is just a consequence of the fact that W (z) is
unitary, or, alternatively, of the fact that 〈ek, el〉 = δk,l. Moreover,

cΦ(z) = zΦ(z), and
1

π

∫
C

d2z|Φ(z) 〉〈Φ(z)| = 11.

It is also well known that Φ(z) saturates the Heisenberg uncertainty relation, which
will not be discussed in this paper.

What is interesting to us here is whether the family of vectors {Φ(z), z ∈ C}
can be somehow generalized in order to recover similar properties, and if this
generalization is related to the pseudo-bosonic operators a and b introduced in the
previous section. For that, let us introduce the following operators:

U(z) = ezb−z a, V (z) = eza
†−z b† . (8)
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Of course, if a = b†, then U(z) = V (z) and the operator is unitary and essentially
coincide with W (z), with a ≡ c. However, the case of interest here is when a �= b†.
In [4, 5] we have introduced the vectors

ϕ(z) = U(z)ϕ0, Ψ(z) = V (z)Ψ0. (9)

They surely exist if z = 0. We will see that, in the present working conditions,
they are well defined in H for all z ∈ C. A way to prove this result is to use the
Baker–Campbell–Hausdorff formula which produces the identities

U(z) = e−|z|2/2 ez b e−z a, V (z) = e−|z|2/2 ez a†
e−z b† .

Then,

ϕ(z) = e−|z|2/2
∞∑

n=0

zn√
n!

ϕn, Ψ(z) = e−|z|2/2
∞∑
n=0

zn√
n!

Ψn. (10)

These clearly extend formula (7) for Φ(z). Now, [4], since ‖ϕn‖ = ‖Sen‖ ≤ ‖S‖
and ‖Ψn‖ = ‖(S−1)†en‖ ≤ ‖S−1‖, the two series converge for all z ∈ C. Hence
both ϕ(z) and Ψ(z) are defined everywhere in the complex plane. Incidentally
we observe that this is different from what happens in [5], where Fϕ and FΨ are
not assumed to be Riesz bases, and some estimate must be satisfied by ‖ϕn‖ and
‖Ψn‖. Also in view of possible applications, and in particular of the relation with
Definition 3 below, it is interesting to show how to deduce the same result (i.e.,
ϕ(z) and Ψ(z) are defined everywhere) using a different strategy, assuming that
a, b and c are related as in Section 2.

The key of this strategy is the following

Proposition 2. With the above definitions the following equalities hold:

U(z)f = SW (z)S−1f, and V (z)f = (S−1)†W (z)S†f (11)

for all f ∈ D.

Proof. We prove here the first equality. The second can be proved in a similar way.
First of all we can prove, by induction, that, for all f ∈ D and for all k =

0, 1, 2, 3, . . .,

S
(
zc† − z c

)k
S−1f = (zb− z a)

k
f. (12)

This equality is evident for k = 0. This equality for k = 1 follows from the equations
cf = S−1aSf and c†f = S−1bSf , f ∈ D. Now, assuming that this equation is
satisfied for a given k, we have:

S
(
zc† − z c

)k+1
S−1f = S

(
zc† − z c

)
S−1S

(
zc† − z c

)k
S−1f

= S
(
zc† − z c

)
S−1 (zb− z a)

k
f.

Now, since (zb− z a)k f ∈ D, it follows that

S
(
zc† − z c

)
S−1 (zb− z a)k f = (zb− z a) (zb− z a)k f = (zb− z a)k+1 f.

Hence (12) follows. Notice that all the equalities above are well defined since D is
stable under the action of all the operators involved in our computation.
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Now, let us compute SW (z)S−1f . Because of the boundedness of S, S−1 and
W (z), we have:

SW (z)S−1f = S

( ∞∑
k=0

1

k!

(
zc† − z c

)k)
S−1f

=

∞∑
k=0

1

k!
S
(
zc† − z c

)k
S−1f =

∞∑
k=0

1

k!
(zb− z a)

k
f.

Then, since SW (z)S−1 is bounded, the series
∑∞

k=0
1
k! (zb− z a)

k
f converges for

all z ∈ C and for all f ∈ D, and define U(z) on D. �

This proposition implies that, if S and S−1 are both bounded, the three
displacement operators U(z), V (z) and W (z) are almost similar, meaning with
this that a similarity map S indeed exists, but the equalities in (11) makes only
sense, in general, on D and not on the whole H. This can be understood easily:
while W (z), S and S−1 are bounded operators, U(z) and V (z) in general are
unbounded, so they cannot be defined in all of H.

An immediate and interesting consequence of the equations in (11) is that
V (z) and U(z) satisfy the following intertwining relation on D:

SS†V (z)f = U(z)SS†f (13)

for all f ∈ D. This may be relevant, since this kind of relations have useful conse-
quences in general. We refer to [8] for some results on intertwining operators. We
will not insist on this aspect here, but still we want to stress that the operator
doing the job, SS†, is close to Θ = S†S, but S and S† appear in the reversed
order. Of course, these two operators coincide if S is self-adjoint.

Our results allow us to conclude now (once more, see formula (9)) that the
two vectors in (9) are well defined for all z ∈ C, and, more interesting, that

ϕ(z) = U(z)ϕ0 = SΦ(z), Ψ(z) = V (z)Ψ0 = (S−1)†Φ(z), (14)

for all z ∈ C. The proof is straightforward and will not be given here. We just notice
that, in particular, these equations imply that ϕ0 ∈ D(U(z)) and Ψ0 ∈ D(V (z)),
∀ z ∈ C.

In analogy with the notion of Riesz bases, formula (14) suggests to introduce
a general notion of RBCS:

Definition 3. A pair of vectors (η(z), ξ(z)), z ∈ E , for some E ⊆ C, are called
RBCS if a standard coherent state Φ(z), z ∈ E , and a bounded operator T with
bounded inverse T−1 exists such that

η(z) = TΦ(z), ξ(z) = (T−1)†Φ(z), (15)

It is clear then that (ϕ(z),Ψ(z)) are RBCS, with E = C. It is easy to check
that RBCS have a series of nice properties, which follow easily from similar prop-
erties of Φ(z). These properties are listed in the following proposition:
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Proposition 4. Let (η(z), ξ(z)), z ∈ C, be a pair of RBCS. Then:

(1) 〈η(z), ξ(z)〉 = 1, ∀ z ∈ C

(2) For all f, g ∈ H the following equality (resolution of the identity) holds:

〈f, g〉 = 1

π

∫
C

d2z 〈f, η(z)〉 〈ξ(z), g〉 (16)

(3) If a subset D ⊂ H exists, dense in H and invariant under the action of T �,
(T−1)� and c�, and if the standard coherent state Φ(z) belongs to D, then two
operators a and b exist, satisfying (1), such that

a η(z) = zη(z), b†ξ(z) = zξ(z) (17)

Proof. The first statement is trivial and will not be proved here. As for the second,
due to the fact that both T and T−1 in Definition 3 are bounded, we have, for all
f, g ∈ H,

〈f, g〉 = 〈
T †f, T−1g

〉
=

1

π

∫
C

d2z
〈
T †f,Φ(z)

〉 〈
Φ(z), T−1g

〉
=

1

π

∫
C

d2z 〈f, TΦ(z)〉 〈(T−1)†Φ(z), g
〉
=

1

π

∫
C

d2z 〈f, η(z)〉 〈ξ(z), g〉 ,

because of (15). To prove (3) we first observe that our assumption implies that the
two operators a and b defined as a = TcT−1 and b = Tc†T−1 map D into D, and
that [a, b]f = f for all f ∈ D. The eigenvalue equations in (17) simply follow now
from (15). �

It is interesting to notice that the resolution of the identity is valid in all of
H. This is true in the present settings, but we do not expect a similar result can be
established if Assumption D-pbs 3 is replaced with one of its weaker versions. We
refer to [5] for some results concerning this situation. Concerning the saturation of
the Heisenberg uncertainty relation, this cannot be recovered by these RBCS using
the standard, self-adjoint, position and momentum operators q and p. However,
if q = 1√

2
(c + c†) and p = i 1√

2
(c† − c) are replaced by Q = 1√

2
(a + b) and P =

i 1√
2
(b− a), then we believe that a deformed version of the Heisenberg uncertainty

relation involving these operators can, in fact, be saturated. This aspect will be
discussed in a future paper, together with several examples of RBCS. Here we just
consider a first simple example of these states, related to the harmonic oscillator.

An example from the harmonic oscillator. Let Φ(z) be a standard coherent state
arising in the treatment of the quantum harmonic oscillator with Hamiltonian
H = c†c + 1

2 11, [c, c
†] = 11. In the coordinate representation this state, which we

indicate here Φz(x), z ∈ C and x ∈ R, is the solution of cΦz(x) = zΦz(x). With
a suitable choice of normalization we have

Φz(x) =
1

π1/4
e−

1
2x

2+
√
2zx−�(z)2 .
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Now, let P = |e0 〉〈 e0| be the orthogonal projector operator on the ground state

e0(x) = 1
π1/4 e

− 1
2x

2

of the harmonic oscillator. Then the operator T = 11 + iP is

bounded, invertible, and its inverse, T−1 = 11− 1+i
2 P , is also bounded. Hence we

can use formula (15) deducing that

ϕz(x) = TΦz(x) = e0(x)
(
e
√
2zx−�(z)2 + ie−

1
2 |z|2+ i

2�(z)�(z)
)
,

while

Ψz(x) = (T−1)†Φz(x) = e0(x)

(
e
√
2zx−�(z)2 − 1− i

2
e−

1
2 |z|2+ i

2�(z)�(z)

)
.

These are our RBCS, in coordinate representation. They both appear to be suit-
able deformations of the original vector Φz(x). It is not hard to imagine how to
generalize this construction: it is enough to replace the operator P with some dif-
ferent orthogonal projector, for instance with the projector on a given normalized
vector u(x), Pu = |u 〉〈u|, u(x) �= e0(x).

4. Conclusions

We have seen how bounded operators with bounded inverse can be used to con-
struct not only Riesz biorthogonal bases, but also bicoherent states, having several
properties which are similar to those of standard coherent states. More important,
we have seen that these RBCS are naturally related to D-PBs of a particular kind,
the ones for which Assumption D-pbs 3 holds true. It is clear that what we have
discussed here is just the beginning of the story. There are several aspects of RBCS
which deserve a deeper analysis. Among them, we cite the (maybe) most difficult:
what does happen if Assumption D-pbs 3 is not satisfied? And, more explicitly,
what can be said when Assumption D-pbw 3 is true? This is much harder, but
possibly more interesting in concrete physical applications, since in this case, even
if we can introduce a pair of bicoherent states [5], in general there is no bounded
operator with bounded inverse mapping these states into a single standard coher-
ent state. Moreover, we have several problems with the domain of the unbounded
operators appearing in the game, and this, of course, requires more (and more
delicate) mathematics.

Another aspect, which was just touched in [5], but not here, and which surely
deserves a deeper analysis, is the use of bicoherent states, of the Riesz type or not,
in quantization procedures. This may be relevant in connection with non conserva-
tive systems, or with physical system described by non self-adjoint Hamiltonians.

Another interesting open problem, which has been widely considered for stan-
dard coherent states along the years, is to check if completeness can be recovered
for some suitable discrete subset of RBCS, i.e., if we can fix a discrete lattice in C,
Λ := {zj ∈ C, j ∈ N}, such that the set {(η(zj), ξ(zj)), zj ∈ Λ} is rich enough to
produce a resolution of the identity in H. Stated in a different way, is it possible
to extend the results deduced in [9] for standard coherent states to RBCS or to
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bicoherent states in general? We believe that this can in fact be done for RBCS,
while for general bicoherent states this is not so evident.
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