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Howe’s Correspondence and Characters
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Abstract. The purpose of this note is to explain how is Howe’s correspondence
used to construct irreducible unitary representations of low Gel’fand—Kirillov
dimension and to recall and motivate a conjecture concerning the distribution
characters of the representations involved.
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1. Introduction

In this note we would like to shed some light at the wide open problem of under-
standing the distribution character ©1, [8], of an irreducible unitary representa-
tion IT of a real reductive group G. The representations of low Gel’fand—Kirillov
dimension are of special interest.

The notion of the Gel’fand—Kirillov dimension GK dimII of an irreducible
admissible representation II of G (or rather of the corresponding Harish-Chandra
module X7) was introduced in [21]. Tt is equal to one half times the Gel'fand—
Kirillov dimension of the algebra U(g)/ Ann X1, a concept defined earlier in [7].
(See also [4] for more explanation.) Here U(g) is the universal enveloping algebra
of the Lie algebra g of G and Ann X is the annihilator of Xi.

We explain why Howe’s correspondence, [15], is a suitable tool for construct-
ing irreducible unitary representations of low Gel’fand-Kirillov dimension and
recall a conjecture concerning the distribution characters of the representations
occurring in the correspondence [3].

2. The Weil representation

Let W be a vector space of finite dimension 2n over R with a non-degenerate
symplectic form (-, -). Denote by Sp C GL(W) the corresponding symplectic group.
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Denote by sp the Lie algebra of Sp. Fix a compatible positive complex structure
J on W. Hence J € sp is such that J? = —1 (minus the identity in End(W)) and
the symmetric bilinear form (J-,-) is positive definite on W.

For an element g € Sp, let J;, = J~!(g — 1). Then its adjoint with respect to
the form (J-,-) is J; = Jg~'(1—g). In particular .J, and J; have the same kernel.
Hence the image of J; is

JyW = (Ker J})* = (Ker Jy)*

where L denotes the orthogonal complement with respect to (J-,-). Therefore,

the restriction of J; to J;W defines an invertible element. Thus it makes sense to

consider det(J,); "y, the reciprocal of the determinant of the restriction of J, to
g

JgW. Let

Sp={3=(9,) €SpxC, & =iV det(J); 1} (1)

Then there exists a 2-cocycle C' : Sp x Sp — C, such that §1; is a group with
respect to the multiplication

(91,61)(92:&2) = (9192,£162C(91,92)) - (2)
In fact, by [1, Lemma 52],

det(ng )ngw det(ng)J”W

C =
| (91792)| det(Jg1gz)J9192W

(3)

and by [1, Proposition 46 and formula (109)],

|gg1:§z§| - X(é Sgn(qglygz)% (4)

2mir

where x(r) = e*™", r € R, is a fixed unitary character of the additive group R and
sgn(qy, 4,) is the signature of the symmetric form

1
gy g, (U, u") = 2((91 +1)(g1 — 1)~ u) (5)
1
+2<(92 +1)(go — 1) W), W u" € (g1 — )W N (g2 — 1)W.

By the signature of a (possibly degenerate) symmetric form we understand the
difference between the maximal dimension of a subspace where the form is positive
definite and the maximal dimension of a subspace where the form is negative
definite. The group Sp is known as the metaplectic group.

Let dw be the Lebesgue measure on W such that the volume of the unit cube
with respect to this form is 1. (Since all positive complex structures are conjugate
by elements of Sp, this normalization does not depend on the particular choice
of J.) Let W = X @Y be a complete polarization. We normalize the Lebesgue
measures on X and on Y similarly.
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Each element K € S*(X x X) defines an operator
Op(K) € Hom(S(X), §%(X))
by
Op(K)v(z) = /}(K(x,x’)v(x’) da'. (6)

Here S(V) and S*(V) denote the Schwartz space on the vector space V and the
space of tempered distributions on V, respectively. The map Op : $*(X x X) —
Hom(S(X), S*(X)) is an isomorphism of linear topological spaces. This is known
as the Schwartz Kernel Theorem, [12, Theorem 5.2.1].

Fix the unitary character x(r) = e2™" r € R, and recall the Weyl transform

K : 8" (W) = & (X x X)
K = [ flo= v (G ta)) dr (e sW).
Let

(@ =x(J @+ D=1 ) == D we W, (@

(7)

(In particular, if g — 1 is invertible on W, then x.(5)(u) = x(}{c(g9)u,u) where
c(g) = (g +1)(g — 1)t is the usual Cayley transform.) For § = (g, &) € Sp define

@(g) =, T(g) = e(g)Xc(g)ﬂ(gfl)Wa W(g) =0OpokKo T(g)a (9)

where f1(;_1)w is the Lebesgue measure on the subspace (g — 1)W normalized so
that the volume of the unit cube with respect to the form (J-,-) is 1. In these

terms, (w, L?(X)) is the Weil representation of Sp attached to the character .

3. Dual pairs

A real reductive dual pair is a pair of subgroups G, G’ C Sp(W) which act reduc-
tively on the symplectic space W, G’ is the centralizer of G in Sp and G is the
centralizer of G’ in Sp, [13]. We shall be concerned with the irreducible pairs in
the sense that there is no non-trivial direct sum decomposition of W preserved
by G and G’. For brevity we shall simply call them dual pairs. They are listed in
Table 1.

4. Howe’s correspondence

For a member G of a dual pair, let R(G,w) C R(G) denote the subset of the
representations which may be realized as quotients of S(X) by closed G-invariant
subspaces. Let us fix a representation II in R(G,w) and let Nij € S(X) be the
intersection of all the closed G-invariant subspaces N C S(X) such that II is
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Dual pair || D | L | (,) | (,) | dim W | stable range
GL.@), 6L |k ¢, m| | | |2mdimi@m) | m<y
Op.q, SP2,(R) R t=1] + - 2n(p +q) ptgs<n
Spa, (R), Op.q R t=11] - + | 2n(p+9q) 2n < min{p, q}
0,(C), Sp,,(C) C =1 + - |4np p<n
Sp,, (C), 0,(C) C =11 - + | 4np 2n < P
Up,qs Urs C LA + - [2(p+q@)(r+s)|p+q<min{r, s}
Spp.q Oin H t#£1| + - | 8n(p+4q) p+qg<n
O3n, Sp,., H L#£1] - + |8n(p+4q) 2n < min{p, q}

TABLE 1. Dual pairs

infinitesimally equivalent to S(X)/N. This is a representation of both G and G'.
As such, it is infinitesimally isomorphic to

eI, (10)

for some representation II; of G’. Howe proved, [15, Theorem 1A], that IT} is a
finitely generated admissible quasisimple representation of (~}’, which has a unique
irreducible quotient I € R(G’,w). Conversely, starting with II' € R(G/,w) and
applying the above procedure with the roles of G and G’ reversed, we arrive at

the representation IT € R(G,w). The resulting bijection
R(G,w) 3T = 1I' € R(G,w) (11)

is called Howe’s correspondence, or local § correspondence, for the pair (G, G').
Recall the unnormalized moment map

7! :W*)g/*a T/(’LU)(X) - <X(U})7w> (XEQI,'LUGW), (12)

and the notion of the wave front set WF(II) of an irreducible admissible repre-
sentation II of a real reductive group G, [14], [20, Theorem 3.4]. Then, in terms
of (11),

WEI') € 7/(W), (13)

see [17, Corollary 2.8]. Since the wave front set is contained in the nilpotent cone
N’ C g’*, see [14, Proposition 1.2] and [20, Theorem 3.4], we actually have

WF(II') C (W) NN/ (14)
Recall that, by [21, Theorem 1.1], [2, Theorem 4.1] and [20, Theorem C],

GK dim(Il') = ; dim W F(IT'). (15)
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Hence we get a bound for the Gel’fand—Kirillov dimension of IT',
1
GK dim(IT') < 5 dim (7 (W) N N7). (16)

One may realize the symplectic space as the tensor product of the defining modules
for the groups G and G’. For example if G = O,, and G’ = Sp,, (R), then
W = RPt9®@R?", Hence, roughly, the smaller the dimension of the defining module
for the group G, the smaller the right-hand side of (16). One may compute this
number for each dual pair using [5, Corollary 6.1.4] and [6, Table 3, page 456], but
the formulas are not illuminating. We provide a sample in Table 2 below.

On the other hand, as shown in [16, Theorem A], for dual pairs in the stable
range, with G-the smaller member (see table 1), if IT is unitary then so is IT'.
(The case (G, G’) = (Oz2p,2n, Sp,y,,) and II trivial is excluded.) Later this fact was
generalized beyond the stable range in [17, Theorem 3.1] and in [10, Theorem 1.1].
Thus Howe’s correspondence provides a method for understanding irreducible uni-
tary representations of classical groups of low Gel’fand—Kirillov dimension. What
remains is to understand their characters and we propose an approach in the next
section.

Dual pair G, G’ H dim /(W) N A’
GLn(D), GL,(D), m<n, D=R,CH|  dimD@mn—m—m?)
Op, Sp2,(R), p<n 2np —p* +p
Op, Spy,(R), p>n n(n+1)
02;(C), Spy,(C), p<n 2(2n* = 2(n —p)* = 2(n — p))
O2p41(C), Spy,(C), p<n 2(2n* = 2(n—p)> +2(n — p))
Sps, (C), 02,(C),p<n 2(4pn — 2n — 2n?)
SP2n(C), O2p41(C), p<m H 2(4pn — 2n?)

TABLE 2. Examples of dim 7/(W) N N’

5. The Cauchy Harish-Chandra integral
The wave front set of the character © of the Weil representation is given by
WF(©) = {(g,€) € Sp x sp™s £ € WF1(0), Ad(9)"(©) =€}, (17)

where the fiber over the identity, WF;(0) is the closure of O,,;p, one of the two
minimal non-zero nilpotent coadjoint orbits in sp*. (The closure of the other min-
imal nilpotent orbit is in the wave front set of the contragredient Weil representa-
tion.) The formula is a key to a construction of an operator from the space of the
invariant eigen-distributions on G to the space of the invariant eigen-distributions
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on é’, [19], [3], assuming that the rank of G is less or equal to the rank of G’. We
recall it below.

A maximal compact subgroup K C G consists of the points fixed by a Cartan
involution 6 : G — G. Let P C G be the subset of the elements g € G such that
0(g) = g~'. Then G = KP. Any Cartan subgroup H C G is conjugate to one
which is invariant under 6. Thus let H be a #-stable Cartan subgroup of G. Set
A =HNP. This is called the vector part of H, [22].

Denote by A’ C Sp the centralizer of A and let A” C Sp be the centralizer of
A’. There is a measure dw on the quotient space A”\W defined by

/ o(w) dw :/ ¢(aw) da dw. (18)
W A//\W A//
Let A’ be the preimage of A’ in the metaplectic group. Recall, (9), the embedding
T :Sp — S*(W).
The formula
che(h)= [ [ HoT@widgdi  (fecE@®), 9
AII\W A/

where each consecutive integral is absolutely convergent, defines a distribution on
A’ [19, Lemma 2.9]. Fix a regular element h € H™®Y. Let h be an element in the
preimage of h in the metaplectic group. The intersection of the wave front set of
the distribution (19) with the conormal bundle of the embedding

G'>§— hg' €A (20)
is empty (i.e., contained in the zero section), [19, Proposition 2.10]. Hence there
is a unique restriction of the distribution (19) to G, denoted Chc;.

Harish-Chandra’s Regularity Theorem, [9, Theorem 2], implies that the char-
acter of an irreducible representation coincides with a function multiplied by the

Haar measure. Thus for IT € R(G) we may consider the following integral
[ eulh)ldet(ad(n ) = 1)yyolCheg(Pdh (f e C@). (21)
Hreg

In fact, this integral is absolutely convergent, [19, Theorem 2.14].
Recall the Weyl-Harish-Chandra integration formula

1 -1y T o=\ 7. 97
L5045 = 3 i oy o, 19004007 =Dl [ piohg g

(22)
where W(H, G) is the Weyl group of H in G and the summation is over a maximal

family of mutually non-conjugate (f-stable) Cartan subgroups G. In terms of (22),
set

O = Cn Y fyyat. o o, O IdeA() = 1)y Chicy(1) .

(23)

Hreg
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where Cpy is a non-zero constant. This is an invariant distribution on G’. Hence a
finite linear combination of irreducible characters, see [11, page 52]. In fact, with
the appropriate normalization of all the measures involved, [3, Theorem 4], O
is an invariant eigen-distribution whose infinitesimal character is equal to the one
obtained from the infinitesimal character of O by ([18, Theorem 1.19]). There
are reasons to believe that (for an appropriate constant Cr) Of coincides with
the character of the representation I}, (10). Since quite often, IIj = IT’, the above
construction could explain Howe’s correspondence on the level of characters in
the sense that knowing the character of the representation of the small group
gives a formula for the character of the representation of the large group. Though
the conjecture holds in many cases, see for example [19], there is no proof of the
equality ©p = Ory in general. In the next section we recall how is our conjecture
related to the classical Cauchy Determinantal Identity.

6. The pair G = U,, G' = U,

In this case IT} =II', O = O and the formula (23) coincides with the following
equality

[ [ the gen(s) dg dg = / O () f(g') dg,
G JG G’

where each consecutive integral is absolutely convergent. This is an explicit version
of the following equality of distributions

Z;de@n@UMJGWQU, (24)

which is equivalent to the First Fundamental Theorem of Classical Invariant The-
ory. By restricting to the maximal tori one sees that, for r = s, (24) is equivalent
to the Cauchy Determinantal Identity:

det ( 1 ) _ Hz‘<j(hi = hy) - H1<J(h: o h;)

(25)
1— hilt, [T, (1 — hih})
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