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Abstract. Let X = G/K be a Riemannian symmetric space of the noncompact
type and restricted root system BC3 or Cs (except for G = SOq(p,2) with
p > 2 odd). The analysis of the meromorphic continuation of the resolvent
of the Laplacian of X is reduced from the analysis of the same problem for a
direct product of two isomorphic rank-one Riemannian symmetric spaces of
the noncompact type which are not isomorphic to real hyperbolic spaces. We
prove that the resolvent of the Laplacian of X can be lifted to a meromorphic
function on a Riemann surface which is a branched covering of the complex
plane. Its poles, that is the resonances of the Laplacian, are explicitly located
on this Riemann surface. The residue operators at the resonances have fi-
nite rank. Their images are finite direct sums of finite-dimensional irreducible
spherical representations of G.
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1. Introduction

The study of resonances has started in quantum mechanics, where they are linked
to the metastable states of a system. Mathematically, the resonances appear as
poles of the meromorphic continuation of the resolvent (H —2)~! of a Hamiltonian
H acting on a space of functions F on which H is not selfadjoint. In the last
thirty years, several articles have considered the case where H is the Laplacian
of a Riemannian symmetric space of the noncompact type X and F is the space
C°(X) of smooth compactly supported functions on X. The basic problems are
the existence, location, counting estimates and geometric interpretation of the
resonances. All these problems are nowadays well understood when X is of real
rank one, such as the real hyperbolic spaces. The situation is completely different
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for Riemannian symmetric spaces of higher rank. The pioneering articles proving
the analytic continuation of the resolvent of the Laplacian operator across its
continuous spectrum are [7] and [8]. However, in these articles, the domains where
the continuation was obtained is not sufficiently large to cover the region where the
resonances could possibly be found. Indeed, the existence of resonances is linked
to the singularities of the Plancherel measure on X. The basic question, whether
resonances exist or not for general Riemannian symmetric spaces for which the
Plancherel measure is singular, is still open. If the general picture is still unknown,
some complete examples in rank 2 have been treated recently: SL(3,R)/SO(3) in
[5] and the direct products X; x Xo of two rank-one Riemannian symmetric spaces
of the noncompact type in [6].

The present paper is a natural continuation of [6] and deals with the cases of
Riemannian symmetric spaces X = G/K of real rank two and restricted root system
B(C5 or O except the case when G = SOq(p, 2) with p > 2 odd. The reason is that
for all the spaces X considered here the analysis of the meromorphic continuation
of the resolvent of the Laplacian can be deduced from the same problem on a direct
product X; x X; of a Riemannian symmetric space of rank one not isomorphic to
the real hyperbolic space.

We prove that for all the spaces X we consider, the resolvent of the Laplacian
of X can be lifted to a meromorphic function on a Riemann surface which is a
branched covering of C. Its poles, that is the resonances of the Laplacian, are
explicitly located on this Riemann surface. If zg is a resonance of the Laplacian,
then the (resolvent) residue operator at zg is the linear operator

Res., R : C°(X) = C=(X) (1)
defined by
(Resso Bf)(y) = Resa—s[R(2)fl(y)  (f € CZ(X), y € X). (2)

Since the meromorphic extension takes place on a Riemann surface, the right-
hand side of (2) is computed with respect to some coordinate charts and hence
determined up to constant multiples. However, the image ReSZOﬁ(Cé’O (X)) is a
well-defined subspace of C°°(X). Its dimension is the rank of the residue operator
at zgp. We prove that ReSZO§ acts on C2°(X) as a convolution by a finite linear
combination of spherical functions of X and is of finite rank. More precisely, write
X = G/K for a connected noncompact real semisimple Lie group with finite cen-
ter G with maximal compact subgroup K. Then the space ResZOE(C;’O(X)) is a
G-module which is a finite direct sum of finite-dimensional irreducible spherical
representations of G. The trivial representation of G occurs for the residue op-
erator at the first singularity, associated with the bottom of the spectrum of the
Laplacian.
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2. Preliminaries

2.1. General notation

We use the standard notation Z, R, RT, C and C* for the integers, the reals,
the positive reals, the complex numbers and the non-zero complex numbers, re-
spectively. For a € Z, the symbol Zx>, denotes the set of integers > a. We write
[a,b] = [a,b] NZ for the discrete interval of integers in [a, b]. The interior of an in-
terval I C R (with respect to the usual topology on the real line) will be indicated
by I°. The upper half-plane in C is CT = {z € C : 3z > 0}; the lower half-plane
—C* is denoted C™. If X is a manifold, then C*°(X) and C2°(X) respectively de-
note the space of smooth functions and the space of smooth compactly supported
functions on X.

2.2. Noncompact irreducible Riemannian symmetric spaces of type BC» or C,

Let X = G/K be an irreducible Riemannian symmetric space of the noncompact
type and (real) rank 2. Hence G is a connected noncompact semisimple real Lie
group with finite center and K is a maximal compact subgroup of G. We can
suppose that G is simple and admits a faithful linear representation. Let g and ¢
be respectively the Lie algebras of G and K, and let g = ¢®p be the corresponding
Cartan decomposition. Let us fix a maximal abelian subspace a of p. The (real)
rank 2 condition means that a is a 2-dimensional real vector space. We denote by
a* the dual space of a and by ag, the complexification of a*. The Killing form of g
restricts to an inner product on a. We extend it to a* by duality. The C-bilinear
extension of (-,-) to af will be indicated by the same symbol.

Let ¥ be the root systems of (g,a). In the following, we suppose that % is
either of type BCy or of type Co = Bsy. The set X1 of positive restricted roots is
the form ¥ = Zf‘ U uUXt, where

m

R i T e

with E;L = () in the case Cy = Bs. The two elements of El'*' form an orthogonal
basis of a* and have same norm b. The elements of X, and X} have therefore norm

‘éQb and 5, respectively. We define a% = {A € a* : (A, 8) > 0 for all 3 € ©T}.
The system of positive unmultipliable roots is ¥ = ;" L 5. The set ¥,

of unmultipliable roots is a root system. A basis of positive simple roots for X, is
{ﬂl , 52551 }

The Weyl group W of ¥ acts on the roots by permutations and sign changes.
For a € {l,m,s} set ¥, = I} LU (—=X}). Then each ¥, is a Weyl group orbit in
Y. The root multiplicities are therefore triples m = (my, mm, ms) so that m, is
the (constant) value of m on 3, for a € {l,m,s}. By classification, if X = G/K
is Hermitian, then m; = 1. We adopt the convention that mgs = 0 means that
YT =10, ie., ¥ is of type Cy. In this case, if X is Hermitian, then X is said to be
of tube type.
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The half-sum of positive roots, counted with their multiplicities, is indicated
by p. Hence

m
2p = Z Mo = (ml—i- )ﬁ1+(m1+mm+ 23)52- (3)
aext
Table 1 contains the rank-two irreducible Riemannian symmetric spaces

G/K with root systems of type BC5, their root systems, the multiplicities m =
(my, mm, ms), and the value of p.

Type AITI BDI CII DIII EIII
G SU(p.2) (p>2) | SOo(p,2) (p>2)| Sp(p.2)(p=2) |SO*(10) E(—14)
K S(U(p) x U(2)) SO(p) x SO(2) Sp(p) x Sp(2) U(5) | Spin(10) x U(1)
Hermitian yes yes no yes yes
s BC: c p=2C, BC BC
2 2 p>2: BCy 2 2
m = (my, Mm,ms) (1,2,2(p — 2) (1,p —2,0) (3,4,4(p — 2)) (1,4,4) (1,6,8)
2p (p— 1B+ (p+1)B2 B+ (p—1)82 561+ (54 2(p — 2))B2 | 361+ 7B2 581 + 882

TABLE 1. Rank-two irreducible symmetric spaces with root systems
‘BCE oer

Notice that we are using special low rank isomorphisms (see, e.g., [1, Ch. X,
§6, no. 4]), which allow us to omit some cases:

SU(2,2)/S( (2) x U(2)) =2800(4,2)/(SO(4) x SO(2)), (4)
Sp(2,R)/U(2) = 500(3,2)/(S0(3) x SO(2)), (5)

SO™(8)/U(4) = 500(6,2)/(SO(6) x SO(2)). (6)

Observe also that SO(2,2)/(SO(2) x SO(2)) = SL(2,R) x SL(2,R) is not in the

list because not irreducible.

Remark 1. Up to isomorphisms, there are four additional irreducible Riemannian
symmetric spaces of rank two:
1. SL(3,R)/SO(3) (type Al, with root system of type A2 and one root multi-
plicity m = 1; see [5]),
2. SU*(6)/Sp(3) (type AII, with root system of type A and one even root
multiplicity m = 4; see [8]),
3. Eg(—26)/F1 (type EIV, with root system of type Az and one even root mul-
tiplicity m = 8; see [8]),
4. Ga(—14)/(SU(2) x SU(2)) (type G, with root system of type G2 and one root
multiplicity m = 1).

2.3. The Plancherel density of G/K
For A € af and 8 € ¥ we shall employ the notation

(A, B)

M= 5.8
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Observe that
<>‘7 /62> =+ <>‘7 /81>

A =2 = MNg, £ Ag, . 9
(B2%£B1)/2 <52752> + <B1751> B2 B1 ( )
For 8 € 3., we set
~ 1 mﬁ/g
po= (ma+"0") (10)

where mg denotes the multiplicity of the root 3, and
2722 (2)p)
cg(A) = M (1 g -
P(As+ ™97 +3)T(As + )
Observe that pg = pg = éggi if 8 is a simple root in ¥, (but not in general). In
particular, pg, = pg,-

Harish-Chandra’s c-function cpc (written in terms of unmultipliable instead
of indivisible roots) is defined by

cucN) =co ] es(N), (12)
gest

where ¢g is a normalizing constants so that cuc(p) = 1.

In the following we always adopt the convention that empty products are
equal to 1. As a consequence of the properties of the gamma function, we have the
following explicit expression.

Lemma 1. The Plancherel density is given by the formula

[enc(A)enc (=)~ = CIIA)P(MQ(N), (13)
where
o) = J[ As. (14)
et
(mgy2)/2-1 2p—2
Py=TI ( IT Do =0 +# TT be—Gs -0 +k), (15)
sesT k=0 k=0
QN = J] cot(m(As—7p)), (16)
s e

and C' is a constant. Consequently, the singularities of the Plancherel density
[crc(A)enc(—=N)] 71 are at most simple poles located along the hyperplanes of the
equation

tA\g=ps+Ek
where 8 € X has odd multiplicity mg, and k € Z>o.

Proof. The singularities of [cic(A)cae(—)] 71 are those of cot(m(A\g—pp)), for B €
¥} with mg odd, which are not killed by zeros of the polynomial II(A\)P(\). O
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The following corollary will allow us to establish a region of holomorphic
extension of the resolvent.

Corollary 2. Set
L =min{ps|8|: B € &, ms odd} . (17)
Then, for every fized w € a* with |w| = 1, the function
7 [enc(rw)enc(—rw)] !

is holomorphic on C\ (] — oo, —L] U [L, 400]).

The values of pg for the roots in X, as well as the value of L, are given in
Table 2. Recall that b = (1, 81) = (B2, B2)-

| G |SUP2) (p>2) | SO0(p,2) (p>2) | Sp(p:2) (0 >2) | SO*(10) | Eo-a) |
| Pa=a(m+) || @-D/2 | 1/2 - 1/2 | 3/2 |52 |
| Ppatse ="y I 1 \ (p—2)/2 2 I I
St iestimeoa) || (g | o {;‘j{'ﬁif}ﬁ%m} Gl | )| ()
_ 3. V2
L:luin{ﬁg\ﬁ|!5€2todd} H \/T;_lb ‘ Z;z 24 b b ‘ ‘ ‘

TABLE 2. The values of pg for 8 € &} and of L

A computation using the values in the tables together with [6, §2] yields the
following corollary.

Corollary 3. If G # SOq(p,2) with p odd, then {8 € X} : mg is odd} is equal to
{1, B2}. Hence

[ere(Merc(=2)] 7 = To(X) Po(V)[egic Mefia (M) (18)
where
HO()‘) = )‘(52*51)/2)‘(52+51)/2 = )‘52 )‘51 ’ (19)
2552

rpN= I I Ds-@s-1+4H, (20)

B=(B2%B1)/2 k=0

and [cf;(N)egsa(=N)] 7t is the Plancherel density of the product X1 x Xy of two
isomorphic rank-one Riemannian symmetric spaces with root systems of type BCy
(or A1) and multiplicities (mg,,mg, /o) = (M1, ms).
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If G = SO¢(p, 2) with p > 3 odd, then ¥} = X% and
H(A) = >‘51 >‘52 (>‘,(25’2 - >‘,(231)

p—2 _ -
P\ = H ()\(52,51)/2 - (p 9 2 - 1) + k') ()‘(52+f31)/2 - (p 2 ? a 1) + k)

k=0

= p—2 p—2
H}(Aﬁ2>‘ﬁ1< 9 1>+k)(>‘52+>‘51( 9 1)+k>
Q(\) = cot (’/T()\gl - é)) cot (’/T()\gz - é)) cot (W()\gz — g, — 5+ 1))
x cot (m(Ag, +Ag, — 5 +1)).
2.4. The resolvent of A

Endow the Euclidean space a* with the Lebesgue measure normalized so that the
unit cube has volume 1. On the Furstenberg boundary B = K/M of X, where M
is the centralizer of a in K, we consider the K-invariant measure db normalized so
that the volume of B is equal to 1. Let X be equipped with its (suitably normal-
ized) natural G-invariant Riemannian measure and let A denote the corresponding
(positive) Laplacian. As in the cases treated in [5] and [6], it will be convenient
to identify a* with C as vector spaces over R. More precisely, we want to view
ai and a3 as the real and the purely imaginary axes, respectively. To distinguish
the resulting complex structure in a* from the natural complex structure of ag,
we shall indicate the complex units in a* = C and af, by ¢ and i, respectively. So
a* = C = R + iR, whereas ai. = a* + ia*. For r,s € R and \,v € a* we have
(r+is)(A+1iv) = (rA —sv) +i(rv + sA) € af.

By the Plancherel Theorem [3, Ch. III, §1, no. 2], the Helgason—Fourier trans-
form F is a unitary equivalence of A acting on L?*(X) with the multiplication
operator M on L*(a% x B, [cuc(iX)cuc(—iN)] 7! dAdb) given by

MF(\b) = T(A)INEFA D) = ((p,p) + (MLA)FND) ((A\b) €a* x B). (21)

It follows, in particular, that the spectrum of A is the half-line [p%, +oc[, where
0% = (p, p). By the Paley-Wiener theorem for F, see, e.g., [3, Ch. I, §5], for every
u € C\ [p%, +oo[ the resolvent of A at u maps C2°(X) into C*°(X).

Recall that for sufficiently regular functions f1, fo : X — C, the convolution
f1 % f2 is the function on X defined by (f1 X fa) om = (f1 om) x (f2 o 7). Here
7 : G — X = G/K is the natural projection and * denotes the convolution product
of functions on G.

The Plancherel formula yields the following explicit expression for the image
of f € C2°(X) under the resolvent operator R(z) = (A — p§ — 2%)~! of the shifted
Laplacian A — pg:

[R(z)ny) = fa* <,\,)\%722 (f X ‘Pik)(y) CHC(i)\)(iiC(*iA)’ (Z eCt Y € X) . (22)

See [4, formula (14)]. Here and in the following, resolvent equalities as (22) are
given up to non-zero constant multiples.
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3. Meromorphic extension in the case G # SO¢(2,p), p > 2 odd

3.1. The resolvent kernel in polar coordinates
We write af = RB; and a5 = Rfs, so that a* = af @ ad and A = A\ + Ay =
x1P1 + x2P2 € a*. Introduce the coordinates

R? 3 (z1,22) = 2181 + 22P2 € af ® aj = a*. (23)

Hence z; = g, if A = 2161 + x20.
In view of Table 2, the functions Il and Py from (19) and (20) can be
rewritten in these coordinates, as

Ho(A) = o(z181 + 22B2) = x5 — a7, (24)

Po(N) = Po(2181 + 2232) = H H {)\5 - (n’;m - 1) + k}

B=(B2£B1)/2 k=0

3
g

-1
mIIl mIIl
= 1 |:(:L'2+l‘1)* 9 +k:| |:(£L'2 7331) — 9 +k:|
M —1 m 2
= [(362 - 2m + k) - xf] (25)
k=1
since
+1 forj=1,
. — (B)a. + (B =
(ﬁj)(ﬂ2i51)/2 (ﬂ])ﬁz (ﬂ])ﬁl {1 fOI'j —9
We write
m 1
_ 9
Io(z1,12) = Ho(A\)Py(\) = (23 — x3) kli[l [(m -yt k) — :cf] . (26)
Further we write
[Fa (AN i (V)] 71 = O1IL (IV) P (IN) Q1 (V) (27)

for the Plancherel density of the space X; in Corollary 3, so that
[Cﬁc(i)\)cﬁc(flA)]il = 012]._[1 (ZIL‘l)Hl (ZZL‘Q)Pl (ZZL‘l)Pl (ZIL‘Q)Ql(Zl‘l)Ql(ZZL'Q) (28)
See [6, §1 and §2]. Using (18) and omitting non-zero constant multiples, we can
therefore rewrite (22) as
1 1
R = i dA
G0 = [yl <)

CHC (i)\)CHc(fi)\)
_ / (f X Pias p1-+iza2) (Y)
Rz 1302 4 23b% — 22
X Ql(iZCl)Ql(i.Z'g) diEl dZEQ .

Introduce the polar coordinates

190(i£61, i$2)$1$2P1 (iiﬁl)Pl (ng)

zlzg(:OS@, xQ:ZSinG 0<r, 0<0<2n)
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on R? and set
pi(z)=Pi(i7) and  qi(z) = Q1 (7). (29)
In these terms (up to a non-zero constant multiple)

o 1
R(2)f(y) = / , o F(r)rdr,
where
27
FO) = [ (% g cont 5 ) () Do 1, O cosBsing
0

X p1(rcos@)qi(rcos@)py(rsinb)g (rsinb)df, (30)

where
2
Yo,pol(1,0) = Vo(i 21, i20) = 722 (sin2 6 — cos® )
M My A
X kl;ll [(bzsmt?— ) —l—k;) + y2 €05 9] . (31)

Here and in the following, we omit from the notation the dependence of F' on the
function f € C2°(X) and on y € X.
Recall the functions
wH+w ! w— w

c(w) = 5 , s(w) = ) = ic(—iw) (weC*) (32)
from [6, (20)] and notice that
(i s s(e’) (s if _ de'®
cosf =c(e"), sinf = ; = c(—ie"), do = it

For z € C and w € C* define
Y (w) = (f x @igc(w)ﬂ1+i;c(—iw)ﬂz)(y) (33)
6-() = —=2e(w)™ ) py (zew)) s (ze(a) s (e i) s (i), (34)

as in [6, (32) and (33)] together with

9, (w) = ij (c(w)? — o(—iw)?) mﬁl [(Zs(w) - 7”2 + k)2 + ch(w)ﬂ . (35)
k=1

which is a polynomial function of z. Then
Py = [ ) @) do. (36)
w|=1

Lemma 4. Let z € C and w € C*. Then:
Voz(w) =¢:(w),  Y.(-w)=1v.(v), V2 (iw) = ¥z (w),
p—z(w) =¢z(w),  ¢(~w)=—¢:(w),  ¢:.(iw) = —ig.(w),
Do) = a(w),  Ou(—w) = Ou(w),  Da(iw) = 0. ().
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Proof. Set pu(z,w) =i} c(w)pr+ijc(—iw)Bz, so that V. (w) = fX@u(zw)(y). Then
w(—z,w), p(z, —w) and u(z,iw) are transformed into u(z,w) by sign changes and
transposition of 81 and of 3. The equalities for ¢, (w) then follow because the
spherical function ¢, is W-invariant in the parameter .

The equalities for ¢,(w) are an immediate consequence of (32) and the fact
that the functions c, s and p;q; are odd.

To prove the relations for 9. (w), notice that —";* + k = ";» — h where
h=mmn—ke{l,...,my—1} when k € {1,...,my — 1}. Hence

My —1 Zq Mm 2 22 _ M —1 Zq Mm 2 22
et (= pstw) = )+ )] =TT [(Gstw) = 5+ h)* + S e(w)?]

This proves the first two equalities for ¥, (w) since s(—w) = —s(w). For the last
equality, notice that
2 2
(‘Zs(m) - QO + k) + ;C(iw)Q

= {'Zz‘c(w) - ”; +k+ izz’s(w)} {’Zic(w) - mQ +h— izis(w)}
_ [—zs(w) . ””; y —|—i§c(w)} [is(w) - ”"2 - i'zc(w)} .
Hence, since my, is even,
My —1
(oo )"+ ]
k=1
My —1
=11 [zs(w) =T k+izc(w)} (=1t
k=1
M —1
X 11 [zs(w) - QO +h— zzc(w)}
Mm—1 2 M 2 22 )
- {(bs(w)f 2 +k> erQC(w)}'
k=1

This proves the claim because ¢(w)? — ¢(—iw)? changes sign under the transfor-
mation w — tw. 0

Thus [6, Lemma 3] generalizes as follows.
Lemma 5. The function F(r), (36), extends holomorphically to
w|=1
where
z € C\i((—o0,—L] UL, +00))

and L is the constant defined in (17). The function F(z) is even and F(z)z? is
bounded near z = 0.
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The following proposition, giving an initial holomorphic extension of the re-
solvent across the spectrum of the Laplacian, has been independently proven by
Mazzeo and Vasy [7, Theorem 1.3] and by Strohmaier [8, Proposition 4.3] for
general Riemannian symmetric spaces of the noncompact type and even rank. It
shows that all possible resonances of the resolvent are located along the half-line
i(—00, —L]. According to our conventions, we will omit f and y from the notation
and write R(z) instead of [R(z)f](y).

Proposition 6. The resolvent R(z) = [R(z)f](y) extends holomorphically from C\
((foo, 0] Ui(—o0, fL]) to a logarithmic Riemann surface branched along (—oo, 0],
with the preimages ofz'((foo, —LJU[L, +oo)) removed and, in terms of monodromy,
it satisfies the following equation

R(2e*™) = R(z) + 2im F(2) (z € C\ ((—00,0] Ui(—o0, —L] Ui[L,400))).

The starting point for studying the meromorphic extension of R across
i(—o00,—L] is the Proposition 7 below. It says that this meromorphic extension
is equivalent to that of function F. This proposition is analogous to [6, Proposi-
tion 4] and its proof is omitted.

Proposition 7. Fiz ¢ > 0 and yo > 0. Let
Q={z€C;Rz >0, yo >z >0}
U=QU{zeC;3z <0}

Then there is a holomorphic function H : U — C (depending on f € C°(X) and
y € X, which are omitted from the notation) such that

R(z) = H(z) + mi F(z) (z € Q). (38)

As a consequence, the resolvent R(z) = [R(z)f](y) extends holomorphically from
CT to C\ ((—00,0] Ui(—o0, —L]).

3.2. Meromorphic extension and residue computations

This section is devoted to the meromorphic extension of the function F' (and hence
of the resolvent) across the half-line i(—oo, —L]. We set

V2 (w) = 0 (w): (w) (39)
and follow the stepwise extension procedure for F' from [6, §2 and §3] with v, (w)
replaced by ¢?(w). Some formulas are simplified by the fact that we are only
dealing with the special case of X; = Xy with 57 and s of equal norms b; = by = b
and equal odd multiplicities mg, = mg,. Notice also that in this paper, studying
the singularities of the Plancherel density, we are replacing the elements pg, and
pg, used in [6] with pg, and pg,, which are equal and have value }(m; + "3*).
Indeed, in the case of direct product of rank one symmetric spaces treated in [6],
there was no need of introducing multiple notation by distinguishing between pg
and pg for § € X,. The distinction is now necessary since pg, = pg, = pPg, 7 PBs-
Furthermore, we omit the index j from the notation used in [6] when it only refers
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to which of the two factors one considers. So, for instance [6, (38)] yields, for the
set of singularities of the product piq; from (29), the set

S§=5,U(=54), (40)
where )
g~ . ms
St =ib(ps, +Z>o) = zb(2 (m1 + 5 ) + Zzo)- (41)
For r > 0 and ¢,d € R\ {0} recall the sets
D, ={z€C; |z| <1},

Eed= {€+in e (§) + ()< 1} :

and the role they play in [6, §1.4] for the functions s and c introduced in (32).
Then [6, Prop. 6] translates in the following proposition.

Proposition 8. Suppose z € C\ i((—o0o,—L]U [L,0)) and r > 0 are such that

SN ZaEC(T)A,s(r) = (Z) (42)
Then
F(Z) = F7(Z) + 2 Fr,res(z)a (43)
where
Frz)= [ ¢l (w)g.(w)dw,
oD,
Fr,res(z) = 211/15 (wO) wlieui) ¢z (U}),

and Z’wU denotes the sum over all the wo such that
ZC(’LUO) cSnN Z(Ec(r),s(r) \ [71, ].]) (44)
or
ZC(*Z.’LU()) esSn Z(EC(T),S(,.) \ [7]., 1]) (45)
Both F, and F, yes are holomorphic functions on the open subset of C\i((—oo0, —L]U

[L,0)) where the condition (42) holds. Furthermore, F, extends to a holomorphic
function on the open subset of C where the condition (42) holds.

To make the function F} yes(%) explicit, we proceed as in [6, §3.1]. The present
situation is in fact simpler, because only the case Ly, = La ¢ occurs. We denote
this common value by Ly, i.e., we define for £ € Z>q

Lo =b(@s, +0) = (" + 7 +1). (46)
So S+ = {Z'Lg;g S Zzo}.

If 0 # z € C\ i((—00, —L¢] U [L¢, +00)), then 2 € C\ [~1,1] and we can

uniquely define wi € D; \ {0} satisfying

ze(wi) +iLy. (47)
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Since ¢(—w) = —c(w), we obtain that w, = —w; . Moreover, w; satisfies (44) if
and only if we = iw; satisfies (45) because z(Ec(y)s(ry \ [~1,1]) is symmetric with
respect to the origin 0 € C. Hence

Frre(2) = 3 [02(0]) Res o) +02wr) Res ox(v)

w=w
1
'w;r

+w£<z'w1+> Res ¢.(w)+v!(iwy) Res o.(w)], (48)

where >/, + denotes the sum over all the wi such that zc(w)) € S4N2(Ee( s \
[—1,1]) and wy = —wy .
Then, using Lemma 4, we obtain the following analogue of [6, Lemma 9].

Lemma 9. For{ € Z>q and 0 # z € C\i((—00, —Lg]U[L¢, +00)), let wi be defined
by (47). Then

¥ (wi) = ¥ (wy) = ¢ (iwf) = ¥ (iwy) (49)
RGS ¢z( ) = 5687 ¢z( ) = Res ¢z( ) = ies N ¢z(w) : (50)
(51)

Explicitly,
vwi) = v (7 ())
wR?US ¢=(w) = —Cyp1 (iz(socfl)(iie» ¢ (iz(socfl)(i?» ,

where .
Cg = ﬂ_szl(iLg) 7é 0. (52)
Corollary 10. Let { € Z>g and 0 # z € C\ i((—00, —L¢] U [L¢, +00)). Set
Go(z) = —Co? (71 (*2) ) (iz(s 0 ) (") ) @ (iz(s0 e ) (2)) . (53)
S7',z7+ = {E € ZZO tilyg € Z( c(r),s(r) \ [ ])} . (54)
Then the function Fy yes(z) on the right-hand side of (43) is given by
Frres(2) =4 Y Gu(2). (55)
LESH 2 +
The following proposition is analogous to [6, Proposition 10].

Proposition 11. For 0 <r <1 and 0 # z € C\ i((—oo, —L]U[L, +0)), let Sy . +
be as in (54). Moreover, let W C C be a connected open set such that
SN WOIEc()stry =0 (56)
and set
S»,\7W7+ = {E S ZZO : ZL[ S WEC(T),S(T)} (Z eWw \ Z]R) . (57)
Then Sy . + = Sr,w,+. In particular, S, . + does not depend on z € W \ iR.
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Proceeding now as in [6, Corollaries 11, 13 and Lemma 12], we obtain the
following result for points on iR.

Corollary 12. For every iv € iR and for every r with 0 < r < 1 and ve(r) ¢ iS
there is a connected open neighborhood W, of iv in C satisfying the following
conditions.

1. SN anEC(T)VS(T) = 0.

2. Spw, 4 =€ Lo :ily € i0E(y) sy} = [0, Ny] for some N, € Z>o.
3. Forn € Z>o, set
I, = bﬁﬁl + b[n7n + 1) - [Lna Ln+1) . (58)
If v e I, then N, =n. Hence
Frres(z) =4) G(2) (2 € W, \iR). (59)
=1
We recall the relevant Riemann surfaces from [6, (76)]. Fix ¢ € Z>¢. Then
B « N AT
M= {(z:0) e C x (C\{i,—i}) : ¢= (") -1} (60)

is a Riemann surface above C*, with projection map mp : My 3 (2,{) — z € C*.
The fiber of 7y above z € C* is {(z,(), (z,—¢)}. In particular, the restriction of
e to My \ {(£iL¢, 0)} is a double cover of C* \ {+iL,}.

Now [6, Lemma 15] has the following analogue. The difference is that we
have replaced 1, (w) by ¥?(w). So we have to look for possible cancellations of
singularities arising from the additional polynomial factor 9.

Lemma 13. In the above notation,

Goi M3 (5,0) > ng pr(GLe)W? (“j _ g) P20 (iz0) €C (61)

is the meromorphic extension to My of a lift of Gy.
The function Gy has simple poles at all points (z,() € My such that

o= i J13 1 12, (62)

where m € Zo \ [0 — (" — 1), ¢+ (" = 1)].

Proof. Formula (61) is obtained using the lifts of ¢ and soc ™%, as in [6, Lemma 15].

The poles of Gy are the points (z,¢) € My for which the function 192(152 —
C)pl (i2¢)q1(:2¢) is singular, i.e., the points for which p; (iz{)q1 (i2() is singular and
9, (”j — () # 0. By construction, p1(iz¢)q1(iz() is singular if and only if iz¢ € S,
see (40). In this case, there exist e € {£1} and m € Z so that = SLZ Hence

2= sz" Since (2,¢) € My, we also have ¢* = J;? — 1. Thus z = +i\/L? + L2,.
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We now compute 192(15" — C) for such (z,¢). Set

iLy iLy €L, iLy — €L,
w = —(= - = .
z z z +iy/L? + L2,
Then
-l = +iy/Lj+ L3, _ iLe+eln .
iLé - €L7n :l:Z\/L% —+ L12n
So,
C(w)_w—i—uf1 _ Ly
2 /L7 + L3,
o(—iw) = w—w! B €L,
2i + /L2 +12,°
Hence
ze(w) =Ly, ze(—iw) = i€Lyy, , zs(w) = —€Ly, .
Substituting in (35), we obtain
(L2, - L) "ex 1 (=€l m Y
go(w) = (=) =t 63
(w) = 1_I<b k) - (63)

The same argument used in the proof of Lemma 4 shows that the right-hand side
of this equation is independent of € € {£1}. Using (46), we therefore obtain

Mm—1
~ ~ ~ mIIl ~
9:(w) = (B, +m)* = B +0°) [ (B +m = "7 +8)" = (B, + 0]
k=1
Mm—1
=(m—L)(m+L+2ps,) H (m—g_ m2m +k)(m+€+2561 B QO —i—k)
k=1
771,2,1]71
=(m—-0Om+t+2p5,) ][] (m—£+h) (m+€+2,551 +h> .
h=—("3" —-1)
The values of m € Z>(¢ making this polynomial vanish are:
m=/{, (64)
meZsoN[l— (" —1),0+ (" -1)], (65)
m e ZzoN[—0—2ps — (" —1),—0—2ps, + (" = 1)] . (66)

Observe that —¢ —2pg, + ("5 — 1) > 0 if and only if (0 <)¢ < —2p4, + ("5 —1).

Looking at the first two rows of Table 2, we see that this can happen if and only
if G = SO0y(p,2) with even p > 6. In this case,

o= (=1 e (-] = [£+2-3,0-2+ 1]
[—¢—20, — (" —1),——2pp, + (" —1)] =[-0+1-5,—0-3+1%].
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Hence
ZsoN[—0+1-2,—0-3+2]=[0,—¢—-3+7%]
does not add zeros to those in (65). In fact, —¢ —3 + 5 < £ —2 4 ¥ and, if

——=3+85>0,ie,<8) -3, thenl+2-% <0. O
For ¢, m € Z>¢, set
2 = i/ 4 L2, (67)
and
. L2,

Let ¢ € {£1}. Then all points (+zg,m,€Cr,m) are in My. Open neighborhoods in
My of these points are the sets

Up+ ={(2,0) € My ; £32 > 0}, (69)
and local charts on them are
Re 4+ 'UE:I:E(Z C)*)CEC\i((*OO,*].]U[].,%»OO)), (70)

inverted by setting z = +1

\/<2+1

Lemma 14. The local expressions for C~¥4 in terms of the charts (70) are

Gronpt)©) =] LemtiLapa( f Jan( 5, )00 o (VERH170).

V241
(71)
Suppose m € Zxo \ [[E — (mzm — 1),€ + (’”2“‘ — 1)]] Then the residue of the local
expression of C~¥4 at a point (z,¢) € My with z = £z, is

~ _ 1
Bes (Grom)O) =+ L, 0unll < prm) ). ()
n (72), o
Com = bLemiGLopa(iLn) (T (73)

where Vg is as in (26), is a positive constant.

Proof. The computation of the residues is as in [6, Lemma 16]. The constant
190( A l;”) agrees with (63) with (z,¢) = (2¢,m, €{r,m), and we only need to prove
that it is positive. Recall that (63) is independent of e. Hence
Ly Ly, (L%, —L3)
Wy y) =
b’ b b2

TG00 D095 o

Ifm >0+ (" — 1) > ¢, then all factors appearing in the above product are

positive. If m < £ — (" — 1) < /¢, then all factors Ll;” — (mQ — k) + ng are
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positive, whereas L2, — L? as well as the my, — 1 factors % — ("> — k) — ¢ are

2
negative. Since my, is even, we conclude that 190(%)’5, Lg”) > 0 in all cases. (|

A different parametrization of the singularities of ée will turn out to be more
convenient. Observe first that, by (3) and (10),

ﬁﬂl = pPpr = PB2 — )

We will use the following notation for (¢1,£) € Z2,:

AMl1,€2) = (pg, +£1)B1 + (pp, +L2)B2 = 2(L4151 + Loy B2). (75)

Corollary 15. Keep the notation of Lemma 14. If £ € [0, "> — 1], then Gy has
simple poles at the points (z,() € My with z = +i|z| and

b 2|22 = (pp, + £)* + (pp, + £+ k)? (k € Zso). (76)

Ift e " +Zxo, then Gy has simple poles at the points (2,¢) € My with z = +i|z|
and satisfying either (76) or

b72|2|2 = (pﬁl + m)2 + (pﬁz + 60>2 (m € [[ng()ﬂ) ’ (77)

where o = £ — "
The residue of the local expression of ée at a point (z,¢) € My with z = +i|z|
satisfying (76) is
~ _ 1
Res  (Groky1)(¢) = £ 5 Crermp (f X xe,etr)) (W) - (78)

C=£Cp eq mm g

The residue of the local expression of Gy at a point (2,¢) € My with z = +i|z|
satisfying (77) is

=~ _ 1
(Bes (Gromg)(Q) =%, ,Crom(f * xtmn) W) (79)

Proof. We have ¢ € [0, "5 —1] if and only if 0 € [ — ("5 — 1), £+ ("3 —1)]. In
this case, m € Z>¢ \ [¢ — (m;‘ - 1),6 + (’”2“‘ - 1)]] =L+ "i» 4 Zxo is of the form
m={+ " +kwith k € Z>o. Hence ¢ = ps, +Cand " = pg, + " + 0+ k =
pg, L+ k.

On the other hand, if £ € "s» +Z>o and m € Zxo\ [{— (mQ 71) O+ (m2 - 1)]],
then either m € £+ "y +Z>¢ (and the above applies), or m € [0, £o]. In the latter
case, Lbf = pp, + "5 + Lo = pp, + Lo and me = pg, + m. Observe also that
PA(Lo,m) = PA(m,t) by W-invariance. O

We now proceed with the piecewise extension of F' along the negative imag-
inary half-line —i[L, +00). Recall from Corollary 12 that for v € I,, = [Ly, Lp41)
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FIGURE 1. On the left: A\(¢, (+Fk) for £ € [0, " ]. On the right: A(¢, £-+k)
and A(m, £o) for £ > "y

with n € Z>( there exists 0 < r, < 1 and an open neighborhood W, of —iv in C
such that

F(z) =F,,(2) +4> Gu(z)  (z€W,\iR), (80)
=0

where the function F,. is holomorphic in W,. This equality extends then to I_; =
(0, L) by allowing empty sums. By possibly shrinking W,, we may also assume
that W, is an open disk around —iv such that

—il,, forv e I?

n’

—i(I, — %) forv=L,.

WUm’Rg{
2

In addition, for 0 < v < L we define W, to be an open ball around —¢v in C such
that W, NiR C (0,L). If v € I,,, v' > L and W,, N W, # (), then we obtain for
z € Wy N Wy
0 ifv' €1,
F’I' ’ = Fr, + .
w(2) =B (2) {4Gn(z) if 0 € Iy

Now we set

Wen=J Wo and Wiy =J W (neZx).

vel_ 4 vely,

For n € Z>1 we define a holomorphic function Fi,) : W,y — C by

Fo(2) = F. (2) ifné€Zsop,vel, and z €W,
(M7= F(z) ifn=—1landzecW_y.
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We therefore obtain the following analogue of [6, Proposition 18].

Proposition 16. For every integer n € Z>_1 we have

F(z)= Fny (z) + 42 Go(z) (z € W) \ iR), (81)
£=0
where Fyy is holomorphic in Wy, the Gy are as in (53), and empty sums are
defined to be equal to 0.

We can continue F' across —i(0, +00) inductively, as in the case of the di-
rect product of two rank one symmetric spaces in [6]. Our specific case X1 = Xy
is slightly easier, as for instance one gets just one regularly spaced sequence of
branching points L. Since the procedure does not involve new steps, we will limit
ourself to overview the different parts and state the final result, referring the reader
to [6] for the details.

For a fixed positive integer N, we construct a Riemann surface My) by
“pasting together” the Riemann surfaces M, to which all functions Gy, with ¢ =
0,1,..., N, admit meromorphic extension. Namely, we set

My = {(2,¢) € C= x CN*L: ¢ = (Co, ..., Cn), (2,C0) €My, L€ Zxo, 0<L<N}. (82)
Then My is a Riemann surface, and the map
TNy Mny 2 (2,0) = 2€C™ (83)

is a holomorphic 2V¥*'-to-1 cover, except when z = —iL, for some ¢ € Z>o with
0 < ¢ < N. The fiber above each of these elements —iL, consists of 2" branching
points of M(y). A choice of square root function ¢/ (z), see [6, (81)], for every
coordinate function ¢, on My yields a section

UE"N) sz = (2,0 (2), ., R (2)
of the projection (). All possible sections of 7y are obtained by choosing a
sign +¢; for each coordinate function. We obtain in this way a parametrization

of all sections of m(yy by means of elements ¢ = (eo, ... ,en) € {£1}V T
For 0 < ¢ < N consider the holomorphic projection

TN, - My 2 (2,0) = (2,8) € My. (84)
Then the meromorphic function
é(Nyg) =Gyo TN, s My = C (85)
is holomorphic on (W(N))fl((C* \ iR). Moreover, on C™ \ iR,
é(N.,e) o UE"N) =Gy.

So, é(N_’g) is the meromorphic extension of a lift of Gy to M(y). Using the right-
hand side of (81) with F{,) constant on the z-fibers, we obtain a lift of F' to
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The next step is to “glue together” all these local meromorphic extensions of
F', moving from branching point to branching point, to get a meromorphic exten-
sion of F" along the branched curve vy in My covering the interval —i(0, Ly1).
Define, as in [6, section 4.3], the open sets Un ., Uspvy (With n € Z>g, € €
{£1}¥+1) and the open neighborhood M., of vy in M. Every open set Ue(,vyU
Un,e is a homeomorphic lift to M(y) of the neighborhood W,y of —[Ly, Lyy1).
Then we have the following analogue of [6, Theorem 19].

Theorem 17. For n € {—1,0,...,N}, ¢ € {£1}¥*! and (2,¢) € Uetnvy UUne
define

F(z,0) = Fiuy(2) +4Y . Gwp(2,€)
=0

+4 Z [Givo(2,0) — Gnal(z,—0)], (86)

n<l<IN
with e = —1

where the first sum is equal to 0 if £ = —1 and the second sum is 0 if e = 1

for all ¢ > n. Then F 1is the meromorphic extension of a lift of F' to the open
neighborhood M., of the branched curve yn lifting —i(0, Ln11) in M.

Order the singularities according to their distance from the origin 0 € C, and
let {2(n)}nezs, be the resulting ordered sequence. For a fixed h € Z>¢ set

Sp = {l € Z>o; 3k € Z>¢ so that b~ >|z)|> = (pg, +£)° + (ps, + L+ k)*}. (87)
Notice that if £ € S}, then the corresponding element £ is uniquely determined. Let
N € Z>o be such that |z;)| < Lyy1 and n € [0, N] such that |z(,)| € [Ly, Lnt1).
Then the possible singularities of F at points of M above z(j, are those of

D Gv(2,0) = Gul(z.¢) .
=0 =0

Indeed, the singularities of é(NA’Z)(Z,C) = ég(z,(:g) occur at points (z,¢) € M)
with |z]? = L7 + L2, > L2. Hence the second sum on the right-hand side of (86)

m

is holomorphic on U,(,,v)y U Upe.

The singular points of F above Z(n) are parametrized by € € {£1}V+1 We
denote by (z(h),C(h’a)) the one in Ug(,vy U Uy, . The local expression of F on
Ue(nv)UUp,c is computed in terms of the chart x,, . defined for (2, () € U,(,,vyUU,, ¢
by tne(z,C) :~Cn-

Suppose G (n,¢)(2,() is singular at (z(h),((h’g)). Then, by [6, Proposition 21],

2 4 /lzm|? — L? ~
Ln \/ w ‘ Res (Gg o KZi) (Cg) .

Res (CNT'(NAVZ) o Ii;le)(gn) = g,
’ L} 2wy? = L2 ¢o=c™®

Cn :C’Slh)a)
(88)
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If ¢ satisfies (76) with z = z(;) for some k € Zx, then |z()|*> — L = b*(pg, + £ +

k) = L} mm - I £ > Ton satisfies (77) with 2 = z(,) for some m € [0,4o] and
2

bo =0 — "4 then |z |* — L7 = b*(pg, + m) = L2, .

In the first case, by (78), the right-hand side of (88) is equal to

1S L2 Lé+m2m+k_ ~
o Res Geor, b))
\/|Z(h)|2 - 12 L? Ce=—Cops ™ 11 ( ‘, )
i en L2 Loy mm 1k
= n Cé7é+mru +k f X ) 0,04k (y) .
™ V0wl -2 Lf at (€+5)

In the second case, by (79), the right-hand side of (88) is equal to

enl? L ~
nn ™ Res (Gyor,!
ViIewl? = L2 L Q:—@’m( 0 ren) ()

: 2
LI —
Observe that in both cases, the constants appearing are ¢ times a positive constant.
Observe also that if £ > "3 and Gy ) is singular at (z(), ¢(1#)) with ¢ satisfying
(77) with 2z = 2y, some m € [0,4o] and £y = £ — "4, then (z(;), ¢9)) is also a
singularity of (NJ(NJ,L) and m satisfies (76) with z = z(,) and k = £y —m € Zx¢. Of
COUTSE, Y(m,ly) = PA(m,m+k) i this case. It follows that the set Sy, is sufficient to
parametrize the residues of F at (2(h)» ¢(he)),
It follows that
Res (For,1)(¢) = ienLn Z ce(f X oaeerr)) () (89)
(he) ) \/|Z(h)|2 _ L?L peret )

Cn=Cn
where k € Z>( is associated with ¢ as in the definition of S), and ¢, is a positive
constant depending only on £.

By Proposition 7, the meromorphic extensions on the half-line i(—oo, —L]
of F' and of the resolvent R of the Laplacian are equivalent. Thus the resolvent
R can be lifted and meromorphically extended along the curve vy in M, . Its
singularities (i.e., the resonances of the Laplacian) are those of the meromorphic
extension F of F and are located at the points of M, above the elements z(p).
They are simple poles. The precise description is given by the following theorem.

Theorem 18. Let f € C°(X) and y € X be fized. Let N € N and let vy be the curve
lifting the interval —i(0, N + 1) in M(yy. Then the resolvent R(z) = [R(z)f](y)
lifts as a meromorphic function to the neighborhood M., of the curve yn in M(y).
We denote the lifted meromorphic function by E(N)(z,(:) = [R(N) (z,0) f] ().

The singularities of E(N) are at most simple poles at the points (2 (), C(h*g)) €
My with h € Zxq so that |z4)| < Lyy1 and € € {£1}N*+L Explicitly, for
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(n,e) € [0, N] x {£1}V*+1,

Riny(2,0) = Hivme) (2:Q) + 210 Y Gwvy(2,C)  ((2,€) € Uenvy UUn ), (90)
=0

where I?I(N_’mye) 18 holomorphic and é(N,e)(Z, ¢) is in fact independent of N and e
(but dependent on f and y, which are omitted from the notation). The singularities
of ITI(N) (2,€) in Ugyvy UUy e are simple poles at the points (zp), ¢(M)) belonging
to Ug(nvy UUp . The residue of the local expression of E(N) at one such point is
im times the right-hand side of (89).

4. The resolvent operators

Recall the notation A(¢1,f2) = (pg, + ¢1)51 + (pp, + ¢2)B2 introduced in (75).
For a fixed h € Z>¢, the sum over S, appearing on the right-hand side of (89)
is independent either of NV or n. It can be used to define the residue operator
Reszw)é of the meromorphically extended resolvent at z(j). Explicitly,

Res., R =Y ceRxr.ein) (91)
LeS

where, ¢ are non-zero constants and, as in [5, (57)], Ry : C*(X) — C*(X) is
defined by Rxf = f X @a. We know from [2, Chapter IV, Theorem 4.5] that
Rx(C(X)) is an irreducible representation of G. Furthermore, two such repre-
sentations are equivalent if and only if the spectral parameters A\ are in the same
Weyl group orbit. Since, in our case, the Weyl group acts by transposition and
sign changes, the element A(¢1, ¢3) is dominant with respect to the fixed choice of
positive roots if and only if

Mm

PB, + 42> pg, +41 >0, ie., lr+ 9 > /.
In particular, all A(¢, ¢ + k:g) are distinct and dominant. Hence, as a G-module,
Res.,, R( = D Bagernn(CE(X). (92)

éES(h)
Theorem 19. If (. k € 72, then dim Ry ¢14)(Ce®(X)) < 00. Thus
Resz(h)R(C"”( )

is a finite-dimensional G-module.
The G-module Resz(h)R(Cc’o( )) is bounded (and unitary) if and only it is

the trivial representation, which occurs for h =0, i.e., when z) = fi\/<p,p>.

Proof. By [3, Ch II, §4, Theorem 4.16], dim R, ¢,)(C2°(X)) < oo if and only if
there is w € W such that

(wA(l1,42) — p)g € Z>o (B € £}, 3 simple). (93)
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Recall that the simple roots in ¥} are 31 and ﬂQ;’ﬁl . Moreover, e e
for p € af. Since

>‘(£7£+k) —pP= (pﬁl +£)ﬂ1 + (pﬁz +L+ k)ﬂ? - (pﬁlﬂl +p52ﬂ2> =01+ (£+ k)ﬂZ )

we conclude that

()\(6,6 + k) - p)ﬁl =Ll€Z>o,
AL+ k) = p)(ps—pr)j2 = k € L0,
which satisfies (93) with w = id. O
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