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Abstract. Let X = G/K be a Riemannian symmetric space of the noncompact
type and restricted root system BC2 or C2 (except for G = SO0(p, 2) with
p > 2 odd). The analysis of the meromorphic continuation of the resolvent
of the Laplacian of X is reduced from the analysis of the same problem for a
direct product of two isomorphic rank-one Riemannian symmetric spaces of
the noncompact type which are not isomorphic to real hyperbolic spaces. We
prove that the resolvent of the Laplacian of X can be lifted to a meromorphic
function on a Riemann surface which is a branched covering of the complex
plane. Its poles, that is the resonances of the Laplacian, are explicitly located
on this Riemann surface. The residue operators at the resonances have fi-
nite rank. Their images are finite direct sums of finite-dimensional irreducible
spherical representations of G.
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1. Introduction

The study of resonances has started in quantum mechanics, where they are linked
to the metastable states of a system. Mathematically, the resonances appear as
poles of the meromorphic continuation of the resolvent (H−z)−1 of a Hamiltonian
H acting on a space of functions F on which H is not selfadjoint. In the last
thirty years, several articles have considered the case where H is the Laplacian
of a Riemannian symmetric space of the noncompact type X and F is the space
C∞

c (X) of smooth compactly supported functions on X. The basic problems are
the existence, location, counting estimates and geometric interpretation of the
resonances. All these problems are nowadays well understood when X is of real
rank one, such as the real hyperbolic spaces. The situation is completely different
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for Riemannian symmetric spaces of higher rank. The pioneering articles proving
the analytic continuation of the resolvent of the Laplacian operator across its
continuous spectrum are [7] and [8]. However, in these articles, the domains where
the continuation was obtained is not sufficiently large to cover the region where the
resonances could possibly be found. Indeed, the existence of resonances is linked
to the singularities of the Plancherel measure on X. The basic question, whether
resonances exist or not for general Riemannian symmetric spaces for which the
Plancherel measure is singular, is still open. If the general picture is still unknown,
some complete examples in rank 2 have been treated recently: SL(3,R)/SO(3) in
[5] and the direct products X1×X2 of two rank-one Riemannian symmetric spaces
of the noncompact type in [6].

The present paper is a natural continuation of [6] and deals with the cases of
Riemannian symmetric spaces X = G/K of real rank two and restricted root system
BC2 or C2 except the case when G = SO0(p, 2) with p > 2 odd. The reason is that
for all the spaces X considered here the analysis of the meromorphic continuation
of the resolvent of the Laplacian can be deduced from the same problem on a direct
product X1 × X1 of a Riemannian symmetric space of rank one not isomorphic to
the real hyperbolic space.

We prove that for all the spaces X we consider, the resolvent of the Laplacian
of X can be lifted to a meromorphic function on a Riemann surface which is a
branched covering of C. Its poles, that is the resonances of the Laplacian, are
explicitly located on this Riemann surface. If z0 is a resonance of the Laplacian,
then the (resolvent) residue operator at z0 is the linear operator

Resz0R̃ : C∞
c (X)→ C∞(X) (1)

defined by(
Resz0R̃f

)
(y) = Resz=z0 [R(z)f ](y) (f ∈ C∞

c (X), y ∈ X) . (2)

Since the meromorphic extension takes place on a Riemann surface, the right-
hand side of (2) is computed with respect to some coordinate charts and hence

determined up to constant multiples. However, the image Resz0R̃
(
C∞

c (X)
)
is a

well-defined subspace of C∞(X). Its dimension is the rank of the residue operator

at z0. We prove that Resz0R̃ acts on C∞
c (X) as a convolution by a finite linear

combination of spherical functions of X and is of finite rank. More precisely, write
X = G/K for a connected noncompact real semisimple Lie group with finite cen-

ter G with maximal compact subgroup K. Then the space Resz0R̃
(
C∞

c (X)
)
is a

G-module which is a finite direct sum of finite-dimensional irreducible spherical
representations of G. The trivial representation of G occurs for the residue op-
erator at the first singularity, associated with the bottom of the spectrum of the
Laplacian.
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2. Preliminaries

2.1. General notation

We use the standard notation Z, R, R+, C and C× for the integers, the reals,
the positive reals, the complex numbers and the non-zero complex numbers, re-
spectively. For a ∈ Z, the symbol Z≥a denotes the set of integers ≥ a. We write
[[a, b]] = [a, b]∩Z for the discrete interval of integers in [a, b]. The interior of an in-
terval I ⊆ R (with respect to the usual topology on the real line) will be indicated
by I◦. The upper half-plane in C is C+ = {z ∈ C : �z > 0}; the lower half-plane
−C+ is denoted C−. If X is a manifold, then C∞(X) and C∞

c (X) respectively de-
note the space of smooth functions and the space of smooth compactly supported
functions on X.

2.2. Noncompact irreducible Riemannian symmetric spaces of type BC2 or C2

Let X = G/K be an irreducible Riemannian symmetric space of the noncompact
type and (real) rank 2. Hence G is a connected noncompact semisimple real Lie
group with finite center and K is a maximal compact subgroup of G. We can
suppose that G is simple and admits a faithful linear representation. Let g and k
be respectively the Lie algebras of G and K, and let g = k⊕p be the corresponding
Cartan decomposition. Let us fix a maximal abelian subspace a of p. The (real)
rank 2 condition means that a is a 2-dimensional real vector space. We denote by
a∗ the dual space of a and by a∗

C
the complexification of a∗. The Killing form of g

restricts to an inner product on a. We extend it to a∗ by duality. The C-bilinear
extension of 〈·, ·〉 to a∗

C
will be indicated by the same symbol.

Let Σ be the root systems of (g, a). In the following, we suppose that Σ is
either of type BC2 or of type C2 = B2. The set Σ+ of positive restricted roots is
the form Σ+ = Σ+

l  Σ+
m  Σ+

s , where

Σ+
l = {β1, β2} , Σ+

m =

{
β2 ± β1

2

}
, Σ+

s =

{
β1

2
,
β2

2

}
with Σ+

s = ∅ in the case C2 = B2. The two elements of Σ+
l form an orthogonal

basis of a∗ and have same norm b. The elements of Σ+
m and Σ+

s have therefore norm√
2
2 b and b

2 , respectively. We define a∗+ = {λ ∈ a∗ : 〈λ, β〉 > 0 for all β ∈ Σ+}.
The system of positive unmultipliable roots is Σ+

∗ = Σ+
l  Σ+

m. The set Σ∗
of unmultipliable roots is a root system. A basis of positive simple roots for Σ∗ is{
β1 ,

β2−β1

2 }.
The Weyl group W of Σ acts on the roots by permutations and sign changes.

For a ∈ {l,m, s} set Σa = Σ+
a  (−Σ+

a ). Then each Σa is a Weyl group orbit in
Σ. The root multiplicities are therefore triples m = (ml,mm,ms) so that ma is
the (constant) value of m on Σa for a ∈ {l,m, s}. By classification, if X = G/K
is Hermitian, then ml = 1. We adopt the convention that ms = 0 means that
Σ+

s = ∅, i.e., Σ is of type C2. In this case, if X is Hermitian, then X is said to be
of tube type.



162 J. Hilgert, A. Pasquale and T. Przebinda

The half-sum of positive roots, counted with their multiplicities, is indicated
by ρ. Hence

2ρ =
∑

α∈Σ+

mαα =
(
ml +

ms

2

)
β1 +

(
ml +mm +

ms

2

)
β2 . (3)

Table 1 contains the rank-two irreducible Riemannian symmetric spaces
G/K with root systems of type BC2, their root systems, the multiplicities m =
(ml,mm,ms), and the value of ρ.

Type AIII BDI CII DIII EIII

G SU(p, 2) (p > 2) SO0(p, 2) (p > 2) Sp(p, 2) (p ≥ 2) SO∗(10) E6(−14)

K S(U(p) ×U(2)) SO(p)× SO(2) Sp(p)× Sp(2) U(5) Spin(10)×U(1)

Hermitian yes yes no yes yes

Σ BC2 C2
p = 2: C2

p > 2: BC2
BC2 BC2

m = (ml,mm,ms) (1, 2, 2(p − 2)) (1, p− 2, 0) (3, 4, 4(p − 2)) (1, 4, 4) (1, 6, 8)

2ρ (p− 1)β1 + (p + 1)β2 β1 + (p− 1)β2 5β1 + (5 + 2(p − 2))β2 3β1 + 7β2 5β1 + 8β2

Table 1. Rank-two irreducible symmetric spaces with root systems
BC2 or C2

Notice that we are using special low rank isomorphisms (see, e.g., [1, Ch. X,
§6, no. 4]), which allow us to omit some cases:

SU(2, 2)/S(U(2)×U(2)) ∼= SO0(4, 2)/(SO(4)× SO(2)) , (4)

Sp(2,R)/U(2) ∼= SO0(3, 2)/(SO(3)× SO(2)) , (5)

SO∗(8)/U(4) ∼= SO0(6, 2)/(SO(6)× SO(2)) . (6)

Observe also that SO0(2, 2)/(SO(2) × SO(2)) ∼= SL(2,R)× SL(2,R) is not in the
list because not irreducible.

Remark 1. Up to isomorphisms, there are four additional irreducible Riemannian
symmetric spaces of rank two:

1. SL(3,R)/SO(3) (type AI, with root system of type A2 and one root multi-
plicity m = 1; see [5]),

2. SU∗(6)/Sp(3) (type AII, with root system of type A2 and one even root
multiplicity m = 4; see [8]),

3. E6(−26)/F4 (type EIV, with root system of type A2 and one even root mul-
tiplicity m = 8; see [8]),

4. G2(−14)/(SU(2)× SU(2)) (type G, with root system of type G2 and one root
multiplicity m = 1).

2.3. The Plancherel density of G/K

For λ ∈ a∗
C
and β ∈ Σ we shall employ the notation

λβ =
〈λ, β〉
〈β, β〉 . (7)
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Observe that

λβ/2 = 2λβ , (8)

λ(β2±β1)/2 = 2
〈λ, β2〉 ± 〈λ, β1〉
〈β2, β2〉+ 〈β1, β1〉 = λβ2 ± λβ1 . (9)

For β ∈ Σ∗, we set

ρ̃β =
1

2

(
mβ +

mβ/2

2

)
, (10)

where mβ denotes the multiplicity of the root β, and

cβ(λ) =
2−2λβΓ(2λβ)

Γ
(
λβ +

mβ/2

4 + 1
2

)
Γ
(
λβ + ρ̃β

) . (11)

Observe that ρ̃β = ρβ = 〈ρ,β〉
〈β,β〉 if β is a simple root in Σ∗ (but not in general). In

particular, ρ̃β1 = ρβ1 .
Harish-Chandra’s c-function cHC (written in terms of unmultipliable instead

of indivisible roots) is defined by

cHC(λ) = c0
∏

β∈Σ+
∗

cβ(λ) , (12)

where c0 is a normalizing constants so that cHC(ρ) = 1.
In the following we always adopt the convention that empty products are

equal to 1. As a consequence of the properties of the gamma function, we have the
following explicit expression.

Lemma 1. The Plancherel density is given by the formula

[cHC(λ)cHC(−λ)]−1 = CΠ(λ)P (λ)Q(λ) , (13)

where

Π(λ) =
∏

β∈Σ+
∗

λβ , (14)

P (λ) =
∏

β∈Σ+
∗

( (mβ/2)/2−1∏
k=0

[
λβ −

(mβ/2

4 − 1
2

)
+ k

] 2ρ̃β−2∏
k=0

[λβ − (ρ̃β − 1) + k]
)
, (15)

Q(λ) =
∏

β∈Σ
+∗

mβ odd

cot(π(λβ − ρ̃β)) , (16)

and C is a constant. Consequently, the singularities of the Plancherel density
[cHC(λ)cHC(−λ)]−1 are at most simple poles located along the hyperplanes of the
equation

±λβ = ρ̃β + k

where β ∈ Σ+
∗ has odd multiplicity mβ, and k ∈ Z≥0.

Proof. The singularities of [cHC(λ)cHC(−λ)]−1 are those of cot(π(λβ−ρ̃β)), for β ∈
Σ+

∗ with mβ odd, which are not killed by zeros of the polynomial Π(λ)P (λ). �
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The following corollary will allow us to establish a region of holomorphic
extension of the resolvent.

Corollary 2. Set

L = min{ρ̃β|β| : β ∈ Σ+
∗ , mβ odd} . (17)

Then, for every fixed ω ∈ a∗ with |ω| = 1, the function

r �→ [cHC(rω)cHC(−rω)]−1

is holomorphic on C \ (]−∞,−L] ∪ [L,+∞[
)
.

The values of ρ̃β for the roots in Σ+∗ , as well as the value of L, are given in
Table 2. Recall that b = 〈β1, β1〉 = 〈β2, β2〉.

G SU(p, 2) (p > 2) SO0(p, 2) (p > 2) Sp(p, 2) (p ≥ 2) SO∗(10) E6(−14)

ρ̃βj =
1
2

(
ml +

ms

2

)
(p− 1)/2 1/2 p− 1/2 3/2 5/2

ρ̃(β2±β1)/2 = mm

2 1 (p− 2)/2 2 2 3

Σ+
∗,odd = {β ∈ Σ+∗ : mβ odd} {β1, β2} p even: {β1, β2}

p odd: {β1, β2,
β2±β1

2
} {β1, β2} {β1, β2} {β1, β2}

L = min{ρ̃β |β| : β ∈ Σ+
∗,odd}

√
p−1
2 b

p = 3:
√

2
4
b

p > 3: b
2

(
3
2 + 2(p− 2)

)
b 3

2b
5
2b

Table 2. The values of ρ̃β for β ∈ Σ+∗ and of L

A computation using the values in the tables together with [6, §2] yields the
following corollary.

Corollary 3. If G �= SO0(p, 2) with p odd, then {β ∈ Σ+∗ : mβ is odd} is equal to
{β1, β2}. Hence

[cHC(λ)cHC(−λ)]−1 = Π0(λ)P0(λ)[c
×
HC(λ)c

×
HC(−λ)]−1 , (18)

where

Π0(λ) = λ(β2−β1)/2λ(β2+β1)/2 = λ2
β2
− λ2

β1
, (19)

P0(λ) =
∏

β=(β2±β1)/2

2ρ̃β−2∏
k=0

[λβ − (ρ̃β − 1) + k] , (20)

and [c×HC(λ)c
×
HC(−λ)]−1 is the Plancherel density of the product X1 × X1 of two

isomorphic rank-one Riemannian symmetric spaces with root systems of type BC1

(or A1) and multiplicities (mβj ,mβj/2) = (ml,ms).
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If G = SO0(p, 2) with p ≥ 3 odd, then Σ+
∗ = Σ+ and

Π(λ) = λβ1λβ2(λ
2
β2
− λ2

β1
)

P (λ) =

p−2∏
k=0

(
λ(β2−β1)/2 −

(
p− 2

2
− 1

)
+ k

)(
λ(β2+β1)/2 −

(
p− 2

2
− 1

)
+ k

)

=

p−2∏
k=0

(
λβ2 − λβ1 −

(
p− 2

2
− 1

)
+ k

)(
λβ2 + λβ1 −

(
p− 2

2
− 1

)
+ k

)
Q(λ) = cot

(
π
(
λβ1 − 1

2

))
cot

(
π
(
λβ2 − 1

2

))
cot

(
π
(
λβ2 − λβ1 − p

2 + 1
))

× cot
(
π
(
λβ2 + λβ1 − p

2 + 1
))
.

2.4. The resolvent of Δ

Endow the Euclidean space a∗ with the Lebesgue measure normalized so that the
unit cube has volume 1. On the Furstenberg boundary B = K/M of X, where M
is the centralizer of a in K, we consider the K-invariant measure db normalized so
that the volume of B is equal to 1. Let X be equipped with its (suitably normal-
ized) natural G-invariant Riemannian measure and let Δ denote the corresponding
(positive) Laplacian. As in the cases treated in [5] and [6], it will be convenient
to identify a∗ with C as vector spaces over R. More precisely, we want to view
a∗1 and a∗2 as the real and the purely imaginary axes, respectively. To distinguish
the resulting complex structure in a∗ from the natural complex structure of a∗

C
,

we shall indicate the complex units in a∗ ≡ C and a∗
C
by i and i, respectively. So

a∗ ≡ C = R + iR, whereas a∗
C
= a∗ + ia∗. For r, s ∈ R and λ, ν ∈ a∗ we have

(r + is)(λ+ iν) = (rλ − sν) + i(rν + sλ) ∈ a∗
C
.

By the Plancherel Theorem [3, Ch. III, §1, no. 2], the Helgason–Fourier trans-
form F is a unitary equivalence of Δ acting on L2(X) with the multiplication
operator M on L2(a∗+ ×B, [cHC(iλ)cHC(−iλ)]−1 dλ db) given by

MF (λ, b) = Γ(Δ)(iλ)F (λ, b) = (〈ρ, ρ〉+ 〈λ, λ〉)F (λ, b) ((λ, b) ∈ a∗×B) . (21)

It follows, in particular, that the spectrum of Δ is the half-line [ρ2X,+∞[, where
ρ2X = 〈ρ, ρ〉. By the Paley–Wiener theorem for F , see, e.g., [3, Ch. III, §5], for every
u ∈ C \ [ρ2X,+∞[ the resolvent of Δ at u maps C∞

c (X) into C∞(X).
Recall that for sufficiently regular functions f1, f2 : X → C, the convolution

f1 × f2 is the function on X defined by (f1 × f2) ◦ π = (f1 ◦ π) ∗ (f2 ◦ π). Here
π : G→ X = G/K is the natural projection and ∗ denotes the convolution product
of functions on G.

The Plancherel formula yields the following explicit expression for the image
of f ∈ C∞

c (X) under the resolvent operator R(z) = (Δ− ρ2X − z2)−1 of the shifted
Laplacian Δ− ρ2X:

[R(z)f ](y) =
∫
a∗

1
〈λ,λ〉−z2 (f × ϕiλ)(y)

dλ
cHC(iλ)cHC(−iλ) , (z ∈ C+ , y ∈ X) . (22)

See [4, formula (14)]. Here and in the following, resolvent equalities as (22) are
given up to non-zero constant multiples.



166 J. Hilgert, A. Pasquale and T. Przebinda

3. Meromorphic extension in the case G �= SO0(2, p), p > 2 odd

3.1. The resolvent kernel in polar coordinates

We write a∗1 = Rβ1 and a∗2 = Rβ2, so that a∗ = a∗1 ⊕ a∗2 and λ = λ1 + λ2 =
x1β1 + x2β2 ∈ a∗. Introduce the coordinates

R2 � (x1, x2)→ x1β1 + x2β2 ∈ a∗1 ⊕ a∗2 = a∗. (23)

Hence xj = λβj if λ = x1β1 + x2β2.
In view of Table 2, the functions Π0 and P0 from (19) and (20) can be

rewritten in these coordinates, as

Π0(λ) = Π0(x1β1 + x2β2) = x2
2 − x2

1 , (24)

P0(λ) = P0(x1β1 + x2β2) =
∏

β=(β2±β1)/2

mm−2∏
k=0

[
λβ −

(mm

2
− 1

)
+ k

]

=

mm−1∏
k=1

[
(x2 + x1)− mm

2
+ k

] [
(x2 − x1)− mm

2
+ k

]
=

mm−1∏
k=1

[(
x2 − mm

2
+ k

)2

− x2
1

]
(25)

since

(βj)(β2±β1)/2 = (βj)β2 ± (βj)β1 =

{
±1 for j = 1,

1 for j = 2.

We write

ϑ0(x1, x2) = Π0(λ)P0(λ) = (x2
2 − x2

1)

mm−1∏
k=1

[(
x2 − mm

2
+ k

)2

− x2
1

]
. (26)

Further we write

[cX1

HC(iλ)c
X1

HC(−iλ)]−1 = C1Π1(iλ)P1(iλ)Q1(iλ) (27)

for the Plancherel density of the space X1 in Corollary 3, so that

[c×HC(iλ)c
×
HC(−iλ)]−1 = C2

1Π1(ix1)Π1(ix2)P1(ix1)P1(ix2)Q1(ix1)Q1(ix2). (28)

See [6, §1 and §2]. Using (18) and omitting non-zero constant multiples, we can
therefore rewrite (22) as

R(z)f(y) =

∫
a∗

1

〈λ, λ〉 − z2
(f × ϕiλ)(y)

1

cHC(iλ)cHC(−iλ) dλ

=

∫
R2

(f × ϕix1β1+ix2β2)(y)

x2
1b

2 + x2
2b

2 − z2
ϑ0(ix1, ix2)x1x2P1(ix1)P1(ix2)

×Q1(ix1)Q1(ix2) dx1 dx2 .

Introduce the polar coordinates

x1 =
r

b
cos θ, x2 =

r

b
sin θ (0 < r , 0 ≤ θ < 2π)
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on R2 and set
p1(x) = P1

(
ixb
)

and q1(x) = Q1

(
ixb
)
. (29)

In these terms (up to a non-zero constant multiple)

R(z)f(y) =

∫ ∞

0

1

r2 − z2
F (r) r dr,

where

F (r) =

∫ 2π

0

(f × ϕi rb cos θ β1+i rb sin θ β2)(y)ϑ0,pol(r, θ)r
2 cos θ sin θ

× p1(r cos θ)q1(r cos θ)p1(r sin θ)q1(r sin θ) dθ , (30)

where

ϑ0,pol(r, θ) = ϑ0(i x1, i x2) = −r2

b2
(sin2 θ − cos2 θ)

×
mm−1∏
k=1

[(r
b
i sin θ − mm

2
+ k

)2

+
r2

b2
cos2 θ

]
. (31)

Here and in the following, we omit from the notation the dependence of F on the
function f ∈ C∞

c (X) and on y ∈ X.
Recall the functions

c(w) =
w + w−1

2
, s(w) =

w − w−1

2
= ic(−iw) (w ∈ C×) (32)

from [6, (20)] and notice that

cos θ = c(eiθ) , sin θ =
s(eiθ)

i
= c(−ieiθ) , dθ =

deiθ

ieiθ
.

For z ∈ C and w ∈ C× define

ψz(w) = (f × ϕi zb c(w)β1+i zb c(−iw)β2
)(y) (33)

φz(w) = −z2c(w) s(w)
w

p1
(
zc(w)

)
q1
(
zc(w)

)
p1
(
zc(−iw))q1(zc(−iw)), (34)

as in [6, (32) and (33)] together with

ϑz(w) =
z2

b2
(
c(w)2 − c(−iw)2)mm−1∏

k=1

[(z
b
s(w) − mm

2
+ k

)2

+
z2

b2
c(w)2

]
, (35)

which is a polynomial function of z. Then

F (r) =

∫
|w|=1

ϑr(w)ψr(w)φr(w) dw . (36)

Lemma 4. Let z ∈ C and w ∈ C×. Then:
ψ−z(w) = ψz(w), ψz(−w) = ψz(w), ψz(iw) = ψz(w),

φ−z(w) = φz(w), φz(−w) = −φz(w), φz(iw) = −iφz(w),

ϑ−z(w) = ϑz(w), ϑz(−w) = ϑz(w), ϑz(iw) = ϑz(w).
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Proof. Set μ(z, w) = i zb c(w)β1+i zb c(−iw)β2, so that ψz(w) = f×ϕμ(z,w)(y). Then
μ(−z, w), μ(z,−w) and μ(z, iw) are transformed into μ(z, w) by sign changes and
transposition of β1 and of β2. The equalities for ψz(w) then follow because the
spherical function ϕλ is W -invariant in the parameter λ.

The equalities for φz(w) are an immediate consequence of (32) and the fact
that the functions c, s and p1q1 are odd.

To prove the relations for ϑz(w), notice that −mm

2 + k = mm

2 − h where
h = mm − k ∈ {1, . . . ,mm − 1} when k ∈ {1, . . . ,mm − 1}. Hence∏mm−1

k=1

[(− z
b
s(w) − mm

2 + k
)2

+ z2

b2
c(w)2

]
=

∏mm−1
h=1

[(
z
b
s(w)− mm

2 + h
)2

+ z2

b2
c(w)2

]
.

This proves the first two equalities for ϑz(w) since s(−w) = −s(w). For the last
equality, notice that(z

b
s(iw)− mm

2
+ k

)2

+
z2

b2
c(iw)2

=
[z
b
ic(w)− mm

2
+ k + i

z

b
is(w)

] [z
b
ic(w) − mm

2
+ k − i

z

b
is(w)

]
=

[
−z

b
s(w)− mm

2
+ k + i

z

b
c(w)

] [z
b
s(w)− mm

2
+ k − i

z

b
c(w)

]
.

Hence, since mm is even,

mm−1∏
k=1

[ (z
b
s(iw) − mm

2
+ k

)2

+
z2

b2
c(iw)2

]
=

mm−1∏
k=1

[z
b
s(w)− mm

2
+ k + i

z

b
c(w)

]
· (−1)mm−1

×
mm−1∏
h=1

[z
b
s(w)− mm

2
+ h− i

z

b
c(w)

]
= −

mm−1∏
k=1

[ (z
b
s(w)− mm

2
+ k

)2

+
z2

b2
c(w)2

]
.

This proves the claim because c(w)2 − c(−iw)2 changes sign under the transfor-
mation w → iw. �

Thus [6, Lemma 3] generalizes as follows.

Lemma 5. The function F (r), (36), extends holomorphically to

F (z) =

∫
|w|=1

ϑz(w)ψz(w)φz(w) dw , (37)

where

z ∈ C \ i((−∞,−L] ∪ [L,+∞))

and L is the constant defined in (17). The function F (z) is even and F (z)z−2 is
bounded near z = 0.
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The following proposition, giving an initial holomorphic extension of the re-
solvent across the spectrum of the Laplacian, has been independently proven by
Mazzeo and Vasy [7, Theorem 1.3] and by Strohmaier [8, Proposition 4.3] for
general Riemannian symmetric spaces of the noncompact type and even rank. It
shows that all possible resonances of the resolvent are located along the half-line
i(−∞,−L]. According to our conventions, we will omit f and y from the notation
and write R(z) instead of [R(z)f ](y).

Proposition 6. The resolvent R(z) = [R(z)f ](y) extends holomorphically from C \(
(−∞, 0]∪ i(−∞,−L]) to a logarithmic Riemann surface branched along (−∞, 0],

with the preimages of i
(
(−∞,−L]∪[L,+∞)

)
removed and, in terms of monodromy,

it satisfies the following equation

R(ze2iπ) = R(z) + 2iπ F (z) (z ∈ C \ ((−∞, 0] ∪ i(−∞,−L] ∪ i[L,+∞)
)
).

The starting point for studying the meromorphic extension of R across
i(−∞,−L] is the Proposition 7 below. It says that this meromorphic extension
is equivalent to that of function F . This proposition is analogous to [6, Proposi-
tion 4] and its proof is omitted.

Proposition 7. Fix x0 > 0 and y0 > 0. Let

Q = {z ∈ C;"z > x0, y0 > �z ≥ 0}
U = Q ∪ {z ∈ C;�z < 0}.

Then there is a holomorphic function H : U → C (depending on f ∈ C∞
c (X) and

y ∈ X, which are omitted from the notation) such that

R(z) = H(z) + πi F (z) (z ∈ Q). (38)

As a consequence, the resolvent R(z) = [R(z)f ](y) extends holomorphically from
C+ to C \ ((−∞, 0] ∪ i(−∞,−L]).
3.2. Meromorphic extension and residue computations

This section is devoted to the meromorphic extension of the function F (and hence
of the resolvent) across the half-line i(−∞,−L]. We set

ψϑ
z (w) = ϑz(w)ψz(w) (39)

and follow the stepwise extension procedure for F from [6, §2 and §3] with ψz(w)
replaced by ψϑ

z (w). Some formulas are simplified by the fact that we are only
dealing with the special case of X1 = X2 with β1 and β2 of equal norms b1 = b2 = b
and equal odd multiplicities mβ1 = mβ2 . Notice also that in this paper, studying
the singularities of the Plancherel density, we are replacing the elements ρβ1 and
ρβ2 used in [6] with ρ̃β1 and ρ̃β2 , which are equal and have value 1

2

(
ml +

ms

2

)
.

Indeed, in the case of direct product of rank one symmetric spaces treated in [6],
there was no need of introducing multiple notation by distinguishing between ρβ
and ρ̃β for β ∈ Σ∗. The distinction is now necessary since ρβ1 = ρ̃β1 = ρ̃β2 �= ρβ2 .
Furthermore, we omit the index j from the notation used in [6] when it only refers
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to which of the two factors one considers. So, for instance [6, (38)] yields, for the
set of singularities of the product p1q1 from (29), the set

S = S+ ∪ (−S+) , (40)

where

S+ = ib(ρ̃β1 + Z≥0) = ib
(1
2

(
ml +

ms

2

)
+ Z≥0

)
. (41)

For r > 0 and c, d ∈ R \ {0} recall the sets

Dr = {z ∈ C; |z| < r} ,

Ec,d =

{
ξ + iη ∈ C;

(
ξ
c

)2

+
(
η
d

)2
< 1

}
,

and the role they play in [6, §1.4] for the functions s and c introduced in (32).
Then [6, Prop. 6] translates in the following proposition.

Proposition 8. Suppose z ∈ C \ i((−∞,−L] ∪ [L,∞)) and r > 0 are such that

S ∩ z∂Ec(r),s(r) = ∅. (42)

Then

F (z) = Fr(z) + 2πi Fr,res(z), (43)

where

Fr(z) =

∫
∂Dr

ψϑ
z (w)φz(w) dw,

Fr,res(z) =
∑
w0

′
ψϑ
z (w0) Res

w=w0

φz(w),

and
∑′

w0
denotes the sum over all the w0 such that

zc(w0) ∈ S ∩ z(Ec(r),s(r) \ [−1, 1]) (44)

or

zc(−iw0) ∈ S ∩ z(Ec(r),s(r) \ [−1, 1]). (45)

Both Fr and Fr,res are holomorphic functions on the open subset of C\i((−∞,−L]∪
[L,∞)) where the condition (42) holds. Furthermore, Fr extends to a holomorphic
function on the open subset of C where the condition (42) holds.

To make the function Fr,res(z) explicit, we proceed as in [6, §3.1]. The present
situation is in fact simpler, because only the case L1,� = L2,� occurs. We denote
this common value by L�, i.e., we define for � ∈ Z≥0

L� = b(ρ̃β1 + �) = b
(
ml

2 + ms

4 + �
)
. (46)

So S+ = {iL�; � ∈ Z≥0}.
If 0 �= z ∈ C \ i((−∞,−L�] ∪ [L�,+∞)

)
, then iL�

z ∈ C \ [−1, 1] and we can

uniquely define w±
1 ∈ D1 \ {0} satisfying

zc(w±
1 ) = ±iL� . (47)
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Since c(−w) = −c(w), we obtain that w−
1 = −w+

1 . Moreover, w1 satisfies (44) if
and only if w2 = iw1 satisfies (45) because z(Ec(r),s(r) \ [−1, 1]) is symmetric with
respect to the origin 0 ∈ C. Hence

Fr,res(z) =
∑
w+

1

′[
ψϑ
z (w

+
1 ) Res

w=w+
1

φz(w) + ψϑ
z (w

−
1 ) Res

w=w−
1

φz(w)

+ ψϑ
z (iw

+
1 ) Res

w=iw+
1

φz(w) + ψϑ
z (iw

−
1 ) Res

w=iw−
1

φz(w)
]
, (48)

where
∑′

w+
1
denotes the sum over all the w+

1 such that zc(w+
1 ) ∈ S+∩z(Ec(r),s(r) \

[−1, 1]) and w−
1 = −w+

1 .
Then, using Lemma 4, we obtain the following analogue of [6, Lemma 9].

Lemma 9. For � ∈ Z≥0 and 0 �= z ∈ C\i((−∞,−L�]∪[L�,+∞)
)
, let w±

1 be defined
by (47). Then

ψϑ
z (w

+
1 ) = ψϑ

z (w
−
1 ) = ψϑ

z (iw
+
1 ) = ψϑ

z (iw
−
1 ) , (49)

Res
w=w+

1

φz(w) = Res
w=w−

1

φz(w) = Res
w=iw+

1

φz(w) = Res
w=−iw−

1

φz(w) . (50)

(51)

Explicitly,

ψϑ
z (w

+
1 ) = ψϑ

z

(
c−1

(
iL�

z

))
,

Res
w=w+

1

φz(w) = −C� p1

(
iz(s ◦ c−1)

(
iL�

z

))
q1

(
iz(s ◦ c−1)

(
iL�

z

))
,

where

C� =
b

π
L� p1(iL�) �= 0 . (52)

Corollary 10. Let � ∈ Z≥0 and 0 �= z ∈ C \ i((−∞,−L�] ∪ [L�,+∞)
)
. Set

G�(z) = −C�ψ
ϑ
z

(
c−1

(
iL�

z

))
p1

(
iz(s ◦ c−1)

(
iL�

z

))
q1

(
iz(s ◦ c−1)

(
iL�

z

))
, (53)

Sr,z,+ = {� ∈ Z≥0 : iL� ∈ z
(
Ec(r),s(r) \ [−1, 1]

)} . (54)

Then the function Fr,res(z) on the right-hand side of (43) is given by

Fr,res(z) = 4
∑

�∈Sr,z,+

G�(z) . (55)

The following proposition is analogous to [6, Proposition 10].

Proposition 11. For 0 < r < 1 and 0 �= z ∈ C \ i((−∞,−L] ∪ [L,+∞)), let Sr,z,+
be as in (54). Moreover, let W ⊆ C be a connected open set such that

S ∩W∂Ec(r),s(r) = ∅ (56)

and set
Sr,W,+ = {� ∈ Z≥0 : iL� ∈WEc(r),s(r)} (z ∈W \ iR) . (57)

Then Sr,z,+ = Sr,W,+. In particular, Sr,z,+ does not depend on z ∈W \ iR.
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Proceeding now as in [6, Corollaries 11, 13 and Lemma 12], we obtain the
following result for points on iR.

Corollary 12. For every iv ∈ iR and for every r with 0 < r < 1 and vc(r) /∈ iS
there is a connected open neighborhood Wv of iv in C satisfying the following
conditions.

1. S ∩Wv∂Ec(r),s(r) = ∅.
2. Sr,Wv ,+ = {� ∈ Z≥0 : iL� ∈ ivEc(r),s(r)} = [[0, Nv]] for some Nv ∈ Z≥0.
3. For n ∈ Z≥0, set

In = bρ̃β1 + b[n, n+ 1) = [Ln, Ln+1) . (58)

If v ∈ In then Nv = n. Hence

Fr,res(z) = 4

n∑
�=1

G�(z) (z ∈ Wv \ iR) . (59)

We recall the relevant Riemann surfaces from [6, (76)]. Fix � ∈ Z≥0. Then

M� =
{
(z, ζ) ∈ C× × (C \ {i,−i}) : ζ2 =

( iL�

z

)2

− 1
}

(60)

is a Riemann surface above C×, with projection map π� : M� � (z, ζ) → z ∈ C× .
The fiber of π� above z ∈ C× is {(z, ζ), (z,−ζ)}. In particular, the restriction of
π� to M� \ {(±iL�, 0)} is a double cover of C× \ {±iL�}.

Now [6, Lemma 15] has the following analogue. The difference is that we
have replaced ψz(w) by ψϑ

z (w). So we have to look for possible cancellations of
singularities arising from the additional polynomial factor ϑz.

Lemma 13. In the above notation,

G̃� : M� � (z, ζ)→ b

π
L� p1(iL�)ψ

ϑ
z

(
iL�

z
− ζ

)
p1(izζ)q1(izζ) ∈ C (61)

is the meromorphic extension to M� of a lift of G�.

The function G̃� has simple poles at all points (z, ζ) ∈ M� such that

z = ±i
√
L2
� + L2

m, (62)

where m ∈ Z≥0 \
[[
�− (

mm

2 − 1
)
, �+

(
mm

2 − 1
)]]
.

Proof. Formula (61) is obtained using the lifts of c−1 and s◦c−1, as in [6, Lemma 15].

The poles of G̃� are the points (z, ζ) ∈ M� for which the function ϑz

(
iL�

z −
ζ
)
p1(izζ)q1(izζ) is singular, i.e., the points for which p1(izζ)q1(izζ) is singular and

ϑz

(
iL�

z − ζ
) �= 0. By construction, p1(izζ)q1(izζ) is singular if and only if izζ ∈ S,

see (40). In this case, there exist ε ∈ {±1} and m ∈ Z so that ζ = εLm

z . Hence

ζ2 =
L2

m

z2 . Since (z, ζ) ∈M�, we also have ζ2 = −L2
�

z2 − 1. Thus z = ±i√L2
� + L2

m.
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We now compute ϑz

(
iL�

z − ζ
)
for such (z, ζ). Set

w =
iL�

z
− ζ =

iL�

z
− εLm

z
=

iL� − εLm

±i√L2
� + L2

m

.

Then

w−1 =
±i√L2

� + L2
m

iL� − εLm
=

iL� + εLm

±i√L2
� + L2

m

.

So,

c(w) =
w + w−1

2
=

L�

±√L2
� + L2

m

,

c(−iw) = w − w−1

2i
=

εLm

±√L2
� + L2

m

.

Hence

zc(w) = iL� , zc(−iw) = iεLm , zs(w) = −εLm .

Substituting in (35), we obtain

ϑz(w) =

(
L2
m − L2

�

)
b2

mm−1∏
k=1

[(−εLm

b
− mm

2
+ k

)2

− L2
�

b2

]
. (63)

The same argument used in the proof of Lemma 4 shows that the right-hand side
of this equation is independent of ε ∈ {±1}. Using (46), we therefore obtain

ϑz(w) =
(
(ρ̃β1 +m)2 − (ρ̃β1 + �)2

)mm−1∏
k=1

[(
ρ̃β1 +m− mm

2
+ k

)2 − (ρ̃β1 + �)2
]

= (m− �)(m+ �+ 2ρ̃β2)

mm−1∏
k=1

(
m− �− mm

2
+ k

)(
m+ �+ 2ρ̃β1 −

mm

2
+ k

)

= (m− �)(m+ �+ 2ρ̃β2)

mm
2 −1∏

h=−(mm
2 −1)

(
m− �+ h

)(
m+ �+ 2ρ̃β1 + h

)
.

The values of m ∈ Z≥0 making this polynomial vanish are:

m = � , (64)

m ∈ Z≥0 ∩
[[
�− (

mm

2 − 1
)
, �+

(
mm

2 − 1
)]]

, (65)

m ∈ Z≥0 ∩
[[− �− 2ρ̃β1 −

(
mm

2 − 1
)
,−�− 2ρ̃β1 +

(
mm

2 − 1
)]]

. (66)

Observe that −�− 2ρ̃β1 +
(
mm

2 − 1
) ≥ 0 if and only if (0 ≤)� ≤ −2ρ̃β1 +

(
mm

2 − 1
)
.

Looking at the first two rows of Table 2, we see that this can happen if and only
if G = SO0(p, 2) with even p ≥ 6. In this case,[[

�− (
mm
2

− 1
)
, �+

(
mm
2

− 1
)]]

=
[[
�+ 2− p

2
, �− 2 + p

2

]]
[[ − �− 2ρ̃β1 − (

mm
2

− 1
)
,−�− 2ρ̃β1 +

(
mm
2

− 1
)]]

=
[[− �+ 1− p

2
,−�− 3 + p

2

]]
.
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Hence
Z≥0 ∩

[[− �+ 1− p
2 ,−�− 3 + p

2

]]
=

[[
0,−�− 3 + p

2

]]
does not add zeros to those in (65). In fact, −� − 3 + p

2 ≤ � − 2 + p
2 and, if

−�− 3 + p
2 ≥ 0, i.e., � ≤ p

2 − 3, then �+ 2− p
2 ≤ 0. �

For �,m ∈ Z≥0, set

z�,m = i
√
L2
� + L2

m (67)

and

ζ�,m = i

√
L2
m

L2
� + L2

m

. (68)

Let ε ∈ {±1}. Then all points (±z�,m, εζ�,m) are in M�. Open neighborhoods in
M� of these points are the sets

U�,± = {(z, ζ) ∈M� ; ±�z > 0} , (69)

and local charts on them are

κ�,± : U�,± � (z, ζ)→ ζ ∈ C \ i((−∞,−1] ∪ [1,+∞)
)
, (70)

inverted by setting z = ±i L�√
ζ2+1

.

Lemma 14. The local expressions for G̃� in terms of the charts (70) are(
G̃� ◦ κ−1

�,±
)
(ζ) = ± b

π
L� p1(iL�)p2

(
L�ζ√
ζ2+1

)
q1

(
L�ζ√
ζ2+1

)
ψϑ

i
L�√
ζ2+1

(√
ζ2 + 1∓ ζ

)
.

(71)
Suppose m ∈ Z≥0 \

[[
� − (

mm

2 − 1
)
, � +

(
mm

2 − 1
)]]
. Then the residue of the local

expression of G̃� at a point (z, ζ) ∈M� with z = ±z�,m is

Res
ζ=±ζ�,m

(G̃� ◦ κ−1
�,±)(ζ) = ± 1

iπ2
C�,m(f × ϕL�β1+Lmβ2

b

)(y) . (72)

In (72),

C�,m = bL� p1(iL�)p2(iLm)ϑ0

(L�

b
,
Lm

b

)
, (73)

where ϑ0 is as in (26), is a positive constant.

Proof. The computation of the residues is as in [6, Lemma 16]. The constant
ϑ0

(
L�

b , Lm

b

)
agrees with (63) with (z, ζ) = (z�,m, εζ�,m), and we only need to prove

that it is positive. Recall that (63) is independent of ε. Hence

ϑ0

(L�

b
,
Lm

b

)
=

(
L2
m − L2

�

)
b2

×
mm−1∏
k=1

(Lm

b
−
(mm

2
− k

)
− L�

b

)(Lm

b
−
(mm

2
− k

)
+

L�

b

)
. (74)

If m > � + (mm

2 − 1
) ≥ �, then all factors appearing in the above product are

positive. If m < � − (mm

2 − 1
) ≤ �, then all factors Lm

b − (
mm

2 − k
)
+ L�

b are
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positive, whereas L2
m−L2

� as well as the mm − 1 factors Lm

b − (
mm

2 − k
)− L�

b are

negative. Since mm is even, we conclude that ϑ0

(
L�

b , Lm

b

)
> 0 in all cases. �

A different parametrization of the singularities of G̃� will turn out to be more
convenient. Observe first that, by (3) and (10),

ρ̃β1 = ρβ1 = ρβ2 −
mm

2
.

We will use the following notation for (�1, �2) ∈ Z2
≥0:

λ(�1, �2) = (ρβ1 + �1)β1 + (ρβ2 + �2)β2 =
1

b

(
L�1β1 + L�2+

mm
2
β2

)
. (75)

Corollary 15. Keep the notation of Lemma 14. If � ∈ [[0, mm

2 − 1]], then G̃� has
simple poles at the points (z, ζ) ∈ M� with z = ±i|z| and

b−2|z|2 = (ρβ1 + �)2 + (ρβ2 + �+ k)2 (k ∈ Z≥0) . (76)

If � ∈ mm

2 +Z≥0, then G̃� has simple poles at the points (z, ζ) ∈ M� with z = ±i|z|
and satisfying either (76) or

b−2|z|2 = (ρβ1 +m)2 + (ρβ2 + �0)
2 (m ∈ [[0, �0]]) , (77)

where �0 = �− mm

2 .

The residue of the local expression of G̃� at a point (z, ζ) ∈M� with z = ±i|z|
satisfying (76) is

Res
ζ=±ζ�,�+mm

2
+k

(G̃� ◦ κ−1
�,±)(ζ) = ± 1

iπ2
C�,�+mm

2 +k

(
f × ϕλ(�,�+k)

)
(y) . (78)

The residue of the local expression of G̃� at a point (z, ζ) ∈ M� with z = ±i|z|
satisfying (77) is

Res
ζ=±ζ�,m

(G̃� ◦ κ−1
�,±)(ζ) = ± 1

iπ2
C�,m

(
f × ϕλ(m,�0)

)
(y) . (79)

Proof. We have � ∈ [[0, mm

2 − 1]] if and only if 0 ∈ [[�− (
mm

2 − 1
)
, �+

(
mm

2 − 1
)
]]. In

this case, m ∈ Z≥0 \ [[�−
(
mm

2 − 1
)
, �+

(
mm

2 − 1
)
]] = �+ mm

2 + Z≥0 is of the form

m = �+ mm

2 + k with k ∈ Z≥0. Hence
L�

b = ρβ1 + � and Lm

b = ρ̃β1 +
mm

2 + �+ k =
ρβ2 + �+ k.

On the other hand, if � ∈ mm

2 +Z≥0 andm ∈ Z≥0\[[�−
(
mm

2 −1
)
, �+

(
mm

2 −1
)
]],

then either m ∈ �+ mm

2 +Z≥0 (and the above applies), or m ∈ [[0, �0]]. In the latter

case, L�

b = ρ̃β1 + mm

2 + �0 = ρβ2 + �0 and Lm

b = ρβ1 + m. Observe also that
ϕλ(�0,m) = ϕλ(m,�0) by W -invariance. �

We now proceed with the piecewise extension of F along the negative imag-
inary half-line −i[L,+∞). Recall from Corollary 12 that for v ∈ In = [Ln, Ln+1)
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ρβ1 ρβ1+ �

ρβ2

ρβ2 + �

ρβ1+
mm
2 − 1 ρβ1 ρβ1+ �0 ρβ1+

mm
2 ρβ1+ �

ρβ2

ρβ2+ �0

ρβ2+ �

Figure 1. On the left: λ(�, �+k) for � ∈ [[0, mm

2 ]]. On the right: λ(�, �+k)
and λ(m, �0) for � ≥ mm

2

with n ∈ Z≥0 there exists 0 < rv < 1 and an open neighborhood Wv of −iv in C
such that

F (z) = Frv (z) + 4

n∑
�=0

G�(z) (z ∈Wv \ iR) , (80)

where the function Frv is holomorphic in Wv. This equality extends then to I−1 =
(0, L) by allowing empty sums. By possibly shrinking Wv, we may also assume
that Wv is an open disk around −iv such that

Wv ∩ iR ⊆
{
−iIn for v ∈ I◦n,
−i(In − b

2 ) for v = Ln .

In addition, for 0 < v < L we define Wv to be an open ball around −iv in C such
that Wv ∩ iR ⊂ (0, L). If v ∈ In, v

′ ≥ L and Wv ∩Wv′ �= ∅, then we obtain for
z ∈ Wv ∩Wv′

Frv′ (z) = Frv (z) +

{
0 if v′ ∈ In,

4Gn(z) if v′ ∈ In−1.

Now we set

W(−1) =
⋃

v∈I−1

Wv and W(n) =
⋃
v∈In

Wv (n ∈ Z≥0) .

For n ∈ Z≥1 we define a holomorphic function F(n) : W(n) → C by

F(n)(z) =

{
Frv (z) if n ∈ Z≥0, v ∈ In and z ∈ Wv

F (z) if n = −1 and z ∈W(−1) .
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We therefore obtain the following analogue of [6, Proposition 18].

Proposition 16. For every integer n ∈ Z≥−1 we have

F (z) = F(n)(z) + 4

n∑
�=0

G�(z) (z ∈ W(n) \ iR) , (81)

where F(n) is holomorphic in W(n), the G� are as in (53), and empty sums are
defined to be equal to 0.

We can continue F across −i(0,+∞) inductively, as in the case of the di-
rect product of two rank one symmetric spaces in [6]. Our specific case X1 = X2

is slightly easier, as for instance one gets just one regularly spaced sequence of
branching points L�. Since the procedure does not involve new steps, we will limit
ourself to overview the different parts and state the final result, referring the reader
to [6] for the details.

For a fixed positive integer N , we construct a Riemann surface M(N) by
“pasting together” the Riemann surfaces M� to which all functions G�, with � =
0, 1, . . . , N , admit meromorphic extension. Namely, we set

M(N) =
{
(z, ζ) ∈ C− × CN+1; ζ = (ζ0, . . . , ζN ), (z, ζ�) ∈M�, � ∈ Z≥0, 0 ≤ � ≤ N

}
. (82)

Then M(N) is a Riemann surface, and the map

π(N) : M(N) � (z, ζ)→ z ∈ C− (83)

is a holomorphic 2N+1-to-1 cover, except when z = −iL� for some � ∈ Z≥0 with
0 ≤ � ≤ N . The fiber above each of these elements −iL� consists of 2

N branching
points of M(N). A choice of square root function ζ+� (z), see [6, (81)], for every
coordinate function ζ� on M(N) yields a section

σ+
(N) : z → (z, ζ+0 (z), . . . , ζ+N (z))

of the projection π(N). All possible sections of π(N) are obtained by choosing a

sign ±ζ+� for each coordinate function. We obtain in this way a parametrization
of all sections of π(N) by means of elements ε = (ε0, . . . , εN ) ∈ {±1}N+1.

For 0 ≤ � ≤ N consider the holomorphic projection

π(N,�) : M(N) � (z, ζ)→ (z, ζ�) ∈M�. (84)

Then the meromorphic function

G̃(N,�) = G̃� ◦ π(N,�) : M(N) → C (85)

is holomorphic on (π(N))
−1

(C− \ iR). Moreover, on C− \ iR,
G̃(N,�) ◦ σ+

(N) = G� .

So, G̃(N,�) is the meromorphic extension of a lift of G� to M(N). Using the right-
hand side of (81) with F(n) constant on the z-fibers, we obtain a lift of F to

π−1
(N)(W(n) \ iR).
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The next step is to “glue together” all these local meromorphic extensions of
F , moving from branching point to branching point, to get a meromorphic exten-
sion of F along the branched curve γN in M(N) covering the interval −i(0, LN+1).
Define, as in [6, section 4.3], the open sets Un,ε, Uε(n∨) (with n ∈ Z≥0, ε ∈
{±1}N+1) and the open neighborhood MγN of γN in M(N). Every open set Uε(n∨)∪
Un,ε is a homeomorphic lift to M(N) of the neighborhood W(n) of −[Ln, Ln+1).
Then we have the following analogue of [6, Theorem 19].

Theorem 17. For n ∈ {−1, 0, . . . , N}, ε ∈ {±1}N+1 and (z, ζ) ∈ Uε(n∨) ∪ Un,ε

define

F̃ (z, ζ) = F(n)(z) + 4

n∑
�=0

G̃(N,�)(z, ζ)

+ 4
∑

n<�≤N

with ε� = −1

[
G̃(N,�)(z, ζ)− G̃(N,�)(z,−ζ)

]
, (86)

where the first sum is equal to 0 if � = −1 and the second sum is 0 if ε� = 1

for all � > n. Then F̃ is the meromorphic extension of a lift of F to the open
neighborhood MγN of the branched curve γN lifting −i(0, LN+1) in M(N).

Order the singularities according to their distance from the origin 0 ∈ C, and
let {z(h)}h∈Z≥0

be the resulting ordered sequence. For a fixed h ∈ Z≥0 set

Sh = {� ∈ Z≥0; ∃k ∈ Z≥0 so that b−2|z(h)|2 = (ρβ1 + �)2 + (ρβ2 + �+ k)2} . (87)

Notice that if � ∈ Sh, then the corresponding element k is uniquely determined. Let
N ∈ Z≥0 be such that |z(h)| < LN+1 and n ∈ [[0, N ]] such that |z(h)| ∈ [Ln, Ln+1).

Then the possible singularities of F̃ at points of M(N) above z(h) are those of

n∑
�=0

G̃(N,�)(z, ζ) =

n∑
�=0

G̃�(z, ζ�) .

Indeed, the singularities of G̃(N,�)(z, ζ) = G̃�(z, ζ�) occur at points (z, ζ) ∈ M(N)

with |z|2 = L2
� + L2

m > L2
� . Hence the second sum on the right-hand side of (86)

is holomorphic on Uε(n∨) ∪ Un,ε.

The singular points of F̃ above z(h) are parametrized by ε ∈ {±1}N+1. We

denote by (z(h), ζ
(h,ε)) the one in Uε(n∨) ∪ Un,ε. The local expression of F̃ on

Uε(n∨)∪Un,ε is computed in terms of the chart κn,ε defined for (z, ζ) ∈ Uε(n∨)∪Un,ε

by κn,ε(z, ζ) = ζn.

Suppose G̃(N,�)(z, ζ) is singular at (z(h), ζ
(h,ε)). Then, by [6, Proposition 21],

Res
ζn=ζ

(h,ε)
n

(
G̃(N,�) ◦ κ−1

n,ε

)
(ζn) = ε�εn

L2
n

L2
�

√
|z(h)|2 − L2

�√|z(k)|2 − L2
n

Res
ζ�=ζ

(h,ε)
�

(
G̃� ◦ κ−1

�,−
)
(ζ�) .

(88)
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If � satisfies (76) with z = z(h) for some k ∈ Z≥0, then |z(h)|2 − L2
� = b2(ρβ2 + �+

k)2 = L2
�+mm

2 +k . If � ≥ mm

2 satisfies (77) with z = z(h) for some m ∈ [[0, �0]] and

�0 = �− mm

2 , then |z(h)|2 − L2
� = b2(ρβ1 +m) = L2

m .

In the first case, by (78), the right-hand side of (88) is equal to

εnL
2
n√|z(h)|2 − L2

n

L�+mm
2 +k

L2
�

Res
ζ�=−ζ�,�+mm

2
+k

(
G̃� ◦ κ−1

�,−
)
(ζ�)

=
i

π2

εnL
2
n√|z(h)|2 − L2

n

L�+mm
2 +k

L2
�

C�,�+mm
2 +k

(
f × ϕλ(�,�+k)

)
(y) .

In the second case, by (79), the right-hand side of (88) is equal to

εnL
2
n√|z(h)|2 − L2

n

Lm

L2
�

Res
ζ�=−ζ�,m

(
G̃� ◦ κ−1

�,−
)
(ζ�)

=
i

π2

εnL
2
n√|z(h)|2 − L2

n

Lm

L2
�

C�,m

(
f × ϕλ(m,�0)

)
(y) .

Observe that in both cases, the constants appearing are i times a positive constant.

Observe also that if � ≥ mm

2 and G̃(N,�) is singular at (z(h), ζ
(h,ε)) with � satisfying

(77) with z = z(h), some m ∈ [[0, �0]] and �0 = � − mm

2 , then (z(h), ζ
(h,ε)) is also a

singularity of G̃(N,m) and m satisfies (76) with z = z(h) and k = �0−m ∈ Z≥0. Of
course, ϕλ(m,�0) = ϕλ(m,m+k) in this case. It follows that the set Sh is sufficient to

parametrize the residues of F̃ at (z(h), ζ
(h,ε)).

It follows that

Res
ζn=ζ

(h,ε)
n

(
F̃ ◦ κ−1

n,ε

)
(ζn) =

iεnL
2
n√|z(h)|2 − L2

n

∑
�∈Sh

c�
(
f × ϕλ(�,�+k)

)
(y) , (89)

where k ∈ Z≥0 is associated with � as in the definition of Sh and c� is a positive
constant depending only on �.

By Proposition 7, the meromorphic extensions on the half-line i(−∞,−L]
of F and of the resolvent R of the Laplacian are equivalent. Thus the resolvent
R can be lifted and meromorphically extended along the curve γN in MγN . Its
singularities (i.e., the resonances of the Laplacian) are those of the meromorphic

extension F̃ of F and are located at the points of MγN above the elements z(h).
They are simple poles. The precise description is given by the following theorem.

Theorem 18. Let f ∈ C∞
c (X) and y ∈ X be fixed. Let N ∈ N and let γN be the curve

lifting the interval −i(0, N + 1) in M(N). Then the resolvent R(z) = [R(z)f ](y)
lifts as a meromorphic function to the neighborhood MγN of the curve γN in M(N).

We denote the lifted meromorphic function by R̃(N)(z, ζ) =
[
R̃(N)(z, ζ)f

]
(y).

The singularities of R̃(N) are at most simple poles at the points (z(h), ζ
(h,ε)) ∈

M(N) with h ∈ Z≥0 so that |z(h)| < LN+1 and ε ∈ {±1}N+1. Explicitly, for
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(n, ε) ∈ [[0, N ]]× {±1}N+1,

R̃(N)(z, ζ) = H̃(N,m,ε)(z, ζ) + 2πi

m∑
�=0

G̃(N,�)(z, ζ) ((z, ζ) ∈ Uε(n∨) ∪ Un,ε) , (90)

where H̃(N,m,ε) is holomorphic and G̃(N,�)(z, ζ) is in fact independent of N and ε
(but dependent on f and y, which are omitted from the notation). The singularities

of R̃(N)(z, ζ) in Uε(n∨) ∪Un,ε are simple poles at the points (z(h), ζ
(h,ε)) belonging

to Uε(n∨) ∪ Un,ε. The residue of the local expression of R̃(N) at one such point is
iπ times the right-hand side of (89).

4. The resolvent operators

Recall the notation λ(�1, �2) = (ρβ1 + �1)β1 + (ρβ2 + �2)β2 introduced in (75).
For a fixed h ∈ Z≥0, the sum over Sh appearing on the right-hand side of (89)
is independent either of N or n. It can be used to define the residue operator

Resz(h)
R̃ of the meromorphically extended resolvent at z(h). Explicitly,

Resz(h)
R̃ =

∑
�∈Sh

c�Rλ(�,�+k�) (91)

where, c� are non-zero constants and, as in [5, (57)], Rλ : C∞
c (X) → C∞(X) is

defined by Rλf = f × ϕλ. We know from [2, Chapter IV, Theorem 4.5] that
Rλ(C

∞
c (X)) is an irreducible representation of G. Furthermore, two such repre-

sentations are equivalent if and only if the spectral parameters λ are in the same
Weyl group orbit. Since, in our case, the Weyl group acts by transposition and
sign changes, the element λ(�1, �2) is dominant with respect to the fixed choice of
positive roots if and only if

ρβ2 + �2 ≥ ρβ1 + �1 ≥ 0 , i.e., �2 +
mm

2
≥ �1 .

In particular, all λ(�, � + k�) are distinct and dominant. Hence, as a G-module,

Resz(h)
R̃(C∞

c (X)) =
⊕

�∈S(h)

Rλ(�,�+k�)(C
∞
c (X)) . (92)

Theorem 19. If �, k ∈ Z2
≥0, then dimRλ(�,�+k)(C

∞
c (X)) <∞ . Thus

Resz(h)
R̃(C∞

c (X))

is a finite-dimensional G-module.

The G-module Resz(h)
R̃(C∞

c (X)) is bounded (and unitary) if and only it is

the trivial representation, which occurs for h = 0, i.e., when z(0) = −i√〈ρ, ρ〉.
Proof. By [3, Ch II, §4, Theorem 4.16], dimRλ(�1,�2)(C

∞
c (X)) < ∞ if and only if

there is w ∈W such that

(wλ(�1, �2)− ρ)β ∈ Z≥0 (β ∈ Σ+
∗ , β simple) . (93)
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Recall that the simple roots in Σ+
∗ are β1 and

β2−β1

2 . Moreover, μ β2−β1
2

= μβ2−μβ1

for μ ∈ a∗
C
. Since

λ(�, �+ k)− ρ = (ρβ1 + �)β1 +(ρβ2 + �+ k)β2− (ρβ1β1 + ρβ2β2) = �β1 +(�+ k)β2 ,

we conclude that

(λ(�, � + k)− ρ)β1 = � ∈ Z≥0 ,

(λ(�, � + k)− ρ)(β2−β1)/2 = k ∈ Z≥0 ,

which satisfies (93) with w = id. �
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