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Momentum Maps for Smooth
Projective Unitary Representations

Bas Janssens and Karl-Hermann Neeb

Abstract. For a smooth projective unitary representation (ρ,H) of a locally
convex Lie group G, the projective space P(H∞) of smooth vectors is a lo-
cally convex Kähler manifold. We show that the action of G on P(H∞) is
weakly Hamiltonian, and lifts to a Hamiltonian action of the central U(1)-
extension G� obtained from the projective representation. We identify the
non-equivariance cocycles obtained from the weakly Hamiltonian action with
those obtained from the projective representation, and give some integrality
conditions on the image of the momentum map.
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1. Introduction

Let G be a locally convex Lie group with Lie algebra g, and let ρ : G → PU(H) be
a projective unitary representation of G. It is called smooth if the set P(H)∞ of
smooth rays is dense in P(H), a ray [ψ] ∈ P(H) being called smooth if its orbit map
G → P(H) : g �→ ρ(g)[ψ] is smooth. For finite-dimensional Lie groups, a projective
representation is smooth if and only if it is continuous. For infinite-dimensional
Lie groups, smoothness is a natural requirement.

In [3, Theorem 4.3], we showed that for smooth projective unitary represen-
tations, the central extension

G� := {(g, U) ∈ G×U(H) ; ρ(g) = [U ]}
ofG by U(1) is a central extension of locally convex Lie groups, in the sense that the
projection G� → G is a homomorphism of Lie groups, as well as a principal U(1)-
bundle. Moreover, the projective representation ρ : G → PU(H) of G then lifts to
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a linear representation ρ : G� → U(H) of G�, with the property that ρ(z) = z1 for
all z ∈ U(1). If H∞ ⊆ H is the space of smooth vectors for ρ, then P(H∞) is equal
to P(H)∞, the space of smooth rays for ρ.

The main goal of these notes is to reinterpret this central extension in the
context of symplectic geometry of the projective space P(H∞) and its prequantum
line bundle, the tautological bundle L(H∞) → P(H∞). In order to equip P(H∞)
with a symplectic structure, we need to consider it as a locally convex manifold.
For this, we need a locally convex topology on H∞ that is compatible with the
G�-action.

Definition 1. The strong topology on H∞ is the locally convex topology induced
by the norm on H and the seminorms

pB(ψ) := sup
ξ∈B

‖dρk(ξ)ψ‖ ,

where B ⊆ (g�)k, k ∈ N, runs over the bounded sets, and the derived representation
dρ of g� is extended to (g�)k by dρk(ξ1, . . . , ξk) := dρ(ξ1) · · ·dρ(ξk).

We will show that with this topology, P(H∞) becomes a locally convex Kähler
manifold with prequantum line bundle L(H∞) → P(H∞). If we identify its tangent
space T[ψ]P(H∞) for any unit vector ψ with {δv ∈ H∞ ; 〈ψ, δv〉 = 0} , then the
symplectic form Ω on P(H∞) is given by

Ω[ψ](δv, δw) = 2Im(δv, δw) .

Similarly, the sphere S(H∞) becomes a locally convex principal U(1)-bundle over
P(H∞), to which the prequantum line bundle L(H∞) → P(H∞) is associated along
the canonical representation U(1) → GL(C). The connection ∇ on L(H∞) with
curvature R∇ = Ω is associated to the connection 1-form α on S(H∞), given by

αψ(δv) = −i〈ψ, δv〉
under the identification TψS(H∞) � {δv ∈ H∞ ; Re〈ψ, δv〉 = 0} .

The group G acts on P(H∞) by Kähler automorphisms, hence in particular
by symplectomorphisms. The action of the central extension G� lifts to L(H∞) →
P(H∞), on which it acts by holomorphic quantomorphisms (connection preserving
bundle automorphisms). If the projective representation of G is faithful, then the
central extension G� is precisely the group of quantomorphisms of (L(H∞),∇)
that cover the G-action on (P(H∞),Ω).

G� � Aut(L(H∞),∇)⏐⏐) ⏐⏐)
G � Aut(P(H∞),Ω).

We show that for any locally convex Lie group G, the action

G× P(H∞) → P(H∞)

obtained from a smooth projective unitary representation is separately smooth in
the following sense.
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Definition 2. An action α : G ×M → M, (g,m) �→ αg(m) of a locally convex Lie
group G on a locally convex manifold M is called separately smooth if for every
g ∈ G and m ∈ M , the orbit map αm : G → M, g �→ αg(m) and the action maps
αg : M → M are smooth.

For Banach Lie groups G, the action is a smooth map G × P(H∞) →
P(H∞) by [11, Theorem 4.4], but a certain lack of smoothness is unavoidable
as soon as one goes to Fréchet–Lie groups. Indeed, consider the unitary represen-
tation of the Fréchet–Lie group G = RN on H = �2(N,C), defined by ρ(φ)ψ =
(eiφ1ψ1, e

iφ2ψ2, . . .). Then H∞ = C(N) with the direct limit topology [3, Exam-
ple 3.11], but by [11, Example 4.8], the action of g on CN is discontinuous for any
locally convex topology on H∞. We therefore propose the following definition of
(not necessarily smooth) Hamiltonian actions on locally convex manifolds.

Definition 3. An action α : G × M → M of a locally convex Lie group G on a
locally convex, symplectic manifold (M,Ω) is called:

• Symplectic if it is separately smooth, and α∗
gΩ = Ω for all g ∈ G.

• Weakly Hamiltonian if it is symplectic, and iXξ
Ω is exact for all ξ ∈ g, where

Xξ is the fundamental vector field of ξ on P(H∞).
• Hamiltonian if, moreover, iXξ

Ω = dμ(ξ) for a G-equivariant momentum map
μ : M → g′ into the continuous dual of g, which is smooth if g′ is equipped
with the topology of uniform convergence on bounded subsets.

Our main result is that the action of G� on P(H∞) is Hamiltonian in the
sense of the above definition.

Theorem 4. The action of G� on (P(H∞),Ω) is Hamiltonian, with momentum
map μ : P(H∞) → g�′ given by

μ[ψ](ξ) =
〈ψ, idρ(ξ)ψ〉

〈ψ, ψ〉 . (1)

Since the G-action on P(H∞) factors through the action of G�, we immedi-
ately obtain the following corollary.

Corollary 5. The action of G on (P(H∞),Ω) is weakly Hamiltonian.

Note that the (classical) momentum associated to ξ ∈ g� at [ψ] ∈ P(H∞) is
precisely the corresponding (quantum mechanical) expectation of the self-adjoint
operator (observable) idρ(ξ) in the state [ψ].

Sections 2 and 3 of this paper are concerned with the proof of Theorem 4. In
Section 2, we show in detail that P(H∞) is a locally convex, prequantisable Kähler
manifold, and in Section 3, we use this to show that the action of G� on P(H∞) is
Hamiltonian, and lifts to the prequantum line bundle L(H∞) → P(H∞).

In the second half of this paper, we give some applications of this symplec-
tic picture to projective representations. In Section 4, we calculate the Kostant–
Souriau cocycles associated to the Hamiltonian action, and show that these are
precisely the Lie algebra cocycles that one canonically obtains from a projective
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unitary representation and a smooth ray, cf. [3]. We then prove an integrality re-
sult for characters of the stabilizer group that one obtains as the image of the
momentum map. Finally, in Section 5, we close with some remarks on smoothness
of the action in the context of diffeological spaces.

Momentum maps have been introduced into representation theory by Norman
Wildberger [13]. Studying the image of the momentum map has proven to be an
extremely powerful tool in the analysis of unitary representations, in particular to
obtain information on upper and lower bounds of spectra ([1], [7, 8, 10]). Smooth-
ness properties of the linear Hamiltonian action on the space H∞ of smooth vec-
tors of a unitary representation and the corresponding momentum map μψ(ξ) :=
〈ψ, dπ(ξ)ψ〉 have been studied by P. Michor in the context of convenient calculus
in [5].

2. The locally convex symplectic space P(V )

In order to equip P(H∞) with a symplectic structure, we need to consider it as
a locally convex manifold (in the sense of [4, Def. 9.1]). Later on, it will be im-
portant to choose a locally convex topology on H∞ that is compatible with the
group action, but for now, it suffices if the scalar product on H∞ ⊆ H is continu-
ous. We will go through the standard constructions of projective geometry, using
only a complex, locally convex space V with continuous hermitian scalar product
〈 · , · 〉 : V × V → C (antilinear in the first and linear in the second argument).

Proposition 6. The projective space P(V ) is a complex manifold modelled on locally
convex spaces. The tautological line bundle L(V ) → P(V ) is a locally convex,
holomorphic line bundle over P(V ).

Proof. We equip P(V ) with the Hausdorff topology induced by the quotient map
V − {0} → P(V ). The open neighbourhood

U[ψ] := {[χ] ∈ P(V ) ; 〈ψ, χ〉 �= 0} (2)

is then charted by the hyperplane

T[ψ] := {v ∈ V ; 〈ψ, v〉 = 0} , (3)

and the chart κψ : U[ψ] → T[ψ], defined by κψ([χ]) := 〈ψ, χ〉−1χ−ψ (cf. [9, §V.1]).
Note that the map κψ depends on the choice of representative ψ ∈ [ψ], which

we will assume to be of unit length. The inverse chart is κ−1
ψ (v) = [ψ + v]. We

have κzψ([χ]) = zκψ([χ]) for z ∈ U(1). More generally, the transition function

κψψ′ : κψ(U[ψ] ∩ U[ψ′]) → κψ′(U[ψ] ∩ U[ψ′]) is given by v �→ ψ+v
〈ψ′,ψ+v〉 − ψ′. Since

v �→ 〈ψ′, ψ + v〉 is continuous and nonzero on κψ(U[ψ] ∩ U[ψ′]), the transition
functions are holomorphic, making P(V ) into a complex manifold.

For L(V ) = V − {0}, define the charts Λψ : T[ψ] × C → L(V ) by Λψ(v, z) =
z(ψ + v). The transition functions

Λψψ′ : κψ(U[ψ] ∩ U[ψ′])× C → κψ′(U[ψ] ∩ U[ψ′])× C



Momentum Maps for Smooth Projective Unitary Representations 119

are given by (v, z) �→ (κψψ′(v), 〈ψ′, ψ + v〉z). Since these are holomorphic isomor-
phisms of trivial locally convex line bundles, the result follows. �

For ‖ψ‖ = 1, we identify the tangent vectors δv, δw ∈ T[ψ]P(V ) at the point
[ψ] ∈ P(V ) with their coordinates δv, δw ∈ T[ψ] by the tangent map T[ψ](κψ).
Accordingly, we define the Hermitean form H on P(V ) by

H[ψ](δv, δw) := 2〈δv, δw〉 . (4)

Note that this does not depend on the choice of chart κψ.

Proposition 7. Equipped with the Hermitean forms H[ψ] of equation (4), P(V ) is
a Hermitean manifold.

Proof. As compatibility with the complex structure J(δv) = iδv is clear, the only
thing to show is that H is smooth. Using that the transition map

Dvκψψ′ : T[ψ] → T[ψ′], for ψ′ =
ψ + v

‖ψ + v‖
is given by

Dvκψ,ψ′(δv) = 1
‖ψ+v‖

(
δv − 〈 ψ+v

‖ψ+v‖ , δv〉 ψ+v
‖ψ+v‖

)
,

one sees that in local coordinates for T 2P(V ), the map T[ψ] × T[ψ] × T[ψ] → C is

Hv(δv, δw) = 2

(
1

1 + ‖v‖2 〈δv, δw〉 −
1

(1 + ‖v‖2)2 〈δv, v〉〈v, δw〉
)

, (5)

which is evidently smooth. �
As the real and imaginary parts of H , we obtain the Fubini–Study metric

G[ψ](δv, δw) = 2Re〈δv, δw〉
and the 2-form

Ω[ψ](δv, δw) = 2Im〈δv, δw〉 . (6)

The 2-form Ω is nondegenerate in the ‘weak’ sense that Ω(δv, δw) = 0 for
all δw implies δv = 0. In order to show that Ω is a symplectic form, and hence
that P(V ) is Kähler, it thus suffices to prove that it is closed. We will do this by
showing that Ω is the curvature of a prequantum bundle.

Proposition 8. The sphere S(V ) = {ψ ∈ V ; ‖ψ‖ = 1} is a locally convex manifold,
and the projection S(V ) → P(V ) is a principal U(1)-bundle.

Proof. The sphere inherits the Hausdorff topology from its inclusion in V . The
locally convex space

Tψ := {v ∈ V ; Re〈ψ, v〉 = 0} ⊆ V (7)

can be naturally identified with the open neighbourhood

Uψ := {χ ∈ S(V ) ; Re〈ψ, χ〉 > 0} (8)

of ψ by the chart κ : Uψ → Tψ with κψ(χ) = (Re〈ψ, χ〉)−1χ − ψ, which has

inverse κ−1
ψ (v) = ψ+v

‖ψ+v‖ . If ψ and ψ′ are not antipodal, then the transition
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Uψψ′ := Uψ ∩Uψ′ is nonempty, and the transition function κψ(Uψψ′) → κψ′(Uψψ′)

is given by v �→ ψ+v
Re〈ψ′,ψ+v〉 − ψ′. This is continuous for the strong topology that

Tψ and Tψ′ inherit from V because the scalar product 〈 · , · 〉 is continuous, and
Re〈ψ′, ψ+ v〉 is nonzero on κψ(Uψ ∩Uψ′). In particular, the tangent space TψS(V )
can be canonically identified with Tψ.

The canonical projection S(V ) → P(V ) is a smooth principal U(1)-bundle,

with local trivialization τψ : T[ψ]×U(1) → S(V ) given by τψ(v, z) := z ψ+v
‖ψ+v‖ . (Note

that this depends on the representative ψ of [ψ].) For [χ] in its image Uψ ∪U−ψ ∪
Uiψ ∪ U−iψ, we have zψ([χ]) = 〈ψ,χ〉

|〈ψ,χ〉| and zψ′([χ]) = 〈ψ′,χ〉
|〈ψ′,χ〉| , so the clutching

functions gψψ′ : U[ψ] ∩ U[ψ′] → T are

gψψ′([χ]) =
〈ψ′, χ〉
〈ψ, χ〉

/∣∣∣∣〈ψ′, χ〉
〈ψ, χ〉

∣∣∣∣ . �

Identifying TψS(V ) with Tψ in (7), we define the 1-form α on S(V ) by

αψ(δv) = −i〈ψ, δv〉 . (9)

Proposition 9. The form α is a connection 1-form on S(V ) → P(V ) with curva-
ture Ω.

Proof. We start by showing that α is smooth. Using the derivative

Dvκψψ′(δv) =
1

‖ψ + v‖
(
δv − Re〈v, δv〉

1 + ‖v‖2 (ψ + v)
)
=

δv

‖ψ + v‖ − Re〈v, δv〉
‖ψ + v‖3 (ψ + v)

for the transition function with ψ′ = ψ+v
‖ψ+v‖ , one sees that α is represented by

the function Tψ × Tψ → R given by (v, δv) �→ 1
1+‖v‖2 Im〈v, δv〉, which is evidently

smooth.

If we identify TψS(V ) with Tψ and TzψS(V ) with Tzψ, then the pushforward
Rz∗ : Tψ → Tzψ of the U(1)-action is Rz∗(δv) = zδv. It follows that α is U(1)-
invariant,

(R∗
zαψ)(δv) = αzψ(zδv) = −i〈zψ, zδv〉 = −i〈ψ, δv〉 = αψ(δv),

and since the vector field X1 generated by the U(1)-action on S(V ) is X1(ψ) =
d
dt

∣∣
t=0

eitψ = iψ, we have αψ(X1(ψ)) = 1, so that α is a principal connection

1-form on S(V ) → P(V ). If we introduce the constant vector fields δv and δw on
Uψ ⊆ S(V ), then at v = 0, we have

dαv(δv, δw) = Lδvαv(δw) − Lδvαv(δw) = 2Im〈δv, δw〉 , (10)

which agrees with the local expression (5) for Ω[ψ](δv, δw) at v = 0, as required. �

In particular, Ω is closed, so P(V ) is a Kähler manifold. Since the tautological
line bundle is associated to S(V ) in the sense that L(V ) := S(V )×U(1) C, we have
the following result (see also [9]).
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Theorem 10. The projective space P(V ) with Hermitean form H is a locally convex
Kähler manifold. The tautological bundle L(V ) → P(V ), equipped with the connec-
tion inherited from the U(1)-principal 1-form α, is a prequantum line bundle for
the corresponding symplectic form Ω.

3. Hamiltonian action of G� on P(H∞)

We return to the situation of a smooth, projective, unitary representation ρ of
G, and the corresponding unitary representation ρ of G�. In order to obtain a
Hamiltonian action of G� on P(H∞), we need a locally convex topology on H∞

that is compatible with theG�-action. We will equipH∞ with the strong topology of
Definition 1. As the scalar product 〈 · , · 〉 : H∞×H∞ → C is manifestly continuous,
Theorem 10 applies to P(H∞).

Proposition 11. The group action G� × H∞ → H∞ is separately smooth for the
strong topology.

Proof. For fixed g ∈ G�, we show that the linear map ρ(g) : H∞ → H∞ is continu-
ous. If B ⊆ (g�)k is bounded, then so is Adg(B), as the action Adg : (g

�)k → (g�)k

of g in the k-fold product of the adjoint representation is a homeomorphism. From

pB(ρ(g)ψ) = sup
ξ∈B

‖dρk(ξ)ρ(g)ψ‖

= sup
ξ∈B

‖ρ(g)dρk(Adg−1(ξ))ψ‖ = pAdg−1 (B)(ψ) ,

we then see that ρ(g) is strongly continuous. If we fix ψ ∈ H∞, then the orbit
map g �→ ρ(g)ψ is smooth in the norm topology on H∞ ⊆ H by definition, but
we still need to show that it is smooth in the strong topology. This follows from
[3, Lemma 3.24]. �

Our (somewhat laborious) proof of Theorem 10 now allows us to apply Propo-
sition 11 in local coordinates, yielding the following result.

Proposition 12. The locally convex Lie group G acts separately smoothly on P(H∞)
by Kähler automorphisms. This action is covered by a separately smooth action of
G� on the prequantum line bundle L(H∞) → P(H∞) by holomorphic, connection-
preserving bundle automorphisms.

Proof. In local coordinates, the action of G� looks like T[ψ] → Tρ(g)[ψ] : v �→ ρ(g)v
on P(H∞), like Tψ → Tρ(g)ψ : v �→ ρ(g)v on S(H∞), and like

T[ψ] × C → Tρ(g)[ψ] × C : v ⊕ z �→ ρ(g)v ⊕ z on L(H∞).

It thus follows from Proposition 11 that the group action is separately smooth, and
a holomorphic line bundle isomorphism of L(H∞) → P(H∞). In local coordinates,
the pushforwards ρ(g)∗ : T[ψ] → Tρ(g)[ψ] and ρ(g)∗ : Tψ → Tρ(g)ψ are simply given
by δv �→ ρ(g)δv, so ρ(g)∗H = H and ρ(g)∗α = α follow from unitarity of ρ(g) and
the definitions (4) and (9). �
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For ξ ∈ g�, the fundamental vector fieldXξ(ψ) = dρ(ξ)ψ on S(H∞) is smooth,
as it is given in local coordinates v ∈ Tψ by

Xξ(u) = dρ(ξ)(ψ + v)− Re〈ψ, dρ(ξ)v〉(ψ + v) .

Since LXξ
α = 0, we have d(iXξ

α) + iXξ
dα = 0, so since Ω = dα, we find

iXξ
Ω = d(−iXξ

α) . (11)

We therefore find the comomentum map g� → C∞(P(H∞)), ξ �→ μ(ξ) with

μ[ψ](ξ) = αψ(−Xξ(ψ)) . (12)

This evaluates to 〈ψ, idρ(ξ)ψ〉, the expectation in the state [ψ] of the essentially
selfadjoint operator idρ(ξ) (cf. Definition 1), which is the observable corresponding
to the symmetry generator ξ ∈ g. Note that for fixed ξ, the expression ψ �→
αψ(−Xξ(ψ)) is independent of the unit vector ψ ∈ [ψ], and smooth because both
α and Xξ are smooth.

We now prove the theorem announced in the introduction (Theorem 4):

Theorem 13. The action of G� on (P(H∞),Ω) is Hamiltonian, with momentum
map μ : P(H∞) → (g�)′ given by

μ[ψ](ξ) =
〈ψ, idρ(ξ)ψ〉

〈ψ, ψ〉 . (13)

This is a smooth, G�-equivariant map into the continuous dual (g�)′, equipped with
the topology of uniform convergence on bounded subsets.

Proof. Since the G�-action preserves α, it preserves Ω, and iXξ
Ω is exact by equa-

tion (11). Combining (11) and (12), we have iXξ
Ω = dμξ(ξ). The momentum map

is equivariant by

μ[gψ](ξ) = 〈ρ(g)ψ, idρ(ξ)ρ(g)ψ〉 = 〈ψ, idρ(Adg−1(ξ))ψ〉 .

To prove that μ is smooth, consider its pullback to S(H∞), which is the restriction
to S(H∞) of the map μ̂ : H∞ → (g�)′ defined by μ̂ψ = 〈ψ, dρ( · )ψ〉. Note that the
map

H∞ → Lin(g�,H∞), ψ �→ dρ( · )ψ
is linear, and continuous if Lin(g�,H∞) is equipped with the topology of uniform
convergence on bounded subsets of g. As the scalar product H∞ × H∞ → R
is continuous, the linear map H∞ × H∞ → (g�)′, (ψ, χ) �→ 〈ψ, dρ( · )χ〉 is also
continuous, and hence smooth. Since μ̂ is the composition of this map with the
(smooth) diagonal map H∞ → H∞ ×H∞, the result follows. �
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4. Cocycles for Hamiltonian actions

A symplectic action of a locally convex Lie group G on a locally convex, symplectic
manifold (M,Ω) gives rise to Kostant–Souriau cocycles.

Proposition 14 (Kostant–Souriau cocycles). For every m ∈ M, the map

ωm : g× g → R

defined by ωm(ξ, η) = Ωm(Xξ, Xη) is a continuous 2-cocycle. If M is a Kähler
manifold, then ωm = Imhm for a continuous, positive semidefinite, Hermitean
form hm : gC × gC → C.

Proof. Since the action is symplectic, LXξ
Ω = 0, and we have

LXξ
Ω(Xη, Xζ) = Ω([Xξ, Xη], Xζ) + Ω(Xη, [Xξ, Xζ ]) .

As Ω is closed, it follows that for all ξ, η, ζ ∈ g,

0 = dΩ(Xξ, Xη, Xζ) = (LXξ
Ω(Xη, Xζ) + cycl.)− (Ω([Xξ, Xη], Xζ) + cycl.)

= Ω(Xη, [Xξ, Xζ ]) + cycl. = δω(ξ, η, ζ) ,

and ωm is a cocycle for every m ∈ M. Since the orbit map g �→ αg(m) is smooth,
the map ξ �→ Xξ(m) is continuous. Since Ωm : TmM × TmM → R is smooth,
the cocycle ωm is continuous. If M is Kähler, then Ωm is the imaginary part of a
positive definite Hermitean form Hm on TmM. We then have ωm = Imhm for the
pullback hm : gC × gC → C of Hm along the complexification Dmα : gC → TmM
of the derivative of the orbit map. �

4.1. Cocycles for projective unitary representations

For the weakly Hamiltonian action of G on P(H∞) derived from a smooth projec-
tive unitary representation, the Kostant–Souriau cocycles are given by

ω[ψ](ξ, η) = 2Im〈dρ(ξ�)ψ, dρ(η�)ψ〉 , (14)

where ξ�, η� ∈ g� are arbitrary lifts of ξ, η ∈ g. (This does not depend on the choice
of lift because 〈ψ, idρ(ξ�)ψ〉 is real.)

In particular, we see that the Kostant–Souriau cocycles related to a smooth
projective representation arise as the image of the momentum map μ : P(H∞) →
(g�)′, concatenated with the differential δ : g� → Z2(g) that maps λ ∈ (g�)′ to the
2-cocycle

(δλ)(ξ, η) := λ([ξ�, η�]),

which is again independent of the choice of lift.

Proposition 15. For the weakly Hamiltonian action of G on P(H∞) derived from
a smooth projective unitary representation, we have ω[ψ] = δμ[ψ].
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Proof. This is a direct computation. From (13), we obtain

δμ[ψ](ξ, η) =
〈ψ, idρ([ξ�, η�])ψ〉

〈ψ, ψ〉

= −i

(〈dρ(ξ�)ψ, dρ(η�)ψ〉
〈ψ, ψ〉 − 〈dρ(η�)ψ, dρ(ξ�)ψ〉

〈ψ, ψ〉
)

= 2
Im〈dρ(ξ�)ψ, dρ(η�)ψ〉

〈ψ, ψ〉 ,

which equals ω[ψ](ξ, η) for ‖ψ‖ = 1 by (14). �
From a smooth projective unitary representation, we thus get not only a class

[ω[ψ]] ∈ H2(g,R) in continuous Lie algebra cohomology, but a distinguished set

C := {ω[ψ] ; [ψ] ∈ P(H∞)} ⊆ Z2(g) of (cohomologous, cf. [3]) cocycles. As both μ
and δ are G-equivariant, this set C = Im(δ◦μ) of cocycles is G-invariant, and every
ω ∈ C is the imaginary part of a continuous, positive semidefinite, Hermitean form
on gC by Proposition 14. This sheds geometric light on Propositions 6.6, 6.7 and
6.8 of [3].

4.2. Characters of the stabilizer group

The derivative of the momentum map μ : P(H∞) → (g�)′ is given (for ‖ψ‖ = 1) by

D[ψ]μ(δv)(ξ) = 2Re〈idρ(ξ)ψ, δv〉 . (15)

This has some interesting consequences. We denote the real inner product on H∞

by (v, w)R := 2Re〈v, w〉, and the orthogonal complement with respect to ( · , · )R by
⊥R. Then the kernel Ker(D[ψ]μ) ⊆ T[ψ] = (Cψ)⊥R is precisely the real orthogonal

complement (iRψ ⊕ idρ(g�)ψ)⊥R in H∞.

Proposition 16. The derivative D[ψ]μ : T[ψ] → g′ is injective if and only if dρ(g�)ψ

spans ψ⊥R ⊂ H as a real Hilbert space, and zero if and only if the identity compo-
nent G0 stabilizes [ψ].

Proof. The first statement follows immediately from the formula for the kernel.
For the second statement, note that D[ψ]μ = 0 is equivalent to dρ(g�)ψ = iRψ.
By the Fundamental Theorem of Calculus for locally convex spaces, G0 stabilizes
[ψ] ∈ P(H∞) if and only if g stabilizes [ψ], which is the case if and only if dρ(g�)ψ ⊆
iRψ. �

We denote the stabilizer of λ ∈ (g�)′ under the coadjoint representation by

G�
λ. Further, we denote by

G�
[ψ] := {g ∈ G� : [ρ(g)ψ] = [ψ]}

the preimage in G� of the stabilizer G[ψ] of [ψ] ∈ P(H∞), and we denote

g�[ψ] := {ξ ∈ g� ; dρ(ξ)ψ ∈ iRψ} .
Proposition 17. For every [ψ] ∈ P(H∞), we have G�

[ψ] ⊆ G�
μ[ψ]

.
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Proof. Since the momentum map is G�-equivariant, we have g ∈ Gμ[ψ]
if and only if

〈ρ(g)ψ, idρ(ξ)ρ(g)ψ〉
〈ρ(g)ψ, ρ(g)ψ〉 =

〈ψ, idρ(ξ)ψ〉
〈ψ, ψ〉 (16)

for all ξ ∈ g. This is clearly the case if g ∈ G�
[ψ]. �

Proposition 18. The restriction of −iμ[ψ] : g
� → iR to g�[ψ] is a Lie algebra char-

acter. It integrates to a group character on any Lie subgroup of G�
[ψ].

Proof. For ξ ∈ g�[ψ], we have dρ(ξ)ψ = −iμ(ξ)ψ. As

dρ([ξ, η])ψ = [dρ(ξ), dρ(η)]ψ = 0 for ξ, η ∈ g�[ψ] ,

it follows that −iμ is an iR-valued character. Similarly, the smooth map

F : G� → C, F (g) :=
〈ψ, ρ(g)ψ〉
〈ψ, ψ〉

is a U(1)-valued character when restricted to G�
[ψ], as ρ(g)ψ = F (g)ψ on that

subgroup. In fact, F : G� → C takes values in the unit ball Δ ⊆ C, and G�
[ψ]

is the preimage of the unit circle ∂Δ. The derivative of F at the unit 1 ∈ G is

D1F = −iμ[ψ], so for any Lie subgroup H ⊆ G�
[ψ], the restriction of F to H is a

U(1)-valued smooth character that integrates −iμ[ψ]|Lie(H). �

Note that the image of μ is contained in the hyperplane (g�)′−1 ⊂ (g�)′ of
elements that evaluate to −1 on 1 ∈ R = Ker(g� → g). Now suppose that the

image of D[ψ]μ is dense in Tμ[ψ]
(g�)′−1 = (g�)′0 � g′. Since Im(D[ψ]μ) ⊆ (g�/g�ψ)

′,
we then have g�ψ = {0}, so that g�[ψ] = R. For points [ψ] ∈ P(H∞) where the

image of D[ψ]μ is dense, the identity component of any Lie subgroup H ⊆ G[ψ]

is therefore U(1), and since the character on U(1) ⊆ G�
[ψ] is always the identity,

Proposition 18 yields no extra information.

However, Proposition 18 does yield nontrivial integrality requirements if G�
[ψ]

is strictly bigger than U(1), which one expects to be the case for extremal points
of the momentum set Imμ. Compare this to Lemma 2.1 and Theorem 8.1 in [2],
where it is shown that for compact Lie groups G, the vertices of the momentum
polygon are integral lattice points in the dual h′ of the Cartan subalgebra.

5. Diffeological Smoothness

As noted in the introduction, the action G� × P(H∞) → P(H∞) is separately
smooth, but not necessarily smooth. However, if we settle for smoothness in the
sense of diffeological spaces, then one can hope for this action to be smooth for
the (large) class of regular Lie groups modelled on barrelled spaces, which includes
regular Fréchet and LF Lie groups. Here we prove the infinitesimal version of
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this, namely that the infinitesimal action g� × H∞ → H∞ is a smooth map of
diffeological spaces.

5.1. Infinitesimal action

Let ρ be a smooth projective unitary representation of a locally convex Lie group
G modelled on a barrelled Lie algebra g.

Lemma 19. If ξ : Rn → g and ψ : Rm → H∞ are continuous, then the map
dρ(ξ)ψ : Rn × Rm → H∞ defined by (s, t) �→ dρ(ξt)ψs is continuous.

Proof. Since the Lie algebra action g� × H∞ → H∞ is sequentially continuous
by [3, Lemma 3.14], the same holds for its concatenation with the continuous
map (ξ, ψ) : Rn × Rm → g� × H∞. Since Rn × Rm is first countable, this implies
continuity. �

Lemma 20. If ξ : Rn → g� and ψ : Rm → H∞ are C1, then so is dρ(ξ)ψ, and
D(v1,v2)(dρ(ξ)ψ)s,t = dρ(∂v1ξs)ψt + dρ(ξs)∂v2ψt.

Proof. For the directional derivative along (v1, v2) ∈ Ts,t(Rn × Rm), note that

Dv1,v2(dρ(ξ)ψ)s,t = lim
ε→0

dρ(Δξs(ε))ψt+εv2 + dρ(ξs)Δψt(ε),

with difference quotients Δξ and Δψ defined by Δξs(ε) := 1
ε (ξs+εv1 − ξs) and

Δψt(ε) := 1
ε (ψt+εv2 − ψt) for ε �= 0, and Δξs(0) := ∂v1ξs and Δψt(0) := ∂v2ψt

for ε = 0. Since Δξ and Δψ are continuous in ε, the formula for Dv1,v2(dρ(ξ)ψ)s,t
follows by Lemma 19. Another application of this lemma to (Dξ, ψ) and (ξ,Dψ)
shows that the derivative is continuous. �

Proposition 21. If ξ : Rn → g� and ψ : Rm → H∞ are Ck for k ∈ N or k = ∞,
then so is dρ(ξ)ψ.

Proof. This follows by induction on k, using Lemmas 19 and 20. �

If we equip all locally convex manifolds M with the diffeology of smooth
maps from open subsets of Euclidean space into M, then the following is simply
a reformulation of Proposition 21.

Proposition 22. If G is modelled on a barrelled Lie algebra g, then the infinitesimal
action g� ×H∞ → H∞ is a smooth map of diffeological spaces.
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