Hash Learning with Convolutional Neural
Networks for Semantic Based Image Retrieval

Jinma Guo, Shifeng Zhang, and Jianmin Li®*9
State Key Lab of Intelligent Technology and Systems,

Tsinghua National Lab for Information Science and Technology,
Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, China
guojinma@gmail.com, zsf£q999@163.com, lijianmin@mail.tsinghua.edu.cn

Abstract. Hashing is an effective method of approximate nearest neigh-
bor search (ANN) for the massive web images. In this paper, we propose
a method that combines convolutional neural networks (CNN) with hash
learning, where the features learned by the former are beneficial to the lat-
ter. By introducing a new loss layer and a new hash layer, the proposed
method can learn the hash functions that preserve the semantic informa-
tion and at the same time satisfy the desirable independent properties of
hashing. Experiments show that our method outperforms the state-of-the-
art methods by a large margin on image retrieval. And the comparisons
with baseline models show the effectiveness of our proposed layers.

Keywords: Hashing - Convolutional Neural Network - Image retrieval

1 Introduction

The amount of web data, images especially, is growing rapidly. How to retrieve
images that meet users’ requirements from this extremely tremendous data with
efficient storage and computation has attracted extensive attentions from acad-
emia and industry [3].

Exhaustive nearest neighbor search is intractable. Approximate nearest neigh-
bor search (ANN) can return satisfactory results within logarithmic (O(log(n)) or
even constant (O(1)) time by organizing data with structures that keep the dis-
tance metric. Especially, hashing-based methods [5,14-16,19,24, 26] with lookup
tables consume only constant time on a query. The compact codes of hashing can
also bring down the demand of storage, and the bitwise operations needed for a
query make hashing competent even in the case of exhaustive ranking.

Conventional hashing methods usually take low-level features as input and use
shallow models to generate the hash codes. However, the hand-crafted features
are fixed and not learnable for further improvements. Recently CNNH [24] gains
a great performance boost via deep model to learn hash codes. But this method
breaks the learning process into two separate stages. Firstly, pseudo hash codes
are learned from images’ labels. Then the codes are fixed and used to train a convo-
lutional neural network (CNN) model for later prediction. But some information

© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part I, LNAI 9651, pp. 227-238, 2016.
DOI: 10.1007/978-3-319-31753-3_19

228 J. Guo et al.

a stack of convolutional layers hash layer
input image and pooling layers
‘

hinge softmax loss

1

Fig. 1. The architecture of our proposed model in the training stage to learn hash
functions. The input size of the model is fixed, and hash layer is fully connected with
the prior. When training is done, the two softmax layers can be simply dropped and
the outputs of the hash layer are binarized as hash codes.

will be lost in the first stage. Although Lai et al. [16] and Zhao et al. [26] propose
one-stage ranking-based hashing methods respectively, both of which take only
ranking as the supervisory information, they do not use the classes information.

In this paper, we propose a novel model that learn deep features and hash
functions at the same time. As shown in Fig. 1, the model consists of three parts,
which are a stack of convolutional layers, one softmax loss layer for classification,
a new proposed hash layer and hinge softmax loss layer for hash code learning. Of
the above three parts, the first is used to learn semantic-preserving features, the
second is used to encourage the model to learn discriminant features from class
labels, while the third part will learn more hashing-like codes. When training is
done, the three loss layers will be dropped away and outputs of the hash layer
are binarized with 0 to generate the final hash codes. The proposed model is an
end-to-end system where feature extraction and hashing are combined.

The specific contributions of our work are as follows:

(1) we learn hash functions via CNN in the form of multi loss layers

(2) we introduce the hinge softmax loss layer and a hash layer into hash learning

(3) as far as we know, our results on the experimental datasets outperform the
state-of-the-art.

The remaining is organized as follows: related works are briefly reviewed in
Sect. 2. And the methodology of our work is described in Sect. 3. The experiments
and discussions are presented in Sects.4 and 5. Finally, we conclude the whole
paper in Sect. 6.

2 Related Work

To generate n-bit code, hashing methods need n hash functions the k;; of which
generally takes the following form:

Hash Learning with CNN for Semantic Based Image Retrieval 229

U fi(z) > by
hi () = {0 felz) < by (1)

where x is the representation of a data sample, fj is the hashing function, and by,
is the corresponding threshold. Based on the method to get fi, hashing can be
divided into data-independent methods and data-dependent (or learning-based)
methods, of which the latter attempts to capture the inherent distribution of
the task domain by learning. And learning-based hashing can be classified into
unsupervised and supervised methods according to using annotation information
or not.

A typical category of Locality Sensitive Hashing (LSH) [5] uses random pro-
jection to construct hash functions. The property of LSH, that samples within
small Hamming distance in hash space are more likely to be near in their feature
space, makes it very attractive. But the metrics are asymptotically preserved
with increasing code length. Thus, to achieve high precision, LSH-related meth-
ods require large hash tables.

Unsupervised methods use only unlabeled data as training set, among which
are methods such as Kernelized LSH [15], Semantic Hashing [12,20] and Spectral
Hashing [23].

Supervised hashing utilizes human-annotated similarities or labels to get sat-
isfying codes. Supervised Hashing with Kernels (KSH) [19] uses kernel-based
model to minimize the Hamming distances of learned hash codes between sim-
ilar data samples while maximize the distances between dissimilar ones at the
same time. Binary Reconstruction Embedding (BRE) [14] learns hash functions
by minimizing the differences between original distances of any two samples
and the corresponding Hamming distances in hashing space. While initially pro-
posed as unsupervised hashing, BRE can be easily extended to a supervised one
by setting similar pairs with distance 0 and dissimilar pairs with distance 1.

These methods are kind of shallow and usually leverage some feature extrac-
tion algorithms to get the image representations. But the relationships between
samples in semantic space are not maintained in low-level feature apace. And
even combined with high-level features, the conventional hashing methods are
very likely to perform no better than an end-to-end system which learns the
feature extractor and hash functions together [26].

On the other hand, explosive interests in computer vision have been attracted
to CNN [13] since 2012. Its remarkable successes in kinds of tasks such as object
recognition [13,17,22], detection [13,22], image parsing [4] and video classifi-
cation [10] have narrowed the gap between machine and human vision by a
large step.

It has been suggested that the features in deep layers learned from ImageNet
possess great capability to represent visual content of images, and can be used
for different tasks, such as scene parsing [2], detection [6] and image retrieval [1].
Neural codes [1] uses activations of a fully-connected layer from an ImageNet-
pretrained CNN as descriptors of the input image. And then Euclidean distances
are computed to measure similarities. When retrained with datasets related to the
query field, the retrieval performance can be comparable with the state-of-the-art.

230 J. Guo et al.

CNNH and CNNH+ [24] take raw image as input, but divide the learning
process into two different stages. In the first stage, similarity /dissimilarity matrix
is decomposed to get the pseudo binary codes for training images. In the sec-
ond stage, the raw image pixels and the corresponding binary codes (CNNH+
together with their one-hot binary labels) are fed to a CNN whose objective
is to minimize the error between outputs and the target binary codes. But the
decomposition stage would bring about extra errors. And the pseudo codes are
fixed once the first stage is done, thus are not tunable for further improvement.

Lai et al. [16] proposes a deep neural network model to learn the hash func-
tions. And the model’s input is in the form of triplet, i.e., (I, I, I™), meaning
image I is more similar with I than with I~. The sub-networks for each element
image of the triplet share parameters with each other. And the triplet ranking
loss function is:

loss(z,z",27) = max(0, ||z — x+||§ — ||z — x‘H% +1)

st.ox, o, z” €[0,1]F

(2)

where z, 1 and 2~ are the sub-networks’ outputs of I, I", I~ respectively, and
k is the length of z, 2~ and z*. Zhao et al. [26] takes a similar method, but the
loss of every triplet is assigned with a weight which is defined by the numbers
of shared labels between query image and two result images.

In spite of the above method, [18,21,25] assume that good hash codes should
also be easily classified by a linear classifier, and take this target into hash
learning. In addition to the classification task, [21,25] penalize the output of
embedding functions to make it close to —1 and 1 as much as possible, while [25]
also requires the mean of each function to be 0.

3 Methodology

Given a set of class labels ¥ = {1,...,C} and an image dataset 7 =
{I,I5,...In} where each image is associated with one label y,, our goal is
to learn k hash functions which is used to encode images into k-bit hash codes.
When using the codes for retrieval, the images sharing same label with the query
image will be ranked on top of the result list.

In this paper, we propose a CNN architecture to learn the semantic-
preserving hash functions, as shown in Fig. 1. The input image first goes through
a stack of convolutional and pooling layers and then arrives at the concatenation
layer from where the model branches into two separate paths. Of the two paths,
one is the original softmax loss layer and the other is our hash layer and hinge
softmax layer.

Normally, suppose that x' is the output of the I-th layer of a CNN. Then if
[-th layer is a softmax layer which is used to predict a vector p of which the c-th
element is the probability of class ¢, the formulation is given by

exp(wlx!=1)

> exp(wox!—1)

where w, is the weights related with class ¢, and x'~! is the output of the
prior layer.

De = (c=1,2,...,0) (3)

Hash Learning with CNN for Semantic Based Image Retrieval 231

3.1 Hash Layer

The hash layer is a fully connected layer which has no nonlinear function inserted.
By using fully connection, the hash layer can learn global semantic representa-
tions of the input image. And the hash layer’s output will be penalized by the
following formulation:

In
hash_loss(x) = Z 1 — abs(g(x:))||? (4)

where 1,, is the number of neurons in the hash layer. And g¢(z;) will take the
following form:
-1 x;,<-1
gxi) =41 x;>1 (5)
x; otherwise

This loss can encourage the neurons to generate outputs that distributes less
around 0, which will be used as the threshold to binarize the outputs and get
the hash codes.

3.2 Hinge Softmax Loss

In hash learning, the target is more a rank problem than classification. It is
sufficient to make prediction of ground truth label p, larger than the rest, while
the traditional softmax loss loss(y, p) = —log(p,) can be too harsh. So we define
a loss modified from softmax, which takes the following form:

0 py > max(py) +m
—log(py) py < max(py) +m

hinge_softmax_loss(y,p) = { (6)

where y is the ground truth label, 7 is the rest of label set, p is the prediction
possibilities for every class and m is the slack that controls when the model
should be penalized.

By this formulation, for those samples that have been classified correctly by
a slack larger than m, the loss will be forced to be 0 and thus back propagate
no changes to the learnable parameters. Otherwise, the semantic representations
learned by CNN can be not so good, thus the penalization term will be taken.
So by this setting, the features of our hash layer can be semantically correct.

When m is set to be 1, because all the prediction possibilities are between 0
and 1, the hinge softmax loss will only execute the lower part and thus becomes
conventional softmax loss. And when m is no greater than 0, the loss can be
easily stuck in a local minimum, for example when the probabilities of all classes
are equal to a certain value.

232 J. Guo et al.

3.3 The Model

Traditional softmax loss can help in training the networks more discriminant. To
combine classification task with hash learning, we branch out from the layer prior
to the softmax layer and add a hash layer together with a hinge softmax layer.
By this way, the softmax loss in our model performs as an auxiliary classifier
like [17].

The overall loss function is given as:

mmi/nLl(y,p) + aLy(xp) + BL3(y,p) + A|[W||? (7)

where W is all the parameters that are to be learned in the network, L is the
hinge softmax loss, Lo is the loss of our proposed hash layer, L3 the softmax
loss for classification and the last term is the weight decay, and (are hyper-
parameters.

By our loss function, the representations learned by the proposed hash layer
can preserve the semantic information and be more hashing-like.

Compactness is an important property of hash codes. The binary code gen-
erated by every function should be independent with each other and the infor-
mation carried by the binary bit should be maximized. Compared with [16], we
take advantage of dropout’s [8] capability to prevent co-adaption where a feature
detector is only helpful in the presence of several other specific feature detectors.
With a dropout layer inserted between the hash layer and hinge softmax loss
layer, the neurons of hash layer can be independent of each other.

3.4 Hash Codes

The networks are trained by stochastic gradient descent. When training is done,
the two softmax layers can be simply dropped and use the rest architecture to
generate the hash codes. When a new image comes, it is first filtered by the
model so as to being encoded into a k-dimension vector, and then the vector is
binarized into the final hash codes according to Eq. (1) with all by set to be 0.

4 Experiments

4.1 Experimental Settings

We compare the proposed model with one data-independent method LSH [5],
and four supervised methods BRE [14], KSH [19], CNNH [24] and [16] on two
widely used benchmark datasets, i.e., the CIFAR-10 dataset! [11,16] and the
Street View House Number (SVHN) dataset?. And we will call the model of [16]
TRCNNH for short.

For fair comparison, we sample 1000 images from each dataset as query set
and another 5000 from the rest for training like [16]. For LSH, all the data except

! http://www.cs.toronto.edu/~kriz/cifar.html.
2 http://ufldl.stanford.edu/housenumbers/.

http://www.cs.toronto.edu/~kriz/cifar.html
http://ufldl.stanford.edu/housenumbers/

Hash Learning with CNN for Semantic Based Image Retrieval 233

the query set are training set. The 5000 keeping-label samples serve as training
set for the other methods. And following [16], images are represented by 512-dim
GIST features for non-CNN methods.

As for our proposed method, the 5000 labeled samples in each datasets are
divided into training set and validation set by which to find the most suitable
architecture and tune the hyper-parameters. Then all the 5000 samples are used
to retrain the model from scratch.

The description of an architecture is given in the following way: 3 x 32 x 32-
32C5P2-MP352-32C5P0-D0.5-SL10 represents a CNN with inputs of 3 channel
of 32 x 32 pixels, a convolutional layer with 32 filters whose size is 5 x 5 and 2
paddings around the input maps, a max pooling layer (AP for average pooling)
of 3 x 3 size and stride 2, a 32-filters convolutional layer whose kernel size is
5 x 5 and have 0 padding around the input maps, a dropout layer whose dropout
ratio is 0.5, and finally a softmax loss layer with 10 classes. And our hash layer
is always connected with the last hidden layer. Rectifier Linear Unit (ReLU) is
used as the nonlinear transformation neurons for all convolutional layers.

Hash lookup and Hamming ranking are two widely used methods to conduct
search with hashing [16,24]. Hash lookup constructs a lookup table with radius r
in advance, and all the samples within the radius will be returned as results, thus
can decrease the query time to a constant value. However, the number of results
returned will dramatically decrease with the code’s length increases. On the other
hand, Hamming ranking will traverse the dataset all through at a new coming.

We evaluate the performances on three metrics, i.e. Precision curves within
Hamming radius 2, Precision-Recall curves and Precision curves with respect to
different returned number with ranking.

Our models are implemented with Caffe [9], an open-source CNN framework.
On both datasets, our networks are trained with stochastic gradient descent.
The momentum is set to 0.9. Weight decay coefficients for convolutional layers
and fully connected layers are separately set to 0.001 and 0.25. For the hyper-
parameters in Eq. (7), o and g are decided by validation and fixed at 0.1, while
v decreases from 0.3 to 0 in the whole training stage. The margin in the hinge
softmax loss layer is set to 0.11in our experiments, which won’t hurt too much,
and can back propagate at the same time.

Table 1. MAP of Hamming ranking w.r.t different number of bits on two datasets.

Method code length | CIFAR10(MAP) SVHN(MAP)

12 bits | 24 bits | 32 bits | 48 bits | 12 bits | 24 bits | 32 bits | 48 bits
Ours 0.611 | 0.632 0.645 0.641 | 0.911 0.931 0.934 | 0.942
TRCNNH [16] 0.552 0.566 |0.558 |0.581 |0.899 |0.914 |0.925 |0.923
CNNH [24] 0.484 10.476 | 0.472 |0.489 |0.897 |0.903 |0.904 |0.896
KSH [19] 0.311 |0.348 | 0.353 |0.366 |0.576 |0.631 |0.658 |0.662
BRE [14] 0.150 |0.172 |0.174 |0.176 |0.156 |0.168 |0.169 |0.180
LSH [5] 0.106 |0.119 |0.121 |0.124 |0.132 |0.143 |0.128 |0.151

234 J. Guo et al.

The implementations of BRE [14] and KSH? [19] are provided by their
authors. For LSH, the projections are randomly sampled from a Gaussian dis-
tribution with zero-mean and identity covariance to construct the hash tables.
And the results of CNNH and TRCNNH are obtained from [16].

4.2 CIFAR-10

The CIFAR-10 dataset is an images collection containing 60,000 color images of
32 x 32 pixels. All the samples are evenly labeled with 10 mutually exclusive
classes, ranging from airplane to bird.

For this dataset, the architecture we choose is a six-conv-layer model. The
main branch of the model is 3 x 32 x 32-32C3P1-32C3P1-MP3S52-D0.5-32C3P1-
32C3P1-MP352-D0.5-64C3P1-64C3P1-AP3S2-D0.5-SL.10. For the convenience
of later quotation, we name the third pooling layer “Pool3”.

The MAP of Hamming ranking can be seen on Table 1 and the performance
curves are shown in Fig. 2. For all the four experimented code length, i.e. 12, 24,
32 and 48, the MAP of our model surpass the state-of-the-art by more than 5.9

Precision
Precision

Precision (Hamm. dist.<:

5 20 W0

25 30 3
Number of bits

(a)

200 400 600 800
Number of top returned images

(c)

Fig. 2. The results on CIFAR-10. (a) Precision curves of hash lookup within Hamming
radius 2. (b) Precision-recall curves of Hamming raking with code’s length of 48 bits.
(c¢) Precision curves with respect to number of returned images of Hamming raking
with code’s length of 48 bits.

1

=2

>

2
Precision

Precision

Precision (Hamm. dist.<:

15 20

40 45 J 02

25 30 35 0 06 200 00 600 800 000
Number of bits Recall Number of top returned images

(a) (b) (c)

Fig. 3. The results on SVHN. (a) Precision curves of hash lookup within Hamming
radius 2. (b) Precision-recall curves of Hamming raking with code’s length of 48 bits.
(c) Precision curves with respect to number of returned images of Hamming raking
with code’s length of 48 bits.

3 http://www.ce.columbia.edu/In/dvmm/downloads/WeiKSHCode/dlform.htm.

http://www.ee.columbia.edu/ln/dvmm/downloads/WeiKSHCode/dlform.htm

Hash Learning with CNN for Semantic Based Image Retrieval 235

percent. Figure2(a) witnesses that precision of images within 2 bits Hamming
distance returned by our model increases along with the length of hash code. The
LSH reported in this paper used random projection which relies on the input
feature to maintain the similarity. But because of the semantic gap between low-
level feature and content, LSH’s performances are not stable. While BRE and
KSH perform better than LSH, they are still worse than CNN based methods.
And in Fig.2(b) the precision-recall curve of our model encloses more spaces
than the others, which is consistent with Table 1. Then Fig.2(c) demonstrates
our model’s best performance on Hamming ranking, from 64 % to 69 %, nearly
by 8 % beyond TRCNNH.

Comparison Between Different Features. On CIFAR-10, we conduct some
other experiments to compare. One is image retrieval using Fuclidean distance
between corresponding features of query and dataset’s images as similarity, and
the features are right the outputs of hash layer (the “L2_fc” method). Another
two experiments we undertake are using KSH and LSH with outputs of “Pool3”
as descriptors of an input image (the “Pool3_feat”). LSH is also conducted with
512-dimension Gist feature as image descriptions. The network used in this part
is the 32-bit network. The results are shown in Table 2.

Surprisingly, we find that L2_fc is not the best, which may be resulted from
the denoising property of binarizing. KSH learns hash functions on top of the
features extracted from “Pool3”, right the preceding layer of our hash layer. The
retrieval precision of “Pool3_feat + KSH” is inferior to our method by a small
margin. And the last two LSH-based experiments show that the features learned
by CNN are indeed better than Gist.

Comparison with Baseline. We evaluate the performance of our proposed
hash layer and hinge softmax loss layer by comparing with three baseline mod-
els on CIFAR-10. The first baseline model is just like our model but without
the hash loss. The second baseline model is similar with [18], i.e. without the
auxiliary path and the hash loss. In addition to the second baseline, the third
baseline model replaces the hinge softmax loss with traditional softmax loss.
The parameters of the preceding convolutional layers are kept the same. The
results are presented in Table3. Our proposed method performs best on three

Table 2. Ranking precisions of different methods at 500 and 1500 on CIFAR-10

Precision Top N
500 1500

Method

Ours 68.52% 69.51%
L2 fc 68.30% 66.17%
Pool3_feat + KSH 68.40% 68.88%
Pool3_feat + LSH 58.84% 53.96%
Gist_512 + LSH 16.39% 15.21%

236 J. Guo et al.

Table 3. Comparison of the proposed model with baseline on CIFAR-10.

Method code length CIFAR10(MAP)

12 bits | 24 bits | 32 bits | 48 bits
Ours proposed model 0.611 |0.632 | 0.645 | 0.641
Ours without hash loss 0.607 1 0.621 | 0.633 |0.641
Ours with only hinge_softmax | 0.617 | 0.624 | 0.633 | 0.638
CNN with only softmax 0.594 |0.629 |0.619 |0.636

of the four tested code lengths. The third baseline model without any of our
modifications performs worst except 24 bits and fluctuate with the code length.

4.3 SVHN

The SVHN dataset consists of 630, 420 color house number images collected
from Google Street View images. The data is provided in two formats and the
second is used in our experiments. Fach data sample is of size 32 x 32 pixels
and annotated with one label from 1 to 10. And the dataset is preprocessed with
local contrast normalization, following Goodfellow et al. [7].

On this dataset, the main structure is similar to the CIFAR-10
model: 3 x 32 x 32-128C3P1-128C3P1-MP252-D0.5-128C3P1-128C3P1-MP2S2-
D0.5-128C3P1-128C3P1-AP252-D0.5-SL10.

Similar with the results on CIFAR-10, the MAP values related with the
four code lengths of our model on CIFAR10 outperform the state-of-the art.
Figure 3(a) shows the precision of returns with hash lookup of radius 2. When
using 12-bit codes for retrieval, the precision of our model is just comparable
with TRCNNH [16]. But with the increment of code length, the gap between
our model and TRCNNH is getting larger. On all the three metrics, our model
is the best one.

5 Discussion

Experiments have shown that the precision of our proposed model on both SVHN
and CIFAR-10 within Hamming radius of 2 improves with more hash bits, which
is consistent with our intuition.

Although KSH uses kernel functions for hashing and our hash layer uses linear
functions, the KSH with our CNN-feature performs slightly inferior than our
method. The hash layer can be considered as learning-based linear projections,
whose inputs are also learnable. During training, the weights and biases in CNN
are adjusted to render the filters expressive enough so as to allow the simple
classifier on the top perform well. And the raw pixels are at the same time
transformed into a description space where similarity relationships are correlated
with Euclidean distance.

Hash Learning with CNN for Semantic Based Image Retrieval 237

Unlike CNNH and TRCNNH both of which need the amount of annotations
to be square or even cubic of the number of training images, our method trains
the CNN with single image whose label indicates the class. So more training
data will not burden it too much.

6 Conclusion

As a method of ANN search, interests of many researchers and companies have
been attracted by hashing. We propose a new method which can obtain the
binary hash code of a given image just by binarizing the outputs of our hash
layer, and achieves the best result on both SVHN and CIFAR-10.

In consideration of the fact that all the models use only 5000 samples to
train, we can expect an improvement of performance with a larger training set.
Besides, a large amount of unlabeled data remains untouched, which can be
another key element to enhancement.

Acknowledgments. This work was supported by the National Basic Research Pro-
gram (973 Program) of China (Nos. 2012CB316301 and 2013CB329403), and the
National Natural Science Foundation of China (No. 61332007).

References

1. Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image
retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014,
Part I. LNCS, vol. 8689, pp. 584-599. Springer, Heidelberg (2014)

2. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic
image segmentation with deep convolutional nets, fully connected CRFs (2014).
arXiv preprint arXiv:1412.7062

3. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: ideas, influences, and
trends of the new age. ACM Comput. Surv. (CSUR) 40(2), 5 (2008)

4. Farabet, C., Couprie, C., Najman, L., Lecun, Y.: Learning hierarchical features for
scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1915-1929 (2013)

5. Gionis, A., et al.: Similarity search in high dimensions via hashing. In: Proceedings
of 25th International Conference on Very Large Data Bases VLDB 1999, September
7-10, Edinburgh, Scotland, UK, pp. 518-529 (1999)

6. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 580-587. IEEE (2014)

7. Goodfellow, I., Warde-farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout net-
works. In: Proceedings of the 30th International Conference on Machine Learning
(ICML 2013), pp. 1319-1327 (2013)

8. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, 1., Salakhutdinov, R.R.:
Improving neural networks by preventing co-adaptation of feature detectors (2012).
arXiv preprint arXiv:1207.0580

9. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,
Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature
embedding. In: Proceedings of the ACM International Conference on Multimedia,
pp. 675-678. ACM (2014)

http://arxiv.org/abs/1412.7062
http://arxiv.org/abs/1207.0580

238

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

J. Guo et al.

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-
scale video classification with convolutional neural networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725-1732.
IEEE (2014)

Krizhevsky, A., Hinton, G.E.: Learning multiple layers of features from tiny images
(2009)

Krizhevsky, A., Hinton, G.E.: Using very deep autoencoders for content-based
image retrieval. In: Proceedings of the European Symposium on Artificial Neural
Networks. Citeseer (2011)

Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Systems
25, pp. 1097-1105 (2012)

Kulis, B., Darrell, T.: Learning to hash with binary reconstructive embeddings. In:
Advances in Neural Information Processing Systems 22, pp. 1042-1050 (2009)
Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing for scalable image
search. In: IEEE 12th International Conference on Computer Vision, pp.
2130-2137. IEEE (2009)

Lai, H., Pan, Y., Liu, Y., Yan, S.: Simultaneous feature learning and hash coding
with deep neural networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2015)

Lee, C.-Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In:
Proceedings of the International Conference on Artificial Intelligence and Statistics,
pp. 562-570 (2015)

Lin, K., Yang, H.-F., Hsiao, J.-H., Chen, C.-S.: Deep learning of binary hash codes
for fast image retrieval. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pp. 27-35 (2015)

Liu, W., Wang, J., Ji, R., Jiang, Y.-G., Chang, S.-F.: Supervised hashing with
kernels. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2074-2081. IEEE (2012)

Salakhutdinov, R., Hinton, G.: Semantic hashing. Int. J. Approximate Reasoning
50, 969-978 (2009)

Shen, F., Shen, C., Liu, W., Shen, H.T.: Supervised discrete hashing. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE
(2015)

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition (2014). arXiv preprint arXiv:1409.1556

Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Advances in Neural Infor-
mation Processing Systems 21, pp. 1753-1760 (2008)

Xia, R., Pan, Y., Lai, H., Liu, C., Yan, S.: Supervised hashing for image retrieval
via image representation learning. In: Proceedings of the AAAI Conference on
Artificial Intellignece, pp. 2156-2162 (2014)

Yang, H.-F., Lin, K., Chen, C.-S.: Supervised learning of semantics-preserving
hashing via deep neural networks for large-scale image search (2015). arXiv preprint
arXiv:1507.00101

Zhao, F., Huang, Y., Wang, L., Tan, T.: Deep semantic ranking based hashing for
multi-label image retrieval. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1556-1564 (2015)

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1507.00101

	Hash Learning with Convolutional Neural Networks for Semantic Based Image Retrieval
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Hash Layer
	3.2 Hinge Softmax Loss
	3.3 The Model
	3.4 Hash Codes

	4 Experiments
	4.1 Experimental Settings
	4.2 CIFAR-10
	4.3 SVHN

	5 Discussion
	6 Conclusion
	References

