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PC Chairs’ Preface

PAKDD 2016 is the 20th conference of the Pacific Asia Conference series on
Knowledge Discovery and Data Mining. For the first time, the conference is being held
in New Zealand. The conference provides a forum for researchers and practitioners to
present and discuss new research results and practical applications.

There were 307 papers submitted to PAKDD 2016 and they underwent a rigorous
double blind review process. Each paper was reviewed by three Program Committee
(PC) members and meta-reviewed by one Senior Program Committee (SPC) member
who also conducted discussions with the reviewers. The Program Chairs then con-
sidered the recommendations from SPC members, looked into each paper and its
reviews, to make final paper selections. At the end, 91 papers were selected for the
conference program and proceedings, resulting in an acceptance rate below 30 %,
among which 39 papers were assigned as long presentation and 52 papers were
assigned as regular presentation. The review process was supported by the
Microsoft CMT system.

The conference started with a day of five high-quality workshops and five tutorials.
During the next three days, the Technical Program included 19 paper presentation
sessions covering various subjects of knowledge discovery and data mining, a data
mining contest, and three keynote talks by world-renowned experts.

We would like to thank all the Program Committee members and external reviewers
for their hard work to provide timely and comprehensive reviews and recommenda-
tions, which were crucial to the final paper selection and production of a high-quality
Technical Program. We would also like to express our sincere thanks to Huiping Cao
and Jinyan Li together with the individual Workshop Chairs for organizing the
workshop program; Hisashi Kashima and Leman Akoglu together with the individual
tutorial speakers for arranging the tutorial program; Ruili Wang for compiling all the
accepted papers and for working with the Springer team to produce these proceedings.

We hope that participants in the conference in Auckland, as well as subsequent
readers of the proceedings, will find the technical program of PAKDD 2016 to be both
inspiring and rewarding.

February 2016 James Bailey
Latifur Khan

Takashi Washio



General Chairs’ Preface

It is our great pleasure to welcome you to the 20th Conference of the Pacific Asia
Conference series on Knowledge Discovery and Data Mining. PAKDD has success-
fully brought together researchers and developers since 1997, with the purpose of
identifying challenging problems facing the development of advanced knowledge
discovery. The 20th edition of PAKDD continues this tradition.

We are delighted to present three outstanding keynote speakers: Naren Ramakr-
ishnan from Virginia Tech, Mark Sagar from The University of Auckland, and Svetha
Venkatesh from Deakin University.

We are grateful to the many authors who submitted their work to the PAKDD
technical program. The Program Committee was led by James Bailey, Latifur Khan and
Takashi Washio. A report on the paper selection process appears in the PC Chairs’
Preface.

We also thank the other Chairs in the organization team: Muhammad Asif Naeem
for running the Contest; David Tse Jung Huang for publicizing to attract submissions
and managing the website; Ranjini Swaminathan for handling the registration process
and Yun Sing Koh and Ranjini Swaminathan for the local arrangements ensuring the
conference runs smoothly.

We are grateful to the sponsors of the conference, Auckland Tourism Events and
Economic Development, and BECA, for their generous sponsorship and support, and
the PAKDD Steering Committee for its guidance and Best Paper Award, Student
Travel Award and Early Career Research Award sponsorship. We would also like to
express our gratitude to The University of Auckland for hosting and organizing this
conference. Last but not least, our sincere thanks go to all the local team members and
volunteer helpers for their hard work to make the event possible. We hope you enjoy
PAKDD 2016 and your time in Auckland, New Zealand.

Gillian Dobbie
Joshua Zhexue Huang
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Joint Classification with Heterogeneous
Labels Using Random Walk with Dynamic
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Abstract. This paper studies a new machine learning strategy called
joint classification with heterogeneous labels (JCHL). Unlike traditional
supervised learning problems, JCHL uses a single feature space to
jointly classify multiple classification tasks with heterogeneous labels.
For instance, biologists usually have to label the gene expression images
with developmental stages and simultaneously annotate their anatomi-
cal terms. We would like to classify the developmental stages and at the
same time classify anatomical terms by learning from the gene expression
data. Recently, researchers have considered using Preferential random
walk (PRW) to build different relations to link heterogeneous labels, thus
the heterogeneous label information can be propagated by the instances.
On the other hand, it has been shown that learning performance can
be significantly enhanced if the dynamic propagation is exploited in
PRW. In this paper, we propose a novel algorithm, called random walk
with dynamic label propagation (RWDLP), for the JCHL problems. In
RWDLP, a joint transition probability graph is constructed to encode the
relationships among instances and heterogeneous labels, and we utilize
dynamic label propagation in the graph to generate the possible labels
for the joint classification tasks with heterogeneous labels. Experimental
results have demonstrated the effectiveness of the proposed method.

Keywords: Joint classification · Heterogenerous labels · Random walk ·
Dynami label propagation

1 Introduction

In machine learning, traditional classification only has a single feature space and
a label space [7,17]. An example would be assigning a given email into spam or
non-spam classes [1] or assigning a part of speech to each word in a input sentence
[12]. But in actual applications, there are quite a few classification scenarios that
contain multiple diverse label sets for the training set and it is natural to solve
these problems by the joint classification with heterogeneous labels. For example,
biologists usually have to label the gene expression images with developmental

c© Springer International Publishing Switzerland 2016
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stages [6] and anatomical terms annotation of gene expression patterns [20]. Each
image is considered as a data instance, and each data instance must be assigned
a stage term and one or more anatomical terms. Traditional classification only
has one label set, like spam or non-spam classes. Joint classification, however,
includes several different label sets, just like parse tree and syntactic structure.
Figure 1 shows the difference between traditional classification and the joint
classification with heterogeneous labels.

(a) Traditional Classification

Label set Label set 1

Label set 2

(b) Joint Classification with 
Heterogeneous Labels

Data set Data set

Fig. 1. The difference between Traditional Classification and Joint Classification with
Heterogeneous Tasks

Random walk is a popular algorithm and has been used in many fields, like
economics, biology and computer science. It explains the observed behaviors of
many processes and is widely used in classification problems [8,10]. A random
walk on a graph can make use of neighbors’ information to learn the correct
labels in an iterative process. Therefore, Cai et al. [2] proposed an graph-based
semi-supervised algorithm called preferential random walk (PRW) to solve the
JCHL problem. PRW combines the information of both data features with het-
erogeneous labels and the standard random walk by using data features, and the
transition probability matrices of both algorithms are stable.

Recently, another graph-based semi-supervised algorithm was proposed,
called dynamic label propagation (DLP) [13], which incorporates the label corre-
lations and instance similarities into a new way of performing label propagation.
It was developed on the basis of label propagation (LP) [19] which assumes
that nodes connected by edges of large similarity tend to have the same label
through information which is propagated within the graph. And it is consistent
with random walk. DLP updates the similarity measures dynamically by fus-
ing multi-label/multi-class information. Experimental results have shown that
this algorithm is more competitive than those algorithms without the dynamic
updating process.

In the light of these previous dicussions, we got inspiration and proposed a
graph-based semi-supervised algorithm called RWDLP to solve JCHL problem.
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In RWDLP, we also build different relations to link heterogeneous labels by
a markov chain random walk, and we employ the dynamic updating process
to update the transition probability matrix in each iteration. We develop a new
simple way to update the transition probability matrix of random walk, by which
the data features and heterogeneous labels could be merged more effectively and
produce a better performance. As demonstrated in our experiments, the random
walk with dynamic label propagation can successfully deal with JCHL problems.

The rest of the paper is organized as follows. In Sect. 2, we discuss the dif-
ference between traditional classification and joint classification, and then we
give a brief review of PRW. In Sect. 3, we develop the proposed algorithm. In
Sect. 4, we show and discuss the experimental results. In Sect. 5, we give some
concluding remarks.

2 Related Works

2.1 Traditional Classification and Joint Classification

Traditional classification has one data feature set and one label set on its input-
output mapping functions. In this paper, we study joint classification with het-
erogeneous lables that has a feature set and multiple diverse label sets. There
have been a variety of algorithms proposed to study heterogeneous labels. For
example, Jin et al. [5] studied a learning with several views corresponding to dif-
ferent set of class labels. These label sets have a close relation although they are
different in the number of labels. However, there are not many studies in joint
classification. The main bottleneck of JCHL problem is to deal with multiple
tasks in the same time. The solution is to study a new algorithm that can han-
del the heterogeneous labels, and another idea is to combine the heterogeneous
labels into a unified formulation.

Preferential random walk (PRW) proposed by Cai et al. [2] is an algorithm
about JCHL problem that combines the heterogeneous labels into an unified
formulation. We consider data instances and heterogeneous labels as nodes in a
graph, and regard the affinity of data-to-data, label-to-label and data-to-label
as edges. We call the graph as Mix-Relevance Graph (MRG). And then the
algorithm imagines a random walker which starts from a node (instance) with a
known label, and steps to its neighbor nodes with a specific probability given in
the transition probability matrix.

2.2 The Construction of MRG

In this subsection, we briefly review the Mix-Relevance Graph in PRW. Through-
out this article, we denote a vector as a bold lowercase character x and a matrix
as a bold uppercase character X. If there’s no special note, all vectors are column
vectors. Specifically, the i-th column vectors of a matrix X are denoted as xi.
Let [N : M ](M > N) denote a set of integers in the range of N to M inclusively,
v(i) denote the i-th entry of a vector v, and M(i, j) denote the entry at the i-th
row and j-th column of a matrix M.
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Given a dataset X, there are N data instances and each data instance has
M dimensional features, denoted as X ∈ R

N×M . On the other hand, there are
several output spaces, Y1,Y2, ...,YK , where K is the number of label spaces, and
the number of labels in each space is different, denoted as Y1 ∈ R

Q1 , ...,YK ∈
R

QK . For simplicity, we write Y = [Y1,Y2, ...,YK ] We will discuss how to
contruct the MRG in the rest of this section.

In dataset X, the number of instances is N . The similarity between xi and
xj in the object feature space can be measured by the affinity MX(i, j), while
i ∈ [1 : N ] and j ∈ [1 : N ]. The affinity MX(i, j) can be calculated based on
the norm of the difference between their feature vectors xi and xj , while i is not
equal to j. In our algorithm, we employ the Gaussian kernel to compute this
affinity.

MX(i, j) =

{
exp(− ‖xi − xj‖2 /2σ2), i �= j

0, otherwise
(1)

where ‖xi − xj‖2 is the Euclidean distance between the i-th object and the j-
th object of dataset X. The parameter σ is regarded as a positive number to
control the linkage in the manifold. From MX , we can construct the transition
probability matrix of data instances.

SX(i, j) =

{
(1 − β1)MX(i, j)/dXi , ifdYi > 0
MX(i, j)/dXi , otherwise

(2)

where dXi =
∑

j MX(i, j), dYi =
∑

j Y(i, j) and β1 ∈ [0, 1]. From SX , a graph
GX = (VX , EX) can be induced, where VX = X and EX ⊆ VX × VX . It is
clear that SX is symmetric and non-negative, therefore GX is undirected and
positively weighted. Since GX is constructed with the affinity of data points, it
is usually called as data graph, such as the left subgraph in Fig. 2. Most of the
existing graph-based semi-supervised learning methods [10,16] only make use of
the data graph, while RWDLP use both data graph and label graphs.

Now we have the data graph GX , and then we should build the label graphs.
Take label set Yp as example, each data instance xi belongs to one of Qp classes

Yp =
{
yp
1, ...,y

p
Qp

}
represented by yp

j ∈ {0, 1}Qp , such that yp
j (q) = 1 if xi is

classified into class yp
j , and 0 otherwise. Because there are several heterogenerous

label sets, we should build label graph for each label set, and the structure of
each label set maybe different. Generally, classification task will be divided into
single label task and multiple label task by the number of label on each data
point. For this reason, we proposed two strategies to calculate the correlation
between labels. Firstly, we compute the affinity of a single label task Yp as
follow:

MYp
(i, j) =

∥∥yp
i − yp

j

∥∥
F

, (3)

where
∥∥yp

i − yp
j

∥∥
F

means Frobenius norm between the i-th label and the j-th
label of Yp. Secondly, for a multiple label task Yq, we compute the affinity by
cosine similarity as follows:
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MYq
(i, j) =

yq
i · yq

j

‖yq
i ‖ · ‖yq

j‖
, (4)

where ‖yq
i ‖ means absolute value of the i-th label of Yq. From MYp

and MYq
,

we can construct the transition probability matrix of label sets.

SYk
(i, j) =

{
(1 − β2)MYk

(i, j)/dYk
i , ifdYk

i > 0
MYk

(i, j)/dYk
i , otherwise

(5)

where Yk ⊆ Y, dYk
i =

∑
j Yk(i, j) and β2 ∈ [0, 1]. Now, we can also induce

label graphs Gk = (Vk, Ek) from MYk
, where Vk = Yk and Ek ⊆ Vk × Vk,

just like the right subgraph in Fig. 2. The MRG is mainly composed of data
graph and label graph. We have constructed data subgraph and label subgraphs,
while these subgraphs are not connected yet. Obviously, the subgraph GXYp

=
(VX , VYp

, EXYp
) connects GX and GYp

, whose adjacency matrix is Yp, where
p ∈ [1 : K]. Moreover, the subgraph GYpYq

= (Vp, Vq, EYpYq
) connects GYp

and
GYq

, where p ∈ [1 : K], q ∈ [1 : K] and p �= q. The adjacency matrix of subgraph
GYpYq

is defined as follow:

MYpYq
(i, j) =

yp
i · yq

j

‖yp
i ‖ · ‖yq

j‖
, (6)

where ‖yp
i ‖ means absolute value of the i-th label of Yp. From MYpYq

, we can
construct the transition probability matrix.

SYpYq
(i, j) =

{
β3MYpYq

(i, j)/d
MYpYq

i , ifd
MYpYq

i > 0
0, otherwise

(7)

where d
MYpYq

i =
∑

j MYpYq
(i, j) and β3 ∈ [0, 1].

Lots of graph-based semi-supervised learning methods [19,20] have been pro-
posed in the past, but most of them only use information conveyed by GX . And
PRW fuses data instances and heterogeneous labels information encoded in G.
Motivated by PRW [2] and DLP [13], we plan to further develop preferential
random walk and dynamic label propagation to measure the relevance among
labeled data points and unlabeled data points.

3 Random Walk with Dynamic Label Propagation
on MRG

Standard random walk on a graph G is usually described as a Markov process
with transition probability matrix P = D−1G, where D = diag(d1, ..., dn)
and di =

∑
j G(i, j) are the degree of vertes i. It is clear that PT �= P and∑

j P(i, j) = 1. If G is symmetric, the graph is undirected. If G is asymmetric,
the graph is directed and di is the out degree of vertex i. Let Yt be the distrib-
ution of the random walker at time t. The steady state can be computed by
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Data instance

Label set 1

Label set 2

Fig. 2. The Mix-Relevance Graph:solid lines indicate affinity between vertices within
in a same subgraph, dashed lines indicates associations between vertices in two different
subgraphs

Yt+1 = YtP. (8)

It can be seen that the steady state of a standard random walk is just determined
by the graph itself. In order to use label information, we propose the RWDLP
as follow:

Yt+1 = (1 − α)S0Yt + αY0 (9)

where S is the transition probability matrix constructed in last section, Y0 =
[y1,y2, ...,yK ] contains the given labels of training objects and the unlabels of
testing objects at first [15], and 0 ≤ α ≤ 1 specifies the importance of initial
label information of a data instance, which can affect the ranking of the resulting
label. In each iteration, we will update the transition probability matrix by a
new label distribution matrix Yt+1, as follow:

St+1 = (1 − μ)St + μYt+1YT
t+1 (10)

where μ is the importance of the new label information.
The steady probability distribution Y can be solved by the iterative method.

The overall algorithm is shown in Algorithm 1.
After solving Y by using Algorithm 1, we predict the heterogenerous labels

of data instance in multiple diverse label sets by different methods. For single-
label task, we use yp(i) to represent the stage label of i-th data instance and the
yp(i) is the maximum probability of a label set:

yp(i) = argmax(yp
i ) (11)

where yp
i is the i-th row vector of matrix Yp, and Yp is a submatrix of Y, which

means the output of p-th task. For multi-label task, we compute a threshold
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value θ [14] to get the multiple labels yq(i) of i-th data instance.

yq(i) =

{
1, yq

i � θ

0, yq
i < θ

(12)

where yq
i is the row vector of matrix Yq.

Algorithm 1. Random walk with dynamic label propagation

Input : S0 and Y0 is an initial guess stated. α and the tolerance ε
Output : Y

Procedure :
1. Set t = 1;
2. Compute Yt = (1 − α)St−1Yt−1 + αY0;
3. Compute St = (1 − μ)St−1 + μYtYT

t ;
4. Normalize each column of S;
5. If ‖Yt − Yt−1‖ < ε , then stop, Set Y = Yt; otherwise set t = t + 1 and goto step 2.

4 Experiment and Result

Though we joint classifications with heterogenerous labels, we also compare
RWDLP’s performance with the state-of-the-art classification algorithms and
show the performance in this section.

4.1 Data Set

To develop and test our method, we use the Berkeley Drosophila Genome Project
(BDGP) gene expression pattern dataset. Recently, a lot of research works have
been experienced in the raw data from BDGP. This dataset is widely used to
develop and test anatomical annotation methods for Drosophila gene expression
pattern images.

The images from BDGP database contain different views, and we just con-
sider three views of images including lateral, dorsal and ventral images in our
experiment, because the number of images from other views are not enough. All
the images from BDGP have been pre-processed, including aligning and resizing
to 128×320 gray images. The SIFT features are extracted from the gray images,
and the codebook is made by K-means. The number of clusters is set to 1000, 500
and 250 for lateral, dorsal and ventral images, then we concatenate on the three
vectors in one bag. To be specific, let xl ∈ R

1000, xd ∈ R
500 and xv ∈ R

250 denote
the bag-of-words vector for images in a bag from lateral, dorsal and ventral view.
Therefore, an image bag can be represented as x = [xl;xd;xv] ∈ R

1750.
Drosophila embryogenesis has 17 stages, which are divided into 6 major

ranges, i.e. stages 1–3, 4–6, 7–8, 9–10, 11–12, 13–16 and 17, in the BDGP data-
base [9]. And the total number of anatomical terms is 303, i.e. foregutAISN ,
maternal and so on. We ignore the stage 1–3 and 17 data since the number
of anatomical terms is too small. For the same reason, we select 79 anatomical
terms in our experiment. At last, there are two classification tasks in a dataset,
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stage classification and anatomical terms classification. Obviously, stage classifi-
cation is a single-label/multi-class problem, which has 5 lables, and anatomical
terms classification is a multi-label/multi-class problem, which has 79 lables.

We use 5-folds cross-validation and report the average performance of the
5 tails. We use 1-fold for traing and use the remaining 4-folds for testing to
imitate actual scenarios in which the known label samples are far less than the
unknown label samples. In our experiment, we initialize the testing label with
KNN method, because it is simple and intuitive. To be specific, we set k=10
of KNN and it doesn’t matter what it is assigned in our method. There are
5 parameters in our method and it isn’t sensitive in certain ranges with good
performances. β1, β2, β3, which control the jumping among three subgraphs, can-
not affect the result much if they are assigned in the range of (0.05,0.5). α is
the importance of initial label information of a data instance and it should be
assigned in the range of (0.5,0.9). μ is the importance of the new label infor-
mation and it should be assigned in the range of (0.5,0.9). Since we handle
two classifications in the same time, we use accuracy for stage classification to
measure the performance between our proposed method and other state-of-the-
art methods, and use macro precision, macro recall, macro F1, micro precision,
micro recall and micro F1 for anatomical terms classification.

4.2 Compared Methods

Because stage classification is a single-label/multi-class problem, we choose two
state-of-the-art methods, SVM and KNN, to compare with our proposed algo-
rithm. The support vector machine (SVM) algorithm constructed by Chang and
Lin [3] is one of the most popular methods of single-label problem. We use radial
basis function (RBF) kernel and the optimal parameter values for C = 1 and
γ = 0.9. This k-nearest neighbor (KNN) method is an unsupervised learning,
while SVM is supervised and our method is semi-supervised. We set k = 50, how-
ever, it doesn’t affect the result much. We also predict the anatomical terms for
the Drosophila gene expression patterns, which is a multi-label/multi-class prob-
lem. It has a different label set compared with stage classification and both of the
sets are heterogenerous. Traditionally, the precision, recall and F1 score are the
measure of classification performance. But for the multi-label/multi-class classi-
fication now, macro and micro average of precision, recall and F1 score are used
and suggested by Tomancak, P. et al. [11]. In our experiment, we compare the
result of our proposed algorithm with three state-of-the-art multi-label/multi-
class methods: local shared subspace(LS) [4], harmonic function (HF) [20] and
ML-KNN [18] which is used to do the initialization. LS and HF are proposed
to solve the multi-label annotation problem. For these methods, we used the
published codes posted on the corresponding author’s websites.

4.3 Performance Comparison

We use the average classification accuracy of 5-folds cross-validation to assess
the results. The result of stage classification is shown in Fig. 3 on the left.
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Our method exhibits the better result on the average prediction accuracy, and is
better than other state-of-the-art methods on 4 stages. The average classification
accuracy of our method is 85.01%, while the value of SVM is 80.69%, and KNN
is 77.55%. The Fig. 3 on the right shows the result of anatomical terms classifica-
tion results. We can see that our algorithm is better than the other methods on
all metrics. From Tables 1 and 2, we can see that our method will have better per-
formance with less labeled data instances, while other algorithms must be given
more labeled data instances. On the one hand, our proposed algorithm can joint
stage classification and anatomical term classification simultaneously, and the
former is single-labe/multi-class classification and the latter is multi-label/multi-
class classification. On the other hand, we dynamically update the transition

Fig. 3. Stage classification results and anatomical term classification results.

Table 1. The performance of RWDLP and KNN algorithms with different sizes training
data

RWDLP Macro precision Macro recall Macro F1 Micro precision Micro recall Micro F1

400 0.4713 0.2778 0.3493 0.3027 0.1547 0.1814

500 0.5945 0.3475 0.4383 0.3749 0.1920 0.2252

600 0.5963 0.3486 0.4397 0.3771 0.1932 0.2269

700 0.5960 0.3498 0.4406 0.3766 0.1946 0.2280

800 0.5965 0.3507 0.4414 0.3775 0.1958 0.2292

900 0.5980 0.3522 0.4430 0.3793 0.1975 0.2311

KNN Macro precision Macro recall Macro F1 Micro precision Micro recall Micro F1

400 0.6434 0.1077 0.1844 0.1479 0.0476 0.0692

500 0.5783 0.1319 0.2148 0.1568 0.0599 0.0818

600 0.5781 0.1435 0.2299 0.1547 0.0635 0.0869

700 0.5743 0.1530 0.2417 0.1928 0.0698 0.0946

800 0.6183 0.1607 0.2551 0.2339 0.0730 0.0999

900 0.5916 0.1546 0.2451 0.2115 0.0736 0.1017
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Table 2. The performance of LS and HF algorithms with different sizes training data

LS Macro precision Macro recall Macro F1 Micro precision Micro recall Micro F1

400 0.3678 0.2571 0.2943 0.3329 0.1442 0.1732

500 0.4675 0.2786 0.3394 0.3417 0.1561 0.1899

600 0.5728 0.2905 0.3855 0.3759 0.1604 0.2027

700 0.4933 0.3141 0.3807 0.3768 0.1807 0.2190

800 0.5603 0.3203 0.4076 0.3609 0.1845 0.2262

900 0.5542 0.3191 0.4050 0.3860 0.1873 0.2320

HF Macro precision Macro recall Macro F1 Micro precision Micro recall Micro F1

400 0.4516 0.2477 0.3199 0.2554 0.1383 0.1680

500 0.4584 0.2522 0.3254 0.2693 0.1439 0.1728

600 0.4533 0.2499 0.3222 0.2716 0.1447 0.1760

700 0.4576 0.2499 0.3232 0.2775 0.1448 0.1768

800 0.4818 0.2567 0.3349 0.2882 0.1487 0.1834

900 0.4808 0.2663 0.3428 0.2973 0.1570 0.1938

probability matrix in iterative process. As shown in the result, when one work is
short of information to do classification, we can use the label information of other
works to make the decision, and make good use of the limit label information
from the data instances.

5 Conclusions

In this paper, we have proposed a random walk with dynamic label propaga-
tion method (RWDLP), which dynamically updates label information by itera-
tion. The experimental results have demonstrated that the proposed algorithm
is effective. In the future, we would like to handle more similar tasks. Besides,
our method can deal with multi-label classification or multi-instance multi-label
classification and just do some improvements.
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Abstract. For class imbalance problem, the integration of sampling and
ensemble methods has shown great success among various methods. Nev-
ertheless, as the representatives of sampling methods, undersampling and
oversampling cannot outperform each other. That is, undersampling fits
some data sets while oversampling fits some other. Besides, the sampling
rate also significantly influences the performance of a classifier, while
existing methods usually adopt full sampling rate to produce balanced
training set. In this paper, we propose a new algorithm that utilizes a
new hybrid scheme of undersampling and oversampling with sampling
rate selection to preprocess the data in each ensemble iteration. Bag-
ging is adopted as the ensemble framework because the sampling rate
selection can benefit from the Out-Of-Bag estimate in bagging. The pro-
posed method features both of undersampling and oversampling, and
the specifically selected sampling rate for each data set. The experi-
ments are conducted on 26 data sets from the UCI data repository, in
which the proposed method in comparison with the existing counterparts
is evaluated by three evaluation metrics. Experiments show that, com-
bined with bagging, the proposed hybrid sampling method significantly
outperforms the other state-of-the-art bagging-based methods for class
imbalance problem. Meanwhile, the superiority of sampling rate selection
is also demonstrated.

Keywords: Class imbalance learning · Hybrid sampling · Sampling
method · Ensemble method

1 Introduction

In many classification applications, the problem of learning from imbalanced
data is still one of the challenges [22], where the number of data in the minority
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class is severely under-represented and overwhelmed by the majority class. In this
case, the distribution of the classes is skewed. Subsequently, usual classification
methods will generate poor results because the distribution is one of the most
important factors that affect the performance [7,15,19].

Usually, standard classification algorithms assume that the class distribution
is balanced, and the misclassification cost is equal for both classes. However,
there exists some cases that the class distribution is skewed and the misclassifi-
cation cost is extremely unequal. Further, sometimes people focus more on the
minority class because it usually contains more information and interest than
the majority class. Let us take cancer diagnosis as an example, the number of
patients who have cancer is much less than the number of healthy people in reg-
ular checkups. It is obvious that the cost for misdiagnosing a healthy person to
be sick, which only brings the person mental stress and more payment to further
diagnosis, is much less than diagnosing a patient to be health, which may lead
to the loss of the patient’s life. Therefore, when dealing with imbalanced data,
the misclassification cost is one of the most significant factors that affect the
process of learning. In addition to the algorithms, evaluation metrics also play
important roles in imbalanced learning. Suppose there are 100 cancer patients
out of 10,000 people, the normal classifier will tend to predict “healthy”, because
even all predictions are “healthy”, the accuracy of this classifier is still as high
as 99 %. Therefore, simply using the accuracy or error rate is not comprehen-
sive enough to measure the performance of a classifier dealing with imbalanced
data. Usually, three evaluation metrics for class imbalance problem, i.e. AUC,
F1 and G-mean, will be used. In this paper, we focus on the binary classification
problem, and following the convention, we treat samples in the minority class as
positive and samples in the majority class as negative.

Among various of methods to tackle the imbalance problem, sampling meth-
ods have been proved to be effective. Several studies have shown that training on
the balanced data set by sampling methods can achieve better overall classifica-
tion performance than the original imbalanced one [11,21]. Usually, the sampling
methods, such as random undersampling or oversampling, are integrated with
ensemble methods, such as bagging or boosting, in order to overcome their draw-
backs and provide more diversity to the boosted classifier [12].

However, ensemble-based undersampling and oversampling cannot outper-
form each other, e.g. see a recent survey [12], in which RUSBoost [17] (under-
sampling based) wins SMOTEBoost [9] (oversampling based) 22 times, draws
4 times and loses 18 times and UnderBagging [1] (undersampling based) wins
SMOTEBagging [20] (oversampling based) 18 times, draws 1 time and loses 25
times (shown in Tables XX and XXI in [12]). It can be seen that the results
generated by ensemble-based undersampling or oversampling highly depend on
the data. In other words, some data has better performance with undersam-
pling, while the other ones with oversampling. Therefore in terms of the sam-
pling process, it is expected that the hybrid of undersampling and oversampling
can take advantage of their properties. That is, the hybrid sampling generally
outperforms each individual sampling method because undersampling and over-
sampling are complementary to each other and cure the skewed distribution of
class imbalanced data in different extents.
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In addition, no matter undersampling, oversampling or even hybrid sampling
is adopted, the sampling rate is one of the key factors that affect the performance
of a classifier. Most of the sampling based methods, no matter integrated with
ensemble methods or not, tend to make the number of data in both classes
balanced after sampling, based on the simple assumption that the balanced
training set produces the best result. However, producing poor model caused by
training on imbalanced data does not imply that the optimal model is produced
by training on totally balanced data by sampling. Estabrooks et al. [11] shows
that the best results from undersampling and oversampling are not always on
the balanced case. It means that conducting sampling to achieve the balanced
data for training is not guaranteed to be the best solution. Furthermore, the
best sampling rate depends on the distribution and complexity of the data set.
That is, the best sampling rate of one dataset would be different from one of
another dataset. Therefore, it is necessary to select a proper sampling rate for
the sampling methods on each data set. To the best of our knowledge, selection
of the proper sampling rate has yet to be studied in the literature.

In this paper, we therefore propose a novel method for the class imbalance
problem called Hybrid Sampling with Bagging (HSBagging). It adopts a new
hybrid scheme that conducts random undersampling in tandem with oversam-
pling technique SMOTE at a certain sampling rate in each bagging iteration.
The sampling rate is selected by Out-Of-Bag (OOB) estimate on a specified
metric for each data set. To reduce the computational cost, the sampling rate
is only estimated in the first several iterations and the averaged estimated sam-
pling rate will be utilized in the rest iterations then. The major advantages of
HSBagging are:

– The new hybrid sampling scheme can take advantage of the merits of both
undersampling and oversampling.

– Sampling rate selection can effectively select a proper sampling rate which fits
the data to achieve best performance.

– The preferred metric can be selected during OOB estimate according to the
application requirement.

To validate the effectiveness of the hybrid sampling scheme and sampling rate
selection, four experiments are conducted on 26 UCI data sets with statistical
significance tests. The experiments show that the proposed HSBagging signif-
icantly outperforms individual sampling method with bagging and verify that
both hybrid sampling and sampling rate selection contribute to the superiority
of HSBagging.

2 Related Work

Over the past years, much work devoted to solve the class imbalance problem has
shown great success in the corresponding application domain, in which sampling
methods and ensemble methods are two major branches.
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Random oversampling and undersampling are two elementary sampling
methods to cure imbalance, by randomly replicating data in minority class and
discarding data in majority class, respectively. The drawbacks of them are that
oversampling will easily cause overfitting and undersampling may discard useful
data that leads to information loss. As an improvement to random oversam-
pling, Synthetic Minority Over-sampling TEchnique (SMOTE) [8] synthesizes
artificial data in the minority class instead of replication. Borderline-SMOTE
[13] and ADASYN [14] improve SMOTE by assuming that the samples close to
the borderline are more important, thus synthesize more data there. The idea of
combining undersampling and oversampling has been mentioned in [20]. It com-
bines undersampling with oversampling to create a training set with the same
number of positive and negative samples. The number of samples in each class
after sampling is determined by a predefined re-sampling rate a%.

Ensemble methods such as bagging [4] and boosting [16] cannot solve the
imbalanced problem themselves. Usually, they are combined with sampling meth-
ods to utilize the diversity provided by sampling to enhance the ensemble
classifier. A comprehensive review of ensemble methods for class imbalance
problem can be found in [12]. OverBagging [20] and UnderBagging [1] com-
bine random undersampling and oversampling with bagging, respectively. They
adopt oversampling or undersampling after bootstrapping the training data to
create a balanced training set. As an improvement of OverBagging, SMOTE-
Bagging [20] combines SMOTE with random oversampling and the sampling
rate of SMOTE increases in every iteration to provide more diversity. As the
counterpart of bagging-based methods, SMOTEBoost [8] and RUSBoost [17]
are boosting-based. They created balanced training set by SMOTE and random
undersampling in each boosting iteration. After sampling applied, the sample
weights are normalized. The following steps are the same as Adaboost [16]. IIV-
otes [3] combines IVotes ensemble [5] and SPIDER [18] data preprocessing to
obtain improved balance between the sensitivity and specificity for the minority
class.

3 The Proposed Method

Since training in the balanced data set is not guaranteed to produce the best
result [11], the proposed HSBagging does not aim to create the balanced training
set, but depending on a specified sampling rate p, which is different from the
hybrid scheme in [20]. In HSBagging, the minority class is enlarged by p and
meanwhile the majority class is shrank by p. Conducting undersampling and
oversampling at sampling rate p at the same time can explore the best sam-
pling rate from severe imbalance, slight imbalance to balance or even reversed
imbalance (i.e. the minority class becomes majority after sampling). Since each
data set tends to have different best sampling rate, it is necessary to estimate
the sampling rate during bagging. HSBagging estimates the best sampling rate
by Out-Of-Bag (OOB) estimate, which is used to estimate parameters in the
bootstrapped set by leaving the samples not selected by bootstrapping as val-
idation set. There are two advantages of using OOB estimate: (1) it acts as
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Algorithm 1. Hybrid Sampling Bagging
Require: Training set S = {(xi, yi)}, i = 1, ..., n and yi ∈ {+1,−1}, weak learner L,

number of iterations T , number of iterations k for sampling rate estimate, sampling
rate selection set I, evaluation metric fm.

1: for t = 1 to T do
2: Create a training set B by bootstrapping each class respectively.
3: Create the OOB set Bo.
4: if t ≤ k then
5: for each p in I do
6: Create the training set B′ by both undersampling and SMOTE set B at

sampling rate p.
7: Learn the classifier h′

p = L(B′).
8: end for
9: p∗

t = argmaxp∈I fm(h′
p, Bo).

10: ht = h′
p∗
t
.

11: else
12: p∗

t = 1
k

∑k
i=1 p

∗
i .

13: Create the training set B′ by both undersampling and SMOTE set B at
sampling rate p∗

t .
14: Learn the classifier ht = L(B′).
15: end if
16: end for
17: Output: H(x) = sign(

∑T
t=1 ht(x))

validation set, but it needs not separate part of data from training set; (2) the
model needs not be trained again on the original training set with the estimated
best parameter. Therefore, in HSBagging, the sampling rate is regarded as a
parameter to be estimated. The estimate criterion is based on a specified eval-
uation metric, because commonly used accuracy for classification cannot well
assess the class imbalance problem. Usually, it will be computational expensive
if the OOB estimate is conducted on every bagging iteration. To save computa-
tional cost, we only conduct OOB sampling in the first k iterations, and the rest
iterations will use the averaged estimated best sampling rates of the previous
iterations.

The proposed HSBagging is shown in Algorithm1. In each iteration, the
training data is bootstrapped on each class, respectively, as shown in Line 2.
The bootstrapped training set B keeps the same number of samples for the
majority class and minority class as before bootstrapping. The OOB set Bo is
then constructed by the samples that are not selected into B. The sampling rate
selection is only conducted in the first k iterations in order to save computational
cost. In these k iterations, undersampling and SMOTE are used to process B
at the same time at sampling rate p in Line 6. The sampling rate p ∈ [0, 1] is
set to each of the values in the set I, in order to find a proper sampling rate
for the current data set. For undersampling, it randomly selects nmin + (1 − p)
(nmaj − nmin) samples from the majority class, and for SMOTE, it synthesizes
p(nmaj − nmin) more samples from the minority class and adds them to the
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original minority class, where nmaj and nmin represents the number of samples
in the majority class and minority class. Therefore, when p = 0, the data set
B′ after sampling is as same as the original data set B and when p = 1, the
number of samples in the majority class and the minority class gets reversed
after sampling. Thus, undersampling and SMOTE are effectively combined. By
learning B′ by the learner L, a classifier h′

p can be built for the sampling rate p.
After that, fm(h′

p, Bo) estimates the performance of h′
p on the OOB set Bo and

metric fm. The sampling rate p∗
t is set to the p associated with best performance

on fm and h′
p∗
t

is set to the classifier of the t’s iteration ht. After k iterations of
sampling rate selection, the following iterations simply use the averaged value of
the first k selected sampling rates to do sampling and train the classifier ht. At
last, each individual classifier is combined into the final boosted classifier H(x).

The computational complexity of HSBagging is O((T + (k − 1)|I|)L(n)),
where | · | is the cardinality of a set and L(n) is the computational cost of
the weak learning L with n training samples. Compared with SMOTEBagging
[20], although HSBagging costs (k − 1)|I| more iterations to select the sampling
rate, it trains only on n samples in each iteration, while SMOTEBagging trains
2nmaj samples. If the number of iterations T is relatively large and the imbalance
problem of the data set is severe, HSBagging will be computational cheaper than
SMOTEBagging.

4 Experiments

In this section, we conducted four experiments. Experiment 1 shows the times
of best performance on each sampling rate for each data set. It verifies that
the sampling rate corresponding to the best performance varies from data to
data. Experiment 2 compares the proposed HSBagging with bagging on original
imbalanced data set, UnderBagging [1], SMOTEBagging [20] and IIVotes [3]. We
denote SMOTE with bagging by full sampling rate (p = 1) as SMOTEBagging-1,
and SMOTE with bagging by increasing sampling rate in each iteration, which is
proposed in [20], as SMOTEBagging-2. Experiment 3 compares HSBagging with
those methods on different sampling rates to verify that the superior performance
is not only caused by sampling rate selection, but also effected by the hybrid
sampling scheme. Experiment 2 and 3 verify that hybrid sampling is significantly
better than individual sampling. Finally, Experiment 4 shows the performance
of HSBagging on different number k of iterations for sampling rate estimation.

All experiments were conducted on 26 data sets from UCI data repository
[2] summarized in Table 1, which cover a wide range of applications and imbal-
ance ratios. The imbalance ratio (IR) is calculated by the number of data in the
majority class divided by the number of data in the minority class. All experi-
ments adopted 5-fold cross validation, where 80 % of the samples in each data were
used for training and the rest for testing in each fold. The final results were aver-
aged by 10 runs of experiments. The number of iterations T in bagging was set
at 10 for all methods, except IIVotes, whose iteration was automatically deter-
mined. CART [6] was adopted as the base learner for all bagging-based methods.
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Table 1. Information of 26 UCI data sets.

Data set #Instance #Attribute Minority class Majority class IR

glass-2 214 9 bwnfp remainder 1.8

pima 768 8 positive negative 1.9

vehicle-2 846 18 saab remainder 2.9

vehicle-1 846 18 opel remainder 3.0

glass-123vs567 214 9 non-window remainder 3.2

wpbc 198 33 recur nonrecur 3.2

vehicle-4 846 18 van remainder 3.3

haberman 306 3 within-5-year 5-year-or-longer 2.8

cmc 1473 9 long-term remainder 3.4

ecoli-2 336 7 im remainder 3.4

car 1728 6 acc remainder 3.5

wine-quality 6497 11 score 7 remainder 5.0

segment 2310 19 brickface remainder 6.0

glass-7 214 9 headlamp remainder 6.4

yeast-4 1484 8 me3 remainder 8.1

ecoli-4 336 7 imU remainder 8.6

pageblocks 5473 10 remainder text 8.8

mf-morph 2000 6 class 10 remainder 9.0

mf-zernike 2000 47 class 10 remainder 9.0

cm1 498 21 defects no-defects 9.2

satimage 6435 36 class 4 remainder 9.3

yeast-5vs347810 1484 8 me2 mit;me3;exc;vac;erl 9.4

abalone 4177 8 class 7 remainder 9.7

balance 625 4 balanced remainder 11.8

glass-127vs6 214 9 tableware bwfp;bwnfp;headlamps 19.4

yeast-6 1484 8 me1 remainder 32.7

The number of nearest neighbor for all kNN related methods was set at 5. In the
experiments, three evaluation metrics, i.e. AUC, F1 and G-mean, which are com-
monly adopted as the benchmark assessment metric for class imbalance learning
[15], were used to measure the effectiveness of methods.

4.1 Experiment 1: Sampling Rate Verification

Figure 1 shows the number of data sets with the best performance on dif-
ferent sampling rate from 0 to 1. In this experiment, UnderBagging and
SMOTEBagging-1 were set to process the data on a specific sampling rate p
instead of producing balanced training set. UnderBagging conducted under-
sampling by discarding p(nmaj − nmin) samples from the majority class while
SMOTEBagging-1 conducted SMOTE by synthesizing p(nmaj −nmin) from the
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Fig. 1. Number of data sets with best (a) AUC, (b) F1, and (c) G-mean performance
generated on different sampling rates.

minority class. HSBagging conducted both undersampling and SMOTE at sam-
pling rate p instead of OOB estimate as described in Algorithm 1. From Fig. 1,
it can be observed that the best results of all three methods almost appear on
all sampling rates on each evaluation metric. Especially, some best sampling
rates of HSBagging occur at sampling rate 0 or 1, which means that the original
imbalanced data or the reversed imbalanced data may also be able to generate
good results. Furthermore, the sampling rate corresponding to the best perfor-
mance on different evaluation metrics may also be different, e.g. higher sampling
rates generate relatively better results on G-mean. Thus, we can argue that, no
matter which sampling method is adopted, selecting a proper sampling rate on
a specific metric for each data set is effective and necessary.

4.2 Experiment 2: Comparative Studies

Since CART generates discrete outputs, AUC can only be calculated by the
ensemble of CART classifiers and is not available for individual CART classifier.
Therefore, we use F1 and G-mean as the metric fm to select the best sampling
rate for HSBagging, denoted as HSBagging-F1 and HSBagging-Gmean, respec-
tively. The number of iterations k for sampling rate estimate is set to 3 and
sampling rate selection set I = {0, 0.2, 0.4, 0.6, 0.8, 1}.

The pairwise comparisons by Wilcoxon signed-rank test [10] is provided
to show the statistical significance of the compared methods. It measures the
difference between two methods and rank their magnitude among data sets.
Greater difference will count more in this evaluation. The sum of ranks of
each method is calculated by R+ =

∑
di>0 rank(|di|) + 1

2

∑
di=0 rank(|di|) and

R− =
∑

di<0 rank(|di|) + 1
2

∑
di=0 rank(|di|) where di is the difference of the

result of the ith data set. If the significance value N with a certain significance
level α is greater than T = min{R+, R−}, the null hypothesis is rejected which
indicates one method significantly outperforming the other one. In the following
Tables 2, 3 and 4, as well as Table 5 in Sect. 4.4, the method shown in the left
upper corner is marked as + and the compared methods are marked as −. The
sign (+,−) in the T column indicates which method wins more ranks and the
symbol • indicates the significance with significance level α = 0.05.
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Table 2. Wilcoxon signed-rank test for HSBagging-F1 and other methods.

HSBagging-F1 vs. AUC F1 G-mean

R+ R− T R+ R− T R+ R− T

Bagging 335.00 16.00 • 16.00 (+) 331.00 20.00 • 20.00 (+) 341.00 10.00 • 10.00 (+)

UnderBagging 179.00 172.00 172.00(+) 285.00 66.00 • 66.00 (+) 61.00 290.00 • 61.00 (−)

SMOTEBagging-1 205.00 146.00 146.00(+) 279.50 71.50 • 71.50 (+) 264.00 87.00 • 87.00 (+)

SMOTEBagging-2 226.00 125.00 125.00(+) 282.00 69.00 • 69.00 (+) 149.50 201.50 149.50 (−)

IIVotes 350.00 1.00 • 1.00 (+) 350.00 1.00 • 1.00 (+) 328.00 23.00 • 23.00 (+)

Table 3. Wilcoxon signed-rank test for HSBagging-Gmean and other methods.

HSBagging-
Gmean vs.

AUC F1 G-mean

R+ R− T R+ R− T R+ R− T

Bagging 344.00 7.00 • 7.00 (+) 270.00 81.00 • 81.00 (+) 351.00 0.00 • 0.00 (+)

UnderBagging 221.00 130.00 130.00(+) 296.50 54.50 • 54.50 (+) 177.00 174.00 174.00 (+)

SMOTEBagging-1 269.50 81.50 • 81.50 (+) 210.00 141.00 141.00 (+) 350.00 1.00 • 1.00 (+)

SMOTEBagging-2 257.50 93.50 • 93.50 (+) 171.00 180.00 171.00 (−) 289.00 62.00 • 62.00 (+)

IIVotes 351.00 0.00 • 0.00 (+) 351.00 0.00 • 0.00 (+) 351.00 0.00 • 0.00 (+)

Table 4. Wilcoxon signed-rank test for HSBagging-Gmean and HSBagging-F1.

HSBagging-Gmean vs. AUC F1 G-mean

R+ R− T R+ R− T R+ R− T

HSBagging-F1 276.00 75.00 • 75.00 (+) 117.50 233.50 117.50 (−) 313.00 38.00 • 38.00 (+)

Tables 2 and 3 show the Wilcoxon signed-rank test results of HSBagging-F1
and HSBagging-Gmean compared with the other methods. It can be seen that:

– HSBagging-F1 significantly outperforms all other methods on F1, and
HSBagging -Gmean significantly outperforms bagging, SMOTEBagging-1,
SMOTEBagging-2 and IIVotes on G-mean.

– Even though the sampling rate is not selected based on AUC, HSBagging-
F1 and HSBagging-Gmean also achieve comparable or better performance
on AUC. Especially, the performance of HSBagging-Gmean on AUC shows
similar significance as its performance on G-mean.

– On G-mean, HSBagging-F1 outperform Bagging, SMOTEBagging-1 and IIV-
otes, and on F1, HSBagging-Gmean outperform Bagging, UnderBagging and
IIVotes.

As a result, it can be observed that no matter the sampling rate is selected on
which metric, HSBagging can produce superior results on each metric, especially
on its selected metric, i.e. F1 and G-mean.

Table 4 shows the comparison between HSBagging-F1 and HSBagging-
Gmean. Both of them have better results on their own selected metrics. How-
ever, HSBagging-Gmean significantly outperforms HSBagging-F1 on both AUC
and G-mean while HSBagging-F1 is only slightly better than HSBagging-Gmean
on F1. Therefore, overall speaking, HSBagging-Gmean performs better than
HSBagging-F1.
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Fig. 2. Average performance of HSBagging, UnderBagging and SMOTEBagging-1 over
different sampling rate in terms of (a) AUC, (b) F1, and (c) G-mean.
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Fig. 3. Average Performance of HSBagging in terms of (a) AUC, (b) F1, and (c) G-
mean, respectively, on different number of iterations for sampling rate estimate k.

4.3 Experiment 3: Sampling Rate Comparison

In addition to the sampling rate selection, the new hybrid sampling scheme also
plays an important role in terms of the superiority of HSBagging. In this sub-
section, we show that the effectiveness of the proposed HSBagging depends on
not only sampling rate selection, but also the hybrid scheme. The comparison
of HSBagging with UnderBagging and SMOTEBagging-1 at different sampling
rate is shown in Fig. 2 with the same setting as the experiment in Sect. 4.1. The
figures are generated by averaging all 26 UCI data sets. On most of the sam-
pling rates, HSBagging can achieve better results on average than UnderBag-
ging and SMOTEBagging-1. Besides, the best results of HSBagging are better
than the best results of UnderBagging and SMOTEBagging among all sam-
pling rates. Figure 2 illustrates that, even sampling rate selection is adopted for
UnderBagging and SMOTEBagging, the overall performance cannot be as good
as HSBagging. That implies that HSBagging outperforming UnderBagging and
SMOTEBagging benefits from not only the choice of a proper sampling rate,
but also the hybrid scheme.
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Table 5. A comparison of HSBagging with p = 3 to HSBagging with p = 1 and p = 10,
respectively, using Wilcoxon signed-rank test.

p = 3 vs. HSBagging-F1 on F1 HSBagging-Gmean on G-mean

R+ R− T R+ R− T

p = 1 300.50 50.50 • 50.50 (+) 303.50 47.50 • 47.50 (+)

p = 10 165.50 185.50 165.50 (−) 101.50 249.50 101.50 (−)

4.4 Experiment 4: Parameter Selection

The performance of HSBagging-F1 and HSbagging-Gmean over different num-
ber k of iterations for sampling rate estimate is shown in Fig. 3. It can be
observed that the performance increases from k = 1 to 3 for all metrics. After
k = 3, the increase tends to be modest. Table 5 shows the statistical compar-
ison of the performance of HSBagging on k = 3 against k = 1 and k = 10,
respectively. To address the significance of the selected preferred metric, we com-
pare HSBagging-F1 on F1 and HSBagging-Gmean on G-mean only. As shown
in Table 5, HSBagging-F1 and HSBagging-Gmean on k = 3 significantly outper-
form the cases on k = 1 with the significance level α = 0.05 on F1 and G-mean,
respectively. Further, they have comparable performance in comparison with the
cases on k = 10. Therefore, if the longer running time for some certain appli-
cations can be tolerated, the selection process is suggested to be conducted in
every iteration because it has slightly better performance. Nevertheless, by a
rule of thumb, setting k = 3 can usually produce significantly better results in
comparison with the other bagging-based methods as shown in Tables 2 and 3,
meanwhile saving the computational cost compared with k = 10.

5 Conclusion

This paper has first investigated the two problems for class imbalance problem.
The first is that undersampling and oversampling with ensemble methods have
their own irreplaceable property for the imbalanced data. Each of them can
only performs well on part of data sets. Second, the sampling rate is crucial to
the performance of sampling methods. The sampling rate in regard to the best
performance differs from data to data.

A novel method called HSBagging has been proposed to solve the discovered
problems. It adopts a new hybrid scheme of undersampling and oversampling
integrated with bagging. During the sampling, the sampling rate is selected by
OOB estimate on a specified metric. Experiments on 26 UCI data sets have
shown that HSBagging can significantly outperform the other related bagging-
based methods. The advantages of both the new hybrid sampling scheme and the
sampling rate selection are also shown by experiments. Undoubtedly, the hybrid
sampling and sampling rate selection are applicable to the other ensemble-based
method like boosting as well.
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10. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006)

11. Estabrooks, A., Jo, T., Japkowicz, N.: A multiple resampling method for learning
from imbalanced data sets. Comput. Intell. 20(1), 18–36 (2004)

12. Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.: A review on
ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based
approaches. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(4), 463–484
(2012)

13. Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: a new over-sampling
method in imbalanced data sets learning. In: Huang, D.-S., Zhang, X.-P., Huang,
G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 878–887. Springer, Heidelberg (2005)

14. He, H., Bai, Y., Garcia, E.A., Li, S.: Adasyn: adaptive synthetic sampling approach
for imbalanced learning. In: IEEE International Joint Conference on Neural Net-
works, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence),
pp. 1322–1328. IEEE (2008)

15. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data
Eng. 21(9), 1263–1284 (2009)

16. Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5(2), 197–227
(1990)

17. Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., Napolitano, A.: Rusboost: a hybrid
approach to alleviating class imbalance. IEEE Trans. Syst. Man Cybern. Part A
Syst. Hum. 40(1), 185–197 (2010)

18. Stefanowski, J., Wilk, S.: Improving rule based classifiers induced by modlem by
selective pre-processing of imbalanced data. In: Proceedings of the RSKD Work-
shop at ECML/PKDD, Warsaw, pp. 54–65. Citeseer (2007)

19. Sun, Y., Wong, A.K., Kamel, M.S.: Classification of imbalanced data: a review.
Int. J. Pattern Recognit. Artif. Intell. 23(04), 687–719 (2009)



26 Y. Lu et al.

20. Wang, S., Yao, X.: Diversity analysis on imbalanced data sets by using ensemble
models. In: IEEE Symposium on Computational Intelligence and Data Mining,
2009. CIDM 2009, pp. 324–331. IEEE (2009)

21. Weiss, G.M., Provosti, F.: The effect of class distribution on classifier learning: an
empirical study. Rutgers Univ (2001)

22. Yang, Q., Wu, X.: 10 challenging problems in data mining research. Int. J. Inf.
Technol. Decis. Mak. 5(04), 597–604 (2006)



Sparse Adaptive Multi-hyperplane Machine

Khanh Nguyen1(B), Trung Le1, Vu Nguyen2, and Dinh Phung2

1 Faculty of Information Technology,
HCMc University of Pedagogy, Ho Chi Minh, Vietnam

khanhndK@hcmup.edu.vn
2 Pattern Recognition and Data Analytics, Deakin University, Geelong, Australia

Abstract. The Adaptive Multiple-hyperplane Machine (AMM) was
recently proposed to deal with large-scale datasets. However, it has no
principle to tune the complexity and sparsity levels of the solution.
Addressing the sparsity is important to improve learning generaliza-
tion, prediction accuracy and computational speedup. In this paper,
we employ the max-margin principle and sparse approach to propose
a new Sparse AMM (SAMM). We solve the new optimization objective
function with stochastic gradient descent (SGD). Besides inheriting the
good features of SGD-based learning method and the original AMM,
our proposed Sparse AMM provides machinery and flexibility to tune
the complexity and sparsity of the solution, making it possible to avoid
overfitting and underfitting. We validate our approach on several large
benchmark datasets. We show that with the ability to control sparsity,
the proposed Sparse AMM yields superior classification accuracy to the
original AMM while simultaneously achieving computational speedup.

1 Introduction

Max-margin is a powerful principle to construct machine learning algorithms
which has been applied to a wide spectrum of areas ranging from kernel method
[2], boosting and bagging [6], Bayesian inference [5] to name a few. The mar-
gin concept could be flexibly interpreted under the different settings, e.g., the
smallest distance from a datum to a decision boundary [2], the smallest absolute
decision value [6], the discrepancy between the maximal and runner-up discrim-
inative values [4,10], and the difference between two posteriors [5]. Since the
margin of a classifier is reciprocally proportional to its complexity measured by
VC-dimension or Flat-dimension, a simple or sparse classifier often induces a
large margin and thus offers higher generalization capacity when learning on the
general dataset [11]. Therefore, it is desirable to look for classifiers as simple
as possible while being able to well present the training set, a philosophy that
concurs with Occam’s Razor principle.

The max-margin principle has been investigated for multi-class classification
problem [4], often in the form of maximizing the discrepancy between two dis-
criminative values: one for the correct label and the other for the runner-up. In
[4], a set of hyperplanes, each hyperplane associated with one class, is used for
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evaluating the discriminative values. By defining the relevant cost function, the
learning problem becomes convex and can be solved analytically. Nonetheless,
associating a single hyperplane with one class restricts the representation ability
of the model and it therefore cannot well present complex data. To overcome this
issue, the work of [1] proposes to associate multiple hyperplanes with each class
to increase the representation power of the model. However, this comes with the
cost of the learning problem becoming non-convex and only a convergence to
a local optimum is guaranteed. This impedes the usage of the aforementioned
method to real dataset. In [12], the burden in computation is addressed by
applying stochastic gradient descent framework proposed in [8]. The so-called
Adaptive Multi-hyperplane Machine (AMM) was proposed for efficiently han-
dling large-scale datasets. AMM has some advantageous features: (1) it has a
good representation capacity for learning complex dataset, (2) it is fast and can
run online, and (3) the number of hyperplanes associated with each class can
be automatically discovered. However, AMM has no principle to tune the com-
plexity and sparsity levels of the solution. The redundant hyperplanes are cut
off by an exhaustive pruning weight procedure which heuristically prunes the
hyperplanes whose lengths are less than a predefined threshold.

Stochastic gradient descent method [7–9] has recently emerged as build-
ing block to develop the fast learning methods for large-scale datasets that
can run online and also operate well under the memory budget requirement.
In this paper, we leverage the stochastic gradient descent framework with the
max-margin principle to propose Sparse Adaptive Multi-hyperplane Machine
(SAMM). Besides inheriting several advantages of AMM, with SAMM we can
tune the complexity and sparsity levels of the solution to avoid overfitting and
underfitting. Our experiment on several large benchmark datasets demonstrates
that with the ability to control sparsity, the proposed Sparse AMM yields supe-
rior classification accuracy to the original AMM while simultaneously achieving
computational speedup.

2 Preliminary

In this section, we present some notations and mathematical tools used through-
out the paper. The dot product of two vectors w, x is denoted by 〈w, x〉 � wTx.
For any positive number N , the set including the first N positive numbers is
defined as [N ] � {1, 2, ..., N}. Given a logical statement A, IA is 1 if A is true
and is 0 otherwise. A norm of vector x is denoted by ‖x‖ and the dual norm is
defined as ‖x‖∗ � sup

‖w‖≤1

〈w, x〉 .

It is known that the dual norm for ‖x‖2 � 〈x, x〉1/2 is itself, the dual norm

for ‖x‖p �
(∑d

i=1 |xi|p
)1/p

where p > 1 is ‖.‖q where 1
p + 1

q = 1, and the dual

norm for ‖x‖1 �
∑d

i=1 |xi| is ‖x‖∞ � max
1≤i≤d

|xi|.



Sparse Adaptive Multi-hyperplane Machine 29

Given a m-by-n matrix W = [W1,W2, ...,Wn] the group norm Lp,q of W
is defined as ‖W‖p,q = ‖‖W1‖p, ‖W2‖p, ..., ‖Wn‖p‖q. The dual norm of a group
norm ‖W‖p,q is the group norm ‖W‖r,s where 1

p + 1
r = 1 and 1

q + 1
s = 1.

We further recall some literature from convex analysis. A set S is convex if
for any two vectors x, y ∈ S and number α ∈ [0; 1], we have αx + (1 − α) y ∈ S.
A function f : S → R is convex if f (αx + (1 − αy)) ≤ αf(x) + (1 − α) f(y) for
any x, y ∈ S and α ∈ [0; 1].

The sub-gradient of function f at v is denoted by ∂f(v) consisting of vectors
λ such that f(u) − f(v) − 〈λ, u − v〉 ≥ 0 for all u ∈ S.

The Fenchel conjugate of a function f : S → R is defined as f∗ (θ) �
sup
w∈S

(〈w, θ〉 − f(w)).

3 Related Work

In this section, we present the work mostly related to ours. In these work, the
max-margin principle embodies as maximizing the discrepancy between to dis-
criminative values, one for the correct label and the other for the runner up.
We depart from the original work [4] where the model representation ability
is restricted since only a single hyperplane is associated with each class and
ends with Adaptive Multi-hyperplane Machine (AMM) [12] where simultane-
ously multiple hyperplanes are affiliated with each class for raising the represen-
tation ability and SGD is applied for speedup.

3.1 Multi-class SVM

Given the training set D = {(xn, yn)}N
n=1, where instance xn ∈ R

D is a
D-dimensional feature vector and yn ∈ Y = {1, . . . , M} is the corresponding
label of xn, the goal of multi-class classification problem is to find a decision
function f : R

D → Y that can accurately predict label of a new instance.
In multi-class SVM [4], the decision function may be defined by using the

discriminative function as f(x) = argmax
i∈Y

g(i, xn) where g(i, x) = wT
i x.

Therefore, the predicted label of instance x is the index of the weight vector
wi which maximizes the discriminative value g(i, x). The multi-class problem is
now translated into the following optimization problem

min
W

P (W ) � λ

2
‖W‖22 +

1
N

N∑
n=1

l (W ; (xn, yn)) (1)

where W = [wi]
M
i=1, ‖W‖22 =

∑
i∈Y ‖wi‖2 and λ is a regularization parameter.

To correctly classify a feature vector x, the corresponding discriminative
value g(i, x) of the correct class must be greater than others, i.e., g (i, x) ≥
g (j, x) , ∀j 
= i. The margin of instance (xn, yn) is defined as the discrepancy
of the maximal and runner-up discriminative values ρ(xn, yn) = g(yn, xn) −
maxi�=yn

g(i, xn).
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To guarantee the empirical loss is an upper of the empirical error (the
number of instances suffering incorrect classifications), the loss function of
instance (xn, yn) is defined as l (W ; (xn, yn)) = max

(
0, 1 + maxi∈Y\yn

g (i, xn) −
g (yn, xn)) .

In this model, each class is associated with only a single hyperplane and
the classifier therefore cannot describe accurately the complex data with several
distributions inside.

3.2 Multi-hyperplane Machine

The work of [1] proposed an extended version of multi-class SVM that allows
each class in association with an unlimited number of hyperplanes. The discrim-
inative function is redefined as g(i, x) = max

j∈[1...bi]
(wT

ijx) where bi is the number of

hyperplanes associating with the i-th class. The weight matrix W now becomes

W = [|w1,1, . . . w1,b1 |w2,1, . . . , w2,b2 |, . . . , |wM,1, . . . , wM,bM |] .
However, the optimization function P (W ) is non-convex. To resolve this prob-

lem, a latent variable zn is introduced which specifies the index of the particular
hyperplane in yn-th class being used by the instance (xn, yn) to gain its optimal
discriminative value. The task of finding the optimal matrix W ∗ and the latent
variables z = [zn]Nn=1 is addressed by solving the optimization problem

1. Given z = [zn]Nn=1, the following optimization problem is solved to find the
current optimal matrix W ∗

min
W

P (W |z) � λ

2
‖W‖2 +

1
N

N∑
n=1

l (W ; (xn, yn) , zn) (2)

where the loss function at (xn, yn) is defined as

l (W ; (xn, yn) ; zn) = max
(

0, 1 + max
i∈Y\yn

g (i, xn) − wT
yn,zn

xn

)
.

2. Given the matrix W ∗, we find the current optimal assignment z = [zn]Nn=1

as z = argmin
z

P (W ∗|z). It means that each latent variable zn is able to be

evaluated as zn = argmin
k

(
w∗

yn,k

)T

xn.

3.3 Adaptive Multi-hyperplane Machine

An improvement of Multi-Hyperplane Machine, namely Adaptive Multi-
hyperplane Machine (AMM), for efficiently handling large-scale dataset was
introduced in [12]. AMM is constructed in the spirit of stochastic gradient descent
framework proposed in [8]. The weight matrix W (1) is firstly initialized with zero
matrix. At each t-th iteration, a random instance (xt, yt) is uniformly chosen
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from the training set D. The instantaneous objective function associated with
t-th instance (xt, yt) is defined as P (t) (W |z) � λ

2 ‖W‖22 + l (W ; (xt, yt) , zt) .

The new weight matrix W (t+1) is updated by following the negative direction
of sub-gradient W (t+1) = W (t)−η(t)∇(t) where η(t) = 1/ (λt) is the learning rate
and the sub-gradient matrix ∇(t) is computed as

∇(t) =
[
|∇(t)

1,1, . . . ,∇(t)
1,b1

|∇(t)
2,1, . . . ,∇(t)

2,b2
|, . . . , |∇(t)

M,1, . . . ,∇(t)
M,bM

|
]

where ∇(t)
i,j = ∇wt

i,j
P (t) (W |z) is a D × 1 column vector.

Concretely, the sub-gradient matrix ∇(t) is computed as follows. If the current
model predicts correct label of instance xt, i.e., the loss value l (W ; (xt, yt) , zt) =
0, then ∇(t)

i,j = λw
(t)
i,j . Otherwise, ∇(t)

i,j is calculated as

∇(t)
i,j =

⎧⎪⎨
⎪⎩

λw
(t)
i,j + xt if i = it, j = jt

λw
(t)
i,j − xt if i = yt, j = zt

λw
(t)
i,j otherwise

(3)

where it = argmax
k∈Y\yn

g (k, xt) , jt = argmax
k

(
w

(t)
it,k

)T

xt.

In AMM, the number of hyperplanes which are representing for each class
does not require to be prespecified. To each class, a set of non-zero weights and
a reserved zero weight are stored and employed. At each iteration, the reserved
zero weight of a class can be updated to a non-zero weight and in this case, a new
reserved zero weight for this class will be created. The pruning weight procedure
is heuristically performed by periodically eliminating the weights whose lengths
are less than a predefined threshold. In our viewpoint, subtracting the small-
length weights though helps reducing the model size and training time but can
impact to the prediction accuracy.

4 Sparse Adaptive Multi-hyperplane Machine (SAMM)

In this section, to encourage the sparsity of the solution, we reformulate the
optimization problem of AMM by incorporating the group norm ‖W‖2,1 asso-
ciated with the parameter μ. By tuning μ, we can govern the sparsity level of
the solution. Concretely, increasing the value of μ leads to a sparser solution
in terms of a lower number of hyperplanes per class and non-zero components
per hyperplane. Because minimizing ‖W‖2,1 also inspires as many as possible
weights going into zero, the pruning weight procedure therefore is automatically
performed in our proposed model without any heuristic or predefined threshold.

4.1 Optimization Problem

In SAMM model, the group norm ‖W‖2,2 is replaced by the elastic group norm
Ω (W ) � λ

2 ‖W‖2,2 + μ‖W‖2,1. The optimization problem of SAMM becomes
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min
W

P (W ) � Ω(W ) +
1
N

N∑
n=1

l (W ; (xn, yn)) .

In SAMM model, the group norm ‖W‖2,1 =
∑M

i=1

∑bi
j=1 ‖wi,j‖2 is incorpo-

rated. Mathematically, minimizing ‖W‖2,1 encourages the lengths of the compo-
nent weights ‖wi,j‖2 going to 0 or decreasing to a small amount. It means that
the solution is expected to be sparse in terms of a lower number of hyperplanes
in use and a smaller number of non-zero elements in each hyperplane. Therefore,
the parameter μ in SAMM is used to control the sparsity level of the solution.
Furthermore, it can be seen that AMM is a special case of SAMM when μ = 0.

4.2 Optimization Solution

To find the solution of SAMM, we employ two-step alternative approach. In the
first step, given the latent variables z = [zn]Nn=1, the following optimization is
solved to find the current optimal W ∗

min
W

P (W |z) � Ω(W ) +
1
N

N∑
n=1

l (W ; (xn, yn) , zn). (4)

In the second step, the latent variables z = [zn]Nn=1 are updated as zn =

argmax
k

(
w∗

yn,k

)T

xn.

To develop a stochastic gradient descent solution for the optimization prob-
lem (4), we base on the primal-dual framework for regularized loss minimization
proposed in [7]. Concretely, finding solution of the optimization problem (4) is
based on the Theorem 2 in [7] which for completeness we restate its simpler form
using our notation.

Theorem 1. Let f be σ-strongly convex w.r.t ‖.‖ over a set S. Let
l(1), l(2), . . . , l(T ) be a sequence of convex functions, and L is a positive number
such that

∥∥δl(i)
(
w(i)

)∥∥
∗ ≤ L for all i. Define w(t) = ∇f∗

(
− 1

t

∑t−1
i=1 δl(i)

(
w(i)

))
then, for any u ∈ S, we have: 1

T

∑T
t=1

(
f

(
w(t)

)
+ l(t)

(
w(t)

)) ≤
1
T

∑T
t=1

(
f (u) + l(t) (u)

)
+ L2(1+log(T ))

2σT .

We define l(t) (W ) = max
(
0, 1 + maxi∈Y\yn

g (i, xt) − wT
yt,zt

xt

)
and f (W ) �

Ω(W ). According to Lemma 3, f (W ) is λ
2 -strongly convex to the group norm

‖W‖2,2 whose duality is ‖W‖∗
2,2 = ‖W‖2,2. The sub-gradient is able to be com-

puted as ∂l(t) (W ) =
[
∂l

(t)
1,1 (w1,1) , . . . , ∂l

(t)
M,bM

(wM,bM )
]

where ∂l
(t)
i,j (wi,j) is a

vector and equal to vector 0 if l(t) (W ) = 0, otherwise it becomes

∂l
(t)
i,j (wi,j) =

⎧⎪⎨
⎪⎩

xt if i = it, j = jt

−xt if i = yt, j = zt

0 otherwise
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where it = argmax
k∈Y\yn

g (k, xt) , jt = argmax
k

(
w

(t)
it,k

)T

xt.

We note that ∂l(t) (W ) is a sparse matrix that has only two non-zero columns
when i = it, j = jt or i = yt, j = zt. Therefore, we have∥∥∥∂l(t)(W )

∥∥∥2

2,2
≤ ‖(0, . . . , xt, . . . ,−xt, . . . , 0)‖22,2 ≤ 2 ‖xt‖22 ≤ 2R2

In the above derivation, without loss of generality, we assume that data are
bounded in a hypersphere, i.e., ‖x‖2 ≤ R, ∀x ∈ R

D.
Relied on Lemma 4, the component w

(t+1)
i,j in matrix W (t+1) in the update

formulation

W (t+1) = ∇f∗
(

− 1
t + 1

t∑
k=1

∂l(k)
(
W (k)

))

is equal to w
(t+1)
i,j =

θ
(t)
i,jv

(t)
i,j

λ
∥
∥
∥θ

(t)
i,j

∥
∥
∥
2

where θ
(t)
i,j and v

(t)
i,j are computed as

θ
(t)
i,j = − 1

t + 1

t∑
k=1

∂l
(k)
i,j

(
w

(k)
i,j

)
and v

(t)
i,j =

∣∣∣θ(t)i,j − μ
∣∣∣
+

To summarize, we present the pseudo code of SAMM in Algorithm 1.

Algorithm 1. Sparse Adaptive Multi-hyperplane Machine
W (1) = 0
si,j = 0 for all i = 1...M, j = 1...bi

z(0) = 1
repeat

for t = 1 to T do
Sampling nt from [N ]
it = argmax

i∈Y\nt

g(i, xnt)

jt = argmax
k

(
wT

it,k xnt

)

if
(
l(t)(W (t)) > 0

)
si,j = si,j − I[i=it;j=jt]xnt + I[i=ynt ;j=znt ]

xnt

for all i = 1 . . . M, j = 1 . . . bi

θi,j =
si,j
t+1

for all i = 1 . . . M, j = 1 . . . bi

vi,j =
∣
∣‖θi,j‖2 − μ

∣
∣
+

for all i = 1 . . . M, j = 1 . . . bi

w
(t+1)
i,j =

θi,j

λ‖θi,j‖2

.vi,j for all i = 1 . . . M, j = 1 . . . bi

endfor
Recompute z(r+1)

until z(r+1) ∼= z(r)or enough epochs
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4.3 Generalization Error of SAMM

To investigate the generalization error of SAMM, we refer to Theorem 2 in [12].
Let bi define the number of using hyperplanes for the i-th class. We have the
following generalization error bound.

Theorem 2. Suppose we are able to correctly classify an i.i.d sampled training
set D using the AMM model

W = [|w1,1, . . . w1,b1 |w2,1, . . . , w2,b2 |, . . . , |wM,1, . . . , wM,bM |]

then we can upper bound the generalization error with probability greater than
1 − δ as

130
N

(‖W‖22,2B log (4eN) log (4N)
)

+ log

(
2 (2N)K

δ

)
,

where B =
∑N

i=1 bi + 1 + b2max − bmax − bmin, K = 1
2

∑N
i=1 bi

∑
j �=i bj , bmin =

mini {bi} , and bmax = maxi {bi}.
The above theorem reveals that the generalization error is proportional to

B‖W‖22,2 and the learning method utilizing the set of hyperplanes to characterize
each class should offer as sparsest solution as possible in terms of the number
hyperplanes for each class and the average number of non-zero components in
each hyperplane. This reasons why tuning the sparsity level in SAMM can reduce
the generalization error.

5 Experiments

5.1 Experimental Settings

We establish the experiments on 9 benchmark datasets1. We make comparison
our proposed method SAMM with AMM [12], Pegasos [9] including both lin-
ear and kernelized versions (LPegasos and KPegasos), and kernelized LIBSVM
(KSVM) [3]. All codes are implemented in C/C++ and the codes of baseline
methods are achieved from the corresponding authors. All experiments are per-
formed on the computer with the configuration of core I5 3.2GHz and 16GB
in RAM.

5.2 Evaluation on Accuracy and Time of the Proposed Method

We run cross validation with 5 folds to select λ for LPegasos, KPegasos,
AMM, SAMM, and KSVM and μ for SAMM. The considered ranges are
λ ∈ {

10−7, 10−2
}

and μ ∈ {
10−7, 10−2

}
. For KSVM and KPegasos, RBF kernel,

given by K (x, x′) = e−γ‖x−x′‖2
, is employed. The parameter γ is searched in

1 All datasets can be download at the URL http://www.csie.ntu.edu.tw/∼cjlin/
libsvmtools/datasets.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
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the grid
{
2−15, 2−13, . . . , 25

}
. We repeat the experiment for each dataset 5 times

and record the corresponding mean and standard deviation.
In Tables 1 and 2, we report the accuracies and training times corresponding

to the optimal parameter set. As observed from Table 1, comparing with the
linear methods, our proposed SAMM gains superiority accuracies to others on
all experimental datasets. The reason is that as compared with AMM, our pro-
posed SAMM can tune the sparsity level of the solution which help boost the
generalization capacity of learning method according to Occam’s razor principle.
Comparing with LPegasos, the fact that SAMM outperforms it is explainable
since LPegasos is a linear model that uses only one hyperplane to classify data
and is therefore only suitable for linearly separable data in nature. Comparing
with the kernelized methods, SAMM also produces the comparable classification
accuracies on the experimental datasets.

Regarding the amount of time taken to train, as can be seen from Table 2,
the training time of SAMM is always less than AMM and longer than LPega-
sos. Although the computational complexities of SAMM and AMM are simi-
lar, the computational cost in each iteration of SAMM is less than AMM due
to the smaller number of using hyperplanes and the sparser non-zero compo-
nents in each hyperplane itself and thereby makes it faster. The training time of
SAMM always exceeds that of LPegasos because of LPegasos’s model simplicity.
Nonetheless, LPegasos itself cannot be used to accurately learn nonlinearly sep-
arable data in nature. Comparing with the kernelized versions, because of the
cheaper kernel computation cost, SAMM almost offers the shorter training times.
Especially for the large scale datasets namely mnist, webspam, and url, SAMM
are much faster than both KSVM and KPegasos. Regarding prediction time, our
proposed SAMM always takes less time than AMM (cf. Table 3). This can be
explained by the sparser solution in terms of the average number of hyperplanes
per class and the average number of non-zero components per hyperplane. By
the same reason of the cheaper kernel computation cost, SAMM also provides
the shorter prediction times as compared with the kerneilized methods.

We also measure the average number of hyperplanes per class and the average
percentage of non-zero components per hyperplane and report them in Table 5.
As shown in this table, the average numbers of hyperplanes per class of SAMM
and AMM are comparable. This implies that AMM’s prune weight procedure
operates somehow exhaustively and this may compromise the prediction accu-
racy of AMM itself. Nonetheless, the average percentage of non-zero compo-
nents per hyperplane of SAMM is always lower than AMM for all experimental
datasets. This observation again confirms our expectation about sparsity level
of SAMM.

5.3 Tuning the Sparsity and Its Influence on Performance

To investigate the influence of μ to accuracy, we conduct the experiment where
μ is varied and λ is kept fixed. As observed from Table 4, when μ is varied
in ascending order, the accuracy is increased at first to its peak and then is
gradually decreased. This fact may be partially explained as increasing μ, the
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Table 1. Accuracy (in %) comparison.

Dataset SAMM AMM LPegasos KSVM KPegasos

a9a 84.38±0.37 84.25 ± 0.38 84.27 ± 0.38 84.07 ± 0.26 78.52 ± 6.62

letter 90.35 ± 0.60 68.67 ± 0.60 64.36 ± 0.84 97.25±0.15 95.59 ± 1.28

news20 83.56±0.78 79.43 ± 0.52 64.36 ± 0.84 83.50 ± 1.10 71.24 ± 5.12

ijcnn1 98.42±0.26 90.29 ± 0.28 90.29 ± 0.28 98.25 ± 0.11 95.86 ± 0.23

usps 96.51 ± 0.38 96.40 ± 0.32 95.42 ± 0.42 98.33±0.22 95.64 ± 0.11

rcv1 bin 97.21±0.26 93.94 ± 0.51 93.96 ± 0.51 95.82 ± 0.17 94.71 ± 0.75

mnist 94.77 ± 0.25 94.66 ± 0.32 93.96 ± 0.51 99.67±0.45 96.56 ± 0.56

webspam 97.37 ± 0.15 82.94 ± 0.17 82.98 ± 0.12 99.2±0.84 88.69 ± 0.09

url 97.44 ± 0.27 96.95 ± 0.33 96.96 ± 0.33 98.82±0.55 98.65 ± 2.3

Table 2. Training time (in seconds) comparison.

Dataset SAMM AMM LPegasos KSVM KPegasos

a9a 48.73± 3.9 132.84± 1.6 20.83± 2.6 61.03± 0.22 136.70± 8.54

letter 61.36± 0.9 99.14± 4.2 42.31± 0.2 4.87± 0.04 54.04± 0.13

news20 2,472± 109 5,138± 277 64.36± 0.8 222.83± 2.91 1604.5± 12.8

ijcnn1 92.98± 3.4 113.22± 8.8 25.16± 1.7 197.33± 10.72 216.53± 11.50

usps 15.65± 0.5 48.23± 3.7 12.69± 0.1 14.95± 1.84 21.05± 2.84

rcv1 bin 324.94± 10.8 749.83± 42.8 78.32± 7.9 161.60± 8.69 214.20± 8.60

mnist 145.67± 4.5 353.6± 41.6 93.96± 0.5 1,115.66± 39.55 5,590.62± 137.8

webspam 890.38± 38.8 5,186± 85 783.9± 11.7 13,293.38± 1,838 13,540.3± 1,328

url 1,000± 184 7,070± 715 261.8± 2 > 72 h > 72 h

Table 3. Prediction time (in miliseconds) comparison.

Dataset SAMM AMM Pegasos KSVM KPegasos

a9a 8.88± 7.9 15.64± 0.5 0.64± 3.14 12.44 ± 0.10 52.02 ± 4.84

letter 9.92± 0.4 17.20± 1.4 8.04± 1 2.67 ± 0.02 35.05 ± 1.28

news20 629.1± 42.6 943.1± 76.9 64.36± 0.8 42.99 ± 0.70 861.45 ± 12.96

usps 36.24± 8.5 93.76± 10.9 29.48± 7 3.79 ± 0.52 75.07± 7.71

ijcnn1 10.32± 0.9 13.08± 0.5 2.36± 0.6 2.61± 0.33 140.65± 6.84

rcv1 bin 76.88± 4.1 98.80± 24.5 7.44± 7.8 39.47± 4.19 117.24 ± 5.71

mnist 334.48± 12.5 768.4± 83.3 93.96± 0.5 354.16± 12.13 1,382.35 ± 225.78

webspam 164.60± 8.8 626.32± 13.4 64.16± 2.1 3,742.63± 1,030 3,607.05± 708

url 4,798±293 19,623± 3,141 950± 23 32,536± 972 34,478± 1,126
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Table 4. The accuracies (in %) when the parameter μ is varied.

0 2−7 2−6 2−5 2−4 2−3 2−2 2−1

a9a 83.6559 84.2837 84.2830 84.2161 84.3076 84.2941 84.2370 84.3881

ijcnn1 92.4025 98.3069 98.3937 98.4201 98.3923 98.3501 98.3449 98.3177

rcv1 bin 94.0013 96.1455 97.1712 97.1742 97.1673 97.1930 97.2068 97.1781

webspam 93.1410 97.2012 97.2863 97.3181 97.3288 97.2973 97.3191 97.3709

url 95.4265 96.4540 97.4445 97.4042 97.4010 97.3966 97.3630 97.3752

µ = 0 µ = 0.4

Fig. 1. SAMM with μ = 0 (corresponding to AMM) uses 3 hyperplanes to classify data
and SAMM with μ = 0.4 uses only 1 hyperplane.

sparsity (simplicity) level of solution is increased as well. It then helps avoid
overfitting and brings out an optimal model. However, when μ is increased to
a bigger value, the estimated model becomes too simple, and underfitting may
consequently happen.

To visually manifest the above reason, we also provide simulation study on
2 − D datasets as displayed in Figs. 1 and 2. In Fig. 1, AMM requires 3 hyper-
planes to classify the data and the learning seems to be overfitted while SAMM
with a tuning of μ = 0.4 uses only 1 hyperplane which is the ideal solution in
this case. In Fig. 2, AMM needs 10 hyperplanes to classify the data, but in the
meanwhile, SAMM with a tuning of μ = 0.04 requires only 5 hyperplanes which
is intuitively a better solution.

6 Conclusion

In this paper, we leverage stochastic gradient descent framework with max-
margin principle to propose Sparse Adaptive Multi-hyperplane Machine
(SAMM). By incorporating the group norm L2,1 to its model, with SAMM we
are able to govern and tune the sparsity level of the solution. It enables SAMM
to avoid both overfitting and underfitting. We validate the proposed method on
large benchmark datasets. The experimental results show that SAMM can actu-
ally tune sparsity level of the solution and consequently yields superior accu-
racy while simultaneously achieving shorter training time compared with the
baselines.
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7 Technical Lemmas

Lemma 1. Given that g = τf + h where f is σ-strongly convex w.r.t norm ‖.‖
and h is convex, g is τσ-strongly convex w.r.t norm ‖.‖.
Lemma 2. 1

2 ‖.‖2p,r is (p−1)(r−1)
p+r−2 -strongly convex w.r.t ‖.‖p,r provided p, r > 1.

Lemma 3. The norm Ω(W ) = λ
2 ‖W‖22,p + μ ‖W‖2,1 is λ(p−1)

p -strongly convex
w.r.t the norm ‖.‖2,p.

Lemma 4. Let v =
[∣∣∥∥θ1

∥∥
2

− μ
∣∣
+

, . . . ,
∣∣∥∥θF

∥∥
2

− μ
∣∣
+

]
then the j component of

∇Ω∗ (θ) is equal to θj

λ‖θj‖2
.

vq−1
j

‖v‖q−2
q

.

Table 5. Sparsity level comparison

Sparsity # hyperplane per class % non-zero per hyperplane

Dataset SAMM AMM SAMM AMM

a9a 9.6 10 75.66 89.72

letter 4.6 2.3 76.76 100

news20 5.7 4.0 19.37 26.95

usps 4.552 3.1 67.69 99.99

ijcnn1 9.04 5.5 68.11 100

rcv1 bin 9.96 10 15.46 17.82

mnist 5.168 4.1 59.13 69.22

webspam 9.2 10 52.62 49.43

url 8.43 10 2.41 7.44

µ = 0 µ = 0.04

Fig. 2. SAMM with μ = 0 (corresponding to AMM) uses 10 hyperplanes to classify
data and SAMM with μ = 0.04 uses only 5 hyperplanes.
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Abstract. Online spam comments often misguide users during online
shopping. Existing online spam detection methods rely on semantic clues,
behavioral footprints, and relational connections between users in review
systems. Although these methods can successfully identify spam activi-
ties, evolving fraud strategies can successfully escape from the detection
rules by purchasing positive comments from massive random users, i.e.,
user Cloud. In this paper, we study a new problem, Collective Mar-
keting Hyping detection, for spam comments detection generated from
the user Cloud. It is defined as detecting a group of marketing hyping
products with untrustful marketing promotion behaviour. We propose a
new learning model that uses heterogenous product networks extracted
from product review systems. Our model aims to mining a group of hyp-
ing activities, which differs from existing models that only detect a single
product with hyping activities. We show the existence of the Collective
Marketing Hyping behavior in real-life networks. Experimental results
demonstrate that the product information network can effectively detect
fraud intentional product promotions.

1 Introduction

With the booming of online business, user comments on products and online
stores are increasingly important for shaping customer decision. These user com-
ments are valuable and represent the opinion and judgement of ’experienced’
product users. Sales and profits link with reviews, which entice merchants to
hire a group of people to fabricate fake reviews to unjustly hype and denigrate
competitors. Therefore, it is essential to detect these fake reviews to restore user
confidence on online business.

Previous works focus on capturing important features from user review
behavior data, review network data, and store network data [1,2,4–7]. These
work can successfully detect the marketing hyping behavior when spammer
accounts are manipulated by one or several people with massive false comments.
However, applying for an hyping account is costly and it is infeasible to generate
a large amount of fake accounts to do marketing hyping. Moreover, existing spam
c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part I, LNAI 9651, pp. 40–51, 2016.
DOI: 10.1007/978-3-319-31753-3 4
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review approaches are mainly generated by real users on purpose under anom-
alous comments, and the comments can also have large variety which makes the
spam detection even more difficult. The work [12] provided a new perspective to
detect the spam comment without any content of reviews and network informa-
tion, where they define singleton reviewers as the spammers who just reviewed
once or very few times. Then, they define the problem as the abnormal detecting
problem and utilize statistic method to reveal positive reviews with high rating
ascend with singleton users burst in a certain period.

However, existing online review spam detection approaches have obvious lim-
itation in the user Cloud environment. To date, many 3-party platforms provide
the service of connecting online sellers with marketing hyping require, where
massive random users (user Cloud) conduct real transactions and reviews and
then reclaim bonus. In contrast, existing works never take the product network
into consider. They only use the user/product network for detection. Because
user profile and user behavior can be easily changed or hidden, existing methods
can be easily darted by E-commerce Service Providers. In other words, exist-
ing works ignore the latent connections in product networks and the connec-
tion on product is hard to conceal, especially when the hyping activities has
become popular among homogeneous competitors. Moreover, they separately
use linguistic clues of deception or relational network information and can only
just detect these unjustly activities by a sole product. These shortage not only
makes detection rules easily avoid by spam activities, but also leads to inaccurate
detection results.

In this work, we study a new problem of detecting a group of marketing hyp-
ing users, i.e., Collective Marketing Hyping detection. To solve the problem,
we need to address the following two challenges:

– How to infer the latent heterogenous product information network? The net-
works may not be observed directly from the original data sets, to build such
networks, we need to infer the relationship matrix among products by their
potential connections such as product ID/name, and the store ID/name that
sales the similar products. These information are normally latent and require
in-depth analysis on the background data.

– How to model the heterogenous product information networks? We need to
design a new learning model that can fully combine the power of the relational
data and the heterogenous product information networks for discovering col-
lective behaviour among products.

In order to solve the above challenges, we present a new learning model that
can use the heterogenous product network information and temporal features to
discover a group of marketing hyping activities. As shown in Fig. 1, the product
network information is employed to design two product network regularization
terms that constraint the matrix factorization based learning function. Specifi-
cally, different products within the same store and homogeneous products within
different stores are extracted from the original data sets and formulated as the
two graph regularization terms in the learning function. Experiments on real-life
data show the performance of the proposed method.
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Fig. 1. Our model can cluster products by combining the product network information
and the meta data (temporal patterns) extracted from user comments.

The contributions of the paper are summarized as follows,

– We define a new research problem of detecting a group of marketing hyping
users, i.e., the Collective Marketing Hyping detection problem. Different
from existing online spam activity detection problems, we aim to use the
latent heterogenous product networks to detect a group of products containing
deceitful comments.

– We design a new unsupervised learning model to incorporate both comment
patterns (temporal patterns) and online heterogenous product network data
for pattern analysis.

– We conduct experiments on real-life data. The results shows that our model
can effectively detect the collective marketing hyping activities.

The remainder of this paper is organized as follows. In Sect. 2, we provide
an overview of several mainstream approaches for online spam detection and
the related work. Section 3 describes the background and methodology of the
work. Section 4 presents experimental results on real-life data, followed by the
conclusion in Sect. 5.

2 Related Work

In this section, we survey the related research in opinion spam detection and
compare them with our present work.

Opinion and Sentimental Mining. There are research works in mining opin-
ions and sentiments behind the rating and review data. McAuley [10] introduced
a new dataset of roughly 5 million reviews with multi-dimensional ratings. It is
of great challenge to not only model such data but also learning words describe
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aspects and words refer to sentiment about an aspect simultaneously. After that,
they [9] propose statistical models which connect underlying dimensions in rat-
ing score to aspects in review text on a large-scale dataset. Besides, a model [11]
has been designed and utilized for capturing the evolution of users or community
in recommendation system by integrating users experience- as component -into
the function of time, when comparing with other method. This model can find
similar users even their opinions far apart in a certain time.

However, these works mainly contribute to extracting and summarizing opin-
ions from reviews by utilizing natural language processing and data mining tech-
niques. In other words, they just analyze the latent properties and sentiments
on the product or store, but ignore the authenticity of these comments and eval-
uations. Thus, they cannot tackle the problem of opinion spam unless deriving
new features.

Review Spam Detection. Review spam detection techniques are proposed
with the evolution of new spammer approaches. Liu [4,5] has studied the trust-
worthiness of opinions in reviews. It is the first investigation in opinion spam.
Three categories of review spam were defined - untruthful opinions, review on
brands only and non-reviews. The last two types are relatively easily to be classi-
fied by manually labelled. For the first type, it is very hard for labelling by human
being. Due to this limitation, only reviews making damage to products and rep-
utation were taken into account and many duplicate or near-duplicated spam
reviews (almost certainly) were found. Thus, this no labelled training example
problem was solved.

However, the opposite circumstance - reviews which untruthfully promote
the product- has not been considered. Furthermore, current spammers can avoid
providing massive duplicate text. Li [7] first analyzed several features in terms of
spam behaviours, e.g., Content features, Sentiment Features, Product Features,
Meta-data features, etc. Then, a two-view semi-supervised method was exploited
to identify spam reviews. Feng [2] introduced the notion of natural distribution
of opinions and define three types of reviewers: Any-time reviewers, Multi-time
reviewers and Single-time Reviewers. Furthermore, these different types of dis-
tributional footprints of deceptive reviews were evaluated statistically by NLP
techniques, rather than relying on relatively unreliable human judgement. How-
ever, one-time reviewers, the most suspicious user type, is more or less stable in
the ratio to multi-time reviewers since 2007 in the dataset, which means there
may existing spammer groups but cannot be found by their method. Jindal [6]
defined several types of expectations based on the original distribution of dataset.
It then uses certain unexpectedness measures to rank rules for indicating unusual
behaviours as spam activities. However, this study aims to quantify the ratio of
abnormal reviews in the on-line e-commercial platforms, rather than detecting
the trustiness of the reviews on certain product. Besides, review text understand-
ing, rating is also another element for detecting the spammers. In [1], it mainly
exploited models to detect spammed products or product groups by compar-
ing the difference of rating behaviour between suspicious and normal users. The
ranking and supervised methods used are high efficient in identifying spammers
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and the result reveal the spammer have more significant impact on rating, rather
than unhelpful reviewers.

Detect Spam Activities by Temporal Feature. Xie [12] abandoned the text
data and rating features but just focused on the temporal patterns. This work
firstly constructs multidimensional time series refer to singleton reviewers (user
who has just written one review) for leveraging correlated anomalies. However,
the obvious defect is they assume customers (who really purchased something)
will never be spammers and singleton reviewer is surely belongs to the spammer
group. They did not consider not only the percentage of genuine buyer purchase
several items but just leave one review on one product, but also deceptive users
can follow the real purchasing process to give genuine but hired sentiment com-
ments. The work [2] defined the review bursts and use Kernel Density Estimation
with several features to detect them. It then proposed a model based on Markov
Random Field, and utilize reviewer-reviews-store graph to detect spammers.

3 Methodology

In this section, we first introduce our model in Sect. 3.1, and then describe the
algorithm in Sect. 3.2.

Table 1. Dataset statistics

Dataset Store Products Reviews MRP

Cloth product 10 80 153456 65

Cosmetics product 12 120 223981 82

Electronic product 10 100 183948 76

Food product 10 70 121952 52

Healthy product 10 55 803749 33

Shoes product 10 40 65986 21

3.1 Product Network Regularization

In this section, we first discuss the dataset we collected during our project, and
then we will systematically interpret how to model the heterogenous product
networks as regularization terms to constrain the matrix factorization learning
framework.

In the beginning of 2015, counterfeits crisis on Taobao.com trigger heated
debate between Alibaba and the Chinese Consumer Association, shortened for
CCA. According to CCA’s report, large proportion of fake goods exist in the top
10 Taobao online store of variety industries, including raiment,cosmetics, milk,
health etc. Thus, we first search the top 10 stores from these reported industries
and then collect at least top 10 best sale products in these stores. In Table 1, we
list the collected dataset.
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To model the heterogenous information networks, we will discuss the store-
Based regularization method and the product-Based regularization approach. In
this paper, ‘PBR’ refers to Product-Based Regularization and ‘SBR’ represents
Store-Based Regularization.

Store-Based Regularization. As mentioned in Sect. 1, online sellers tend to
implement untrustful hyping actions regularly, to keep their high rank position.
These competitor are more likely to observe each other, rather than directly
inform them to united join in. In other words, the collective marketing hyping
are an tacit competition among homogeneous stores and products, e.g.,protein
powder with same brand in healthy store. They should share similar behaviours
when they have similar position in ranking system. Based on this intuition,we
impose a Store-based Regularization term to minimize the distance between two
same product in different store,

R(Store based) = VG1V�. (1)

The Store-Based regularization term makes an postulation that similar
ranked products will share similar patterns if they are same merchandise within
different stores. Thus, they have very large possibility in the same cluster. How-
ever, this may not always be true in the real world. For example, some high rank
merchant may make better reputation and profit by regular method while others
need untrustful hyping. Hence,a more realistic model should also take other fea-
tures into consider, e.g., the meta data G1 is a matrix to represent Store-Based
network. Figure 2 describes how to build the network. For every product with
the same name and brand within all stores, we set up their connection values
as 1; otherwise, 0.

Fig. 2. The store-based network and matrix G1.

Product-Based Regularization. The first model we propose imposes a Store-
Based regularization term to constrain product similarity among different stores.
However, this approach is insensitive to those different products within the same
store. This will cause information loss problem, which will result in inaccurate
modeling. Hence, in order to tackle this problem, we propose another product
regularization term to impose constraints among products within their own store.
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Thus, we also introduce second regularization term for minimize the deviation
between dissimilar products within same store,

R(Product based) = VG2V� (2)

Specifically, we believe merchants who utilize unfairly technique will hype
many of their products, rather than only one type. Therefore, products pos-
sess similar sales in certain store should also with similar pattern. In Fig. 3, we
describe the Product-Based network and denote the matrix as G2. In contrast
to G1, we only set up connection value as 1 when products are within the same
store; otherwise, 0.

Fig. 3. The product-based network and matrix G2.

Feature Representation. Feature transformation can reduce the dimension-
ality of original online review data [8]. Given a sequence of user comments
sequence T = {t1,t2,...,tn} and features S = {s1,s2,...,sk}, X ∈ Rk×n represent
the sequence-transformed data matrix, where X(si,tj) is the distance between
each sequential feature si and the original data tj . The distances can be calcu-
lated by Eq. (3),

X(ij) = min
g=1,...,q

1
li

li∑
h=1

(tj(g+h−1) − si(h))2, (3)

where q = qj −li+1 denotes the total number of segments with length li from the
review sequence tj , qj , li are the lengths of comment sequences tj and features
si respectively.

However, the function given in Eq. (3) is not continuous, Thus, we use the
soft minimum function as in Eq. (4) [3]

X(ij) ≈
∑q

q=1 dijq · eαdijq∑q
q=1 eαdijq

, (4)

Review Sequence Similarity. We use H(ij) to represent the similarity
between two temporal features si and sj , which can be calculated as in Eq. (5),

H(ij) = e− ‖dij‖2

σ2 , (5)
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Pseudo-Class Label. In this part, we consider unlabeled data training. Note
labeled data is a special case of our model where the class label is given a prior,
and the iterations on the class label during learning can be removed. Provide
that we cluster user review sequence data into c class, the pseudo-class label
matrix V ∈ Rc×n contains the c labels.

Least Square Minimization. Based on the pseudo-class labels, we wish to
minimize the least square error. Let U ∈ Rk×c be the classification boundary
under the pseudo-class labels, the least square error minimizes the following
objective function,

min
U

‖X − UV‖2F (6)

The Learning Model. Based on the above notations, the learning model is a
joint optimization problem with respect to variables S, U and V , as in Eq. (7),

min
W,S,Y

1

2
‖X − UV‖2F +

λ1

2
‖VG1V

�‖ +
λ2

2
‖VG2V

�‖ +
λ3

2
‖H(s)‖2F +

λ4

2
‖U‖2F , (7)

where we aim to minimize the error rate (the first optimization term) under the
heterogenous network regularization (the second and third terms). The last two
terms are added to avoid overfitting to noisy data.

3.2 The Learning Algorithm

In order to solve the above learning function, we use the coordinate descent
algorithm to iteratively solve the three variables as below,

Algorithm
1: Input:

• The user review sequence data T with c classes
• The length and number of sequential features: lmin, r, k
• The number of internal iterations imax

• The learning rate η
• Parameters λ1, λ2, λ3 and α, σ

2: Output: Sequential feature S and class label V

3: Initialize: S0,V0,U0

4: While Not convergent do
5: Step 1 :Update V with Fixed U and S:

V
t+1
ij = V

t
ij

√

(XT
t Ut)ij

[(λ1GT
1 + λ2GT

2 + VtV T
t )XT

t Ut]ij

(8)

6:
Step 2 :Update U with Fixed V and S:

U
i
t+1 =

{
0 otherwise

(1 − λ4
‖(XtV

−1
t )i‖

)(XtV
−1
t )i if ‖(XtV

−1
t )i‖ > λ4

}

(9)
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7:
Step 3 :Update S with Fixed U and V:

S
t+1

= S
t − α[(Xs − UV)

αXs

αS
+ Hs

αHs

αS
] (10)

8: end while
9: Output: S∗ = St+1; U∗ = Ut+1; V∗ = Vt+1.

The algorithm iteratively solves the three variables V in Eq. (8), U in Eq. (9)
and S in Eq. (10), and eventually converge to the local optimum S∗, U∗ and
V ∗. Because the objective function given in Eq. (7) is convex, the local solution
here is also the global optimum. The algorithm converges fast under the proper
parameter settings.

4 Experiments

In this section, we first describe the output of the learning model, and then give
a couple of case studies to provide the analysis of the sequential patterns of
the problematic products with deceitful user comments. At last, we use human-
labeled data to evaluate the results.

4.1 Human Evaluation

In Taobao.com, people purchase items and leave comments. They also have buyer
reputation and levels. We invite 20 experienced online buyers who frequently
purchase items online to label around 500 products as we collected. Some of
these invited users have already participated in online hyping, so they know the
rules and strategies of the current hyping techniques.

4.2 Benchmark Methods

To show the strength of the heterogenous product networks in detection, we
design three methods for comparisons:

Only with SRB. Intuitively, although two product network information we men-
tioned above are all very important, we assume that the Store-Based regular-
ization should be more crucial for discovering the collective behaviours. As such
promotion is actually an tacit action among all homogeneous sellers. Hence, we
modify the objective function in Eq. (7) by setting λ2 = 0.

Only with PRB. Similar to above method, we also observe the performance when
only use Product-Based regularization in Eq. (7) by setting λ1 = 0.

Without Any Regularizations. To verify how significance of the product network
information, we take off all the regularization and just consider the features in
meta data. Thus, the learning function is in Eq. (7) with λ1 = 0 and λ2 = 0.
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4.3 Experimental Results

We conduct experiments on six datasets. To verify the importance of prod-
uct network information, we use both network regularizations (Store-Based and
Product-Based) in the algorithm, and then use only one of them for comparisons,
as given in the benchmark methods.

In Table 2, we show the deviation of the results. It is clear that the accu-
racy drops significantly without any network regularizations. Furthermore, the
precision also drops when just taking one network information into consider.
Besides, we found that the Store-Based Regularization is more effective than
the Product-Based Regularization. The results explain the latent connections of
homogeneous competition among online products in different stores.

Table 2. Comparisons among the benchmark methods.

Dataset Mean + Std.

Our method SRB only PRB only No Reg

Cloth products 0.9566 ± 0.0082 0.9156 ± 0.0088 0.9079 ± 0.0059 0.8778 ± 0.0059

Cosmetics products 0.9498 ± 0.0099 0.9189 ± 0.0069 0.9083 ± 0.0049 0.8789 ± 0.0058

Electronic products 0.9506 ± 0.0117 0.9196 ± 0.0040 0.9096 ± 0.0051 0.8793 ± 0.0064

Food products 0.9531 ± 0.0131 0.9205 ± 0.0057 0.9084 ± 0.0037 0.8804 ± 0.0057

Healthy product 0.9489 ± 0.0126 0.9161 ± 0.0056 0.9072 ± 0.0053 0.8789 ± 0.0064

Shoes products 0.9525 ± 0.0110 0.9182 ± 0.0070 0.9068 ± 0.0047 0.8791 ± 0.0047

4.4 Application: A Case Study

In this part, we mainly focus on analysing several interesting cases in our exper-
imental results.

Collective Marketing Hyping. As we discussed before, online stores tend
to hire real people to generate real purchase comments to increase their sales.
Thus, the sequential patterns of the comments should be relatively similar to
each other given the same certain of a time window.

From the clustering results, we focus on several homogeneous products (they
are all healthy products) within different stores with the same class labels,
as given in Fig. 3. It is very clear that from May to June, 2015, their com-
ment sequential patterns are highly similar. Furthermore, due to this period is
close to the Chinese Mother’s day and Father’s day, it is very common for cus-
tomers to purchase healthy products for their parents. Therefore, for ranking in
a high position, these Online merchants will pay for hyping activities and these
fake comments lead to collective hyping with similar user comment sequential
patterns (Fig. 5).

The False Negative Study. There are a few cases that the human label as
hyping, but our algorithm categorizes it into Non-Hyping groups. Through our
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(a) Cloth Product (b) Cosmetic Product (c) Healthy Product

(d) Food Product (e) Electronic Product (f) Shoe Product

Fig. 4. From all the dataset, we can found obvious evidence of collective marketing
hyping activities.

(a) Case I (b) Case II

Fig. 5. An illustration of the two representative False Negative Cases.

analysis, we can infer that our algorithm is correct. As we can see in Fig. 4,
normally, if this problem treats it as an anomaly detection problem, these two
stores may be labeled as hyping as they all have a short burst period. However,
our method fully considers the overall temporal patterns, not only the burst.
Furthermore, we can see that the burst time of these two products are in the
special festival In China - the upper one is in the Christmas and New year while
another one is close to the 11th of November1.

Overall, there are few ambiguous results generated, However, by taking the
heterogeneous network information into account, we can identify the collective
hyping activities correctly,with an average detection accuracy of 90 %.

1 On the holiday, the most popular E-commercial platform in China will appeal the
store owner to give special discount or organize group-shopping and flash sale activ-
ities, which will significantly increase the store’s sale or reviews.
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5 Conclusions

In this work we study the problem of collective marketing hyping with fraud
intentions generated from a user Cloud. The problem is important and challeng-
ing for trustworthy online business. To resolve this problem, we not only use the
clustering method to extract user comments’ sequential patterns of each single
product, but also detect a group of problematic products by using the latent het-
erogenous product information networks. The experimental results have shown
that the heterogenous product networks play an important role in clustering user
comments. We also correctly identify the collective marketing hyping behaviour
from a real-life large-scale E-commerce platform.

Acknowledgements. This work was supported by Australia ARC Discovery Project
(DP140102206) and Australia Linkage Project (LP150100671).
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Abstract. Recently diverse variations of large margin learning formal-
ism have been proposed to improve the flexibility and the performance
of classic discriminative models such as SVM. However, extra difficul-
ties do arise in optimizing non-convex learning objectives and selecting
multiple hyperparameters. Observing that many variations of large mar-
gin learning could be reformulated as jointly minimizing a parameter-
ized quadratic objective, in this paper we propose a novel optimization
framework, namely Parametric Dual sub-Gradient Descent Procedure
(PDGDP), that produces a globally optimal training algorithm and an
efficient model selection algorithm for two classes of large margin learning
variations. The theoretical bases are a series of new results for parametric
program, which characterize the unique local and global structure of the
dual optimum. The proposed algorithms are evaluated on two representa-
tive applications, i.e., the training of latent SVM and the model selection
of cost sensitive feature re-scaling SVM. The results show that PDGDP
based training and model selection achieves significant improvement over
the state-of-the-art approaches.

1 Introduction

Since the first appearance of Support Vector Machines (SVMs) in 1992, many
variations of the large margin learning formalism have been extensively stud-
ied to improve the model flexibility and the classification performance. To list
a few, SVM with latent variables have been proposed in [4,15] for structured
learning and object detection when the training labels are not fully observable.
The problem of learning large margin convex polyhedron for target detection is
considered in [3,18] by combining multiple linear classifiers to implicitly clus-
ter partially labeled samples. Inasmuch as the traditional large margin classifier
with hinge loss can be very sensitive to outliers, the authors of [12,13] suggest
using ramp loss (truncated hinge loss) with which a “robust” version of SVM
is proposed. To cope with the imbalanced cost of type I and type II error, sev-
eral attempts have been made to formulate the so called cost sensitive SVM
[2,9] by introducing extra loss penalty hyperparameters. Moreover, recent works
on Automatic Relevance Determination (ARD) kernel method [11] and multi-
ple kernel learning [1,8,17] are all developed within the large margin learning
framework and can also be viewed as instances of its variations.
c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part I, LNAI 9651, pp. 52–64, 2016.
DOI: 10.1007/978-3-319-31753-3 5
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Despite the substantial progress made in adapting large margin learning to
different scenarios, two major algorithmic difficulties are widespread. The first
one is the problem of optimizing non-convex learning objectives. For example
in the case of latent SVM, the incorporation of the “hidden states” induces a
concave term in the loss and breaks the convexity of the original formulation.
Similarly for robust SVM, the use of ramp loss makes the objective non-convex.
In literature, the authors of [3,4] propose Alternating Optimization (AO) to iter-
atively minimize a subset of decision variables. Another widely applied method is
the Concave-Convex Procedure (CCCP) [16]: the objective is written as the sum
of a convex part and a concave part, and each time the concave part is approx-
imated with a linear upper bound for minimization [15]. Direct application of
Stochastic Gradient Descent (SGD) has also been considered [18]. However, all
of these methods are heuristics that only converge to local optimums. In the
machine learning context with large scale problems they may lead to severely
deteriorated solutions [5].

On the other hand some adaptations of large margin method do preserve the
convexity of the learning objective. However another issue arises as these vari-
ations usually include a set of additional hyperparameters, which brings about
challenging model selection (hyperparameter tuning) problems. For example in
cost sensitive SVM and ARD kernel method, extra penalty coefficients and fea-
ture re-scaling parameters are introduced to improve the model flexibility, but
the choice of these hyperparameters is left to practitioners. For models with a
few hyperparameters, classic techniques such as k-fold cross-validation (KCV),
leave-one-out cross-validation (LOOCV) [14] could be readily applied. But such
exhaustive search method quickly becomes intractable for models with 3 or more
such parameters. In [6] the authors propose to implicitly calculate gradients of
various error bounds and loss functions and proceed to use these in a gradient-
descent algorithm. Yet previous work largely relies on the technique of implicit
differentiation, which requires additional smoothness assumptions and is usu-
ally done on a case-by-case basis. A more general gradient based approach for
choosing different types of multiple hyperparameters is still lacking.

In this work, we propose a novel optimization scheme, namely Parametric
Dual sub-Gradient Descent Procedure (PDGDP), to resolve the above two issues
in a unified framework. We first observe that many variations of large margin
learning objective could be rewritten in a parameterized quadratic form. Then
we develop a key property that explicitly relates the optimum to the hyperpa-
rameters. Our theoretical result indicates that the optimal dual solution is a
piecewise differentiable function of the hyperparameters, with explicit expres-
sions in well-defined critical regions. To solve the training problem, we further
show that the optimal objective of the dual is a convex piecewise quadratic func-
tion of hidden variables. Hence a sub-gradient descent will converge to global
optimality with guarantee. As for the model selection problem, although it is
hard to establish the luxury of convexity for generalization cost, its gradient
with respect to hyperparameters could be readily obtained based on the explicit
expression, and then used for efficient hyperparamter optimization.
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This paper is organized as follows. In Sect. 2, we review a general parame-
terized SVM formulation and show how some typical variations of large margin
learning method can be transformed into parameterized problems. In Sect. 3,
we derive the explicit form of the dual optimum as a function of hyperpara-
meters under a parametric programming framework. In Sect. 4, we establish
the sub-gradient descent algorithm for training and prove its guaranteed conver-
gence. Similarly in Sect. 5 a gradient based model selection algorithm is proposed.
Finally, numerical experiments are given in Sect. 6.

2 Large Margin Learning with Multiple Parameters

We denote the training data as T = {(x1, y1), . . . , (xn, yn)}, with the ith fea-
ture vector xi ∈ R

p, and its label yi ∈ {−1,+1}1. Denote the index sets
I+ = {i|yi = +1}, and I− = {i|yi = −1} for the two classes. The primal problem
of a general φ = [s, ν,β]T parameterized large margin learning reads2

min
w,b,ρ≥0,ξ

P(w;φ) =
1
2
||w||2 − νρ +

n∑
i=1

siξi

subject to yi(κβ(w,xi) + b) ≥ ρ − ξi; ξi ≥ 0 ∀i

(Primal)

where si is a weighting parameter for loss ξi. Depending on the context, it can be
viewed as a hidden state variable or a hyperparamter for cost sensitive penalty,
as will be made clear later. κβ(·) is a general kernel function parameterized by β,
which encompasses not only commonly used kernels, but also recent variations
such as Gaussian-ARD kernel or linear combination of multiple kernels. The dual
of (Primal) can be written as

min
α

1
2

∑
i,j

αiyiκβ(xi,xj)yjαj

subject to 0 ≤ αi ≤ si ∀i; αT y = 0; 1T α ≥ ν

(1)

After a solution of (1) α∗ is obtained, we denote the partition of training sample
indices as {S0,Sb,Sub}, where S0 = {i | α∗

i = 0} denotes non-support vectors,
Sb = {i | α∗

i = si} for bounded support vectors, and Sub = {i | 0 < α∗
i < si}

denotes unbounded support vectors.
For a more compact form, (1) is reformulated into:

min
α

J (α;θ,β) =
1
2
αT Qβα

subject to

{
Cαα ≤ Cθθ + C0

αT y = 0,

(Dual)

1 Binary classification is considered here only for ease of notation. The results devel-
oped in the following are readily extended to general structured output problems.

2 ν version, instead of a C-SVM version is used, as it has a more general dual form.
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where (Qβ)ij = yiyjκβ(xi,xj), and Cα,Cθ,C0 are constant matrices that
encapsulate inequalities of (1). Denote Ω(θ) as the feasible set for α, we will
see through examples that the first type of large margin learning variations,
such as latent SVM and robust SVM, can be rewritten as jointly optimizing
over α and θ with fixed β, i.e.,

min
θ∈Θ

min
α∈Ω(θ)

J (α). (J1)

Example 1. Consider the hidden variable SVM proposed in [4] and a ν version
in [18]

min
wm,bm,ρm

1

2

M∑

m=1

||wm||2 −
M∑

m=1

νmρm +
γ

l

∑

i∈I+

max
m

{[ρm − yi(wm · xi + bm)]+}

+
1 − γ

l

∑

i∈I−
min

m
{[ρm − yi(wm · xi + bm)]+}

(2)

The first three terms are still convex, but the last term is not. Introducing hidden
state variables s with the trick: minm{ξ1, · · · , ξM} = mins∈SM

∑M
m=1 smξm, we

get minm {[ρm − yi(wm · xi + bm)]+} = minsi∈SM

∑M
m=1 sim[ρm − yi(wm · xi +

bm)]+ where S
M is the simplex in R

M . Together with the bi-convexity to justify
the exchange of minimization orders, the original learning problem is transformed
into jointly minimizing

min
si∈S

M

i∈I−

min
wm,bm,
ρm≥0

1

2

M∑

m=1

||wm||2−
M∑

m=1

νmρm +
γ

l

∑

i∈I+

max
m

{[ρm − yi(wm · xi + bm)]+}

+
1 − γ

l

∑

i∈I−

M∑

m=1

sim[ρm − yi(wm · xi + bm)]+

(3)

By replacing the inner minimization with its Lagrangian dual, we obtain (3) is
equivalent to

min
si∈SM , i∈I−

Jd(s) where

Jd(s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
α

1
2

∑M
m=1

∑l
i,j=1 αimyiκm(xi, xj)yjαjm

subject to

⎧
⎪⎨

⎪⎩

αim ≥ 0 ∀i, ∀m; αim ≤ 1−γ
l

sim ∀i ∈ I−, ∀m
∑M

m=1 αim ≤ γ
l

∀i ∈ I+;
∑l

i=1 αim ≥ νm ∀m
∑l

i=1 αimyi = 0 ∀m

(4)

which in a compact matrix form with θ = s reduces to (J1). As the trick
implies, the newly introduced variables can indeed be thought of as indicators
for hidden states, and is coherent to the loss weighting parameters in the Primal
formulation.

Many other examples, such as robust SVM, hidden structured SVM, polyhe-
dron classifiers, etc., could be processed in a similar way. The inner optimization
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of the joint form can be viewed as minimizing a quadratic program (the dual)
“parameterized” by outer minimization variables θ, i.e. we can regard J1 as

min
θ∈Θ

J (α∗(θ)) (J1’)

Seeing that, the key idea of PDGDP is to find the dependence of the optimum
α∗ of the inner dual on its “parameters” θ, and then proceed to solve the joint
optimization.

Now let’s consider the model selection problem induced by some other vari-
ations of classic SVM. Again we provide a concrete example to facilitate the
discussion.

Example 2. The cost sensitive 2ν-SVM with Gaussian-ARD kernel has the
primal

min
w,b,ρ,ξ

1
2
||w||22 − νρ +

γ

n

∑
i∈I+

ξi +
1 − γ

n

∑
i∈I−

ξi

subject to yi(κ(w,xi) + b) ≥ ρ − ξi, ξi ≥ 0 ∀i; ρ ≥ 0.

(5)

with the ARD kernel κ(xi,xj) = exp
{

−∑d
k=1 βk

(
xk

i − xk
j

)2} the dual reads

max
α

− 1
2

n∑
i=1

n∑
j=1

yiyjαiαjκ(xi,xj)

subject to

{
0 ≤ αi ≤ γ

n ∀i ∈ I+; 0 ≤ αi ≤ 1−γ
n ∀i ∈ I−;∑n

i=1 αiyi = 0;
∑n

i=1 αi ≥ ν

(6)

The training objective is still convex, and the formulation has advantage of
addressing imbalanced cost with penalty coordinator γ as well as reweighting
each feature with βk for better scaling. However this variation incorporates d+2
hyperparameters and produces a challenging model selection problem. Once
more let’s take the “parametric dual” viewpoint: the configuration of hyper-
parameters and the training data set T determine the solution α∗, with which
one can construct a classifier for unseen data. Let Ψ (·) be a function that esti-
mates the generalization cost on a validation data set Z. Given T and Z, Ψ
is a function of the classifier, which depends on hyperparameters φ. Thus the
generalization cost has the form Ψ(α∗(φ)), and the problem of model selection
becomes

φ∗ = argmin
φ∈Φ

ΨT ,Z(α∗(φ)). (J2)

We see that for both (J1) and (J2), one can first determine the dependence of
optimality α∗ on parameters θ or φ, and then substitute it into the correspond-
ing outer problem for minimization. This constitutes the main idea of PDGDP.
The major difficulty, however, is to characterize the dependence as explicit func-
tions. In the subsequent section, we overcome this difficulty by introducing new
techniques for parametric optimization.
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3 Deriving the Explicit Dependence

In the terminology of operational research and optimization, a problem that
depends on multiple parameters is referred to as parametric program, and the
task of analyzing the dependence of optimal solution on related parameters is
called parametric programming (PP) or Sensitivity Analysis (SA). This section
is devoted to solving PP for the Dual with θ and β as parameters.

Note that the Dual is in fact a quadratic PP (QPP). Previously QPP has been
addressed in optimization and control community [10], and its special cases have
been used in our field for computing regularization path [7]. Nonetheless, for the
purpose of this work existing result on QPP is insufficient, because in previous
research (1) usually a single parameter is considered, simultaneous variations
of multiple parameters, especially those for kernels are not allowed and (2) the
so called Linear Independence Constraint Qualification (LICQ) condition [10] is
required for the existence of QPP solution, which in our case cannot be satisfied
due to the presence of the orthogonal hyperplane property (OHP) constraint
αT y = 0. In fact, in the jargon of PP or SA, the problem at hand corresponds
to a degenerate case for which existing solution is still lacking. In the subsequent
part, by exploiting a sample partition property, we show that the explicit form
α∗(φ) can be obtained under mild conditions. Before we do, it is useful to define
some terms.

Definition 1 (Active Constraint). Assume that a solution of (Dual) has been
obtained as α∗(φ). Then the ith row of the constraint is said to be active at φ,
if Cα

i α∗(φ) = Cθ
i θ + C0

i , and inactive if Cα
i α∗(φ) < Cθ

i θ + C0
i . The index set

of all active inequality constraints i is denoted by A, and all inactive inequality
constraints by AC . We denote Cα

A as the row selection of matrix Cα, i.e., Cα
A

only contains rows whose index is in A. Cα
AC is similarly defined.

Definition 2 (Non-degeneracy by Sample Partition). We say that a solu-
tion of a general large margin learning is Non-degenerate if the set of unbounded
support vectors Sub contains at least one i ∈ I+, and at least one i′ ∈ I−, i.e.
both S+

ub and S−
ub are non-empty.

With active set A, we define a matrix that is important in deriving the main
result.

P β � Cα
A

(
Q−1

β yyT Q−1
β

yT Q−1
β y

− Q−1
β

)
CαT

A . (7)

The matrix is symmetric, but in general it is not invertible. A simple example
is the case in which training samples only come from one class. The invertibility
issue is one of the major difficulties in solving the parametric optimization prob-
lem. With a series of lemmas given in the full version of this paper, we prove the
following result.

Lemma 1. If the solution α∗ of (Dual) is non-degenerate, then the matrix Pβ

is strictly symmetric negative definite, hence invertible.
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Consider the mildness of the non-degeneracy requirement: since the
unbounded support vectors are essentially the sample points that lie on the
decision boundaries and construct the classifiers (including the interception). In
order to have meaningful classification in practice this condition is a necessity
and is easily satisfied even with just a few training samples. With Lemma 1, we
are now able to derive an explicit form for the optimal solution α∗ of the Dual
as a function of the hyperparameters. We present the main result of this section.

Theorem 1. Assume that the solution of a general large margin learning is
non-degenerate and induces a set of active and inactive constraints A and AC,
respectively. Then in the critical region defined by{

P −1
β (Cθ

Aθ + C0
A) ≥ 0

Cθ
ACθ + C0

AC − Cα
ACT βP −1

β (Cθ
Aθ + C0

A) ≥ 0
(8)

the optimal solution α∗ of Dual admits a closed form

α∗(φ) = T βP −1
β (Cθ

Aθ + C0
A) (9)

where T β �
(

Q−1
β yyT Q−1

β

yT Q−1
β y

− Q−1
β

)
CαT

A .

In essence the theorem indicates that each time the inner optimization Dual
is solved, full information (closed form solution) in a well-defined neighborhood
(critical region) can be retrieved as a function of associated parameters. Besides,
the derivation of Theorem 1 only depends on the structure of Cα

A,Cα
AC and the

PD property of Qβ. Thus, the solution includes many variations of large margin
learning that have different forms of θ and κβ(·) as special cases.

4 PDGDP for Training: Global Optimality Guarantee

Recall that the training problem discussed in Sect. 2 is minθ∈Θ J (α∗(θ)) with
β fixed. Now we have found the explicit form of α∗(θ), in this section we also
characterize the overall geometric structure of the optimality, and show that the
optimal objective of the dual, J (α∗(θ)), is globally convex in θ, which guaran-
tees that the PDGDP based training algorithm converge to global optimum, in
contrast to existing training methods that only converge to local optimums.

Theorem 2. Still assuming non-degeneracy, then

1. There are finite number of polyhedron critical regions CR1, · · · , CRNr
which

constitute a partition of the feasible set of θ, i.e. each feasible θ belongs to
one and only one critical region.

2. The optimal objective J (α∗(θ)) is a globally convex Piece-wise Quadratic
(PWQ) function of θ, and is almost everywhere differentiable.
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Algorithm 1. PDGDP for Training
Input data T kernels K
θ1 ← init(T ); {Q, C} ← calMatrix(S, K)
CRexplored ← ∅, n ← itermax
τ ← stepsize, t ← 1
while Improved & t ≤ n do

if θt ∈ R then
{α∗, A} ← solDual(Q, C)
CRnew ← getRegion(α∗, A)
CRexplored ← CRexplored ∪ CRnew

else
α∗ ← thetaInsideR(θt, A)

end if
g ← getGrad(α∗, A)
θt+1 ← Proj(θt − τg); t ← t + 1

end while
return α∗,θ

The globally convex PWQ struc-
ture of J (α∗(θ)) revealed by part
2 is critical: together with the local
explicit solution, the training prob-
lem is reduced to minimizing a non-
smooth but convex function in the
space θ ∈ Θ. Projected subgradi-
ent descent method is an immediate
choice to search for global optimum.
We summarize the PDGDP based
training procedure in Algorithm1.
At each step with α∗ and A, one can
directly compute the critical region
boundaries (8), and the gradient:

∇θJ (α∗(θ)) = 2(TβP−1
β Cθ

A)T Qβα∗(θ)

Since θ should satisfy simplex
constraints, a projection on to that space is needed. By Theorem1, if θt is
in the critical regions that have been explored before, all information could be
retrieved in an explicit form and there is no need to solve the inner problem
again. However, when the variable goes to a new critical region, a QP solver for
Dual has to be invoked for optimal solution α∗ and corresponding constraint
partition. The following global optimal convergence result is a consequence of
Theorem 2:

Theorem 3. Convergence Guarantee. Let supθ ||θ1 − θ|| = B, and the Lip-
schitz constant of J (α∗(θ)) be G, then Algorithm I with iteration n and opti-
mal step size τi = B/G

√
n ∀i converges to global optimum within O (1/

√
n).

To be specific, let O∗ be the global optimum of the learning objective of J1,
J (α∗(θn

best)) � min
{J (α∗(θ1)), · · · ,J (α∗(θn))

}
then

J (α∗(θn
best)) − O∗ ≤ BG√

n
.

Hence in order to get J (α∗(θn
best)) − O∗ ≤ ε, the algorithm needs O(1/ε2)

iterations. B is bounded because the feasible set of θ is simplex. Also as J (α∗(θ))
is globally convex(hence continuous) and locally quadratic(hence has bounded
gradient), G must be bounded as well. The constant step size is optimal in the
sense that it minimizes upper bound of the gap. Other choices, such as a dimin-
ishing step size could also be used if faster convergence is a concern. Although the
inner QP solver is expensive, variety of existing methods for classic SVM dual
can be reused for acceleration. In the functions getRegion(), thetaInsiderRe-
gion(), and getGrad(), the computational overhead is mostly matrix inversions.
Fortunately, from the proof of the Theorem1, the involved matrices are either
symmetric positive definite or symmetric negative definite hence decomposition
methods can be adopted for efficient inversion.
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5 PDGDP Based Model Selection Algorithm

Algorithm 2. PDGDP for Model
Selection

t ← 0, r ∈ [0.2, 0.8]
φ0 ← ν0, s0, β0

while ||∇φ Ψ̃T ,Z(φt)|| ≥ ε do
ηt ← initStep(t)
T , Z ← randSample(D)
α∗ ← solDual(T , φt)
{∇φ Ψ̃T ,Z(φt), Rt} ← getGrad(Z, α∗)

φ̃
t+1

= φt − ηt∇φ Ψ̃T ,Z(φt)

while Ψ̃(φ̃
t+1

) − Ψ̃(φ̃
t
) > ε′ do

ηt = rηt

end while
φt+1 = φt − ηt∇φt Ψ̃T ,Z(φt)
t ← t + 1

end while
return φt

In this section, we focus on the
second issue of large margin learn-
ing variations, i.e. the problem of
hyperparameter (model) selection.
Different from the training prob-
lem discussed in last section, the
goal of model selection is to min-
imize the generalization cost on
unseen data z = (x, y). As the
true distribution of the data is never
known, generalization cost is usu-
ally estimated with various valida-
tion techniques and error bounds.
Let the estimation function be
Ψ , recall that the model selection
problem reduces to solving φ∗ =
argminφ∈ΦΨT ,Z(α∗(φ)). The appli-
cation of PDGDP framework for

model selection is now straightforward. To begin with, we first deduce the classi-
fier as an explicit function of hyperparameters, given that α∗ has been provided
by Theorem 1. Notation wise, we define dj = [y1κβ(x1,xj), . . . , ynκβ(xn,xj)]
and the hyperplane h(xj)

h(xj) =
n∑

i=1

α∗
i yiκβ(xi,xj) + b∗ = (dT

j − dT
U )T βP −1

β (Cθ
Aθ + C0

A), (10)

then the classifier f(xj) is merely the sign of h(xj). Now we have the explicit
form of the classifier as a function of the hyperparameters. Consider estimat-
ing generalization cost with the empirical cost on the validation data set, i.e.,
Ψ̂T ,Z(φ) = 1

m

∑
(xj ,yj)∈Z cj [1 − yj sign(h(xj))]. Plugging this in the classifier

(10), an explicit form of Ψ̂T ,Z can be obtained as a function of φ. To cope
with the discontinuity of the sign function, we use a sigmoid function tanh(τx)
for approximation. We denote the smoothed empirical generalization cost as
Ψ̃T ,Z(φ). The following property can be obtained from Theorem2.

Proposition 1. Ψ̃T ,Z(φ) is almost everywhere differentiable, and the gradient
∇Ψ̃T ,Z(φ) is Lipschitz continuous in each critical region.

Although the objective function to be minimized is non-convex in hyperpa-
rameters and it’s hard to establish any theoretical guarantee, a stochastic gra-
dient descent scheme is adopted and we justify its effectiveness with empirical
studies. The PDGDP based model selection is summarized in Algorithm 2. The
involved functions and their computational overhead are very similar to those of
Algorithm 1. We also incorporate backtrack line search for a better stepsize by
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using r ∈ [0.2, 0.8] to decrease overshot updates. Note that with the form of Ψ̂T ,Z
and the smoothness result in Proposition 1, the algorithm at least converges to
local minimums. Similar as the PDGDP for training, the matrix inversions in
this algorithm can be efficiently computed with decomposition techniques.

6 Experimental Results

Both of the PDGDP based algorithms were tested for typical large margin learn-
ing variations with multiple public datasets. Code, more experimental results and
full version with all proofs are available per request.

6.1 PDGDP Training Results

Firstly we test the performance of the PDGDP based training method
(Algorithm 1) and compare it with other states-of-the-art methods, including
alternating optimization [3], stochastic gradient descent [18], and concave-convex
procedure [15]. The public UCI yeast data set is used in this experiment and
we focus on the training of latent SVM described in Example 1. For algorithmic
comparison purpose we restrict to all linear kernels. Hyperparameters are set
with M = 8, νm = 0.01 and γ = |I−|/l. For the initialization of Algorithm 1,
a simple K-mean is applied and θ1 is assigned according to cluster labels. The
final value of the objective function, the corresponding testing accuracy, the
number of iterations and the time consumed are shown in Table 1. We observer
that PDGDP based training achieves a much better objective value, about 45 %
lower than the runner-up CCCP. The improved training also leads to 4.62 %
increase in testing accuracy. As a global optimization algorithm, it is expected
that PDGDP consumes more time than algorithms that only converge to local
minimums, as is shown in the last row of the table.

Table 1. Methods comparison
Method PDGDP AO SGD CCCP

Objective (10−5) 1.09 3.85 4.27 2.01

Testing Accuracy (%) 82.77 74.78 74.27 78.15

# of Iterations 48 12 200 27

Elapsed Time (s) 336 129 17 171 Fig. 1. Algorithm 1 Convergence Results

Figure 1 shows the corresponding objective value, gradient norm, latent vari-
able value, and testing accuracy of PDGDP based training in each iteration.
Note that for clear presentation only a subset of latent variables with the same
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Fig. 2. Convergence result for S500, c1 = 1, c2 = 1.

initial value is shown. We see that the iterative result is similar to a general sub-
gradient descent for non-smooth convex functions: The learning objective is in
general decreasing, with some fluctuations due to non-smoothness between two
critical regions. The evolution of gradient norm and latent variables also reflects
this character of insider region “exploitation” and beyond region “exploration”.
The testing accuracy is shown at the bottom right of Fig. 1, which increases
correspondingly with the decrease of learning objective.

6.2 PDGDP Model Selection Results

Next we test the proposed model selection method (Algorithm 2) for choosing the
hyperparameters of cost sensitive SVM with Gaussian ARD kernel in Example 2.
A semi-conductor sensing data set (S500) with 2670 samples and 500 features
is used in this experiment. Thus the total number of hyperparameters to choose
reaches 502. Figures 2 demonstrate the evolution of generalization cost, values
of ν, γ and kernel parameter β in each iteration. The generalization costs were
computed with c1 = 1, c2 = 1, where c1 and c2 are cost coefficient for type I and
type II error, respectively. The initial values were γ0 = 0.5, ν0 = 0.15, β0

k = 1 ∀k.
The iterative results in Fig. 2 exhibit fluctuations due to the random sampling
in the algorithm. More importantly, we observe that the algorithm converges
within 350 steps (186 invocations of the quadratic solver solDual() is engaged),
and the generalization cost decreases from 0.12 to 0.049. Considering that 502
hyperparameters have to be tuned and the fact that cross validation technique is
intractable, the proposed PDGDP based method indeed enables the application
of SVM with large number of hyperparameters by providing an efficient model
selection technique. For more comparative studies please refer to the full version.

7 Conclusion and Future Work

We highlight our contributions as follows: (1) To the best of our knowledge, the
PDGDP based training is the first method that is able to converge to global opti-
mum for this class of non-convex learning problems without resorting to combi-
natorial search. Both theory and experiment show that it constitutes a promising
substitute for existing methods such as AO, CCCP, or SDG. (2) The PDGDP
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based model selection provides an efficient and unified way to choose high dimen-
sional hyperparameters of different natures, while previous research is limited in
terms of both type and number of hyperparameters.

To further improve the efficiency of both algorithms, matrix completion tech-
niques can be applied to approximate large scale problems. Another possible
acceleration is to approximately extend critical regions to reduce the invoca-
tions of the quadratic solver. Moreover, high-order gradient-based methods with
enhanced descent direction are also worth exploring for better convergence.
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Abstract. The goal of ensemble regression is to combine a set of regres-
sors in order to improve the predictive accuracy. The key to a success-
ful ensemble regression is to complementally generate base models and
elaborately combine their outputs. Traditionally, the weighted average
of the outputs is treated as the final prediction. This means each base
model plays a constant role in the whole data space. In fact, we know
the predictive accuracy of each base model varies across different data
spaces. In this paper, we develop a dynamic weighted ensemble method
from locality which is called Locally Weighted Ensemble. The weight of
each base model varies with sample, which is realized by introducing
soft-max function into the objective function. Besides, regularization is
also included to make the objective function well-posed. The proposed
method is evaluated on several UCI datasets. Compared with single
models and other ensemble models, our proposed achieves better per-
formance. From the experiments, we also find that the convergence of
Locally Weighted Ensemble is fast.

Keywords: Regression · Locally weighted ensemble · Local learning ·
Regularization

1 Introduction

Different from single model prediction, ensemble learning trains a set of base
models and combines their outputs for producing accurate prediction. And it is
robust to data noise [11]. A large number of researches have been proposed for
designing effective ensemble system in recent years [7,10,15–17].

In the process of ensemble learning, there exist two tasks: (1) Generating base
models; (2) Combining base models to make an accurate prediction [15]. For the
first task, base models are built by the same learning algorithm or different
learning algorithms. After generating base models, an appropriate integration
strategy is required to make an accurate prediction.This makes generalization
error of ensemble regression lower [9]. As to integration strategy, lots of algo-
rithms have been proposed [10,16]. These algorithms can be roughly divided into
constant weighted methods and dynamic weighted methods [14].

c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part I, LNAI 9651, pp. 65–76, 2016.
DOI: 10.1007/978-3-319-31753-3 6
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As to constant weighted methods, the coefficients of base models are constant
in the whole data space. In 1993, Perrone and Cooper proposed the Basic Ensem-
ble Method. This method calculates the mean of predictions of all base models,
and achieves better results than single models [16]. In 2000, Seeger introduced
Bayesian Model selection into ensemble strategy and discussed the effectiveness
in the context of decision theory [17]. In 2014, Yin et al. designed an ensemble
measure which focused on both sparsity and diversity of base models [21].

The above ensemble methods learn a unified combination function in the
whole data space. However, data distribution is variable. The regression function
varies from sample to sample. To deal with this problem, dynamic weighted
integration is developed. Mendes-Moreira divided the dynamic weighted methods
into selection of similar data and change of integration functions [13]. As to the
former, Wooks et al. introduced K-nearest neighbor method (KNN) which finds
the similar sample in Euclidean Space in 1996 [20]. In addition, the similar data
is obtained by other methods, like Discriminant Adaptive Nearest Neighbor [4].
Since 1991, Michal I. Jordan proposed a series of dynamic ensemble methods
which are realized by changing integration function. In 1991, mixture of local
experts was proposed [7]. Each expert learned to handle a subset of the complete
set of training samples. In 1994, the team of Jordan proposed a hierarchical
mixture of experts where integration function is different from other integration
functions [8]. Li and Hu used classification confidence value to find a subset of
base models on each test sample. The final prediction is obtained by weighted
voting on the subset [10]. Both the selection of similar data methods and change
of integration function methods have achieved good performance. The former is
sensitive to dataset. The size of similar data is difficult to obtain. To deal with
the problem of multiple objective functions, Bottou and Vapnik proposed local
learning algorithm in 1992 [3]. They proved the effectiveness of local learning in
solving complex and dynamic distribution problem in theory.

Local learning algorithm contains of a series of methods to obtain the local
sample of each test sample, such as KNN, soft-max function and Radial Basic
Function network. The objective functions are different from test samples which
are built with the local sample [19]. In this paper, we introduce local learning
into ensemble regression to deal with the problem of multiple objective function,
which is called Locally Weighted Ensemble algorithm (LWE).

LWE is a data-driven method. The weights of base models in different regions
are variation continuously which is assigned by soft-max function. However, the
introduction of soft-max function makes the objective function ill-posed [7]. [7,8]
do not consider this problem. In this paper, we apply L21-regularization, LF -
regularization and Laplacian-regularization to deal with this problem. The exper-
imental assessment is carried on UCI datasets. The experiments show that our
method outperforms other methods, such as single methods, constant weighted
ensemble methods and dynamic ensemble methods.

The remainder of the paper is organized as follows: Sect. 2 describes two
kinds of ensemble integration methods. Section 3 presents the proposed locally
weighted ensemble method in detail. Section 4 presents the experiments obtained
on UCI datasets. Finally, the conclusions of this paper are drawn in Sect. 5.
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2 Related Work

Ensemble integration learns how to combine base models to make a final predic-
tion. During the phase of integration, the discriminative function is

f(x) =
M∑
i=1

wi · fi(x), (1)

where M is the number of base models, wi is the weight of the ith base model
and fi(x) is the prediction of ith base model.

2.1 Constant Weighted Ensemble

Yin investigates ensemble method which focuses on both sparsity and diversity
[21]. The objective function is

f(x) =
∑M

i=1
(wT xi−yi)

2

2 + α||w||1 − β
∑M

i=1(w
T (xi)2 − (wT xi)2)

s.t. w ≥ 0
(2)

where α is the control parameter for sparse regularization and β is the parameter
for diverse regularization. Sparsity is exposed by the l1-norm sparsity term.
Diversity is expressed by

∑M
i=1(w

T (xi)2 − (wT xi)2). This is derived from the
error-ambiguity decomposition for regression.

2.2 Dynamic Weighted Ensemble

Tsymbal et al. present a dynamic ensemble method through local accuracy [18].
The weight wi is calculated by

wi(x) =
k∑

j=1

(δ(x, xj))mri(xj)/
k∑

j=1

δ(x, xj), (3)

where k is the size of the neighborhood, δ(x, xj) is a distance-based relevance
coefficient and mri(xj) is the margin of model i on jth nearest neighbor of x.
The margin is defined as

mri(x) =
{

1, iffi(x) = y(x),
−1, otherwise.

(4)

The distance-based weight coefficient reflects similarity between two instance

δ(x, xj) = 1/ddeom(x, xj), (5)

where ddeom is the heterogeneous Euclidean/overlap metric [6]. The effectiveness
of the proposed method is significantly better than constant weighted method.
However, the number of nearest neighbors is difficult to determine. In this paper,
we introduce a new dynamic integration method.
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3 Locally Weighted Ensemble Learning

Figure 1 illustrates its general framework. There are two key steps in this frame-
work. Firstly, a set of base regressors are built by different regression algorithms.
In this paper, We think some of the base regressors are not useful for final pre-
diction. The base regressors which Mean Absolute Error is the smallest among
the remaining base regressors is added to ensemble learning prior, and the Mean
Absolute Error is described in Sect. 4. When the difference of MAE between two
iterations is smaller than 0.001, the process of adding base models is stopped. The
added regressors are treated as the base models of LWE. Secondly, a weighted
function is trained to combine the outputs of base models. Each sample on differ-
ent base models is assigned with different weights which are realized by soft-max
model. Soft-max model is presented as follow

wi(x) =
exp(vi · x + vi0)∑M

j=1 exp(vj · x + vj0)
, (6)

where x = x1, x2, x3, · · · , xn is the representation of the input data and M is the
number of base models. The parameters in {vi0, vi}, i = 1, 2, · · · ,M should be
learned, where i is the ith base model. In the following subsections, we analyze
the objective function and the optimizational strategy of our proposed method.

Input datax1

Base modelfMf2f1

x2 xn

w1(x) w2(x) wM(x)

x2

exp(v v )0

exp(v v )01

xi i
w xi M

xj jj

Local ensemble
1

M
f x w x f xi ii

Fig. 1. Architecture of locally weighted ensemble learning:the weight of each base
model is not constant, which varies with the input data. We introduce soft-max function
wj(x) to realize this.

3.1 Objective Function of Locally Weighted Ensemble Learning

The objective function of our proposed method is

f(x) =
M∑
i=1

wi(x) · fi(x). (7)

Regularization is included to make the objective function well-posed [6]. Let
J(w) denote the objective function
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J(w) = min λRregular

2 + (f(x) − y)2

s.t. w(x) ≥ 0,
(8)

where Rregular is the regularization term, λ is the regularization factor and y is
the real value. The methods of regularization are variable, such as L1-Norm,
L21-Norm, L2-Norm, LF -Norm and manifold regularization. In this paper,
we introduce.L21-Norm, LF -Norm and Laplace regularization to our objective
function.

A. L2,1-Norm Regularization (LWE-L2,1). During integration, [21] argues that
ensemble some of base models may be better than ensemble all for prediction.
This leads to sparse ensemble learning. The used sparse methods are L0-Norm,
L1-Norm and L21-Norm. For convenient calculation, we introduce L2,1-Norm
to regularization. Each base model has its own weight value, zero or nonzero.
L2,1-Norm can select the effective base models [6]. L2,1-Norm is written as

Rregular = ||w(x)||21 =
∑

i

√∑
j

w2
ij (9)

where wij is the weight of the i sample and the d-dimensional feature.

B. LF -Norm Regularization (LWE-LF ). In the matrix norm, Frobenius-Norm
is a convex function. The introduction of Frobenius-Norm makes the objective
function strongly convex. If we solve the problem by gradient decent method,
the convergence is stable and fast [12]. Frobenius-Norm is written as

Rregular = ||w(x)||2F =
∑

i

∑
j

w2
ij . (10)

C. Laplace-Norm Regularization (LWE-L). The solution of an ill-posed problem
can be approximated by variational principles, which contains the prior smooth-
ness information [5]. The manifold regularization utilizes the manifold to replace
the smoothness, where the manifold is determined by Laplacian. Laplace-Norm
keeps the information of spacial structure.

Rregular = ||w(x)||L = f(x)Lf(x) (11)

where L = D − Dis,Dii =
∑n

j=1 Disij and n is the size of samples. Disij is the
distance between sample i and sample j.

3.2 Optimization of Locally Weighted Ensemble Learning

The base models f1, · · · , fi, · · · , fM are trained in advance. During the phase
of optimization, these are constant. Therefore, the objective function Eq. 8 is
convex. We apply Gradient Descent method to solve it. The introduction of soft-
max function makes the constraint condition, w(x|v) ≥ 0, meet. The gradients
of soft-max function are
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∂wi(x)
∂vm

= wi(x) · (δi
m − wm(x)) · x; (12)

∂wi(x)
∂vm0

= wi(x) · (δi
m − wm(x)). (13)

where wi is the weight of ith sample and

δi
m =

{
0, if m �= i,
1, if m = i.

(14)

The gradients of LWE-L2,1, LWE-LF and LWE-L are presented as follow.
For further understanding, we give an example to describe our method.

A. L2,1-Norm Regularization (LWE-L2,1). The gradients of L2,1-Norm regular-
ization are written as

∂J(w)
∂vm

= λ∂||w(x)||21
2∂vm

+
∑n

j=1

∑M
i=1 2(f(xj) − yj)fi(xj)

∂wi(xj)
∂vm

= λ∂tr(wT Dw)
2∂vm

+
∑n

j=1

∑M
i=1 2(f(xj) − yj)fi(xj)

∂wi(xj)
∂vm

= λ2Dw ∂w(x)
2∂vm

+
∑n

j=1

∑M
i=1 2(f(xj) − yj)fi(xj)

∂wi(xj)
∂vm

=
∑n

j=1

∑M
i=1(2(f(xj) − yj)fi(xj) + λDw)wi(xj)(δi

m − wm(xj))xj

(15)
∂J(w)
∂vm0

=
n∑

j=1

M∑
i=1

(2(f(xj) − yj)fi(xj) + λDw)wi(xj)(δi
m − wm(xj)) (16)

where Dii = (2||wi||2)−1 and n is the size of training set. In each iteration, we
get the optimization of w by fixing D. In next iteration, D is updated by the
new w.

B. LF -Norm Regularization (LWE-LF ). The same as L2,1-Norm Regulariza-
tion,the gradients of LF -Norm regularization are written as

∂J(w)
∂vm

=
n∑

j=1

M∑
i=1

(2(f(xj) − yj)fi(xj) + λwi(xj))wi(xj)(δi
m − wm(xj))xj (17)

∂J(w)
∂vm0

=
n∑

j=1

M∑
i=1

(2(f(xj) − yj)fi(xj) + λwi(xj))wi(xj)(δi
m − wm(xj)). (18)

C. Laplace-Norm Regularization (LWE-L). The gradients of Laplace-Norm reg-
ularization are written as

∂J(w)
∂vm

=
n∑

j=1

M∑
i=1

(2(f(xj) − yj) + λLf)fi(xj)wi(xj)(δi
m − wm(xj))xj (19)

∂J(w)
∂vm0

=
n∑

j=1

M∑
i=1

(2(f(xj) − yj) + λLf)fi(xj)wi(xj)(δi
m − wm(xj)). (20)
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D. Example. Assume that there are n samples, a attributes and M base models
in training set. They consist in solving the following system⎛

⎜⎝
1 x11 · · · x1α

...
. . .

...
1 xn1 · · · xnα

⎞
⎟⎠

⎛
⎜⎝

v01 · · · v0M

...
. . .

...
vα1 · · · xαM

⎞
⎟⎠ =

⎛
⎜⎝

w11 · · · w1M

...
. . .

...
wn1 · · · wnM

⎞
⎟⎠ (21)

The each row of right side of Eq. 21 is the probability of each base model.
p1M is the probability of the first sample on Mth base model. The sum of each
row is 1. The final prediction is obtained as⎛

⎜⎝
w11 · · · w1M

...
. . .

...
wn1 · · · wnM

⎞
⎟⎠

⎛
⎜⎝

f1
...

fM

⎞
⎟⎠ =

(
f

)
. (22)

3.3 Algorithm of Locally Weighted Ensemble Learning

In this paper, a dynamic ensemble method, which depends on the characteris-
tic of data, is proposed. Different integration methods are applied for different
regions. Here we describe the algorithm of LWE.

Local-Weighted Ensemble algorithm (LWE)

Input: Training data

Output: Final predictor

Begin

ensemble generation step

Build a set of base regressors with all training data;

ensemble integration step

Obtain the base model of learning model;

Calculate descent direction(gradient of objective function);

Calculate step size with linear search method;

Update objective function;

Until convergence

Ensemble base models

end

After analysis, the time complexity of LWE − L2,1 is lO(n3), where l is the
number of iteration. The time complexity of LWE−LF and LWE−L is lO(n2)
and lO(n3) respectively.

4 Experiments and Analysis

In this section, all of the experimental results under different settings are pre-
sented. The UCI datasets that we selected in the experiments are presented in
Table 1. For fair comparison, each dataset is randomly split into 2/3 (training
data) and 1/3 (testing data) and the regularization parameter is obtained by
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cross-validation method. In our experiments, seven regression methods, (Least
Square (LR), Mat-primal, Support Vector Machine (SVM), Extreme Learn-
ing Machine-kernel (ELM), Feed-forward neural network (FNN), Elman Neural
Network (ENN), Layer-recurrent neural network (LRN)), are selected as base
models. Mean Absolute Error (MAE)and Root Mean Square Error (RMSE) are
selected as the criteria [2]

MAE =
1
nt

nt∑
i=1

|f(xi) − yi|; (23)

RMSE =

√√√√ 1
nt

nt∑
i=1

(f(xi) − yi)2; (24)

where nt is the size of the testing data, xi is the ith sample and yi is the ith real
value.

4.1 Convergence of Objective Function

Figures 2 and 3 plot the evolution of the objective values of LWE-L2,1, LWE-
LF and LWE-L. We see that the objective value gets to convergence at the
second iteration. This evaluates that our proposed method converges quickly.
Sometimes, the convergence is different. For example, on WhiteWine dataset,
LWE-L2,1 gets to convergence at the fifth iteration. However, LWE-F gets
to convergence at the second iteration. This evaluates our proposed method is
universal.

4.2 Prediction on UCI Datasets

To illustrate the behavior of LWE, we compare with single methods, (LRN,
LR, ELM, SVM), constant weighted ensemble method (the weights of base
models base on the MSE), dynamic ensemble method [1], AMLE [7] and

Table 1. Description of UCI datasets

Data Samples Attributes

Housing 506 14

Forest 517 11

Concrete 1030 9

RedWine 1599 8

Abalone 4177 9

WhiteWine 4898 12

Elevator 16599 19

Physicochemical Properties (Physic) 45730 10
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Fig. 2. Convergence of LWE-L2,1, LWE-LF , LWE-L on Housing, Forest fire,
Concrete, Red-wine datasets
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Fig. 3. Convergence of LWE −L2,1, LWE −LF , LWE −L on Abalone, White-wine,
Elevator, Physic datasets

Adaboost method. For the dynamic ensemble method, we should establish a set
of base models for each test point. However there is no prior knowledge about
the optimal number of nearest neighbors. We have not calculated the value of
dynamic ensemble method on Elevator and Physic.

Tables 2 and 3 present the comparison of MAE and RMSE on different meth-
ods respectively. In Tables 2 and 3, we can find the performances of ensem-
ble methods are improved. Dynamic weighted ensemble method is better than
constant weighted method. This shows that different regions need different
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Table 2. The MAE comparison of ours, single models and ensemble models

Model Single model Ensemble methods LWE

LRN LR SVM MSE Adaboost Dynamic AMLE L21 LF L

Housing 0.113 0.279 0.123 0.117 0.105 0.113 0.102 0.101 0.104 0.097

Forest 27.40 25.22 15.36 15.41 15.63 19.92 15.511 15.30 15.71 15.39

Concrete 6.861 6.835 6.914 6.654 5.912 5.756 5.239 5.186 5.240 5.238

RedWine 0.507 0.509 0.520 0.528 0.528 0.502 0.491 0.485 0.490 0.485

Ablaone 0.054 0.055 0.053 0.053 0.054 0.052 0.052 0.051 0.0522 0.051

WhiteWine 0.552 0.554 0.561 0.515 0.527 0.515 0.512 0.515 0.504 0.511

Elevator 0.027 0.032 0.031 0.024 0.025 - 0.027 0.025 0.026 0.026

Physic 1.985 1.637 1.575 1.333 1.244 - 1.107 1.108 1.107 1.107

Table 3. The RMSE comparison of ours, single models and ensemble models

Model Single model Ensemble methods LWE

LRN LR SVM MSE Adaboost dynamic AMLE L21 LF L

Housing 0.179 0.460 0.191 0.178 0.164 0.168 0.156 0.157 0.160 0.153

Forest 89.192 64.033 65.153 64.983 65.716 64.528 62.075 62.044 61.760 61.864

Concrete 8.657 8.655 8.849 8.854 7.475 7.291 6.723 6.776 6.701 6.723

RedWine 0.665 0.671 0.6905 0.618 0.681 0.662 0.643 0.635 0.647 0.646

Ablaone 0.071 0.073 0.072 0.070 0.073 0.079 0.070 0.069 0.069 0.068

WhiteWine 0.718 0.716 0.725 0.666 0.670 0.661 0.660 0.664 0.651 0.658

Elevator 0.335 0.046 0.040 0.034 0.033 - 0.037 0.034 0.036 0.036

Physic 1.985 2.436 2.772 2.134 2.065 - 1.975 1.979 1.970 1.975

integration methods. Compared with above methods, our proposed methods,
LWE-L2,1, LWE-LF and LWE-L, show strong robustness. Compared with
Adaboost, the MAE of LWE-L on Housing dataset is decreased by 0.0079.
Accordingly, RMSE is decreased by 0.0147. Compared with AMLE, the perfor-
mance on MAE is similar. However, our proposed method is better than AMLE
on RMSE. For example, RMSE is fallen by 4.07 %. This fact confirms the inte-
grating effectiveness of our model.

5 Conclusion

In this paper, a novel dynamic ensemble method is presented, LWEs. Regression
methods, such as FNN, LR, ENN, LRN, ELM, mat-primal and SVM, are used
to define base regressors. Soft-max function is introduced to assign different
integration strategies to different regions. Experiments on eight UCI datasets
confirm the effectiveness of LWEs. Some conclusions can be drawn as follow

(1) The distribution of dataset varies from sample to sample. The distribution
of dataset is variable. It is not wise to use one global model for prediction.

(2) The different fusion measures must be applied for different regions. A con-
stant weighted ensemble strategy cannot reflect the differences of samples.
We introduce the data-driven ensemble method, Locally Weighted Ensemble,
to combine the individual models.
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(3) The convergence of our proposed method is fast. LWEs only need seconds
to deal with 45730 samples.
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Abstract. Conformal classifiers output confidence prediction regions,
i.e., multi-valued predictions that are guaranteed to contain the true
output value of each test pattern with some predefined probability. In
order to fully utilize the predictions provided by a conformal classifier, it
is essential that those predictions are reliable, i.e., that a user is able to
assess the quality of the predictions made. Although conformal classifiers
are statistically valid by default, the error probability of the prediction
regions output are dependent on their size in such a way that smaller,
and thus potentially more interesting, predictions are more likely to be
incorrect. This paper proposes, and evaluates, a method for producing
refined error probability estimates of prediction regions, that takes their
size into account. The end result is a binary conformal confidence predic-
tor that is able to provide accurate error probability estimates for those
prediction regions containing only a single class label.

1 Introduction

Conformal classifiers [13] are classification models that associate each of their
predictions with a measure of confidence; each prediction consists of a set of
class labels, and the probability of including the true class label is bounded by a
predefined level of confidence. Conformal predictors are automatically valid for
any exchangeable sequence of observations, in the sense that the probability of
excluding the correct class label is well-calibrated by default.

Apart from validity, the key desideratum for conformal predictors is their
efficiency, i.e., the size of the prediction regions produced should be kept small,
as they limit the number of possible outputs that need to be considered. For
conformal classifiers, efficiency can be expressed as a function of the number
of class labels included in the prediction regions, given a specific confidence
level [12].
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In order to make use of the confidence predictions provided by conformal
classifiers, it is necessary that the prediction regions are both small and reliable.
The automatic validity of conformal classifiers effectively ensures their reliability
for appropriate, i.e., exchangeable, data streams, and much research has been
devoted to making conformal classifiers more efficient, see e.g., [2,4–6,8]. How-
ever, there is a need for addressing the problem of making predictions that are
simultaneously small and reliable. The probability of making an incorrect pre-
diction is only valid prior to making said prediction, i.e., we know the probability
of the next prediction being incorrect. After classifying a sequence of test pat-
terns, however, the a posteriori error probability of each particular prediction is
dependent on its size; this can easily be seen by noting that an empty prediction
region is always incorrect, whereas a prediction region containing all possible
outputs is always correct.

This paper proposes a method for utilizing posterior information, i.e., the size
of prediction regions produced for a sequence of test patterns, in order to more
reliably estimate the error probability of singleton predictions, i.e., predictions
containing only a single class label, for binary classification problems.

2 Inductive Conformal Classification

In order to output prediction sets, conformal classifiers combine a nonconformity
function, which ranks objects based on their apparent strangeness (compared to
other observations from the same domain), together with a statistical test that
can potentially reject unlikely patterns.

The nonconformity function can be any function on the form f : Xm × Y →
R, but is typically based on a traditional machine learning model according to

f [hZ , (xi, yi)] = Δ [hZ (xi), yi], (1)

where hZ is a predictive model trained on the problem, Z, and Δ is some function
that measures the prediction errors of hZ . For binary classification problems, a
common choice of error function is

Δ [hZ (xi), yi] = 1 − P̂hZ
(yi | xi) . (2)

where P̂hZ
(yi | xi) is a probability estimate for class yi when the model hZ is

applied on xi.
In order to construct an inductive conformal classifier [9,10,13], the following

training procedure is used:

1. Divide the training set Z into two disjoint subsets:
– A proper training set Zt.
– A calibration set Zc, where |Z| = q.

2. Train a classifier h (the underlying model) on Zt.
3. Let {α1, . . . , αq} = {f (h, zi) , zi ∈ Zc}.

When a new test pattern, xj , is obtained, its output can be predicted as
follows:
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1. Fix a significance level ε ∈ (0, 1).
2. For each class ỹ ∈ Y :

(a) Tentatively label xj as (xj , ỹ).
(b) Let αỹ

j = f [h, (xj , ỹ)].
(c) Calculate pỹ

j as

pỹ
j =

∣∣∣{zi ∈ Zc : αi > αỹ
j

}∣∣∣
q + 1

+ θj

∣∣∣{zi ∈ Zc : αi = αỹ
j

}∣∣∣ + 1

q + 1
, (3)

where θj ∼ U [0, 1].

(d) Let Γ ε
j =

{
ỹ ∈ Y : pỹ

j > ε
}

.

The resulting prediction set Γ ε
j contains the true output yj with probability

1 − ε. An error occurs whenever yj /∈ Γ ε
j , and the expected number of errors

made by a conformal classifier is εk, where k is the number of test patterns.

3 Conformal Classifier Errors

Conformal predictors are unconditional by default, i.e., while the probability of
making an error for an arbitrary test pattern is ε, it is possible that errors are
distributed unevenly amongst different natural subgroups in the test data, e.g.,
test patterns with different class labels [7,11,13]. If the output of a test pattern
is easily predicted, e.g., because it belongs to the majority class, the probability
of making an erroneous prediction on that test pattern might be lower than ε,
while the opposite might be true for difficult test patterns, e.g., those belonging
to the minority class. Hence, we can express the expected number of errors made
by a binary conformal classifier as

E = εk = ε0kP (c0) + ε1kP (c1), (4)

where ε0 and ε1 are the (unknown) probabilities of making an erroneous predic-
tion for test patterns that belong to class c0 and c1 respectively.

Figure 1 illustrates, using the hepatitis data set [1], the (more or less)
expected behaviour of an unconditional conformal classifier for binary classi-
fication problems where the two classes are of unequal difficulty. The easier
(majority) class ‘LIVE’ shows an error rate below ε, while the error rate of the
more difficult (minority) class ‘DIE’ far exceeds ε.

3.1 Class-Conditional Conformal Classification

Conditional (or Mondrian) conformal classifiers [11,13] effectively let us fix ε0
and ε1 such that ε = ε0 = ε1 by making the p-values conditional on the class
labels of the calibration examples and test patterns. This is accomplished by
slightly modifying the p-value equation, so that only calibration examples that
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(a) CP error rate (b) CP error rate per class

Fig. 1. Error rates of a conformal classifier on the hepatitis dataset; (a) overall error
rate, i.e., over all test examples; (b) error rates for test examples belonging to the two
classes, ‘DIE’ and ‘LIVE’, respectively.

share output labels with the test pattern (which is tentatively labeled as ỹ) are
considered, i.e.,

pỹ
j =

∣∣∣{zi ∈ Zκ : αi > αỹ
j

}∣∣∣
|Zκ| + 1

+ θj

∣∣∣{zi ∈ Zκ : αi = αỹ
j

}∣∣∣ + 1

|Zκ| + 1
, (5)

where Zκ = {(xi, yi) ∈ Zc : yi = ỹ} and θj ∼ U [0, 1].

Fig. 2. Error rates of a class-conditional conformal classifier for the two classes, ‘DIE’
and ‘LIVE’, on the hepatitis data set.

Figure 2 shows the error rates of a class-conditional conformal classifier for
the two classes of the hepatitis dataset. Here, a much more preferable behaviour
is observed: the error rate of the ‘DIE’ and ‘LIVE’ classes both correspond well
to the expected error rate ε.
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3.2 Utilizing Posterior Information

The overall error probability of a conformal classifier is ε, and class-conditional
conformal classifiers extend this guarantee to apply to each class individually
such that (for a binary classification problem) ε = ε0 = ε1. This effectively
handles the issue of making sure that conformal predictors can provide us with
reliable predictions, regardless of class (im)balance. However, we have yet to
address the task of making reliable predictions that are also small.

Fig. 3. OneE (error rate on singleton predictions) of a class-conditional conformal
classifier on the hepatitis dataset.

For a binary classification problem, the most interesting predictions are,
arguably, those containing only a single class label, i.e., the singleton predictions,
since empty predictions and double predictions provide us with little actionable
information. As illustrated by Fig. 3, conformal classifiers, unfortunately, pro-
vide no guarantees regarding the error rate of singleton predictions; as can be
seen, for the hepatitis data set, the error rate of singleton predictions (OneE) is
substantially greater than ε for low values of ε.

Hence, we would like some way of expressing the likelihood of a singleton pre-
diction being correct, without requiring knowledge of the true labels of the test
patterns. To accomplish this, we are required to slightly shift our point-of-view:
rather than guaranteeing the probability of making an erroneous prediction, we
need to express the probability of having made an erroneous prediction. In the
case of a binary classification problem, once k predictions have been made, we
can state the expected number of errors as

E = εk = εk (P (e) + P (d) + P (s)) , (6)

where P (e), P (d) and P (s) are the probabilities of making empty, double and
singleton predictions respectively. It is clear that we are required to make pre-
dictions (at any significance level ε) in order to estimate these probabilities,
however, we are not required to know the true output labels of the test pat-
terns. Once values for P (e), P (d) and P (s) have been found, we can leverage
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three pieces of information regarding conformal classifiers and their prediction
regions: the overall error rate on the k test patterns is ε; double predictions are
never erroneous; and, empty predictions are always erroneous. This lets us state
the following,

εk = ε̂kP (s) + kP (e) ⇒ ε̂ =
ε − P (e)

P (s)
, (7)

where ε̂ is the expected error rate of the kP (s) singleton predictions made.
Alternatively, we can define a smoothed estimate,

ε̂s =
ε

P (s) + P (e)
≥ sup {ε, ε̂} , (8)

where the confidence in a singleton prediction is never allowed to exceed 1 − ε.

(a) CCP OneE, with correction (b) CCP OneE per class, with correction

Fig. 4. OneE of a class-conditional conformal classifier on the hepatitis data set, with
corrected (ε̂, Eq. 7) and smoothed corrected (ε̂s, Eq. 8) singleton error rate estimates:
(a) OneE over all test patterns; (b) OneE over test patterns belonging to the ‘DIE’
and ‘LIVE’ classes, respectively.

Figure 4 shows, again using the hepatitis data set, that the estimates ε̂ and
ε̂s correspond well with the observed error rates on singleton predictions. From
Fig. 4a, it is clear that both estimates are better indicators for the OneE scores
than the significance level ε, however, Fig. 4b displays an obvious issue with both
estimates: singleton predictions that indicate that the true class label is ‘DIE’ are
incorrect much more often than expected from both ε̂ and ε̂s, while the opposite
is true for singleton predictions consisting only of the ‘LIVE’ class label. Thus, it
seems that we have effectively undone the efforts in making sure that the overall
error rates are equal for both classes. Indeed, we would ideally want to express
a reliable confidence estimate in singleton predictions for each class separately,
and thus need to expand on our definition of ε̂.

For our binary classification problem, we can write the expected error rate
for examples belonging to class ci as

εi = P (sj �=i | ci) + P (e | ci), (9)
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where, P (sj �=i | ci) is the probability of (erroneously) making a singleton pre-
diction that does not include the true class ci, and P (e | ci) is the probability
of producing an (automatically incorrect) empty prediction for test patterns
belonging to class ci. From this we can obtain

εi = P (sj �=i | ci) + P (e | ci) =
P (ci | sj �=i)P (sj �=i)

P (ci)
+ P (e | ci) (10)

P (ci | sj �=i) =
P (ci) [εi − P (e | ci)]

P (sj �=i)
, (11)

where P (ci | sj �=i) = P (ci�=j | sj), i.e., the probability of a prediction region con-
taining only class cj being erroneous. Unfortunately, this assumes that P (e | ci)
is known—something that requires us to obtain the true class labels of our test
set—however, if we assume that no empty predictions are made, we can define
the estimate

P (e) = 0 ⇒ P (ci | sj �=i) =
εiP (ci)
P (sj �=i)

≥ P (ci) [εi − P (e | ci)]
P (sj �=i)

. (12)

Using our previous notation, we can express the estimate

ε̂j =
εi�=jP (ci�=j)

P (sj)
, (13)

where ε̂j is the error probability of a singleton prediction containing only class
cj . It is clear that this is a conservative estimate, since the presence of empty
predictions can only decrease the true expected error rate on singleton predic-
tions. We note also that P (ci�=j) can be estimated from the set of calibration
examples.

Figure 5, finally, displays the error rates of singleton predictions containing
the ‘DIE’ and ‘LIVE’ classes, respectively, together with the estimates ε̂DIE and
ε̂LIV E . In both cases, the true OneE rate is approximately equal to, or lower
than, the conservative estimate ε̂j .

4 Experiments

To evaluate the proposed method of obtaining improved error rate estimates of
singleton predictions, an experimental evaluation was conducted using 10 × 10-
fold cross-validation on 20 binary classification data sets, obtained from the UCI
repository [1] (Table 1). A random forest classifier [3], consisting of 300 trees,
was used as the underlying model, and the calibration set size was set to 25 %
of the training data for all data sets. Equation 2 was used as the nonconformity
function.

Table 2 shows the rate of empty predictions (ZeroC), the rate of singleton pre-
dictions (OneC) as well as the error probability of singleton predictions (OneE)
of a class-conditional conformal classifier on all 20 data sets at ε = 0.1. Error
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(a) CCP OneE DIE with correction (b) CCP OneE LIVE with correction

Fig. 5. OneE of a class-conditional conformal classifier on the hepatitis data set, with
class-conditional corrected singleton error rate estimates (ε̂j , Eq. 13): (a) OneE rate for
predictions containing only the ‘DIE’ class; (b) OneE rate for predictions containing
only the ‘LIVE’ class.

Table 1. Data sets used in the experiments.

Data set #Inst. #Feat. #C0 #C1 Data set #Inst. #Feat. #C0 #C1

balance-scale 576 5 288 288 hepatitis 155 20 32 123

breast-cancer 286 49 201 85 ionosphere 351 35 126 225

breast-w 699 10 458 241 kr-vs-kp 3196 41 1527 1669

credit-a 690 44 307 383 labor 57 27 20 37

credit-g 1000 62 300 700 liver-disorders 345 7 145 200

diabetes 768 9 500 268 mushroom 8124 122 4208 3916

haberman 306 15 225 81 sick 3772 34 3541 231

heart-c 303 23 165 138 sonar 208 61 111 97

heart-h 294 23 188 106 spambase 4601 58 2788 1813

heart-s 270 14 150 120 tic-tac-toe 958 28 332 626

rates in bold indicate that OneE > 1.05ε, i.e., where the one-sided margin of
error is greater than 5%. This error margin is due to the asymptotic validity
of conformal predictors—we expect some statistical fluctuations in the observed
error rate on a finite data set. For several of the data sets, e.g., breast-cancer,
haberman and liver-disorders, the total error probability of singleton predictions
(s0 ∪ s1) is much greater than ε. This does not appear sufficient, as the singleton
predictions would typically be those that are of interest to an analyst. Looking
at the error rates of the individual classes, i.e., singleton predictions containing
only c0 (s0) and singleton predictions containing only c1 (s1), the problem is even
more pronounced—the error rate of singleton predictions containing a specific
class is, for some data sets, several times greater than ε. So, while a conformal
classifier does indeed provide us with a guarantee on the overall error probabil-
ity of its predictions (when considering singleton predictions, double predictions
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Table 2. Rate of empty predictions (ZeroC), rate of singleton predictions (OneC)
and error probability of singleton predictions (OneE) of a class-conditional conformal
classifier at ε = 0.1.

ε = 0.1 s0 ∪ s1 s0 s1

CCP ZeroC OneC OneE OneC OneE OneC OneE

balance-scale 0.063 0.936 0.042 0.470 0.042 0.467 0.043

breast-cancer 0.000 0.346 0.292 0.180 0.149 0.166 0.436

breast-w 0.085 0.915 0.019 0.588 0.002 0.328 0.048

credit-a 0.004 0.912 0.107 0.426 0.131 0.486 0.085

credit-g 0.000 0.542 0.188 0.200 0.355 0.341 0.085

diabetes 0.000 0.616 0.164 0.378 0.089 0.238 0.276

haberman 0.000 0.374 0.281 0.238 0.105 0.136 0.569

heart-c 0.000 0.783 0.127 0.402 0.105 0.381 0.144

heart-h 0.000 0.724 0.132 0.424 0.064 0.300 0.216

heart-s 0.001 0.786 0.130 0.408 0.105 0.379 0.149

hepatitis 0.001 0.614 0.169 0.200 0.379 0.414 0.047

ionosphere 0.025 0.958 0.069 0.369 0.120 0.589 0.034

kr-vs-kp 0.098 0.902 0.001 0.431 0.001 0.471 0.002

labor 0.045 0.679 0.079 0.319 0.095 0.361 0.044

liver-disorders 0.000 0.451 0.204 0.239 0.201 0.212 0.187

mushroom 0.097 0.903 0.000 0.468 0.000 0.436 0.000

sick 0.087 0.913 0.014 0.845 0.001 0.068 0.174

sonar 0.002 0.809 0.116 0.446 0.097 0.363 0.118

spambase 0.064 0.936 0.038 0.560 0.028 0.375 0.054

tic-tac-toe 0.095 0.905 0.001 0.312 0.001 0.593 0.002

mean 0.033 0.750 0.109 0.395 0.103 0.355 0.136

min 0.000 0.346 0.000 0.180 0.000 0.068 0.000

max 0.098 0.958 0.292 0.845 0.379 0.593 0.569

as well as empty predictions), and even though a class-conditional conformal
predictor extends this guarantee to each class separately, we cannot state any
particular confidence in those prediction regions that would be of most use.

In Table 3, the same singleton error rates are tabulated, together with the
exact estimate of singleton error probability ε̂ (Eq. 7), the smoothed estimate
ε̂s (Eq. 8) and the class-conditional estimate ε̂j (Eq. 13). Estimates in bold indi-
cate that OneE > 1.05ε̂. For all data sets, the exact estimate ε̂ lies close to the
empirical error rate of singleton predictions. Although the estimate does exceed
the true singleton error rate occasionally, we should expect it to converge with
an increasing number of calibration examples and test patterns. The smoothed
estimate is automatically conservative whenever the true singleton error rate is
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Table 3. Error probabilities of singleton predictions (OneE) of a class-conditional
conformal classifier at ε = 0.1, together with estimated singleton error probabilities ε̂,
ε̂s and ε̂j .

ε = 0.1 s0 ∪ s1 s0 s1

CCP OneE ε̂ ε̂s OneE ε̂0 OneE ε̂1

balance-scale 0.042 0.039 0.100 0.042 0.106 0.043 0.107

breast-cancer 0.292 0.289 0.289 0.149 0.165 0.436 0.422

breast-w 0.019 0.017 0.100 0.002 0.059 0.048 0.200

credit-a 0.107 0.105 0.109 0.131 0.130 0.085 0.092

credit-g 0.188 0.185 0.185 0.355 0.349 0.085 0.088

diabetes 0.164 0.162 0.162 0.089 0.092 0.276 0.273

haberman 0.281 0.267 0.267 0.105 0.111 0.569 0.542

heart-c 0.127 0.128 0.128 0.105 0.113 0.144 0.143

heart-h 0.132 0.138 0.138 0.064 0.085 0.216 0.213

heart-s 0.130 0.126 0.127 0.105 0.109 0.149 0.147

hepatitis 0.169 0.161 0.162 0.379 0.397 0.047 0.050

ionosphere 0.069 0.078 0.102 0.120 0.174 0.034 0.061

kr-vs-kp 0.001 0.002 0.100 0.001 0.121 0.002 0.101

labor 0.079 0.080 0.138 0.095 0.204 0.044 0.097

liver-disorders 0.204 0.222 0.222 0.201 0.243 0.187 0.198

mushroom 0.000 0.004 0.100 0.000 0.103 0.000 0.119

sick 0.014 0.015 0.100 0.001 0.007 0.174 1.384

sonar 0.116 0.121 0.123 0.097 0.105 0.118 0.147

spambase 0.038 0.038 0.100 0.028 0.070 0.054 0.162

tic-tac-toe 0.001 0.005 0.100 0.001 0.210 0.002 0.058

lower than the significance level ε, and does not substantially underestimate the
true singleton error probability for any of the data sets tested on. The class-
conditional estimate, ε̂j , is often conservative, in particular for the data sets
where the conformal classifier outputs a relatively large number of empty pre-
dictions, e.g., balance-scale, breast-w, kr-vs-kp; see Table 2. Again, on the data
sets used for evaluation, this estimate never underestimates the singleton error
probability substantially; however, for the sick data set in particular, the esti-
mate is extremely conservative on the s0 predictions (indicating that they are
all likely to be incorrect), which is likely a result of the low rate of s0 predictions
(see Table 2).

Overall, it does indeed appear as though these three estimates are better
able to more accurately express the true error probability of the singleton pre-
dictions than the original significance level ε. The smoothed estimate ε̂s and
the class-conditional estimate ε̂j , in particular, tend to overestimate rather than
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underestimate the true singleton prediction error rate, while the exact estimate ε̂
should be expected to converge to the true error probability given enough data.

5 Concluding Remarks

In this paper, a method is proposed for providing well-calibrated error proba-
bility estimates for confidence prediction regions from a class-conditional binary
conformal classifier. In particular, three estimates are proposed that express
the error probability of prediction regions containing only a single class label
more accurately than the original significance level, i.e., the acceptable error
rate ε. The three estimates proposed are: an exact estimate ε̂, that expresses the
error probability of singleton predictions; a smoothed estimate ε̂s, that expresses
the same probability in a conservative manner (it never falls below the original
expected error rate ε); and, a conservative class-conditional estimate ε̂j , that
expresses the error probability of a singleton prediction containing only class cj .
All three estimates are evaluated empirically with good results.

The error probability estimates proposed in this paper do not require knowl-
edge of the true outputs of the test set, however, it is necessary that several
predictions are made before the estimates can be calibrated, as they require
knowledge of the probabilities of making empty, singleton and double predic-
tions respectively. An alternative approach, left for future work, is to obtain
these probabilities from an additional validation set, or, from the calibration
set itself. This could, potentially, also allow us to refine the class-conditional
estimate, as it would enable us to estimate additional parameters, i.e., the prob-
ability of making an empty prediction for a test pattern belonging to a certain
class, that are required to express an exact class-conditional estimate rather than
a conservative one.

Another interesting direction for future work is to observe the behaviour of
the proposed method in an on-line setting. As it stands, the method is best
suited for use in a batch prediction setting, due to the requirement of making
predictions before calculating the error probability estimates.

Finally, it would be of interest to attempt to extend the proposed method to
multi-class problems as well as regression problems.
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Abstract. The accurate estimation of students’ grades in future courses
is important as it can inform the selection of next term’s courses and
create personalized degree pathways to facilitate successful and timely
graduation. This paper presents future-course grade predictions methods
based on sparse linear models and low-rank matrix factorizations that
are specific to each course or student-course tuple. These methods iden-
tify the predictive subsets of prior courses on a course-by-course basis
and better address problems associated with the not-missing-at-random
nature of the student-course historical grade data. The methods were
evaluated on a dataset obtained from the University of Minnesota. This
evaluation showed that the course specific models outperformed various
competing schemes with the best performing scheme achieving a RMSE
across the different courses of 0.632 vs 0.661 for the best competing
method.

1 Introduction

Data mining and machine learning approaches are being increasingly used to
analyze educational- and learning-related datasets towards understanding how
students learn and improving learning outcomes. This has led to the develop-
ment of various approaches for modeling and predicting the success or failure
of students in completing specific tasks in the context of intelligent tutoring
systems [9,12,15,16,18,19], building intelligent “early warning systems” that
monitor the students’ performance during the term [1,3], predicting how well
the students will perform by analyzing their activities with the learning man-
agement system (e.g., Moodle) [8,11,17], and predicting students’ term and final
GPA [2,13,14].

Our work focuses on developing methods that utilize historical student-course
grade information to accurately estimate how well students will perform (as
measured by their grade) on courses that they have not yet taken. Being able to
accurately estimate students’ grades in future courses is important as it can be
used by them (and/or their academic advisers) to identify the appropriate set of
courses to take during the next term, and create personalized degree pathways
that enable them to successfully and effectively acquire the required knowledge
to complete their studies in a timely fashion.

c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part I, LNAI 9651, pp. 89–101, 2016.
DOI: 10.1007/978-3-319-31753-3 8
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Existing approaches for predicting a student’s grade in a future course [4,6,7]
rely on neighborhood-based collaborative filtering methods [10]. Despite their
relative simplicity, the estimations obtained by these methods are reasonably
accurate indicating that there is sufficient information in the historical student-
course grade data to make the estimation problem feasible.

In this paper we improve upon these methods by developing various future-
course grade prediction methods that utilize approaches based on sparse linear
models and low-rank matrix factorizations. These methods rely entirely on the
performance that the students achieved in previously taken courses. A unique
aspect of many of our methods is that their associated models are either specific
to each course or specific to each student-course tuple. This allows them to
identify and utilize the relevant information from the prior courses that are
associated with the grade for each course and better address problems associated
with the not-missing-at-random nature of the student-course historical grade
data. We experimentally evaluated the performance of our methods on a dataset
obtained from the University of Minnesota that contained historical grades that
span 12.5 years. Our results showed that the course specific models outperformed
various competing schemes and that the best performing scheme, which is based
on course-specific regression, achieves a RMSE across the different courses of
0.632 whereas the best competing method achieves an RMSE of 0.661.

The reminder of the paper is organized as follows. Section 2 introduces the
notation and definitions used. Section 3 describes the methods developed and
Sect. 4 provides information about the experimental design. Section 5 presents
an extensive experimental evaluation of the methods and compares them against
existing approaches. Finally, Sect. 6 provides some concluding remarks.

2 Definitions and Notations

Throughout the paper, bold lowercase letters will denote column vectors (e.g.,
y) and bold uppercase letters will denote matrices (e.g., G). Individual elements
will be denoted using subscripts (e.g., for a vector yi, and for a matrix gs,c).
A single subscript on a matrix will denote its corresponding row. The sets will
be represented by calligraphic letters.

The historical student-course grade information will be represented by a
sparse matrix G ∈ R

n×m, where n and m are the number of students and
courses, respectively, and gi,j is the grade in the range of [0,4] that student i
achieved in course j. If a student has not taken a course, the corresponding entry
will be missing. The course and student whose grades need to be predicted will
be called target course and target student, respectively.

3 Methods

In this section we describe various classes of methods that we developed for
predicting the grade that a student will obtain on a course that he/she has not
yet taken.
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3.1 Course-Specific Regression (CSR)

Undergraduate degree programs are structured in such a way that courses taken
by students provide the necessary knowledge and skills for them to do well in
future courses. As a result, the performance that a student achieved in a subset
of the earlier courses can be used to predict how well he/she will perform in
future courses. Motivated by this, we developed a grade prediction method,
called course-specific regression (CSR) that predicts the grade that a student
will achieve in a specific course as a sparse linear combination of the grades that
the student obtained in past courses.

In order to estimate the CSR model for course c, we extract from the overall
student-course matrix G the set of rows corresponding to the students that
have taken c. For each of these students (rows), we keep only the grades that
correspond to courses taken prior to course c. Let Gc ∈ R

nc×m be the matrix
representing that extracted information, where nc is the number of students that
took course c. In addition, let yc ∈ R

nc be the grades that the students in Gc

obtained in course c (the yc
i is the grade corresponding the student in the ith

row of Gc). Given this, the CSR model wc ∈ R
m
+ for c is estimated as:

minimize
wc�0

‖yc − 1wc
0 − Gcwc‖22 + λ1 ‖wc‖22 + λ2 ‖wc‖1 , (1)

where wc
0 is a bias term, 1 ∈ R

nc is a vector of ones and λ1, λ2 are regular-
ization parameters to control overfitting and promote sparsity. The model is
non-negative because we assume that prior courses can only provide knowledge
to future courses. The individual weights of wc indicate how much each prior
course contributes in the prediction and represent a measure of the importance
of the prior course within the context of the estimated model. Using this model,
the grade that a student will obtain in course c is estimated as

ŷc = wc
0 + sTwc, (2)

where s ∈ R
m is the vector of the student’s grades in the courses he/she has

taken so far.
We found that by centering each student’s grades around his/hers GPA leads

to more accurate predictions (see Sect. 5.1). In this approach, prior to estimating
the model using Eq. 1, we first subtract from each gci,j grade the GPA of each
student (GPA is calculated based on the information in Gc). This centers the
data for each student and takes into consideration a notion of student bias as
it predicts the performance with respect to the current state of a student. Note
that in the case of GPA-centered data, we remove the non-negativity constraint
on wc. We will refer to this model as the CSR-RC (Row Centered) model.

3.2 Student-Specific Regression (SSR)

Depending on the major, the structure of different undergraduate degree pro-
grams can be different. Some degree programs have limited flexibility as to the
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set of courses that a student has to take and at which point in their studies they
can take them (i.e., specific semester). Other degree programs are considerably
more flexible and are structured around a fairly small number of core courses
and a large number of elective courses.

For the latter type of degree programs, a drawback of the CSR method is
that it requires the same linear regression model to be applied to all students.
However, given that the set of prior courses taken by students in such flexible
degree programs can be quite different, a single linear model can fail to capture
the various prior course combinations. In fact, there can be cases in which many
of the most important courses that were identified by the CSR model were
simply not taken by some students, even though these students have acquired
the necessary knowledge and skills by taking a different set of courses. To address
this limitation, we developed a different method, called student-specific regression
(SSR), which estimates course-specific linear regression models that are also
specific to each student.

The student specific model is derived by creating a student-course specific
grade matrix Gs,c for each target student s and each target course c from the Gc

matrix used in CSR method. Gs,c is created in two steps. First, we eliminate from
Gc any grades for courses that were not taken by the target student. Second,
we eliminate from Gc the rows that correspond to students that have not taken
a sufficient number of courses that are in common with the target student s.
Specifically, if Cs and Ci are the set of courses for student s and i respectively,
we compute the overlap ratio (OR) = |Cs ∩ Ci|/|Cs| and if OR< t, then student
i is not included in Gs,c. The value of t is a parameter of the SSR method and
high values ensure that the set of students forming Gs,c have taken many courses
in common with s and have followed similar degree plans. Given Gs,c, the SSR
method proceeds to estimate the model using Eq. 1 (with Gs,c replacing Gc),
and uses Eq. 2 for prediction.

3.3 Methods Based on Matrix Factorization

Low rank matrix factorization (MF) approaches have been shown to be very
effective for accurately estimating ratings in the context of recommender sys-
tems [10]. These approaches can be directly applied to the problem of predicting
the grade that a student will achieve on a particular course by treating the
student-course grade matrix G as the user-item rating matrix.

The use of such MF-based approaches for grade prediction is postulated on
the fact that there is a low dimensional latent feature space that can jointly
represent both students and courses. Given the nature of the domain, this latent
space can correspond to the space of knowledge components. Each course vec-
tor is the set of components associated with a course and each student vector
represents the student’s level of knowledge across these knowledge components.

By applying the common approaches of MF-based rating prediction to the
problem of grade prediction, the grade that student i will obtain on course j is
estimated to be

ĝi,j = μ + sbi + cbj + piqj
T , (3)
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where μ is a global bias term, sbi and cbj are the student and course bias terms,
respectively, and pi and qj are the latent representations for student i and course
j, respectively. The parameters of the MF method (μ, sb ∈ R

n, cb ∈ R
m,P ∈

R
n×l, and Q ∈ R

n×l) are estimated following a matrix completion approach that
considers only the observed entries in G as

minimize
µ,sb,cb,P,Q

∑
gi,j∈G

(gi,j − μ − sbi − cbj − piqT
j )

2
+ λ(‖P‖2F + ‖Q‖2F

+ ‖sb‖22 + ‖cb‖22), (4)

where λ is a regularization parameter and l is the dimensionality of the latent
space, which is a parameter to this method.

The accurate recovery of the low rank model (when such a model exists) from
a set of partial observations depends on having a sufficient number of observed
entries, and on these entries be randomly sampled from the entries of the target
matrix G [5]. However, in the context of student grade data, the set of courses
that students take is not a random subset of the courses being offered as they
need to satisfy their degree program requirements. As a result, such an MF
approach may lead to suboptimal prediction performance.

In order to address this problem we developed a course specific matrix fac-
torization (CSMF) approach that estimates an MF model for each course by
utilizing a course specific subset of the data that is denser (in terms of the num-
ber of observed entries and the dimensions of the matrix). As a result, it contains
a larger number of random by sampled subsets of sufficient size.

Given a course c and a set of students Sc for which we need to estimate
their grade for c (i.e., the students in Sc have not taken this course yet), the
data that CSMF utilizes are the following: (i) the students and grades of the Gc

matrix and yc vector of the CSR method (Sect. 3.1), (ii) the students in Sc and
their grades. This data is used to form a matrix Xc ∈ R

(nc+nt)×(mc+1), where
nc is the number of students in Gc, nt = |Sc|, and mc is the number of distinct
courses that have at least one grade in Gc or Sc. The values stored in Xc are
the grades that exist in Gc and Sc. The last column of Xc stores the grades yc

for the course c that were obtained from the students in Gc. Thus, Xc contains
all the prior grades associated with the students who have already taken course
c and the students for which we need to have their grade on c predicted. Matrix
Xc is then used in place of matrix G in Eq. 4 to estimate the parameters of the
CSMF method, which are then used to predict the missing entries of the last
column of Xc, which are the grades that need to be predicted.

4 Experimental Design

4.1 Dataset

The student-course-grade dataset that we used in our experiments was obtained
from the University of Minnesota which has a very flexible degree program.
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Table 1. Statistics for course-specific datasets.

Prior courses 5 7 9

Average number of students in training set 270 232 212

Average number of students in test set 22 21 20

Average number of prior courses 141 141 145

Average number of grades 3,872 3,663 3,663

Courses predicted 92 90 80

Grades predicted 2,088 1,959 1,666

It contains the students that have been part of the Computer Science and Engi-
neering (CSE) and Electrical and Computer Engineering (ECE) programs from
Fall of 2002 to Spring of 2014. Both of these degree programs are part of the
College of Science & Engineering (CS&E) in which students have to take a com-
mon set of core science courses during the first 2–3 semesters. We removed from
the dataset any courses that are not part of those offered by CS&E departments,
as these correspond to various liberal arts and physical education courses, which
are taken by few students and in general do not count towards degree require-
ments. Furthermore, we eliminated any courses that were taken as pass/fail. The
initial grades were in the A–F scale, which was converted to the 4–0 scale using
the standard letter-grade to GPA conversion. The resulting dataset consists of
2,949 students, 2,556 different courses, and 76,748 student-course grades.

We used this dataset to assess the performance of the different methods
for the task of predicting the grades that the students will obtain in the last
semester (i.e., the most recent semester for which we have data). For this reason,
the dataset was further split into two parts, one containing the students that
are still active, i.e., have taken courses in the last semester (Dactive) and one
that contains the remaining students (Dinactive). Dactive contains 876 students,
19,089 grades, out of which 3,427 grades are for the 475 distinct classes taken in
the last semester. Dinactive contains 2,073 students and 57,659 grades.

These datasets were used to derive various training and testing datasets for
the different methods that we developed. Specifically, for the CSR method we
extracted the course specific training and testing datasets as follows. For each
course c that was offered in the last semester, we extracted course-specific train-
ing and testing sets (Dc,≥k

train and Dc,≥k
test ) by selecting from Dinactive and Dactive,

respectively, the students that have taken c, and prior to taken c, they also took
at least k other courses. The reason that these datasets were parametrized with
respect to k is because we wanted to assess how the methods perform when
different amount of historical student performance information is available. In
our experiments we used k in the set {5, 7, 9}. That information will create the
grade matrix Gc, where gci,j is the grade of the ith student on the jth course
from the training set Dc,≥k

train. Table 1 shows various statistics about the various
course-specific datasets for different values of k.
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Fig. 1. Statistics of the datasets used in SSR w.r.t overlap ratio.

For the CSMF method, the training dataset for course c was obtained by
combining Dc,≥k

train and Dc,≥k
test into a single matrix after removing the grades that

the target students achieved in course c.
For the MF method, the matrix is constructed as the union of the sets Dc,≥k

train

and Dc,≥k
test for every course to be predicted after removing the grades that the

active students achieved in the courses we want to predict. We formulated the
dataset in this way in order to provide the same information for training and
testing to all our models.

In the SSR, the grade matrix Gs,c is created by selecting from Dc,≥k
train the

set of courses that were also taken by student s and the set of students whose
OR with s is at least t. Figure 1 shows some statistics about these datasets as a
function of t.

Finally, we did not consider the models that have less than 20 students in their
corresponding dataset, as we consider them to have too few training instances
for reliable estimation.

4.2 Competing Methods

In our experiments, we compared our methods with the following competing
approaches.

1. BiasOnly. We only took into consideration local and global bias to predict
the students’ grades. These biases were estimated using Eq. 4 when l = 0.

2. Student-Based Collaborative Filtering (SBCF). This method imple-
ments the approach described in [4]. For a target course c, every student i is
represented by a vector formed with his/hers grades in courses taken prior to
c. The vector of a target student s is compared against the vectors of the other
students that have taken course c with the Pearson’s correlation coefficient.
We select the students with positive similarity to perform grade prediction
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for s in c according to:

ĝs,c = ḡs +
min(r, nbr)

r

∑nbr
i=1(gi,c − ḡi)sims,i∑nbr

i=1 sims,i

, (5)

where nbr is the number of students selected, r is a confidence lower limit for
significance weighting, ḡi is the average grade of the student prior taking c,
and sims,i represents the similarity of target student s with i.

4.3 Parameters and Model Selection

For CSR, we let λ1 take values from 0 to 40 in increments of 2.5 and λ2 from
0 to 50 in increments of 2.5. For SSR, we let λ1 take values from 0 to 10 in
increments of 1 and λ2 from 0 to 14 in increments of 2. For MF and CSMF, we
let λ take values from 0 to 6 in increments of 0.05. For SSR, the range of the
tested values for overlap ratio is 0.3 to 1, in increments of 0.04. For MF and
CSMF methods we tested the number of latent dimensions with the values 2, 5
and 8.

As we could not use cross validation for the SSR, we did not apply it for any
regression model, in order to be fair with our comparisons. The best models are
selected based on their performance on the test set. For MF based approaches,
we used the semester before the target semester to estimate and select the best
parameters.

4.4 Evaluation Methodology and Performance Metrics

We evaluated the performance of the different approaches by using them to
predict the grades for the last semester in our dataset using the data from the
previous semester for training.

We assessed the performance using the root mean square error (RMSE)
between the actual grades and the predicted ones. Since the courses whose grades
are predicted have different number of students, we computed two RMSE-based
metrics. The first is the overall RMSE in which all the grades across the different
courses were pooled together, and the second is the average RMSE obtained by
averaging the RMSE values for each course. We will denote the first by RMSE
and the second as AvgRMSE.

5 Experimental Results

5.1 Course-Specific Regression

Table 2 shows the performance achieved by the CSR and CSR-RC models when
trained using the three different datasets discussed in Sect. 4.1. These results
show that among the two models, CSR-RC, which operates on the GPA-centered
grades leads to considerably lower errors both in terms of RMSE and AvgRMSE.
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Table 2. The performance achieved by Linear Course-Specific Regression.

RMSE AvgRMSE

Prior courses 5 7 9 5 7 9

CSR 0.751 0.761 0.779 0.757 0.785 0.762

CSR-RC 0.634 0.632 0.632 0.585 0.579 0.543

The performance of the models trained on the dif-
ferent datasets were evaluated on the D≥9

test test set,
which is the common subset among their respective
test sets.

Fig. 2. The performance achieved by the SSR model w.r.t. overlap ratio.

In terms of the sensitivity of their performance on the amount of historical
information that was available when estimating these models (i.e., the minimum
number of prior courses), we can see that for CSR-RC, the RMSE performance
of the models does not change significantly; though the AvgRMSE performance
improves when going from five to nine prior courses. This indicates that training
sets with more number of prior courses tend to help smaller courses.

5.2 Student-Specific Regression

As one of the parameters for this problem was the overlap ratio between the
courses of the target student and other students, Fig. 2 presents the behavior
of the model’s RMSE (left) and AvgRMSE (right) as we vary the overlap ratio
for Dc,≥5

test (k = 5),Dc,≥7
test (k = 7) and Dc,≥9

test (k = 9). When the overlap ratio is
increased, the selected students have more courses in common with the target
user and that results to better performance. In order to compare the performance
of SSR against CSR-RC, Fig. 3 shows the RMSE of the best CSR-RC and SSR
models. The RMSE values were computed as the subsets of the test set that
was predicted by both models. If the overlap ratio is more than 0.8, then SSR is
more accurate. However, the capability of this method to predict courses is very
low, i.e., we can predict 50 % less courses than the CSR model for k = 9 when
the overlap ratio is more than 0.8, because there are not as many students that
had followed the same degree plan as the selected student.
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Fig. 3. RMSE of SSR model compared to the CSR-RC w.r.t. overlap ratio for the case
of 9 prior courses. The performance for other choices of prior courses is very similar.

5.3 Methods Based on Matrix Factorization

The performance of the methods based on matrix factorization is shown in
Table 3 for various number of latent factors. Besides the MF and CSMF schemes
that were described in Sect. 3.3, this table also shows results for a method labeled
“MF-GB”, which is derived from the MF scheme by eliminating the global bias
term (μ) of Eq. 4. These results show that CSMF leads to lower RMSE values
when there are more than nine prior courses per student, which confirms that
by building matrix factorization models on smaller but denser course-specific
sub-matrices, we can derive low-rank models that lead to more accurate matrix
completion. Even for the case with more than five prior courses, if we focus
on denser models, the majority of courses are predicted better by CSMF* than
by the best model, MF-GB. In terms of the number of latent factors, we can
see that in most cases, the best performance is achieved with small number of
latent factors. This should not be surprising, as the average number of grades
per student is low, which does not support a large number of latent factors.

5.4 Comparison with other methods

Table 4 compares the performance of the baseline approaches described in
Sect. 4.2 (BiasOnly and SBCF) with the best-performing course-specific regres-
sion method (CSR-RC), and the best CSMF method (two latent factors). In
addition, the results labeled “CSMF∗” correspond to those obtained by CSMF
in which the best-performing number of latent factors for each course can be dif-
ferent and was selected based on their performance on the validation set (10 %
of the training data). CSR-RC and CSMF lead to RMSE and AvgRMSE val-
ues that are substantially better than either BiasOnly or SBCF. In terms of
the methods that we developed, we see that CSR-RC consistently outperforms
CSMF, suggesting that sparse linear regression methods are better than those
based on matrix factorization for this setting. Finally, comparing the perfor-
mance of CSMF∗ against CSMF, we see that even though the former achieved
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Table 3. The performance achieved by the methods based on matrix factorization
model w.r.t. the number of prior courses and the number of latent factors.

Prior courses Latent Factors MF MF-GB CSMF CSMF*

5 2 RMSE 0.662 0.661 0.683 0.676

5 0.666 0.667 0.682 0.682

8 0.667 0.672 0.679 0.676

2 AvgRMSE 0.597 0.581 0.648 0.645

5 0.603 0.569 0.643 0.647

8 0.604 0.596 0.645 0.644

7 2 RMSE 0.667 0.671 0.684 0.679

5 0.673 0.675 0.680 0.677

8 0.676 0.681 0.681 0.676

2 AvgRMSE 0.590 0.598 0.641 0.643

5 0.603 0.607 0.638 0.640

8 0.604 0.610 0.637 0.640

9 2 RMSE 0.675 0.684 0.683 0.671

5 0.677 0.687 0.676 0.672

8 0.681 0.692 0.677 0.674

2 AvgRMSE 0.581 0.600 0.653 0.648

5 0.582 0.607 0.645 0.646

8 0.579 0.599 0.648 0.647

Table 4. Comparison of the performance achieved from our methods with the com-
peting approaches.

RMSE AvgRMSE

Prior courses 5 7 9 5 7 9

BiasOnly 0.728 0.687

SBCF 0.677 0.675

CSR-RC 0.634 0.632 0.632 0.585 0.579 0.543

CSMF 0.679 0.680 0.676 0.645 0.638 0.645

CSMF* 0.676 0.676 0.671 0.644 0.640 0.648

The performance of the models trained on the dif-
ferent datasets were evaluated on the D≥9

test test set,
which is the common subset among their respective
test sets.
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better performance, the difference is not very large, which suggests that CSMF’s
performance is more consistent across its different model parameters.

6 Conclusions

In this paper, we presented two course-specific approaches based on linear regres-
sion and matrix factorization that perform better than existing approaches based
on traditional methods. This suggests that focusing on a course specific subset
of the data can result in more accurate predictions. A student-course specific
approach was also developed but its accuracy in grade prediction is limited by
the diverse nature of degree plans. The course-specific regression was the one
with the best results compared to any other method tested.
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Abstract. Bayesian optimisation is an efficient technique to optimise
functions that are expensive to compute. In this paper, we propose a
novel framework to transfer knowledge from a completed source opti-
misation task to a new target task in order to overcome the cold start
problem. We model source data as noisy observations of the target func-
tion. The level of noise is computed from the data in a Bayesian setting.
This enables flexible knowledge transfer across tasks with differing relat-
edness, addressing a limitation of the existing methods. We evaluate on
the task of tuning hyperparameters of two machine learning algorithms.
Treating a fraction of the whole training data as source and the whole as
the target task, we show that our method finds the best hyperparame-
ters in the least amount of time compared to both the state-of-art and
no transfer method.

1 Introduction

Whether it is the design of new products in manufacturing, or tuning hyper-
parameters in machine learning algorithms, it is expensive to search for the best
solution exhaustively because these functions are expensive to evaluate. Bayesian
optimisation offers powerful solutions in this space [1]. It is efficient in terms of
the number of function evaluations required, and is powerful to model objective
functions without knowing its form [2]. Bayesian optimisation has been success-
fully applied in many different fields including learning optimal robot mechanics
[3], sequential experimental design [4], optimal sensor placement [5], etc.

Recently, it has found popularity in tuning hyperparameters for machine
learning algorithms [6,7]. A problem arises in the case of “cold start”, when a
new tuning task is tackled. In initial trials, many bad set of hyperparameters
may be recommended before a good region is found. When data is large and
model is complex, tuning hyperparameters can be excruciatingly long. Reducing
the time to optimally tune remains an important problem to solve.

One solution is to induce transfer learning by leveraging the data from pre-
vious tasks. Bardenet et al. [8] build a model from past experience by bias-
ing search in a new problem towards the part of the hyperparameter space
where optimal hyper-parameters can be found. Incorporating a surrogate based
ranking method, they can collaboratively optimise similar objective functions.
c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part I, LNAI 9651, pp. 102–114, 2016.
DOI: 10.1007/978-3-319-31753-3 9
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Yogatama and Mann [9] use a Bayesian optimisation setting to transfer knowl-
edge from one dataset to the next by using a Gaussian process to model devia-
tions from the per dataset mean. However, both assume that the transfer occurs
where the source (previous dataset) and the target (current dataset) tasks are
highly related e.g. [8] assumes strong similarity in terms of ranking behavior
and [9] assumes strong similarity in the deviations from the respective means.
Therefore, transfer learning approach for Bayesian optimisation that can han-
dle different relatedness among the source and the target tasks in a principled
manner is still an open problem.

Addressing this problem we propose an alternate framework to transfer
knowledge across tasks. Intuitively, we do this by modeling the source data
as noisy observations of the target function. We achieve this through the mod-
ification of the kernel of the Gaussian process, adding more noise variance to
source observations. We start by assuming that the source and target functions
lie within some envelope of each other. The width of the envelope is determined
by the noise variance - smaller noise variance imply that the source observations
provide a strong prior knowledge of the target function, larger noise variance
imply that the source does not influence the target function. Former is required
when tasks are related and the latter is desirable when the tasks are unrelated.
We estimate the appropriate noise variance for the target and a source task from
the data in a Bayesian setting.

We apply our algorithm for hyperparameter tuning using a novel setting. We
sample a small fraction of the data, treating it as a source. This source dataset
is then evaluated exhaustively on a number of different hyperparameters. Since
the number of data in the source is small, the cost of exhaustive evaluation is
low. This knowledge is now used to tune the hyperparameters of the original
dataset. We experiment on three benchmark classification datasets for finding
the best hyperparameters for two machine learning approaches - elastic net and
support vector machine with RBF kernel. In all the experiments, our method is
able to find the best hyperparameters in the least amount of time (considering
time taken by both source sampling and the target optimisation) over both the
current state-of-the-art and the usual tuning algorithm without transfer learning.

In short our contributions are:

– Proposal of a new transfer learning algorithm for Bayesian optimisation in
the most general setting that includes source and target tasks with different
similarity. This is achieved by modeling the source as a noisy observation of
the target function and automatically estimating the noise variance from data.

– Proposal of a novel setting for tuning hyperparameters that exploits the pro-
posed transfer learning framework to improve efficiency. Using a small fraction
of the training dataset as a source task, we accelerate the hyperparameter tun-
ing for the whole training set, which is modeled as the target task.

– Evaluation of the proposed algorithm for the best hyperparameter search for
two machine learning algorithms on three benchmark classification datasets.
Our method is around 6 times faster than methods that tune hyperparame-
ters without transfer learning and around 3 times faster than the state-of-art
transfer learning for Bayesian optimisation [9].
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2 Preliminaries

2.1 Gaussian Process

Gaussian processes (GPs) [10] are a way of specifying prior distributions over
the space of smooth functions. The properties of the Gaussian distribution allow
us to compute the predictive means and variances in closed form. It is specified
by its mean function, μ(x) and covariance function, k(x, x

′
). A sample from a

Gaussian process is a function as,

f(x) ∼ GP(μ(x), k(x, x
′
)). (1)

where the value f(x) at an arbitrary x is a Gaussian distributed random variable
specified by a mean and a variance. Without any loss in generality, the prior mean
function can be assumed to be a zero function making the Gaussian process fully
defined by the covariance function. A popular choice of covariance function is
squared exponential function,

k(x,x′) = exp(−1
2
||x − x′||2) (2)

Other choice of covariance functions include linear kernel, Matérn kernel etc.
Let us assume that we have data points x1:p and say that the function val-

ues corresponding to those data points are sampled from the prior Gaussian
process with mean zero and the covariance function k(xi,xj). Let us denote
y1:p = f(X1:p) as the function values corresponding to the data points X1:p.
The function values y1:p jointly follow a multivariate Gaussian distribution
y1:p ∼ N (0,K), where

K =

⎡
⎢⎣

k(x1,x1) . . . k(x1,xp)
...

. . .
...

k(xp,x1) . . . k(xp,xp)

⎤
⎥⎦ (3)

is called the kernel matrix. For a new data point xp+1, let the function value be
yp+1 = f(xp+1). Then, by the properties of Gaussian process, y1:p and yp+1 are
jointly Gaussian as, [

y1:p

yp+1

]
∼ N (0,

[
K k
kT k(xp+1,xp+1)

]
(4)

where k = [k(x1,xp+1) k(x2,xp+1) . . . k(xp,xp+1)]. Using Sherman-Morrison-
Woodburry [10] formula, the predictive distribution of the function value at a
new location (xp+1) can be written as,

P (yp+1|X1:p,y1:p) ∼ N (μp(xp+1), σ2
p(xp+1)) (5)

where the predicted mean and the variance is given by μp(xp+1) = kTK−1y1:p

and σ(xp+1) = k(xp+1,xp+1)−kTK−1y1:p respectively. If the observation is
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a noisy estimate of the actual function value i.e. y = f(x) + η, where η ∼
N (0, σ2

noise) the modified predictive distribution becomes

P (yp+1|X1:p,y1:p) ∼ N (μp(xp+1), σ2
p(xp+1) + σ2

noise) (6)

where μp(xp+1) = kT [K+σ2
noiseI]

−1y1:p and σ2
p(xp+1) = k(xp+1,xp+1)−kT [K+

σ2
noiseI]

−1y1:p respectively.

2.2 Bayesian Optimisation

Bayesian optimisation is an efficient method for the global optimisation of costly
objective functions [2]. It is especially used in situations where one does not have
access to the function form. The user only has the access to the noisy evaluations.
Examples in machine learning include tuning hyperparameters of a machine
learning model, where the function that relates the choice of hyperparameters
to the model performance is unknown and can be very complex.

The unknown function is modeled using a Gaussian process. Bayesian opti-
misation then employs a simple strategy where it makes use of a surrogate utility
function, which is easy to evaluate. The surrogate utility function is called acqui-
sition function. The role of the acquisition function is to guide us to reach the
optimum of the underlying function. Essentially, acquisition functions are defined
in such a way that a high value of the acquisition function corresponds to the
potential high value of the underlying function when the optimisation problem is
a maxima problem. The new point (e.g. new hyperparameter setting) to evaluate
next, is then obtained by maximizing the acquisition function.

Acquisition Functions. Acquisition function can be defined either using
improvement based criteria or using confidence based criteria. Improvement
based criteria such as Probability of Improvement (PI) [11] or Expected Improve-
ment (EI) [12] results in maximizing the probability of improvement over the
current best or the improvement in the expected sense. Confidence based cri-
teria such GP-UCB [13] use the upper confidence bound of the GP predictive
distribution as an acquisition function. Sometime, a mix of them can also be
used as the acquisition function [4]. In this paper, we use EI as the criteria for
its usefulness and simplicity. A brief description of EI is provided below.

Expected Improvement (EI). Let us assume that our optimisation problem is
optimizing arg maxx f(x) and the current best is at x+ = arg maxxi∈X1:p f(xi).
The improvement function is defined as,

I(x) = max{0, f(x) − f(x+)} (7)

The acquisition function is then defined on the expected value of I(x) [2] as,

arg max
x

E(I(x)|D1:p) (8)
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Algorithm 1. Generic Bayesian Optimisation Algorithm
1: Input: The initial observation D ≡ {X1:p,y1:p}.
2: Output: {xn, yn}T

n=1

3: for n = 1, 2, ..T
4: Find xn = arg maxx E(I(x)|D) of (9).
5: Evaluate the objective function: yn = f(xn).
6: Augment the observation set D = D ∪ (xn, yn) and update the GP.
7: end for

where D1:p ≡ {x1:p,y1:p}. The analytic form of E(I(x)) can be obtained as [12],

E(I(x)) =

{
(μ(x) − f(x+))Φ(z) + σ(x)φ(z) if σ(x) > 0
0 if σ(x) = 0

(9)

where z = (μ(x) − f(x+))/σ(x). Φ(.) and φ(.) are the CDF and PDF of a
standard normal distribution respectively.

The generic Bayesian optimisation algorithm is presented in Algorithm 1.

3 Proposed Method

The generic Bayesian optimisation algorithm suffers from “cold start” problem
i.e. at the beginning it may take many trials before it reaches a good region. To
improve the efficiency, we propose a novel Bayesian optimisation framework using
transfer learning. We elaborate our framework in the context of hyperparameter
optimisation.

Let us denote the source observations as {xs
i , y

s
i }N

s

i=1, where xs
i denotes the

hyperparameter setting, ys
i is the performance of the model built using the hyper-

parameters xs
i and Ns is the size of source observations. The source observations

are generated either on a grid or at random hyperparameter settings. No opti-
misation is performed at this stage. We assume that the source and the target
function lies within a close proximity with each other since they only differ in
the amount of training data; source models the mapping from hyperparameter
setting to the model performance on a small subset of the whole training data,
whereas target function maps the same for the whole training data. We model
the difference between the source and target. We use source data to provide us
with a rough guideline about the target function, f t(.). To accomplish this, we
model source observations as a noisy measurement of the target function as,

ys
i = f t(xs

i ) + εsi ,∀i = 1, . . . , Ns (10)

where εs�N (0, σ2
s) is a random noise. This implies that the source function val-

ues lies within 3σs ball of the target function values with a probability close to 1.
Let us denote the observations from the target task as {xt

i, y
t
i}N

t

i=1, where N t

is the number of target observations so far. We combine data from both the
source and target and create a combined observation set: X = {Xs,Xt} and
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y = {ys,yt}. The target GP is built using the combined observation. The kernel
matrix for the combined data is computed and then it is updated to incorporate
the noise of the source as,

K = K +
[

σ2
sINs×Ns 0

0T σ2
t INt×Nt

]
(11)

where σ2
s models the closeness between the source and the target function and

σ2
t is the measurement noise for the target. The value of the σ2

s reflects our
belief on how close the source and target functions are. If they are thought to be
very close then we should set σ2

s small and large otherwise. The value of σ2
s can

greatly effect the efficiency of the Bayesian optimisation. In the next section, we
will provide a principled way to estimate its value from the target observations.

Estimating the Source Noise Variance (σ2
s). We estimate the source noise

variance from the data by placing an inverse gamma distribution with parameters
α0 and β0 as the prior distribution as,

σ2
s ∼ InvGamma(α0, β0) (12)

We start with a wide prior and then update the posterior from the observation of
output value of the target (yt) and the source (ys) for the same hyperparameter
setting. We use the evaluated target value at the recommended settings and
use the source predicted value (ŷs) at those settings. The source function is
modeled with a Gaussian process. Since the inverse gamma is a conjugate prior
to the variance, the posterior is also an inverse gamma distribution with updated
parameters αn and βn as,

P (σ2
s/{ys

i − ŷs
i }N

t

i=1) ∼ InvGamma(αn, βn) (13)

Assuming the mean of the difference to be zero, the parameters αnand βn is
updated as follows,

αn = α0 + n/2 (14)

βn = β0 +

Nt∑
i=1

(yt
i−ŷs

i )
2

2 (15)

We use the mode of the posterior distribution as the value of source noise variance
and it is given by,

σ2
s =

βn

αn + 1
(16)

The kernel matrix is recomputed following (11) and the Bayesian optimisation
is sequentially performed using this kernel matrix. The proposed algorithm is
illustrated in Algorithm2.
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Algorithm 2. Proposed Transfer Learning Algorithm.
1: Input: Source Observations: {Xs,ys}, Target Observations: {Xt,yt},

Combined Observation set: X = {Xs,Xt}, y = {ys,yt}, D= {X,y}.
2: Initial Settings: Fit a GP at the source points {Xs,ys}, Fit a GP at the combined

Observation Set D, Compute σ2
s and update K using (16) and (11).

3: Output:{xn, yn}T
n=1.

4: for n = 1, 2, ..T
5: Find xn = arg maxx E(I(x)|D) of (9).
6: Evaluate the target function: yn = f t(xn).
8: Compute ŷs

n at xn using the GP.
9: Update αn and βn using (14) and (15).
10: Update source noise variance σ2

s and K using (16) and (11).
11: Augment the observation set D = D ∪ (xn, yn) and Update the GP.
12: end for

4 Experiments

4.1 Experimental Setup

We conduct experiments on both synthetic and real world datasets. Through two
different synthetic datasets, we create two transfer learning situations by vary-
ing the similarity between the source and the target functions and analyse the
behavior of the proposed algorithm in those cases. For the experiment with syn-
thetic data, we do not tune hyperparameters of any classifier, rather we assume
that the source and the target functions are known and the task is to reach the
maximum of the target function. Experiments with real world dataset are per-
formed to evaluate our algorithm with respect to the baselines on the efficiency of
tuning hyperparameters for two classification algorithms. For the experiment on
tuning hyperparameters, a fraction of the training data is treated as the source
and whole as the target task.

We compare the proposed method with the following baselines:

– Efficient-BO [9]: In this transfer learning approach, a common function for
source and target is learnt where the common function is represented as devi-
ations from their respective means.

– Generic-BO: Algorithm 1 is used only on the target dataset.

We evaluate based on both the number of iteration taken and total time taken
to reach the maximum performance. All timings reported in the experiments,
are computed for programs running on a workstation with 3.4 GHz quad-core
processor having 8 GB RAM.

4.2 Experiment with Synthetic Data

We generate two synthetic datasets: in synthetic dataset-I, we create a a target
function that is highly similar to the source function and in synthetic dataset-
II, we create the target function to be very different from the source function.



Flexible Transfer Learning Framework for Bayesian Optimisation 109

The source function is always fixed in both the scenarios whilst the target func-
tion is varied. The source function is a 2-variate normal probability distribution
function with mean at [0,0] and covariance matrix as I2×2. The target functions
are also modeled by another 2-variate normal probability distribution function
with the same covariance matrix but at different means. For synthetic dataset-I,
the target task mean is set at (0.1, 0.1) which is very close to the source func-
tion mean. The two functions are shown in Fig. 1a. For synthetic dataset-II, the
target task mean is set at (1.5, 1.5) which is far from the source mean. The two
functions for this scenario is shown in Fig. 1b. For both the scenarios source
functions are represented with 25 data points sampled randomly between [−3, 6]
along both the dimensions.

Figure 1c plots the percentage of the maximum value reached as a function of
the iteration for the proposed method and the baselines for synthetic dataset-I.
All the three methods start from the same position, but our proposed method
is able to gain faster reaching 80 % of the maximum value within 7 and reaching
at the maximum value by 22. In comparison, Efficient-BO reaches 80 % of the
maximum value after 10, although finally reaching at the maximum around the
same time as the source.

The generic Bayesian optimisation without any help from source function
knowledge, reaches 80 % of the maximum value only after 15 iterations and
not reaching the maximum even after 30 iterations. Figure 1e shows the noise
variance estimate after each iteration for the proposed method. The variance
starts with a high prior and decreases fast as the two functions are very close to
each other.

Figure 1d plots the percentage of the maximum value reached as a function
of the iteration for the proposed method and the baselines for synthetic dataset-
II. We see that, even if all of them start from the same position, our proposed
method is able to gain faster reaching close to the maximum value by 15th itera-
tion. In comparison, the generic Bayesian optimisation reaches to a similar value
only after 28th iteration. In this case, since the source and the target functions
are quite different, Efficient-BO fails to reach beyond 60 % of the maximum with
35 iterations. Figure 1f shows the noise variance estimate after each iteration for
the proposed method. The variance starts at the same position as it started for
synthetic dataset-I, but instead of decreasing, the variance increases with the
iteration as the the source and the target functions are quite different for this
scenario.

4.3 Experiment with Real World Datasets

We experiment with three real world datasets for tuning hyperparameters for two
classification algorithms: Elastic net and Support Vector Machines (SVM) with
radial basis function (RBF) kernel. All three datasets are benchmark datasets
used in [14]. A brief description of the datasets are provided in Table 1. For elastic
net, the hyperparameters are the L1 and L2 penalty weights. The bounds for
both of them are chosen to be within [10−5, 10−1]. For SVM with RBF kernel,
the hyperparameters are the cost parameter (C) of the SVM formulation and the
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Fig. 1. Synthetic dataset-I (left column) and Synthetic dataset-II (right column): (a, b)
the source (blue) and the target functions (red), (c, d) percentage of the maximum value
achieved as a function of number of iterations for the three different methods and
(e, f) estimated source noise variance after each iteration for the proposed method
(Color figure online).
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width of the RBF kernel. We choose 10−3to 103 and 10−5to 100 as bounds for
C and the width of the kernel, respectively. As the ranges are high, we perform
Bayesian optimisation on the logarithmic of the values of the hyperparameters.
For each dataset, 5 separate training datasets are created by randomly sampling
70 % of the data for training. Average results over these training set are reported.

Table 1. Datasets used in the experiments.

Dataset Number of data points Number of features

Liver disorders 345 6

Heart Diseases 270 13

Breast Cancer 683 10

The results for the hyperparameter tuning of the machine learning algorithms
on the different datasets are presented in Fig. 2. The results show that the pro-
posed method achieves the maximum accuracy in the least number of evaluations
compared to both the methods. The transfer learning based Efficient-BO follows
closely but have never been able to reach to the optimal hyperparameters faster
than the proposed method. The Generic-BO without any transfer learning per-
forms the slowest and mostly not being able to reach to the best within 30
iterations.

In Table 2, we present the actual time taken to find the best hyperparameters
in CPU seconds. On all the datasets and for both the classification algorithms,
our proposed method reaches to the optimal hyperparameters the quickest. It
is around 6 times faster than the no transfer method and around 3 times faster
than the Efficient-BO [9]. This clearly demonstrate the usefulness of our proposed
method for tuning hyperparameters.

Table 2. Time in CPU seconds to reach the best hyperparameter when 40 % of the
whole training data is used as source.

Datasets Elastic Net SVM with RBF Kernel

Proposed
Method

Efficient-BO Generic-BO Propsed
Method

Efficient-BO Generic-BO

Liver Disorders 4.8 12.8 30.3 6.7 2 3.3 54.4

Heart Diseases 3.9 11.3 27.8 5.9 19.3 49.7

Breast Cancer 6.4 13.8 33.8 8.3 23.7 62.9

In Fig. 3, we plot the total time taken to tune the hyperparameters by our
proposed method with respect to the size of the source data. Plots for all three
datasets are shown. When a smaller percentage of data is used as source, the
source to target difference may be higher leading to more optimisation iterations
for target. This amounts to higher computational demand. Increasing source
percentage implies larger computational demand for source but decreasing com-
putational requirement for target. In other extreme, a large source means time
taken for evaluating source itself is very high. This leads to a nice ‘U’ shaped
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Fig. 2. Hyperparameter tuning experiment on three datasets at three rows (top: liver
disorder, middle: heart disease and bottom: breast cancer): current best performance
as a function of the iteration for three methods for Elastic Net (left column) SVM with
RBF Kernel (right column).

efficiency curve for our proposed algorithm. The optimal lies in the middle and
at around 40 % for all three datasets for both classifiers. For much larger data it
may be possible to reach to the maximum even with a smaller fraction of data
but from our experience 20–40 % is a good starting point.
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Fig. 3. Time taken to reach to the best hyperparameter vs source size as a percentage of
the whole data: (a) Liver disorders, (b) Heart Diseases and (c) Breast cancer Datasets.

5 Conclusion

In this paper, we proposed a novel transfer learning framework for Bayesian
optimisation. We model source task as a noisy observation of the target function
and use the source observations to avoid the cold start problem for target task
optimisation. The noise variance is estimated from data based on the data in
a Bayesian setting. This enabled us to address the limitations of the existing
methods that only work when tasks are closely related. The proposed method
performs around 6 times faster than the generic Bayesian optimisation method
and around 3 times faster than the current state-of-art on the task of tuning
hyperparameters.
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Abstract. Real-world online learning applications often face data com-
ing from changing target functions or distributions. Such changes, called
the concept drift, degrade the performance of traditional online learn-
ing algorithms. Thus, many existing works focus on detecting concept
drift based on statistical evidence. Other works use sliding window or
similar mechanisms to select the data that closely reflect current con-
cept. Nevertheless, few works study how the detection and selection
techniques can be combined to improve the learning performance. We
propose a novel framework on top of existing online learning algorithms
to improve the learning performance under concept drifts. The frame-
work detects the possible concept drift by checking whether forgetting
some older data may be helpful, and then conduct forgetting through a
step called unlearning. The framework effectively results in a dynamic
sliding window that selects some data flexibly for different kinds of con-
cept drifts. We design concrete approaches from the framework based
on three popular online learning algorithms. Empirical results show that
the framework consistently improves those algorithms on ten synthetic
data sets and two real-world data sets.

Keywords: Online learning · Concept drift

1 Introduction

Online learning is a machine learning setup where the learning algorithm needs
to learn from and make predictions on streaming data efficiently and effectively
[3,4,9]. The setup enjoys many potential applications, such as predicting the
weather, customer preferences, or stock prices [16].

Traditional online learning algorithms, such as the passive-aggressive algo-
rithm (PA) [3], the confidence weighted algorithm (CW) [4] and the adaptive
regularization of weight algorithm (AROW) [9], are designed under the assump-
tion that the target function to be learned is fixed. In many applications, how-
ever, change in the underlying environment can result in change of the target
function (concept) as time goes by. That is, the concept can be drifting [17]
instead of fixed. For example, the best popular-cloth predictor (concept) is con-
sistently drifting as the fashion trend evolves [10]. The drifting concept possesses
c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part I, LNAI 9651, pp. 115–126, 2016.
DOI: 10.1007/978-3-319-31753-3 10
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difficulty for traditional online learning algorithms and are studied by two fami-
lies of works. One family of works focuses on the detection of concept drift from
the data stream [1,5,12,15]. Those works generally conduct statistical analysis
on the data distribution and set up an alert threshold to reliably detect concept
drift. The other family tries to construct learning models from selected instances
of the data stream, with the hope that such instances match the drifting concept
better [2,13]. The simplest approach of this family is to use a sliding window
to capture the newest instances for learning [13]. While the two kinds both deal
with concept-drifting data, it is not fully clear on how they could be combined
to improve the learning performance and will be the main focus of this work.

In particular, we propose a framework on top of existing online learning algo-
rithms to improve the learning performance under concept drifts. The framework
detects the possible concept drift by checking whether forgetting some older data
may be helpful, where the detection is motivated by the confidence terms used
in modern online learning algorithms. Then, it conducts forgetting by unlearn-
ing older data from the current model. By greedily repeating the detection and
unlearning steps along with online learning, the framework effectively results in
a dynamic sliding window that can suit different concept drifts. We design con-
crete approaches of the framework based on PA [3], AROW [9] and CW [4]. Our
empirical results demonstrate that the framework can reach better accuracy on
artificial and real-world data. The results justify the usefulness of the framework.

The paper is organized as follows. Section 2 establishes the setup and lists
related online learning algorithms. Section 3 introduces the proposed framework.
Section 4 discusses the experimental results and Sect. 5 concludes the paper.

2 Preliminaries

In this paper, we consider the online learning problem for binary classification. In
each round of this problem, the learning algorithm observes a coming instance
and predicts its label to be +1 or −1. After the prediction, the true label is
revealed and the algorithm can then take the new instance-label pair to improve
its internal prediction model. The goal of the algorithm is to make as few pre-
diction errors as possible.

We shall denote the instance-label pair in round t as (xt, yt), where t ∈
{1, 2, . . . , T}. Each xt ∈ R

n represents the instance (feature vector) and yt ∈
{+1,−1} indicates the label. The prediction in the t-th round is denoted as ŷt,
and the error refers to the zero-one loss �01(yt, ŷt), which is 1 if and only if
yt �= ŷt, and 0 otherwise.

In this work, we consider the linear model for online learning, where some
linear weight vector wt ∈ R

n is maintained within round t and ŷt = sign(wt ·xt)
with · denoting an inner product. The linear model generally enjoys efficiency
in online learning and is often the focus of study in many online learning works
[3,4,9,14]. For the linear model, improving would then mean updating from
wt to wt+1, and we denote the difference as Δwt = wt+1 − wt. The core of
different online learning algorithms is then to design a proper update function
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Algorithm 1. The linear model for online learning
1: initialize w1 ← (0, 0, ..., 0)
2: for t = 1 to T do
3: receive instance xt ∈ Rn and predict ŷt ← sign(wt · xt)
4: receive label: yt ∈ {−1, +1}
5: Δwt ← Update(wt,xt, yt) and wt+1 ← wt + Δwt

6: end for

Update(wt,xt, yt) that calculates Δwt. The details steps of the linear model
for online learning is shown in Algorithm1, where we assume w1 to be the zero
vector for simplicity.

One of the most popular algorithms for online learning with the linear model
is the Passive-Aggressive algorithm (PA) [3]. PA calculates the signed margin
of the labeled instance by yt(wt · xt), which indicates how confident the pre-
diction ŷt = sign(wt · xt) was. PA then aims to adjust the weights wt to the
closest wt+1 (passive) in terms of the Euclidean distance, such that the hinge
loss �h(w; (yt,xt)) = max(0, 1 − yt(w ·xt)) is decreased to �h(wt+1; (yt,xt)) = 0
(aggressive). The aim leads to the following Update(wt,xt, yt) for PA:

Δwt =
�h

(
wt; (yt,xt)

)
‖xt‖2 ytxt. (1)

The Confidence weighted (CW) algorithm [4] is extended from PA. Instead
of considering a single weight vector wt, the algorithm considers the weight
distribution, modeled as a Gaussian distribution with mean wt and covariance
Σt. During each Update for CW, both wt and Σt are taken into account, and
updated to wt+1 and Σt+1. The updating step adjusts (wt, Σt) to the closest
(wt+1, Σt+1) (passive) in terms of the KL divergence, such that the probabilistic
zero-one loss under the new Gaussian distribution is smaller than some (1 − η)
(aggressive).

An extension of CW is called adaptive regularization of weight (AROW)
[9], which improves CW by including more regularization. In particular, the
updating step of AROW solves an unconstrained optimization problem that
calculates (wt+1, Σt+1) by

argmin
w,Σ

DKL(N (w, Σ)||N (wt, Σt)) + λ1�
2
h(w; (yt,xt)) + λ2xT

t Σxt. (2)

The first term is exactly the KL divergence that the passive part of CW consid-
ers; the second term embeds the aggressive part of CW with the squared hinge
loss (similar to PA); the third term represents the confidence on xt that should
generally grow as more instances have been observed. In particular, the confi-
dence term represents how different xt is from the current estimate of Σ. The
confidence term acts as a regularization term to make the learning algorithm
more robust. In this work, we set the parameters λ1 and λ2 by λ1 = λ2 = 1/(2γ)
as the original paper suggests [9].
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One special property of the three algorithms above, which is also shared
by many algorithms for the linear model of online learning, is that Δwt is a
scaled version of ytxt, as can be seen in (1) for PA. Then, by having w1 as
the zero vector, each wt is simply a linear combination of the previous data
y1x1, y2x2, · · · , yt−1xt−1. We will use this property later for designing our frame-
work.

The three representative algorithms introduced above do not specifically
focus on concept-drifting data. For example, when concept drift happens, being
passive like the algorithms do may easily lead to slow adaptation to the latest
concept. Next, we illustrate more on what we mean by concept drift in online
learning. [16] defines concept drift to mean the change of “property” within the
data. Some major types of concept drifts that will be considered here are abrupt
concept drift, gradual concept drift and virtual concept drift. The first two entail
the change of the relation between instances and labels. Denote the relation as
the ideal target function f such that yt = f(xt) + noise, abrupt concept drift
means that the ideal target function can change from f to a very different one
like (−f) at some round t1, and gradual concept drift means f is slowly changed
to some different f ′ between rounds t1 and t2.

Virtual concept drift, unlike the other two, is generally a consequence of the
change of some hidden context within the data [6]. The change effectively causes
the distribution of xt to vary. While the target function that characterizes the
relation between xt and yt may stay the same for virtual concept drift, the change
of distribution places different importance on different parts of the feature space
for the algorithm to digest.

Two families of methods in the literature focus on dealing with concept-
drifting data for online learning. One family [1,5,12,15] is about drift detection
based on different statistical property of the data. [5] proposes the drift detection
method (DDM) that tracks the trend of the zero-one loss to calculate the drift
level. When the drift level reaches an alert threshold, the method claims to detect
the concept drift and resets the internal model. While the idea of DDM is sim-
ple, it generally cannot detect gradual concept drift effectively. [1] thus proposes
the early drift detection method (EDDM) to cope with gradual concept drift,
where the distribution of errors instead of the trend is estimated for detection.
Some other popular detection criteria include the estimated accuracy difference
between an all-data model and a recent-data model [12], and the estimated per-
formance difference between models built from different chunks of data [15].
Generally, similar to [5], after detecting the concept drift, the methods above
reset the internal model. That is, all knowledge about the data received before
detection are effectively forgotten. Nevertheless, forgetting all data before the
detection may not be the best strategy for gradual concept drift (where the ear-
lier data may be somewhat helpful) and virtual concept drift (where the earlier
data still hint the target function).

The other family [2,13] makes the internal model adaptive to the concept drift
by training the model with selected instances only. The selected instances are
often within a sliding window, which matches the fact that the latest instances
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should best reflect the current concept. Most of the state-of-the-art methods
consider dynamic sliding windows. For instance, [13] takes the leave-one-out error
estimate of the support vector machine to design a method that computes the
best dynamic sliding window for minimizing the leave-one-out error. [2] proposes
a general dynamic sliding window method by maintaining a sliding window such
that the “head” and “tail” sub-windows are of little statistical difference. The
sliding-window methods naturally trace concept drifts well, especially gradual
concept drifts. Nevertheless, calculating a good dynamic sliding window is often
computationally intensive. It is thus difficult to apply the methods within this
family to real-world online learning scenario where efficiency is highly demanded.

In summary, drift-detection methods are usually simple and efficient, but
resetting the internal model may not lead to the best learning performance
under concept drifts; sliding-windows methods are usually effective, but are at
the expense of computation. We aim to design a different framework for better
online learning performance under the concept drift. Our framework will include
a simple detection scheme and directly exploits the detection scheme to efficiently
determine a dynamic sliding window. In addition, the framework can be flexibly
coupled with existing online learning algorithms with linear models.

3 Unlearning Framework

The idea of our proposed unlearning framework is simple. Between steps 5 and
6 of Algorithm 1, we add a procedure UnlearningTest to check if forgetting
some older instance can be beneficial for learning. In particular, the decision of
“beneficial” is done by comparing a regularized objective function before and
after the forgetting, where the regularized objective function mimics that being
used by AROW. If forgetting is beneficial, a new w′

t+1 (and its accompanying
Σ′

t+1 in the case of CW or AROW) replaces the original wt+1. There are then
two issues in describing the framework concretely: what the regularized objective
function and unlearning step are, and which “older” instance to check? We will
clarify the issues in the next subsections.

3.1 Unlearning Test

Denote (xk, yk), k ∈ {1, 2, · · · , t − 1} as the selected instance for Unlearn-

ingTest. Recall that in round t, each wt is simply a linear combination of the
previous data y1x1, y2x2, · · · , yt−1xt−1. That is, every old instance has its (pos-
sibly 0) footprint within wt+1 if we record Δwk along with the online learning
process. Then, one straightforward step to unlearn (xk, yk) is to remove it from
wt+1. That is,

w′
t+1 ← wt+1 − Δwk.

The Σ′
t+1 accompanying wt+1 can also be calculated similarly by recording ΔΣk

along with the online learning process.
Now, w′

t+1 represents the weight vector after removing some older instance,
and wt+1 represents the original weight vector. Our task is to pick the better one
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for online learning with concept drift. A simple idea is to just compare their loss,
such as the squared hinge loss used by AROW. That is, unlearning is conducted
if and only if

�2h(w′
t+1; (xt, yt)) ≤ �2h(wt+1; (xt, yt)).

We can even make the condition more strict by inserting a parameter α ≤ 1.0
that controls the demanded reduction of loss from the original weight vector.
That is, unlearning is conducted if and only if

�2h(w′
t+1; (xt, yt)) ≤ α�2h(wt+1; (xt, yt)).

Then, α = 0.0 makes unlearning happen only if w′
t+1 is fully correct on (xt, yt)

in terms of the hinge loss, and the original online learning algorithms are as if
using α < 0.

In our study, we find that only using �2h as the decision objective makes the
unlearning procedure rather unstable. Motivated by AROW, we thus decide to
add two terms to the decision objective. One is the confidence term used by
AROW, and the other is the usual squared length of w. The first term regular-
izes against unwanted update of Σ, much like AROW does. The second term
regularizes against unwanted update of w to a long vector, much like the usual
ridge regression regularization. That is, given (xt, yt), the framework considers

obj(w, Σ) = �2h(w; (xt, yt)) + βxT
t Σxt + γ‖w‖2 (3)

and conduct unlearning if and only if obj(w′
t+1, Σ

′
t+1) ≤ αobj(wt+1, Σt+1). The

parameters β and γ balances the influence of each term.
The final missing component is how to specify β and γ. To avoid making

the framework overly complicated, we only consider using those parameters to
balance the numerical range of the terms. In particular, we let β be the average of

1
2

(
�2h(wτ+1,xτ , yτ )

xT
τ Στ+1xτ

+
�2h(w′

τ+1,xτ , yτ )
xT

τ Σ′
τ+1xτ

)
. (4)

for τ ∈ {1, 2, . . . , t} so βxT
t Σxt can be of a similar numerical range to �2h. Simi-

larly, we let γ be the average of

1
2

(
�2h(wτ+1,xτ , yτ )

‖wτ+1‖2 +
�2h(w′

τ+1,xτ , yτ )
‖w′

τ+1‖2
)
. (5)

The details of UnlearningTest is listed in Algorithm 2.

3.2 Instance for Unlearning Test

Unlearning is completed by the unlearning test at a certain selected instance
(xk, yk). But how to determine the k from all previous processed instances? We
proposed three possible unlearning strategies to deciding the instance (xk, yk).
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Algorithm 2. Unlearning test for some instance (xk, yk)
1: input parameter: α ∈ [0.0, 1.0]
2: procedure UnlearningTest(wt+1, Σt+1,xk, yk)
3: Δwk, ΔΣk ← UpdateHistory(xk, yk) � previous updated status on (xk, yk)
4: w′

t+1 ← wt+1 − Δwk, Σ′
t+1 ← Σt+1 − ΔΣk

5: set β, γ as the average of (4) and (5), respectively
6: if obj(w′

t+1, Σ
′
t+1) ≤ αobj(wt+1, Σt+1) then � see (3)

7: return w′
t+1, Σ′

t+1

8: else
9: return wt+1, Σt+1

10: end if
11: end procedure

Fig. 1. Forwarding Fig. 2. Queue Fig. 3. Selecting

Forwarding-Removing: Traditional sliding window technique tries to main-
tain a window that keeps the recent accessed examples, and drops the oldest
instance according to some set of rules [2]. Here, the unlearning test is substi-
tuted for the rules. Forward-removing considers (xt−L, yt−L) subject to a fixed
window size L as the as the selected instance for unlearning test. The strategy
is illustrated by Fig. 1, where the older instances are at the right-hand-side of
the data stream. After updating on xt is done, the unlearning test examines the
red instance xt−L.

With some studies on parameter L = {1, 10, 100, 1000}, L = 100 is sufficiently
stable and will be used to demonstrate this strategy in Sect. 4.

Queue-Removing: Instead of considering the instance that is L rounds away,
this strategy selects the oldest one within the current model wt+1. Recall that
the current model wt+1 is a combination of some updated parts Δwi on previous
updated instance (xi, yi). We record those Δwi like a data list, as illustrated
in Fig. 2.

wt+1 =
K∑

i=1

Δwi =
K∑

i=1

τixiyi where τi �= 0. (6)

Take wt+1 as a queue, unlearning test will be executed at the red updated part
Δw1, which is the oldest updated instance in model. As (xi, yi) are added and
removed from wt, the size of the queue can change dynamically, resulting in a
dynamic sliding window effectively.
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Table 1. The properties of the ten data sets

Data set Properties

Features Drift type Drifting details

SINE1 2 real Abrupt Reversed wave: y = sin(x)

SINE2 2 real Abrupt Reversed wave: 0.5 + 0.3sin(3πx)

SINIRREL1 2 real + 2 irrelevant Abrupt Same as SINE1 function

SINIRREL2 2 real + 2 irrelevant Abrupt Same as SINE2 function

MIXED 2 real + 2 boolean Abrupt Reversed 1 function with 1 boolean condition

STAGGER 3 boolean Abrupt Switching between 3 boolean conditions

GAUSS 2 real Virtual Switching between 2 distributions

CIRCLES 2 real Gradual Switching between 4 circles [5]

LINES 2 real Gradual changing line functions: shift and rotate

MULTILINES 4–15 real Gradual changing hyperplanes: Σd
i wixi = w0 [8]

Selecting-Removing: Above strategies both select one particular instance
under different structure. However, those strategies neither consider all can-
didates in their window nor find out the best unlearned weight w′

t+1 for cur-
rent instance (xt, yt). Illustrated by Fig. 3, Selecting-removing will test all K
instances and take the instance that can decrease obj the most as the instance
to be unlearned.

4 Empirical Evaluation

We take these three unlearning strategies in Sect. 3 with PA [3], AROW [9] and
CW [4]. In those algorithms, we set a = 1.0, φ = 0.0001 in CW and r = 0.1
in AROW. The parameter α in unlearning test is individually selected from
{0.1, 0.2, . . . , 0.9} due to the different properties on these algorithms.

All ten synthetic data sets contain different concept drifts described in
Table 1. The first eight data sets are used by [5]. Because most of them are
about abrupt concept drift, we construct two more data sets, LINES and MULTI-
LINES, whose drifting type is gradual. The target function of LINES is changed
by shifting and rotating gradually in 2D, and MULTILINES is a d dimensional
version defined in [8].

Previous works [1,5] assume every concept contains a fixed number of
instances, and examine on small size data sets. Here we construct these arti-
ficial data sets with three differences to make the data sets more realistic. First,
the number and the timing of concept drifts are randomly assigned and all
drift events are recorded so that we could simulate a perfect drifting detection,
Concept-removing, which resets wt+1 immediately after a concept drift hap-
pens. We take Concept-removing as an upper bound benchmark for using the
ideal drifting information. Second, at least 1,000,000 instances are generated
in each data set for the robustness. Finally, we inject noise made by flipping
binary labels under different probabilities to check the robustness of the pro-
posed framework. All artificial data sets are generated under different flipping
level within {0.00, 0.05, · · · , 0.30}.
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Table 2. Ranking all unlearning strategies under three types of drifting data

strategy
drifting type

Abrupt Gradual Virtual

None 4.031 ± 0.347 3.047 ± 0.402 3.333 ± 0.890
Forwarding-removing 4.325 ± 0.308 3.809 ± 0.471 5.476 ± 0.534

Queue-removing 3.373 ± 0.235 2.984 ± 0.387 2.190 ± 0.499
Selecting-removing 3.769 ± 0.254 3.666 ± 0.517 3.714 ± 0.730

EDDM 3.309 ± 0.264 3.174 ± 0.385 3.000 ± 0.427
Concept-removing 1.269 ± 0.138 3.809 ± 0.501 2.666 ± 0.930

For each data, a simple second-order polynomial transform is applied to
improve the accuracy. Two evaluation criteria are considered, ranking perfor-
mance and cumulative classification accuracy. A smaller average rank (along
with standard deviation) indicates that an higher classification accuracy per-
formed among compared methods.

4.1 Results and Discussion

In addition to the three proposed strategies within the framework, and the
ideal Concept-removing strategy, we also compare the proposed framework with
EDDM [1]. Our experimental results are summarized in following tables with dif-
ferent control variables. Table 2 compares all unlearning strategies under three
kinds of concept-drifting data. Table 3 compares the relation between different
unlearning strategies and each online learning algorithm individually. Table 4
evaluates the influence on the best unlearning strategy with different noise level.
The individual accuracy performances for each data set are recorded in Table 5.

Table 2 makes comparison by different kinds of concept-drifting data. The
ideal Concept-removing strategy performs very well for abrupt drifting and vir-
tual drifting, as expected. But the immediate resetting cannot work for grad-
ual drifting data, and the ideal detection is not realistic anyway. Our proposed
framework, on the other hand, performs well on all kinds of data when using
Queue-removing.

Table 3 is evaluated under individual learning algorithms. On the strategy
side, Queue-removing preforms the best ranking on average in four unlearning
strategies. Note that Selecting-removing is worse than Queue-removing, which
indicates that overly searching for the “best” instance to unlearn is not necessary.
On the algorithm sides, a significant ranking gap between Concept-removing
and the others is presented in AROW. All four unlearning strategies show the
smaller ranking than original AROW. For the other two algorithms, only Queue-
removing and EDDM gets smaller ranking on PA. But almost all unlearning
approaches do not have great advantage in CW. The cause of non-improving is
their individual updating rules, which does not consider confidence term in PA
and squared hinge-loss in CW.
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Table 3. Ranking all unlearning strategies under each learning algorithm

strategy
algorithm

PA AROW CW Average

None 3.257 ± 0.325 5.642 ± 0.336 2.100 ± 0.215 3.666 ± 0.263
Forwarding-removing 5.128 ± 0.352 5.371 ± 0.239 2.357 ± 0.236 4.285 ± 0.245

Queue-removing 3.100 ± 0.348 3.485 ± 0.335 2.528 ± 0.284 3.138 ± 0.195
Selecting-removing 4.228 ± 0.352 4.457 ± 0.411 2.514 ± 0.235 3.733 ± 0.228

EDDM 3.342 ± 0.394 2.200 ± 0.152 4.171 ± 0.279 3.238 ± 0.200
Concept-removing 2.242 ± 0.467 1.242 ± 0.140 3.028 ± 0.483 2.171 ± 0.248

Table 4. Ranking three main unlearning strategies under different bias data sets

Unlearning strategy Noise level

0.05 0.10 0.15 0.20 0.25 0.30

None 2.22 ± 0.17 2.16 ± 0.16 2.11 ± 0.17 2.18 ± 0.16 2.06 ± 0.16 2.02 ± 0.16

Queue-removing 1.90 ± 0.08 1.97 ± 0.11 1.97 ± 0.11 1.97 ± 0.11 2.01 ± 0.12 1.97 ± 0.14

Concept-removing 1.28 ± 0.12 1.38 ± 0.14 1.36 ± 0.13 1.34 ± 0.13 1.40 ± 0.14 1.44 ± 0.14

We study Queue-removing more in Table 4, which shows the ranking perfor-
mance under different noise levels. From lowest to highest bias, Concept-removing
is still the best in three strategies but Queue-removing shows its effectiveness in
all noise levels. When the noise becomes larger, Queue-removing is closer to the
ideal Concept-removing strategy.

Table 5 explains whether unlearning framework reflects the significant differ-
ence from original algorithms. We conducted the t-test experiment by its cumu-
lative classification accuracy at each data set 30 times for all artificial data and
directly evaluated two real data, MNIST1 and ELEC22. For two real data, we
directly compare the accuracy performance with EDDM and Queue-removing.

The t-test is evaluated in three different strategies. Queue-removing shows
better accuracy than no-unlearning, and those p-value(N-Q) are mostly smaller
than 0.01, which indicates the performance gap is significant enough. Concept-
removing reveal the upper bound accuracy and the nearly 0 on p-value(Q-C)
comparing with the Queue-removing in all data sets except for CIRCLES.

MNIST [11] is a handwritten digits data. Although it is not a concept-drifting
data, we test whether our unlearning framework will deteriorate the classifying
performance. We use one versus one to evaluate 45 binary classifications for
those digits under online learning scenario. To handle all classifications quickly,
we scale each image by 25 % and take its pixel as feature. Because MNIST data
does not contain significant drifting and the nearly same accuracies are presented,
it implies our unlearning framework can work well in the normal data set.

ELEC2 [7] is the collection of the electricity price. Those prices are affected
by demand and supply of the market, and the labels identify the changing prices

1 Handwritten digits: http://yann.lecun.com/exdb/mnist.
2 Electricity price data: http://www.inescporto.pt/∼jgama/ales/ales.html.

http://yann.lecun.com/exdb/mnist
http://www.inescporto.pt/~jgama/ales/ales.html
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Table 5. Cumulative accuracy and t-test on ten artificial and two real-world data

Properties Average accuracy among three algorithms P-value

Strategy None Queue-removing Concept-removing N-Q Q-C

SINE1 0.6696 ± 0.0232 0.6816 ± 0.0244 0.7541 ± 0.0267 0.0352 0.0000

SINE2 0.6373 ± 0.0161 0.6422 ± 0.0154 0.6984 ± 0.0166 0.0117 0.0000

SINIRREL1 0.6819 ± 0.0212 0.7202 ± 0.0199 0.7687 ± 0.0215 0.0000 0.0000

SINIRREL2 0.6395 ± 0.0181 0.6660 ± 0.0175 0.7071 ± 0.0169 0.0000 0.0000

MIXED 0.6792 ± 0.0220 0.6938 ± 0.0214 0.7469 ± 0.0211 0.0011 0.0000

STAGGER 0.7476 ± 0.0219 0.7517 ± 0.0216 0.7996 ± 0.0223 0.0001 0.0000

GAUSS 0.6452 ± 0.0189 0.6676 ± 0.0188 0.6871 ± 0.0182 0.0001 0.0000

CIRCLES 0.7179 ± 0.0194 0.7262 ± 0.0208 0.7244 ± 0.0217 0.0000 0.5950

LINES 0.7557 ± 0.0244 0.7783 ± 0.0246 0.7970 ± 0.0230 0.0002 0.0002

MULTILINES 0.7687 ± 0.0222 0.7566 ± 0.0240 0.7865 ± 0.0239 0.0002 0.0000

Strategy None Queue-removing EDDM N-Q Q-C

MNIST 0.9774 ± 0.0032 0.9774 ± 0.0032 0.9758 ± 0.0033 NA NA

ELEC2 0.8423 ± 0.0765 0.8742 ± 0.0575 0.8342 ± 0.1312 NA NA

related to a moving average. It is a widely used for concept-drifting. We predict
the current price rises or falls by its all 8 features. The result shows that Queue-
removing preforms better than no-unlearning and EDDM.

5 Conclusion

We present an unlearning framework on top of PA-based online algorithms to
improve the learning performance under different kinds of concept-drifting data.
This framework is simple yet effective. In particular, the queue-removing strat-
egy, which is the best-performing one, results in a dynamic sliding window on
the mistaken data and dynamically unlearns based on a simple unlearning test
as the drift detection. Future work includes more sophisticated ways to balance
between loss and regularization for the unlearning test.
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Abstract. One of the key challenges in large attributed graph cluster-
ing is how to select representative attributes. Previous studies introduce
user-guided clustering methods by letting a user select samples based on
his/her knowledge. However, due to knowledge limitation, a single user
may only pick out the samples that s/he is familiar with while ignore
the others, such that the selected samples are often biased. We propose
a framework to address this issue which allows multiple individuals to
select samples for a specific clustering. With wider knowledge coming
from multiple users, the selected samples can be more relevant to the
target cluster. The challenges of this study are two-folds. Firstly, as user
selected samples are usually sparse and the graph can be large, it is
non-trivial to effectively combine the different annotations given by the
multiple users. Secondly, it is also difficult to design a scalable approach
to cluster large graphs with millions of nodes. We propose the approach
CGMA (Clustering Graphs with Multiple Annotations) to address these
challenges. CGMA is able to combine the crowd’s consensus opinions
in an unbiased way, and conducts an effective clustering with low time
complexity. We show the effectiveness and efficiency of the proposed app-
roach on real-world graphs, by comparing with existing attributed graph
clustering approaches.

Keywords: User-guided · Large attributed graph · Clustering · Sparse

1 Introduction

With the coming of big data era, the clustering of large attributed graphs has
drawn a lot of research attention. One of the major challenges in this field is the
attribute selection, which has not been fully explored. Recent research addressed
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this problem either by using the properties of datasets (e.g. the data density, the
topology) [1,2] or by applying user preference to guide clustering [7]. As user-
guided clustering is more interpretable and flexible, it attracts more research
attentions recently [4–7]. Different from conventional unsupervised clustering
methods, user-guided clustering is semi-supervised which allows a user to select
a small amount of samples for a particular cluster based on his/her preference.
However, existing user-guided clustering assumes there is only one user to anno-
tate the preferred samples. The clustering results largely rely on the labeled
samples given by the user. Thus the clustering results may largely rely on the
user selected samples based on his/her knowledge on the graph. A potential issue
is that the clustering can be biased to the user’s preference or knowledge.

In this paper, we propose a framework for user-guided large attributed graph
clustering which allows multiple users to annotate their preferred samples inde-
pendently. An individual may only have partial knowledge about the target clus-
ters, and multiple annotators provide us an effective way to reveal the common
knowledge toward a specific issue. Here we borrow the idea of crowdsourcing
[18,24] for user-guided clustering with multiple annotations. The general idea can
be illustrated by Fig. 1. Suppose three annotators answer such a common ques-
tion, e.g., “who are the data mining researchers?” As depicted in Fig. 1, each of
the annotators gives his/her own annotation based on their own knowledge inde-
pendently. However, since the data is too big, the annotations are sparse and may
hardly overlap [23]. If we only use one of the annotations, we may get the clusters
of “IBM Ph.D students,” “computer science professors,” or “PAKDD authors.”
However, if we combine the annotations together, we may find out the clusters of
“data mining researchers” through the shared conferences of “data mining.”

There are two major challenges for introducing multiple annotators to anno-
tate the samples for cluster analysis. (1) It is challenging to combine the annota-
tions of different users due to the fact that the annotations are not only sparse but
also overlap very little. Thus it is hard to apply conventional techniques like major-
ity voting to combine them in a straightforward manner. (2) It is also challenging
to address the scalability issue of the proposed approach. Under the background of
big data, the graph scale can be extremely large and the attribute dimensions can
be very high, developing a scalable algorithm is becoming critically important.

To address the above mentioned challenges, we propose an approach for
Clustering Graphs with Multiple Annotations (CGMA). A basic assumption
here is that each annotator may label the samples of the preferred clusters based
on only a few of the sample attributes instead of all of them [7]. With such an
assumption, we map each annotation to the attribute space to obtain the weight
vector denoting the relevance of attributes. In this way, the problem of combining
sparse annotations is transformed into combining the weight vectors correspond-
ing to the annotators in the common attribute space. Once the combined weight
vector is obtained, we use it re-weigh the entire network to obtain a pure seed
set which we used it for further clustering. The target cluster will be obtained by
expanding these seed sets using a local partitioning method. The contributions
of this paper can be addressed as follows,
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Fig. 1. A toy example of the studied problem. Different annotations with little over-
lapping are given. Each annotation contains several objects sharing a few focused
attributes within it. But the sharing attributes among different annotations may not
be the same. The aim of this paper is to identify the target cluster that complies to
the multiple annotations as much as possible.

• We introduce a novel problem of user-guided clustering in large attributed
networks with multiple annotations. Different from previous user-preference
guided clustering, which is often biased, using multiple annotations can alle-
viate the bias. To the best of our knowledge, this is the first paper applying
multiple annotations for graph clustering.

• We propose a two-step clustering approach CGMA to address the proposed
problem. CGMA combines multiple annotations in an unbiased way, and it
also amplifies the sparse annotations by re-sampling and expansion process.
The proposed approach has near-linear time complexity.

• We conduct a series of experiments on various large networks to examine
CGMA. The experimental results show the effectiveness and efficiency of our
method.

The rest of this paper is organized as follows. Section 2 will introduce the
related work of this research. Section 3 gives the details of the CGMA algo-
rithm. Next, we will show the experimental results of CGMA on real networks
compared with some competitive baselines in Sect. 4. Finally, Sect. 5 concludes
the paper.

2 Related Work

Clustering of homogeneous graphs can be sorted into two groups, the plain graph
clustering and the attributed graph clustering. Traditional methods mostly target
at plain graphs, and they have been well studied in literatures, for example, the



130 J. Cao et al.

partitioning methods METIS [27] and spectral clustering [14] aim to find a k-way
partitioning of the graph. Community detection methods [16] cluster the graph
into variable size communities, which is significantly different from partitioning-
based methods. Autopart, cross-associations [4], and information theoretic co-
clustering [13] are parameter-free examples to graph clustering methods. Several
methods [19,20] also allow clusters to overlap as observed in real-world social
and communication networks. However, all of these methods are limited to plain
graphs (without attributes). Compared to the wide range of works on plain graph
mining, there has been much less works on attributed graphs. The representa-
tive methods [2,11] aim to partition the given graph into structurally dense and
attribute wise homogeneous clusters. These methods, however, enforce attribute
homogeneity in all attributes. Recently some methods loosen this constraint by
unsupervised feature selection [1] to extract cohesive subgraphs with homogene-
ity in a subset of attributes. However, all of these methods either do not perform
a selection of attributes, or select the attributes in a biased way.

Semi-supervised clustering applies a small amount of labeled data to aid and
bias the clustering of unlabeled data [8]. There are various kinds of methods for
semi-supervised clustering considering user-given pairwise constraints like ‘must-
link’ and ‘cannot-link’ [10]. It is also known as constraint-based clustering where
the constraints are often strict to follow [12]. However, most of these methods
are based on vector data, thus they are not applicable to graphs with attributes.
Methods on seeded community mining [19,22] find communities around (user-
given) seed nodes. However, those methods find structural communities on plain
graphs and neither are applicable to attributed graphs, nor enable user guid-
ance on attributes. Our proposed method has two advantages compared with
above mentioned methods. First, we apply user-given example sets to automat-
ically infer the possible combination of representative attributes. Second, the
constraints of traditional semi-supervised clusterings are hard, while the con-
straints given by different users are soft, causing the combination problem to be
addressed in this study.

3 Method CGMA

In this section, we will present the framework of CGMA to address the prob-
lem of using multiple annotations to guide attributed graph clustering. First
of all, we give the formulation of our problem. Given a large attributed graph
G(V,E, F ) with |V | = n nodes and |E| = m edges, where each node is associated
with |F | = d attributes, we target to extract cluster C from G with the guidance
of K users. Each user independently labels the samples based on his/her own
knowledge. The samples annotated by the k-th user are denoted as Uk. For each
set Uk, we assume that nodes inside it are similar to each other, and they are
dissimilar to the nodes outside the set.

3.1 Framework

The proposed approach CGMA combines the annotations first in an unbiased
way to obtain the guidance information. Then, a local clustering method is
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applied to cluster the graph with the guidance of combined annotations. Thus,
CGMA addresses the problem in two phases, the annotations combination and
cluster extraction.

Annotations Combination. Since the annotations are sparse labels with little
overlaps, straightforward methods like majority voting may not effectively cap-
ture the relations among the annotations. In this paper, we combine the anno-
tations through each one’s inferred weights in relevance to the feature space.
Here are two major steps. The first step is mapping the annotations to the
attribute space to facilitate measuring the similarity of the annotations. For
different annotators, the attributes they think are essential to a particular clus-
ter may be different due to their biased knowledge. Our first goal is to infer the
attribute weights of Uk(k ∈ {1, · · · ,K}) that make the example nodes as similar
to each other as possible. The similarity between two nodes can be measured by
the (inverse) Mahalanobis distance: the distance between two nodes with feature
vectors fi and fj is (fi − fj)TAk (fi − fj). To ensure it as a metric, we set the
weight matrix Ak as a positive definite matrix [3], and it denotes the attribute
weight that is relevant to annotator k′s preference.

The process of learning Ak from annotation Uk is known as the distance
metric learning problem [3]. The essence is to minimize the distance among the
nodes in Uk. The optimal Ak can be obtained by solving the following convex
optimization problem.

min
Ak

∑

(i,j)∈Pk
C

(fi − fj)
TAk (fi − fj) − γlog(

∑

(i,j)∈Pk
D

√
(fi − fj)TAk (fi − fj)) (1)

Here, P k
C and P k

D denote the similar and dissimilar set of the k-th annotation,
respectively. Following [7], we consider the annotated node pairs as similar set,
and the un-annotated node pairs as dissimilar set. The un-annotated pairs are
randomly selected from the edges of un-annotated part. To emphasize the differ-
ence between similar and dissimilar set, we set |P k

D| = d|P k
C | by over-sampling of

P k
D [17]. According to [3], the above objective function is convex and enables effi-

cient, local-minima-free algorithms to solve it, especially for a diagonal solution.
The second step in this phase is to combine the attribute weights Ak of

each sample set. Since Ak is a diagonal matrix, we assign attribute vector
βk = diag(Ak)(k ∈ 1, · · · ,K) and combine the vectors βk according to its impor-
tance [15]. Each weight vector βk can be viewed as a point in a d-dimensional
Euclidean space, where the distances dij (i, j ∈ 1, · · · ,K) between βi and βj be
measured by Euclidean distance. For each point βk, we first compute its local
density ρk as its importance. Here, the local density of βk refers to the number
of points within a distance dc to it (Eq. 2).

ρk =
K∑

l=1,l �=k

χ(dkl − dc) (2)

where χ(x) = 1 if x < 0 and χ(x) = 0 otherwise, and dc is a distance threshold.
The algorithm is only sensitive to the relative magnitude of ρk in different points.
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Algorithm 1. Combination: The Combining of Annotations
Input: example annotations U1, · · · , UK

Output: combined attribute weights vector β
1: //Computing attribute weights vectors
2: for all Uk do
3: Similar pairs P k

S = ∅, Dissimilar pairs P k
D = ∅

4: for all u ∈ Uk, v ∈ Uk do
5: P k

S = P k
S ∪ (u, v)

6: end for
7: repeat
8: Random sample u from set V \Uk

9: Random sample v from set V \Uk

10: P k
D = P k

D ∪ (u, v)
11: until d|PS | dissimilar pairs are generated, d = |F |
12: Oversample from PS such that |PS | = |PD|
13: Solve objective function in Eq. (1) for diagonal Ak

14: βk = diag(Ak)
15: end for
16: //Combining the attribute weights vectors
17: for all βk do
18: Compute ρk by Eq. (2)
19: end for
20: Calculate β = norm(

∑
k ρkβk)

21: return combined attribute weights vector β

Thus the results of analysis are robust with respect to the choice of dc [15].
Finally, we get the combination β of weight vectors β1, · · · , βK , according to
each vector’s importance ρk.

We give the details of combining the annotation results in Algorithm1. The
step of inferring the attribute weights of an annotation is illustrated in A1 Lines
2–15, and the combination of the attribute vectors is shown in A1 Lines 17–22.
In our setting, all pairs of example nodes in Uk constitute P k

S (A1 Line 3). We
create P k

D by randomly drawing pairs of nodes that do not belong to user k’s
example set (A1 Lines 7–11). Note that if ρk = 0 (A1 Line 18), βk will have
no contribution to the combined vector β. That denotes user k’s opinion will
be ignored (A1 Line 20). In the last step, we get a combined β, and then we
normalize it.

Cluster Extraction. We use the information of combined annotations to
extract the target cluster from the graph. Since a global clustering method
would be time-consuming and can not scale well to large graph, we apply a
seed-set-expansion algorithm to identify clusters locally with lower computa-
tional complexity.

There are two major problems in this step. First, how to extract the seed set
samples of the cluster based on the different annotations from multiple annota-
tors and the combined attribute weight vector? Second, how to develop a local
partitioning method so that the expansion of seed sets will be scalable to large
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graphs? Therefore, we explain our algorithm focusing on two parts, the identifi-
cation of seed set S of the cluster and its expansion rules.

In the process of identifying a pure seed set, we first apply the combined
vector β to re-weigh the entire graph, then select the edges with high weight
(similarity) to shape the seed set. We call this process as “re-sampling”, which
aims to enrich the samples space for the expansion process. Specifically, we firstly
measure the weights of all the edges. Then, we assign the edges with high weights
over threshold wr as seeds. Simply, we assign a linear interpolation as wr over
the weights of samples, wr = λwmax + (1 − λ)wmin, where λ is a parameter
falls in [0, 1]. wmax and wmin represent the maximum and minimum value of
the example edges weighted by β, respectively. Algorithm 2 details the process
of finding the pure seed set by re-sampling.

Next, we expand the seed set S to the target clusters C through a series
of strict rules. Following the expansion process in [19], the expansion process
carefully adds new nodes to each component of S. In this paper, we apply con-
ductance [19] to measure the quality of a cluster as it accounts for both the
cut size and the total volume/density retained within the cluster. The weighted
conductance φ(w)(S,G) of a set of nodes in graph G(V,E, F ) is defined as follows,

φ(w)(S,G) =
Wcut(S)
Wvol(S)

=

∑
(i,j)∈E,i∈S,j∈V \S wij∑
(i,j)∈S

∑
(i,j)∈E wij

(3)

Here, Wcut(S) and Wvol(S) are the total weight of cut edges and within
edges of S, respectively. The lower the conductance of a cluster is, the better the
quality of the cluster is with few cross-cut edges and large within-density.

In each step, the expansion process selects all the nodes in the margin of a
component, and adds the ones that will decrease the conductance of the cluster.
The process will simultaneously kick out the (nodes) edges within a cluster that
will decrease the conductance of the cluster. The process continues until there is
no node changing that would decrease the quality of a component. Due the page
limitation, we do not illustrate the algorithm, please refer [15] for more details.

3.2 Complexity Analysis

(1) The combination of annotations. Since every annotator provides the same
amount of examples, we take Uk(k ∈ 1, · · · K) as an example to analyze
the time complexity of this step. First, we create similar and dissimilar
node pairs which we use to infer the attribute weights. Since the opti-
mization objective in Eq. 1 is convex and we aim to find a diagonal solu-
tion, local-optima-free gradient descent techniques will take O(d/ε2) for an
ε−approximate answer [26]. The clustering process of combination is not
time consuming because the number of annotators is significantly small to
the data scale, K << n. According to [15], we calculate that the complexity
is O(K2). Therefore, the total computational complexity of the first part is
O(Kd/ε2) + O(K2).
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Algorithm 2. Find seed set by re-sampling
Input: attributed graph G(V, E, F ), combined weight vector β, annotations

U1, · · · , UK

Output: seed set S for expansion
1: re-weigh edges by β getting edge re-weight w(u, v)
2: for all (u, v) ∈ E do
3: w(u, v) = 1/(

√
(fu − fv)T diag(β)(fu − fv) + ε)

4: end for
5: seed node set V ′ = ∅
6: wmax(wmin) = max(min){w(u, v)|u, v ∈ {U1 ∪ · · · ∪ UK}}
7: if w(u, v) > wr = λwmax + (1 − λ)wmin then
8: seed nodes V ′ = V ′ ∪ {u, v}
9: end if

10: build seed set graphs g(V ′, E′, F ) where
11: ∀u, v ∈ V ′, (u, v) ∈ E, w(u, v) ≥ w′iff(u, v) ∈ E′

12: seed set S ← G(V ′, E′, F )
13: return seed set S

(2) The finding and expansion of seed set. Since β is supposed to be sparse with
only a few non-zero entries for focused attributes, the multiplicative factor
becomes effectively constant yielding a complexity of O(m). In the process of
expansion, we enlist all the non-member neighbors as the candidate set and
evaluate their weighted Δ conductance. As discussed above, the complexity
is

∑
n∈S d(n). Since S ⊆ V , it is equivalent O(m). As we add one node at

each iteration, the total complexity becomes O(|S|m) where |S| is the node
scale of the seed set, and |S| << n.

To sum up, the complexity of the two phases comes to O(Kd/ε2+K2+|S|m).
It is critically low comparing to the large scale of graphs.

4 Experiments

In order to evaluate the clustering quality and scalability of CGMA, we com-
pare it with two representative graph clustering techniques METIS [27] and
FocusCO [7] on real-world datasets. METIS is a classical graph partitioning
algorithm which expects the number of clusters as input. FocusCO is a local
clustering approach proposed recently using the guidance of a single user.

To introduce CGMA clearly, we conduct our experiments on the “four-area”
dataset, a co-authorship network of computer science researchers. The attributes
of the authors are the conferences in which they have published papers in the
areas of database (DB), data mining (DM), machine learning (ML), and infor-
mation retrieval (IR). We use multiple annotations from 50 persons, each person
gives 20 sample nodes in responding to the same question in one experiment. For
the convenience of study, our problem is identifying the researchers belonging to
the four areas, respectively. The ground truth clusters of an area consists of all
the researchers whoever published at least one paper in the area.
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Since the re-sampling process affects the final clusters significantly, we con-
duct a parameter study of λ, and we show the F1-score of the clustering results
with different settings of λ. As shown in Fig. 2, the F1-score of the final cluster-
ing results is not linearly related to λ. One can see that without the re-sampling
step the F1-score of the final results in each of experiments is critically low,
about or less than half of the value when λ = 0.4. The F1-score of the final
clustering results presents that the re-sampling properly will improve clustering
performance significantly.

Fig. 2. The λ effects on the clustering results, 50 annotations in each of the experiment.

Accuracy. We compare the cluster results with METIS and FocusCO. Here
we set the clusters number of METIS as four, which performs the best on
this dataset. As shown in Fig. 3, one can see that F1-score of our method is
significantly higher than that of the two baselines, which shows the superior
performance of the proposed method. The experimental results show that our
method significantly outperforms the other two methods.

Stability. We also examine the stability of the proposed CGMA. Although we
have different annotations as inputs, they are annotated under the same question.
Therefore, the annotations are all theoretically related a common clustering. We
use the normalized mutual information (NMI) to evaluate the stability of the
proposed clustering approach. Here, we use average NMI between each pair of
clustering results to indicate the stability of a method. Higher NMI implies a
more stable clustering result. As shown in Fig. 5, the proposed approach CGMA
gets more stable results than other two methods. With the increasing of λ, the
stability of CGMA improves significantly.

Scalability. We select five subsets of “four-area” with the size from 100 to
27200. Each dataset scale is three times larger than its previous one. Then we
conduct extensive experiments on these datasets. Note that the annotation vol-
umes change with the scale of experimental graphs. Larger scale of the graph
needs more annotations. For each dataset, we run the experiments for ten times
and average the results. The experimental results are shown in Fig. 5. Note that
for CGMA, the extraction of cluster can be performed in parallel, thus the
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Fig. 3. The accuracy of CGMA,
FocusCO and METIS.

Fig. 4. The scalability of CGMA,
FocusCO and METIS.

Fig. 5. The comparison of average NMI value in the 4 clusterings. The horizontal axis
in all sub-figures represents the number of annotations we randomly selected.

computing time can be significantly reduced. As the figure shown, the running
time of METIS increases with the increasing of graph scale. However, the run-
ning time of CGMA and FocusCO is stable. In such case, the running time of
CGMA is also comparable to METIS and FocusCO (Fig. 4).

To further examine the scalability of CGMA, we conduct more experiments
on two different types of real world attributed networks. The first is crawled from
PolBlogs, a citation network among a collection of online blogs that discuss
political issues. The attributes of PolBlogs are the keywords in the blogs. The
second dataset is crawled from Twitter, and it is a following network with a
collection of discussed topics. The attributes are the keywords in their posts.
Statistics of the datasets are given in also given in Table 1. The average running
time (total) and their standard deviations are in Table 1. The running time of
CGMA is the total running time including the annotation combination and
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Table 1. Comparisons on the Scalability of CGMA

Dataset |V | |E| |F | |C| Running time (sec)

PolBlog 362 1288 44839 10 0.4772 ± 0.0591 (CGMA)

0.8772 ± 0.0839 (METIS)

3.0561 ± 0.0471 (FocusCO)

Twitter 14078 44619 17839 10 1.2135 ± 0.0322 (CGMA)

1.9425 ± 0.0381 (METIS)

6.8772 ± 0.0491 (FocusCO)

clustering extractions steps. As it shows, the running time demonstrates the
efficiency of our approach. It only takes less than 2 s to cluster the Twitter
dataset with more than 14 thousand nodes, which shows CGMA can be scalable
to very large graphs. The experimental results prove that CGMA is a scalable
approach that can deal with various datasets.

5 Conclusions

In this work, we introduced a novel problem of finding clusters with multi-
example sets in large attributed graphs. The challenge here is how to combine
them in an unbiased way in order to conduct a clustering. To address these
challenges, we proposed CGMA in this paper which has two major phases:
(1) combining the various example sets, (2) re-sampling the seed sets and expand-
ing them to find a batch of densely connected clusters. Extensive experiments
are conducted to examine the CGMA, and the experimental results showed that
the proposed approach outperforms baseline methods.
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Abstract. Predicting event occurrence at an early stage in longitudi-
nal studies is an important problem which has high practical value. As
opposed to the standard classification and regression problems where
a domain expert can provide the labels for the data in a reasonably
short period of time, training data in such longitudinal studies must
be obtained only by waiting for the occurrence of sufficient number of
events. The main objective of this work is to predict the event occur-
rence in the future for a particular subject in the study using the data
collected at the initial stages of a longitudinal study. In this paper, we
propose a novel Early Stage Prediction (ESP) framework for building
event prediction models which are trained at early stages of longitudi-
nal studies. More specifically, we develop two probabilistic algorithms
based on Naive Bayes and Tree-Augmented Naive Bayes (TAN), called
ESP-NB and ESP-TAN, respectively, for early stage event prediction by
modifying the posterior probability of event occurrence using different
extrapolations that are based on Weibull and Lognormal distributions.
The proposed framework is evaluated using a wide range of synthetic and
real-world benchmark datasets. Our extensive set of experiments show
that the proposed ESP framework is able to more accurately predict
future event occurrences using only a limited amount of training data
compared to the other alternative approaches.

Keywords: Prediction · Regression · Longitudinal data · Survival
analysis

1 Introduction

Developing effective prediction models to estimate the outcome of a particular
event of interest is a critical challenge in various application domains such as
healthcare, reliability, engineering, etc. [12]. In longitudinal studies, event pre-
diction is an important area of research where the goal is to predict the event
occurrence during a specific time period of interest [9]. Obtaining training data
c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part I, LNAI 9651, pp. 139–151, 2016.
DOI: 10.1007/978-3-319-31753-3 12
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for such a time-to-event problem is a daunting task. As opposed to the standard
supervised learning problems where a domain expert can provide labels in a rea-
sonable amount of time, training data for longitudinal studies must be obtained
only by waiting for the occurrence of sufficient number of events. Therefore, the
ability to leverage only a limited amount of available information at early stages
of longitudinal studies to forecast the event occurrence at future time points is
an important and challenging research task.

Let us consider an illustrative example shown in Fig. 1. In this example, a
longitudinal study is conducted on 5 subjects and the information for event
occurrence until time tc is recorded, where only subjects B and E have experi-
enced the event. The goal of our paper is to predict the event occurrence by the
time tf where tf is much greater than tc. It can be seen that, except subjects B
and E, all the remaining subjects are considered to be censored at tc (marked by
red ‘x’) and the event will occur for subject A within the time period tf . This sce-
nario is applicable for many real-world applications where it is critical to obtain
early stage time-to-event predictions. For example, in the healthcare domain,
let us say that there is a new treatment option (or drug) which is available and
one would like to study the effect of such a treatment on a particular group of
patients in order to understand the efficacy of the treatment. This patient group
is monitored over a period of time and an event here corresponds to the patient
being hospitalized (or occurrence of death) because the treatment has failed.
The effectiveness of this treatment must be estimated as early as possible when
there are only a few hospitalized patients.

Fig. 1. An illustration to demonstrate the problem of early stage event prediction for
time tf using the information of event occurrence until time tc.

This practical problem clearly emphasizes the need to build algorithms that
can effectively predict events using the training data that contains only the event
information at an early stage of a longitudinal study. It should be noted that
the previous research in the field of statistics mainly focuses on the prediction
of survivability up to a certain specific time point. Predicting events at future
timepoints using the available information at the initial phases of the study
remains to be a relatively unexplored area of research. Thus, in this paper,
we develop prediction models using the data collected at earlier time points in
longitudinal studies. More specifically, the contributions of this paper are as
follows:
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– Propose an Early Stage Prediction (ESP) framework which estimates the
probability of event occurrence for a future timepoint using different extrap-
olation techniques.

– Develop a probabilistic algorithms based on Naive Bayes and Tree-Augmented
Naive Bayes (TAN), called ESP-NB and ESP-TAN, respectively, for early-
stage event prediction by modifying the posterior probability of event occur-
rence.

– Evaluate the proposed algorithms using several synthetic and real-world
benchmark datasets.

This paper is organized as follows. In Sect. 2, we present a summary of existing
works on using survival analysis and machine learning methods for longitudinal
data. In Sect. 3, we explain the problem formulation and describe two proba-
bilistic classifiers, namely, Naive Bayes and Tree-Augmented Naive Bayes. In
Sect. 4, we introduce the proposed extrapolation methods and then explain our
novel Early Stage Prediction (ESP) framework based on Naive Bayes and TAN
algorithms. In Sect. 5, the results of the proposed methods along with those of
the competing algorithms on various synthetic and real-world datasets are pre-
sented. In the last section, we conclude our paper with a summary of the main
results of the proposed work.

2 Related Work

Survival analysis is a subfield of statistics where a wide range of techniques have
been proposed to model time-to-event data (e.g., failure, death, admission to
hospital, emergence of disease, etc.) [13]. For such a time-to-event prediction
problem, there have also been many attempts using different machine learning
methodologies that were modified and applied to this problem [19,21]. On the
other hand, longitudinal data cannot be modeled solely using traditional clas-
sification or regression approaches since certain observations have event status
and the rest have an unknown status up until that specific time of study.

Several machine learning approaches have been adapted to handle the con-
cept of censoring in survival data [15]. Modifications of decision trees [8,17],
artificial neural networks [6] and support vector machines [11,18] represent some
of the works on this topic. Another popular choice in the predictive modeling
literature is the Bayesian approach. However, there was only a little work in the
literature using Bayesian methods for survival data [1,14,20].

The work that is being developed in this paper is significantly different from
the above mentioned algorithms since none of the existing works perform fore-
casting of event occurrence at future points in the context of survival data. They
basically use the training data that is collected at the same time point as the
test data. The basic idea of the proposed model is to develop Naive Bayes and
its extension Tree-Augmented Naive Bayes (TAN), to build a predictive prob-
abilistic model which will allow us to adapt the prior probability of events for
forecasting the event occurrence at different points of time in the future. It is
important to note that discriminative models are not suitable for the forecasting
framework due to the lack of the prior probability component.
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3 Preliminaries

The aim of our work is to address the following question: “when will a subject
in longitudinal study experience an event?” The fundamental challenge here is
to determine which subject in the study will experience the event at a certain
timepoint based on event occurrence information that is available only until prior
points of time (usually much earlier than the timepoint used during estimation).
Before describing the details of the proposed model, we formalize the problem
and transform it to a binary classification task. Then, we describe two well-
known probabilistic classification approaches, namely, Naive Bayes and Tree-
Augmented Naive Bayes (TAN). Table 1 describes the notations used in this
paper.

Table 1. Notations used in this paper

Name Description

n Number of samples

m Number of features

x n×m data matrix

T n × 1 vector of event times

C n × 1 vector of last follow-up times

O n × 1 vector of observed time which is min(T, C)

δ n × 1 binary vector of censored status

tc Specified time until which information is available

tf Desired time at which the forecast of future events is made

yi(t) Event status for subject i at time t

3.1 Problem Formulation

Let us consider a longitudinal study where the data about n independent
subjects are available. Let the feature vector for sample i be represented by
xi = 〈xi1, ..., xim〉 where xij is the jth feature for subject i. For each subject i,
we can define Ti as the event time, and Ci as the last follow-up time or censoring
time (the time after which the subject has left the study). For all the subjects
i = {1, ..., n}, Oi denotes the observed time which is defined as min(Ti, Ci).
Then, the event status can be defined as δi = I{Ti ≤ Ci}. Thus, a longitudinal
dataset can be represented as (xi, Ti, δi) where xi ∈ Rm, Ti ∈ R+, δi ∈ {0, 1}.

It should be noted that we only have the information for few events until
the time tc. Our aim is to predict the event status at time tf where tf > tc.
Let us define yi(tc) as event status for subject i at time tc. We consider tc to be
less than the observation time since we aim to forecast the event occurrence at
early stage of the study. Suppose, among n subjects in the study, only n(tc) will
experience the event at time tc. For each subject i we can define

yi(tc) =

{
1 if Oi ≤ tc and δi = 1,

0 otherwise
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Fig. 2. An illustration of the basic structure of (a) Naive Bayes and (b) TAN classifier.

In this transformed formulation, given the training data (xi, yi(tc)), we can build
a binary classifier using yi(tc) as the class label. If yi(tc) = 1, then the event has
occurred for subject i and if yi(tc) = 0, the event has not occurred. It should be
noted that a new classifier will have to be built to estimate the probability of
event occurrence at tf based on the training data that is available at tc.

3.2 Naive Bayes Method

Naive Bayes is a well-known probabilistic model in the machine learning domain.
Assume we have a training set in Fig. 1 where the event occurrence information
is available up to time tc. Based on the binary classification transformation
explained above, using Naive Bayes algorithm, the event probability can be esti-
mated as follows:

P
(
y(tc) = 1 | x, t ≤ tc

)
=

P
(
y(tc) = 1, t ≤ tc

) ∏m
j=1 P

(
xj | y(tc) = 1

)
P (x, t ≤ tc)

(1)

The first component of the numerator is the prior probability of the event occur-
rence at time tc. The second component is a conditional probability distribution
which can be estimated as follows:

P
(
xj | y(tc) = 1

)
=

∑n
i=1

(
yi(tc) = 1, xij = xj

)∑n
i=1(yi(tc) = 1)

(2)

where xij is the value of attribute j for subject i. Thus, it is a natural estimate
for the likelihood function in Naive Bayes to count the number of times that
event occurred at time tc in conjunction with jth attribute that takes a value of
xj . Then we count the number of times the event occurred at time tc in total
and finally take the ratio of these two terms. This formula is valid for discrete
attributes; However, it can be easily adapted for continues variables as well [10].

3.3 Tree-Augmented Naive Bayes Method

A prominent extension of Naive Bayes is the Tree-Augmented Naive Bayes
(TAN) where the independence assumption between the attributes is relaxed
[7]. The TAN algorithm imposes a tree structure on the Naive Bayes model by
restricting the interaction between the variables to a single level. This method
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allows every attribute xj to depend upon the class as well as at most one other
attribute, xp(j), called the parent of xj. Illustration of the basic structure of the
dependency in Naive Bayes and TAN is shown in Fig. 2. Given the training set
(x, y(tc)), firstly the tree for the TAN model should be constructed based on the
conditional mutual information between two attributes [7].

I
(
xj,xk | y(tc)

)
=

∑
xj,xk,y(tc)

P
(
xj,xk, y(tc)

) P
(
xj,xk | y(tc)

)
P

(
xj | y(tc)

)
P

(
xk | y(tc)

) (3)

Then, a complete undirected graph in which the vertices correspond to the
attributes xj is constructed. Using Eq. (3), the weight of all the edges can be
computed. A maximum weighted spanning tree is built and finally, an undirected
tree is transformed into a directed one by randomly choosing a root variable and
setting the direction of all the edges outward from the root. After the construc-
tion of the tree, the conditional probability of each attribute on its parent and
the class label is calculated and stored. Hence, the probability of event at time
tc, can be defined as follows:

P
(
y(tc) = 1 | x, t ≤ tc

)
=

P
(
y(tc) = 1, t ≤ tc

) ∏m
j=1 P

(
xj | y(tc) = 1,xp(j)

)
P (x, t ≤ tc)

(4)

The numerator consists of two components; the prior probability of the event
occurrence at time tc and the conditional probability distributions which can be
estimated using the maximum likelihood estimation (MLE).

4 The Proposed ESP Framework

In this section, we describe the proposed Early Stage Prediction (ESP) frame-
work. First, we describe our proposed prior probability extrapolation based
method using different distributions and then we will introduce ESP-NB and
ESP-TAN algorithms which utilize the extrapolation method.

4.1 Prior Probability Extrapolation

In order to predict event occurrence in longitudinal data, we develop a technique
that can estimate the ratio of event occurrence beyond the original observation
range or in other words, compute the extrapolation for prior probability of event
occurrence. This extrapolation approach will be based on Weibull and Lognormal
distributions which are used widely in the literature for modeling the time-
to-event data [3,16]. We will integrate such extrapolated values later with the
proposed learning algorithms in order to make predictions at future timepoints.

Weibull: We estimate the shape and scale parameters, αtc
and βtc

, in Weibull
distribution, by fitting the distribution to data obtained until tc and then
making the following extrapolation

p(tf ) =
tf

α−1

βα
exp

( − (tf/β)α
)

(5)



Early-Stage Event Prediction for Longitudinal Data 145

Lognormal: We can also assume that the time to event follows a log-normal
distribution, and then we can estimate μtc

and σtc
, mean and standard devi-

ation of log-normal distribution, from the training data. The extrapolation is
given as follows:

p(tf ) =
1√

2πσtc
tf

exp−
(
log(tf )−μtc

)2

/2σ2
tc

. (6)

4.2 The ESP Algorithm

We will now describe the ESP Algorithm which consists of two phases. In the
first phase, the conditional probability distribution is estimated using training
data which is obtained until time tc (see Sects. 3.2 and 3.3). In the second phase,
we extrapolate the prior probability of event occurrence for time tf which is
beyond the observed time using different extrapolation techniques as follows:

P
(
y(tf ) = 1, t ≤ tf

)
= p(tf ) (7)

It should be noted that the Eq. (7) can be estimated using Eqs. (5) and (6). Thus,
the posterior probability for event occurrences at time tf can be estimated as:

ESP-NB:

P
(
y(tf ) = 1 | x, t ≤ tf

)
=

p(tf )
∏m

j=1 P
(
xj | y(tc) = 1

)
P (x, t ≤ tf )

. (8)

ESP-TAN:

P
(
y(tf ) = 1 | x, t ≤ tf

)
=

p(tf )
∏m

j=1 P
(
xj | y(tc) = 1,xp(j)

)
P (x, t ≤ tf )

. (9)

Algorithm 1 outlines the proposed ESP method. In the first phase (lines 1–4),
for each attribute j, the algorithm estimates the conditional probability using
the data available until time tc. In the second phase, a probabilistic model is
built to predict the event occurrence at tf . In lines 5–7, the prior probability for
event occurrence at time tf is estimated using different extrapolation techniques.
Then, in lines 8–12, for each subject i, we adapt the posterior probability of event
occurrence at time tf . The time complexity of the ESP algorithm follows the time
complexity of the learning method that is chosen. It should be noted that the
complexity of the extrapolation component is a constant and does not depend
on either m or n. Hence, for ESP-NB, the overall complexity is O(mn) and for
ESP-TAN, it is O(m2n), where n is the total number of subjects and m is the
number of features in the dataset.

5 Experimental Results

In this section, we will describe the datasets that are used for evaluating the
proposed methods along with the comparisons of the proposed algorithms with
various baseline prediction methods.
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Algorithm 1. Early Stage Prediction (ESP) Framework

Require: Training data D(tc) =
(
x, y(tc), T

)
, tf

Output: Probability of event at time tf

Phase 1: Conditional probability estimation at tc

1. for j = 1, ..., m
2. Naive Bayes: P

(
xj | y(tc) = 1

)
(Eq. (2))

3. TAN: P
(
xj | y(tc) = 1, xp(j)

)
(Eq. (3))

4. end
Phase 2: Predict probability of event occurrence at tf

5. Estimate P
(
y(tf ) = 1, t ≤ tf

)

6. Weibull: tf
α−1

/βαexp
(− (tf/β)α

)
(Eq. (5))

7. Lognormal: 1/
√
2πσtc tfexp−

(
log(tf )−μtc

)2
/2σ2

tc
(Eq. (6))

8. for i = 1, ..., n
9. Estimate P

(
yi(tf ) = 1 | xi, t ≤ tf

)

10. ESP-NB: Eq. (8)
11. ESP-TAN: Eq. (9)
12. end
13: return P

(
y(tf ) = 1 | x, t ≤ tf

)

5.1 Dataset Description

We evaluated the performance of the models using both synthetic and real-world
survival datasets which are summarized in Table 2.

Synthetic Datasets: We generated synthetic dataset in which the feature vec-
tors x are generated based on a normal distribution N(0, 1). Covariate coefficient
vector β is generated based on a uniform distribution Unif(0, 1). Thus, T can
be generated using the method described in [2]. Given the observed covariates
xi for observation i, the failure time can be generated by

Ti = −
(

log(Unif(0, 1))
λėxp(β′xi)

)ν

(10)

In our experiments, we set λ = 0.01 and ν = 2.

Real-World Survival Datasets: Several real-world survival benchmark
datasets were used in our experiments. We used primary biliary cirrhosis (PBC),
breast and colon cancer datasets (available in the survival data repository1)
which are widely used in evaluating longitudinal studies. We also used Framing-
ham heart study dataset which is publicly available [4]. In addition, we also used
two in-house proprietary datasets. One is the electronic health record (EHR)
data from heart failure patients collected at the Henry Ford Health System in
Detroit, Michigan. This data contains patient’s clinical information such as pro-
cedures, medications, lab results and demographics and the goal here is to predict
the number of days for the next readmission after the patient is discharged from

1 http://cran.rproject.org/web/packages/survival/.

http://cran.rproject.org/web/packages/survival/
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Table 2. Number of features, instances and events. T50 and T100 corresponds to the
time taken for the occurrence of 50 % and 100 % of the events, respectively.

Dataset #Features #Instances #Events T50 T100

Syn1 5 100 50 1014 3808

Syn2 20 1000 602 943 7723

Breast 8 673 298 646 2659

Colon 13 888 445 394 3329

PBC 17 276 110 1191 4456

Framingham 16 5209 1990 1991 5029

EHR 77 4417 3479 50 4172

Kickstarter 54 4175 1961 21 60

the hospital. Another dataset was obtained from Kickstarter, a popular crowd-
funding platform. Each project has been tracked for a specific period of time.
If the project reaches the desired funding goal within deadline date then it is
considered to be a success (or event occurred). On the other hand, the project
is considered to be censored if it fails to reach its goal within the deadline date.

5.2 Performance Evaluation

The performance of the proposed models is measured using following metrics,

– AUC is the area under the receiver operating characteristic (ROC) curve. The
curve is generated by plotting the true positive rate (TPR) against the false
positive rate (FPR) by varying the threshold value.

– F-measure is defined as a harmonic mean of precision and recall. A high value
of F -measure indicates that both precision and recall are reasonably high.

F − measure =
2 × Precision × Recall

Precision + Recall
.

Implementation Details: The proposed ESP-NB and ESP-TAN methods are
implemented using e1071 package available in the R programming language [5].
The same package used for comparison results from Naive Bayes and TAN clas-
sification model. The coxph model in the survival package is employed to train
the Cox model. The source code of the proposed algorithms in R programming
environment is available at http://dmkd.cs.wayne.edu/codes/ESP.

5.3 Results and Discussion

For performance benchmarking, we compare the proposed ESP-NB and ESP-
TAN algorithms using Weibull and Lognormal distributions as extrapolation
techniques with Cox regression, Naive Bayes (NB) and Tree-Augmented Naive
Bayes (TAN) classification methods which are trained at time when only 50 %

http://dmkd.cs.wayne.edu/codes/ESP
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Table 3. Comparison of AUC values for Cox, NB and TAN with proposed ESP-NB
and ESP-TAN methods using Weibull (W) and Lognormal (L) extrapolation methods
(with standard deviation values).

Data AUC

Cox NB TAN ESP-NB(W) ESP-NB(L) ESP-TAN(W) ESP-TAN(L)

Syn1 0.697 0.702 0.713 0.865 0.841 0.865 0.849

(0.004) (0.007) (0.002) (0.003) (0.003) (0.001) (0.001)

Syn2 0.703 0.699 0.705 0.818 0.811 0.821 0.817

(0.003) (0.009) (0.005) (0.002) (0.003) (0.002) (0.002)

Breast 0.612 0.621 0.632 0.655 0.633 0.662 0.635

(0.011) (0.009) (0.004) (0.001) (0.003) (0.007) (0.005)

Colon 0.601 0.615 0.617 0.621 0.617 0.627 0.619

(0.024) (0.011) (0.014) (0.013) (0.014) (0.009) (0.011)

PBC 0.665 0.643 0.679 0.765 0.761 0.768 0.763

(0.009) (0.003) (0.01) (0.001) (0.004) (0.003) (0.001)

Framingham 0.863 0.945 0.953 0.953 0.959 0.961 0.971

(0.006) (0.002) (0.005) (0.007) (0.003) (0.004) (0.002)

EHR 0.612 0.633 0.638 0.654 0.624 0.649 0.628

(0.022) (0.019) (0.025) (0.018) (0.021) (0.011) (0.026)

Kickstarter 0.761 0.811 0.816 0.821 0.825 0.822 0.831

(0.018) (0.022) (0.025) (0.024) (0.023) (0.019) (0.018)

of events have occurred and the event prediction is done at the end of study.
Tables 3 and 4 summarize the comparison result in AUC and F-measure evalu-
ation metrics, respectively. We used stratified 10-fold cross-validation and aver-
age values (along with the standard deviations) of the results on all the ten
folds are being reported. For all of the datasets, our results evidently show that
the proposed ESP-based methods using either Weibull or lognormal distribu-
tion will provide significantly better prediction results compared to the other
methods. The choice of the optimal distribution will depend on the nature of
the dataset being considered, in particular, the distribution that the event occur-
rence follows. Furthermore, ESP-NB build on independence assumption between
the attributes which does not hold in many survival applications. Thus, the intro-
duced ESP-TAN relaxed the independence assumption which leads to improved
AUC and F-measure values in almost all of the results.

The results clearly show that our models can obtain practically useful results
using the data collected at an early stage of the study. This is due to the fact that
classification methods do not have the ability to predict the event occurrence
for a time beyond the observation time. Also, in the Cox regression model,
the baseline hazard is undefined after the observation time tc. Thus, from our
experiments, we can conclude that the proposed framework is able to obtain
practically useful results at the initial phases of a longitudinal study and can
provide good insights about the event occurrence by the end of the study.

In Fig. 3, we present the prediction performance of different methods by vary-
ing the percentage of event occurrence information that is available to train the
model for the PBC dataset. For example, 20 % on the x-axis corresponds to the
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Table 4. Comparison of F-measure values for Cox, NB and TAN with proposed ESP-
NB and ESP-TAN methods using Weibull (W) and Lognormal (L) extrapolation meth-
ods (with standard deviation values).

Data F-measure

Cox NB TAN ESP-NB(W) ESP-NB(L) ESP-TAN(W) ESP-TAN(L)

Syn1 0.632 0.753 0.762 0.775 0.771 0.785 0.785

(0.023) (0.021) (0.026) (0.021) (0.022) (0.019) (0.023)

Syn2 0.629 0.638 0.647 0.764 0.763 0.777 0.769

(0.025) (0.034) (0.023) (0.025) (0.029) (0.02) (0.021)

Breast 0.628 0.543 0.555 0.712 0.653 0.723 0.679

(0.031) (0.053) (0.034) (0.039) (0.042) (0.039) (0.039)

Colon 0.496 0.523 0.529 0.619 0.606 0.626 0.623

(0.163) (0.169) (0.184) (0.145) (0.151) (0.148) (0.15)

PBC 0.603 0.529 0.535 0.709 0.664 0.715 0.698

(0.141) (0.121) (0.11) (0.11) (0.109) (0.098) (0.114)

Framingham 0.755 0.787 0.798 0.865 0.873 0.894 0.905

(0.079) (0.085) (0.073) (0.073) (0.093) (0.069) (0.056)

EHR 0.672 0.616 0.623 0.781 0.750 0.798 0.781

(0.125) (0.156) (0.198) (0.126) (0.206) (0.16) (0.12)

Kickstarter 0.672 0.713 0.719 0.747 0.742 0.762 0.775

(0.084) (0.058) (0.067) (0.034) (0.054) (0.048) (0.032)

training data obtained when only 20 % of the events have occurred and predic-
tion of the event occurrences was made for the end of the study period. From this
plot we can see that the AUC values improve when there is more information on
the event occurrence in the training data. For all the cases, our proposed ESP
framework gives better prediction performance compared to other techniques.
Furthermore, it should be noted that the improvements of the proposed meth-
ods are more significant over the baseline methods when there is only a limited
amount (20 % or 40 %) of training data. Also, when 100 % of the training data is
available, the performance of the proposed methods will converge to that of the
standard Naive Bayes and TAN methods since the prior probabilities in both
scenarios will be the same and fitting a distribution will not have any impact
when evaluated at the end of the study. The proposed prediction framework is an
extremely useful tool for domains where one has to wait for a significant period
of time to collect sufficient amount of training data. The practical implication
of this result is the fact that using the proposed models, one can obtain an
approximate result and gain insights about the problem within the early stage
of the study. Thus, it is not needed to wait until the end of the study to obtain
the model performance. Also, we can observe that, in many real-world datasets,
50 % of the events typically occur within 25 % of the total study time. Such an
early stage model building is an extremely useful tool for domains where one has
to wait for longer time periods to collect the required training data.
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Fig. 3. AUC values of different methods obtained by varying the percentage of event
occurrence information for the PBC and Kickstarter dataset (Color figure online).

6 Conclusion

In many real-world application domains, it is important to be able to forecast
the occurrence of future events by only using the data collected at early stages in
longitudinal studies. In this paper, we developed event prediction algorithms by
extending Bayesian methods through fitting a statistical distribution to time-
to-event data with fewer available events at the early stages. This enables us
to have a reliable prediction of event occurrence for future time points. Our
extensive experiments using both synthetic and real datasets demonstrate that
the proposed ESP-based algorithms are more effective than Cox model and
other classification methods in forecasting events at future time points. Also,
we investigated different kinds of extrapolation approaches by fitting various
distributions such as Weibull and log-normal. Though motivated by biomedical
and healthcare application scenarios (primarily for estimating survival), the pro-
posed algorithms are also applicable to various other domains where one needs
to predict event occurrences at early stage of analysis when there are only a
relatively fewer set of events that have occurred until a certain time point.
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Abstract. Treatments of cancer cause severe side effects called toxici-
ties. Reduction of such effects is crucial in cancer care. To impact care,
we need to predict toxicities at fortnightly intervals. This toxicity data
differs from traditional time series data as toxicities can be caused by
one treatment on a given day alone, and thus it is necessary to consider
the effect of the singular data vector causing toxicity. We model the data
before prediction points using the multiple instance learning, where each
bag is composed of multiple instances associated with daily treatments
and patient-specific attributes, such as chemotherapy, radiotherapy, age
and cancer types. We then formulate a Bayesian multi-task framework to
enhance toxicity prediction at each prediction point. The use of the prior
allows factors to be shared across task predictors. Our proposed method
simultaneously captures the heterogeneity of daily treatments and per-
forms toxicity prediction at different prediction points. Our method was
evaluated on a real-word dataset of more than 2000 cancer patients and
had achieved a better prediction accuracy in terms of AUC than the
state-of-art baselines.

1 Introduction

Cancer kills. It is one of leading causes of morbidity and mortality worldwide. In
2012 alone there were 14 million new cases and 8.2 million cancer-related deaths
[1]. Effective treatment and care remains a dominant health concern.

One expects to get better when treated. A crucial problem is that can-
cer treatments themselves make you sick. They cause severe adverse events,
called toxicities, such as anemia and neutropenia. These toxicities greatly impair
patient care and must be reduced in clinical. But oncologists are unable to pre-
dict which patient will suffer toxicities. This is because the causes that underlie
patient reactions to treatments is still poorly understood. Any predictive system
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Fig. 1. Treatment timeline, wherein different treatments may be given in one day.
A brace denotes a fortnight. Prediction points are placed fortnightly.

would be invaluable because it will provide objective data to oncologists to adjust
treatments, thus improving patient care.

We address this important problem and find solutions to provide objective
decision support to oncologists. The data is particularly interesting. A patient
identified with cancer undergoes several bouts of treatments that can include
both radiotherapy and chemotherapy (see Fig. 1). The problem is to predict
toxicities continually - fortnightly, after the first treatment. The data before
the prediction point can be used to predict future toxicities. This data differs
from traditional time series data in the two ways: toxicity can be caused by one
treatment on a given day, but treatments on other days may not cause adverse
effects. Thus the toxicity outcome is not correlated with all the inputs. Further,
if we aggregate all data in between prediction points, the effect of the singular
data vector causing toxicity will be diminished. Thus a new approach is required
for this data to solve this important problem.

We cast the problem as a multiple-instance problem. We deliver a solution
through a novel approach integrating the multi-instance learning into a multi-
task learning framework. In the multi-instance learning, each data point is a bag
of feature vectors, or instances. In our case, an instance consists of daily treat-
ments and patient-related variables (see Table 1). A bag has several instances,
but only one label - it is positive if any instance in the bag is positive and
negative, otherwise. The multi-instance formulation models the impact of daily
treatments on toxicity. The multi-task part of our framework induces a sharing
of model parameters across different prediction points, exploiting their statisti-
cal similarities. This is realized by modeling these multiple model parameters
through a common subspace, which can be obtained by combining the Indian
Buffet Process (IBP) prior and factor analysis. The proposed model is called
the factorial multi-task learning with multiple instance learning (FMT-MIL).
We derive an efficient Gibbs sampling for this model. We evaluate our model
on a synthetic and a real-world cancer dataset of more than 2000 patients. The
experimental results show that our FMT-MIL outperforms the baselines - the
individual multi-instance algorithm [2] and the simple multi-task use of multi-
instance learning [3]. Our contributions are:
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– The first formulation of toxicity prediction in cancer through a multi-instance
framework. The method captures the heterogeneity of daily treatments to
model the data uniqueness.

– The proposal of a multi-task framework for toxicity prediction across pre-
diction points. Our model can automatically learn the number of factors
and transfer knowledge across prediction points through a common subspace
shared by predictors;

– The validation on a real-world dataset. Our model improves the prediction
accuracy as much as 10 %, which validates the use of our approach for toxicity
prediction.

2 Related Work and Background Knowledge

2.1 Toxicity Prediction

Toxicity prediction provides treatment-decision support for oncologists. How-
ever, toxicity prediction is a difficult task since toxicities are determined by
complex interactions between treatment and patient-related variables. For exam-
ple, older adults more likely suffer from toxicity from cytotoxic treatments than
younger patients due to the reduction of organ functionality [4]. In addition,
oncologists may consider a patient’s ability to tolerate particular treatments or
the effect of previous treatments to adjust treatment schemes, which lead to
increasing difficulties in toxicity prediction.

Research has performed toxicity prediction using statistical methods [5,6].
For example, Hurria et al. [5] identified risk factors of chemotherapy toxicity
based on p-value and then applied a multivariate logistic regression model that
incorporates identified factors to compute the probability of toxicity occurring.
Kim et al. [6] studied factors in a logistic regression which cause radiation pneu-
monitis in lung cancer. However, these methods are not able to capture the
interactions between factors and hence they perform limited predictive power in
clinical practice [7].

Some studies [7–9] use machine learning and data mining approaches for tox-
icity prediction. Gulliford et al. [8] applied the artificial neural network (ANN)
to predict biological outcomes by learning the relationship between treatments
and effects. EI Naqa et al. [7] proposed a modified SVM kernel method to model
the nonlinear relationship between factors, which can be generalized to unseen
data. Pella et al. [9] implemented large scale optimization methods and tradi-
tional classification techniques to predict acute toxicity. All these studies do not
consider the impact of daily treatments on toxicity. Our proposed approach not
only captures the heterogeneity of daily treatments but also performs toxicity
prediction at different prediction points.

2.2 The Multi-instance Learning

In a standard logistic regression classifier, each data point is represented by a
feature vector and has a label. The posterior probability of the label is modeled



Toxicity Prediction in Cancer Using Multiple Instance Learning 155

using a sigmoid function, that is, p(y = 1 | x) = σ(ωT x) and p(y = 0 | x) =
1 − p(y = 0 | x) = 1 − σ(ωT x), where σ(z) = 1/(1 + e−z) is a sigmoid function
and ω is a classifier weight vector. Multiple instance learning (MIL) assumes that
each data point can be represented by a bag of feature vectors (or instances).
A bag has only one label which means that the instances in a bag share a label.
Note that instances often do not have explicit labels [10].

Let D = {xi, yi}N
i=1 denote N training data points, where xi = {xij ∈

R
d}Mi

j=1 is a bag of instances and yi is the shared label. For a binary classification
problem yi ∈ {0, 1}, if all instances in a bag are negative, the bag is negative
and hence the posterior probability of a negative bag is defined as p(yi = 0 |
xi) =

∏Mi

j=1[1 − σ(ωT xij)]. Similarly, the posterior probability of a positive bag
is p(yi = 1 | xi) = 1 − p(yi = 0 | xi) = 1 − ∏Mi

j=1[1 − σ(ωT xij)].
The goal of MIL is to learn a classifier ω to predict labels of unseen bags. If

every bag consists of only one instance, the MIL will be reduced to a standard
logistic classifier. ω can be estimated by maximizing the likelihood using the
AnyBoost framework [11] or the MAP framework [3].

MIL has received increasing attentions in many real applications. It was first
used in drug activity detection [2]. Later MIL has been widely used in computer
vision, such as scene classification [12] and object detection [11]. The Bayesian
version of the MIL has been proposed in [3]. We employ MIL to model the
generation of toxicity with the assumption that a treatment interval is a bag,
wherein each instance is a feature vector constructed from daily treatments and
patient-specific attributes.

2.3 Multi-task Learning Using Nonparametric Factor Analysis

Multi-task learning jointly models multiple tasks to improve the performance of
some tasks using the knowledge from other tasks. A lot of experimental work
have shown the advantages of the multi-task learning compared to the single
task learning [13,14].

Gupta et al. [15] developed a flexible factorial multi-task learning framework,
where task predictors are assumed to lie in a subspace and can be decomposed as

ωN×D = F N×KφK×D + EN×D (1)

where ωN×D is a matrix consisting of N data points lying in D-dimensional
Euclidean space; φK×D is a subspace consisting of the basis factors in the trans-
formed subspace; F N×K is the representation matrix of ωN×D in the subspace
φ and EN×D is the offset error. We further decompose F N×K = zN×K �hN×K

so that hN×K is the actual subspace representation of ω in φ and zN×K is a
binary matrix indicating the presence or absence of the factors. The number of
factors K may vary from applications to applications. In this model, the K can
be inferred automatically due to the introduction of the Indian buffet process
(IBP) [17] as a nonparametric prior.

The Indian buffet process (IBP) [17] is a Bayesian nonparametric prior
over a binary matrix zN×K . The binary matrix consists of a finite row and
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Fig. 2. A directed graphical representation for the FMT-MIL

an unbounded number of columns. Each row can be interpreted as an object
and each column can be taken as a feature. For each feature k (k = 1, · · · ,K),
let μk be a prior probability over the presence of the feature k in an object i
(which we denote as zik). A prior Beta( α

K , 1) is further placed on μk, where α is
the strength parameter of the IBP. The generative model of z is described as:
μk ∼ Beta( α

K , 1), zik | μk ∼ Bernoulli(μk).
The stick-breaking IBP construction has been proposed in [17]. Specifi-

cally, let μ = {μ(1), μ(2), · · · , μ(K)} be a decreasing order of {μ1, μ2, · · · , μK}.

Teh et al. [17] shows the following construction when K → ∞, i.e., ν(k)
i.i.d∼

Beta(α, 1), μ(k) = ν(k)μ(k−1) =
∏K

l=1 ν(k). We denote the construction as
μ ∼ stickIBP(α). The densities of the subsequent μ(k)’s have been derived as

p(μ(k+1) | μ(k)) = αμ−α
(k)μ

α−1
(k+1)I(0 ≤ μ(k+1) ≤ μ(k)) (2)

where I(Q) equals to 1 if Q is true and 0, otherwise. Note that μ(k)’s have a
Markov structure, with μ(k+1) only conditionally dependent on its previous one
μ(k). The conditional probability of zik is presented

p(zik = 1 | z−ik, α,x) ∝ p(zik = 1 | z−ik, α)p(xi | z−ik, zik = 1,x−i)

∝ μ(k)

μ∗ p(xi | z−ik, zik = 1,x−i) (3)

where z−ik = z\zik denotes others excluding zik; the μ∗ is chosen to be the
length of the stick for the last active feature [17]. We have proposed a similar
factorial multi-task learning framework that has incorporated the MIL paradigm.
Our model differs from the one in [3], which simply assumes that all weight
vectors share the same Gaussian prior and thus cannot capture the dynamic
process between tasks.

3 The Proposed Framework

3.1 Model Description

In this section, we propose a model incorporating the multi-instance learning
into a multi-task framework. Our goal is to improve the prediction performance
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of different tasks. In our model, the multi-instance learning is utilized to model
the classification problem in which each data point consists of a bag of feature
vectors. We then perform the multi-task learning with the assumption that all
task predictors lie in a subspace. The subspace can be modeled by combining
the IBP prior and factor analysis. We refer our model as the factorial multi-task
learning with the multi-instance learning (FMT-MIL).

Suppose that we have T tasks. In each task t (t ∈ 1, · · · , T ), the training
data consist of Nt bags Dt = {(xti, yti)}Nt

i=1, where xti is a bag of instances
and yti is the label of the bag xti. The task predictor of the task t is denoted
as ωt. As discussed in Sect. 2.3, we handle ω by defining ωT×D = (zT×K �
hT×K)φK×D, where φ = {φk}K

k=1 is the subspace; z = {zt}T
t=1 is a binary

matrix indicating the presence or absence of the factors; h = {ht}T
t=1 is the actual

subspace representation of ω in φ; and K is number of factors. We introduce the
sticking IBP [17] as the prior of z. Based on the prior of z and the likelihood of ω,
we can infer the Kt of each task and the final K. The graphical representation of
the FMT-MIL model is shown in Fig. 2 and its generative process is described as

μ ∼ stickIBP(α) ht ∼ N (0, σ2
hI), t = 1 · · · T (4)

z ∼ Bernoulli(μ) ωt ∼ N (φ(zt � ht), σ2
t I), t = 1 · · · T (5)

φ ∼ N (0, σ2
φI) yti ∼ MIL(xti, ωti), t = 1 · · · T (6)

where α is the strength parameter of the IBP; N is a Gaussian distribution; and
σh, σφ, σt are hyperparameters. yti ∼ MIL(xti, ωt) is the multi-instance learning
and can be specified by

pti = p(yti = 1 | xti, ωti) = 1 −
Mti∏
j=1

(1 − σ(ωT
t xj

ti)) (7)

p(yti = 0 | xt, ωt) =
Mti∏
j=1

(1 − σ(ωT
t xj

ti)) (8)

where σ is the sigmoid function and Mti is the number of instances in bag i of
task t.

In our toxicity prediction application, each fortnightly prediction point
is a task. Each instance is a feature vector constructed from daily treatments
and patient-specific attributes. The label is positive if the toxicities have been
searched in 28 days after the prediction point and negative, otherwise. We aim
to obtain the classifier weight vector ω to predict toxicity for unseen patients.

3.2 Model Inference

The closed form of the proposed model is intractable. We use the Gibbs sampling
for the model inference. In our model, we need to update the main latent variables
{ω,z,h,φ}.
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Sampling ω. The ω can be sampled independently for each task. We sample
ωt from the following conditional distribution

p(ωt | ht,φ,yt) ∝ p(ωt | ht,φ)p(yt | ωt,xt) ∝ e−Rt/2σ2
t

[
Nt∏
i=1

syti

ti (1 − sti)1−yyi

]

where Rt = ||ωt − (zt � ht)φ||22 and sti = pti = p(yti = 1). The expression above
is intractable as it cannot be reduced to a standard distribution. We employ
the Laplace approximation to estimate the posterior of ωt. The Laplace approx-
imation aims to find the mode of the posterior distribution and fits a Gaussian
whose mean lies at the mode. The mode of the posterior can be computed by
maximizing the posterior distribution p(ωt | · · · ), i.e.,∇ωt

ln p(ωt | · · · ) = 0. We
use the Newton-Raphson update in our implementation to obtain the optimiza-
tion solution (denoted as ωLaplace

t ). The co-variance matrix of the approximate
Gaussian is obtained by computing the negative of the inverse of the Hessian
of the log posterior, i.e., ΣLaplace

ωt
= −inv(∇2

ωt
ln p(ωt | · · · ) | ωt = ωLaplace

t ).
Therefore, the new ωt could be sampled from N (ωLaplace

t ,ΣLaplace
ωt

). The first
and the second derivatives of log posterior is computed as following

∇ωt ln p(ωt | · · · ) =

Nt∑

i=1

[ytiβti − (1 − yti)]

Mti∑

j=1

xj
tiσ(ωT

t xj
ti) − 1

σ2
t

(ωt − (zt � ht)φ)) (9)

∇2
ωt

ln p(ωt | · · · ) =

Nt∑

i=1

[ytiβti − (1 − yti)]

Mti∑

j=1

xj
ti(x

j
ti)

T σ(ωT
t xj

ti)σ(−ωT
t xj

ti) − I

σ2
t

−
Nt∑

i=1

ytiβti(βti + 1)

[
Mti∑

j=1

xj
tiσ(ωT

t xj
ti)

][
Mti∑

j=1

xj
tiσ(ωT

t xj
ti)

]T

(10)

where βti = (1 − pti)/pti and Nt is the number of data points in the task t.

Sampling z. The z is a T × K binary matrix indicating which subspace bases
are used to generate the task predictors. ztk can be sampled from

p(ztk = 1 | z−tk, α, ωt) ∝ p(ztk = 1 | z−tk, α)p(ωt | φ, ztk = 1,z−tk, ht) (11)

The first term in the right hand is the prior of the stick-breaking IBP, which could
be obtained from the part of Eq. (3). The second term in the right hand is the
likelihood of ωt given all factors and other variables. Finally, p(ztk | z−tk, α, ωt)
is a Bernoulli distribution.

Sampling φ. The variable φ is sampled from the following conditional distrib-
ution

p(φ | σφ, ω1:T , z1:T , h1:T ) ∝ p(φ | σ2
φ)p(ω1:T | φ, z1:T , h1:T ) (12)
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Fig. 3. (a) Convergence (loglikelihood) of the FMT-MIL; (b) Posterior over number of
factors for the FMT-MIL; (c) AUC comparison of different algorithms;

From the Eq. (5) and Eq. (6), we know that the above conditional distribution
is a normal distribution. We further expand it and derive it as p(φ | · · · ) ∼
N (μφ, Sφ), where μφ � Sφ(

∑
t
(zt�ht)

T ωt

σ2
t

) and S−1
φ =

∑
t
(zt�ht)

T (zt�ht)
σ2

t
+ IK

σ2
φ
.

The detailed derivation is provided in Appendix.

Sampling h. The posterior of h can be sampled using the conditional distrib-
ution below

p(ht | ωt,φ) ∝ p(ht | σ2
t )p(ωt | φ, ht) (13)

Similar to the sampling of φ, we derive the posterior as a normal distribution
p(ht | · · · ) ∼ N (μht

, Sht
), where μht

� Sht

DztφωT
t

σ2
t

and S−1
ht

=
∑

t
DztφφT Dzt

σ2
t

+
IK

σ2
h

and Dzt = diag(zt).

Sampling Hyperparamters. We can assume that σh is sampled from a
Gamma distribution. Due to the conjugate property of the Gamma distribution
and the Gaussian distribution, the conditional probability of σh is an inverse-
gamma distribution, which is tractable. The updates of other hyperparameters
σt and σφ are similar to σh.

4 Experiments

4.1 Synthetic Data

We construct a synthetic data consisting of 20 tasks. The number of factors (i.e.,
K) is 5. The hyperparameters {α, σh, σt, σφ} are 1 and each task predictor (i.e.,
ωt) is generated following Eq. (5). We also generate 100 data points in each task
and each data point consists of 1∼4 instances, which are randomly sampled from
a standard Gaussian distribution with the dimensionality of 10. The labels of
data points then could be generated by using Eqs. (7) and (8). We perform our
experiment comparison for the following algorithms:
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Table 1. Left: Number of cancer patients for different cancer types. Right: Features
and labels used in learning toxicity predictors

cancer patients
breast 447
digestive organs 390
respiratory and
intrathoracic organs

341

male genital organs 185
lip, oral cavity and
pharynx

142

lymphoid,
haematopoietic and
related tissue

113

others 383

basic age, gender, marital_statues, cancer
types, tumor size, cancer stage,
treatment_intent_type, metastasis_flag

treatment treatment duration, chemo duration,
chemo intervals (mean and std.),
radiation duration, the number of used
drugs, the number of toxicities in history

toxicity
(ICD10 code)

blood diseases: D60~D64,D70~D77
nervous system: G50~G59,G90~G99
digestive disorders: K00~K14
disorders of the skin and subcutaneous
tissue: L55~L59

– FMT-MIL. The proposed factorial multi-task learning with multi-instance
learning.

– MT-MIL. The multi-task learning joint with the Bayesian multiple instance
learning without feature selection [3]. All predictors share a single prior.

– MIL. The Bayesian multiple instance learning without feature selection [3].
Tasks are independent.

In our algorithm running, we initialized all the hyperparameters {α, σh, σt, σφ}
to 1. We randomly split the data into training and test sets such that each of
them contains roughly half of the entire data set. We run 1000 Gibbs iteration
and show the convergence in Fig. 3(a, b). Our algorithm can converge during 200
iterations and return the true number of factors K during 1000 iterations. The
AUC from the test data (seen in Fig. 3(c)) shows that our algorithm outperforms
the baselines.

4.2 Real Data Description

There is no public cancer toxicity dataset available. Our dataset is from a regional
hospital. The data are in form of EMRs (electronic medical records), which
include diagnosis codes, demographic information and treatment procedures. We
use all patients who have been given both chemotherapy and radiotherapy since
their toxicity information is comparatively rich (seen in Fig. 5). Table 1 shows
groupings of cancer patients in the dataset and the variables and labels for learn-
ing toxicity predictors. We combine the patient-specific diagnosis, demographic
and treatment properties as the feature sources. We only focus on the toxicities
specified by ICD-10 codes [18]. The blood diseases, nervous system and digestive
disorders are usually caused by chemotherapy and the disorders of the skin and
subcutaneous tissue are often caused by radiotherapy.

We further illustrate how to construct features in Fig. 4. The prediction points
are placed in every fortnight after the first treatment. We use the data before
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Fig. 4. Feature construction: the prediction points are set every fortnight. Feature
vectors {f1, f2, · · · , f14} form a bag. The toxicity horizon is 28-days.
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Fig. 5. (a) The number of patients vs. prediction point; (b) The ratio of patients with
toxicity vs. prediction point.

the prediction point, including basic and treatment data, to construct a bag of
instances. An instance is a feature vector which is extracted in between cancer
diagnosis to daily treatments (e.g. f1, f2, · · · , f14). If the treatments have not
been given in the day, we skip this day. Thus, for a patient, there are a max-
imum of 14 instances in a bag. The bag is labeled positively if toxicities have
been searched in toxicity horizon (28 days in our experiments) and is labeled
negatively otherwise. We also extract a feature vector at each prediction point
used for a standard logistic regression (LR) classifier. The LR algorithm does
not consider the influence of daily treatments on toxicity.

We show the patients for 15 prediction points in Fig. 5. The number of
patients is decreasing along the prediction points as patients discharge after
weeks of treatments. In the first 5 prediction points (i.e. 10 weeks), the toxicity
ratios are relatively high since oncologists may adopt intensive treatments at
the initial stage. From the sixth to the tenth prediction point, the toxicity ratios
decrease obviously. Possible reasons are that oncologists adjust treatments to
patient care or patients have adapted the treatments. The ratios remains stable
after the tenth prediction point. We perform our experiments on the first 10
prediction points.
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4.3 Experiment Setting and Results

The goal of our experiments is to predict toxicities for unseen patients using the
proposed model. We split the dataset into the training and test data based on
patient IDs. About 1300 patients who are included in all prediction points are
used for the training data. Other patients in prediction points are used for the
test data. We initialized the hyperparameters {α, σh, σt, σφ} to 1 and run 1000
Gibbs iterations to report the results.

We use different proportions of patients in the training data to evaluate our
FMT-MIL and the baselines. The average AUC of the test data are shown in
Fig. 6. As the number of the training patients increases, the performance of all
models rises. Moreover, our model performs much better than the baselines when
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Fig. 7. (a) Convergence (loglikelihood) of the FMT-MIL; (b) Posterior over number
of factors for the FMT-MIL; (c) AUC comparison of different algorithms (FMT-MIL,
MT-MIL and MIL) at different prediction points;
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a small number of training data is given. For example, when 30 % patients of
the training data are used for training the algorithms, the AUC of our model
increases by as much as 10 % compared to the MT-MIL, 15 % compared to
the MIL and 30 % compared to the LR. This is because our model joints the
multi-instance learning and the muli-task learning, enhancing the generalized
performance of individual tasks. It is noted that the LR performs worse than
the MIL, which validates our use of the MIL for toxicity prediction.

We further give insights into each task. We perform the experiment using
70 % of the training data. Our model can converge at about 200 iterations (seen
in Fig. 7(a)). The number of factors computed from our model centers at 2 (seen
in Fig. 7(b)). The AUC results are presented in Fig. 7(c). Our algorithm performs
best in all cases. The AUC gradually increases between the 1∼8 prediction points
and then begins to decrease thereafter. The trend is significant in the MIL algo-
rithm since the positive samples reduce dramatically around the 9∼10 prediction
points (seen in Fig. 5(b)). Individual tasks in the MIL algorithm cannot share
knowledge while tasks in the FMT-MIL and the MT-MIL algorithms share the
common subspace. This has validated our use of the multi-task learning for the
multi-point prediction.

5 Conclusion

We have proposed a multi-task framework incorporating the multiple instance
learning for toxicity prediction. The prediction points occur fortnightly after
the first treatment. We treat daily treatments before the prediction points and
patient-specific attributes to be multi-instance data. We further combine all
prediction points to perform a multi-task framework. The factors in a shared
subspace can be inferred automatically. We derive an efficient Gibbs sampling
for our model. We evaluate our model on a synthetic dataset and a real-world
dataset. The experiment results show that our model outperforms the state of
the art, with the prediction accuracy increased by as much as 10 %.

Toxicities can be caused by many factors in clinical treatment. No single
approach can handle toxicity prediction perfectly. This paper has explored the
problem using a machine learning approach. Our approach not only captures the
influence of daily treatments but also performs the multi-point prediction simul-
taneously. Our current data do not include the pathology test and physician’s
assessments, which may possibly improve the prediction accuracy if available.
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Abstract. This paper presents a novel framework to detect shot bound-
aries based on the One-Class Support Vector Machine (OCSVM). Instead
of comparing the difference between pair-wise consecutive frames at a
specific time, we measure the divergence between two OCSVM classi-
fiers, which are learnt from two contextual sets, i.e., immediate past
set and immediate future set. To speed up the processing procedure,
the two OCSVM classifiers are updated in an online fashion by our pro-
posed multi-instance incremental and decremental one-class support vec-
tor machine algorithm. Our approach, which inherits the advantages of
OCSVM, is robust to noises such as abrupt illumination changes and
large object or camera movements, and capable of detecting gradual
transitions as well. Experimental results on some benchmark datasets
compare favorably with the state-of-the-art methods.

Keywords: Support vector machine · One-class · Kernel method ·
Online learning · Shot boundary detection

1 Introduction

A video shot, which represents a continuous action in time and space, is com-
posed of a series of related, consecutive frames taken contiguously by a single
camera [1]. Both pre-edited and unedited video footages may contain shots, and
partitioning a video into shots is the fundamental prerequisite for further video
content analysis, editing, browsing and retrieval applications. During the last
decade, various approaches [2–4] for shot boundary detection (SBD), have been
proposed. The easiest approach is to analyze the difference between two succes-
sive frames [2]. This is straightforward to implement and is effective to detect
abrupt changes. However, it is sensitive to noises, e.g. flashlight frames, and
it cannot detect gradual transitions because the pair-wise difference is rather
small. Automatic thresholding is employed in [5], where changes on optical flows
of frames within a sliding window are thresholded by a value that is equal to
the median plus two times of the standard deviation. In [3], the strength of
using graph partition for SBD is discussed. To deal with varying characteristics
c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part I, LNAI 9651, pp. 165–176, 2016.
DOI: 10.1007/978-3-319-31753-3 14
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of videos which challenge threshold setting, a support vector machine (SVM)
based approach is adopted to treat the SBD as a classification problem. This
approach however has two deficiencies: firstly the availability of ground-truth
data frame-by-frame for training, and secondly, the costly training time because
of the use of SVMs. Recently, [4] adopts a candidate segment and singular value
decomposition to cut down the processing time.

In this paper, inspired by previous work [6], we propose a novel framework
to detect shot boundaries on the basis of One-Class Support Vector Machine
(OCSVM) [7]. Our approach hence differs from [3], as it uses an online learning
OCSVM that operates in an unsupervised manner. Since OCSVMs work to
incorporate as many data points inside as possible but leave out outliers, the
basic idea of our approach is to use two frame sets, an Immediate Past Set (IPS)
and an Immediate Future Set (IFS), to train two OCSVMs as the summary of
the two frame sets. We then examine the divergence between the two OCSVMs,
and significant divergence will indicate the shot boundary.

The main contributions of our paper are as follows:

– We propose a novel learning method, referred to as Multi-instance Incremen-
tal and Decremental One-Class Support Vector Machine (MID-OCSVM), to
update OCSVM classifier in an online fashion, requiring very low computa-
tional cost.

– We present a unified framework to detect different types of shot boundary
rather than adopting a set of classifiers for each specific shot boundary type.
This simplifies the computational complexity of the approach while maintain-
ing a high accuracy.

– Instead of comparing the difference between successive frames, we define a
function to measure the divergence between IPS and IFS. This approach con-
tributes to robustness to noises such as abrupt illumination changes and large
movements.

The rest of the paper is organized as follows. Details of the proposed compu-
tational framework are presented in Sect. 2. Section 3 reports the experimental
settings and the results obtained on the TRECVID 2007 SBD datasets. We
conclude the paper in Sect. 4, also discussing some possible future work.

2 Computational Framework

2.1 Overview

The flowchart of our approach is illustrated in Fig. 1. Given the IPS and IFS
with fixed length m at time t, we first extract corresponding feature descriptor
for each frame in each set, where an OCSVM classifier is trained respectively. We
measure the divergence between the two sets based on the concept of OCSVM.
From t to t + 1, we add a new frame and remove the oldest one in each set
while updating the classifier using the proposed MID-OCSVM algorithm. Shot
boundaries are detected based on the divergence output.
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t t+1

Time

Decremental Incremental

MID-OCSVM

Feature extraction

Divergence measure

SBD

Feature extraction

MID-OCSVM

Immediate Future SetImmediate Past Set

Fig. 1. The flowchart of our approach (Color figure online).

2.2 Feature Extraction

Following [3], we adopt a blocked-based histogram as our feature representation.
Specifically, a frame is divided into 2l × 2l blocks, where l is the pyramid level,
l = 0, 1, . . . , n. In each block a 48-bin (16 bins for each channel in the RGB space)
colour histogram is calculated, and the frame is represented by concatenating
colour histograms from all blocks. We chose this feature for several reasons.
First, it is simple to implement and has little computational cost. Secondly, it
provides a trade-off between sensitivity and invariance. Note that we have also
investigated other features, e.g., pixel-based [2], but the performance is worse
than that of the blocked-based histogram, so we will not report the results due
to the space limit.

2.3 OCSVM

Given a set of training data X = {x1, . . . ,xn}, OCSVM aims to find an optimal
separating function f(x) = w · Φ(x) − ρ, which contains most of the training
data in a compact region. Here Φ is a feature map that transforms x from the
input space X to the feature space F .

To acquire the parameters w and ρ, one can solve the following quadratic
programming problem:

min
w,ξ,ρ

:
1
2
‖w‖2 + C

∑
i

ξi − ρ

s.t. : w · Φ(xi) ≥ ρ − ξi, ξi ≥ 0,
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where ξi are slack variables, and C is a regularization parameter, controlling the
trade-off between structure and empirical risks.

By introducing Lagrange multipliers αi, βi ≥ 0, the corresponding
Lagrangian is formulated as:

L =
1
2
‖w‖2 + C

∑
i

ξi − ρ −
∑

i

αi(w · Φ(xi) − ρ + ξi) −
∑

i

βiξi. (1)

The derivatives of Eq. (1) with respect to the variables w, ξ, and ρ are set to
zero, giving:

∂L

∂w
= 0 ⇒ w =

∑
i

αiΦ(xi), (2)

∂L

∂ξ
= 0 ⇒ αi = C − βi,

∂L

∂ρ
= 0 ⇒

∑
i

αi = 1.

Substituting the above three equations into Eq. (1), we solve the dual problem
instead:

min
α

:
1
2

∑
ij

αiαjk(xi,xj)

s.t. : 0 ≤ αi ≤ C,
∑

i

αi = 1,
(3)

where k(xi,xj) = Φ(xi) · Φ(xj) is a kernel function that measures the similar-
ity between the two examples xi and xj , with maximum similarity 1 and no
similarity 0. Correspondingly, the separating function is rewritten as:

f(x) =
∑

i

αik(xi,x) − ρ.

Considering the histogram-based representation of our feature descriptor, we
adopt the Histogram Intersection kernel [8] as the similarity measure between
two inputs:

k(xi,xj) =
∑

b

min(xb
i ,x

b
j), (4)

where b indicates the corresponding bin in xi and xj .

2.4 MID-OCSVM

From time t to t+1, each set has to add a new frame feature data and discard the
oldest one to learn a new OCSVM classifier for divergence measure. It is very
time-consuming to train a classifier in the batch mode whenever a new input
comes. Therefore, we propose MID-OCSVM by extending previous work [9–11].
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Karush-Kuhn-Tucker Conditions. To elaborate our approach, we rewrite
the dual problem Eq. (3) as a saddle-point formulation:

max
ρ

min
0≤αi≤C

: W =
1
2

∑
ij

αiαjk(xi,xj) − ρ(
∑

i

αi − 1).

The first-order conditions on W reduce to the Karush-Kuhn-Tucker (KKT)
conditions:

gi =
∂W

∂αi
=

∑
j

αjk(xi,xj) − ρ

=⇒ f(xi)

⎧⎨
⎩

≥ 0, if αi = 0;
= 0, if 0 < αi < C;
≤ 0, if αi = C;

(5)

∂W

∂ρ
=

∑
j

αj − 1 = 0. (6)

On the basis of Eq. (5), the training data X is divided into three subsets:
margin support vectors S, error support vectors E, and the remaining set O. In
parallel, their corresponding indexes set are given as: IS = {i : xi ∈ X, 0 < αi <
C}, IE = {i : xi ∈ X,αi = C}, IO = {i : xi ∈ X,αi = 0}. In the following, we
will abbreviate k(xi,xj) to kij . For two subsets S and O, kSO denotes the kernel
matrix, whose rows are indexed by S, and the columns are indexed by O.

Derivation. As depicted in Fig. 1, suppose we add a new arriving data xa (red
dashed circle) and remove the obsolete data xr (blue dotted circle) simultane-
ously. We first remove xr from X (i.e., X ← X \ xr), and the coefficient of xa

is initialized as 0 (i.e. αa = 0). If ga > 0, we append xa directly to O because
it already satisfies the KKT conditions. Likewise, we discard xr directly if its
corresponding coefficient ar equals to 0. For xa and xr having gi ≤ 0, the KKT
conditions are to be kept:

Δgi = kiaΔαa + kirΔαr +
∑
j∈IS

kijΔαj + Δρ, ∀i ∈ IX ∪ a, (7)

0 = Δαa + Δαr +
∑
j∈IS

Δαj .

For all margin support vectors S, gi ≡ 0,∀i ∈ IS . The above equations can
be re-written in matrix notations:[

0 1
1 kSS

]
︸ ︷︷ ︸

K

[
Δρ

ΔαS

]
= −

[
1 1

kSa kSr

] [
Δαa

Δαr

]
. (8)

The same as in [11], the change directions of ΔαA and ΔαR are given as:

Δαa = η(C1 − αa),
Δαr = −ηαr,

(9)
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where η is a step length. Together with Eq. (8), we can write:[
Δρ

ΔαS

]
= ηΦ, (10)

where

Φ =
[

φρ

φS

]
= −K−1︸︷︷︸

Q

[
1 1

kSa kSr

] [
C − αa

−αr

]
. (11)

Substituting (9) and (11) into (7):

Δgi = ηΨi, (12)

where
Ψi = kia(C − αa) − kirαr +

[
1 kiS

]
Φ, ∀i /∈ IS . (13)

Online Update. The ideal situation is that η equals to 1, so adding data
xa becomes an error support vector and αr becomes zero. However, we cannot
obtain the new OCSVM state directly in most situations since in Eqs. (10) and
(12) the composition of the sets S, E and O changes relative to the change of
ΔαS and Δgi. Therefore, as shown in Fig. 2, we have identified the following
conditions:

1. ga reaches zero, corresponding to xa joining S. The largest step is computed as:

ηa = min
−ga

Ψa
.

2. gi in E becomes zero, equivalent to xi transferring from E to S. The most
likely occurred constrain ηE equals to finding the minimal increment:

ηE = min
−gi

Ψi
, ∀i ∈ IE ∩ Ψi > 0.

3. gi in O becomes zero, equivalent to xi transferring from O to S. The most
likely occurred step is computed as:

ηO = min
−gi

Ψi
, ∀i ∈ IO ∩ Ψi < 0.

4. xi in S reaches a bound, αi with equality 0 is equivalent to transferring xi

from S to O, and equality C from S to E. The most likely increment equals:

ηS = min
ΔαS

i

φi
, ∀i ∈ IS ,

where

ΔαS
i =

{
C − αi, if φi > 0;
−αi, if φi < 0.

The largest possible step length η is determined as:

η = min(ηa, ηE , ηO, ηS , 1).

Once obtaining η, we can update ρ, αi, and gi through Eqs. (9), (10) and
(12). The procedures are repeated until η becomes 1, where all the data, i.e., X
and xa, satisfy KKT conditions and αr reaches 0.
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Fig. 2. The corresponding composition change with the change of ΔαS and Δgi.

Recursive Update of Q. It is time-consuming if we compute the inverse
matrix Q whenever the set S has changed. Fortunately, by applying the Sherman-
Morrison-Woodbury formula [12] for block matrix inversion, we can update the
matrix Q in an efficient way. More specifically, let Q̂ be the enlarged inverse
matrix, when a data xi transfers to S, the inversed kernel matrix expands to:

Q̂ =

⎡
⎣0 1 1

1 kSS kT
iS

1 kiS kii

⎤
⎦

−1

=
[

K V T

V kii

]−1

, (14)

where
V =

[
1 kiS

]
.

Using the Sherman-Morrison-Woodbury formula, the update rule from Q to
Q̂ is computed as:

Q̂ =
[

Q 0
0 0

]
+

1
ζ

[
QV T V Q −QV T

−V Q 1

]
, i /∈ IS ,

where ζ = kii − V QV T .
Similarly, to remove a data xi from the set S, the update rule shrinking the

original inverse matrix Q̂ to the reduced inverse matrix Q is calculated as:

Q = Q̂SS − Q̂−1
ii Q̂T

iSQ̂iS , i /∈ IS .

2.5 OCSVM Divergence

To measure the divergence between two OCSVM classifiers, we first analyse the
representation of OCSVM in the feature space F . Using vi to denote Φ(xi),
for any vi we have ||vi|| = k(xi,xi) = 1. In other words, the training set X
are all mapped on a hypersphere S with radius r = 1. The OCSVM in F
corresponds to find the optimal hyperplane w that most mapped training set vi

have w · vi − ρ > 0. Figure 3(a) illustrates the OCSVM classifiers in F , forming
a segment cut by the hyperplane w on the hypersphere S.



172 H. Lin et al.

Fig. 3. (a) In the feature space F , OCSVM aims to find the smallest segment while
enclosing the mapped training set vi as many as possible, i.e., maximizing the margin
ρ/||w||. (b) Two OCSVM classifiers in F , where wt

1 and wt
2 are the optimal hyper-

planes of the immediate past set Bt
1 and the immediate future set Bt

2. This situation
corresponds to a shot boundary as both segments get separated from each other.

Let Bt
1 = {xt−m,xt−m+1, . . . ,xt} and Bt

2 = {xt+1,xt+2, . . . ,xt+m} be the
IPS and IFS at time t, where the length of both sets are m. If there is a shot
boundary, their segments in F should be different from each other. In other
words, the size as well as the location of the two segments are different from
each other. To this end, we define a divergence function D in the following.

Let ct
1 and ct

2 be centre points of segments learnt from Bt
1 and Bt

2 respec-
tively, and pt

1 and pt
2 be arbitrary points residing on the boundary of their

corresponding segments, as shown in Fig. 3, the divergence function D between
Bt

1 and Bt
2 is given as:

D(Bt
1, B

t
2) =

�

ct
1c

t
2

�

ct
1p

t
1 +

�

ct
2p

t
2

, (15)

where
�

ct
1c

t
2 is the arc distance from ct

1 to ct
2, and

�

ct
1p

t
1 (

�

ct
2p

t
2) is the arc distance

from ct
1 (ct

2) to pt
1 (pt

2). Equation (15) indicates the divergence is large if two
segments are well separated, whereas it is small for strongly overlapped segments.

However, we cannot calculate Eq. (15) directly in feature space because we
do not know the explicitly representation of feature map Φ(x). Therefore, we
have to transform D from F into X. Specifically, for any two points a and b
lying on an arbitrary sphere, the arc distance is given by:

�

ab= rθ, (16)

where r is the radius, and θ is the central angle between a and b.
Meanwhile, the dot product between vector a and vector b is given by:

a · b = ||a||||b|| cos θ, (17)
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where ||a|| = ||b|| = r.
Combining Eqs. (16) and (17) together with r equals to 1, we have:

�

ab= arccos(a · b). (18)

Therefore, computing
�

ab is simplified to find coordinates of a and b that
reside on the sphere.

As seen in Fig. 3(b), based on the concept of OCSVM, we know line oct
1

(oct
2) is perpendicular to wt

1 (wt
2), so we can replace ct

1 (ct
2) with wt

1/||wt
1||

(wt
2/||wt

2||) after some geometric computations. The arc distance
�

ct
1c

t
2 therefore

is calculated as:
�

ct
1c

t
2= arccos

(
wt

1 · wt
2

||wt
1||||wt

2||
)

. (19)

Substitute Eq. (2) into Eq. (19), we have:

�

ct
1c

t
2= arccos

(
(αt

1)
T kt

12α
t
2√

(αt
1)T kt

11α
t
1

√
(αt

2)T kt
22α

t
2

)
, (20)

where αt
1 and αt

2 are the coefficient sets of the OCSVM classifier learnt from Bt
1

and Bt
2 respectively.

Similarly, the arc distance
�

ct
1p

t
1 (

�

ct
2p

t
2) is given as:

�

ct
ip

t
i= arccos

(
ρt

i√
(αt

i)T kt
iiα

t
i

)
, i = 1, 2. (21)

Compared with the traditional approach of comparing features of successive
frames directly, assessing the divergence between two OCSVMs trained on frame
sets have two potential advantages. First of all, it is more robust to noises such as
flashlight frames, as they will be regarded as error support vectors and will not
affect the OCSVM classifiers. Second, it is effective to detect gradual transitions,
e.g., dissolve, and wipe etc. Even though the difference between two consecutive
frames is not significant in these gradual transitions, the divergence between two
sets is supposed to large as the overall distribution will be quite different.

3 Experimental Results

3.1 Setup

We have carried out experiments on TREC Video Retrieval Evaluation
(TRECVID) 2007 SBD dataset1. The TRECVID is an annually worldwide
benchmarking activity, whose goal is to encourage research on content-based
information retrieval in digital video. The TRECVID 2007 SBD dataset con-
tains 17 video sequences of 637, 805 frames, where 2, 320 shots are annotated.
1 http://trecvid.nist.gov/trecvid.data.html.

http://trecvid.nist.gov/trecvid.data.html
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Among them, 90% of the shots are hard cuts, and the rest are gradual tran-
sitions. Contents of the dataset are diverse, covering a wide range from news
reports to archived grayscale videos.

For comparison purposes, three criteria are selected to evaluate the SBD
performance, i.e., recall, precision and F1, given as:

recall =
true positive

true positive + false positive
,

precision =
true positive

true positive + false negative
,

F1 = 2 · recall · precision
recall + precision

,

where “true positive” and “false positive” correspond to numbers of correctly
and falsely detected shot boundaries respectively, and “false negative” is number
of missed shot boundaries. The process of performance evaluation is as follows:
we first compute the divergence output for each video sequence, then we tune the
threshold of divergence to identify shot boundaries. Following the measurement
of TRECVID, a correct shot boundary detection is defined as at least one frame
overlap between the detected transition and the annotated transition.

3.2 Performance Evaluation

To obtain the optimal performance, we first evaluate the impact of parameters on
SBD performance. Three parameters have to be evaluated, namely, parameter C
of OCSVM, set length m, and pyramid level l. The optimal settings are acquired
by fine-tuning one parameter while fixing the rest of them. The impact of C on
performance is displayed in Fig. 4(a), where m and l are set as 20 and 2 randomly.
It shows that the OCSVM classifier with C of 0.2 achieves the best performance.
With C of 0.2 and l of 2, Fig. 4(b) illustrates the impact of m, where 20 attains
the best recall and precision. Figure 4(c) shows the influence of different l, where
C and m are set as 0.2 and 20. It is improved with l increasing from 0 to 3, and
saturates when l enlarges from 3 to 4. Therefore, we report our final results and
compare with the start-of-the-art approaches using the aforementioned optimal
settings, i.e., C = 0.2, m = 20, and l = 3.

Table 1. Performance comparison on TRECVID 2007 SBD dataset.

Method Recall (%) Precision (%) F1(%) Running time (seconds)

Mühling et al. [13] 93.1 90.7 91.9 7000

Zhao et al. [14] 91.3 90.0 90.6 -

Ren et al. [15] 94.1 91.9 93.0 5185

Kawai et al. [16] 90.5 94.4 92.4 1697

MID-OCSVM 90.7 93.4 92.0 5102
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Fig. 4. Parameter tuning on the TRECVID 2007 SBD dataset. (a) Different settings
of C in OCSVM; (b) Different set length m; (c) Different pyramid levels l.

Our final SBD results are reported in Table 1, achieving 92.0% on F1 perfor-
mance. Compared with the published results in TRECVID 20072, it is compara-
ble to [15] (93.0%) and [16] (92.4%), better than [13] (91.9%) and [14] (90.6%).

Using the platform of MATLAB R2014a on a desktop computer with
2.7GHZ Intel Core i5 and 8GB RAM, the overall running time our approach
is 5102 seconds, faster than most of the approaches except [16]. Specifically, the
speed has increased from 92 frames/second using batch mode OCSVM to 125
frames/second using MID-OCSVM, where the processing time for each OCSVM
classifier training has decreased from 5.4 × 10−3 second to 2.5 × 10−3 second.

4 Conclusion and Future Work

In this paper we present a novel approach to address the problem of shot bound-
ary detection. Using online OCSVMs, a unified framework to detect all types of
boundaries is proposed. We reduce the computational cost through a multi-
instance incremental and decremental learning algorithm. By inheriting the
properties of OCSVM, our method is robust to noises while effective to gradual
transitions. Experimental results on a challenging benchmark dataset exhibit the
competitive performance of our approach compared with the state-of-the-art.
2 http://www-nlpir.nist.gov/projects/tvpubs/tv.pubs.7.org.html.

http://www-nlpir.nist.gov/projects/tvpubs/tv.pubs.7.org.html
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We intend to further optimize the incremental and decremental algorithmic
design in our future work. As there are various spatial and temporal information
within video, multiple kernel learning [17] is also considered.
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Abstract. As those in need increasingly ask for favors in online social
services, having a technique to accurately predict whether their requests
will be successful can instantaneously help them better formulating the
requests. This paper aims to boost the accuracy of predicting the success
of altruistic requests, by following the similar setting of the state-of-the-
art work ADJ [1]. While ADJ has an unsatisfying prediction accuracy
and requires a large set of training data, we develop a novel request
success prediction model, termed Graph-based Predictor for Request Suc-
cess (GPRS). Our GPRS model is featured by learning the correla-
tion between success or not and the set of features extracted in the
request, together with a label propagation-based optimization mecha-
nism. Besides, in addition to the textual, social, and temporal features
proposed by ADJ, we further propose three effective features, includ-
ing centrality, role, and topic features, to capture how users interact
in the history and how different topics affect the success of requests.
Experiments conducted on the requests in the “Random Acts of Pizza”
community of Reddit.com show GPRS can lead to around 0.81 and 0.68
AUC scores using sufficient and limited training data respectively, which
significantly outperform ADJ by 0.14 and 0.08 respectively.

Keywords: Social media · Altruistic requests · Success prediction

1 Introduction

With the maturity of World Wide Web, online services provide various func-
tions for social good. Those in need can use social communities, such as
DonorsChoose.org, flyingv.cc, and Reddit.com, to request donations or any help.
Recent studies are studying why and how a posted request can get accepted and
become successful, because understanding the hidden factors driving the requests
to be satisfied by givers can be a great benefit for not only those in need to write
their requests but also more people to help promote such kind of requests [16,21].
Existing work had identified some key factors, including the scale of the request
c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part I, LNAI 9651, pp. 177–188, 2016.
DOI: 10.1007/978-3-319-31753-3 15
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(e.g., a simple question vs. a big financial need) [22], whether the giver receives
in return [21], and the social interaction between the receiver and the giver [8].
Furthermore, to uncover how the linguistic factor solely influences the success
of requests, the ADJ work [1] focuses on altruistic requests, in which the giver
receive no rewards. Based on the qualitative analysis of linguistic factors on deci-
sion making [26], ADJ shows that the linguistic presentation, including narrative
structure, politeness, evidentiality, and reciprocity, has strong correlation to the
success of requests. They also demonstrate the predictability of the success of
requests by treating the measured scores of these factors as feature values.

This paper aims to boost the performance of predicting the success of altru-
istic requests via following the similar setting and data used by ADJ [1]. While
what ADJ mainly contributes is developing a series of textual features to char-
acterize the linguistic presentation of altruistic requests, study their correlation
with request success, and use the logistic regression model to test the predictabil-
ity, we need to point out four aspects of insufficiency of ADJ. First, the predic-
tion accuracy is not satisfied (the AUC score is only 0.67). Second, ADJ does not
study the importance of features, but in practice different requests can resort to
or concentrate on various factors to seek for the success. Third, ADJ uses a large
set of requests to build the predictive model (70 % for training and 30 % for test-
ing). However, in real-world applications, we might not have many request data
with the labels of success and unsuccess for training. Fourth, the features consid-
ered in ADJ cannot model how users interact with each other affect the success,
and more importantly how the topics of the requests have impact on the success.
We believe user interactions and topic information also play a deterministic role
in the success prediction of altruistic requests.

We think a highly accurate predictive model can bring practical advices for
requesters to optimize their presentation in a real-time manner when asking for
favors. To have a more powerful method with limited training data to accurately
predict the success of altruistic requests, we devise a novel model, Graph-based
Predictor for Request Success (termed GPRS ). In addition to the three features
(i.e., textual, social, and temporal) proposed by ADJ, we further propose three
additional features, including centrality, role, and topic. Our GPRS model is
designed to jointly learn the feature weights and predict the success of query
altruistic requests. We evaluate the effectiveness of our GPRS model using the
dataset provided by ADJ, i.e., “Random Acts of Pizza” (RAOP)1 in Reddit.com,
an online community established for giving away free pizza to strangers that ask
for one. The results exhibit GPRS is able to not only significantly outperform
ADJ with the AUC score up to 0.8, but also produce a satisfying accuracy (AUC
score = 0.68) using only 20 % request data for training.

2 Dataset and Features

2.1 Data

We use the Pizza Request Dataset2 compiled by ADJ [1], which is the entire
collection of the Random Acts of Pizza Subreddit (RAOP) from December 8,
1 www.reddit.com/r/Random%5fActs%5fOf%5fPizza.
2 http://cs.stanford.edu/%7ealthoff/raop-dataset/.

www.reddit.com/r/Random%5fActs%5fOf%5fPizza
http://cs.stanford.edu/%7ealthoff/raop-dataset/
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2010 to September 29, 2013, in Reddit.com. Totally there are 5728 altruistic
pizza requests (24.6 % success rate) and 1.87M relevant posts by RAOP users
(for computing user features).

2.2 Features

We expand the list of features proposed by ADJ to develop a novel prediction
model. We first describe these features considered in ADJ, including textual,
social, and temporal. These features mainly models how language usages, social
reputation, and the request time/date affect the success of requests. Then we
give the details about another three of our proposed novel features, including
centrality, role, and topic. Our three features are designed to further capture
how user interactions in Reddit.com via comments and the topic information
of the requests have impact on the success, and thus can be considered as the
important and informative complements of the previous three features.

Textual Features. There are six categories of textual features, which are
designed to capture whether or not people will help the requesters based on
the textual contents of the requests.

1. Narrative. The narrative of a request can significantly determine the suc-
cess of that request [16,21]. We follow ADJ to use the relevant vocabularies
from “Linguistic Inquiry and Word Count (LIWC)” [25] to characterize five
different narratives (Money, Job, Student, Family, Craving) (please refer to
ADJ for the detailed vocabularies), and compute the word counts of each
narrative to be the features.

2. Politeness. Expressing in a polite manner can leave positive impression to
the potential receivers. Some qualitative studies have shown that people have
higher potential to help polite requesters [6]. We take advantage of 20 polite-
ness strategies developed in the computational politeness model [12]. We con-
sider that each of these politeness strategies is a binary feature value that
indicates whether or not such strategy is used in the request text. Stanford
Dependency Parser [11], together with Regular expression and the lexicons
of each politeness strategy, is used to extract the features.

3. Evidentiality. To make the requests more convincing, the requesters can
provide images to show the evidence of what they state and their need. For
example, the pictures about the house status, the screenshot of bankbook,
and the proof of disabled or unemployment. By using regular expression, we
compute whether or not a request contains an image URL and the number
of image URLs as features.

4. Reciprocity. People tend to help if they received help themselves [28]. We
extract the binary feature that indicates whether or not the past posts of the
request contain any phrases like “pay it forward,” “pay it back,” or “return
the favor.”

5. Sentiment. People is more likely to help those delivering positive mood [14].
Therefore we use the Stanford CoreNLP Package3 to estimate whether the

3 http://nlp.stanford.edu/software/.

http://nlp.stanford.edu/software/
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sentiment of a request text exceeds the average fraction of positive sentiment
sentences, and compute the counts of lexicons of positive and negative vocab-
ularies from LIWC. In addition, we also consider the emoticons as another
set of sentiment features.

6. Length. Longer requests can reflect more efforts of the need and be more
successful. We use the word count of the request as the feature.

Social Features. Existing study showed that the inter-evaluation between peo-
ple have positive correlation with the success of a request, especially user status
and user similarity [2]. (1) Status: The karma point of a user measured by her
activity in Reddit.com is used as the feature. (2) Similarity: People tend to
help those who resemble them [10]. We use intersection size and the Jaccard
similarity to compute the similarity between the requester and the other users
on RAOP based on the set of Subreddits of users.

Temporal Features. We measure the specific season, month, workday or week-
end, weekday, day of the month, and hour of the day of the request, as well as the
number of months since the beginning of RAOP community to be the temporal
features.

Centrality Features. We would like to investigate how the extent of user inter-
action in Reddit.com affects the success of a request. Users in Reddit.com are
allowed to interact with one another through commenting others’ posts. We
construct an directed weighted interaction graph to represent their interaction
behaviors, in which each node is a user and each directed edge refers to a com-
ment from the user of the comment to the recipient. Each edge is weighted
by the reciprocal of the number of comments from one user to another. Lower
weight values mean frequent/stronger interaction. Then to characterize how the
requester interact with others, based on the constructed interaction graph, we
calculate several structural centrality measures, including in-degree, out-degree,
clustering coefficient, closeness, betweenness, eigenvector, PageRank, and HITS
scores (hub and authority), as the feature values.

Role Features. We also measure the role of interaction of the requester among
other users in terms of network communities (a community refers to a set of
nodes that are densely connected internally and loosely connected externally in
a graph). A user who is exposed to less communities can belong to the minority
that needs help [13]. But a user with connections to more communities is also
capable of reaching more information, and thus has a higher possibility to earn
resources [23]. Therefore, we aim to quantify how the role of a requester who plays
among communities affects the success of his/her altruistic request. We detect
communities in the constructed interaction graph using Louvain’s algorithm [5].
Then based on some social theories, we measure four social roles as the features.

1. Structural Hole. Structural hole theory [7] suggests that nodes act as an
intermediary between groups have higher potential to access more information
and earn the favor. We measure the extent of being structural holes for nodes
using the number of overlapping communities [19]. Nodes overlapped by more
communities tend to act as structural holes.
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2. Structural Diversity. A person participating in fewer diverse social contexts
has been validated to have lower probability to obtain his/her material and
mental need [27]. We score the structural diversity by computing the number
of disjoint connected components in the neighboring induced subgraph of a
node. Higher scores mean higher structural diversity.

3. Bridging Effect. Some people act as the role of transmitting information,
instead of giving or receiving help. Since the bridging nodes in a graph have
been proved effective in distributing information [24], we adopt their proposed
measure, rawComm, to quantify the bridging effect a node involves.

4. Group Core. Individuals with more friends who connect to each other,
i.e., higher Triangle Participation Ratio (TPR, i.e., the number of triangles
involved) and thus are closer to the core of a group, have higher potential to
receive both information and help [20]. Nodes with higher TRP values tend
to have higher social visibility and thus have higher potential to receive help
[3]. We compute the Triangle Participation Ratio as the feature values.

Topic Features. We assume that the success of altruistic requests may depend
on which topic that a request belongs to. Topics like bereavement are more likely
to evoke public sympathy and earn the favor than other topics like unemploy-
ment. Therefore, we aim at extract the hidden topic of a request text, and treat
the hidden topics as the features. Based on the textual content, we consider three
kinds of manners to model the hidden topics.

1. Bag-Of-Word (BOW) is one of the simplest but useful features in many
natural language tasks. We consider the words with NN (noun), NR (proper
noun), VV (verb), VA (adjective), and AD (adverb) for the BOW features.
Word counts in a document are treated as the feature values.

2. N-gram is to estimate the likelihood of a sentence by conditional probability.
Here we use N-gram to capture whether or not there are some important
terms that can determine the success of the requests. By eliminating stop
words, Bi-gram and Tri-gram are considered. For BOW, Bi-gram, and Tri-
gram features, we perform feature selection (dimension reduction) to identify
the important and discriminative features. The technique of Recursive Feature
Elimination with Cross Validation [17] is used to select the best number and
set of features.

3. LDA Hidden Topic. We exploit the Latent Dirichlet Allocation (LDA) [4],
which is a well-known topic modeling technique, to derive the hidden topic
for each request. In LDA, a document-word matrix D is decomposed to a
topic-hidden matrix H and a hidden-word matrix W , i.e., D = H × W ,
in which a parameter n is used to determine the number of hidden topic
categories. Since each row vector in H (denoted by Hv) can be regarded as a
request document v’s hidden topic, which is represented by the distribution
over hidden topic categories, we use Hv as the feature values. In addition,
for a request, we propose to estimate its degree of interestingness by users in
terms of hidden topics. We append the user-word matrix X to D in a row-wise
manner, and obtain a combined matrix M , i.e., M = [D;X]. LDA is applied
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again for matrix decomposition: M = H ′ × W ′. We compute and sum up the
Cosine similarity score s(v) between the request v’s hidden topic vector H ′

v

and each user i’s hidden topic vector H ′
i, i.e., s(v) =

∑
i∈X cos(H ′

v,H ′
i). The

obtained score s(v) is treated as the feature that characterizes the degree of
interestingness for the request v over all the users.

3 The Proposed GPRS Model

We devise a novel model, Graph-based Predictor for Request Success (GPRS),
to predict whether or not a request will be successful (i.e., a binary success
label, 0 or 1). GPRS consists of two stages: constructing a Request Graph, and
Propagation-based Optimization. The basic idea lies in representing the feature
similarity-based correlation between requests in a graph structure, and jointly
learning the feature weights and computing the success labels of unseen requests
by spreading the probabilities of success labels in the request graph such that those
requests with higher similarity with each other have the same success label (0 or 1).

3.1 Constructing Request Graph

A Request Graph (RG) G = (V, E) is devised to model the feature-based cor-
relation between request nodes, in which V is the set of nodes and V = V ∪ U ,
where V and U are the node sets of training and testing requests respectively.
The construction of RG has two parts: (1) each testing request node u ∈ U is
connected to the top-k1 similar training node v ∈ V , and (2) each testing request
u ∈ U is connected to the top-k2 similar testing requests u′ ∈ U(u′ �= u) in terms
of features, where k1 and k2 are determined by a parameter λ ∈ [0, 1]: k1 = λ·|V |
and k2 = λ · |U |. We will show how λ affects the effectiveness and efficiency our
model. On the other hand, each request x ∈ V is associated with two probabili-
ties, Psx

(x), corresponding to its success label sx = 0 or sx = 1. P1(x) and P0(x)
are the probabilities that the request x is successful or not respectively. For each
training request v ∈ V whose success label is 1 (i.e., sv = 1), we always fix
P1(v) = 1 and P0(v) = 0; P0(v) = 0 and P0(v) = 1 if sv = 0. We also initialize
P1(u) = 0 and P0(u) = 0 for each testing request u ∈ U .

Each edge in RG is associated as a weight that represents the feature-
based correlation between requests. Given a certain feature Fd, the feature-
based request correlation frcFd

(x, y) between nodes x and y, (x, y) ∈ E, can
be derived from their feature difference frcFd

(x, y) = ΔFd(x, y), where ΔFd

is their feature difference, defined by ΔFd = ‖fd(x) − fd(y)‖. Given a list of
features F = {Fd} (d = 1, ...,m, m is the number of features), we compute
feature-aware request correlation value frc(x, y) via the weighted sum of their
correlation frcFd

, given by:

frc(x, y) = exp(−
m∑

d=1

π2
d × frcFd

(x, y)), (1)

where πd is the weight of feature Fd. The combined correlation is considered as
the edge weight wx,y = frc(x, y) for edge (x, y) ∈ E in RG.
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3.2 Propagation-Based Optimization

The idea is two-fold. First, the probabilities of training request v ∈ V , P0(v)
and P1(v), are used to infer the probabilities of testing request u ∈ U , P0(u) and
P1(u). Second, P0(u) and P1(u) are inferred from both u’s neighboring training
and testing requests in RG, expressed by Ps(u) = 1

degu

∑
(u,x)∈E wu,x · Ps(x),

where degu is the degree of node u in RG. Putting these together, we seek for an
optimal set of edge weights W in RG, where edge weights can be further deter-
mined by feature weights πd, such that after inference, the testing request and
its neighboring requests that possess similar features tend to have close proba-
bilities, which lead to the same success labels. When the iterative propagation
process is finalized, we can choose the success label s�

u with the higher probability
to be the predicted result, given by s�

u = argmaxsu
{Psu

(u)}, su = 0, 1.
Recall that edge weights are obtained by the weighted sum over frcFd

(x, y)
of features Fd with feature weights {πd}. That said, the determination of feature
weights first influences the edge weights, and then edges weights take effect on
the inference of success labels for testing requests. Hence, our ultimate goal is
to learn a set of feature weights from training and testing requests in RG.

We propose a heuristic objective for learning {πd}: minimizing the average
entropy of success probabilities H(PU ) for testing requests u ∈ U :

H(PU ) =
1

|U | × −
∑

s=0,1

Ps(u) log Ps(u) + (1 − Ps(u)) log(1 − Ps(u)), (2)

where |U | is the number of testing requests in RG. Our idea is that assigning the
testing requests u ∈ U the success probabilities P0(u) and P1(u) that produce
the lower entropy values can make the inference be less uncertain and higher
confidence. Therefore, we take advantage of the minimization of H(PU ) so that
through Eq. (2) the inferred success probabilities of each testing request tends
to be squeezed and constrained at a success label c�

u which possesses the highest
probability.

We design a mutually reinforced flow to iteratively minimize H(PU ) during
the propagation process in RG: the learned feature weights πd triggers an update
of edge weights wx,y that update the success probabilities P1(x) and P0(x) for
every testing request x ∈ U , which further determine their average success prob-
ability entropy H(PU ) to be minimized in Eq. (2). This flow proceeds iteratively
till the convergence is reached. To enable this flow, we exploit the technique of
gradient descent on πd to obtain an updated set of feature weights wx,y that
minimizes H(PU ). The gradient ∂wx,y

∂πd
can be derived by computing ∂H(PU )

∂πd
:

∂H(PU )
∂πd

=
1

|U |
∑
x∈U

log
1 − P (x)

P (x)
∂P (x)
∂πd

. (3)

Using the chain rule of differentiation, we can have the final gradient as:

∂wx,y

∂πd
= 2 · wx,y · frcFd

(x, y) · πd. (4)



184 H.-P. Hsieh et al.

In short, in each iteration, we update the feature weights πd = πd − 2 · wx,y ·
frcFd

(x, y) · πd. Then a new set of edge weights wx,y can be derived using the
updated πd via Eq. (1). Based on new wx,y, we can generate the new success
probabilities of testing requests P1(x) and P0(x) from x’s neighbors in RG.
Then the average success probability entropy H(PU ) is updated accordingly via
Eq. (3). The iterative updating procedure will continue and be terminated till
H(PU ) converges. Finally, using the derived success probabilities of each testing
request x ∈ U , we can find its predicted success label s�

x. Note that we can
prove the convergence by establishing a reduction from the graph-based label
propagation [29]. However, due to the page limit, we skip the proof.

4 Evaluation

The experiment consists of four parts. First, we aim to show whether the pro-
posed GPRS model can perform better than ADJ [1] using the same volume of
training requests. Second, we will show GPRS can still work well using a small
set of training requests. Third, we will present the effectiveness of each feature
category, i.e., textual, social, temporal, centrality, role, and topic. Fourth, the
time efficiency of GPRS by varying the parameter λ will be reported.

Fig. 1. AUC and accuracy by varying the percentage of training data (Color figure
online).
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Settings. We vary the percentage of requests for training data using two scales:
40 %–90 % and 5 %–30 % to evaluate the first two parts. We set λ = 0.1 by
default, and vary λ (it determines the size of the request graph) to show the
time efficiency of GPRS-W using 70 % requests as the training data. In addition,
to further know whether learning feature weights πd can benefit the prediction
accuracy, we divide our GPRS into two versions: equally assigned (GPRS-E)
and automatically learned (GPRS-L) from the validation set. We have two
evaluation metrics. The first one follows ADJ to use the Area Under Receiver-
Operating Characteristic (ROC) Curve (AUC). Second, we define an accuracy
measure acc = #hits

|U | , where #hits is the number of correctly predicted testing
requests and |U | is the number of testing requests. We randomly select the cor-
responding percentages of training and testing data, and repeat the experiment
up to 100 times. The average AUC score and the average accuracy are reported.

Competitors. In addition to L1-penalized logistic regression (LR) model [15]
used by ADJ, we further compare our GPRS model with several typical super-
vised learning methods (treated as baseline models), including Support Vector
Machine (SVM) [9], and Random Forest (RF) [18].

Fig. 2. AUC and accuracy of each feature category using our GPRS-L model under
training:testing = 80 %:20 % and training:testing = 20 %:80 %.

The results under different training percentages are shown in Fig. 1. We can
find that both GPRS-L and GPRS-E outperform ADJ and other competitors in
every case, especially for GPRS-L whose AUC and accuracy scores are signifi-
cantly higher than ADJ. Since ADJ uses solely 70 % training percentage to have
0.67 AUC, we especially highlight the results at 70 % for GPRS and show that
both AUC and accuracy of GPRS-L are up to 0.8. It is also worthwhile to notice
that GPRS-L can still achieve 0.67 AUC using only 20 % requests for training,
and exhibits the prediction power of GPRS-L when tackling rare training data.
Besides, the result that GPRS-L beats GPRS-E validates the efficacy of learning
feature weights.

The resulting effectiveness of each category of feature using our GPRS-L
model is shown in Fig. 2. We can find that our proposed three feature categories
(i.e., centrality, role, and topic) lead to the competitive performance, comparing
with the three feature categories proposed by ADJ (i.e., textual, social, and
temporal). Among our proposed three feature categories, the topic feature can
generate a bit more accurate prediction results than the textual feature, which
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is the best among the three features used in ADJ. Such outcome demonstrates
the topic of the request can be more deterministic than the language usage (e.g.,
politeness and narrative), the provided evidence, and the conveyed sentiment,
which are modelled by the textual feature. In addition, it is worthwhile to notice
that the performance of the topic feature will be better (compared to the textual
feature) if more training data are used (e.g., the performance of the topic feature
under 80 % training is better than that under 20 % training data). We think the
reason could be the hidden topics can be learned only if there are sufficient
training data. Finally, combing all of these six feature categories can generate
the best results.

The results of time efficiency (in second) and the AUC score using our GPRS-
L model under different λ values are reported in Fig. 3. There is a trade-off
between accuracy and efficiency. Higher λ values that add more edges in the
request graph lead to higher AUC scores, but cost more time to run the GPRS-
W model. Nevertheless, we find λ = 0.1 is a good choice since it balances the
prediction accuracy (up to 0.8 AUC score) and run time (only 3 s), and suggest
λ = 0.1 for real usages.

Fig. 3. AUC and run time by varying λ under the proposed GPRS-L model (Color
figure online).

5 Conclusion

The contribution of our GPRS model is four-fold. First, our GPRS model is able
to significantly boost the accuracy of predicting the success of altruistic requests.
Second, it is capable of tacking the problem of inadequate training data while
keeping the accuracy. Third, three additional features (i.e., centrality, role, and
topic) are proposed and evaluated to be effective in predicting the success of
requests. Fourth, the technique that jointly learns feature weights and predicts
labels can be served as a novel framework to solve other NLP tasks like sentiment
detection and POS tagging.



Will I Win Your Favor? Predicting the Success of Altruistic Requests 187

Acknowledgments. This work was sponsored by Ministry of Science and Technology
of Taiwan under grant 104-2221-E-001-027-MY2. This work is also supported by Mul-
tidisciplinary Health Cloud Research Program: Technology Development and Applica-
tion of Big Health Data, Academia Sinica, Taipei, Taiwan under grant MP10212-0318.

References

1. Althoff, T., Danescu-Niculescu-Mizil, C., Jurafsky, D.: How to ask for a favor: a case
study on the success of altruistic requests. In: Proceedings of AAAI International
Conference on Web and Social Media, ICWSM (2014)

2. Anderson, A., Huttenlocher, D., Kleinberg, J., Leskovec, J.: Effects of user simi-
larity in social media. In: Proceedings of the 5th ACM International Conference
on Web Search and Data Mining, WSDM, pp. 703–712 (2012)

3. Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large
social networks: membership, growth, and evolution. In: Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD, pp. 44–54 (2006)

4. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

5. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech.: Theor. Exp. 2008(10), P1000 (2008)

6. Brown, P., Levinson, S.C.: Universals in language use: politeness phenomena.
Questions and Politeness: Strategies in Social Interaction, pp. 56–311. Cambridge
University Press, Cambridge (1978)

7. Burt, R.S., Holes, S.: The Social Structure of Competition. Harvard University
Press, Cambridge

8. Ceyhan, S., Shi, X., Leskovec, J.: Dynamics of bidding in a P2P lending service:
effects of herding and predicting loan success. In: Proceedings of the 20th Interna-
tional Conference on World Wide Web, WWW, pp. 547–556 (2011)

9. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. (TIST) 2(3), 1–27 (2011)

10. Chierco, S., Rosa, C., Kayson, W.A.: Effects of location, appearance, and monetary
value on altruistic behavior. Psychol. Rep. 51(1), 199–202 (1982)

11. de Marneffe, M.-C., MacCartney, B., Manning, C.D.: Generating typed dependency
parses from phrase structure parses. In: Proceedings of the Language Resources
and Evaluation Conference, LREC, pp. 449–454 (2006)

12. Danescu-Niculescu-Mizil, C., Sudhof, M., Jurafsky, D., Leskovec, J., Potts, C.: A
computational approach to politeness with application to social factors. In: Pro-
ceedings of the 51st Annual Meeting of the Association for Computational Lin-
guistics, ACL, pp. 250–259 (2013)

13. Fagan, J., Meares, T.L.: Punishment, deterrence and social control: the paradox
of punishment in minority communities. Ohio State J. Crim. Law 6, 173 (2008)

14. Forgas, J.P.: Asking nicely? The effects of mood on responding to more or less
polite requests. Pers. Soc. Psychol. Bull. 24(2), 173–185 (1998)

15. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear
models via coordinate descent. J. Stat. Softw. 33(1), 1–22 (2010)

16. Greenberg, M.D., Pardo, B., Hariharan, K., Gerber, E.: Crowdfunding support
tools: predicting success & failure. In: CHI 2013 Extended Abstracts on Human
Factors in Computing Systems, pp. 1815–1820 (2013)



188 H.-P. Hsieh et al.

17. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classifi-
cation using support vector machines. Mach. Learn. 46(1–3), 389–422 (2002)

18. Liaw, A., Wiener, M.: Classification and regression by randomForest. R News 2(3),
18–22 (2002)

19. Lou, T., Tang, J.: Mining structural hole spanners through information diffusion
in social networks. In: Proceedings of the ACM International Conference on World
Wide Web, WWW, pp. 825–836 (2013)

20. Malliaros, F.D., Vazirgiannis, M.: To stay or not to stay: modeling engagement
dynamics in social graphs. In: Proceedings of ACM International Conference on
Information and Knowledge Management, CIKM, pp. 469–478 (2013)

21. Mitra, T., Gilber, E.: The language that gets people to give people to give: phrases
that predict success on kickstarter. In: Proceedings of the 17th ACM Conference
on Computer Supported Cooperative Work and Social Computing, CSCW, pp.
49–61 (2014)

22. Mollick, E.: The dynamics of crowdfunding: an exploratory study. J. Bus. Ventur.
29(1), 1–16 (2014)

23. Pearce, J., Witten, K., Hiscock, R., Blakely, T.: Are socially disadvantaged neigh-
bourhoods deprived of health-related community resources? Int. J. Epidemiol. 36,
348–355 (2007)

24. Scripps, J., Tan, P.-N., Esfahanian, A.-H.: Exploration of link structure and
community-based node roles in network analysis. In: Proceedings of the IEEE
International Conference on Data Mining, ICDM, pp. 649–654 (2007)

25. Tausczik, Y.R., Pennebaker, J.W.: The psychological meaning of words: LIWC and
computerized text analysis methods. J. Lang. Soc. Psychol. 29(1), 24–54 (2010)

26. Teevan, J., Morris, M.R., Panovich, K.: Factors affecting response quantity, quality,
and speed for questions asked via social network status messages. In: Proceedings
of the AAAI International Conference on Web and Social Media, ICWSM (2011)

27. Ugander, J., Backstrom, L., Marlow, C., Kleinberg, J.: Structural diversity in social
contagion. Proc. Nat. Acad. Sci. U.S.A. (PNAS) 109(16), 5962–5966 (2012)

28. Willer, R., Flynn, F.J., Feinberg, M., Mensching, O., de Mello Ferreira, V.R.,
Bianchi, A.M., Choshen-Hillel, S., Weisel, O., Peng, K., Fetchenhauer, D.: Do
people pay it forward? Gratitude fosters generalized reciprocity. Technical report
(2013)

29. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Scholkopf, B.: Learning with local
and global consistency. In: Proceedings of Advances in Neural Information Process-
ing Systems, NIPS 2003, pp. 321–328 (2003)



Feature Extraction and Pattern Mining



Unsupervised and Semi-supervised
Dimensionality Reduction with Self-Organizing

Incremental Neural Network and Graph
Similarity Constraints

Zhiyang Xiang1,2, Zhu Xiao1,2, Yourong Huang1, Dong Wang1(B), Bin Fu1,
and Wenjie Chen3

1 College of Computer Science and Electronics Engineering,
Hunan University, Changsha, China

{z xiang,zhxiao,h y r,wangd,fubin}@hnu.edu.cn
2 State Key Laboratory of Integrated Services Networks,

Xidian University, Xian, China
3 Business College, Central South University
of Forestry and Technology, Changsha, China

wendychen711@126.com

Abstract. The complexity of optimizations in semi-supervised dimen-
sionality reduction methods has limited their usage. In this paper, an
unsupervised and semi-supervised nonlinear dimensionality reduction
method that aims at lower space complexity is proposed. First, a posi-
tive and negative competitive learning strategy is introduced to the single
layered Self-Organizing Incremental Neural Network (SOINN) to process
partially labeled datasets. Then, we formulate the dimensionality reduc-
tion of SOINN weight vectors as a quadratic programming problem with
graph similarities calculated from previous step as constraints. Finally,
an approximation of distances between newly arrived samples and the
SOINN weight vectors is proposed to complete the dimensionality reduc-
tion task. Experiments are carried out on two artificial datasets and the
NSL-KDD dataset comparing with Isomap, Transductive Support Vector
Machine etc. The results show that the proposed method is effective in
dimensionality reduction and an efficient alternate transductive learner.

Keywords: Dimensionality reduction · Self-Organizing Incremental
Neural Network · Graph cut · Semi-supervised learning

1 Introduction

Dimensionality reduction or referred as embedding is an important technique
for data mining and pattern recognition applications. It is often employed in
high dimensional data processing to enable data visualization and or as a metric
learning method. In real world applications it is always involved in two types of
tasks. First, it can construct and find out the most informative dimensions, thus
c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part I, LNAI 9651, pp. 191–202, 2016.
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to enable machine learning techniques that only perform well on low dimensional
techniques. Second, it can function as a metric learning process to augment dis-
tance based supervised learning and semi-supervised learning (SSL). Depending
on the availability of labeled information, dimensionality reduction can be cate-
gorized into supervised, unsupervised and semi-supervised ones.

There are linear and nonlinear dimensionality reduction methods. Multi-
Dimensional Scaling (MDS) and Fisher Discriminant Analysis (FDA) are exam-
ples of the linear methods; and Isomap [17], semi-definite programming (SDP)
based embeddings [20] are examples of nonlinear methods. The major difference
between them is that nonlinear methods employs more computationally costly
methods such as graph similarity and SDP to construct the kernel matrix. Lin-
ear methods such as classical MDS are efficient but are ineffective to learn the
nonlinear embedding of data from high dimensional spaces to lower ones. On
the other hand, the nonlinear methods are often less efficient because the graph
similarity calculation, SDP and other nonlinear optimizations are hard to solve,
especially when applying to real world large scale problems.

Semi-supervised dimensionality reduction are often constructed by manipu-
lations of the kernel matrix from their supervised or unsupervised counterparts.
Such examples can be seen in [2,3,21]. The manipulation can come either as a
form of pairwise constraints or approximations like graph kernels. An optimiza-
tion problem would be difficult if its number of variables are of the same magnitude
of the number of samples in training datasets. This has limited their usage in real
world applications. Graph construction methods are often slow, too [6].

There is a recent trend to solve transfer domain learning with dimensionality
reduction, which has an impact on SSL research because SSL is a special form
of transfer domain learning [11,12]. Semi-supervised dimensionality reduction is
equivalent to an embedding task on two domains, one of which is the data feature
domain and the other is the augmented domain with labels as extra features.
Transfer domain embedding methods such as [10,19] relies on SDP to find the
kernel matrix. Unfortunately, SDPs are often hard to solve. An SDP with several
thousand variables may be difficult for a mainstream personal computer to solve,
but real world applications will easily reach this magnitude.

Clustering is frequently employed to reduce the problem size. Competitive
learning neural networks such as Self-Organizing Maps [8], Growing Neural Gas
(GNG) [5] and Self-Organizing Incremental Neural Network (SOINN) [15] are
widely used as data reduction techniques, because of their incremental and topol-
ogy learning abilities. However, their applicability as feature reduction techniques
are not fully explored. Moreover, the SSL designs of SOINN are not as thorough
as GNG. In [1,9] the consensus and heuristical online label inferring extensions to
GNG are studied. However, the two extensions assumed that the labeled informa-
tion is so little that it can not affect the data distribution learned by GNG.

In this paper we propose a semi-supervised dimensionality reduction method
based on semi-supervised SOINN and linear dimensionality reduction. Our main
contributions are as follows.
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1. A nonlinear dimensionality reduction framework with graph similarity from
SOINN as constraints is proposed.

2. Semi-supervised extensions to SOINN in the form of positive and negative
competitive learning is proposed.

3. With the semi-supervised SOINN, the kernel constructed for dimensionality
reduction is simplified. As a result, the efficiency of dimensionality reduction
is improved.

The rest of the paper is organized as follows. Section 2 gives the notations
and preliminaries used in later sections. Section 3 introduces the framework of
our work and the semi-supervised extension to SOINN. Then in Sect. 4 are the
experiments and in Sect. 5 are the conclusions.

2 Preliminaries

In this section, theories and algorithms our work is based upon are introduced.
More specifically, the linear dimensionality reduction and the single layered
SOINN are described.

2.1 Linear Dimensionality Reduction

Suppose P = {pij} is the dissimilarity matrix of a training dataset. According
to [7,18], the linear dimensionality reduction can be described as follows. First,
calculate a matrix H as [7,18]

(H)ij = −|pij |2
2

+

l∑
m=1

|pmj |2 +
l∑

n=1
|pin|2

2l
−

l∑
m,n=1

|pmn|2

2l2
(1)

Where l is the desired dimension count after dimensionality reduction. Then
calculate eigendecomposition as P = UDUT , where D is a diagonal matrix
with eigenvalues of H along the diagonal and only the non-zero l eigenvalues
are selected. If all the eigenvalues are non-negative, then the dimensionality
reduction is achieved by X = D0.5UT , where the columns of X are the data
items after dimensionality reduction. If there are negative eigenvalues, then X =
(MD)0.5UT , where the n × n matrix M = diag(In+ ,−In−) with n = n+ + n−

where the pair (n+, n−) is called the signature of the pseudo-Euclidean space
[7,18]. The distance metric is altered as [18]

δij =
√

(Xi − Xj)
TM(Xi − Xj) (2)

For a new data item, its dimensionality reduction can be calculated by two
steps. First, from the distances of the new data item to existing data items
P = {pi} calculate a vector H = {hi} [18]

hi = −|pi|2
2

+

l∑
m=1

|pm|2 + |pi|2

2l
−

l∑
m

|pm|2

2l2
(3)
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Then the dimensionality reduction is accomplished as

X = (MD)0.5UH (4)

where H = [h1, h2, · · · , hi, · · · ]T .

2.2 The Single Layered SOINN

The single layered SOINN [15] can be divided into three phases. First, on an
arrival of a data item, it decides whether to insert a new vector into the set W.
Second, update the weight vectors. Third, discover the topology structure by
label propagation.

In step 1, each weight vector is said to control a spherical area in the data
space. The sphere is centered at the position of the vector itself, and the diameter
is the vector to its farthest topological neighbor by metric of Euclidean distance
or the smallest distance to its neighbors if it has no topological neighbor. When
a new sample V arrives and it is not controlled by its nearest neighbor Ws or
second nearest neighbor Wt in W, then this vector is added to W.

In step 2, if there is no edge between Ws and Wt, add one. Then if in step 1
the new sample is not added to W, update Ws and its topological neighbors
towards the new sample as

Ws = Ws +
1
cs

(V − Ws) (5)

Wk = Wk +
φ

cs
(V − Wk),∀k ∈ neighbor(s) (6)

where cs is the winning times of Ws. φ is a constant and in [15] it is set to 0.01.
Step 3 is only invoked one time every λ times of sample arrival. It assumes

the convexity of data and try to divide graph learned into trivial graphs in the
original SOINN algorithms. Since the purpose of our method is not for clustering
under convexity assumption, this step is not inherited in our work. The step 3
is not introduced and not used in the semi-supervised extension which is to be
introduced in later sections.

3 Dimensionality Reduction with Semi-supervised
SOINN

In this section, the details of the proposed method is given. First, the problem
formation and algorithm framework are elaborated. Second, the semi-supervised
extension to SOINN is explained. The key idea is a knowledge reuse framework,
where the learning result from SOINN is employed in defining the similarity
of samples in the same space and under the same distribution as the training
dataset (including the labeled and unlabeled). In the SOINN learned data rep-
resentation, weight vectors that are similar to each other is more likely to be
linked by more paths in the graph [15].
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3.1 Problem Formation and Algorithm Framework

We approach dimensionality reduction by three steps. First, train semi-
supervised SOINN on the input data. Second, calculate the dimensionality reduc-
tion of SOINN weight vectors. Third, calculate the dimensionality reduction of
newly arrived data by their similarity to the SOINN weight vectors.

The major problem of a dimensionality reduction method is to construct
the kernel matrix. We use the SOINN trained graph as a graph kernel for fur-
ther construction of a kernel matrix. In SOINN the more similar the two weight
vectors are, the higher the probability that the two vectors are linked by more
paths on the graph. Similarity between graph vertices can be calculated by the
Edmonds-Karp algorithm [4]. However, graph similarity defined by graph cuts
are often used for classification purposes. Since the variation of the similarity
values can be highly skewed and possibly can not be embedded to an Euclidean
space. If the graph similarities defined by graph cut are directly used in dimen-
sionality reduction, the eigendecomposition of graph similarity matrix may gen-
erate many negative eigenvalues. As a result, in our work we try to preserve the
distance matrix P calculated from the original data, and use the graph similar-
ity G = {gij} calculated by Edmonds-Karp algorithm on the SOINN graph as
constraints. The graph similarity G can be calculated from edge weights of

flowij = g(||Wi − Wj ||) (7)

where g(x) is a decreasing and positive valued function. This means that when
connected by a single edge, the closer the two vector is, the higher the graph
similarity. The specific choice of g(x) is irrelevant as long as it is decreasing.

Then the problem of embedding weight vectors can be described as

min
P′

∑
i

∑
j

(p′
ij − pij)2

s.t.∀gij , gmn ∈ G, if gij ≤ gmn, p′
ij ≥ p′

mn

(8)

Put the elements of G in the upper triangle (and excluding the diagonal) in
a vector S = {sk} (standing for similarity) and sort in decreasing order; and
construct two vectors D = {dk} (standing for distance), K = {kk} for each
element sk = gij , dk = pij , kk = p′

ij . Since the diagonal of P,P′ must be zero,
the optimization described by Eq. (8) is equivalent to

min
K

∑
i

(ki − di)2

s.t. 0 ≤ k1 ≤ k2 · · · ≤ kj · · ·
(9)

which is a quadratic programming problem

min
K

1
2
KT K − DT K

s.t. 0 ≤ k1 ≤ k2 · · · ≤kj · · ·
(10)
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This can be solved by a standard solver. This approach is similar to Structure
Preserving Embedding (SPM) [14] which is based on SDP. However, the proposed
approach tries to preserve the dissimilarity in the Minkovsky space instead of
the Euclidean space.

After acquiring the kernel matrix P′ through K. The dimensionality reduc-
tion of weight vectors W from SOINN can be accomplished by linear dimen-
sionality reduction. However, to calculate the dimensionality reduction of data
items other than W with Eq. (3), the distance from this new data item V to
each weight vector in W must be acquired. The distances can not simply be
Euclidean distances ||V −Wi||, since the distances between weight vectors in W
is changed in the new data space. We design a distance that emphasizes the local
similarity as

ti = k(
1/|V − Wi||∑

Wj∈W 1/||V − Wj || ) (11)

where k(x) is a kernel function, and it should be increasing and positive valued.
This design is to ensure two properties. First, if a data item is close to Wi,
its distance to other weight vectors will be similar to those in the kernel matrix
calculated from Eq. (8). Second, the dimensionality reduction will try to preserve
the smoothness of data distribution in the original space. Finally, the distance
vector is constructed as

P̂ = P′T (12)

where P′ is the kernel matrix calculated by quadratic programming and T =
[t1, t2, · · · , ti, · · · ]T . The dimensionality reduction of a data item V can then be
calculated by Eqs. (3) and (4).

Besides, it is beneficial to add another add-hoc element to handle the trivial
groups which are separated from the main cluster of weight vectors. One common
way is to connect each trivial graph to its nearest trivial graph. This is to preserve
the order of similarities between the trivial graphs. This strategy can be altered
to fit real world problems.

3.2 Semi-supervised Extension to the Single Layered SOINN

Labeled information can augment the learning result of competitive learning
neural network. In this paper we propose a positive negative competitive learning
strategy that is different from previous extensions in two ways.

1. Robust to noise in labeled information.
2. Avoid label conflicts of weight vectors when learning with large labeled

datasets.

The basic idea of positive and negative competitive learning is that when
the label of the winner weight vector is contradicting with the current sample,
the winner weight vector and its topological neighbors are moved away from the
current sample. The implementation details are as follows.

Step 1 is the same as the unsupervised learning step while the major difference
is in step 2. In step 2, the compatibility of labels between the new input V and
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the winner Ws must be checked first. If the label of V is the same as Ws or that
V is unlabeled, step 2 will proceed the same as in the unsupervised learning,
which is the positive competitive learning. If they are conflicting, Ws will be
pushed away from V . But the scale of the push can not simply be 1

cs
(V − Ws),

because the input V might be a noise so far way from Ws that Ws would be
pushed away too much. To solve this problem we assume that the input V is
highly likely to be consistent to the second winner Wt. Then with the help of
Wt, we have

ω = min(
||V − Ws||ζ

||V − Ws||ζ + ||V − Wt||ζ ,
||V − Wt||ζ

||V − Ws||ζ + ||V − Wt||ζ ) (13)

Ws = Ws − ω

cs
(V − Ws) (14)

Wk = Wk − ωφ

cs
(V − Wk),∀k ∈ neighbor(s) (15)

where ζ is a user defined parameter. This updating strategy is under the assump-
tion that the closer V is to Ws, the less credential it is. We call this the negative
competitive learning. Finally, the complete algorithm of semi-supervised dimen-
sionality reduction with SOINN is illustrated in Algorithm1.

4 Experiments

First, experiments are carried out on artificial datasets to demonstrate the unsu-
pervised and semi-supervised learning abilities of the proposed method. Then
the evaluations are moved to the NSL-KDD [16] dataset. The reason for choos-
ing this dataset is that the test dataset is from a different distribution of the
training dataset, and handling such concept drift is one of the primary goals of
SSL algorithm designs.

4.1 Artificial Datasets

The first dataset (illustrated in Fig. 1) is unlabeled, on which the dimensionality
reduction abilities of the proposed method and PCA, Isomap, LLE [13] are
compared. The second dataset is partially labeled as illustrated in Fig. 2. The
second dataset is to demonstrate the SSL property of the proposed method.
Experiment results of the unsupervised dimensionality reduction is in Fig. 3;
and results on the second dataset is in Fig. 4.

It is shown in the unsupervised experiments that the proposed method is
able to perform dimensionality reduction as PCA and Isomap, and the results
are smooth as expected. The proposed method separates the two rings better
than PCA and the topology of data is better preserved than Isomap and LLE.

The results on the semi-supervised dataset show that the after processing by
the proposed method, the data items with different labels are redistributed such
that they are more easily to be separated linearly. Moreover, the in the proposed
method the differently labeled data are separated by a low density area.
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Algorithm 1. Semi-Supervised SOINN for Dimensionality Reduction
(SOINN-DR)
Input: Sequence {V } and the labels {l}, max age, λ, dimension d, SSL parameter ζ.
Output: Data after dimensionality reduction.

1: Initialize set W with 2 samples randomly drawn from input dataset.
2: while {V } is not empty do
3: Draw a new sample Vi from {V } and find its nearest and second nearest neighbors

(s and t).
4: if Labels of Vi and Ws do not conflict then
5: if Need to insert neuron then
6: Add a new weight vector with weight Vi to W, and set winning times ck = 0.
7: Add a new edge between s and t if none exists, and set edge weight to 0.
8: else
9: Update W with positive competitive learning. Increase edges ages connect-

ing to s, and the winning times cs by 1.
10: If Vi is labeled and Ws is unlabeled, label the later with the label of the

former; and if this cause contradictions of labels between s and its topology
neighbors, remove edges causing the contradictions.

11: end if
12: else
13: Update W with negative competitive learning. Increase edges ages connecting

to s, and the winning times cs by ω from equation (13).
14: end if
15: Delete edges with age larger than max age.
16: if number of input samples divides λ then
17: Remove neurons with less than 1 neighbors.
18: end if
19: end while
20: Eliminate trivial graphs by connecting weight vectors in different graphs that are

nearest to each other.
21: Calculate embeddings of W by equation (1) and eigendecompositions.
22: while There is a query about data item V ′ do
23: Calculate its dimensionality reduction with equation (12), equation (3), and

equation (4), and output.
24: end while

4.2 The Intrusion Detection Dataset

In this experiment the 34 numerical values of NSL-KDD intrusion detection
dataset are used. The SSL learning ability of the proposed method is evaluated
qualitatively and compared with other SSL methods such as label propagation,
TSVM. To compare with the unsupervised and supervised learning methods,
support vector machine (SVM) and Isomap are included as well. The 1 % of
the training dataset is drawn to form the labeled dataset; and the complete
test dataset is selected as the unlabeled dataset. The training of SSL methods
are on the mixture of the labeled and unlabeled datasets and the evaluation
results are on the unlabeled datasets. In this experiment we link all the trivial
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Fig. 1. Data are located on 2 interlocking rings.

(a) Training data (b) True labels

Fig. 2. A dataset to test the SSL abilities. Two classes are separated by a low density
area.

Table 1. Comparison results (%) on the NSL-KDD dataset

SVM SVM-PCA SVM-LLE SVM-Isomap TSVM SVM-SOINN-DR

Precision 82.8 79.9 20.1 85.5 82.6 86.3

Recall 74.7 74.3 44.9 83.5 80.8 86.2

F-measure 74.1 74.0 27.8 83.6 80.8 86.2

graphs generated by semi-supervised SOINN to a weight vector with a confirmed
intrusion label, because samples far from the main body of data are more likely
to be intrusions. The parameters are selected by grid search combining with cross
validation. The selected parameters of the proposed method are max age = 500,
λ = 350, d = 15, ζ = 0.6. The experiment results are listed in Table 1.

It is shown that the proposed method gives the best results. It is easy for
SSL methods to outperform the supervised and unsupervised methods because
of the concept drift. Besides, the proposed method is able to finish much faster
than TSVM (which takes hours per training). This is because the transductive
kernel construction is time consuming and the dataset is large in size (with over
20000 samples). In summery, the proposed method is an accurate and efficient
transductive learner alternative for TSVM.
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(a) PCA (b) Isomap

(c) LLE (d) SOINN-DR

Fig. 3. Comparison results of unsupervised dimensionality reduction.

(a) PCA (b) Isomap

(c) LLE (d) SOINN-DR

Fig. 4. Comparison results of semi-supervised embedding.

5 Conclusions and Future Works

In this paper, we employ the competitive learning neural network SOINN to solve
the semi-supervised dimensionality reduction problem. A semi-supervised exten-
sion to SOINN is introduced to process the mixture of labeled and unlabeled
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information. Then, weight vectors from SOINN are embedded to a lower dimen-
sional space by a quadratic programming optimization, where the distances
between weight vectors are preserved as much as possible and the graph similar-
ities defined by the graph kernel from SOINN are satisfied as constraints. Then
a similarity approximation is designed to process the remaining samples. The
experimental results show that the proposed method is capable of unsupervised
and semi-supervised dimensionality reduction, and it is an accurate and efficient
transductive learner alternative for TSVM.

There are a few techniques proposed in this paper that can be employed in
future works. First, the semi-supervised extension to SOINN can be employed in
other competitive learning neural networks such as GNG, Growing Cell Struc-
tures etc., with some modifications. Second, the proposed method still require
add-hoc designs when dealing with real world applications. It is worth investigat-
ing a substitute for semi-supervised SOINN. Third, the algorithm frameworks
generalization to transfer learning is possible since SSL is a special case of trans-
fer domain learning.
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Abstract. Traditional cross-view information retrieval mainly rests on
correlating two sets of features in different views. However, features in
different views usually have different physical interpretations. It may
be inappropriate to map multiple views of data onto a shared feature
space and directly compare them. In this paper, we propose a simple yet
effective Cross-View Feature Hashing (CVFH) algorithm via a “partition
and match” approach. The feature space for each view is bi-partitioned
multiple times using B hash functions and the resulting binary codes for
all the views can thus be represented in a compatible B-bit Hamming
space. To ensure that hashed feature space is effective for supporting
generic machine learning and information retrieval functionalities, the
hash functions are learned to satisfy two criteria: (1) the neighbors in
the original feature spaces should be also close in the Hamming space;
and (2) the binary codes for multiple views of the same sample should
be similar in the shared Hamming space. We apply CVFH to cross-
view image retrieval. The experimental results show that CVFH can
outperform the Canonical Component Analysis (CCA) based cross-view
method.

1 Introduction

As data collection channels and means become diverse, many real-world infor-
mation retrieval tasks can involve multiple views for the same samples collected
from different information sources. In these cases, people may have some exam-
ples in one view while intend to query the database in another view, which we
refer to cross-view information retrieval. There are many real-world examples:
In image retrieval, text captions [2,8] or point-of-interest features [17,23] can
be used to query images which are stored in color features. Such cross-view sce-
narios are inherently different from tag-based image retrieval, where the images
in the database are associated with tags thus the underlying retrieval task is
indeed text matching. In document retrieval, a document written in French can
be used to query documents written in English [12,20]. Other cross-view sce-
narios include audio-visual clustering [4], image-url clustering [14], image-video
retrieval [23], rating-attribute recommendation [6].
c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part I, LNAI 9651, pp. 203–214, 2016.
DOI: 10.1007/978-3-319-31753-3 17
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Cross-language text retrieval is one of the earliest applications involving
cross-view learning, where different translations of the same document can be
viewed as multiple views. An early approach to cross-view learning was based on
Latent Semantic Indexing (LSI) [12] until Canonical Component Analysis (CCA)
was introduced [8,20]. CCA is able to find two projections to maximize the cor-
relation between two sets of variables. A recent example [24] applies an improved
version of CCA to learning query and image similarities. By applying CCA to
cross-view learning, the data in two different feature spaces can be projected
to a common low-dimensional space and the projected features thus become in
the same representation for similarity comparison. However, directly comparing
two sets of data, which have different physical interpretations, is unreasonable,
although they have been linearly projected to the “same” space. In fact, such
“same” space only means that the dimensionality is identical for two data sets;
while the interpretation of each dimension of this “same” space is still different
for two data sets. Due to this limitation, CCA shows less advantage in cross-view
information retrieval [17].

Spectral embedding [1] can be used as a compatible representation for dif-
ferent views of data since the embedded data are derived from affinity graphs,
which have the same physical interpretation for different views. Some works have
been proposed to solve multi-view learning problems based on spectral embed-
ding [14,23]. A limitation is that spectral embedding can be hardly extended
to out-of-sample setting. The linear version [9] of spectral embedding may be
applied to address this limitation by using a linear projection. However, linear
projection will induce the same problem like that in CCA since linear projection
involves comparison of the original different views of data.

Recently, “learning to hash” becomes an active research topic in informa-
tion retrieval [10,13,15,19,22]. Different from classical Locality-Sensitive Hash-
ing (LSH) techniques used in databases [3,7], where hash functions are designed
manually, learning to hash aims to learn good hash functions from training data
to preserve locality better while using fewer bits. By hashing, the data in the
original feature spaces are encoded into binary codes. Some existing works have
considered learning to hash in cross-view scenarios: Relational-aware heteroge-
neous hashing [16] and heterogeneous translated hashing [21] project data from
different views to Hamming spaces with different lengths. In contrast, the idea
of this work is motivated from the following observation:

Hashing indeed performs bi-partitions on the original feature spaces for
B times using B hash functions, and the resulting B-bit binary codes of
the original data can be interpreted as indices of the cells. If we can match
the partitions of original feature spaces for different views, we can compare
similarity of the binary codes from different views using Hamming distance.

Motivated by the existing “learning to hash” research, we propose a simple
yet effective Cross-View Feature Hashing (CVFH) algorithm via a “partition
and match” approach. The feature space for each view is bi-partitioned multiple
times using B hash functions and the resulting binary codes for all the views can
thus be represented in a compatible B-bit Hamming space. More specifically,
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we first bi-partition multiple graphs of different views using Normalized Cuts
(NCut) [18], based on a combined graph Laplacian of multiple views to preserve
a consensus locality. The consensus locality preserving balances the geometry
structures of multiple views. The NCut results (B binary label sets for the nodes
on the graphs) are used for supervised hash function training. Since the hash
functions for different views are all learned on the same labels, the partitions of
different feature spaces can be matched. For test, our method hashes features in
different views and uses the resulting binary codes of one view to query another
view. We apply CVFH to cross-view image retrieval on the NUS-WIDE-LITE
image data. The experimental results show that CVFH can clearly outperform
the CCA-based cross-view method.

The remainder of the paper is organized as follows: We first formulate the
cross-view information retrieval problem in Sect. 2. Then we introduce a pre-
liminary cross-view information retrieval method based on CCA and spectral
hashing in Sect. 3. Our CVFH algorithm is presented in Sect. 4. The experimen-
tal results are reported in Sect. 5 and the paper is concluded in Sect. 6.

2 Problem Formulation

Suppose there are S data sources. A sample xn is generated from these
data sources that combine S views of heterogeneous features, i.e. xn =
{x(1)

n , . . . ,x(S)
n }. The data for the s-th view is represented by a matrix X(s) =

[x(s)
1 . . .x(s)

N ] ∈ R
D(s)×N , where N is the number of samples and D(s) is the

dimension of the feature space of the s-th view.
Our goal is to learn S sets of hash functions to map the multi-

view data {x(1)
n , . . . ,x(S)

n } from their original heterogenous feature spaces,
R

D(1)
, . . . ,RD(S)

, onto a common Hamming space {−1, 1}B . For the s-th view,
there are B hash functions h

(s)
1 , . . . , h

(s)
B , where h

(s)
b : R

D(s) �→ {−1, 1}, for
b = 1, . . . , B. By the following feature hashing

y(s)
n = [h(s)

1 (x(s)
n ) . . . h

(s)
B (x(s)

n )]� (1)

the mapped B-bit binary data for all the data views, {y(1)
n , . . . ,y(S)

n } ∈ {−1, 1}B ,
become comparable in the common Hamming space. Similarly, we let a sample in
the mapped Hamming space yn = {y(1)

n , . . . ,y(S)
n }, and Y(s) = [y(s)

1 . . . y(s)
N ] ∈

{−1, 1}B×N .
The mapping in (1) can be viewed as an encoding process such that the data

in the original heterogenous feature spaces, RD(1)
, . . . ,RD(S)

, which cannot be
directly compared with one another, are encoded in the same representations,
{−1, 1}B , which are compatible across S views of data.

The S sets of hash functions are learned to satisfy the following two criteria:

– The neighbors in the original feature spaces should be also close in the Ham-
ming space; and

– The binary codes for multiple views of the same sample should be similar in
the Hamming space.
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3 Preliminary and A Baseline Approach

In this section, we introduce a baseline approach to cross-view information
retrieval by combining CCA and spectral hashing. This baseline approach only
maximizes the correlation but does not preserve locality between two sets of
features in different views.

3.1 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) was proposed by Hotelling in 1936 and
is a frequently used method in multivariate analysis. It was introduced to multi-
view learning by Shawe-Taylor and his colleagues with a number of studies [8,20].
The aim of CCA is to find basis vectors, v(s) and v(t), for two sets of variables
such that the correlation between the projections of the two sets of variables
onto these basis vectors is mutually maximized. Take the data in two views,
X(s) and X(t), for example, the objective of CCA [8] is to

maxv(s),v(t) [v(s)]�Σ(s,t)v(t) (2)

s.t. [v(s)]�Σ(s,s)v(s) = 1 (3)
[v(t)]�Σ(t,t)v(t) = 1 (4)

where Σ(s,s) and Σ(t,t) are within-sets covariance matrices while Σ(s,t) is between-
sets covariance matrix, which are computed from X(s) and X(t). The optimal basis
vectors can be obtained by solving an eigen decomposition problem.

The data in the original feature spaces then can be projected onto a shared
B-dimensional space by using the basis vectors with top B eigenvalues, i.e.,
[V(s)]�X(s) and [V(t)]�X(t), where the columns of V(s) and V(t) are B eigen-
vectors. The projections from two data views can thus be compared by comput-
ing a distance. A large number of cross-view learning methods are based on this
approach [2,4,8,17,20].

3.2 Spectral Hashing

Spectral Hashing (SH) [22] is a recently proposed hashing algorithm based on
the well developed graph theory in machine learning. It reveals the fact that
graph bi-partition is equivalent to the locality-sensitive criterion used in Locality-
Sensitive Hashing (LSH) [7]. Based on this observation, spectral hashing resorts
to bi-partitioning a graph using Laplacian eigenmaps [1] and uses the signs of a
set of eigenvectors1 as the hashing codes. The objective of spectral hashing [22]
is to

1 The signs of eigenvectors of a graph Laplacian are used as bi-partition labels in
spectral clustering.
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minY(s)
1
2

∑
n,m

W(s)
nm||y(s)

n − y(s)
m ||2

= trace(Y(s)L(s)[Y(s)]�) (5)

s.t. Y(s) ∈ {−1, 1}B×N (6)

Y(s)1 = 0 (7)

Y(s)[Y(s)]� = NI (8)

where W(s)
nm denotes the similarity between x(s)

n and x(s)
m , L(s) = diag(W(s)1)−

W(s) is the Laplacian matrix. This is an integer programming known as NP-
hard. Spectral hashing relaxes the problem by removing the constraint Y(s) ∈
{−1, 1}B×N and it reduces to a spectral embedding problem.

The obtained eigenvectors with B smallest eigenvalues (except the last one)
can be used to encode the training samples while the out-of-sample test remains
a problem. The authors in [22] adopt a set of data independent eigenfunctions as
the hash functions while the authors in [13] extend the eigenvectors to eigenfunc-
tions using Nyström method. As a result, the test samples also can be encoded
into binary codes.

3.3 CCA+SH Baseline Algorithm

We combine the advantages of the above two techniques (i.e., CCA for cross-view
and SH for hashing) to introduce a baseline algorithm for cross-view information
retrieval:

1. Use CCA to compute two projection matrices, V(s) and V(t), which can max-
imize the correlation between X(s) and X(t). Project X(s) and X(t) onto the
shared B-dimensional common space and obtain [V(s)]�X(s) and [V(t)]�X(t).

2. Use spectral hashing to hash [V(s)]�X(s) and [V(t)]�X(t) and obtain two sets
of binary codes, Y(s) and Y(t), for the two views of the data set.

3. Use a code in one view (e.g., y(s)
n ) to query the database in the other view

(e.g., Y(t)) based on Hamming distance.

This baseline approach will be compared to the proposed CVFH algorithm
in the experiments. Note that this algorithm only can be applied to two-view
setting since it is based on CCA.

4 CVFH: Cross-View Feature Hashing

4.1 Objective

The objective of CVFH is twofold: (1) For each view, the distance of any pair
of mapped data, y(s)

n and y(s)
m , in the Hamming space should be proportional to

the distance of their preimages, x(s)
n and x(s)

m , in the original feature space. In
other words, CVFH is a locality-preserving mapping. (2) For all the views, the
mapped data of different views for the same sample, y(1)

n , . . . ,y(S)
n , should be as
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close as possible in the Hamming space. In other words, CVFH is a cross-view
adaptation mapping.

Fortunately, we have found a way for our problem to satisfy the above two
criteria. Since the objective of spectral hashing can satisfy the first one, we also
adopt the idea of graph bi-partition for feature hashing. For the second one, as
we argued in Sect. 1, since linear projection like CCA is not interpretable for
comparing samples based on distance, we will resort to another way to bridge
different views.

4.2 “Bi-Partition and Match” Strategy

As we have highlighted in Sect. 1, the essence of partition-based hashing approach
is to bi-partition the original feature spaces for B times using B hash functions
and then index the obtained cells with binary codes. Thus, the Hamming spaces
after feature hashing for different views actually have the same interpretation,
that is the cell indices of the original feature spaces. Thus, as long as we can
match the partitions of the original feature spaces for different views, we can
compute similarity of the binary codes from different views in Hamming distance.

To match the partitions of the original feature spaces means that, in the
corresponding cells of multi-view original feature spaces, the samples should be
the same ones in different views. For example, in Fig. 1, after bi-partitioning the
two original spaces, the samples of two views fall in each cell (e.g., cell ‘11’)
are the same data points (e.g., the red ones). If the multi-view data in all the
partitioned cells are the same ones, we say that the multi-view original spaces are
completely matched. Of course, on a real-world data set, we can hardly achieve
a complete matching.

To achieve a good matching between different views, we adopt a combined
graph Laplacian of multiple views to preserve a consensus locality, i.e.,

∑
s L(s).

Since we expect the resulting binary codes are as similar as possible for the
multi-view data of the same sample, we let the eigenvectors for all views be
identical as Y. We solve the following problem

minY trace(Y
∑
s

L(s)Y�) (9)

s.t. Y ∈ {−1, 1}B×N (10)
Y1 = 0 (11)
YY� = NI (12)

This problem is very similar to the one in spectral hashing. To achieve more
balanced graph cuts, we adopt Normalized Cuts (NCut) [18] to bi-partition
the combined graph. The consensus locality preserving is able to balance the
geometry structures of multiple views. Then, we can select B sets of eigenvectors
with smallest eigenvalues (except the last one) to extract their signs as the binary
codes for the training samples. Note that the multi-view data of the same sample
in all views will get the same binary codes. These binary codes will be used as
supervision information to learn hash functions for different views.
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4.3 Hash Functions

We will learn S sets of hash functions, based on the supervision information of
NCut results (B binary label sets for the nodes on the consensus graph), for
S views and each set has B hash functions. Formally, to learn a hash function
h
(s)
b for the b-th bit in the s-th view, we perform supervised learning to train a

binary classifier on X(s) with labels yb (the b-th row in Y). Since all the hash
functions for different views are learned on the same labels, the cells of different
feature spaces partitioned by the learned hash functions can be matched.

Any binary classifier can be used as hash functions for CVFH. It can also
be naturally extended to nonlinear functions by using kernels. For simplicity, we
adopt the following form for the linear case

h
(s)
b (x(s)

n ) = sign([w(s)
b ]�x(s)

n ) (13)

where w(s)
b = X(s)yb, and adopt the following one for the nonlinear case

h
(s)
b (x(s)

n ) = sign(
∑
m

yb,mκ(x(s)
m ,x(s)

n )) (14)

where κ is a kernel function, such as the Gaussian kernel used in our experiments.
Note that no optimization is required for the above two forms of hash functions.

For test, a sample x(s)
n is first hashed into a B-bit binary code using

h
(s)
1 , . . . , h

(s)
B , and the obtained binary code can be used for query in the database

in other views.

4.4 CVFH Algorithm

We summarize the CVFH algorithm as follows:

1. Use NCut to perform bi-partitions on the consensus graph Laplacian,
∑

s L(s),
of S views. Extract the signs of the obtained eigenvectors Y with smallest B
eigenvalues (except the last one).

2. Perform supervised learning to learn a hash function h
(s)
b for the b-th bit in the

s-th view, on the data set X(s) with labels yb, for s = 1, . . . , S, b = 1, . . . , B.
3. Hash a test sample x(s)

n using h
(s)
1 , . . . , h

(s)
B into a B-bit binary code and

use the code to query the database in the other views based on Hamming
distance.

Since CVFH dose not involve additional optimization problems compared to
spectral hashing, the computational complexity is as same as that for spectral
hashing.

5 Experiments

In this section, we report our experimental results obtained from both synthetic
and real-word data sets. In the first part of the experiments, we use a toy data
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Fig. 1. Cross-view feature hashing on a toy data set where row 1 and row 2 represent
view 1 and view 2, respectively. After two bi-partitions on the original feature spaces
(the 1st column) using two hash functions (the 2nd and the 3rd columns, two gray scales
denote ‘0’ and ‘1’, respectively), the data of two views are matched in the Hamming
space (the 4th column, four gray scales denote ‘00’, ‘01’, ‘10’, and ‘11’, respectively)
(Color figure online).

set to intuitively demonstrate the idea of CVFH for matching different views
of data in the shared Hamming space. In the second part of the experiments,
we use the NUS-WIDE-LITE2 image data set as our testbed to validate the
effectiveness of the CVFH algorithm for cross-view information retrieval.

5.1 Results on Toy Data

We generate the toy data as follows: (1) Let the column vectors in⎡
⎢⎢⎣

−1 −3 1 3
−3 −1 3 1
3 −1 −3 1

−1 3 1 −3

⎤
⎥⎥⎦

be the means of four Gaussians. (2) Let a 4×4 identity matrix be the covariance
matrices for the four Gaussians. (3) Draw 50 samples from each Gaussian and
obtain 200 samples in total, represented by a 4 × 200 matrix X, one column
for one sample. (4) Let the first two dimensions be the first view, X(1), and the

rest two dimensions be the second view, X(2), i.e., X =
[
X(1)

X(2)

]
. The generated

samples are plotted in Fig. 1, where the upper row is for the first view and the
bottom row for the second view, and four colors are used to indicate the samples
from four different Gaussians.

We perform CVFH on the two views of the toy data using the linear form of
hash functions (13) and the results are shown in Fig. 1. The first hash functions

2 http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm.

http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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for both views are illustrated in the second column and the second hash functions
in the third column. One can clearly find that the hash functions bi-partition
the feature spaces into two parts. By integrating the hashing results of both the
first and the second hash functions, we finally partition the two feature spaces
into four cells (2-bit Hamming space). One can see that the four cells in both
views can be completely matched (e.g., the cells of ‘11’ in both views comprises
the red samples), although the samples in two views have different distributions
in the original feature spaces.

From the illustration in Fig. 1, it is clear that the essence of CVFH is to
bi-partition the original multi-view feature spaces by preserving the cross-view
locality, and match the cells in both views after B bi-partitions. Through this
approach, the samples in different views can be finally mapped into a common
Hamming space with an interpretable physical meaning.

5.2 Results on NUS-WIDE-LITE Image Data

The NUS-WIDE-LITE image data set comprises 55,615 images, half of which
(27,807 images) are used for training and the rest (27,808 images) for testing.
Some sample images are shown in Fig. 2. Each image is tagged (or annotated)
with one or multiple concepts. There are 81 concepts (organized in a hierar-
chical structure) in total for all images in the data set. Examples of concepts
include Animal, Person, Sports, Dancing etc. Each image is represented in five
sets of low-level features, including (1) 64-D color histogram (CH), (2) 144-D
color correlogram (CORR), (3) 225-D block-wise color moments (CM), (4) 73-D
edge direction histogram (EDH), and (5) 128-D wavelet texture (WV). We con-
catenate the three color-related features as the first view and concatenate the
other two texture-related features as the second view, and obtain the data for
two views as follows,

1. First View (CH+CORR+CM = 433 dimensions): a 433×27807 matrix X(1)
train

for training and a 433 × 27808 matrix X(1)
test for testing.

2. Second View (EDH+WV = 201 dimensions): a 201×27807 matrix X(2)
train for

training and a 201 × 27808 matrix X(2)
test for testing.

Fig. 2. Examples of the NUS-WIDE-LITE image data set.
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Fig. 3. Performance comparison on the NUS-WIDE data set. “Good neighbors” are
defined as pairs of data in the original feature space whose distances are in the top 5th
percentile (same setting as that in [10,22]). The performance of SH and PCA+SH are
single-view results and they are plotted as the upper bound for cross-view results. In
both “View 2 → View 1” (left panel) and “View 1 → View 2” (right panel) settings,
the proposed CVFH clearly outperforms the CCA-based baseline method, especially
in the second setting (right panel), where CVFH even approaches the upper bound.

We first perform CVFH on the training data set with two views to learn hash
functions and apply them to the test data set. We then obtain the binary codes
of the test data set for two views, represented in two B ×27808 binary matrices,
Y(1)

test and Y(2)
test, respectively. We investigate the impact of the number of bits

B for the retrieval performance by changing its value in {5, 10, 15, . . . , 50}.
We follow the same performance evaluation method used in [10,22] by count-

ing the retrieved “good” neighbors in Hamming space that the distance between
the queried example and the retrieved one is smaller than 2. The “good” neigh-
bors are defined as pairs of data in the original feature space whose distances
are in the top 5th percentile. We plot the cross-view image retrieval results in
Fig. 3. The performances of Spectral Hashing (SH) [22] and PCA+SH are not
cross-view but single-view results and they are plotted as the upper bound for
cross-view results. That is, the closer to the performance of SH and PCA+SH,
the better the cross-view retrieval is, by approaching the performance of querying
and searching in the same view. The CCA+SH approach is used as the cross-
view baseline introduced in Sect. 3. The Matlab implementation for SH used in
our experiments is downloaded from the authors’ homepage3 and for the PCA
and CCA methods, we use the built-in functions in Matlab.

The left panel shows the results of “using examples in View 2 (texture) to
query from the database in View 1 (color)” for CCA+SH and CVFH; while the
right panel shows the results of “using examples in View 1 (color) to query from
the database in View 2 (texture)” for CCA+SH and CVFH. The performance is
averaged over 10 times and, for each time, we randomly select 100 examples in

3 http://www.cs.huji.ac.il/yweiss/SpectralHashing/.

http://www.cs.huji.ac.il/yweiss/SpectralHashing/


Cross-View Feature Hashing for Image Retrieval 213

one view of the test set to query the test data in the other view. From Fig. 3, we
can find that the proposed CVFH algorithm can clearly outperform the baseline
method CCA+SH, especially in the second setting (right panel), where CVFH
even approaches the upper bound.

Apart from the promising performance, we also observe a phenomenon that
the performance of CVFH tends to decline at 30∼40 bits after continuous increas-
ing. A possible explanation is that, with the increasing number of hash functions,
the feature spaces of both views are partitioned into more and more cells, and
the feature spaces can be hardly matched in such a fine granularity.

6 Conclusion and Future Work

In this paper, we propose a simple yet effective Cross-View Feature Hashing
(CVFH) algorithm via a “partition and match” approach. We argue that exist-
ing approaches for multi-view learning, such as Canonical Component Analysis
(CCA), mainly project different feature spaces to a common low-dimensional
space for computing similarities. But directly comparing two sets of features,
which have different physical interpretations, may be unreasonable, although
they have been linearly projected to the “same” space. To address the problem,
we propose a “partition and match” cross-view feature hashing algorithm. By
bi-partitioning multi-view feature spaces into cells based on a consensus locality-
preserving graph cut, CVFH can match the original feature spaces for different
views in a compatible Hamming space. In doing so, the multi-view data from
different feature spaces can be directly compared for computing similarities, with
an interpretable physical meaning. Experimental results on both synthetic and
real-world data sets validated the effectiveness of the proposed CVFH algorithm.

In the future work, we will extend the “partition and match” strategy to
match hierarchically partitioned spaces for recursive hashing [5,11].
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Abstract. The selection of metafeatures for metalearning (MtL) is often
an ad hoc process. The lack of a proper motivation for the choice of a
metafeature rather than others is questionable and may originate a loss
of valuable information for a given problem (e.g., use of class entropy and
not attribute entropy). We present a framework to systematically gen-
erate metafeatures in the context of MtL. This framework decomposes
a metafeature into three components: meta-function, object and post-
processing. The automatic generation of metafeatures is triggered by the
selection of a meta-function used to systematically generate metafeatures
from all possible combinations of object and post-processing alternatives.
We executed experiments by addressing the problem of algorithm selec-
tion in classification datasets. Results show that the sets of systematic
metafeatures generated from our framework are more informative than
the non-systematic ones and the set regarded as state-of-the-art.

Keywords: Metalearning · Systematic metafeatures · Algorithm
selection · Classification

1 Introduction

A central task in the data mining process is the selection and training of a learn-
ing algorithm on a dataset. Given the number of learning algorithms available,
this task can become very time consuming, especially if the data analyst does not
have the necessary experience to focus on the most promising ones. Therefore,
there is a need for systems that automate this process and guide the data ana-
lyst in the search for a learning algorithm that better suits a given dataset [1].
Such systems must reduce the amount of time for model development without
significant loss of model performance when compared to the best learning algo-
rithm. Metalearning (MtL) is one approach that can be used to address this
need. Brazdil et al. defined MtL as the study of principled methods that exploit
meta-knowledge to obtain efficient models and solutions by adapting machine
learning and data mining processes [2].

Although the MtL literature proposes many metafeatures of different types
for a wide range of problems (e.g., statistics and landmarks), most of those
metafeatures are developed in a ad hoc way. For instance, some papers report
the use of the entropy function applied to the target atribute in classification
c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part I, LNAI 9651, pp. 215–226, 2016.
DOI: 10.1007/978-3-319-31753-3 18
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problems, i.e. the class entropy metafeature, but only a few use metafeatures
based on the application of the same function to independent attributes, i.e.
attribute entropy [3]. Very often, there is no justification for such options. We
claim that the literature lacks an unifying framework to categorize and develop
metafeatures. Therefore, this paper proposes one such framework to support the
systematic generation of metafeatures for MtL problems.

Our proposal is a framework that decomposes a metafeature into three
fundamental components: meta-function, object and post-processing functions.
A meta-function (e.g., entropy) is applied to an object (e.g., set of independent
variables) and the result is post-processed (e.g., average value), resulting in a
metafeature (e.g., average attribute entropy). This decomposition enables the
systematic generation of sets of metafeatures by applying the meta-function to
all possible objects and process the result with all the possible post-processing
functions.

In the experiments described in this paper, we use three meta-functions
to generate systematic metafeatures: entropy, mutual information and corre-
lation. We compare our approach with state-of-the-art metafeatures: the set of
simple, statistical and information-theoretic metafeatures proposed by Brazdil
et al. [3], landmarkers [4] and the pairwise meta-rules proposed by Sun and
Pfahringer [5]. We address the problem of selecting the best algorithm for a
classification dataset.

This paper is organized as follows. Section 2 describes the state-of-the-art in
MtL regarding applications and metafeatures. In Sect. 3 we present the frame-
work that supports systematic generation of metafeatures and we use it to
decompose several metafeatures proposed in the literature. In Sect. 4 we present
the results of the experiments that we carried out. Finally, Sect. 5 presents the
conclusions and indicates some directions for future work.

2 Metalearning

Figure 1 illustrates a common MtL framework for algorithm recommendation,
step by step. The process starts with a collection of datasets and learning algo-
rithms. For each of those datasets, we extract metafeatures that describe their
characteristics (A). Then, each algorithm is tested on each dataset and its perfor-
mance is estimated (B). The metafeatures and the estimates of performance are
stored as metadata. The process continues by applying a learning algorithm (a
meta-learner) that induces a meta-model that relates the values of the metafea-
tures with the best algorithm for each dataset (C ). Given the metafeatures of a
new dataset (D), this meta-model is used to recommend one or more algorithms
for that dataset (E ).

As in any other ML task, the success of the application depends on the
ability to include informative (meta) features in the data. The literature clearly
groups metafeatures into three types: (1) simple, statistical and information-
theoretic (2) model-based and (3) landmarkers [2]. In the first group we can find
the number of examples of the dataset, correlation between numeric attributes or
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Fig. 1. Metalearning framework for algorithm recommendation.

class entropy, to name a few. Application of these kinds of metafeatures provides
not only informative metafeatures but also interpretable knowledge about the
problems [3]. The model-based ones [6] capture some characteristics of a model
generated by applying a learning algorithm to a dataset, e.g., the number of
leaf nodes of a decision tree. Finally, landmarkers [4] are generated by making
a quick performance estimate of a simple learning algorithm in the dataset. For
instance, the predictive performance of a Decision Stump.

The main focus of MtL research has been the problem of algorithm recom-
mendation and is most commonly applied to classification problems. Brazdil
et al. [3] proposed an approach that provides recommendations in the form of
rankings of learning algorithms. They used simple, statistical and information-
theoretic metafeatures. Sun and Pfahringer [5] extended the work of Brazdil
et al. with two main contributions: the pairwise meta-rules (PMR), a higher-
level type of metafeatures generated by comparing the performance of individual
base learners in a one-against-one manner; and a new meta-learner for ranking
algorithms. Besides PMR, they characterized datasets mainly with landmarkers.

However, MtL has also been used in other applications: time series forecast-
ing [7], parameter tuning [8], data streams [9,10] and others [2]. This lead to
a large set of metafeatures proposed in the literature for very different prob-
lems. It is common to find discrepancies between the use of a function such as
entropy or mutual information to measure exclusively a specific object. Often,
it is mandatory to adapt the set of metafeatures to the problem domain. For
instance, metafeatures that characterize the target feature in regression cannot
be used directly in classification. We believe that it would be useful to decompose
all these metafeatures into a common framework. Furthermore, such framework
must also help the MtL user to systematically develop new metafeatures.

3 Systematic Generation of Metafeatures

In this section, we propose a framework to enable a systematized and standard-
ized development of metafeatures for MtL problems. The framework decomposes
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a metafeature into three fundamental components: meta-function, object and
post-processing. Figure 2 illustrates the framework.

The key component of the framework is the meta-function, f. This compo-
nent is selected by the user according to his/her knowledge of the MtL problem.
Although we acknowledge that this choice may be based on an ad hoc decision,
the interest of a meta-function for a MtL problem should be well motivated.
For example, entropy is a concept used in several Machine Learning algorithms,
including decision trees [11]. Therefore, it is expected to be useful to better
understand the learning behavior of those algorithms. Furthermore, this deci-
sion is made at a more abstract level than the typical design of metafeatures
and is, thus, easier. For instance, it is indisputable that the concept of entropy
is important for learning decision trees and that it is likely that some of the
metafeatures that can be based on this function contain useful information on
the behavior of tree learning algorithms. It is less clear that class entropy is
useful and attribute entropy is not, or vice-versa. Finally, given the choice of
a meta-function, the methodology generates metafeatures that characterize all
components of the data with which it is compatible. This makes sure that the
metafeatures that contain useful information, if any, will be generated.

The formal definition of f is given in Definition 1.

Definition 1. A meta-function f is defined as

f : X → Y. (1)

X is formed according to the data specification and the arity suitable to f input
and the data specification and the arity of the O elements that are available for
the problem. Given O as a type of object about a learning problem, namely, a set
of examples, a row, an output column, a descriptive column, a model or a set
of predictions, X is any set composed of those six object; and Y is the set of all
possible results of applying f to X.

The selected meta-function has intrinsic characteristics that affect the
metafeatures that can be generated from it. Particularly, the data specification



Towards Automatic Generation of Metafeatures 219

and the arity of meta-function’s input, and the datatype and arity of the meta-
function’s output. Arity corresponds to the number of inputs of a function. For
instance, the arities of entropy and mutual information are, respectively, 1 and 2.
Regarding the data specification, we use the data mining ontology proposed by
Panov et al. [12] to guide the characterization. We take into account the role of
the element in the context of the learning problem, i.e., if the column corresponds
to descriptive data or output data. For instance, entropy is a meta-function that
allows discrete descriptive data, boolean descriptive data, discrete output data
and boolean output data as input. The arity of the objects X need to be equal
to 1 in order to suit the meta-function’s input. These characteristics are used to
identify which of the available objects X can be used to generate metafeatures.

Let us present some examples of objects. The examples type can be detailed
into a set of examples (e.g., all the examples of the dataset, a bootstrap sample of
the examples, a specific subset, etc.), a single row or a column. The column can
also be detailed into a column that represents an output variable or a column that
represents a descriptive one. For the model type, we refer to all the information
that can be measured regarding its induction and final output variable (e.g., the
value of a parameter or a characteristic of the model - number of leaf nodes of a
decision tree or the number of support vectors of a SVM). Finally, the predictions
type considers all the information that can be extracted from the output of a
predictive model when used to predict. For instance, to compute landmarkers,
it is necessary two types of objects: an output column and a set of predictions.
We give more detailed examples in Sect. 3.1.

The post-processing function p concerns the aggregation of the meta-function
output, Y . Formally, p is defined in Definition 2.

Definition 2. A post-processing function p is defined as

p : Y → MF (2)

where MF is the set of all possible metafeatures. The datatype and arity of
Y defines implicitly the post-processing function p that can be used to form a
metafeature.

For the meta-function’s output Y, we need to characterize its datatype (real,
discrete, boolean, etc.) and arity. Same thing for each post-processing function p.
If the characteristics of Y match with the ones from p, a metafeature is formed.
For instance, if the meta-function entropy is applied to n discrete descriptive
attributes, the datatype of Y is real and the arity is n. This allows to generate
metafeatures using post-processing functions such as mean, maximum value,
standard deviation, histogram bins, etc.

Our framework splits p into four groups: non-aggregated, descriptive statis-
tic, distribution and hypothesis testing. The non-aggregated alternative uses the
meta-function output in its raw state directly as metafeature(s). In some MtL
problems it might be useful not to aggregate the information. This is particu-
larly frequent in MtL applications such as time series or data streams where the
data has the same morphology [9] or when the MtL algorithm is relational [13].
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For instance, instead of computing the mean of the correlation between pairs of
numerical attributes, one could use the correlation between all pairs of numer-
ical attributes. It can also be the case that Y does not need aggregation and,
therefore, the non-aggregated post-processing function is applied.

The descriptive statistic case is perhaps the most common approach to aggre-
gate information and generate a metafeature. This can be accomplished by using
the mean, maximum, minimum, standard deviation, mode, etc. However, such
aggregation can cause loss of valuable information.

Another option is the distribution alternative. It captures a representation
of the output provided by the meta-function by characterizing its distribution.
This fine-grained aggregation can be achieved through the use of histograms
with a fixed number of bins as proposed in [14]. In this case, each bin is used as
metafeature, providing a description of the distribution of the meta-function’s
output.

Finally, the hypothesis testing subcomponent. Here, the output Y provided
by the meta-function f is used to test an assumption. For instance, it can test
whether the values of Y follow a normal distribution. The output of this test (it
can be a p-value or a nominal variable) is used as metafeature.

From Definitions 1 and 2, a metafeature mf ∈ MF can be defined as

mf = p(f(x)) (3)

where x ∈ X.

3.1 Decomposing Metafeatures

A first test to the validity of the proposed framework is to check if existing
metafeatures could be the result of its use. We show examples from three types
of metafeatures: simple, statistical and information-theoretic; model-based and
landmarkers.

Figure 3 illustrates the decomposition of five metafeatures. For instance, the
absolute mean correlation between numeric attributes is very similar to the corre-
lation between numeric attributes (used in data streams applications [9]) except
for the post-processing alternative. In this case, the application domain makes
it feasible and potentially more informative to not aggregate the correlation val-
ues. The framework decomposes the computation of the metafeatures in detail.
Furthermore, it allows the comparison between two or more metafeatures.

Still regarding Fig. 3, the decomposition of the two last metafeatures shows
that is possible to use the framework for more complex metafeatures. The number
of nodes of a decision tree is an example of a model-based metafeature. The
object component is the decision tree model, the meta-function is count and the
post-processing option is non-aggregated. Peng et al. [6] propose several model-
based metafeatures (for decision trees models) of this kind. Finally, we also show
an example of a landmarker. The decision stump landmarker, uses as object a
set of predictions and the output column of the dataset. In the example given,
the meta-function is individual accuracy. As post-processing function, the most
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common one is average. However, it could be used another, such as histogram
bins. This kind of flexibility is one of the advantages of our framework.

4 Experiments

The experiments that we present in this Section aim to answer two questions.

– (1) Is the proposed framework able to develop sets of systematic metafeatures
that are consistently more informative than non-systematic sets?

– (2) Is the set of systematic metafeatures computed with the proposed frame-
work more informative than the state-of-the-art metafeatures?

For both questions, we executed experiments by addressing the problem of
selecting the best algorithm in a set with a classification perspective [4,14].

4.1 Experimental Setup

For the first question, we carried out a set of experiments with the goal of
providing a proof of concept of our framework. By testing whether the system-
atic generation of metafeatures increases the amount of information of a set of
metafeatures, we show that our framework can be useful and help MtL users
to avoid an ad hoc selection of metafeatures. For the second question, we exe-
cuted experiments in which we compare the set of metafeatures generated by
our framework with a set of metafeatures regarded as state-of-the-art. All the
experiments were executed on 58 UCI classification datasets [15]. The selection
of the datasets was done randomly. To speed up the experiments, we limited
the number of instances in larger datasets to a maximum of 5000 instances with
stratified random sampling.
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Six classification algorithms were tested as base learners: NaiveBayes, k-NN,
C5.0, CART, SVM (with RBF kernel) and Random Forest. The estimates of
algorithm performance were done using 10-fold cross validation and accuracy as
error measure.1

We tested three different meta-learners: C5.0, SVM (with RBF kernel) and
Random Forests. Again, the estimates of performance of the meta-learners were
done using 10-fold cross validation (with 30 repetitions) and accuracy is the
performance measure. As baseline, we use the default class of the training set.
For statistical validation we used the methodology proposed by Demšar [16]:
Friedman rank test with Nemenyi test for post-hoc multiple comparisons.

We compare our approach with a set of metafeatures that are widely used
in the field. Brazdil et al. [3] proposed the following set of metafeatures of
the so called simple, statistical and information-theoretic: number of examples,
proportion of symbolic attributes, proportion of missing values, proportion of
attributes with outliers, entropy of classes, average mutual information of class
and attributes and canonical correlation of the most discriminating single lin-
ear combination of numeric attributes and the class distribution. To this set
of simple, statistical and information-theoretic metafeatures we also added the
absolute average correlation between numeric attributes. Finally, we included two
landmarkers: Decision Stump sub-sampling landmarker and a Naive Bayes sub-
sampling landmarker. We call this set of 10 metafeatures the Traditional one.

In order to provide a fair comparison, we designed metafeatures based as much
as possible on the concepts involved in the Traditional metafeatures. Therefore,
the set of objects consists on the dataset and on two sets of predictions: obtained
with Naive Bayes and Decision Stump. As post-processing functions p, we used:
mean, weighted mean, standard deviation, variance, minimum, maximum and his-
togram bins. We generated four sets of systematic metafeatures by selecting three
meta-functions: entropy, mutual information and correlation, resulting in 20, 36
and 19 metafeatures, respectively. The fourth set includes all the metafeatures
from the three previous sets (75 in total). The choice of the meta-functions was not
done randomly. We used meta-functions that are used in the Traditional set with
a non-systematic approach. Our approach is to use the very same meta-functions
together with our framework to generate systematic sets of metafeatures.

One of the disadvantages of using our framework to generate systematic
metafeatures is the curse of dimensionality. The number of metafeatures gener-
ated is usually very high. Since MtL applications don’t have a large number of
examples, this can be emphasized by our approach. So, we rely on two feature
selection algorithms to tackle this problem: ReliefF [17] and correlation feature
selection (CFS).

4.2 Systematized vs Unsystematized

The Critical Difference (CD) diagrams generated with the first set of experiments
is presented in Fig. 4. We set α = 0.05 for all experiments.
1 The estimates of performance showed that NaiveBayes was better in 4 datasets,

k-NN in 9, C5.0 in 23, CART in 2, SVM in 14 and Random Forest in 6.
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Fig. 4. Critical Difference diagrams for the meta-functions: entropy, mutual informa-
tion, correlation and all.

The Traditional set in those experiments changes according to the meta-
function which is being compared, to maximize the fairness of the comparison,
as discussed earlier. For instance, the Traditional set used against the systematic
metafeatures of the entropy meta-function consists of the following metafeatures:
entropy of classes, average entropy of symbolic attributes and the two landmark-
ers mentioned above. Similarly, if the meta-function for generating systematic
metafeatures is correlation, the Traditional set consists of the absolute average
correlation between numeric attributes and, again, the two landmarkers.

Overall, the metafeatures generated from our framework present superior
performance. This result is consistent regarding the meta-function and the meta-
learner. However, it is noticeable that the results obtained with the correlation
function are worst than in the other cases. It is probably related to the fact that
this meta-function cannot be applied to the target variable, as this is a nominal
variable and the input to the function must be numerical.

The set of metafeatures generated both with the meta-functions entropy and
mutual information present good results when compared with the Traditional
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set. The combination of the Systematic metafeatures with the feature selection
algorithm ReliefF presents a very good average rank in almost all CD diagrams.
This result is consistent across different meta-learners.

Although this is not shown on the CD diagrams, the average accuracy
obtained with the all set is lower than with the entropy and mutual information
set. This suggest that the curse of dimensionality does affect our methodology,
as expected. Since in the all set we gathered all the metafeatures generated from
the entropy, mutual information and correlation meta-functions, the number of
metafeatures is much higher. This makes the task of the feature selection algo-
rithms more difficult. Nevertheless, the results obtained are still better than the
baseline and the Traditional set.

4.3 Systematized vs State-of-the-art

Sun and Pfahringer [5] proposed the pairwise meta-rules (PMR), a metafeature
generation method based on rules that compare the performance of individual
base learners in a one-against-one manner. Adding the PMR to the sets of sys-
tematic metafeatures the probability that the results will be affected by the curse
of dimensionality. For each pair of algorithms (since we test 6 base-learners, we
have 15 pairwise comparisons) the method generates on average two PMR. So,
using PMR implies adding 30 new metafeatures.

The Traditional set used in this experiments comprises the 10 metafeatures
mentioned before in the beginning of Sect. 4. To prevent an unfair advantage of
our approach, we do not use the results of the previous experiments, in which the
sets based on the entropy and mutual information meta-functions obtained the
best results. Thus, we compare the all set, which includes all the metafeatures,
with the state of the art approaches. We added the respective PMR to the
Traditional and Syst.ReliefF sets, forming Traditional + PMR and Syst.ReliefF
+ PMR. We compared the four sets of metafeatures with the same meta-learners
used previously. We use ReliefF as feature selection algorithm.
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Fig. 5. Critical Difference diagrams of systematic metafeatures vs state-of-the-art in
the classification experiments.
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Figure 5 presents the results of the experiments. Comparing the sets of
metafeatures, it is noticeable that those generated using our framework present
a superior predictive performance in comparison with the Traditional sets. This
difference is statistically significant. Also, the result is consistent across different
meta-learners.

Regarding the addition of the PMR, the gain both on the Traditional or on
the Syst.ReliefF set is not statistically significant. Overall, the sets Syst.ReliefF
and Syst.ReliefF + PMR are the most informative across all meta-learners.

5 Conclusion and Future Work

This paper proposes a generic framework to develop metafeatures for MtL prob-
lems. This framework is a step towards the automatic generation of metafea-
tures. The framework is structured in such a way that the systematic generation
of metafeatures is triggered through the selection of a meta-function. Then,
given the objects and post-processing functions that are available, the frame-
work outputs a set of metafeatures generated according to the characteristics
(e.g., domain of the inputs) of the selected meta-function. The process can be
repeated with several meta-functions. The selection of the meta-function is cru-
cial and it should be chosen intuitively according to the MtL application.

Our experiments aim to answer two questions: (1) are the systematic sets
of metafeatures better than the non-systematic ones? (2) are the systematic
sets generated with the framework better than the state-of-the-art? In the first
set of experiments, we found that the systematic metafeatures generated are
consistently more informative than the non-systematic ones. In the second set of
experiments, we found that the systematic sets are also more informative than
state-of-the-art methods such as PMR.

As for future work, we plan to use this framework to generate systematic
metafeatures for different MtL problems that we have been working on, par-
ticularly, MtL for pruning of bagging ensembles and dynamic integration of
models [18].
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12. Panov, P., Soldatova, L., Džeroski, S.: Ontology of core data mining entities. Data

Min. Knowl. Disc. 28(5–6), 1222–1265 (2014)
13. Getoor, L., Mihalkova, L.: Learning statistical models from relational data. In:

ACM SIGMOD International Conference on Management of Data, pp. 1195–1198.
ACM (2011)

14. Kalousis, A., Theoharis, T.: Noemon: design, implementation and performance
results of an intelligent assistant for classifier selection. Intell. Data Anal. 3(5),
319–337 (1999)

15. Lichman, M.: UCI Machine Learning Repository. University of California, Irvine,
School of Information and Computer Sciences (2013). http://archive.ics.uci.edu/ml
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17. Robnik-Šikonja, M., Kononenko, I.: Theoretical and empirical analysis of ReliefF
and RReliefF. Mach. Learn. 53(1–2), 23–69 (2003)

18. Pinto, F., Soares, C., Mendes-Moreira, J.: Pruning bagging ensembles with met-
alearning. In: Schwenker, F., Roli, F., Kittler, J. (eds.) MCS 2015. LNCS, vol. 9132,
pp. 64–75. Springer, Heidelberg (2015)

http://archive.ics.uci.edu/ml


Hash Learning with Convolutional Neural
Networks for Semantic Based Image Retrieval

Jinma Guo, Shifeng Zhang, and Jianmin Li(B)

State Key Lab of Intelligent Technology and Systems,
Tsinghua National Lab for Information Science and Technology,

Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, China

guojinma@gmail.com, zsffq999@163.com, lijianmin@mail.tsinghua.edu.cn

Abstract. Hashing is an effective method of approximate nearest neigh-
bor search (ANN) for the massive web images. In this paper, we propose
a method that combines convolutional neural networks (CNN) with hash
learning, where the features learned by the former are beneficial to the lat-
ter. By introducing a new loss layer and a new hash layer, the proposed
method can learn the hash functions that preserve the semantic informa-
tion and at the same time satisfy the desirable independent properties of
hashing. Experiments show that our method outperforms the state-of-the-
art methods by a large margin on image retrieval. And the comparisons
with baseline models show the effectiveness of our proposed layers.

Keywords: Hashing · Convolutional Neural Network · Image retrieval

1 Introduction

The amount of web data, images especially, is growing rapidly. How to retrieve
images that meet users’ requirements from this extremely tremendous data with
efficient storage and computation has attracted extensive attentions from acad-
emia and industry [3].

Exhaustive nearest neighbor search is intractable. Approximate nearest neigh-
bor search (ANN) can return satisfactory results within logarithmic (O(log(n)) or
even constant (O(1)) time by organizing data with structures that keep the dis-
tance metric. Especially, hashing-based methods [5,14–16,19,24,26] with lookup
tables consume only constant time on a query. The compact codes of hashing can
also bring down the demand of storage, and the bitwise operations needed for a
query make hashing competent even in the case of exhaustive ranking.

Conventional hashing methods usually take low-level features as input and use
shallow models to generate the hash codes. However, the hand-crafted features
are fixed and not learnable for further improvements. Recently CNNH [24] gains
a great performance boost via deep model to learn hash codes. But this method
breaks the learning process into two separate stages. Firstly, pseudo hash codes
are learned from images’ labels. Then the codes are fixed and used to train a convo-
lutional neural network (CNN) model for later prediction. But some information
c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part I, LNAI 9651, pp. 227–238, 2016.
DOI: 10.1007/978-3-319-31753-3 19
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Fig. 1. The architecture of our proposed model in the training stage to learn hash
functions. The input size of the model is fixed, and hash layer is fully connected with
the prior. When training is done, the two softmax layers can be simply dropped and
the outputs of the hash layer are binarized as hash codes.

will be lost in the first stage. Although Lai et al. [16] and Zhao et al. [26] propose
one-stage ranking-based hashing methods respectively, both of which take only
ranking as the supervisory information, they do not use the classes information.

In this paper, we propose a novel model that learn deep features and hash
functions at the same time. As shown in Fig. 1, the model consists of three parts,
which are a stack of convolutional layers, one softmax loss layer for classification,
a new proposed hash layer and hinge softmax loss layer for hash code learning. Of
the above three parts, the first is used to learn semantic-preserving features, the
second is used to encourage the model to learn discriminant features from class
labels, while the third part will learn more hashing-like codes. When training is
done, the three loss layers will be dropped away and outputs of the hash layer
are binarized with 0 to generate the final hash codes. The proposed model is an
end-to-end system where feature extraction and hashing are combined.

The specific contributions of our work are as follows:

(1) we learn hash functions via CNN in the form of multi loss layers
(2) we introduce the hinge softmax loss layer and a hash layer into hash learning
(3) as far as we know, our results on the experimental datasets outperform the

state-of-the-art.

The remaining is organized as follows: related works are briefly reviewed in
Sect. 2. And the methodology of our work is described in Sect. 3. The experiments
and discussions are presented in Sects. 4 and 5. Finally, we conclude the whole
paper in Sect. 6.

2 Related Work

To generate n-bit code, hashing methods need n hash functions the kth of which
generally takes the following form:
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hk(x) =

{
1 fk(x) ≥ bk

0 fk(x) < bk
(1)

where x is the representation of a data sample, fk is the hashing function, and bk
is the corresponding threshold. Based on the method to get fk, hashing can be
divided into data-independent methods and data-dependent (or learning-based)
methods, of which the latter attempts to capture the inherent distribution of
the task domain by learning. And learning-based hashing can be classified into
unsupervised and supervised methods according to using annotation information
or not.

A typical category of Locality Sensitive Hashing (LSH) [5] uses random pro-
jection to construct hash functions. The property of LSH, that samples within
small Hamming distance in hash space are more likely to be near in their feature
space, makes it very attractive. But the metrics are asymptotically preserved
with increasing code length. Thus, to achieve high precision, LSH-related meth-
ods require large hash tables.

Unsupervised methods use only unlabeled data as training set, among which
are methods such as Kernelized LSH [15], Semantic Hashing [12,20] and Spectral
Hashing [23].

Supervised hashing utilizes human-annotated similarities or labels to get sat-
isfying codes. Supervised Hashing with Kernels (KSH) [19] uses kernel-based
model to minimize the Hamming distances of learned hash codes between sim-
ilar data samples while maximize the distances between dissimilar ones at the
same time. Binary Reconstruction Embedding (BRE) [14] learns hash functions
by minimizing the differences between original distances of any two samples
and the corresponding Hamming distances in hashing space. While initially pro-
posed as unsupervised hashing, BRE can be easily extended to a supervised one
by setting similar pairs with distance 0 and dissimilar pairs with distance 1.

These methods are kind of shallow and usually leverage some feature extrac-
tion algorithms to get the image representations. But the relationships between
samples in semantic space are not maintained in low-level feature apace. And
even combined with high-level features, the conventional hashing methods are
very likely to perform no better than an end-to-end system which learns the
feature extractor and hash functions together [26].

On the other hand, explosive interests in computer vision have been attracted
to CNN [13] since 2012. Its remarkable successes in kinds of tasks such as object
recognition [13,17,22], detection [13,22], image parsing [4] and video classifi-
cation [10] have narrowed the gap between machine and human vision by a
large step.

It has been suggested that the features in deep layers learned from ImageNet
possess great capability to represent visual content of images, and can be used
for different tasks, such as scene parsing [2], detection [6] and image retrieval [1].
Neural codes [1] uses activations of a fully-connected layer from an ImageNet-
pretrained CNN as descriptors of the input image. And then Euclidean distances
are computed to measure similarities. When retrained with datasets related to the
query field, the retrieval performance can be comparable with the state-of-the-art.
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CNNH and CNNH+ [24] take raw image as input, but divide the learning
process into two different stages. In the first stage, similarity/dissimilarity matrix
is decomposed to get the pseudo binary codes for training images. In the sec-
ond stage, the raw image pixels and the corresponding binary codes (CNNH+
together with their one-hot binary labels) are fed to a CNN whose objective
is to minimize the error between outputs and the target binary codes. But the
decomposition stage would bring about extra errors. And the pseudo codes are
fixed once the first stage is done, thus are not tunable for further improvement.

Lai et al. [16] proposes a deep neural network model to learn the hash func-
tions. And the model’s input is in the form of triplet, i.e., (I, I+, I−), meaning
image I is more similar with I+ than with I−. The sub-networks for each element
image of the triplet share parameters with each other. And the triplet ranking
loss function is:

loss(x, x+, x−) = max(0, ||x − x+||22 − ||x − x−||22 + 1)

s.t. x, x+, x− ∈ [0, 1]k
(2)

where x, x+ and x− are the sub-networks’ outputs of I, I+, I− respectively, and
k is the length of x, x− and x+. Zhao et al. [26] takes a similar method, but the
loss of every triplet is assigned with a weight which is defined by the numbers
of shared labels between query image and two result images.

In spite of the above method, [18,21,25] assume that good hash codes should
also be easily classified by a linear classifier, and take this target into hash
learning. In addition to the classification task, [21,25] penalize the output of
embedding functions to make it close to −1 and 1 as much as possible, while [25]
also requires the mean of each function to be 0.

3 Methodology

Given a set of class labels Y = {1, . . . , C} and an image dataset I =
{I1, I2, . . . IN} where each image is associated with one label yn, our goal is
to learn k hash functions which is used to encode images into k-bit hash codes.
When using the codes for retrieval, the images sharing same label with the query
image will be ranked on top of the result list.

In this paper, we propose a CNN architecture to learn the semantic-
preserving hash functions, as shown in Fig. 1. The input image first goes through
a stack of convolutional and pooling layers and then arrives at the concatenation
layer from where the model branches into two separate paths. Of the two paths,
one is the original softmax loss layer and the other is our hash layer and hinge
softmax layer.

Normally, suppose that xl is the output of the l-th layer of a CNN. Then if
l-th layer is a softmax layer which is used to predict a vector p of which the c-th
element is the probability of class c, the formulation is given by

pc =
exp(wT

c xl−1)∑
c′ exp(wT

c′xl−1)
(c = 1, 2, . . . , C) (3)

where wc is the weights related with class c, and xl−1 is the output of the
prior layer.
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3.1 Hash Layer

The hash layer is a fully connected layer which has no nonlinear function inserted.
By using fully connection, the hash layer can learn global semantic representa-
tions of the input image. And the hash layer’s output will be penalized by the
following formulation:

hash loss(x) =
ln∑
i=1

||1 − abs(g(xi))||2 (4)

where ln is the number of neurons in the hash layer. And g(xi) will take the
following form:

g(xi) =

⎧⎪⎨
⎪⎩

−1 xi ≤ −1
1 xi ≥ 1
xi otherwise

(5)

This loss can encourage the neurons to generate outputs that distributes less
around 0, which will be used as the threshold to binarize the outputs and get
the hash codes.

3.2 Hinge Softmax Loss

In hash learning, the target is more a rank problem than classification. It is
sufficient to make prediction of ground truth label py larger than the rest, while
the traditional softmax loss loss(y, p) = −log(py) can be too harsh. So we define
a loss modified from softmax, which takes the following form:

hinge softmax loss(y, p) =

{
0 py ≥ max(pỹ) + m

−log(py) py < max(pỹ) + m
(6)

where y is the ground truth label, ỹ is the rest of label set, p is the prediction
possibilities for every class and m is the slack that controls when the model
should be penalized.

By this formulation, for those samples that have been classified correctly by
a slack larger than m, the loss will be forced to be 0 and thus back propagate
no changes to the learnable parameters. Otherwise, the semantic representations
learned by CNN can be not so good, thus the penalization term will be taken.
So by this setting, the features of our hash layer can be semantically correct.

When m is set to be 1, because all the prediction possibilities are between 0
and 1, the hinge softmax loss will only execute the lower part and thus becomes
conventional softmax loss. And when m is no greater than 0, the loss can be
easily stuck in a local minimum, for example when the probabilities of all classes
are equal to a certain value.
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3.3 The Model

Traditional softmax loss can help in training the networks more discriminant. To
combine classification task with hash learning, we branch out from the layer prior
to the softmax layer and add a hash layer together with a hinge softmax layer.
By this way, the softmax loss in our model performs as an auxiliary classifier
like [17].

The overall loss function is given as:

min
W

L1(y, p) + αL2(xh) + βL3(y, p) + λ||W ||2 (7)

where W is all the parameters that are to be learned in the network, L1 is the
hinge softmax loss, L2 is the loss of our proposed hash layer, L3 the softmax
loss for classification and the last term is the weight decay, α and β are hyper-
parameters.

By our loss function, the representations learned by the proposed hash layer
can preserve the semantic information and be more hashing-like.

Compactness is an important property of hash codes. The binary code gen-
erated by every function should be independent with each other and the infor-
mation carried by the binary bit should be maximized. Compared with [16], we
take advantage of dropout’s [8] capability to prevent co-adaption where a feature
detector is only helpful in the presence of several other specific feature detectors.
With a dropout layer inserted between the hash layer and hinge softmax loss
layer, the neurons of hash layer can be independent of each other.

3.4 Hash Codes

The networks are trained by stochastic gradient descent. When training is done,
the two softmax layers can be simply dropped and use the rest architecture to
generate the hash codes. When a new image comes, it is first filtered by the
model so as to being encoded into a k-dimension vector, and then the vector is
binarized into the final hash codes according to Eq. (1) with all bk set to be 0.

4 Experiments

4.1 Experimental Settings

We compare the proposed model with one data-independent method LSH [5],
and four supervised methods BRE [14], KSH [19], CNNH [24] and [16] on two
widely used benchmark datasets, i.e., the CIFAR-10 dataset1 [11,16] and the
Street View House Number (SVHN) dataset2. And we will call the model of [16]
TRCNNH for short.

For fair comparison, we sample 1000 images from each dataset as query set
and another 5000 from the rest for training like [16]. For LSH, all the data except
1 http://www.cs.toronto.edu/∼kriz/cifar.html.
2 http://ufldl.stanford.edu/housenumbers/.

http://www.cs.toronto.edu/~kriz/cifar.html
http://ufldl.stanford.edu/housenumbers/
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the query set are training set. The 5000 keeping-label samples serve as training
set for the other methods. And following [16], images are represented by 512-dim
GIST features for non-CNN methods.

As for our proposed method, the 5000 labeled samples in each datasets are
divided into training set and validation set by which to find the most suitable
architecture and tune the hyper-parameters. Then all the 5000 samples are used
to retrain the model from scratch.

The description of an architecture is given in the following way: 3× 32× 32-
32C5P2-MP3S2-32C5P0-D0.5-SL10 represents a CNN with inputs of 3 channel
of 32 × 32 pixels, a convolutional layer with 32 filters whose size is 5 × 5 and 2
paddings around the input maps, a max pooling layer (AP for average pooling)
of 3 × 3 size and stride 2, a 32-filters convolutional layer whose kernel size is
5 × 5 and have 0 padding around the input maps, a dropout layer whose dropout
ratio is 0.5, and finally a softmax loss layer with 10 classes. And our hash layer
is always connected with the last hidden layer. Rectifier Linear Unit (ReLU) is
used as the nonlinear transformation neurons for all convolutional layers.

Hash lookup and Hamming ranking are two widely used methods to conduct
search with hashing [16,24]. Hash lookup constructs a lookup table with radius r
in advance, and all the samples within the radius will be returned as results, thus
can decrease the query time to a constant value. However, the number of results
returned will dramatically decrease with the code’s length increases. On the other
hand, Hamming ranking will traverse the dataset all through at a new coming.

We evaluate the performances on three metrics, i.e. Precision curves within
Hamming radius 2, Precision-Recall curves and Precision curves with respect to
different returned number with ranking.

Our models are implemented with Caffe [9], an open-source CNN framework.
On both datasets, our networks are trained with stochastic gradient descent.
The momentum is set to 0.9. Weight decay coefficients for convolutional layers
and fully connected layers are separately set to 0.001 and 0.25. For the hyper-
parameters in Eq. (7), α and β are decided by validation and fixed at 0.1, while
γ decreases from 0.3 to 0 in the whole training stage. The margin in the hinge
softmax loss layer is set to 0.1 in our experiments, which won’t hurt too much,
and can back propagate at the same time.

Table 1. MAP of Hamming ranking w.r.t different number of bits on two datasets.

Method code length CIFAR10(MAP) SVHN(MAP)

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits

Ours 0.611 0.632 0.645 0.641 0.911 0.931 0.934 0.942

TRCNNH [16] 0.552 0.566 0.558 0.581 0.899 0.914 0.925 0.923

CNNH [24] 0.484 0.476 0.472 0.489 0.897 0.903 0.904 0.896

KSH [19] 0.311 0.348 0.353 0.366 0.576 0.631 0.658 0.662

BRE [14] 0.150 0.172 0.174 0.176 0.156 0.168 0.169 0.180

LSH [5] 0.106 0.119 0.121 0.124 0.132 0.143 0.128 0.151
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The implementations of BRE [14] and KSH3 [19] are provided by their
authors. For LSH, the projections are randomly sampled from a Gaussian dis-
tribution with zero-mean and identity covariance to construct the hash tables.
And the results of CNNH and TRCNNH are obtained from [16].

4.2 CIFAR-10

The CIFAR-10 dataset is an images collection containing 60,000 color images of
32 × 32 pixels. All the samples are evenly labeled with 10 mutually exclusive
classes, ranging from airplane to bird.

For this dataset, the architecture we choose is a six-conv-layer model. The
main branch of the model is 3× 32× 32-32C3P1-32C3P1-MP3S2-D0.5-32C3P1-
32C3P1-MP3S2-D0.5-64C3P1-64C3P1-AP3S2-D0.5-SL10. For the convenience
of later quotation, we name the third pooling layer “Pool3”.

The MAP of Hamming ranking can be seen on Table 1 and the performance
curves are shown in Fig. 2. For all the four experimented code length, i.e. 12, 24,
32 and 48, the MAP of our model surpass the state-of-the-art by more than 5.9

Fig. 2. The results on CIFAR-10. (a) Precision curves of hash lookup within Hamming
radius 2. (b) Precision-recall curves of Hamming raking with code’s length of 48 bits.
(c) Precision curves with respect to number of returned images of Hamming raking
with code’s length of 48 bits.

Fig. 3. The results on SVHN. (a) Precision curves of hash lookup within Hamming
radius 2. (b) Precision-recall curves of Hamming raking with code’s length of 48 bits.
(c) Precision curves with respect to number of returned images of Hamming raking
with code’s length of 48 bits.

3 http://www.ee.columbia.edu/ln/dvmm/downloads/WeiKSHCode/dlform.htm.

http://www.ee.columbia.edu/ln/dvmm/downloads/WeiKSHCode/dlform.htm
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percent. Figure 2(a) witnesses that precision of images within 2 bits Hamming
distance returned by our model increases along with the length of hash code. The
LSH reported in this paper used random projection which relies on the input
feature to maintain the similarity. But because of the semantic gap between low-
level feature and content, LSH’s performances are not stable. While BRE and
KSH perform better than LSH, they are still worse than CNN based methods.
And in Fig. 2(b) the precision-recall curve of our model encloses more spaces
than the others, which is consistent with Table 1. Then Fig. 2(c) demonstrates
our model’s best performance on Hamming ranking, from 64% to 69%, nearly
by 8% beyond TRCNNH.

Comparison Between Different Features. On CIFAR-10, we conduct some
other experiments to compare. One is image retrieval using Euclidean distance
between corresponding features of query and dataset’s images as similarity, and
the features are right the outputs of hash layer (the “L2 fc” method). Another
two experiments we undertake are using KSH and LSH with outputs of “Pool3”
as descriptors of an input image (the “Pool3 feat”). LSH is also conducted with
512-dimension Gist feature as image descriptions. The network used in this part
is the 32-bit network. The results are shown in Table 2.

Surprisingly, we find that L2 fc is not the best, which may be resulted from
the denoising property of binarizing. KSH learns hash functions on top of the
features extracted from “Pool3”, right the preceding layer of our hash layer. The
retrieval precision of “Pool3 feat + KSH” is inferior to our method by a small
margin. And the last two LSH-based experiments show that the features learned
by CNN are indeed better than Gist.

Comparison with Baseline. We evaluate the performance of our proposed
hash layer and hinge softmax loss layer by comparing with three baseline mod-
els on CIFAR-10. The first baseline model is just like our model but without
the hash loss. The second baseline model is similar with [18], i.e. without the
auxiliary path and the hash loss. In addition to the second baseline, the third
baseline model replaces the hinge softmax loss with traditional softmax loss.
The parameters of the preceding convolutional layers are kept the same. The
results are presented in Table 3. Our proposed method performs best on three

Table 2. Ranking precisions of different methods at 500 and 1500 on CIFAR-10

Method

Precision Top N
500 1500

Ours 68 52% 69 51%

L2 fc 68 30% 66 17%

Pool3 feat + KSH 68 40% 68 88%

Pool3 feat + LSH 58 84% 53 96%

Gist 512 + LSH 16 39% 15 21%
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Table 3. Comparison of the proposed model with baseline on CIFAR-10.

Method code length CIFAR10(MAP)

12 bits 24 bits 32 bits 48 bits

Ours proposed model 0.611 0.632 0.645 0.641

Ours without hash loss 0.607 0.621 0.633 0.641

Ours with only hinge softmax 0.617 0.624 0.633 0.638

CNN with only softmax 0.594 0.629 0.619 0.636

of the four tested code lengths. The third baseline model without any of our
modifications performs worst except 24 bits and fluctuate with the code length.

4.3 SVHN

The SVHN dataset consists of 630, 420 color house number images collected
from Google Street View images. The data is provided in two formats and the
second is used in our experiments. Each data sample is of size 32 × 32 pixels
and annotated with one label from 1 to 10. And the dataset is preprocessed with
local contrast normalization, following Goodfellow et al. [7].

On this dataset, the main structure is similar to the CIFAR-10
model: 3× 32× 32-128C3P1-128C3P1-MP2S2-D0.5-128C3P1-128C3P1-MP2S2-
D0.5-128C3P1-128C3P1-AP2S2-D0.5-SL10.

Similar with the results on CIFAR-10, the MAP values related with the
four code lengths of our model on CIFAR10 outperform the state-of-the art.
Figure 3(a) shows the precision of returns with hash lookup of radius 2. When
using 12-bit codes for retrieval, the precision of our model is just comparable
with TRCNNH [16]. But with the increment of code length, the gap between
our model and TRCNNH is getting larger. On all the three metrics, our model
is the best one.

5 Discussion

Experiments have shown that the precision of our proposed model on both SVHN
and CIFAR-10 within Hamming radius of 2 improves with more hash bits, which
is consistent with our intuition.

Although KSH uses kernel functions for hashing and our hash layer uses linear
functions, the KSH with our CNN-feature performs slightly inferior than our
method. The hash layer can be considered as learning-based linear projections,
whose inputs are also learnable. During training, the weights and biases in CNN
are adjusted to render the filters expressive enough so as to allow the simple
classifier on the top perform well. And the raw pixels are at the same time
transformed into a description space where similarity relationships are correlated
with Euclidean distance.
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Unlike CNNH and TRCNNH both of which need the amount of annotations
to be square or even cubic of the number of training images, our method trains
the CNN with single image whose label indicates the class. So more training
data will not burden it too much.

6 Conclusion

As a method of ANN search, interests of many researchers and companies have
been attracted by hashing. We propose a new method which can obtain the
binary hash code of a given image just by binarizing the outputs of our hash
layer, and achieves the best result on both SVHN and CIFAR-10.

In consideration of the fact that all the models use only 5000 samples to
train, we can expect an improvement of performance with a larger training set.
Besides, a large amount of unlabeled data remains untouched, which can be
another key element to enhancement.
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Abstract. Group Feature Selection (GFS) has proven to be useful in
improving the interpretability and prediction performance of learned
model parameters in many machine learning and data mining applica-
tions. Existing GFS models were mainly based on square loss and logis-
tic loss for regression and classification, leaving the ε-insensitive loss and
the hinge loss popularized by Support Vector Learning (SVL) machines
still unexplored. In this paper, we present a Bayesian GFS framework
for SVL machines based on the pseudo likelihood and data augmen-
tation idea. With Bayesian inference, our method can circumvent the
cross-validation for regularization parameters. Specifically, we apply the
mean field variational method in an augmented space to derive the poste-
rior distribution of model parameters and hyper-parameters for Bayesian
estimation. Both regression and classification experiments conducted on
synthetic and real-world data sets demonstrate that our proposed app-
roach outperforms a number of competitors.

Keywords: Group feature selection · Support vector machine · Support
vector regression · Variational bayesian inference · Data augmentation

1 Introduction

Feature selection which involves choosing an optimal subset of raw input fea-
tures such that the subset does not contain any irrelevant or redundant features
plays an important role in many applications. However, individual features may
not reveal the structural information among raw inputs, thus we are more inter-
ested in finding some important feature groups instead of individual features in
c© Springer International Publishing Switzerland 2016
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some scenarios. Group Feature Selection (GFS) is a technique of making use of
structural information among features to select an optimal subset of relevant
features in a grouped manner. The advantages of GFS can be summarized as
improving the prediction performance, reducing training and utilization time
and enhancing the interpretability of learned parameters. So far, GFS has been
successfully applied in a number of domains, such as multi-sensor data fusion
[6], birth weight prediction [23], gene finding [11], waveband selection [16], etc.

As the most popular method employed for GFS, Group-Lasso [23] is an
important extension of lasso [19]. It consists in estimating a linear regression
model by minimizing the square loss function evaluated on training data, under a
series of constraints which enforce sparsity at the group level. Besides square loss,
a logistic loss has also been considered to address classification problems with
group sparsity [11]. Though Group-Lasso models are useful, their main problem
concerns the lack of meaningful variance estimates for model coefficients because
these methods only provide a point estimate for model parameters. To overcome
such problems, Bayesian Group-Lasso is proposed in [13] as a full Bayesian treat-
ment of the Group-Lasso. In [7], the authors used a generalized spike-and-slab
prior to encourage group sparsity in linear regression.

These existing GFS models were mainly based on square loss and logistic loss
for regression and classification analysis, leaving the ε-insensitive loss and the
hinge loss popularized by Support Vector Learning (SVL) machines still unex-
plored. SVL machines, such as Support Vector Machine (SVM) and Support
Vector Regression (SVR) [4] are widely used in various machine learning appli-
cations owing to their arguably good generalization performance and the merit of
only using support vectors in decision function. Nevertheless, their performance
can be seriously affected when the input data are very high dimensional, with
many non-informative or noisy features. Such a situation could be alleviated if
the structural information among features is exploited, e.g., by combining SVL
with GFS to select the most relevant feature groups.

In this paper, based on the pseudo likelihood and data augmentation idea
[12,25], we propose a new Bayesian GFS framework for SVL machines. To
the best of our knowledge, this is the first effort to integrate GFS into SVL
with Bayesian learning, which allows us to circumvent the time consuming
cross-validation for regularization parameters. Specifically, our new framework
employs a group Automatic Relevance Determination (ARD) [20] prior to select
the most relevant feature groups, and a pseudo likelihood term for Bayesian
SVL. With the data augmentation idea, we re-express the pseudo likelihood into
different forms for different SVL tasks. To derive the posterior distribution of
model parameters and hyper-parameters for Bayesian estimation, we perform
mean field variational inference in the augmented variable space. Finally, both
regression and classification experiments conducted on synthetic and real-world
data sets demonstrate that our proposed approach outperforms other state-of-
the-art GFS approaches and the direct SVR and SVM learning.
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2 Related Work

Existing GFS methods can be divided into two kinds. One kind are deterministic
methods addressing the optimization problem directly, such as the Group-Lasso
for logistic regression [11], the Group-Lasso for generalized linear models [14],
the Group-Lasso with overlap between groups [9], the sparse Group-Lasso [15],
the online learning algorithms for GFS [21,22], etc. Another kind are Bayesian
inference based approaches which can apply different likelihoods and priors on
the model conveniently. The Bayesian Group-Lasso [13] imposes multivariate
Laplace priors on separate groups, with a Monte Calo sampling scheme for infer-
ence. The Variational Relevant Group Selector (VRGS) [17], as an extension of
the Relevance Vector Machine (RVM) [20], is similar to sparse Group-Lasso,
which have sparse effects both on groups and on individual features. In [7], the
authors used a generalized spike-and-slab prior to encourage group sparsity with
Expectation Propagation (EP) inference. In [2], Babacan presented a general
class of multivariate priors for group sparse modeling and developed Bayesian
inference methods via variational Bayesian approximation.

All methods mentioned above were based on square loss and logistic loss due
to their convenient form and tractable solution. The problem of them is their
more risk of overfitting compared to the ε-insensitive loss and the hinge loss
popularized by SVL machines when only small training data is available.

There are also some sparse learning methods for SVMs [18,24]. But unlike
GFS models, these methods typically didn’t consider the structural informa-
tion among features, thus can only identify relevant features rather than feature
groups.

3 Bayesian GFS for SVL Machines

In this section, we first review the basic group sparse model, and then present our
proposed framework along with the learning models. Fast variational inference
procedures are developed to infer the model parameters and hyper-parameters
in Bayesian manner. In the sequel, suppose we have a data matrix X ∈ R

d×N

consisting of N observations {xi}N
i=1 in d-dimensional feature space, and a N ×1

response vector y, with yi denoting the response of the i-th observation.

3.1 Group Sparse Model

Group sparse modeling is a natural generalization of the traditional sparse mod-
eling methods. In group sparse model, the sparsity constraint is imposed on
groups instead of the individual features. It effectively models the structural
properties of the feature vector, such that dependencies among features are taken
into account. A general optimization formulation for group sparse model is

min
w

∑N

i=1
�(yi,xi;w) + ρ‖w‖1,2, (1)
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where w is a column vector of coefficients, �(yi,xi;w) denotes the loss of model
w on data (xi, yi), ρ ≥ 0 is the regularization parameter controlling the strength
of the enforced sparsity over groups, and ‖w‖1,2 =

∑G
g=1 ‖wg‖2, where G is the

number of groups, and wg denotes the coefficients of g-th group. Assume that
the groups are not overlapping, and the size of g-th group is denoted by dg, such
that

∑G
g=1 dg = d. Obviously, the traditional l1 norm based formulation is a

special case of this formulation (when dg = 1, ∀g).
In previous work, typically the square loss was used for regression problems,

i.e., �(yi,xi;w) = (yi − wT xi)2, and the logistic loss was used for classification
problems, i.e., �(yi,xi;w) = log(1+exp(−yi(wT xi+c))), where c is the intercept.
Compared with these losses, the ε-insensitive loss and hinge loss are usually more
attractive due to their better generalization performance and the merit of only
using support vectors in decision function. On the other hand, the performance of
traditional SVL machines can be seriously affected when the input data contains
a lot of non-informative or noisy features. Therefore, it is meaningful to exploit
the structural information among features by combining SVL with group sparse
model.

In addition, an important issue in the group sparse model described above
is to choose the regularization parameter ρ. Usually, the time consuming cross-
validation is employed to select an optimal value for ρ. This problem can be
circumvented by Bayesian inference, as shown in the following subsection.

3.2 The Proposed Framework

In this subsection, we will present a Bayesian Group Feature Selection (GFS)
framework for SVL machines based on the pseudo likelihood and data augmen-
tation idea. The Bayesian modeling of Eq. 1 requires the definition of a joint
distribution of all observed and latent variables. Typically, this joint distribu-
tion includes the prior distributions over the latent variables, and the likelihood
of latent variables on the observed variables.

To impose group structure constraints on w, each group (wg) could have a
multivariate Gaussian prior controlled by a distinct hyper-parameter zg (g =
1, . . . , G). We assume a multivariate variance mixture of Gaussian prior over the
coefficient vector w,

p(w|z) =
∏G

g=1
N (wg|0dg

, z−1
g Idg

),

where zg is the inverse of the prior variances for each component of wg, that is,
all components of wg have the same prior variances. Furthermore, we select a
conjugate prior for zg by choosing a Gamma distribution,

p(z) =
∏G

g=1
Γ (zg|αg, βg),

where αg and βg are the shape and rate parameter of Gamma distribution respec-
tively.
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Note that the hierarchical priors on wg and zg are motivated by Automatic
Relevance Determination (ARD). This group ARD formulation can easily obtain
the sparsity at the group level by considering a different hyper-parameter zg for
each group of coefficients. A variety of distributions over w can be represented
in this fashion by different selections of the hyper-prior distribution p(z−1

g ) [2].
With the group ARD prior for GFS, we still need to define a likelihood

function to link SVL with the above Bayesian model. To this end, it is necessary
to utilize the loss function of SVL. However, the ε-insensitive loss and hinge loss
do not lend themselves to a convenient description of a likelihood function. To
overcome this situation, we have to transform the loss function of SVL into a
Gaussian pseudo likelihood, which has the form

p(y|w,X) =
∏N

i=1
exp[−2 · �(yi,xi;w)]. (2)

The difference between our pseudo likelihood and an actual likelihood is that
the former is unnormalized with respect to y. By defining �(yi,xi;w) with ε-
insensitive loss and hinge loss respectively, this general framework can handle
both regression and classification problems.

Note that the hyper-parameters z introduced to control the group structure
of w is directly related to the regularization parameters in traditional Support
Vector Regression (SVR) and Support Vector Machine (SVM). Since z can be
derived automatically by Bayesian inference, our framework can circumvent the
cross-validation procedure for regularization parameters. In the following, we will
present the regression and classification models (BGFS-SVR and BGFS-SVM)
with linear assumption.

BGFS-SVR. For regression model (yi ∈ R, i = 1, . . . , N), we employ the
ε-insensitive loss to re-express Eq. 2, which implies a pseudo likelihood of the
form

p(y|w,X) =
∏N

i=1
exp[−2 ·�(yi,xi;w)] =

∏N

i=1
exp[−2max(|wT xi −yi|−ε, 0)],

where ε is a margin of tolerance. It has been shown that p(y|w,X) admits a dual
scale mixture of normals representation by data augmentation [25], such that

p(y|w, X) =
∏N

i=1

∫ ∞

0
exp[

(λi + wT xi − yi − ε)2

−2λi

]
dλi
√

2πλi

·
∫ ∞

0
exp[

(θi − wT xi + yi − ε)2

−2θi
]

dθi
√

2πθi
,

where λi and θi (i = 1, . . . , N) are the augmented variables introduced to deal
with the max function. Let λ = [λ1, . . . , λN ]T , θ = [θ1, . . . , θN ]T , then the
unnormalized joint distribution of y, λ and θ can be expressed as

p(y, λ, θ|w,X) =
∏N

i=1

1√
2πλi

exp[
(λi + wTxi − yi − ε)2

−2λi

] · 1√
2πθi

exp[
(θi − wTxi + yi − ε)2

−2θi

].

This allows us to regard the pseudo posterior distribution as the marginal of
the augmented pseudo posterior distribution which has the form

p(w, z,λ,θ|y,X) ∝ p(y,λ,θ|X,w)p(w|z)p(z).
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Directly solving for this augmented pseudo posterior is intractable, and pre-
vious approximate inference for probabilistic ε-insensitive loss relys on Gibbs
sampling [25], which is inefficient for large data sets. Here we employ the
mean field variational inference method, which has attractive computational
properties along with good estimation performance. Specifically, we assume
there are a family of fully factorized but free-form variational distributions
q(w, z,λ,θ) = q(w)q(z)q(λ)q(θ), and our goal is to minimize the Kullback-
Leibler divergence KL(q(w, z,λ,θ)‖p(w, z,λ,θ|X,y)) between the approximat-
ing distribution and the target posterior. To this end, we first initialize the
moments of all factor distributions q(w), q(z), q(λ) and q(θ) appropriately and
then iteratively optimize each of the factors in turn using the current estimates
for all of the other factors. Convergence is guaranteed because the KL divergence
is convex with respect to each of the factors. It can be shown that when keeping
all other factors fixed, the optimal distribution q∗(w) satisfies

q∗(w) ∝ exp〈ln p(w, z,λ,θ,X,y)〉−w, (3)

where 〈·〉−w denotes the expectation of the term inside the angled brackets with
respect to q(w, z,λ,θ) over all variables except for w. Here p(w, z,λ,θ,X,y) is
the joint distribution of all observed and latent variables with the form

p(w, z,λ,θ,X,y) = p(y,λ,θ|w,X)p(w|z)p(X)p(z).

Plugging all involved quantities into Eq. 3, we can further get:

q∗(w) = N (
w|〈w〉, (XΛλθXT + Λz)−1

)
,

〈w〉 = Σw · {X[y 	 (〈1 
 λ〉 + 〈1 
 θ〉) + ε(〈1 
 λ〉 − 〈1 
 θ〉)]},

where Λλθ = diag(〈λ−1
i 〉 + 〈θ−1

i 〉), i.e., the diagonal elements in matrix Λλθ

are (〈λ−1
i 〉 + 〈θ−1

i 〉) (i = 1, . . . , N), while the other elements are all zero;
Λz = diag(〈zg〉), i.e., every 〈zg〉 repeats dg (g = 1, . . . , G) times in the diagonal
position of matrix Λz; 	 and 
 denote element-wise multiplication and division,
respectively. Similarly, we can get the optimal distributions q∗(z), q∗(λ) and
q∗(θ) as:

q∗(z) =
∏G

g=1
Γ

(
zg|αg + dg/2, βg + 〈wT

g wg〉/2
)
,

q∗(λ) =
∏N

i=1
GIG (

λi|1/2, 1, 〈(wT xi − yi − ε)2〉) ,

q∗(θ) =
∏N

i=1
GIG (

θi|1/2, 1, 〈(yi − wT xi − ε)2〉) ,

where GIG(·) denotes the generalized inverse Gaussian distribution.
After the above variational inference procedure converges, the predicted

response for a new data point xnew can be computed by ynew = 〈w〉T xnew. It
should be noted that once the model hyper-parameters α ∈ R

G×1 and β ∈ R
G×1

have been tuned carefully, BGFS-SVR can infer its model parameters automat-
ically via Bayesian inference. Compared with the non-Bayesian group sparse
models whose regularization parameters need to be re-tuned for different data
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sets, BGFS-SVR can apply the chosen hyper-parameters to all data sets. There-
fore our approach provides the user a simple way to select the most relevant
feature groups.

BGFS-SVM. For binary classification model (yi ∈ {+1,−1}, i = 1, . . . , N),
we utilize hinge loss to re-express Eq. 2 such that it has the following form

p(y|w,X) =
∏N

i=1
exp[−2 · �(yi,xi;w)] =

∏N

i=1
exp[−2max(1 − yiwT xi, 0)].

To deal with the max function, we still need to transform p(y|w,X) into
a tractable formulation. Fortunately, the Gaussian pseudo likelihood p(y|w,X)
can be re-expressed as a location-scale mixture of normals by data augmentation
[12], such that

p(y|w,X) =
∏N

i=1

∫ ∞

0

1/
√

2πλi · exp[−(λi + 1 − yiwT xi)2/(2λi)] dλi,

where λi (i = 1, . . . , N) are the augmented variables. This data augmentation
idea provides an elegant way to incorporate max-margin principle into Bayesian
learning.

Let λ = [λ1, . . . , λN ]T , then the joint distribution of y and λ can be
expressed as

p(y,λ|w,X) =
∏N

i=1
1/

√
2πλi · exp[−(λi + 1 − yiwT xi)2/(2λi)],

and the augmented pseudo posterior distribution satisfies

p(w, z,λ|X,y) ∝ p(y,λ|w,X)p(w|z)p(z).

Since exact inference for this augmented pseudo posterior is intractable, here
we also use the mean field variational inference to approximate p(w, z,λ|X,y).
The derivation procedure is similar as that in BGFS-SVR, so we only provide
the optimal distributions for the latent and augmented variables:

q∗(w) = N (
w|Σw · {X[y 	 (1 + 〈1 
 λ〉)]}, (XΛλXT + Λz)−1

)
,

q∗(z) =
∏G

g=1
Γ

(
zg|αg + dg/2, βg + 〈wT

g wg〉/2
)
,

q∗(λ) =
∏N

i=1
GIG (

λi|1/2, 1, 〈(1 − yiwT xi)2〉
)
,

where Λλ = diag(〈λ−1
i 〉).

After this procedure converges, we can predict the label ynew (ynew ∈
{+1,−1}) for a new data point xnew as ynew = sgn(〈w〉T xnew), where sgn(·)
denotes the signum function.

Note that the hyper-parameter z in the proposed framework plays a similar
role as the regularization parameter ρ in group sparse models and SVL machines,
but z is more flexible. Since each group of w is controlled by distinct zg, z can
be seen as a generalization of ρ. With Bayesian inference, our models infer z
automatically from the data such that the time-consuming cross-validation can
be circumvented.
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3.3 Computational Complexity

The computational complexities of BGFS-SVR and BGFS-SVM are the same. For
each iteration of our variational inference on training data, we need O(d3 + dN)
computation, where O(d3) is spent on the inversion of covariance matrix Σw.
Given d, our method scales linearly in the number of data samples, making it suit-
able for large-scale data set.

4 Experiments

To evaluate our models, we conduct a series of experiments on both synthetic
and real-world data sets. On each data set, we perform 100 independent trials for
our algorithm and various competitors, and the averaged results are reported.
The parameters and hyper-parameters of all algorithms were carefully tuned on
our data. More specifically, the hyper-parameters of the proposed models and
the other Bayesian competitors were tuned manually. For Bayesian methods,
once the hyper-parameters have been tuned carefully, they can be used to infer
the model parameters automatically from the data. So, in our experiments the
chosen hyper-parameters were applied to all data sets for regression and classi-
fication, respectively. On the other hand, the regularization parameters of the
non-Bayesian methods must be re-tuned for different data sets, so we obtained
them by conducting a 5-fold cross-validation on each training data set.

4.1 Regression

We compare the proposed BGFS-SVR with the following algorithms: SVR,
Group-Lasso (G-Lasso) [23], Bayesian Group-Lasso (BG-Lasso) [13], Bayesian
Group-Sparse model with Jeffreys prior (Jeffreys) [2], a model also assumes the
group ARD prior but is based on square loss (G-ARD). We use the LIBLINEAR
package [5] for SVR, and the SLEP package [10] for G-Lasso. For BGFS-SVR,
we set the hyper-parameters αg = 103, βg = 10−3 (g = 1, . . . , G), the maxi-
mum number of iterations T = 100, and we vary the tolerance parameter ε in
{10−5, 10−4, . . . , 1}. For BG-Lasso we assign a Gamma prior with shape and
scale hyper-parameters k = 10−6 and θ = 10−6 on a and then integrate out a,
where a is the parameter of multivariate Laplace distribution. For G-ARD, we
set the hyper-parameters αg = 1 and βg = 10−5 (g = 1, . . . , G). For SVR, we
vary the regularization parameter C in {e−8, e−6, . . . , e8} and the tolerance para-
meter ε in {10−5, 10−4, . . . , 1}. Finally, for G-Lasso we vary the regularization
parameter ρ in {10−4, 10−3, . . . , 103}.

Synthetic Data. The performance of BGFS-SVR is first tested on a sparse
signal reconstruction problem. We generate the synthetic data similar as in [2].
More precisely, we assume the length of weight vector (signal) w is d = 500 and
fix the group size to 20 (dg = 20,∀g), such that the number of groups is G = 25.
We assign the 20 adjacent components into one group. From the 25 groups,
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Table 1. Average relative reconstruction error on the synthetic regression data.

N/d G-Lasso BG-Lasso Jeffreys G-ARD SVR BGFS-SVR

0.10 0.96 ± 0.04 0.96 ± 0.03 0.95 ± 0.05 0.95 ± 0.03 0.98 ± 0.01 0.93± 0.04

0.15 0.85 ± 0.05 0.87 ± 0.05 0.84 ± 0.06 0.84 ± 0.06 0.92 ± 0.01 0.74± 0.06

0.20 0.68 ± 0.06 0.70 ± 0.08 0.68 ± 0.08 0.67 ± 0.08 0.89 ± 0.02 0.63± 0.07

only 5 randomly chosen groups contain components that generated from the
standard Gaussian distribution with zero mean and unit standard deviation, and
the remaining groups of components are zeros. The d × N measurement matrix
X is generated by drawing its elements from a standard Gaussian distribution
and then normalizing the rows to have unit l2-norm. The N × 1 observations
vector y is generated by y = XT w + n, where n = [n1, . . . ,nN ]T ∼ N (0, σ2

nI)
are Gaussian noise with σn = 10−2.

Given w, X and y, we use the Relative Reconstruction Error (RRE)
‖ŵ − w‖2/‖w‖2 to evaluate the reconstruction performance of different meth-
ods. Here ŵ and w denote the estimated signal and the true signal, respectively.
The experiments are independently repeated 100 times, i.e. in every time we
have different realizations of the signal w, the measurement matrix X and the
observations vector y.

The average RREs of all methods with varying N/d ratios are presented in
Table 1, from which we can get two observations. First, the proposed BGFS-
SVR model performs better than those square loss based group sparse model-
ing approaches. Second, the baseline method SVR obtains a significantly worse
reconstruction error which is due to the fact that SVR cannot make use of the
grouping information.

Gas Sensor Array Data. In order to evaluate the performance of BGFS-SVR
in real-world applications, we apply it to the Gas Sensor Array (GSA) data,
which is available in the UCI repository. This data set contains 13, 910 instances
from 16 chemical sensors exposed to 6 gases at different concentration levels.
Each instance vector contains the 128 features extracted from 16 sensors. We
regard those features from the same sensor as a group such that the number
of groups is G = 16, and the group size is dg = 8 for g = 1, . . . , G. We utilize
all 3600 instances gathered in the 36-th month (600 instances of each class),
and the goal is to predict the concentration levels as accurate as possible. First,
the data set is normalized so that each row of the data matrix X ∈ R

d×N has
unit l2 norm. Then, we randomly select training instances from each class with
the size in {100, 150, 200, 250, 300, 350, 400}, and the rest instances are used as
test set. We do experiments for each class, then the averaged root-mean-square
errors (RMSE) over these six regression problems are shown in Fig. 1, and the
averaged numbers of selected groups are listed in Table 2.

We can observe that BGFS-SVR obviously outperforms other approaches in
term of the RMSE, while keeping the number of selected groups comparable with
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Fig. 1. Average RMSE of various regression methods on GSA data.

Table 2. Average number of selected groups for various regression methods on GSA
data.

#Training data G-Lasso BG-Lasso Jeffreys G-ARD SVR BGFS-SVR

100 13.1 ± 1.4 14.2 ± 0.9 14.6 ± 1.1 13.9 ± 1.7 16.0 ± 0 12.4 ± 1.3

400 14.1 ± 1.0 15.9 ± 0.2 15.7 ± 0.5 15.4 ± 1.3 16.0 ± 0 15.2 ± 0.7

Table 3. Average predictive accuracy and F1 score on the synthetic classification data.

#Training
data

Accuracy (%) F1 (%)

G-Lasso SG-Lasso SVM BGFS-SVM G-Lasso SG-Lasso SVM BGFS-SVM

100 59.9 ± 6.9 61.1 ± 6.0 56.3 ± 5.7 64.3 ± 7.8 49.2 ± 6.3 54.5 ± 5.5 52.3 ± 5.2 57.7 ± 8.2

500 72.4 ± 4.8 76.2 ± 5.0 77.6 ± 5.1 78.0 ± 6.1 70.2 ± 4.2 73.4 ± 4.5 74.5 ± 4.2 76.0 ± 5.8

1500 93.6 ± 3.1 95.0 ± 2.3 94.9 ± 2.4 95.3 ± 2.3 92.2 ± 3.5 93.7 ± 2.8 93.2 ± 3.3 94.2 ± 2.7

those of other approaches. The advantage of BGFS-SVR over SVR demonstrates
the benefit of considering grouping information of features and only retaining
useful feature groups for model learning and prediction. The performance differ-
ences between BGFS-SVR and those square loss based Group Feature Selection
(GFS) approaches verify again that combining SVR and GFS is meaningful.

4.2 Classification

We compare the proposed BGFS-SVM with the following algorithms: SVM,
Group-Lasso with logistic loss (G-Lasso) [11], Sparse Group-Lasso with logis-
tic loss (SG-Lasso) [15]. We use the LIBLINEAR package for SVM, and the
SLEP package for G-Lasso and SG-Lasso. For BGFS-SVM, we set αg = 10−3,
βg = 10−3 (g = 1, . . . , G) and T = 100. For SVM, we vary the regularization
parameter C over the grid {e−8, e−6, . . . , e8}. For G-Lasso and SG-Lasso, we vary
the regularization parameter ρ in {10−4, 10−3, . . . , 103}. In the experiments, we
increased the size of training data from a small value until it is large enough such
that most algorithms perform well. This is to study the performance change of
each method as training data increase.
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Synthetic Data. We generate the synthetic data set similar to [11,22,23].
Before generating the data, we first generate a true model vector w consisting
of ten blocks of ten dimensions, i.e., w ∈ R

100, G = 10, dg = 10 for g = 1, . . . , G.
The numbers of non-zero weights in the first six blocks are 10, 8, 6, 4, 2, 1 respec-
tively, with their values chosen at random from {+1,−1}. All other elements in
the first six blocks and the remaining four blocks are set to be zero. Then, we
generate N data points xi, i = 1, . . . , N by xi = Lvi, where vi ∼ N (0, Id) and
L is the Cholesky decomposition of the correlation matrix Σ. The (i, j)-th entry
in the g-th group of Σ is Σg

i,j = 0.2|i−j|, and entries involves different groups are
all zero. We finally get the response yi by yi = sgn(wT xi + σo), where σo is a
Gaussian noise with standard deviation 4.

We randomly generate the training data with size in {100, 500, 1500}, and
the goal is to predict the weights wi ∈ {+1,−1, 0}, i = 1, . . . , 100. Let the
component ŵi = 0 if |ŵi| < 0.01, and then regard sgn(ŵ) as the final estimated
weight vector. Table 3 lists the averaged results in term of accuracy and the F1
score, which aim to verify whether the learned weight has the same sign as the
true model weight. We calculate the F1 scores on the tasks of +1 vs.{−1, 0}, −1
vs.{+1, 0}, and 0 vs.{+1,−1} and average these three F1 scores. A larger F1
indicates a better estimation.

Table 3 shows that the accuracies and F1 scores of all algorithms increase
with the number of training instances. Among them, BGFS-SVM gets the best
results, and the performance difference is especially prominent when the number
of training instances is small. Furthermore, compared with G-Lasso and SG-
Lasso methods which are based on logistic loss, BGFS-SVM is based on the
popular maximum margin principle, thus tend to have a good generalization
performance when the number of training instances is small. Finally, BGFS-SVM
is more powerful than SVM, because it can make use of the structure information
among features and exclude the redundant and non-informative features better.
This is in accord with the conclusion in regression analysis, i.e., we can recover
the true weights more accurate by combining both the advantages of group sparse
modeling and the maximum margin modeling.

Real-World Data. The GSA data set has been described in regression exper-
iment. We utilize all instances gathered in the 36-th month and our goal is to
discriminate six different analytes regardless of their concentration. The Smart-
phones data set [1] built from the recordings of 30 subjects performing activities
of daily living has been used for human activity recognition. It contains totally
10299 instances from 6 categories. Feature vectors in Smartphones data set are
obtained by calculating variables from both the time and frequency domain, and
all features can be grouped into 18 groups according to the variable types. The
USPS data set [8] contains totally 9298 handwritten digits from 10 categories
(i.e., 0, 1, . . . , 9), and each digit is represented as a 16 by 16 matrix. Inspired
by the fact that people can recognize a digit even when it loses some columns of
pixels, we group these 256 pixels into 16 columns in the experiments.
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Table 4. Average predictive accuracy (%) on three real-world classification data sets.

Data set Training data G-Lasso SG-Lasso SVM BGFS-SVM

GSA 50 79.8± 4.4 83.0± 4.8 83.3± 2.6 84.3± 1.7

100 84.3± 3.6 85.3± 4.0 87.6± 2.1 92.0± 1.6

200 86.4± 3.5 88.3± 2.7 96.7± 0.6 98.1± 0.8

Smartphones 50 57.5± 3.5 58.2± 3.5 83.2± 1.2 82.1± 1.6

100 71.3± 4.1 72.3± 2.8 90.0± 0.7 92.6± 0.8

200 73.3± 2.7 74.1± 2.8 93.5± 0.4 95.6± 0.3

USPS 50 69.0± 1.3 71.5± 1.5 85.7± 0.6 86.6± 1.2

100 69.6± 1.4 72.2± 0.9 89.4± 0.4 90.7± 0.4

200 72.7± 1.2 74.1± 1.2 91.5± 0.3 92.5± 0.3
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Fig. 2. Average number of selected groups for various classification methods.

For multi-class classification, we choose the method proposed in [3] for SVM,
and one vs. rest strategy for BGFS-SVM, G-Lasso and SG-Lasso. All data sets
are normalized so that each row of data matrix X ∈ R

d×N has unit l2 norm.
For each data set, we randomly select training instances from each category
with the size in {50, 100, 200}, and the rest instances are used as test set. The
averaged predictive accuracies of various methods are reported in Table 4, and
the averaged numbers of selected groups when the number of training instances
in each category is 200 are shown in Fig. 2 (we calculate the average number of
selected groups over all binary classification sub-problems).

Several observations can be drawn from Table 4 and Fig. 2. First, the BGFS-
SVM and SVM prominently outperform G-Lasso and SG-Lasso approaches on
all three data sets. This can be related to the fact that the maximum margin
principle generally yields better generalization ability. Second, the numbers of
selected groups of our approach are obviously less than those of other approaches,
which indicates that our model is more effective in identifying and selecting the
most relevant groups for classification. Finally, although SVM obtains a com-
parable performance to our BGFS-SVM, it cannot identify and select the most
relevant feature groups which can improve the interpretability of the learned
model parameters and reduce the complexity of computing.
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5 Conclusion

We have presented a new Bayesian Group Feature Selection (GFS) framework
for Support Vector Learning (SVL) machines based on the pseudo likelihood and
data augmentation idea. Compared with traditional GFS models, our SVL based
approach generally yields better generalization performance, and it can circum-
vent the cross-validation for regularization parameters with Bayesian inference.
Extensive experimental results demonstrated that our proposed models are supe-
rior to several existing GFS models and the direct SVL models. There still exist
some future work, e.g., to impose sparsity restriction on both the groups and the
individual features, to take into account the group overlapping, and to estimate
the group partition automatically when it is unknown.
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11. Meier, L., Van De Geer, S., Bühlmann, P.: The group lasso for logistic regression.
J. R. Stat. Soc. Ser. B (Stat. Methodol.) 70(1), 53–71 (2008)

12. Polson, N.G., Scott, S.L.: Data augmentation for support vector machines.
Bayesian Anal. 6(1), 1–23 (2011)

13. Raman, S., Fuchs, T.J., Wild, P.J., Dahl, E., Roth, V.: The bayesian group-lasso
for analyzing contingency tables. In: ICML, pp. 881–888 (2009)



252 C. Du et al.

14. Roth, V., Fischer, B.: The group-lasso for generalized linear models: uniqueness of
solutions and efficient algorithms. In: ICML, pp. 848–855 (2008)

15. Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: A sparse-group lasso. J. Com-
put. Graph. Stat. 22(2), 231–245 (2013)

16. Subrahmanya, N., Shin, Y.C.: Sparse multiple kernel learning for signal processing
applications. IEEE Trans. PAMI 32(5), 788–798 (2010)

17. Subrahmanya, N., Shin, Y.C.: A variational bayesian framework for group feature
selection. Int. J. Mach. Learn. Cybern. 4(6), 609–619 (2013)

18. Tan, M., Wang, L., Tsang, I.W.: Learning sparse svm for feature selection on very
high dimensional datasets. In: ICML, pp. 1047–1054 (2010)

19. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc.
Ser. B (Methodol.) 58(1), 267–288 (1996)

20. Tipping, M.E.: Sparse bayesian learning and the relevance vector machine. J. Mach.
Learn. Res. 1, 211–244 (2001)

21. Wang, J., Zhao, Z.Q., Hu, X., Cheung, Y.M., Wang, M., Wu, X.: Online group
feature selection. In: IJCAI, pp. 1757–1763 (2013)

22. Yang, H., Xu, Z., King, I., Lyu, M.R.: Online learning for group lasso. In: ICML,
pp. 1191–1198 (2010)

23. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped
variables. J. R. Stat. Soc. Series B 68(1), 49–67 (2006)

24. Zhu, J., Rosset, S., Hastie, T., Tibshirani, R.: 1-norm support vector machines. In:
NIPS, pp. 49–56 (2004)

25. Zhu, J., Chen, N., Perkins, H., Zhang, B.: Gibbs max-margin topic models with
data augmentation. J. Mach. Learn. Res. 15, 1073–1110 (2014)



Active Distance-Based Clustering
Using K-Medoids

Amin Aghaee(B), Mehrdad Ghadiri(B), and Mahdieh Soleymani Baghshah

Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
{aghaee,ghadiri}@ce.sharif.edu, soleymani@sharif.edu

Abstract. k-medoids algorithm is a partitional, centroid-based cluster-
ing algorithm which uses pairwise distances of data points and tries to
directly decompose the dataset with n points into a set of k disjoint
clusters. However, k-medoids itself requires all distances between data
points that are not so easy to get in many applications. In this paper,
we introduce a new method which requires only a small proportion of
the whole set of distances and makes an effort to estimate an upper-
bound for unknown distances using the inquired ones. This algorithm
makes use of the triangle inequality to calculate an upper-bound esti-
mation of the unknown distances. Our method is built upon a recursive
approach to cluster objects and to choose some points actively from each
bunch of data and acquire the distances between these prominent points
from oracle. Experimental results show that the proposed method using
only a small subset of the distances can find proper clustering on many
real-world and synthetic datasets.

Keywords: Active k-medoids · Active clustering · Distance-based
clustering · Centroid-based clustering

1 Introduction

As the production of data is expanding at an astonishing rate and the era of
big data is coming, organizing data via assigning items into groups is inevitable.
Data clustering algorithms try to find clusters of objects in such a way that the
objects in the same cluster are more similar to each other than to those in other
clusters. Nowadays clustering algorithms are widely used in data mining tasks.

There are different categorization for clustering algorithms, e.g., these algo-
rithms can be categorized into Density-based, Centroid-based and Distribution-
based methods. In centroid-based clustering methods, each cluster is shown by
a central object. This object which can be a member of the dataset denotes a
prototype of the whole cluster. When these algorithms are appointed to find K
clusters, they usually find K central objects and assign each element to the near-
est centroid. As they go on, they attempt to decrease the energy and total error
of clusters by finding better central elements. K-medoids and K-means are the
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two most popular centroid-based algorithms. Although, they both partition the
data into groups such that the sum of the squared distances of the data points
to the nearest center to them is minimized, they have different assumptions
about centroids. Indeed, the k-medoids algorithm chooses the centroids only from
the data points and so these centroids are members of the whole dataset while
k-means algorithm can select the centroids from the whole input space.

In [3], some usages and applications of k-medoids algorithm are discussed.
According to this study, in resource allocation problems, when a company wants
to open some branches in a city, in such a way that the average distance from
each residential block to the closest branch is intended to be minimized, the
k-medoids algorithm is a proper option. Additionally, in mobile computing con-
text, it is an issue to save communication cost when devices need to choose
super-nodes among each other, which should have minimum average distances
to all devices and k-medoids can solve this problem. Furthermore, as reported
by [3], medoid queries also arise in the sensor networks and many other fields.

Active learning is a machine learning field that have bee attended specially
in the last decade. Until now, many active methods for supervised learning that
intend to select more informative samples to be labeled have been proposed. Active
unsupervised methods have also been received attention recently. In an unsuper-
vised learning manner, finding the similarities or distances of samples from each
other may be difficult or infeasible. For example, the sequence similarity of pro-
teins [23] or similarity of face images [7] which needs to be obtained from human
as an oracle, may be difficult to be responded. The active version of some of the
well known clustering algorithms have been recently presented in [14,26].

In this paper, we propose the active k-medoid algorithm that inquires a
subset of pairwise distances to find the clustering of data. We use a bottom-
up approach to find more informative subset of the distances to be inquired.
Extensive experiments on several data sets show that our algorithm usually
needs a few percentage of the pairwise distances to cluster data properly.

In the rest of this paper, we first discuss about the works that have been done
in the field of active clustering in Sect. 2. In Sect. 3, we introduce our algorithm.
The result of experiments on different datasets have been presented in Sect. 4.
At last, we discuss about some aspects of our algorithm and conclude the paper
in Sect. 5.

2 Related Work

Active learning is a machine learning paradigm that endeavors to do learning
with asking labels of a few number of samples which are more important in the
final result of learning. Indeed, most of supervised learning algorithms need a
large amount of labeled samples and gathering these labeled samples may need
unreasonable amount of time and effort. Thus, active learning tries to ask labels
for more important samples where important samples may be interpreted as
most informative ones, most uncertain ones, or the ones that have a large effect
in the results [18]. The active clustering problem has been recently received much
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attention. Until now, the active version of some well known clustering methods
has been proposed in [14,26]. In the active clustering problem, a query is a pair
of data whose similarity must be determined. The purpose of the active learning
approach is reducing the number of required queries via active selection of them
instead of random selection [21].

The existing active clustering methods can be categorized into constraint-
based and distance-based ones [24]. In the most of the constraint-based methods,
must-link and cannot-link constraints on pairs of data points indicating these pairs
must be in the same cluster or different clusters are inquired. Some constraint-
based methods for active clustering have been proposed in [6,7,11,24–26,28].
In distance-based methods, the response to a query on a pair of data points is the
distance of that pair according to an objective function. Distance-based methods
for active clustering have been recently attended in [10,13,14,19,23,27].

In [14], an algorithm for active DBSCAN clustering is presented. In this
algorithm, the distances that have not been queried are estimated with a lower
bound. A score indicating the amount and the probability of changes in the
estimated distances by asking a query is used to select queries. Moreover, an
updating technique is introduced in [14] that update clustering after a query.

In [19,27], distance-based algorithms are presented for active spectral clus-
tering in which a perturbation theory approach is used to select queries.
A constraint-based algorithm has also been presented in [26] for active spectral
clustering that uses an approach based on maximum expected error reduction
to select queries.

An active clustering method for k-median clustering has also been proposed
in [23]. This method selects some points as the landmarks and ask the dis-
tances between these landmarks and all the other data points as queries. Finally,
k-median clustering is done using these distances.

3 Proposed Method

In this section, we introduce the proposed active k-medoids clustering. We
assume that our algorithm intends to partition n samples into k different clus-
ters. As mentioned above, many clustering algorithms such as K-medoids, PAM
[12], and some other distance-based methods, calculate an n×n distance matrix
at first and perform the clustering algorithm on this distance matrix. We show
the distance matrix by D where dij denotes the distance between the ith sample
and the jth one.

We introduce a method to estimate unknown distances during an active
clustering process. In a metric space, a satisfying and eminent upper-bound
estimation for any distance metric can be obtained by the triangle inequality.
For example, when we know the exact distances between dax, dxy and dyb, we
can determine the upper-bound estimation for dab as:

dab � dax + dxy + dyb (1)
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We find an upper-bound estimation of the distances using the triangle
inequality and the known distances asked from an oracle already. Therefore,
we have

∀i, j, 1 � i, j � n : D(i, j) � De(i, j) (2)

where De shows the estimated distances.
First, upper-bound estimations for all distances are infinity and we update

these distances by asking some of them and make better estimations for the
other unknown distances using the triangle inequality and new distances taken
from the oracle. The update will be done by replacing exact values for the asked
distances and getting the minimum of the old and the new upper-bound esti-
mation for unknown distances. By asking the landmark distances, we intend to
take a better estimation of distances required for the k-medoids algorithm.

Consider some data points which are partitioned to m groups where the
distances within each group are known or estimated. However, the distances
between data points from different groups are unknown. Our goal is to estimate
these unknown distances instead of asking them. In such situation, we can choose
t finite points from each group and ask the distances between these mt points
between different groups and estimate the other distances using these asked dis-
tances. The number of these distances is

(
m
2

)
t2. Figure 1 gives an intuition about

this distance estimation method. We want to estimate the distance between a
and b and the distances between those points that are connected by solid lines
and dotted lines are known.

Fig. 1. Upper-bound distance estimation between a, b. Superscript e determines that
the distance is an estimation.
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Such estimation algorithm can be done in O
(
n2t2

)
, when n is the number of

data points. If we have t � n, the time complexity of the algorithm will be O
(
n2

)
.

Based on the estimation method used for unknown distances, we present
an active k-medoids algorithm. The approach is based on partitioning the data
points into some groups by a hierarchical manner. In the other words, we par-
tition data points into b groups and partition each of these groups to b groups
and so on until we get to a threshold like th for the number of data points in
each partition. In this level, we ask all the distances within each group among
all its data points and choose t points from each group (to ask their distances)
and using the explained algorithm for estimating distances in a bottom-up app-
roach until we get to the highest level. After that, we cluster the data using the
k-medoids algorithm on the estimated distances. According to these explanation,
it seems that choosing t points in each group is a critical step and choosing a bad
point can lead to unfavourable estimations. For this purpose, consider a group
of data points like G which its inner distances are known or estimated. In order
to choosing t points, we perform k-medoids algorithm on G and find clusters
and medoids for this group. Then, we choose medoids and s random points from
each cluster as the points whose distances are needed to be asked. Therefore, the
number of the chosen data points in G will be t = k(s + 1). It is obvious that a
greater s will lead to more accurate estimations.

Algorithm 1 present the pseudo code of the proposed method. This function
clusters n data points into k different categories and return clusters of data.
Here, b shows the branching factor which is used to partition data points to b
different groups with the same size. The partitioning algorithm will perform for
each group recursively. There is also a threshold th which clarify the minimum
size of a group of data points. Clearly, th ≥ k(s + 1) since we need to choose at
least k(s+1) points in each group. It is also noteworthy that if n ≤ 2th, we need
to ask all distance pairs since these data points cannot be partitioned.

Figure 2 shows an example workflow for Algorithm 1 for 1600 data points
with branching factor 2 and threshold 400.

Now we calculate the complexity of our Algorithm 1. It makes a tree with
the branching factor b and the threshold th for the number of the data points
in the leaves of the tree. Therefore, the height of this tree is �logb (n/th)�. The
number of nodes in the ith level of the tree is bi and each node of the ith level
has n/bi data points. According to [20], the time complexity of the k-medoids
algorithm is O

(
kn2

)
for n data points and k clusters in each iteration. Consider

p as the maximum number of iterations used in the k-medoids algorithm, then
the time complexity in each node in the ith level of the tree is O

(
(n2/b2i)kp

)
.

Therefore, the overall complexity of Algorithm 1 is

O
(�logb (n/th)�+1∑

i=1

(
n2

b2i
kp)bi

)
= O

(
n2kp

)
. (3)

A major factor that measures the quality of an active clustering algo-
rithm, is the number of distances that the algorithm demands from the oracle.
The number of the asked queries in the internal nodes of the tree is O

(
b2(k(s+

1))2
)

and in the leaves is O
(
nth

)
. Since, in the proposed method, there are n/th
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Algorithm 1. Active k-medoids
INPUT: De, n, k, b, th � distance estimation, #data, #clusters, branch factor,

threshold
OUTPUT: C1, . . . , Ck

1: procedure ActiveKmedoids(De, n, k, b, th)
2: if n ≤ 2th then
3: Update De by querying all distances
4: C1, . . . , Ck ← kmedoids(De, k) � kmedoids function is a regular k-medoids
5: return
6: end if
7: Partition data to b equal size groups, like G1, . . . , Gb

8: for i from 1 to b do
9: T1, . . . , Tk ← ActiveKmedoids(De(Gi), |Gi|, k, b, th) � De(Gi) is the part

of the estimated distance matrix corresponding to Gi

10: Gc
i ← medoids of T1, . . . , Tk and s random points from each of them.

11: end for
12: Update De by querying distances between all those pairs that one of them is

in Gc
i and the other is in Gc

j .
13: Update De by the triangle inequality and new inquired distances.
14: C1, . . . , Ck ← kmedoids(De, k)
15: end procedure

Fig. 2. ActiveKmedoids workflow for 1600 points (b = 2, th = 400)
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leaves and each of them has th data points, the ratio of the asked distances to
all of the distances is almost equal to

(b2(k(s + 1))2
b�logb (n/th)� − 1

b − 1
+ nth)/

(
n

2

)
(4)

where (b�logb (n/th)� − 1)/(b − 1) shows the approximate number of the internal
nodes in the tree. This ration can approximately be simplified to the following
formula for large values of n:

2b2(k(s + 1))2

n(b − 1)th
+

2th
n

(5)

In order to improve the accuracy of the estimated distances, we can increase
the s value. However, it may raise running time of calculating upper-bound
estimations and the number of queries that should be asked.

To have a good baseline for comparison, we introduce an algorithm based
on random selection of the distance queries, called Random-Rival and compare
results of our algorithm with those of this algorithm. In Sect. 4, we show that
asking queries using our method is much better than asking them randomly that
is the aim of any active clustering algorithm.

Random-Rival(RR) algorithm, considers data points as the vertices of a
weighted graph in which the weight of each edge shows the distance between
its endpoints. Firstly, RR asks some distances randomly and then estimates all
unknown distances using the triangle inequality and Floyd-Warshall [9, p. 693]
algorithm. In the other words, we find shortest path distances of all pairs using
the available distances in the aforementioned graph. Since our distance function
is a distance metric, the length of these shortest paths is an upper-bound estima-
tion of the true distances. Finally, RR clusters data runs the k-medoids algorithm
on the estimated distances. Since Floyd-Warshall worst case time complexity is
O

(
n3

)
[9, p. 695], we can consider the runtime complexity of RR as O

(
n3

)
at

worst. Algorithm 2 shows the pseudo code of the RR algorithm.

Algorithm 2. Random Rival
INPUT: n, k, B � #data, #clusters, budget
OUTPUT: C1, . . . , Ck

1: procedure RandomRival(n, k, B)
2: D ← n × n infinity matrix
3: (x1, y1), . . . , (xB , yB) ← random pairs such that 1 � xi < yi ≤ n
4: ∀i, 1 � i � B : update D(xi, yi) by querying distances
5: De ← FloydWarshall(D)
6: C1, . . . , Ck ← kmedoids(De, k)
7: end procedure

4 Empirical Results

In this section, we show the results of our algorithm on some synthesized and
real world datasets. General information about these datasets are presented in
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Table 1. Most of them are real world datasets, but some are synthesized which
are marked with letter s in Table 1. NORM-10 [4] contains 10000 data points
having 20 features. This dataset has been generated by choosing 10 real centers
uniformly at random from the hypercube of side length 50. Then, for each of the
real centers, 1000 points from a Gaussian distribution of variance one centered
at the corresponding point is generated. We converted samples in NEC animal
[15] and ALOI200 [1] dataset into 32 × 32 grayscale images. ALOI [1] (Object
Viewpoint version) has 1000 classes but we use only 200 classes of it.

Table 1. General information about datasets

Data #Samples #Features #Classes #Distances Ref.

Vary-density(s) 150 2 3 11175 [2]

Seeds 210 7 3 21945 [5]

Mouse(s) 500 2 4 124750 [2]

Fisheriris 150 4 3 11175 [5]

Data 2000(s) 2000 2 5 1999000 [8]

Trace 200 275 4 19900 [29]

Multi-features 2000 649 10 1999000 [5]

TwoDiamonds(s) 800 2 2 319600 [22]

EngyTime(s) 4096 2 2 8386560 [22]

COIL100 7200 1024 100 25916400 [16]

NORM10(s) 10000 20 10 49995000 [4]

NEC animal 4371 1024 60 9550635 [15]

ALOI200 14400 1024 200 103672800 [1]

Although active version of some clustering algorithms like DBSCAN and
spectral clustering have been introduced in [14,26], these clustering algorithms
are substantially different from the k-medoids algorithm. For example, DBSCAN
and spectral clustering methods can find clusters of different shapes while
k-medoids cannot. Thus, we cannot compare results of our active k-medoid with
those of active DBSCAN and active spectral clustering methods. One way to
evaluate an active clustering method that asks distances is to compare it with
a clustering method that asks a random subset of distances. We compare our
method with the Random-Rival algorithm introduced in Sect. 3 that tries to
use a random subset of distances to estimate the whole distance matrix (using
shortest paths on the graph of data points and the triangle inequality). It must
be mentioned that in both the proposed active k-medoid and the Random-Rival
algorithm, the clustering algorithm that is run on the obtained distance matrix
will be k-medoids. One of the most common measures for comparison of clus-
tering algorithms is normalized mutual information (NMI) [17]. This measure
shows the agreement of the two assignments, ignoring permutations. In the other
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words, NMI for the clustering obtained by an algorithm shows the agreement
between the obtained grouping by this algorithm and the ground truth grouping
of data.

We run our algorithm with s = 1, 3 and branching factor b = 2 over all the
datasets. Threshold th is set to the minimum possible value which is equal to
the number of classes for each dataset. Greater value of s, branching factor b, or
threshold th can improve NMI score for some datasets. However, it would also
increases the number of queries which is usually quite unsatisfactory. We also
run Random-Rival over these datasets which requires a specified proportion of
distances starting from 5 % to 10 % (with the step 5 %).

Results of our method with the parameters mentioned in the previous para-
graph are shown in Table 2. For each algorithm and each dataset, NMI score
and the ratio of the asked distances are presented in the table cells. For the
Random-Rival algorithm, the results for the proportion of distances (between
5 % and 100 %) that is the first place where the number of inquired distances is
greater than or equal to the inquired ones in our method are reported.

Table 2. NMI results of the methods. Numbers in parenthesis show percent of the
asked distances.

Data RR s = 1 s = 3

Vary-density 70.8 (10.0 %) 95.0 (9.7 %) 96.6 (10.5 %)

Seeds 55.7 (10.0 %) 90.3 (7.1 %) 89.5 (7.3 %)

Mouse 58.1 (5.0 %) 75.5 (4.1 %) 73.6 (4.3 %)

Fisheriris 65.3 (10.0 %) 85.6 (9.6 %) 89.3 (10.2 %)

Data 2000 88.5 (5.0 %) 77.1 (1.9 %) 78.3 (1.9 %)

Trace 45.7 (10.0 %) 51.2 (9.6 %) 52.4 (10.4 %)

Multi-features 46.9 (5.0 %) 78.7 (2.8 %) 77.6 (2.8 %)

TwoDiamonds 97.5 (5.0 %) 100.0 (1.8 %) 100.0 (1.8 %)

EngyTime 71.2 (5.0 %) 99.9 (1.6) 99.6 (1.6 %)

COIL100 42.3 (10.0 %) 75.6 (7.6 %) 75.6 (8.0 %)

NORM10 95.5 (5.0 %) 94.3 (1.6 %) 94.6 (1.6 %)

NEC animal 23.6 (10.0 %) 66.6 (7.6 %) 67.3 (7.9 %)

ALOI200 48.0 (10.0 %) 79.6 (7.7 %) 79.7 (8.0 %)

Moreover, results of the Random-Rival algorithm which uses 0 percent of
distances up to 100% of them is presented for some datasets in Fig. 3. According
to Fig. 3, RR shows an ascending trend by asking extra distances and it gets close
to the maximum value by asking about 20% of distances. Although it sounds to
be a good algorithm, the proposed active k-medoids algorithm gets better NMI
values with asking fewer number of distances. Moreover, the time complexity of
our active k-medoid is also better. These results state the power of our algorithms
which find accurate clusters by asking only a small subset of distances.
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Fig. 3. Random-Rival over four datasets.

5 Conclusion

In this paper, we introduce an innovative active distance-based clustering
method. Its goal is to cluster n points from a metric dataset into k clusters by
using lowest number of distances that is possible. We design a recursive model
that makes a tree and split data with a branching factor b unless the number of
objects is less than a threshold th. Then, it actively selects and ask some pairwise
similarities from and oracle. After that it tries to make an upper-bound estima-
tion for unknown distances utilizing triangular inequality. Eventually, it clusters
data with a simple k-medoids algorithm. We run our algorithm over some syn-
thesized and real world datasets. In order to show privilege of our method and
to compare the results, we also introduce an algorithm which randomly selects
pairwise distances and estimates unknown ones using Floyd-Warshall algorithm.
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Abstract. In the area of pattern discovery, there is much interest in dis-
covering small sets of patterns that characterize the data well. In such
scenarios, when data is represented by a small set of characterizing pat-
terns, an interesting problem is the comparison of datasets, by comparing
the respective representative sets of patterns. In this paper, we propose a
novel kernel function for measuring similarities between two sets of pat-
terns, which is based on evaluating the structural similarities between the
patterns in the two sets, weighted using their relative frequencies in the
data. We define the kernel for injective serial episodes and itemsets. We
also present an efficient algorithm for computing this kernel. We demon-
strate the effectiveness of our kernel on classification scenarios and for
change detection using sequential datasets and transaction databases.

1 Introduction

One of the reasons for the effectiveness of frequent pattern methods is that some
of the frequently occurring patterns can capture crucial aspects of the underlying
semantics of the data. There exist many techniques to characterize transaction as
well as sequence data with a small representative set of patterns [7,9,13,15,16].
An interesting question that follows is the quantification of the similarity between
two sets of patterns. Such a similarity measure can, in many ways, allow us to
compare different data sets by comparing the characterizing subsets of patterns
representing them. This would be useful, e.g., in change detection and classifica-
tion. In this work, we address this problem of quantifying similarity between two
sets of patterns, where patterns could be itemsets or serial episodes.1

One way of using the representative set of patterns is to employ what is known
as the Bag of Words (BoW) representation [3,9]. For example, in a classification
application, we can first discover a good representative subset of patterns (called
a dictionary) from the training data. Then any given data instance can be repre-
sented as a feature vector whose dimension is same as the size of the dictionary.
Each component of the feature vector specifies presence or absence (or number

1 A preliminary version of this paper was presented as a poster at 2nd IKDD Conference
on Data Sciences, CoDS 2015 [6].
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of occurrences) of the corresponding dictionary pattern in the data instance.
The feature vectors can then be used to find similarities between different data
instances.

The BoW representation treats different patterns in the dictionary as indepen-
dent features and it cannot take into account any similarities between different
patterns in the dictionary. When comparing datasets, patterns representing dif-
ferent datasets may be quite similar without being exactly the same. Hence, what
is desirable is a measure that gives weightage to structural similarity between pat-
terns such as the number of shared subpatterns. In addition to structural similar-
ity between patterns, we also need to consider their relative importance to data.
A pattern occurring in a dataset with a high frequency may be more important as
opposed to one with low frequency.

There exists a host of methods for comparing different types of data. Most
of the methods are based on (probability) model comparison or comparison of
sets of patterns representing the data. [8] maps vectors belonging to a set, to a
Hilbert space and fits a Gaussian distribution to the set using Kernel PCA. The
kernel between two sets of vectors is then defined as the Bhattacharya’s measure
of affinity between Gaussians. A similar kernel, where a Gaussian Mixture is
fitted over a Hilbert space is proposed in [12]. Similarity measures for structured
data like graphs, consider the structural similarity of patterns [4]. Even though
subgraph isomorphism is NP-Hard, there exists efficient graph kernels which look
at simpler substructures [4]. Two such polynomially computable graph kernels
are proposed in [12]. For string comparison, string kernels based on the counts
of shared substrings have been proposed in [11].

However, in the context of episodes or itemset patterns, similarity measures
based on comparison of patterns, usually do not take into account structural
similarity of patterns; rather they look at the collective similarity such as the
amount of data the collection of patterns share [17]. Similarity measures con-
sidering the amount of compression achieved by different sets of patterns in
representing the data have also been considered for transaction data [14,15].

In this paper, we propose a kernel, called the Pattern Set Kernel, for compar-
ing two sets of patterns. We define this kernel for serial episodes and itemsets.
We first define what we call a Pattern Kernel, which is a measure of similarity
between two patterns. The measure depends on the extent of subpatterns shared
by the two patterns along with frequencies of the patterns. Pattern Set Kernel is
then defined using the Pattern Kernel. Even though, our pattern kernel is based
on the number of common subpatterns, which could be exponential, we present
efficient algorithms for calculating the kernel; complexity of which grows only as
the product of lengths of the two patterns. We demonstrate the effectiveness of
this new measure of similarity through extensive empirical studies.

The rest of the paper is organized as follows. Section 2 presents the Pattern
Kernel for serial episodes and itemsets. We present the Pattern Set Kernel in
Sect. 3. Section 4 gives the simulation results showing the effectiveness of our
kernel and we conclude the paper in Sect. 5.
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2 Pattern Kernel

In this section, we present the kernel for a pair of patterns. We first define the
pattern kernel for injective serial episodes, and then extend it for itemsets.

2.1 Episode Kernel: Pattern Kernel for Injective Serial Episodes

In the episodes framework, the data, referred to as an event sequence, is denoted
by D = 〈(E1, t1), (E2, t2), . . . , (En, tn)〉, where n is the number of events. In each
tuple (Ei, ti) (called an event), Ei denotes the event-type and ti denotes the time
of occurrence of the event. Ei ∈ E , a finite alphabet, and ti ≤ ti+1, 1 ≤ i < n.

A serial episode is a totally ordered set of event types. A k-node serial episode,
α, is denoted as (e1 → e2 → · · · → ek) where ei ∈ E , ∀i. An episode β is a
subepisode of α, denoted as β � α, if there exists integers i1, i2, . . . , im with
m ≤ k and 1 ≤ i1 < i2 < · · · < im ≤ k, such that β = (ei1 → ei2 → · · · → eim).
An episode α = (e1 → e2 → · · · → ek) is called an injective serial episode if ei 	=
ej ,∀i, j, i 	= j. In this paper, we call injective serial episodes as serial episodes
(or just episodes). We denote the frequency of α (in a given data sequence) as
fr(α)2. E+ denotes the set of all serial episodes of size 1 or more.

The Episode Kernel, KEK(α, β), to compare two serial episodes, α and β, is
defined as KEK(α, β) = φ(α)T φ(β) where φ is a function that maps each serial
episode to a vector in the feature space 
|E+|. We use γ ∈ E+ to index the
components of φ. The mapping φ for an episode α is given by

φγ(α) =

{
fr(α), if γ � α

0, otherwise

Note that since KEK(α, β) = φ(α)T φ(β), those coordinates γ for which either
φγ(α) or φγ(β) are zeros do not contribute to the kernel. Thus we obtain

KEK(α, β) =
∑

γ:γ�α,γ�β

fr(α) · fr(β) = fr(α) · fr(β) · |{γ : γ � α, γ � β}| (1)

Also note that the size of the set, {γ : γ � α, γ � β} in Eq. (1) could be
exponential in the size of alphabet. For instance, if α = β, with α, being an
M -node episode, then |{γ : γ � α, γ � β}| = 2M − 1. However, the size of this
set can be efficiently calculated in O(MN) steps, where M and N are lengths
of α and β respectively, as described below.

Efficient Computation of KEK . We rewrite the episode kernel as KEK(α, β) =

fr(α) · fr(β) · K1(α, β) where K1(α, β) = |{γ : γ � α, γ � β}|.

2 There are various definitions of frequency proposed for episodes [1]. We are not
imposing any condition on what frequency we are considering, and hence fr(α)
could be any measure of relative significance of episode α in the data.



268 A. Ibrahim et al.

For an n node serial episode α = (α[1] → α[2] → · · · → α[n]), the i-node
prefix subepisode of α is defined as the serial episode (α[1] → α[2] → · · · → α[i]),
for i ≤ n. We denote the i-node prefix subepisode of α by α[1..i].

Let α and β be two serial episodes of length M and N respectively. We assign
K1(X,Y ) = 0, if X = ∅ or Y = ∅, where ∅ denotes empty or null episode whose
size is zero. The iterative algorithm for computing K1(α, β) is as follows

for i = 1..M do
for j = 1..N do

K1(α[1..i], β[1..j]) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 × K1(α[1..(i−1)], β[1..(j−1)]) + 1 if α[i] = β[j]
K1(α[1..i], β[1..(j−1)]) + if α[i] 	= β[j]
K1(α[1..(i−1)], β[1..j]) −
K1(α[1..(i−1)], β[1..(j−1)])

In the algorithm above, both α[1..0] and β[1..0] denote the null episode and
K1(α[1..M ], β[1..N ]) gives the value of K1(α, β). It is easily seen that the com-
plexity of the above algorithm is O(MN).

Proof of Correctness for Calculating K1. We first note that the episodes
we consider are injective episodes. Thus, each event-type occurs in an episode at
most once. Suppose we want to find K1(α[1..i], β[1..j]). We have two conditions
based on the values of α[i] and β[j].

1. Let α[i] = β[j] = A. Let A be the set of all subepisodes common to α[1..(i−1)]

and β[1..(j−1)]. Episodes in A are also common subepisodes to α[1..i] and
β[1..j]. For every episode γ ∈ A, (γ → A) is a subepisode common to α[1..i]

and β[1..j]. The one-node episode A is an obvious common subepisode for
α[1..i] and β[1..j] and no other subepisode is common to both α[1..i] and β[1..j].
Thus K1(α[1..i], β[1..j]) = 2|A| + 1 = 2 × K1(α[1..(i−1)], β[1..(j−1)]) + 1.

2. Let α[i] 	= β[j]. Any subepisode γ common to α[1..i] and β[1..j] should belong
to any one of the three mutually exclusive sets
(a) A = {γ ∈ E+ : γ � α[1..i], γ � β[1..(j−1)], α[i] is the last event of γ}.
(b) B = {γ ∈ E+ : γ � α[1..(i−1)], γ � β[1..j], β[j] is the last event of γ}.
(c) C = {γ ∈ E+ : γ � α[1..(i−1)], γ � β[1..(j−1)]}
It is easy to see that neither α[i] nor β[j] is the last event for γ ∈ C. Episodes
in A are formed by aligning α[i] (which forms the last event of the episodes)
with some element β[k], k < j, such that β[k] = α[i]. Similarly, episodes in B
are formed by aligning β[j] with some event α[g], g < i such that α[g] = β[j].
Noting that K1(α[1..i], β[1..(j−1)]) = |A∪C| and K1(α[1..(i−1)], β[1..j]) = |B∪C|
and that A,B, C are mutually exclusive, we have

K1(α[1..i], β[1..j]) = |A ∪ B ∪ C|
= |A ∪ C| + |B ∪ C| − |C|
= K1(α[1..i], β[1..(j−1)]) + K1(α[1..(i−1)], β[1..j])

−K1(α[1..(i−1)], β[1..(j−1)])

This completes the proof of correctness of the algorithm.
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2.2 Itemset Kernel: Pattern Kernel for Itemsets

In this section, we define Pattern Kernel for itemsets. Itemsets are patterns
obtained from transaction data. Let I = {i1, i2, . . . , id} be a set of items. An
itemset is a subset of I. Let D = {t1, t2, . . . , tN} be the set of all transactions,
where ti ⊆ I,∀i. Suppose we give an ordering for the items in I and order the
items in the itemsets based on that order. Then an itemset {ij1ij2 . . . ijM } would
correspond to the unique injective3 serial episode (ij1 → ij2 → · · · → ijM ). The
itemset kernel is exactly episode kernel on these injective serial episodes.

Given two itemsets α and β. There exists a unique largest common subset
for α and β, which is α ∩ β. Then any common subset of α and β is a subset of
α ∩ β and hence the number of shared itemsets between α and β is 2|α∩β| − 1.
Hence, itemset kernel, denoted as KIK for two itemsets α and β is KIK(α, β) =
fr(α) · fr(β) · |{γ : γ � α, γ � β}| = fr(α) · fr(β) · (2|α∩β| − 1).

3 Pattern Set Kernel

Now, using the pattern kernel, we define the Pattern Set Kernel for sets of
patterns. We denote the pattern kernel (for both the pattern types) as KPK .

Definition 1. The Pattern Set Kernel, denoted as KPSK , between two sets of
patterns F1 and F2 is defined as KPSK(F1,F2) = Φ(F1)T Φ(F2), where Φ is
function that maps each set of patterns Fi to a vector in feature space 
|E+|,
where E+ denotes the set of all patterns of size one or more.

Based on the context, E+ could represent the set of serial episodes or itemsets
of size one or more. For each F , the γ coordinate of Φ is given by

Φγ(F) =
∑
α:

α∈F,γ�α

fr(α)

We now show how KPSK can be computed using the underlying pattern kernel.

Proposition 1. KPSK(F1,F2) =
∑

α∈F1,β∈F2
KPK(α, β).

Proof.

KPSK(F1,F2) =
∑

γ∈E+

⎛
⎜⎝ ∑

α:
α∈F1,γ�α

fr(α)

⎞
⎟⎠

⎛
⎜⎜⎝ ∑

β:
β∈F2,γ�β

fr(β)

⎞
⎟⎟⎠

=
∑

α∈F1

∑
β∈F2

∑
γ:

γ�α,γ�β

fr(α)fr(β)

=
∑

α∈F1

∑
β∈F2

KPK(α, β)

3 Injective because itemsets, by definition, do not have repetitive items.
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Fig. 1. Two example topologies of CCS.

Pattern Set Kernel between two sets of patterns is thus the summation of
Pattern Kernels of pairs of patterns from F1 and F2.

3.1 Complexity for Finding the Pattern Set Kernel

Let |F| denote the number of patterns in set F . Then, based on Proposition 1,
KPSK(F1,F2) computation takes |F1|× |F2| summations (of KPK). In the case
of episodes, assuming that the maximum size of the episodes in F1 and F2 as M
and N respectively, each Episode Kernel (KEK) calculation would cost O(MN).
For itemsets, the itemset kernel (KIK) computation would cost only O(M +N).
Hence the total cost of computing KPSK(F1,F2) is O(|F1||F2|MN) for episodes
and O(|F1||F2|(M + N)) for itemsets.

4 Simulations

In this section, we show the effectiveness of Pattern Set Kernel (PSK), where the
patterns are either itemsets or episodes. We show the effectiveness of PSK, by
comparing data from different sources. We also show the effectiveness of PSK for
change detection and classification. All algorithms are implemented in Matlab
and experiments were executed single threaded on an Intel i7 4-core processor
with 16 GB memory running over linux OS.

We define a measure of similarity between two sets of patterns as

sim-score(F1,F2) =
Φ(F1)

TΦ(F2)
√

Φ(F1)TΦ(F1)
√

Φ(F2)TΦ(F2)
=

K(F1,F2)
√

K(F1,F1)
√

K(F2,F2)

which is the usual cosine similarity measure between two vectors, normally used
with kernels. We also define a corresponding distance metric between two sets
of patterns as dist(F1,F2) = 1 − (sim-score(F1,F2)).

4.1 Measuring Similarity Between Sequences

We first consider sequence data, where patterns are injective serial episodes.
Of various techniques for summarizing sequences using serial episodes [7,9,13],
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we use the method CSC-2 [7], which retrieves a representative set of injective ser-
ial episodes from any sequence data. The algorithm does not need any user spec-
ified parameter such as frequency threshold. We consider the Coupled Conveyor
Systems (CCS) [2] for our first set of sequence data. CCS are reconfigurable con-
veyor systems for moving material/packages from input sources to output desti-
nations. They are built with units called Segments and Turns that each operate
autonomously. A Segment moves packages over a predetermined length over its
belt. A Turn is a unit that can serve as merger or splitter for package flow. The
system can be configured to different topologies that determine different paths
over which packages move. There are sensors at each turn and segment that record
events of packages moving through them with time stamps. Data mining over such
data streams is useful for remote monitoring and visualization of such systems.
The data we consider here is obtained through a detailed discrete event simulator
of CCS [2]. (See [7] for more details on this application).

We generate data streams from two topologies, T1 and T2, shown in Fig. 1a
and b. The topologies share the same subpaths, but the actual paths are different
in different topologies. For our simulation, for each topology, we generate two
sets of sequences, corresponding to two different input rates (assumed Poisson)
of 0.2 and 0.8, by running the simulator for a period of 5000 s each. Each such
stream is cut into 5 disjoint chunks of time span 1000 s.

We obtain a characterizing set of serial episodes (along with their frequen-
cies normalized to the chunk size) for each chunk using CSC-2 algorithm [7]
and compare these sets using the Pattern Set Kernel. Three sets of experiments
were conducted, comparing (a) chunks from the same sequences (same topology
and same input rates) (b) chunks from different sequences generated using the
same topology, but different input rates and (c) chunks from different sequences
generated from different topologies, but with the same input rate. Some repre-
sentative samples of these results are shown in Tables 1, 2 and 3. Each chunk is
referred in the tables using the notation, Ti-〈rate〉-〈chunknumber〉. As can be
seen, chunks from the same topology and same rate have very high similarity
scores (greater than 0.9), chunks from same topology but different rates have
somewhat lower scores (greater than 0.55) and chunks from different topologies
have much lower similarity scores (less than 0.38). The results show the PSK
based similarity measure is able to capture the difference in characteristics of
the datasets.

Table 1. sim-score between
T1-0.20-i (row) vs T1-0.20-j
(col).

i, j 1 2 3 4 5

1 1 0.95 0.92 0.92 0.97

2 0.95 1 0.97 0.95 0.96

3 0.92 0.97 1 0.97 0.92

4 0.92 0.95 0.97 1 0.91

5 0.97 0.96 0.92 0.91 1

Table 2. sim-score between
T1-0.20-i (row) vs T1-0.80-j
(col).

i, j 1 2 3 4 5

1 0.88 0.70 0.90 0.55 0.90

2 0.85 0.66 0.91 0.58 0.91

3 0.82 0.65 0.95 0.59 0.94

4 0.85 0.67 0.97 0.62 0.96

5 0.86 0.67 0.86 0.59 0.86

Table 3. sim-score between
T1-0.20-i (row) vs T2-0.20-j
(col).

i, j 1 2 3 4 5

1 0.32 0.31 0.33 0.33 0.33

2 0.32 0.33 0.33 0.35 0.33

3 0.32 0.33 0.33 0.34 0.32

4 0.33 0.31 0.34 0.34 0.34

5 0.34 0.33 0.35 0.37 0.35
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4.2 Pattern Set Kernels for Classification

Next we present results to show the effectiveness of PSK as a distance metric for
classification. We show results on sequences from the CCS problem and a few
benchmark sequence datasets in the domain of sign languages [9]. We compare
performance of three classifiers. Our first classifier is a PSK based K-Nearest
Neighbors (KNN) classifier, where distance metric used is dist, introduced earlier.
We denote this classifier as PSK-KNN. The second classifier is also a KNN
classifier, but has a Bag of Word (BoW) representation of data sequences using
selected episodes of all classes as dictionary. The third classifier we use is linear
Support Vector Machine (SVM) classifier, where again each sample is represented
using BoW representation.

For data sequences in CCS problem, we compare performance of the three
classifiers on predicting which topology a given data chunk comes from. The
training data consists of data chunks generated from different topologies and we
use CSC-2 algorithm for selecting a representative set of serial episodes for each
class. Test data chunks are also characterized by episodes discovered from them.

For this classification problem, we generated three datasets. The first dataset
consisted of sequences from Topologies T1 and T2 (Fig. 1). The data samples
for the two classes are sequences of chunk size 50 s generated from the respective
topologies. The second data consisted of sequences from the same topology T1,
but with different input rates, 0.5 and 0.8. The two classes correspond to the
two rates. The third data is similar to the first, except that chunk sizes have
been halved to 25 s. For KNN classifier, we tried different values of K. For
SVM classifier, we varied the error cost parameter ‘C ’ over a range of values.
The results we present are the best among all parameter values. We show the
classification results on CCS data in the upper part of Table 4. We see that PSK
based KNN classifier outperforms other classifiers for all three datasets.

The other datasets we consider contain labeled small sequences, correspond-
ing to different actions in sign language and have been used earlier as benchmark
sequence datasets [9]. Extracting characterizing serial episodes from very small
sequences is not generally possible. Hence, we generate new datasets, where indi-
vidual sequences corresponding to a class are generated by randomly selecting
10 sequences (of the original dataset) of the same class and concatenating them.

Table 4. Classification accuracy for
CCS and sign language datasets.

Table 5. Precision-Recall values for
change detection for different streams.

T1vsT2 T1vsT3 T2vsT3

Precision 0.9 1 1

Recall 0.85 0.91 0.94
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We experimented with five such benchmark datasets all of which are multi-class.
(The SVM classifier for the multi-class scenario is implemented using the one
versus rest approach). The results are shown in the lower part of Table 4. We see
that, except for ‘aslbu’ dataset (where it achieves slightly lower accuracy), the
PSK-KNN achieves higher accuracy as compared to other classifiers.

4.3 Change Detection in Streaming Data from Conveyor Systems

In this section, we use the PSK based distance metric to detect changes in
streams obtained from different topologies of the conveyor system. We generate
sequences from three topologies, T1, T2 and T3 (T3 is another topology, very
similar to T1 and T2 such that they share many subpaths, yet have different sets
of actual paths). For the change detection experiment, we generate data streams
consisting of a random mixture of data chunks from two different topologies. For
this, we adopt the following scheme. We randomly choose a number r between 5
and 10, and select the next r chunks, alternatively from one of the two topologies.
We continue this process until we get 100 chunks which forms the data stream
for change detection. Each chunk is compared with the previous one using the
metric, dist, to see how dissimilar they are. Results are shown in Fig. 2. Vertical
lines correspond the actual points of change in the stream. It is easy to see that
the dist metric using PSK is very effective in detecting points of change.

Fig. 2. Change detection: T1 vs. T2 with random breaks

We also show how PSK based dist metric performs for predicting changes,
using suitable thresholds on distances. We generated 10 instances of random
streams for T1 − T2, T1 − T3 and T2 − T3. The thresholds are calculated from
training data as follows. We take the 20th percentile of dist values corresponding
to change points in the training data as the distance threshold. We also calculate
the sequence of ‘derivatives’, which are changes in successive distances. We then
calculate derivative(i) − derivative(i + 1). As is easy to deduce, at points of
change, these correspond to a fall from a high value of derivative (at the point
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of change) to a low value of derivative (at the subsequent point). We again
take the 20th percentile value of the fall (in training data) as fall threshold. For
prediction, we report a change, when distance and fall of a point is above 90 %
of both thresholds. We report average precision and recall values in Table 5. We
see that PSK based distance measure achieves high precision and recall values.

4.4 Measuring Similarity Between Transaction Data

In this section, we show the effectiveness of Pattern Set Kernel, when patterns are
itemsets. We use the Krimp algorithm [16] for mining itemsets from transaction
datasets. Krimp is an MDL based lossless compression algorithm, which outputs
a set of itemsets, that summarizes transaction data well. The dataset we consider
is 2-class mushroom transaction dataset [10]. Mushroom dataset consists of 8124
transactions, each having 22 categorical attributes. Transactions belonging to
each class are equally divided into 5 chunks of transaction data. The classes are
denoted by c1 and c2 respectively. Since Krimp initially mines the set of frequent
itemsets before finding the best summarizing subset of itemsets, we specify the
frequency threshold as 12 % (for mining) of the total number of transactions in
each chunk. Each chunk is referred using the format 〈class〉-〈chunknumber〉.

Tables 6, 7 and 8 show the results on the different chunks. We see that
sim-scores are higher between chunks belonging to the same class. The sim-
ilarity scores between the chunks of different classes are extremely low, thus
showing the effectiveness of our kernel based similarity score.

Table 6. sim-score betw-
een c1-i (row) vs. c1-j
(col).

i, j 1 2 3 4 5

1 1 0.81 0.81 0.85 0.97

2 0.81 1 0.82 0.81 0.79

3 0.81 0.82 1 0.80 0.84

4 0.85 0.81 0.80 1 0.83

5 0.97 0.79 0.84 0.83 1

Table 7. sim-score betw-
een c2-i (row) vs. c2-j
(col).

i, j 1 2 3 4 5

1 0.029 0.020 0.018 0.019 0.020

2 0.017 0.018 0.016 0.017 0.019

3 0.017 0.018 0.016 0.017 0.018

4 0.017 0.018 0.016 0.017 0.018

5 0.018 0.019 0.017 0.018 0.020

Table 8. sim-score betw-
een c1-i (row) vs. c2-j
(col).

i, j 1 2 3 4 5

1 0.029 0.020 0.018 0.019 0.020

2 0.017 0.018 0.016 0.017 0.019

3 0.017 0.018 0.016 0.017 0.018

4 0.017 0.018 0.016 0.017 0.018

5 0.018 0.019 0.017 0.018 0.020

Remark 1. We would like to point out that we have not compared our similarity
measure with any other known similarity measures for comparing datasets. Even
though there is a sequence kernel for comparing sequences [11], it is computa-
tionally inefficient for long sequences. The rest of the similarity measures are
not directly comparable with the measures we proposed here. Thus, although
methods for comparing sequences such as strings are known, as per our knowl-
edge, this is the first work, wherein structural comparison of sets of patterns is
considered for analyzing similarities between sequential or transaction data.
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5 Conclusion

The goal of frequent pattern mining is to gain useful information about data.
Recently, many algorithms have been proposed for characterizing or representing
data using a small subset of (frequent) patterns [7,9,13,15,16]. In such scenarios,
when data is represented by a set of ‘characteristic’ patterns, a natural question
is that of comparing sets of patterns representing the datasets in order to gain
insights into the similarity of different datasets. In this paper, we have looked
at this problem of pattern set comparison. We proposed a Pattern Kernel for
quantifying similarity between pairs of patterns and then used it to define a
Pattern Set Kernel for comparing sets of patterns. Pattern Kernel was defined
for injective serial episodes and itemsets. The Pattern Kernel value depends on
number of common subpatterns shared by the two patterns. We also presented
efficient algorithms for calculating these kernels.

The effectiveness of the Pattern Set Kernel was shown for different sequence
datasets as well as for a 2-class transaction dataset. We defined a similarity
score and a distance measure using Pattern Set Kernel and used it for scenar-
ios involving direct comparison of datasets, change detection and classification.
On many sequence datasets as well as on the transaction dataset, it is seen
that our kernel-based similarity measure is very effective in capturing similari-
ties/differences between data.

Sequential patterns constitute another type of patterns that are used for
analyzing sequence data [18]. While we did not consider these in this paper,
our pattern kernel can be defined for sequential patterns also [5]. In the case of
sequential patterns we need to assume a form of injectiveness that is somewhat
restricted, to be able to compute the kernel efficiently. We would be further
exploring this and other issues of extending our pattern kernel to all types of
frequent patterns in our future work. The field of pattern mining has opened-
up a new view of data through significant local patterns that occur in data.
Similarity measure such as Pattern Set Kernel proposed here would prove to be
very useful in utilizing such a view of data in many applications.
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Abstract. Recent pattern mining algorithms such as LAMP allow us
to compute statistical significance of patterns with respect to an out-
come variable. Their p-values are adjusted to control the family-wise
error rate, which is the probability of at least one false discovery occur-
ring. However, they are a poor fit for medical applications, due to their
inability to handle potential confounding variables such as age or gen-
der. We propose a novel pattern mining algorithm that evaluates sta-
tistical significance under confounding variables. Using a new testability
bound based on the exact logistic regression model, the algorithm can
exclude a large quantity of combination without testing them, limiting
the amount of correction required for multiple testing. Using synthetic
data, we showed that our method could remove the bias introduced by
confounding variables while still detecting true patterns correlated with
the class. In addition, we demonstrated application of data integration
using a confounding variable.

Keywords: Significant pattern mining · Multiple testing · Exact logistic
regression

1 Introduction

Statistical significance measures how well a claimed proposition is supported by
data. Use of p-values is ubiquitous and indispensable in scientific literature [10].
Given a set of examples (e.g. itemsets, sequences or graphs) and associated
class labels, recent methods such as Limitless Arity Multiple-testing Procedure
(LAMP) [15] and its subsequent studies [9,13] can list all patterns (e.g. subsets,
subsequences or subgraphs) that are significantly associated with the class label.
c© Springer International Publishing Switzerland 2016
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Fig. 1. Effect of confounding variable. If one tries to find patterns associated with the
disease, patterns associated with gender are likely to be found instead. To avoid this
issue, the statistical test has to take the confounding variable (gender) into account.

Unlike earlier methods [17], these approaches provide a guarantee that the proba-
bility of at least one false discovery occurring (i.e. family-wise error rate, FWER)
is smaller than a pre-defined threshold (conventionally 0.05 or 0.01).

However, these methods fail to take into account the various biases that
can be introduced by confounding variables (e.g. age or gender of patients) in
observational medical data. Figure 1 provides a simple illustration of the type
of issues that can arise when potential confounding effects are ignored, leading
to unacceptable results. While all patients (represented by their gene expression
levels) are separated into two classes along their disease status, we can see that
one gender is heavily over-represented in each group. Ignoring the confounding
effect of gender on this dataset would likely find significant genes that are related
to the gender of the patient, rather than the disease.

To remove the bias introduced by confounding factors, statisticians typically
use likelihood ratio tests based on logistic regression models [12]. However, due to
the very large number of candidate combinations, the correction factor for multi-
ple testing can grow extremely large, removing any chance of finding statistically
significant patterns. Reducing the correction factor using the same technique as
existing algorithms [9,13,15], requires finding a good testability bound to prune
out non-significant patterns (without testing them), which is notoriously difficult
when using such a method based on logistic regression models.

To achieve this goal, we turned to exact logistic regression [7], a model less
popular than likelihood ratio testing but commonly used in statistical and bio-
logical communities via tools such as SPSS [8] or R [19]. The term “exact”
essentially indicates that the test statistics are computed exactly without large-
sample approximations, whereas a likelihood-based approach uses asymptotic
statistics. Crucially, the computation of exact statistics does not require an iter-
ative process to update the parameters until convergence [1].

In this article, we propose a novel pattern mining algorithm, LAMP-ELR
(Limitless Arity Multiple-testing Procedure with Exact Logistic Regression),
that evaluates statistical significance for all possible patterns using exact logistic
regression. LAMP-ELR can be used in a number of different scenarios: control-
ling FWER even when the dataset is affected by confounding variables, and Data
integration, which is a useful technique to merge similar experimental data taken
from different sources so as to provide a larger set for analysis. We show that our
algorithm contributes to these scenarios by applying it to both synthetic data
and the Predictive Toxicology Challenge (PTC) dataset [3].
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2 Related Work

Statistical tests based on logistic regression exist to deal with confounding effects
in datasets, such as exact interface [7] or approximate conditioning [11]. However,
these procedures only perform testing of one hypothesis at a time, requiring us
to adjust for multiple testing to control for false discoveries [2].

Bonferroni correction is a widely used multiple testing procedure, but is
known to be overly conservative in computing the FWER and cannot be applied
for significant pattern mining, where the number of combinations can grow expo-
nentially. More recently, multiple testing procedures for controlling the FWER
when detecting significant patterns have been proposed [9,13,15]. They use
Bonferroni-like multiple testing procedures with Tarone’s p-value bound strat-
egy [14] to improve the sensitivity of the correction through frequent itemset
mining. However, none of the algorithms can take into account possible con-
founding effects introduced by a covariate, making it poorly suited for many
types of real-life data.

3 Significant Pattern Mining

This section lays out the theoretical foundations of significant pattern mining.
Given a set of transactions, each labelled with a positive or negative class, and
a pattern X, the transaction set can be divided between those where the pat-
tern occurs and the rest, producing a contingency table. Statistical association
between pattern occurrence and class label is measured using p-values, which are
computed by hypothesis testing such as Fisher’s exact test and χ-squared test.
If the p-value is smaller than a threshold, the pattern is regarded as statistically
significantly associated with the class label.

Due to the nature of pattern mining, it can be necessary to test a huge
number of such hypotheses. In itemset mining with n items, for example, the
number of possible patterns � can be as large as 2n − 1. Such analysis causes
serious false discoveries, known as the multiple testing problem. We therefore
need to control the FWER. If we note � null hypotheses as H1, . . . , H�, and
if V describes the number of false discoveries, the FWER can be expressed as
P (V > 0 | ⋂�

i=1 Hi).
Multiple testing procedures [2] adjust the p-value threshold so that the

FWER is controlled under a pre-specified value (usually α = 0.05 or 0.01).
For example, the Bonferroni correction adjusts the threshold to δ = α/� by
calculating the FWER bound as

P (V > 0|
�⋂

i=1

H�) ≤
�∑

i=1

P (pi ≤ δ | Hi) ≤ �δ = α. (1)

Thus, it is clear that Bonferoni’s threshold keeps the FWER below α. Unfortu-
nately, Bonferroni correction is inappropriate for use with pattern mining: since
� grows exponentially with the number of items, δ sinks to a very small value,
making new discoveries extremely unlikely.
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Recently, Terada et al. [15] have shown that this issue can be mitigated by
employing the following trick, first proposed by Tarone [14]. Suppose one can
bound the p-value pi from below with a function fi depending only on marginal
counts, i.e. pi ≥ fi. We call this bound a min-p bound or min-p for short. If
fi > δ, the hypothesis can never be rejected because P (pi ≤ δ | Hi) = 0. Using
this property, the FWER bound of Eq. 1 can become tighter:

P (V > 0|⋂�
i=1 H�) ≤ ∑�

i=1 P (pi ≤ δ | Hi)
≤ ∑

{i | fi≤δ} P (pi ≤ δ | Hi) ≤ |{i | fi ≤ δ}|δ.

LAMP uses customised pattern mining algorithms to find the maximum value of
δ that keeps the FWER below α. The resulting δ is normally much larger than
Bonferroni’s correction factor, resulting in more significant discoveries. However,
LAMP cannot handle confounding effects introduced by a covariate, making
them poorly suited for many types of real-life data.

4 Exact Logistic Regression

4.1 Logistic Regression

In biological and medical domains, the logistic regression model is the method
of choice for deriving p-values with confounding variables [12]. Let us consider
evaluating the association between a binary outcome y ∈ {0, 1} and an explana-
tory variable x1 ∈ {0, 1}. A categorical covariate x2 ∈ {0, . . . , K} is assumed
to be known as a confounding variable. Using dummy coding for the categori-
cal variable, the logistic model, with π denoting the probability of y being 1, is
defined as

log(
π

1 − π
) = γ + β1x1 +

K∑
k=1

β2k�x2 = k�,

where �P� ∈ {0, 1} is the boolean variable resulting from the evaluation of pred-
icate P. To measure the statistical significance of x1, we consider an alternative
model β1 = 0.

Incorporating this test into pattern mining is difficult because the p-value
is based on large-sample approximations and very inaccurate for biased contin-
gency tables [4]. Deriving a min-p bound requires considering the most biased
table, so the min-p can be unreliable.

4.2 Exact Inference

Here we introduce the concept of exact logistic regression [7]. Although based
on the same model as regular logistic regression, its p-value is computed exactly,
without relying on large-sample approximations, which makes it possible to
derive an easily-computable min-p bound.
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Figure 2 illustrates exact logistic regression testing. We consider a set of q
examples, where the ith example is a tuple {yi, x1i, x2i}. Without loss of gener-
ality, the examples are assumed to be sorted with respect to x2 (the covariate).
Let us define qk as the number of examples whose covariate is k (x2i = k). Let
vectors y,x1,x2k respectively denote the q-dimensional outcome, explanatory
and kth (out of K) covariate values of the q examples. Then, the sufficient sta-
tistics for γ, β1 and β2 are defined as τ0 = 1�y, τ̂1 = x1

�y and τ2k = x2k
�y,

respectively.

Fig. 2. Illustration of exact logistic regression testing. Assuming data (both explana-
tory variable x1 and class y) ordered according to the covariate (x2), we consider the
fiber Y made of all the permutations of y that preserve the occurrence counts qk within
each covariate category k. The observed statistic τ̂1 is obtained from the dot product
of y and x1 and the p-value is the ratio of y′ (elements of the fiber Y) for which the
dot product with x1 is higher than τ̂1, i.e. the probability of obtaining a distribution
more biased than what is observed, while keeping the same marginal counts in each
covariate categories.

When testing for statistical significance of the explanatory variable, we would
like to find out if the observation y is special in that it shows particularly high
correlation to x1. If the obtained level of explanatory correlation τ̂1 is easily
predictable from the existing information τ̂0 and τ̂2, it should not be regarded as
statistically significant. In exact logistic regression, the sample space is defined
as the set of all sample vectors whose positive class size and covariate correlation
are constrained to the observed value, called a fiber [6],

Y = {y′ | y′�1 = τ̂0,y′�x2k = τ̂2k, k = 1, . . . , K}.

It is equivalently represented as

Y = {y′ | y′�x2k = τ̂2k, k = 0, . . . , K}, where τ̂20 = τ̂0 −
K∑

k=1

τ̂2k.
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To calculate the p-value with respect to the explanatory variable, the null
distribution of τ̂1 is defined as uniform sampling from Y . Then, the p-value is
defined as

p =
1

|Y |
∑
y′∈Y

�x1
�y′ ≥ τ̂1�. (2)

The p-value is computed by making K contingency tables for each value
of x2. The vectors yk and x1k denote the outcome and explanatory values in
the covariate category k, respectively, and let mk = y�

k 1, sk = x�
1k1 and tk =

y�
k x1k. nk represents the number of samples with in the covariate category k.

The joint probability of obtaining these tables is described as

C(t) =
K∏

k=1

{(
mk

tk

)(
nk − mk

sk − tk

)/(
nk

sk

)}
,

where t = (t1, . . . , tK). Then, the p-value (2) is rewritten as

p =
∑

w∈W (t)

C(w), where W (t) = {(w1, ..., wK) |
K∑

k=1

wk ≥
K∑

k=1

tk}.

The min-p bound given marginal counts sk,mk, nk, corresponding to the
p-value of the most biased table, can be written as

f =
K∏

k=1

fk(sk), where fk(sk) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
mk

sk

)/ (
nk

sk

)
(if sk ≤ mk)

1
/ (

nk

mk

)
(otherwise).

(3)

5 Min-P Decrease Algorithm

This section presents LAMP-ELR: an algorithm that uses a min-p bound (3) to
solve the multiple testing problem and find statistically significant patterns.

Let E denote a set of items. Let f(X) denote the minimum p-value (i.e.
min-p) for itemset X ⊆ E, and δ ∈ R denote a threshold for p-values that
discriminates between significant and non-significant patterns. Then, the number
of all testable patterns can be described as

κ(δ) = |{X ⊆ E | f(X) ≤ δ}|.

If the following bounding condition is satisfied:

δ ≤ α/κ(δ) (4)

the FWER is bounded by α. We compute the largest δ satisfying this condition.



Significant Pattern Mining with Confounding Variables 283

Algorithm 1. LAMP-ELR algorithm, which handles confounding variables.
1: Global variables: δ = α and S: empty priority queue structure.
2: function MinPDecrease(X)
3: S.insert(X, f(X)) � Insert X with priority f(X)
4: while δ ≥ α/|S| do
5: δ ← S.max priority() � Retrieve highest priority
6: T ← |S|
7: while δ ≥ α/T do
8: S.pop() � Remove element with highest priority
9: end while

10: end while
11: for each item e > tail(X) do
12: if f(X ∪ e) < δ then
13: MinPDecrease(X ∪ e)
14: end if
15: end for
16: end function

5.1 Algorithm for K Contingency Tables

We propose a depth-first algorithm, called LAMP-ELR, which follows a similar
strategy to a fast version of the LAMP [9], to handle the case of K contingency
tables. Our algorithm finds the optimal δ by using a key point: When an item e
is added to the itemset X, the min-p bound for the itemset becomes larger.

We first show that the function in Eq. 3 holds this property.

Theorem 1. If sk ≥ s′
k, fk(sk) ≤ fk(s′

k).

Proof. If sk ≤ mk, fk(sk) = {(mk − x + 1)/(nk − x + 1)}fk(sk − 1). If (mk −
x + 1)/(nk − x + 1) < 1, fk(x) < fk(x − 1). If sk > mk, fk(sk) is a constant.
Therefore, Theorem 1 holds.

Theorem 2. For itemsets X and X ′ = {X ∪ e}, f(X) ≤ f(X ′).

Proof. Let sk and s′
k be the frequencies of the group k for X and X ′. When sk ≥

s′
k, fk(sk) ≤ fk(s′

k) for k ∈ {1, ...,K} from Theorem 1. Therefore, Theorem 2
holds.

The function MinPDecrease, outlined in Algorithm1, performs a depth-
first search to collect as many testable patterns as possible while conforming to
the bounding condition (Eq. 4). Upon starting, the threshold of min-p is set as
δ = α and the priority queue holding eligible patterns is empty: S = ∅. S stores
all the patterns traversed so far whose priority (min-p) is below δ. If δ ≥ α/|S|,
it is clear that δ ≥ α/κ(δ), since κ(δ) refers to the number of patterns whose
min-p is smaller than δ and |S| refers to those among the patterns traversed so
far. We therefore reduce the current δ until the bounding condition is satisfied.
On lines 12–14, the current itemset, X, is extended by adding one item e and
the function MinPDecrease is recursively called. If f(X ∪ e) ≥ δ, there is no
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need to explore all further patterns that contain X∪e due to the monotonicity of
f(X) (Theorem 2). Inserting into the priority queue S (S.insert()) and removing
the element with highest priority (S.pop()) take O(log |S|) time, while retrieving
the maximum priority (S.max priority()) can be done in constant time.

The following theorem proves that the obtained threshold bounds the FWER.

Theorem 3. Let δend denote the value of δ at the end of the algorithm. It sat-
isfies the bounding condition (4), i.e., δend ≤ α/κ(δend).

Proof. Due to the pruning condition on line 12 of Algorithm1, only elements
with min-p value strictly smaller than δ can be added to S, therefore the value
of δ = S.max priority() never increases with each iteration. Let Send denote
S at the end of the algorithm. Since δ can only decrease, the patterns whose
min-p is smaller than δend do not get pruned out and are included in Send. Also,
patterns whose min-p is larger than or equal to δend are eliminated at line 8 and
therefore: |Sfinal| = κ(δend). Since the update condition at line 4 ensures that
δ < α/|S|, we have: δend < α/κ(δend).

Algorithm 1 is designed for itemset mining, but extensions to sequence or
graph mining are straightforward, as long as depth-first search is adapted.

5.2 Speed and Memory Usage Improvements

Because Algorithm 1 does not make use of the collection of itemsets X after
completing the calculation of min-p, instead of keeping those patterns in S, we
can simply store their total count. We modify Algorithm1 using a special type of
priority queue C, instead of S, to store the histogram counter: insertion into C
only happens (with value 1) when the priority key did not previously exist, and
its value is incremented otherwise. In most typical implementation of the priority
queue structure, such an operation, which we note C.insert or increment(), can
easily be implemented with the same computational complexity as a traditional
insertion, in O(log|C|).

6 Experiment on Synthetic Dataset

We first evaluated the performance of our procedure using synthetic dataset with
an application to significant itemsets detection. Our algorithm was implemented
by modifying lcmplusplus1, a C++ implementation of the LCM algorithm, which
is currently the fastest frequent itemset mining method available [16]. All exper-
iments were run under Mac OS 10.4.4 on a 1.7 GHz Intel Core i7.

The synthetic datasets consist of 1000 transactions, shared equally between
positive and negative labels. All positive and negative transactions are assigned
to Group 1 or 2 according to a bias factor r (similar to the gender bias in Fig. 1).

1 https://code.google.com/p/lcmplusplus/.

https://code.google.com/p/lcmplusplus/
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Table 1. PTC datasets. All datasets use 22 node labels and 4 edge labels.

Size # positives Avg |V | Avg |E| Max |V | Max |E| Min |V | Min |E|
FM 349 143 25.25 25.62 109 108 2 1

MM 336 129 25.04 25.40 109 108 2 1

FR 351 121 26.08 26.53 109 108 2 1

MR 344 152 25.56 25.96 109 108 2 1

A ratio of r out of all positive transactions are assigned to Group 1, along with
1−r of all negative transactions. All other transactions are assigned to Group 2.
This dataset contains 100 items, and each item appears with a default probability
of 0.1 within each transaction. We introduce true patterns and shadow patterns
containing three items each. The 5 true patterns correlate with the class of the
transactions: each pattern appears in a randomly chosen 20 % of positive trans-
actions and is absent from a random 20 % of negative transactions. The 5 shadow
patterns simulate a confounding effect by correlating to the group of the transac-
tions: each shadow pattern appears in a random 20 % of Group 1 transactions and
is absent from a random 20 % of Group 2 transactions. We generated 3 groups at
different levels of confounder bias: an unbiased dataset (r = 0.5), low-bias dataset
(r = 0.7), and high-bias dataset (r = 0.9).

For each dataset, we compared the significance (at level α = 0.05) of the pat-
terns obtained through frequent itemset mining using a traditional implementa-
tion of the LAMP (performing one-sided Fisher’s exact tests) on one side, and
LAMP-ELR (performing exact logistic regression tests) on the other. A sum-
mary of the results can be seen in Fig. 3. Both methods detect true patterns
equally well independent of r. However, as suspected, when group bias is intro-
duced and increased, LAMP tends to select more of the shadow patterns along
with the true patterns, with a steadily decreasing ratio of true positives among
the discoveries. LAMP-ELR, on the other hand, is able to identify and reject
patterns whose occurrence is due to the confounder, rather than the actual class.

7 Experiment on Data Integration

To demonstrate the usefulness of our method, we tested it on the PTC dataset [3].
The dataset is made of graph structures representing chemical compounds and
labelled with an indication of carcinogenicity over four groups: Female Mouse
(FM), Male Mouse (MM), Female Rat (FR) and Male Rat (MR). Statistics for
this dataset are summarised in Table 1.

We implemented our method in C++, using gSPAN [18] as a base. The
experiment was run on a machine with two Intel Xeon E5-2680v2 CPUs at
2.8 GHz and 64 GB of RAM. The significance level α was set to 0.05.
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Fig. 3. Comparison between LAMP (ignoring potential confounding effects) and
LAMP-ELR (taking confounder into account). (a)–(c) Comparing p-values of true and
shadow patterns by the two methods. For high values of confounder bias, LAMP tends
to small p-values to the false patterns. (d) F-measure (ratio of true patterns discovered
over total number of patterns discovered) for both LAMP and LAMP-ELR, at different
levels of confounding bias.

7.1 Significant Subgraphs

In order to outline the advantage of our method for integrated analysis, we
compared the results of significant subgraph mining over each individual FM,
MM, FR and MR dataset, using LAMP, with the analysis of the dataset obtained
by merging all four (adding the subgroup origin as a covariate), using LAMP-
ELR. Result statistics are compiled in Table 2.

The correction factor for each of the smaller individual dataset analysis is
about 100 times smaller than that of the integrated dataset. However, the smaller

Table 2. Analysis of PTC Data: highlighting the importance of integration

Method Dataset Correction factor # significant patterns found

LAMP FM 16333 0

LAMP MM 17713 0

LAMP FR 22543 0

LAMP MR 12192 0

LAMP-ELR FM+MM+FR+MR
(using covariate)

1141376 9250
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numbers of samples lead to higher pattern p-values, producing no significant
patterns despite the lower correction. When integrating the datasets, the total
number of transaction approximately quadruples and we are able to identify
9250 subgraphs with statistically significant toxic effect. Meanwhile, the use of a
confounder variable identifying the individual dataset from which each transac-
tion is taken, guarantees that the patterns identified are not caused by artefacts
or other subset biases.

7.2 Performance Evaluation

We assessed the efficiency of our pruning method by comparing it with a naive
brute-force version which calculates the minimum p-value for any itemset occur-
ring at least once. Figure 4 shows the time performances when considering sub-
graphs of increasingly large edge sizes. As could be expected, the calculation
time exponentially increases in the brute-force approach. By contrast, the run-
ning time of LAMP-ELR increases linearly up to approximately 25 edges, with
no noticeable change afterward. For instance, the brute force algorithm requires
11,644 s when considering subgraph of edge size no more than 15, whereas
LAMP-ELR can finish in 2,885 s without edge size limit. Our pruning tech-
nique succeeds in dramatically reducing the running time, enabling us to detect
high-dimensional combinatorial effects while taking into account potential effects
from confounder variables.

The improvements for space and speed presented in Sect. 5.2 mainly depend
on the number of patterns sharing identical values of min-p, which is used as a
(unique) key in the priority queue structure C. Figure 5 shows the frequency of
each unique value of min-p present in the PTC dataset analysis. A large number
of itemsets share identical values of min-p. For example, 115,816 patterns have
the identical min-p value 1.44E − 10. Eliminating this redundancy from storage
and insertion computation is directly related with the overall speed gain of our
optimised method over a standard approach.

Fig. 4. Calculation time when increas-
ing the edge size of the subgraphs inves-
tigated.

Fig. 5. Cumulative frequency of item-
sets with a minimum p-value.
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8 Conclusion

In this work, we developed a significant pattern mining method based on exact
logistic regression statistics that can account for potential confounding effect
from a covariate. This is, to our knowledge, the first such method to combine a
covariate-aware model with optimised multiple testing procedures to keep sig-
nificance sensitivity up while limiting the effect of confounders.

In future work, we plan to improve confounder detection for cases where they
might not be known in advance. Several methods have been proposed to identify
confounders using probabilistic models [5], that are not currently compatible
with pattern mining problems, but show potential promises for our work.
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Abstract. Statistical machine translation models are known to benefit
from the availability of a domain bilingual lexicon. Bilingual lexicons are
traditionally comprised of multiword expressions, either extracted from
parallel corpora or manually curated. We claim that “patterns”, com-
prised of words and higher order categories, generalize better in capturing
the syntax and semantics of the domain. In this work, we present an app-
roach to extract such patterns from a domain corpus and curate a high
quality bilingual lexicon. We discuss several features of these patterns,
that, define the “consensus” between their underlying multiwords. We
incorporate the bilingual lexicon in a baseline SMT model and detailed
experiments show that the resulting translation model performs much
better than the baseline and other similar systems.

Keywords: Submodular · Pattern extraction · Cross-domain SMT

1 Introduction

A statistical machine translation (SMT) model typically relies on the availabil-
ity of a large parallel corpus, often collected from multiple sources and spanning
different domains. While a domain-specific corpus might share some of its lexical
characteristics with the cross-domain corpus, it often differs in its language usage
and vocabulary. A cross-domain SMT model might, therefore, fail to reliably
translate an in-domain text. While it is possible to train an in-domain transla-
tion model, domain-specific parallel corpus is either non-existent or scarce and
expensive to generate. The problem of domain adaptation deals with augment-
ing a cross-domain translation model to reliably translate an in-domain text and
poses an interesting research challenge [8].

Although in-domain parallel text might be difficult to obtain, in-domain bilin-
gual lexicons are often readily available or could be manually curated. Typically,
these are restricted to words or short phrases specific to the domain of interest.
A medical domain bilingual lexicon, for instance, consists of technical and popu-
lar medical terminology covering the anatomy of body, certain diseases, medicines
etc. In addition to these however, a domain corpus, due to its specific language
c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part I, LNAI 9651, pp. 290–303, 2016.
DOI: 10.1007/978-3-319-31753-3 24
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Table 1. Examples of recurring patterns, sample snippets covered by them and the
number of such covered snippets (in brackets) for the EMEA corpus

PATTERN: in patients with 〈 CAT1 〉 (568) Contains 〈 CAT2 〉 mg of 〈 CAT3 〉 (91)

in patients with HIT type II capsule contains 25 mg of lenalidomide

in patients with CNS metastases tablet contains 300 mg of maraviroc

in patients with ESRD syringe contains 100 mg of anakinra

in patients with
normal and impaired renal function

tablet contains 2.3 mg of sucrose

in patients with
previous history of pancreatitis

capsule contains 200 mg of pregabalin

in patients with cirrhosis of the liver vial contains 10 mg of the active substance

tablet contains 30 mg of aripiprazole

structure, is often replete with redundant phrases. Consider for instance, the
phrase “...be given marketing authorisation”, appearing 218 times in the EMEA
medical corpus [23]. These, if extracted and translated in a bilingual lexicon, might
aid in-domain translation [21,26]. In fact, repetition in a domain corpus could
be further exploited by observing that certain phrases, which might themselves
be infrequent, tend to have “consensus” when generalized to higher-level pat-
terns. Table 1 illustrates two patterns and corresponding sample phrases extracted
from the EMEA medical domain corpus. These patterns are typically n-grams
of tokens, domain-specific categories or higher-level phrase classes (noun phrase,
verb phrase etc.).

Given a domain corpus, it is not obvious how to extract a set of such pat-
terns to be manually translated. Moreover, in the absence of a parallel in-domain
corpus, translation of these patterns requires manual effort, which poses other
challenges. Specifically, syntactically well-formed patterns like “the CAT5 of
treatment” might be easier for humans to translate than others like “CAT4
condition has”. Chen et. al. [3] present this and other quality criteria that every
pattern must satisfy to be worth being translated in order to aid cross-domain
SMT applications. We will refer to such patterns as quality patterns. In this
work, we generalize the search space of patterns as well as the quality criteria
that a pattern must meet.

More importantly, two or more quality patterns could have instances that
significantly overlap in their spans in the corpus. Is translating each such qual-
ity pattern really necessary? We expect the human effort for translating pat-
terns to have a budget constraint and therefore, a compact set of patterns is
desirable. For example, it is desirable to extract a set of patterns (for bilin-
gual lexicon), such that, the set maximally covers the corpus. We argue that
some formulations of this problem are natural instances of submodular max-
imization. A set function f (.) is said to be submodular if for any element v
and sets A ⊆ B ⊆ V \ {v}, where V represents the ground set of elements,
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f (A ∪ {v}) − f (A) ≥ f (B ∪ {v}) − f (B). This is called the diminishing returns
property and states, informally, that adding an element to a smaller set increases
the function value more than adding that element to a larger set. Submodular
functions naturally model notions of coverage and diversity, and therefore, a
number of subset selection problems can be modeled as forms of submodular
optimization [7,11].

We illustrate the relevance of the submodular coverage function to pattern-
subset selection in Fig. 1. We plot the corpus coverage (in terms of number of
words) with increasing number of patterns in the set, for pattern lengths varying
from 3 to 9. In each case, while the coverage improves with increasing number of
patterns, the gain in coverage progressively diminishes with growth in the size
of the subset.

Our contribution is a framework to curate a high quality bilingual lexicon
based on three key ideas. Our first two ideas generalize the approach of Chen
et al. [3].

1. Language of patterns: A pattern could either be lexical, comprised of words
alone, or it could be a combination of words and higher-level categories.

2. Quality criteria for a pattern: The quality (or cost) of every instance of a
pattern is a function of several features including its frequency in the corpus
and whether or not it is syntactically well-formed. The quality (or cost) of a
pattern is then a simple (modular) aggregation of the instance costs.

3. Quality criteria for a set of patterns: We define the “goodness” of a set
of patterns based on element-wise non-decomposable submodular costs.

We incorporate these patterns along with their translations, as entries in a bilin-
gual lexicon and study1 its effect on the translation accuracy for the domain
adaptation of a baseline SMT model. While significantly improving over the
baseline, we also show significant improvement over the modular setting of Chen
et al.

(a) Corpus EMEA: corpus coverage vs.
#patterns

(b) Corpus KDE4: corpus coverage vs.
#patterns

Fig. 1. Gain in coverage shows diminishing returns with increasing number of patterns
in the set

1 We release our code for optimal pattern-set identification, as well as the lexicons.
https://www.cse.iitb.ac.in/∼ganesh/Publications.html.

https://www.cse.iitb.ac.in/~ganesh/Publications.html
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2 Related Work

Extraction of Bilingual Multi-word Expressions (BMWE): SMT sys-
tems often use word-to-word alignment approaches for inferring translation prob-
abilities from bilingual data [17,25]. However, in some cases it might not be possi-
ble to perform word-to-word alignment between two phrases that are translations
of each other [10]. This has motivated a body of work [10,18,21] on automatic
extraction of multi-word expressions from bilingual corpora. Ren et al. [21] pro-
pose multiple techniques to integrate BMWE’s into a phrase-based SMT system
and show improvement over the baseline translation system. Recently, Liu et al.
[12] proposed an approach to mine quality phrases from large text corpora. They
use a phrasal segmentation-based approach for phrase mining and combine that
with several phrase quality assessment metric in a scalable framework. While
our approach is inspired by these works, we differ from them in that we aim to
extract generalized patterns comprising words and categories. Also, we do not
assume availability of a parallel corpus in the target domain.

Domain Adaptation: Typically, the application domain of a translation sys-
tem might be different from the domain of the system’s training data. In-domain
parallel corpus might either be non-existent or scarce, but, in-domain mono-
lingual corpus is usually available. The problem of domain adaptation2 has
therefore been in focus and there has been work [8,16,26] to build in-domain
translation lexicons and combine them with out-of-domain parallel corpus to
achieve in-domain translation. Koehn and Schroeder [8] use limited in-domain
parallel corpus to train a language model and a translation model and present
techniques to integrate them with corresponding models trained on an out-of-
domain corpus. Wu et al. [26] manually create an in-domain lexicon where the
lexicon entries are restricted to words. They propose an algorithm to combine an
out-of-domain bilingual corpus, an in-domain bilingual lexicon, and monolingual
in-domain corpora in a unified framework for in-domain translation.

Pattern Mining: The other body of work most related to our approach comes
from the area of pattern mining. While most earlier work [22] dealt with identi-
fying consecutive word sequences, Joshi et al. [6] present an efficient approach to
mine significant non-consecutive word sequences, where, significance is captured
by the support measure. Contrary to mining patterns that satisfy pre-specified
criterion, there has also been work on interactive pattern mining [1,2,27] that
uses human feedback to identify a set of interesting patterns. Chen et. al. [3]
proposed an English-Chinese medical summary translation system that adapts
a baseline SMT model with significant patterns (of lexical as well as medical
type tokens) learned from an English medical summary corpus. The quality of
a pattern is assessed based on its frequency in the corpus and its linguistic com-
pleteness. While being closest to our work, we differ from them and the other
aforementioned works in two ways. Firstly, we realize that the quality crite-
rion for a set of patterns is not always a modular function of quality of the

2 http://www.statmt.org/wmt07/shared-task.html.

http://www.statmt.org/wmt07/shared-task.html
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constituent patterns in the set. We define several quality criteria based on both
element-wise decomposable (modular) costs and element-wise non-decomposable
(non-modular) costs and combine them in a mathematical formalism for the task
of significant pattern mining. Secondly, domain-specific classes often rely on the
availability of corresponding term lexicons. Our framework also makes use of
general phrase classes such as noun phrases (NP), verb phrases (VP), thereby
extracting generic patterns whose instances themselves might not be frequent
in a corpus (Refer to Fig. 1). Moreover, the use of phrase classes allows for the
induction of new instances in a class (type) lexicon.

3 Framework

The task of lexicon curation finds applications in several NLP tasks including
machine translation. We present a formulation of the problem and a solution
framework that one could invoke based on underlying application requirements.
The lexicon is composed of quality patterns extracted from a domain corpus and
for the specific task of machine translation with low resource constraint, we then
acquire translations of these patterns to create an in-domain bilingual lexicon.

3.1 Formal Problem Definition

We are given a domain corpus C and optionally a set of “types” T . A type might
represent a domain type, like disease in medical domain, a lexical type, like noun
phrases or a complex type involving a combination of these. The problem of
lexicon curation is to extract from C, a set H of quality patterns, as per a
quality function QC(h) for the quality of a pattern h ∈ H in the corpus and a
quality function QC(H) for the quality of the set H.

3.2 Solution Framework

We define and describe below the components of our solution framework.

1. Context Free Grammar G: A context free grammar (CFG) allows us
to encode our types and is comprised of a set V of non-terminals, a set Σ
of terminals, a start symbol S ∈ V and a set P of productions α → β,
where α ∈ V and β ∈ (V ∪ Σ)∗. Our choice of CFG as a formalism
to represent the types is motivated from the fact that the grammar can
be directly consumed by a high-level grammar formalism like Grammati-
cal Framework (GF) [20], which is type theoretic, multilingual, and modu-
lar and suits our downstream translation usecase. We define a grammar G,
where, the set V of non-terminals corresponds to the set of types T . Each
type Ti ∈ T could be available as a lexicon list, comprising entries (undis-
ambiguated), Ti = {ti1, ti2, . . . , tik}, where, each entry ti ∈ Ti is a sequence
of lexical tokens alone (in case of simple types) or a combination of lexi-
cal and type tokens (in case of complex types). Alternatively, a type could
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(a) Corpus and Types

(b) CFG Grammar G: (V, Σ, R, S)

(c) Patterns
(d) Syntactically well-formed span

Fig. 2. Examples of components of our solution framework

also be available as a set of spans in the corpus (disambiguated entries),
Ti = {< si1, ui1, vi1 >,< si2, ui2, vi2 >, . . . , < sik, uik, vik >}, obtained as an
output from an annotator (for instance, Stanford NER etc.) (Refer to Fig. 2).
Here, a span is a 3-tuple of sentence id, start and end token index within the
sentence. The set Σ of terminals then comprises:
– in the presence of type lexicons, the set of lexical tokens in the entries of

each type Ti ∈ T ;
– in the presence of an annotator, the set of spans < s, u, v >, encoded

as productions of the form Ti →< si1, ui1, vi1 > | < si2, ui2, vi2 > | . . . |
< sik, uik, vik >.

2. Pattern Extractor: A pattern extractor is a program that uses the context
free grammar G, to extract from C, a set H of patterns, where, each pattern
h ∈ H is a sequence of tokens of words or types. A pattern could be thought
of as a potential higher level domain type along with a set of spans in the
corpus from which it is extracted. For a pattern h, let Sh be this set of
spans. We say that the spans in Sh are covered by the pattern h. Consider
a span μi =< si, ui, vi >∈ Sh. We define tokens(μi) = {< si, ui, ui+1 >, . . . ,
< si, vi−1, vi >} as the set of all tokens covered by the span μi. We then say
that the token coverage of the pattern h is the set cover(h) = ∪μ∈Sh

tokens(μ)
(Refer to Fig. 2c).

3. Quality QC(h) of a Pattern: Quality of a pattern h is defined as a function
QC(h) : H → [0, 1]. Then the set HQ = {h ∈ H|QC(h) > r}, where 0 <
r < 1 is a quality threshold, is the set of all patterns in H that meet the
quality criteria. Such a quality criterion of a pattern is typically a simple
(modular) aggregation of the quality of its instances. Some examples of quality
criteria are:
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(a) Pattern consensus: |Sh|, the number of spans covered by the pattern h;

(b) Informativeness: For a set C of corpora,
|C |

|{C ∈ C : |SC
h | > 0}| , where, SC

h

is the set of spans covered by h in corpus C;
(c) Syntactic well-formedness: A span covered by a pattern is said to be

syntactically well-formed if it forms a sub-tree in the parse tree of its
corresponding sentence. A pattern is then syntactically well-formed if at
least k of the spans covered by it are syntactically well-formed (Refer to
Fig. 2d).

(d) Lexical rule-based consensus: Spans covered by a pattern should conform
to a set of lexical rules. For instance, a pattern should not start or end
with prepositions;

(e) Semantic rule-based consensus: Enforces a semantic constraint among
the tokens in tokens(μ), where, μ is a span covered by the pattern. For
instance, while mining patterns specific to “mergers and acquisition” from
a financial services transactions corpus, we might enforce a constraint on
the semantic role of agents in the patterns to be either a buyer or a seller.

(f) Model-based quality criteria: A trained classifier could be used to classify
a pattern as interesting or not based on other criteria as features.

4. Quality QC(H) of a Patterns Set H: Quality of a set H of patterns,
given a corpus C, is defined as a function QC(H) from 2HQ → Z. Typically,
QC(H) is either modular (e.g. |H|, ∑

h∈H |cover(h)|) or submodular (e.g.
| ∪h∈H cover(h)|).

5. Pattern Selection: The problem of lexicon curation can now be posed as
the problem of selecting an optimal subset H of HQ. Clearly, H is optimal
quality set when H = HQ, however, in practice, selection of an optimal H
often involves an optimization of conflicting requirements on the quality and
the cost of the subset. Formally,

H∗ = arg max
H⊆HQ

Q2
C(H) s.t. Q1

C(H) < c (1)

Or
H∗ = arg min

H⊆HQ

Q1
C(H) s.t. Q2

C(H) > d (2)

where, c and d are thresholds on the cost and the quality of H respectively. It
is known that this optimization has an efficient solution under the assumption
that the cost function Q1

C(H) be modular and the quality function Q2
C(H) be

submodular [5].

3.3 Our Approach

We implemented our framework to curate high quality compact lexicons for the
cross-domain SMT task. Given a source language corpus, we pose the problem of
curating an optimal set of high quality patterns, solve it using a greedy algorithm
and use a human-in-the-loop approach to get their translation. More precisely,
we follow the steps described below:
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Context Free Grammar: We use Stanford parser to create a lexicon list of
type Noun phrases (NP) present in the corpus. Refer to Sect. 3.2 for details.

Pattern Extraction and Filtering: We use our grammar to index corpus
and mine patterns. Our mining approach is inspired from Joshi et al. [6]. We
first mine patterns for each sentence using their dynamic programming-based
approach and then aggregate patterns across all sentences. Subsequently, we
filter out bad patterns (we refer to this as pattern filtering), where, the quality of
a pattern is judged based on two modular quality criteria—aggregated frequency
of its instances and their syntactic well-formedness.

Pattern Selection: We formulate this as a subset selection problem (Refer to
the formulations (1) and (2)). Although formulation (1) has a better approxi-
mation guarantee, both formulations performed equally well in our evaluation.
Both formulations can be efficiently solved if the cost function Q1

C(H) is mod-
ular and the quality function Q2

C(H) is submodular [9]. In our experiments, we
use as Q1

C(H) the modular cardinality constraint |H| < c and as Q2
C(H) the

submodular token coverage of corpus: | ∪h∈H cover(h)|. Further, if Q2
C(H) is a

submodular and monotone function, that is, A � B then Q2
C(A) ≤ Q2

C(B), then
this problem can be solved greedily with theoretical guarantee of 1 − 1

ε [14].
This is the best approximation result we can achieve efficiently [15]. Further, we
use an accelerated version of this algorithm [13] which at every iteration lazily
evaluates the function value to get the best item to add in the output set.

Pattern Translation: After mining a high quality set of patterns, we ask
humans to provide translations of these patterns and thus create a bilingual
lexicon. We leveraged Matecat [4] and MyMemory3 to help human translators
while using our interactive system for gathering translations.

4 Evaluation

4.1 Experimental Setup

We study the effect of curating a domain-specific bilingual lexicon using our
approach on domain adaptation of pre-built cross-domain statistical machine
translation (SMT) models4 trained for three language pairs on the Europarl
corpus [26]. We experimented with adapting the pre-built SMT model on three
domain specific datasets [23,24], each pertaining to a different domain: (i) JRC
(legal), (ii) EMEA (medical) and (iii) KDE (technical). Each domain has spe-
cific language usage that differs from that of a large cross-domain corpus (i.e.,
Europarl) typically used to train an SMT model. Moreover, the availability of
parallel corpora for training SMT models is very limited in these domains. While
each of these is a parallel corpus, we made use of the aligned target language
corpus only for evaluation. The remaining source language data was used for
mining patterns. We experimented with these datasets for three language pairs:
3 https://mymemory.translated.net/.
4 http://www.statmt.org/moses/RELEASE-3.0/models/.

https://mymemory.translated.net/
http://www.statmt.org/moses/RELEASE-3.0/models/
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Table 2. Corpus statistics show-
ing number of sentences in the
domain-specific parallel corpora

Corpus en-fr en-es en-de

JRC (legal) 814,167 805,756 537,850

EMEA

(medical)

1,092,568 1,098,333 1,108,752

KDE4 (tech-

nical)

210,173 218,655 224,035

Table 3. Effect of filtering on the
number of patterns extracted from
the JRC corpus.

Pattern

length

3 4 5 6 7 8 9

F/Ua % 15.9 11.1 9.2 8.3 7.4 6.5 6.1
aFiltered (F), Unfiltered (U)

English-French (en-fr), English-Spanish (en-es), and English-German (en-de). In
Table 2, we present the number of sentences in each of these parallel corpora.

For each dataset, we create a test set (TEST) for evaluation, by randomly
sampling 3000 unique sentence pairs from the corpus. A different random sam-
ple of up to 100, 000 source language sentences is used as the set for mining
the patterns (MINE). Pattern extraction is performed using the sentences in the
source language from the MINE set and for the set of quality patterns mined,
we manually obtain their corresponding translations, while being guided by the
aligned target language sentences from the MINE set. We evaluate the transla-
tion quality on the TEST set using the standard BLEU metric [19]. Our baseline
corresponds to the pre-built SMT model. For domain adaptation, we incorporate
the bilingual lexicon (curated using the MINE set) into the baseline model using
the XML markup feature5 available in the Moses tool.

The entire process of sampling TEST and MINE sets for each corpus and
language pair is repeated thrice and the baseline and domain-adapted numbers
are reported after averaging across the three runs. In the following sections, we
present several intermediate results and ablation tests before presenting the final
BLUE score comparisons. Owing to space issues we present select plots for select
datasets and language pairs here.

4.2 Effect of Syntactic Completeness-Based Consensus on Pattern
Extraction

The pattern extraction step extracts all frequent patterns (frequency
threshold = 2) of up to a certain length. This results in a large number of
patterns, not all of which are syntactically well-formed. We filter out patterns
whose instances do not conform to a phrasal structure as per the Stanford parser
(inferred via the Grammar discussed earlier), thus leaving behind between 6 %
to 9 % patterns for further processing for lexicon curation (c.f. Table 3).

5 inclusive and exclusive mode http://www.statmt.org/moses/?n=Advanced.Hybrid.

http://www.statmt.org/moses/?n=Advanced.Hybrid
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4.3 Effect of Varying the Lexicon Size

Pattern selection (Eq. 1) allows to constrain the cardinality of the final set of
quality patterns. The manual translation of these patterns requires human effort
that is proportional to the number of patterns in this set. On the other hand,
cardinality of this set might also affect the corpus coverage and thereby the
translation accuracy. We study this effect by setting the cardinality of this set
to various values: 25, 75, 125, 200, 250, 1000, 1750 and 2500.

Coverage on MINE versus TEST: In Fig. 3, we present the corpus coverage
(in terms of number of words) on the MINE and TEST data sets with varying
number of patterns and for different pattern lengths. Patterns mined using the
MINE split seem to generalize well and the coverage on both MINE and TEST
increases as we increase the number of patterns. This observation holds true
for other datasets and language pairs as well and the coefficient of correlation
between MINE and TEST coverage is consistently above 0.99.

(a) JRC (en-de): Coverage on MINE vs.
TEST

(b) KDE4 (en-es): Coverage on MINE vs.
TEST

Fig. 3. Effect of varying the size of the set of quality patterns on corpus coverage

Coverage and Translation Accuracy on TEST: The patterns in the lexicon
are translated and added to an in-domain bilingual lexicon. Figure 4 shows that
as we increase the size of the lexicon, the TEST coverage improves and we see
corresponding improvement in the translation accuracy.

4.4 Comparison of Different Approaches to Pattern-Set Extraction
for Cross-Domain SMT

We compare different approaches to extracting a good set of patterns from a
source language corpus and translating them for cross-domain SMT application.
Figure 5 shows accuracy of these models for varying number of patterns in the
lexicon.

Effect of Bilingual Lexicon in Domain Adaptation: The task of domain
adaptation involves using a translation model trained on a large out-of-domain
parallel corpus and adapting it to reliably translate an in-domain corpus.
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(a) JRC (en-de): Coverage vs. BLEU on TEST(b) KDE4 (en-es): Coverage vs. BLEU on TEST

Fig. 4. Effect of varying the size of the set of quality patterns on translation accuracy.

The pre-built SMT models trained on the out-of-domain Europarl corpus serve
as baselines and are used to evaluate translations on the in-domain TEST splits
(Refer to B0 in the figure). Next, we adapt the model for in-domain transla-
tion by incorporating our curated in-domain bilingual lexicons into the baseline
model. The improvement in translation accuracy (Refer to B2) is quite evident.
The lexicons capture significant in-domain patterns and provide their reliable
translation, thereby, further aiding the baseline model already trained to trans-
late common cross-domain phrases.

Effect of Submodular Optimization: Would we have got the same improve-
ment in translation accuracy had we curated a bilingual lexicon from a random
subset of patterns? We curated a bilingual lexicon using our set of quality pat-
terns (B2) and another using a random subset of frequent patterns (B6) and
compared their impact on translation accuracy. The translation model incorpo-
rating bilingual lexicon curated from random subset of frequent patterns does
improve upon the baseline. However, the one with our high quality bilingual lex-
icon, obtained after submodular optimization, does much better in generating a
high quality translation.

(a) JRC-corpus (en-de) (b) KDE Corpus (en-es)

Fig. 5. Comparison of different approaches for creating a bilingual lexicon for cross-
domain SMT
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Effect of Pattern Generalization: Since our patterns comprise words and
phrase classes, phrases in a corpus that might otherwise be infrequent, turn
out to be frequent when folded into patterns. In order to ascertain that this
indeed positively affects our curated lexicon and the final translation model,
we compared this with a lexicon curated from frequent lexical-only phrases (B4
and B5) in the corpus. The final set of patterns was obtained, in one case, by
extracting the top-k frequent phrases (B5: modular criterion) and in the other
case, by using the submodular quality criterion (Refer to B4). As can be seen in
Fig. 5, the modular frequency-based criterion does much better on generalized
patterns than on phrasal (lexical only) patterns and together with submodular
optimization results in a much better bilingual lexicon.

Comparison with Other Work. The system proposed by Chen et al. [3]
comes closest to our work. We used publicly available domain lexicons to anno-
tate our corpora with domain types and used their clustering-based approach
to extract a set of significant patterns. The bilingual lexicon was created by
sampling and manually translating one representative pattern from each cluster
(Refer to B1). Next, we applied our submodular optimization-based approach
on the same annotated corpora (Refer to B3). We observe that the pattern-set
obtained using our quality criteria does better, even with patterns composed of
domain types instead of the more general phrase classes.

5 Conclusion

We presented a novel framework for extraction of a high quality bilingual lexicon
for domain specific translation. We defined several quality criteria that could be
modeled as modular or submodular functions over the set of patterns mined from
a domain specific corpus. The problem of pattern selection is then formulated
as an optimization of these criteria and solved to produce a good set of repre-
sentative in-domain patterns. Experimental results justify that a cross-domain
SMT model indeed benefits from the availability of this high quality in-domain
bilingual lexicon and does better in translating domain specific text.
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Abstract. Persistent efforts are going on to propose more accurate
decision forest building techniques. In this paper, we propose a new deci-
sion forest building technique called “Forest by Continuously Excluding
Root Node (Forest CERN)”. The key feature of the proposed technique
is that it strives to exclude attributes that participated in the root nodes
of previous trees by imposing penalties on them to obstruct them appear
in some subsequent trees. Penalties are gradually lifted in such a man-
ner that those attributes can reappear after a while. Other than that,
our technique uses bootstrap samples to generate predefined number of
trees. The target of the proposed algorithm is to maximize tree diver-
sity without impeding individual tree accuracy. We present an elabo-
rate experimental results involving fifteen widely used data sets from the
UCI Machine Learning Repository. The experimental results indicate the
effectiveness of the proposed technique in most of the cases.

Keywords: Decision tree · Decision forest · Ensemble accuracy

1 Introduction

From 2005 to 2020, the “Digital Universe” will expand by a factor of 300, from
130 Exabytes to 40,000 Exabytes, or 40 trillion Gigabytes (more than 5,200
Gigabytes for every man, woman, and child in 2020) [1]. Thus it is easily under-
standable that we need highly efficient automated means if we want to capitalize
these data. Data mining is the method of automatically discovering useful infor-
mation from large data sets [21]. Classification and clustering are two widely
used data mining tasks that are applied for knowledge discovery and pattern
recognition.

Classification aims to generate a function (commonly known as a classifier)
that maps a set of non class attributes m = {A1, A2, ..., Am} to a predefined
class attribute C from an existing data set D [21]. A data set D can be regarded
as a two dimensional table with columns/attributes ({A1, A2, ..., Am, C}) and
rows/records ({R1, R2, ..., Rn}). A data set generally has two types of attributes
such as numerical (e.g. Age) and categorical (e.g. Gender). Out of all categorical
attributes, one is chosen to be the class attribute. All other attributes are termed
c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part I, LNAI 9651, pp. 304–315, 2016.
DOI: 10.1007/978-3-319-31753-3 25
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as non class attributes. A classifier is then built from an existing data set (i.e.
training data set) where the values of the class attribute are present and then
applied on unseen/test records in order to predict their class values.

The use of ensembles in classification have been actively studied in recent
years [2,18,20]. Interestingly, an ensemble of classifiers is found to be effective
for unstable classifiers such as decision trees [21]. Decision trees are considered to
be an unstable classifier because a slight change in a training data set can induce
significant differences between the decision trees generated from the original and
modified data sets. A decision forest is an ensemble of decision trees where an
individual decision tree acts as a base classifier. The classification is performed
by taking a vote based on the predictions made by each decision tree of the
decision forest [21].

In order to achieve better ensemble accuracy a decision forest needs both
accurate and diverse (in terms of classification errors) individual decision trees
as base classifiers [11,18]. An accurate decision tree can be generated by feeding
a training data set to a decision tree algorithm such as CART [7]. Nevertheless, a
single decision tree can discover only one set of logic rules and thus may wrongly
predict the class value of a test record which could have been predicted correctly
by a more appropriate logic rule. A different decision tree can be obtained from
a differentiated data set which may include a more appropriate logic rule for the
given test record. If a decision forest contains a set of decision trees which are
different from each other then some of the trees may discover appropriate logic
rules for a set of test records while some other trees may discover appropriate
logic rules for another set of test records resulting in better generalization per-
formance for the forest. However, to establish the scope of generating too diverse
trees can be the cause of generating less accurate trees as optimization on the
two conflicting objectives cannot be attained simultaneously [11]. Thus, decision
forest algorithms need to draw a balance between how different/diverse as well
as how accurate trees they need in order to increase the ensemble accuracy.

There are many decision forest algorithms aiming to generate more accurate
and diverse decision trees. In Sect. 2, we briefly introduce some of the prominent
and recent algorithms and their limitations. Apparently, there is room for further
improvement in achieving higher ensemble accuracy for decision forests. In this
paper, we propose a novel decision forest algorithm called “Forest by Continu-
ously Excluding Root Node (Forest CERN)”that aims to build a set of highly
accurate decision trees by exploiting the strength of all non class attributes
available in a data set, unlike some existing techniques that use a subset of non
class attributes. At the same time to promote strong diversity, Forest CERN
emphasizes to exclude attributes that participated in the root nodes of previous
trees by imposing penalties on them to deter them appear in some subsequent
trees. Penalties are gradually lifted in such a manner that those attributes can
reappear after a while.

The remainder of this paper is organized as follows: In Sect. 2 we discuss some
of the well-known decision forest algorithms. Section 3 explains the proposed
Forest CERN algorithm in detail. Section 4 discusses the experimental results.
Finally, we offer some concluding remarks in Sect. 5.
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2 Literature Review

In literature we find many forest building algorithms that differentiate training
data set in different ways to generate diverse decision trees. We introduce some
of the prominent forest building algorithms as follows.

(a) Bagging [5]: Bagging generates a new training data set D i where the records
of D i are chosen randomly from the original training data set D . A new
training data set D i contains the same number of records as in D . Thus
some records of D can be chosen multiple times and some records may not be
chosen at all. This approach of generating a new training data set is known
as bootstrap sampling. On an average 63.2 % of the original records are
typically chosen in a bootstrap sample [10]. Bagging generates a predefined
number (T ) of bootstrap samples D1,D2, ...,DT using the above approach.
A decision tree building algorithm is then applied on each bootstrap sample
D i (i = 1, 2, . . . , T ) in order to generate T number of trees for the forest.

(b) Random Subspace [11]: The Random Subspace algorithm randomly draws
a subset of attributes (subspace) f from the entire attribute set m in order
to determine the splitting attribute for each node of a decision tree. The
Random Subspace algorithm is applied on the original training data set in
building every decision tree.

(c) Random Forest [6]: Random Forest is technically a fusion of Bagging and
Random Subspace algorithms. In Random Forest, the Random Subspace
algorithm is applied on bootstrap samples instead of the original training
data set.

(d) MDMT [12]: In MDMD (Maximally Diversified Multiple Decision Tree),
each decision tree tests a completely different set of attributes than the
set of attributes tested in any other decision tree. MDMT builds the first
decision tree using a traditional decision tree building algorithm such as
CART [7]. All non class attributes that have been tested in the first tree are
then removed from the data set and the decision tree building algorithm is
again applied on the modified data set to build the second tree. The process
continues until either the user defined number of trees is generated or all
non class attributes of the data set are removed.

(e) CS4 [15]: To build the decision forest, CS4 (Cascading and Sharing Trees)
first ranks all attributes of a training data set according to their classification
capacities (e.g. Gain Ratios [19]). Then in a cascading manner, the attribute
with the highest Gain Ratio value is selected as the root node of the first
tree; the attribute with the second highest Gain Ratio value is selected as
the root node of the second tree and so on.

(f) SysFor [13]: SysFor (Systematically Developed Forest of Multiple Decision
Trees) takes a user input to determine the number of decision trees to be
generated. Then a set of “good attributes”and corresponding split points
are determined based on a user defined “goodness”threshold and “separa-
tion”threshold. SysFor then starts building decision trees by placing the good
attributes one by one as the root attribute (at Level 1) of a tree, and thereby
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build as many trees as the number of good attributes. If the number of trees
built at Level 1 is less than the user defined number of trees, then more trees
(until the user-defined number of trees are built or the maximum number of
possible trees are built) are generated by using alternative good attributes
at Level 2. The alternative good attributes are chosen from the set of good
attributes for the nodes at Level 2.

We next discuss about the major problems of the algorithms stated above:
Bootstrap samples are the only source of diversity in Bagging. Theoretically, a
bootstrap sample contains ≈ 63.2% of the original records of a training data
set; the remaining ≈ 36.8% records are repeated [10]. This sampling ratio that
theoretically can occur in bootstrap samples is not optimal for every data set
[17] and thus may not extract strong diversity specially for data sets with redun-
dant/similar (i.e. difference is low) records.

Both Random Subspace and Random Forest randomly draw a subset of
attributes (subspace) f from the entire attribute set m in order to determine
the splitting attribute for each node splitting event of a decision tree. In effect,
individual tree accuracy and diversity among decision trees depend on the size
of f . If f is sufficiently small then the chance of having the same attribute in
different subspace becomes low. Thus the trees in a forest tend to become more
diverse. However, a sufficiently small f may not guaranty the presence of the
adequate number of good attributes (i.e. the attributes with high classification
capacity) resulting in decreased individual accuracy. Thus the value of |f | plays
a strong role in determining the ultimate efficiency of a decision forest and com-
monly known as the hyperparameter [4]. In Breiman’s original Random Forest
[6], |f | is chosen to be int(log2 |m |) + 1.

It is worthy to mention that the value of int(log2 |m |) + 1 does not increase
at the same rate to the increase of |m |. For example, let us assume that we have
a low dimensional data set consisting of 4 attributes. Thus a splitting attribute is
determined from a randomly selected subspace of 3 attributes (int(log2 4)+1 = 3)
encompassing 75 % of the total attributes. As a result, the chance of appearing
similar attributes in different subspaces becomes high, resulting in decreasing
diversity among the trees. On the other hand, when |m | is large say, 150 then
|f | contains 8 randomly chosen attributes (int(log2 150) + 1 = 8) covering only
5 % of the total attributes. Hence, if the number of good attributes is not high
enough in m then the chance of containing adequate number of good attributes
in a subspace f becomes low, which is supposed to cause low individual accuracy
of the trees as described before.

Decision forest algorithms such as MDMT, CS4 and SysFor limit the number
of trees based on the non class attributes available in a training data set. CS4 can
generate at most |m | trees for the forest. For example, from a low-dimensional
data set such as Balance Scale with four non class attributes [16] CS4 can build
only four trees. SysFor tries to eliminate this constraint by placing alternative
good attributes in Level 2. However, for Balance Scale data set SysFor can gen-
erate only 12 trees which is still a small number in ensemble standard [20].
This problem is more severe for MDMT. It can generate only one tree from the
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Balance Scale data set as no non class attributes are left to generate the second
tree. Besides, both CS4 and SysFor just change the root nodes. In CS4, each
non class attributes are placed in the root node once in a cascading manner
according to their Gain Ratios. As a result, some attributes with vary low clas-
sification capacity can be placed in the root node resulting in not generating
some trees entirely. SysFor places only good attributes in the root node but the
good attributes are determined by a user defined “goodness”threshold. If this
user input is not tuned correctly, the number of good attributes can be too high
or too low. Furthermore, just changing the root nodes should not be sufficient
in rendering strong diversity as trees may be taken over by some attributes with
relatively higher classification capacity just below the root node.

3 Our Technique

In order to address the issues raised in Sect. 2, we propose a new method for
decision tree ensemble construction called Forest CERN. The main feature of
our technique is that it strives to exclude attributes that participated in the
root nodes of previous trees by imposing penalties on them to deter them appear
in some subsequent trees. But, what is the impact of excluding attributes that
appeared in root nodes? For example, let Ai be the attribute that was placed
in the root node of the first tree. As a result, all logic rules generated from the
first tree starts with attribute Ai. Thus, to generate different logic rules from
the next tree, it is preferable to exclude Ai from that tree. In order to facilitate
the exclusion of Ai (in this case), we propose our novel penalty/weight imposing
strategy that works as follows:

Let, we have a data set D with m = {A1, A2, ..., Am} attributes. Initially,
the weight values for all attributes are set to 1.0 (default weights). To determine
the splitting attribute at first the classification capacity such as Gain Ratio
[19] or Gini Index [7] of each attribute is calculated. Then a new merit value
is obtained by multiplying the classification capacity with respective weight
for each attribute. After the merit values of all attributes are calculated, the
attribute with the highest merit value is selected as the splitting attribute. We
generate the first tree from a bootstrap sample of D using the default weights.
Thus, the first tree is generated in the same way as Bagging [5]. To generate
the second tree, we first isolate the attribute that appeared in the root node of
the first tree. Let Ai be the attribute that appeared in the root node of the first
tree. Then, we calculate the weight of Ai as follows (Eq. 1):

ωi =
1

|m | (1)

Here, |m | is the number of non class attributes in D . For example, when
|m | = 25, the weight of Ai is 1

25 . The weights of other attributes remain as 1.0.
The next (second) tree is generated from another bootstrap sample of D with
the updated weight values. Due to it’s disadvantageous weight, Ai will have lesser
chance to appear in the entire second tree (let alone in the root node) compared



Forest CERN: A New Decision Forest Building Technique 309

to other attributes. Let, Aj be the attribute that appeared in the root node
of the second tree. Thus, the weight of Aj will be reduced after generating the
second tree. If the weight imposing approach is continued in the same manner, all
the attributes qualified to appear in the root node will acquire disadvantageous
weights. As a result, trees may not be generated at all. To prevent this scenario,
we increase the weights of all attributes having weight < 1.0 other than the
current root attribute. For example, after generating the second tree the weight
of Aj is reduced to 1

|m| and at the same time the weight of Ai is increased by
adding 1

|m| to it’s current weight value. In this way, when |m | = 25 the weight
of Ai can reach to the default weight 1.0 if it misses to appear in the root nodes
of all subsequent 24 trees. But, whenever Ai reappears in the root node of any
tree, the weight is again set to 1

|m| and at the same time the weights of all other
attributes with weight < 1.0 are increased by 1

|m| . This weight imposing strategy
can be further illustrated in Table 1.

Table 1. Weight Imposing Strategy

After First Tree Attributes A1 . . . Ai . . . Aj . . . Ak . . . A|m|
Weights 1 . . . 1

|m| . . . 1 . . . 1 . . . 1

After Second Tree Attributes A1 . . . Ai . . . Aj . . . Ak . . . A|m|
Weights 1 . . . 2

|m| . . . 1
|m| . . . 1 . . . 1

From Table 1, we see that for third tree, both Ai and Aj have disadvan-
tageous weights relative to other non class attributes. In the same way, a set
of attributes will obtain disadvantageous weights when building the i -th tree.
This phenomenon is clearly different form either of CS4 or SysFor; where each
attribute comes iteratively in the root node and thus attributes with relatively
higher classification capacity retain their presence just below the root nodes. In
fact, the proposed technique exhibits slightly similar effect of MDMT where the
proposed technique can take out a set of attributes with severely disadvanta-
geous weights from participating in some subsequent trees. However, in the pro-
posed technique attributes can regain weights to be able to reappear in the root
node. This phenomenon helps preventing non-deserving attributes (attributes
with very low classification capacity) to appear in the root node. Furthermore,
even when the same attribute reappears in the root node the proposed technique
strives to generate different tree through different bootstrap sample and different
combination of disadvantageous attributes.

4 Experimental Results

We performed an elaborate experimentation on fifteen (15) well known data
sets that are publicly available from the UCI Machine Learning Repository [16]
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representing a variety of areas. The data sets used in the experimentation are
described in Table 2. For example, the Chess data set has 36 non class attributes,
3196 records with two (02) distinct class values. For our experimentation, we
remove records with missing values (Table 2 shows the number of records with
no missing values) and identifier attributes such as Transaction ID from each
applicable data set. We generate 100 trees for every decision forest since the
number is considered to be large enough to ensure convergence of the ensemble
effect [2,4,9]. We use Gini Index [7] as a measure of classification capacity in
accordance with Random Forest [6]. The minimum Gini Index/merit value is set
to 0.01 for any attribute to qualify for splitting a node. Each leaf node of a tree
contains at least two records and no further post-pruning is applied. We apply
majority voting to aggregate results for forest classification [6,18].

Table 2. Description of the data sets

Data Set Name Non Class Attributes Records Distinct Class Values

Balance Scale 04 625 3

Car Evaluation 06 1728 4

Chess 36 3196 2

Credit Approval 15 653 2

Ecoli 07 336 8

Hayes-Roth 04 132 3

Ionosphere 34 351 2

Iris 04 150 3

Liver Disorders 06 345 2

Nursery 08 12960 5

Sonar 60 208 2

Statlog Vehicle 18 846 4

Thyroid-New 05 215 3

Tic-Tac-Toe 09 958 2

Wine 13 178 3

The experimentation is conducted by a machine with Intel(R) 3.4 GHz
processor and 8 GB Main Memory (RAM) running under 64-bit Windows 7
Enterprise Operating System. All the results reported in this paper are obtained
using 10-fold-cross-validation (10-CV) [3,14,15] for every data set. In 10-CV, a
data set is divided randomly into 10 segments and from the 10 segments each
time one segment is regarded as the test data set (out of bag samples) and the
rest 9 segments are used for training decision trees. In this way, 10 training
and 10 corresponding testing data sets are generated. In our experimentation,
we generate 100 trees from each training data set (thus 1000 trees in total)
for each decision forest algorithm and then evaluate their performance with the
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corresponding testing data sets. All the performance indicators reported in this
paper are the average values obtained from the 10 testing data sets and the best
results are distinguished through bold-face.

Ensemble Accuracy (EA) is one of the most important performance indi-
cators for any decision forest algorithm [1]. In Table 3 we present the EA (in
percent) along with Ranks (1 for the best to 4 for the worst) of Bagging, Ran-
dom Subspace, Random Forest and the proposed Forest CERN for all data
sets considered. We do not include the results generated from CS4, SysFor and
MDMT as they are not able to generate 100 trees for most of the data sets
used in the experimentation and as a result may not perform to the level of the
considered algorithms.

Table 3. Ensemble Accuracies

Data Set Name Bagging Random Subspace Random Forest Forest CERN

Balance Scale 77.48 (3) 72.16 (4) 80.50 (2) 82.25 (1)

Car Evaluation 93.34 (2) 93.51 (1) 91.19 (4) 93.28 (3)

Chess 97.87 (2) 95.06 (4) 95.22 (3) 98.00 (1)

Credit Approval 86.37 (2) 85.92 (4) 86.07 (3) 86.99 (1)

Ecoli 83.10 (4) 83.15 (3) 84.97 (1) 84.36 (2)

Hayes-Roth 71.28 (2) 45.44 (4) 69.54 (3) 78.87 (1)

Ionosphere 92.59 (4) 93.45 (3) 93.73 (2) 94.30 (1)

Iris 95.33 (2) 94.00 (3) 96.00 (1) 96.00 (1)

Liver Disorders 68.65 (4) 69.79 (3) 71.48 (1) 70.97 (2)

Nursery 97.57 (1) 94.89 (4) 95.07 (3) 97.52 (2)

Sonar 80.71 (4) 84.57 (2) 83.07 (3) 84.93 (1)

Statlog Vehicle 73.56 (3) 73.45 (4) 74.14 (2) 75.06 (1)

Thyroid-New 93.61 (3) 93.13 (4) 94.56 (2) 96.38 (1)

Tic-Tac-Toe 91.77 (1) 80.67 (4) 84.54 (3) 87.14 (2)

Wine 96.47 (3) 97.25 (2) 97.25 (2) 98.42 (1)

Average 86.65 (2.67) 83.76 (3.27) 86.49 (2.33) 88.30 (1.40)

From Table 3, we see that Bagging delivers the best EA for 2 data sets (Avg.
EA Rank: 2.67), Random Subspace for 1 data set (Avg. EA Rank: 3.27), Ran-
dom Forest for 3 data sets (Avg. EA Rank: 2.33) whereas the proposed Forest
CERN becomes the best for 10 out of 15 data sets with Avg. EA Rank of 1.40.
We already know that better ensemble accuracy of a decision forest is a con-
sequence of a better balance between individual accuracy and diversity among
the trees. Thus, to explain the reason behind this outcome, we first compute
individual accuracies (in percent) of each tree of a forest to compute the Aver-
age Individual Accuracies (AIA) for the forest [2]. Kappa typically estimates the
diversity between two trees Ti and Tj . Diversity among more than two trees is
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typically computed by first computing the Kappa (K) value of a single tree Ti

with the ensemble of trees except the tree in consideration [2]. The combined
prediction of the ensemble (excluding Ti) can be regarded as a single tree Tj .
Then Kappa is computed between Ti and Tj as shown in Eq. 2, where Pr(a)
is the probability of the observed agreement between two classifiers Ti and Tj ,
and Pr(e) is the probability of the random agreement between Ti and Tj . Once
the Kappa for every single tree Ti of a forest is computed we then compute the
Average Individual Kappa (AIK) for the forest [2].

K =
Pr(a) − Pr(e)

1 − Pr(e)
(2)

Table 4. Average Individual Accuracies and Average Individual Kappa

Data Set Name Bagging Random Subspace Random Forest Forest CERN

AIA/AIK AIA/AIK AIA/AIK AIA/AIK

Balance Scale 64.05/0.4585 67.41/0.6055 64.88/0.4322 64.96/0.4275

Car Evaluation 89.41/0.8262 86.02/0.7569 75.62/0.5413 77.41/0.5335

Chess 97.84/0.9765 65.26/0.4673 67.93/0.4902 78.91/0.6494

Credit Approval 85.16/0.9246 80.91/0.7544 74.05/0.6366 70.49/0.5389

Ecoli 78.68/0.7938 80.01/0.8350 77.07/ 0.7631 75.00/0.7288

Hayes-Roth 55.93/0.3554 48.27/0.5285 55.39/0.3244 55.32/0.3163

Ionosphere 88.96/0.8335 88.94/0.8243 88.02/0.7884 86.66/0.7434

Iris 93.84/0.9237 94.12/0.9467 93.28/0.9157 92.16/0.8736

Liver Disorders 60.96/0.3635 62.59/0.4894 60.10/0.3122 59.10/0.2441

Nursery 95.85/0.9522 70.40/0.6360 70.16/0.6333 95.23/0.9420

Sonar 70.34/0.4909 72.44/0.4664 68.94/0.3958 65.85/0.3259

Statlog Vehicle 68.51/0.6641 68.57/0.6662 66.74/0.6215 63.94/0.5749

Thyroid-New 91.41/0.8712 92.05/0.8805 91.08/0.8376 90.36/0.7905

Tic-Tac-Toe 79.04/0.5505 40.53/0.2801 54.33/0.3137 59.60/0.3017

Wine 89.46/0.8363 90.39/0.8526 88.95/0.8287 85.08/0.7691

Average 80.63/0.7214 73.86/0.6660 73.10/0.5890 74.67/0.5840

From Table 4 we see that the proposed Forest CERN delivers most diverse
decision trees (lower AIK value indicates higher diversity) with retaining the
second highest AIA value (higher AIA value indicates better quality individual
trees). Consequently, Forest CERN outperforms other contending algorithms in
terms of EA. Now, to access the significance of the improvement we conduct a
non-parametric (EA do not follow a normal distribution and thus do not sat-
isfy the conditions for any parametric tests) one-tailed Wilcoxon Signed-Ranks
Test for n = 15 (number of data sets used) with the significance level α = 0.05
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(thus the critical value is: 30) [22]. Wilcoxon Signed-Ranks Test is said to be more
preferable to counting only significant wins and losses for comparison between
two classifiers [8]. Here we see from Fig. 1 that Forest CERN performs signifi-
cantly better (in terms of EA) than all three contending algorithms on 15 widely
used data sets as the test values remain lower than the critical value for every
head-to-head comparisons.

Fig. 1. Wilcoxon Signed-Ranks Test for EA

Apparently, Forest CERN shows some resemblance with SysFor and hence
we compare them on smaller 10-tree ensemble [20] as SysFor may fall short of
generating a large ensemble for every data set. The results shown in Table 5
clearly depict the distinction between SysFor and Forest CERN. As expected,
Forest CERN generates more diverse trees than SysFor for every data set as a
result of excluding root attributes in some subsequent trees. On the contrary,
SysFor generates more accurate trees for every data sets with less diversity ver-
ifying the fact the trees generated from SysFor are more similar to each other
as a result of probable presence of attributes with high classification capacity in
each tree. Ultimately, Forest CERN outperforms SysFor in terms of EA.

Another important observation from the results presented in Tables 3, 4 and 5
is the effect of ensemble size on EA for Forest CERN (i.e. when Forest CERN
is applied in the scale of larger 100-tree ensemble and smaller 10-tree ensemble).
We see, the average EA is higher for 100-tree Forest CERN compared to 10-tree
Forest CERN (88.30 vs 85.45) even when the average of AIA/AIK values are
very competitive (74.67/0.5840 for 100-tree Forest CERN vs. 76.23/0.5814 for
10-tree Forest CERN ) as smaller Forest CERN may not ensure convergence of
the ensemble effect for many data sets.
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Table 5. Comparison between SysFor and Forest CERN

Data Set Name SysFor Forest CERN

EA/AIA/AIK EA/AIA/AIK

Balance Scale 67.50/65.03/0.5441 76.97/64.83/0.3871

Car Evaluation 94.27/93.88/0.9732 93.39/78.15/0.5036

Chess 95.97/94.05/0.9925 97.13/88.38/0.7629

Credit Approval 86.37/80.76/0.8819 84.53/72.92/0.5352

Ecoli 78.09/76.83/0.7761 84.66/75.51/0.6353

Hayes-Roth 59.28/57.62/0.6629 66.77/55.58/0.3695

Ionosphere 92.30/91.25/0.8787 93.17/86.82/0.7128

Iris 96.00/94.89/0.9762 95.33/92.53/0.8885

Liver Disorders 64.49/63.83/0.8378 65.23/59.07/0.2757

Nursery 96.99/96.61/0.9886 97.29/95.16/0.9386

Sonar 78.86/72.29/0.5253 77.36/69.66/0.3649

Statlog Vehicle 70.46/67.17/0.7278 75.17/66.11/0.5645

Thyroid-New 93.32/92.68/0.9331 92.84/90.72/0.7308

Tic-Tac-Toe 82.16/80.90/0.6073 84.50/61.48/0.2669

Wine 96.47/92.68/0.8842 97.44/86.55/0.7842

Average 83.50/81.36/0.8126 85.45/76.23/0.5814

5 Conclusion

In this paper, we propose a new decision forest building algorithm Forest CERN
which strives to exclude attributes that participated in the root nodes of pre-
vious trees by imposing penalties (disadvantageous weights) on them to deter
them appear in some subsequent trees. Penalties are eventually lifted in such a
manner that those attributes can reappear in root nodes after a while. We find
that trees generated from Forest CERN are more diverse compared to other
contending algorithms which can be helpful for discovering interesting knowl-
edge. Also, Forest CERN is fully independent of any parameter value unlike
Random Subspace, Random Forest and SysFor to be more evenly suitable for a
wide range of data sets.

However, there is an apparent limitation of Forest CERN specially when the
number of non class attributes is high and a few of them have high classification
capacity. In this case, after receiving drastic disadvantageous weights (due to
high dimension) attributes with high classification capacity may disappear for
a large number of intermediate trees leading to lowering AIA for the forest.
One obvious solution to this problem is to reduce the attribute space. Another
possible solution is probably improving Forest CERN to address the problem. In
future, we intend to extend our work by including data sets with more number
of attributes.
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Abstract. Modeling interactions in regression models poses both com-
putational as well as statistical challenges: the computational resources
and the amount of data required to solve them increases sharply with
the size of the problem. We focus on logistic regression with categori-
cal variables and propose a method for learning dependencies that are
expressed as general Boolean formulas. The computational and statis-
tical challenges are solved by applying a technique called transformed
Lasso, which involves a matrix transformation of the original covariates.
We compare the method to an earlier related method, LogicReg, and
show that our method scales better in terms of the number of covariates
as well as the order and complexity of the interactions.

Keywords: Feature selection · Logistic regression · Lasso

1 Introduction

A basic logistic regression model includes individual effects of feature variables
(a.k.a. regressors or covariates) on the probability of a response event. In addition
to the individual effects, interactions between the feature variables are impor-
tant in a wide range of applications. Examples include identifying important
single nucleotide polymorphism (SNPs) in genome-wide association studies [6],
pathway analysis of gene-expression or metabolomic data [14], regulatory motif
identification [7], and association studies of gene-gene interactions [16].

Pairwise and higher order interactions between the features can be modelled
by explicitly including the interactions as feature variables. In other words, a
kth order interaction can be modelled by merging a subset of k variables into
a new variable whose domain becomes the Cartesian product of the domans of
the merged variables, and including indicator variables for each of the values
in the new domain. High order interactions pose statistical and computational
challenges since the number of interaction terms grows exponentially with the
order, k. Different techniques for dealing with these challenges have been pro-
posed. These include, for instance, forward and backward selection (see e.g. [5])
and more recently, Lasso [15].

We consider situations where the interactions can be expressed as Boolean
formulas, each of which is composed of a subset of the original feature variables
c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part I, LNAI 9651, pp. 316–327, 2016.
DOI: 10.1007/978-3-319-31753-3 26
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connected by logical operations such as and, or, and xor (exclusive or). For
example, if we have a vector of m binary variables x = {x1, x2, . . . , xm}, the
model may involve terms such as “x1 and x2, or x3” or “x4 and x5 and not x6”.
We define the model formally as a generalized linear model

g(E(y)) = β0 +
t∑

i=1

βiLi(x), (1)

where y is a binary response variable, E(y) = Pr[y = 1 | x] denotes the expec-
tation of y conditional on the regressors x, g is a link function, β0, . . . , βt are
regression coefficients, and L1, . . . , Lt are Boolean functions of x. The right-
hand side of Eq. (1) is called a linear predictor. Depending on how we define
the link function g, this framework includes a range of different model fam-
ilies, such as linear regression, logistic regression, Poisson regression, etc. In
this study, we focus on the logistic case where the link function is defined as
g(E(y)) = logit(E(y)) = log(E(y)/(1 − E(y))).

For each of the Boolean functions Li, 1 ≤ i ≤ t, in the above model, we
define the order of the function as the minimum number of variables x1, . . . , xm

that are sufficient to determine the value of Li. For example, a function that
depends on only one of the variables is said to be first order, and so on. The
order of the model is defined as the maximum order of all the functions involved.
As mentioned above, the basic logistic regression model is usually defined as
a first order model that includes all the m first order functions Li(x) = xi,
1 ≤ i ≤ t = m.

1.1 Related Work

An important prior work regarding logical features was done by Ruczinski et al.
in [11] who also provide an implementation of their method in the R package
LogicReg.1 It uses a greedy algorithm to search through the space of possi-
ble Boolean functions, with additional simulated annealing step to avoid local
optima. It shows better performance than the tree based or rule based methods
that are used by CART [2] and MARS [4]. However, as the number of covariates
and the order of interactions are increased, the number of possible Boolean func-
tions grows significantly. This makes greedy search heuristics computationally
inefficient and prone to converge to local optima.

On the other hand, Shi et al. [13] proposed a Lasso based method which is
suitable for identifying a large set of interactions. However, they only interactions
defined using the and operator. To allow more types of Boolean operations, the
works in [1,8] incorporate extra information such as the structure of coefficients
to guide the learning process. However, these methods need expert knowledge
that is not always available. They are also unable to handle complex interactions.
Both methods are only suitable for cases when all coefficients inside a group
are either zero or non-zero. Our new Lasso based method can efficiently and

1 Available from CRAN, http://cran.r-project.org.

http://cran.r-project.org
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effectively learn arbitrary logical functions and deal with situations when the
covariates have multiple values.

The least absolute shrinkage and smoothing operator (Lasso) for linear
regressions was proposed by Tibshirani in 1996 [15] and has since then gained a
lot of popularity in subset selection problems. Lasso aims to minimize the sum of
squared errors subject to a bound on the sum of absolute values of the regression
coefficients, i.e., the L1 norm of the coefficient vector β = (β1, . . . , βt)T :

argmin
β : ‖β‖1<λ

‖Y − Xβ‖22, (2)

where Y = (y(1), . . . , y(n))T is a vector of n responses and X is a matrix whose
rows are n observation vectors x(1), . . . ,x(n), and λ > 0 is a regularization
parameter.

Lasso encourages sparsity in the estimated coefficient vector. As the value of λ
is decreased, more and more coefficients are set to zero. This feature is especially
useful when we need to identify a small set of relevant variables out of a large
collection of candidates. Thus Lasso is suitable for discovering interactions in
regression problems. Furthermore, there are plenty of well-developed tools for
solving Lasso problems efficiently.

If we encode logical features constructed using the original variables as a
new set of regressor variables, we can use Lasso to select the significant ones out
of all possible interactions. However, the number of all possible logical expres-
sions grows too rapidly to be handled efficiently. Furthermore, the redundancy
caused by different combinations of logical formulas expressing the exact same
model may lead to numerical and statistical instability. To restrict the number
of predictors within a manageable size, previous work in [13] confines the logic
expressions to include only two variables and the and operator.

1.2 Contributions

In this paper we introduce a Lasso-based method for learning sparse logistic
regression models with logical features. Technically, the method is implemented
as a transformed Lasso [10] which involves a transformation matrix that multi-
plies the original design matrix X. The transformed Lasso can deal with any type
of logical interactions. Here we also extend it to handle multivalued covariates.
In the following sections, we first propose a transformation of the original data
involving a generalized Walsh-Hadamard matrix. The transformation increases
the dimension of the data but enables the learning of arbitrarily complex logical
dependencies. We demonstrate the power of the proposed method by comparing
its performance to that of the greedy method in LogicReg with different settings
of sample sizes and model complexities. Finally, we propose several possible
future extensions.
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2 Model Formulation

As is well known, any Boolean formula can be decomposed as a linear combina-
tion of xor functions of the same or lower orders as the formula itself. For exam-
ple, to represent and or or formulas over a subset of indices I0 ⊆ {1, 2, . . . , l},
by using linear combinations of xor formulas, we can write them respectively
as

and(xI0) = 21−|I0|
|I0|∑
l=1

(−1)l−1
∑

I′⊆I0,|I′|=l

xor({xI′}), (3)

or(xI0) = 21−|I0|
|I0|∑
l=1

∑
I′⊆I0,|I′|=l

xor({xI′}). (4)

To map a binary covariate matrix to a design matrix that is composed of xor
functions of subsets of the covariates, it is convenient to use the discrete Walsh-
Hadamard transform, see [10]. To construct the design matrix, we first expand
the original covariate matrix into a larger matrix with columns corresponding
to indicator variables for each possible covariate vector (e.g., in the case of two
binary variables: 00, 10, 01, and 11), and then (pre-)multiply this matrix by the
Walsh-Hadamard matrix. For a more complete explanation including a detailed
example, see [10]. As we explain below, in practice the matrices need not be
explicitly constructed.

The rows of a Walsh-Hadamard matrix of order 2m correspond to all possible
vectors composed of the m covariates. The columns of a such matrix are xor
functions on all subsets of the covariates given by the corresponding row. For
example, the rows of a fourth order Walsh-Hadamard matrix correspond to all
combinations of two binary elements x1 and x2, while the columns are xor(0),
xor(x1), xor(x2), and xor(x1, x2). The fourth order Walsh-Hadamard matrix
is then

W4 =

⎛
⎜⎜⎝

xor(0) xor(x1) xor(x2) xor(x1, x2)
00 0 0 0 0
10 0 1 0 1
01 0 0 1 1
11 0 1 1 0

⎞
⎟⎟⎠. (5)

When the covariates takes three or more values, we can formulate the design
matrix in the similar way as forming the Walsh-Hadamard matrix. Each column
corresponds to a xor function of a subset of possible sequences while each vari-
able equals to one of its possible values. For instance, if the covariates are ternary
with values {0, 1, 2}, the columns relating to two variables x1 and x2 are xor(0),
xor(x1 = 0), sc xor(x1 = 1), xor(x2 = 0), xor(x2 = 1), xor(x1 = 0, x2 = 0),
xor(x1 = 0, x2 = 1), xor(x1 = 1, x2 = 0), and xor(x1 = 1, x2 = 1). We ignore
the xor functions when x1 or x2 equals 2, because we can represent them as
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linear combinations of xor functions when x1 or x2 equals 0 or 1. Such lin-
ear dependencies would significantly complicate the parameter estimation stage.
The design matrix W ′

9 based on the Walsh-Hadamard matrix for two ternary
variables is

W ′
9 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

00 0 1 0 1 0 0 1 1 0
10 0 0 1 1 0 1 0 0 1
01 0 1 0 0 1 1 0 0 1
11 0 0 1 0 1 0 1 1 0
02 0 1 0 0 0 1 1 0 0
20 0 0 0 1 0 1 0 1 0
22 0 0 0 0 0 0 0 0 0
12 0 0 1 0 0 0 0 1 1
21 0 0 0 0 1 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

In practice, when the number of covariates is large, it becomes more likely
that we only observe a small subset of all possible combinations of variables. In
this case we do not need to build the full Walsh-Hadamard matrix. For each
observed combination, we can map it to a vector of the corresponding xor
functions directly.

For example, assume that we have five binary variables {x1, x2, . . . , x5}, and
the linear predictor only depends on the first three variables: g(E(y)) = β0 +
β1x1+β2 and(x2, x3). If we restrict the maximum order of the interactions to be
three, the design matrix has

(
5
0

)
+

(
5
1

)
+

(
5
2

)
+

(
5
3

)
= 1+5+10+10 = 26 columns

corresponding to the xor functions with at most third order interactions. If the
sample size is sufficiently large, by using Lasso, only the coefficients for the five
predictors: xor(0), xor(x1), xor(x2), xor(x3), and xor(x2, x3) will be non-
zero. Then we can apply the xor functions with non-zero coefficients in new
data sets for prediction. In the following experiments on simulated data sets,
we show that even when the number of xor functions is relatively large, the
learned models quickly converge toward the generating model as the sample size
is increased.

3 Experiments

We compare the greedy search method in the R package LogicReg with trans-
formed Lasso for different models and sizes of training data in three experiments.
For Lasso regression, we use the popular R package glmnet. For each model and
size of training data, we generated 100 different training data sets based on the
true model. Later we compare the log-losses of learned models by LogicReg and
transformed Lasso by evaluating them on another 100 new data sets with sample
sizes 1024. We ran all the experiments on computers with 32 GB RAM and 2.53
GHz CPUs using only a single core at a time.
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Fig. 1. (a) Box plot of log-losses for independent test data by LogicReg and trans-
formed Lasso when data is simulated from Eq. 7(a) (3 terms)–(c) (7 terms), respectively.
Sample sizes increase along the x-axis, and for each sample size, the total number of
regressor variables is either 30 or 40 as indicated in the x-axis label. Upper and lower
whiskers show the maximum and minimum values of log-losses respectively. To empha-
size the differences between the log-losses of the two methods, the outliers (mainly the
results by LogicReg) that lie above the upper limit are not shown. (b) Data simulated
from Eq. 8(a)–(c) that include xor operators. (c) Box plot of log-losses of inferred logic
functions by LogicReg and transformed Lasso for models in Eq. 9(a)–(c).
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Fig. 1. (continued)

3.1 Experiment 1

First, we use the true models:

logit(E(Y )) = 0.5 − 1.3or[and(¬x1,¬x2), x3]
+ 1.5or(¬x4,¬x5,¬x6) − 1.7and(x7, x8, x9), (7a)

logit(E(Y )) = 0.5 − 1.3or[and(¬x1,¬x2), x3]
+ 1.5or(¬x4,¬x5,¬x6) − 1.7and(x7, x8, x9)
+ 1.1and(¬x10,¬x11,¬x12) − 0.9or(x13, x14, x15), (7b)

logit(E(Y )) = 0.5 − 1.3or[and(¬x1,¬x2), x3]
+ 1.5or(¬x4,¬x5,¬x6) − 1.7and(x7, x8, x9)
+ 1.1and(¬x10,¬x11,¬x12) − 0.9or(x13, x14, x15)
+ 0.7or[and(x16, x17), x18] − 0.5and(x19, x20, x21). (7c)

The linear predictors contain three, five or seven separate terms (not includ-
ing intercepts) that have no xor operators. The terms included in the simpler
linear predictors (three and five terms) are subsets of the terms in the more com-
plex linear predictors. Each term in the linear predictor involves three covariates.
The covariates are independent from each other and generated with equal prob-
abilities for 1s and 0s.

For the LogicReg method, we restrict the search space by no more than
three variables in a term and no more than five separate terms.2 Model selection
2 We found that the implementation of LogicReg provided in the package cannot

handle more than five terms in the same formula.
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is performed by 10-fold cross validation. For the method based on the Lasso
framework, we also consider only up to third order interactions. The best tuning
parameter λ in Lasso is also determined by 10-fold cross validation. The sam-
ple size ranges from 64 to 8192. The total number of covariates is 30 or 40 of
which all but the ones appearing in Eq. 7(a)–(c) have no effect on the response.
For example, the response of model in Eq. (7a) only depends on nine variables,
x1, . . . , x9, while covariates x10, . . . , xm (m = 30 or 40) are irrelevant. We repeat
the experiment on 100 different training sets for each combination of sample
size and number of covariates. The log-likelihoods achieved by both methods
are compared to the log-likelihoods under the true model on 100 independently
generated samples of size 1024.

We show how the log-loss changes under different conditions in Fig. 1a. We
can see that when the sample size reaches 8192, both methods have almost
converged to the same estimated models with small log-loss. The Lasso’s ability
to shrink most of the unimportant coefficients plays a key role in achieving
a similar level of performance already from the small samples sizes, unlike the
LogicReg method. For instance, with 40 covariates, selecting the required number
of covariates (under 100) out of the 10 701 candidates seems to be very hard for
LogicReg up until sample size 1024.

When the sample size grows, both methods have increasingly better results in
the sense of both smaller average log-losses and smaller variance between the rep-
etitions. But when the sample size is relatively small, the greedy search method
is very unstable. This is because it needs to pick the right Boolean terms out
of a much larger number of possible terms — recall that the number of features
considered in the LogicReg method is significantly greater than in transformed
Lasso because LogicReg includes all possible Boolean operators while the latter
method only includes xor operators. Moreover, the Lasso method has no local
optima unlike the greedy search applied in LogicReg.

The performance of the two methods also depends on the number of irrelevant
covariates. This is because the number of terms to be considered in both methods
grows with the number of covariates. For example, the number of xor terms
included in the design matrix in transformed Lasso for 30 variables is 4526 and
for 40 variables 10 701. On the other hand, the (negative) effect of increasing the
number of covariates is not very significant compared to the (positive) effect of
increasing the sample size except in the sense that as the number of variables is
increased, the computational cost of both methods increases sharply.

3.2 Experiment 2

In the second experiment, we replace the and and or operators in Eq. (7) by the
xor operator while keeping the coefficients unchanged. The new data generating
models are

logit(E(Y )) = 0.5 − 1.3xor(¬x1,¬x2, x3)
+ 1.5xor(¬x4,¬x5,¬x6) − 1.7xor(x7, x8, x9), (8a)
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logit(E(Y )) = 0.5 − 1.3xor(¬x1,¬x2, x3)
+ 1.5xor(¬x4,¬x5,¬x6) − 1.7xor(x7, x8, x9)
+ 1.1xor(¬x10,¬x11,¬x12) − 0.9xor(x13, x14, x15), (8b)

logit(E(Y )) = 0.5 − 1.3xor(¬x1,¬x2, x3)
+ 1.5xor(¬x4,¬x5,¬x6) − 1.7xor(x7, x8, x9)
+ 1.1xor(¬x10,¬x11,¬x12) − 0.9xor(x13, x14, x15)
+ 0.7xor(x16, x17, x18) − 0.5xor(x19, x20, x21). (8c)

All other experiment settings are the same as in the first experiment. Comparing
the results of the second experiment as illustrated in Fig. 1b with the first exper-
iment, we find that for small sample sizes, the transformed Lasso method has
difficulty in fitting the true models if they contain many xor operators. How-
ever, it performs better for sample sizes larger than 1024. On the other hand, the
greedy search method fails to find acceptable models in the second experiment
even when the sample size is 8196.

For the models in the second experiment, we need less non-zero coefficients
in the transformed Lasso method, because it contains only xor functions. For
instance, if we have three input terms, we only need three predictors with non-
zero coefficients to represent the whole linear predictor. But for the linear predic-
tor of three terms in the first experiment, we need to decompose it into fifteen
xor functions. There are less correct xor terms in the second experiment, thus
each xor term is comparatively more important. For small sample sizes, when
there is not enough information, it becomes much harder to identify the correct
xor functions. For the linear predictors in the second experiment, any incorrect
choice of xor term decreases the accuracy much more significantly than in the
first experiment. Therefore, transformed Lasso performs worse when the sample
size is small in the second experiment than in the first experiment. On the other
hand, a smaller set of non-zero coefficients result in stronger effects of the relevant
coefficients on responses. When we have enough training data, it becomes easier
for transformed Lasso to identify the right terms in the second experiment.

On the other hand, the greedy search method in LogicReg represents Boolean
functions only by and, or or negation operators. Thus, it needs to construct
much more complex expressions in the second experiment. For example, the
term xor(x1, x2, x3) needs to be expressed by interactions between ten variables
with the repeating use of x1, x2 and x3. It requires exploring an extremely
large model space. Moreover, the greedy search method starts by picking up the
most significant variables. However, a single variable in a xor function has a
much weaker effect in responses, which makes it very hard for the greedy search
method to find a good starting point. Furthermore, in the following process, it
can only modify a current model by adjusting one variable or one operator at
each step. Although the simulated annealing method are incorporated to avoid
local optima, an updated model should be reachable by a single move from the
previous one. Therefore, a proper starting point is crucial for the greedy search
method, which is difficult to find in the second experiment. Even when the



Sparse Logistic Regression with Logical Features 325

sample size is as large as 8192, the learned models by the greedy search method
are far from close to the true ones.

3.3 Experiment 3

For the last experiment, we show how the two methods work when variables
have multiple values. We use the similar data generating models as in the first
experiment, but allow the variables to take one of the three values: {0, 1, 2}. The
true models are:

logit(E(Y )) = 0.5 − 1.3 or[and(x1 �= 0, x2 �= 1), x3 = 2]

+ 1.5 or(x4 �= 0, x5 �= 1, x6 �= 2) − 1.7 and(x7 = 0, x8 = 1, x9 = 2), (9a)
logit(E(Y )) = 0.5 − 1.3 or[and(x1 �= 0, x2 �= 1), x3 = 2]

+ 1.5 or(x4 �= 0, x5 �= 1, x6 �= 2) − 1.7 and(x7 = 0, x8 = 1, x9 = 2)

+ 1.1 and(x10 �= 0, x11 �= 1, x12 �= 2) − 0.9 or(x13 = 0, x14 = 1, x15 = 2), (9b)
logit(E(Y )) = 0.5 − 1.3 or[and(x1 �= 0, x2 �= 1), x3 = 2]

+ 1.5 or(x4 �= 0, x5 �= 1, x6 �= 2) − 1.7 and(x7 = 0, x8 = 1, x9 = 2)

+ 1.1 and(x10 �= 0, x11 �= 1, x12 �= 2) − 0.9 or(x13 = 0, x14 = 1, x15 = 2)

+ 0.7 or[and(x16 = 0, x17 = 1), x18 = 2] − 0.5 and(x19 = 0, x20 = 1, x21 = 2). (9c)

To build the design matrix for the transformed Lasso method, we code inter-
actions between ternary covariates as described in Sect. 2. On the other hand,
because the method used by LogicReg requires binary input, we add dummy
variables to indicate when a covariate takes one of the three values.

Figure 1c shows that for ternary covariates, transformed Lasso works better
than the greedy search method under all sample sizes and numbers of covariates.
The ternary case is more difficult for both methods than the binary case because
it has much larger search spaces for both methods. However, both methods still
show their power to learn good model if there are enough data. When the sample
size reaches 4096, both methods converge to true models for ternary covariates
as well as for binary covariates.

Based on the previous experiments, we can see that transformed Lasso per-
forms better than the greedy search method in all the cases with models of differ-
ent complexities and training sample sizes. The greedy search method achieves
reasonable results only when there is a decent number of samples and input
functions are simple. However, it has very large log-losses as well as large vari-
ances when the sample size is less than 512 in all different settings in the three
experiments. But in real life studies, a relative small number of training samples
is very common. Moreover, the greedy search method fails when the interaction
includes complex operators like xor, which makes the responses less affected by
any single covariate involved in the interaction.

Another factor that we need to consider is computational cost. For the sim-
ple case with three terms in the linear predictor, a total of 30 covariates and
sample size 128 in the first experiment, we need on average 373 s to perform
model learning by the greedy search method in LogicReg, but only 6.0 s for
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the transformed Lasso method. For the more complex model with seven terms
including xor operators, a total of 40 covariates and sample size 8196 in the
second experiment, LogicReg uses on average 15 920 s, whereas the Lasso based
method needs only 1 580 s.

4 Discussion

In this study, we propose on approach to learning sparse logistic models with
logical features of multivalued inputs. The same approach can also be applied in
other types of regression models such as Poisson regression and Cox proportional
hazards models. In our experiments with simulated data, our Lasso based method
was able to estimate different models based on and, or, and xor features and
their combinations more effectively than the earlier LogicReg method. More
extensive experiments, including a comparison to other types of state-of-the-
art classification techniques will provide more detailed information about the
performance of the proposed method.

In future work, the proposed approach can be extended in several directions.
Firstly, for handling a large number of variables, we can use the LIBLINEAR [3]
library that scales better for large sparse data. Even then, a very large number
of covariates will necessarily pose problems to methods that include high order
interactions. For example, most genome wide studies may include hundreds of
thousands genomic covariates. Many existing approaches include a screening
stage to narrow down the set of candidate covariates to a manageable number.
This can be done either by exploiting expert knowledge or by other statistical
methods, see, e.g. [6,12]. Exploring suitable screening methods for the trans-
formed Lasso with very high dimensional data is an interesting research direction
that is necessary for many genomics applications.

Moreover, it can be helpful to integrate additional assumptions concerning
the model structure to guide the learning process in the spirit of [1,8]. This can
be achieved by modifying the Lasso penalization in various ways. For instance,
it may be reasonable to assume that if a given high order coefficient takes a non-
zero value, the lower order interactions among the variables that are included
in the higher order interactions are more likely to be non-zero as well. Different
group Lasso techniques are available for achieving this [9]. Furthermore, Lasso
tends to select most significant variables out of a group of correlated variables.
Integrating the structure of predictors can also be beneficial in the case when
the covariates are highly correlated.
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Abstract. Multi-label classification targets the prediction of mul-
tiple interdependent and non-exclusive binary target variables.
Transformation-based algorithms transform the data set such that regu-
lar single-label algorithms can be applied to the problem. A special type
of transformation-based classifiers are label compression methods, which
compress the labels and then mostly use single label classifiers to predict
the compressed labels. So far, there are no compression-based algorithms
that follow a problem transformation approach and address non-linear
dependencies in the labels. In this paper, we propose a new algorithm,
called Maniac (Multi-lAbel classificatioN usIng AutoenCoders), which
extracts the non-linear dependencies by compressing the labels using
autoencoders. We adapt the training process of autoencoders in a way
to make them more suitable for a parameter optimization in the context
of this algorithm. The method is evaluated on eight standard multi-label
data sets. Experiments show that despite not producing a good rank-
ing, Maniac generates a particularly good bipartition of the labels into
positives and negatives. This is caused by rather strong predictions with
either really high or low probability. Additionally, the algorithm seems
to perform better given more labels and a higher label cardinality in the
data set.

1 Introduction and Related Work

Multi-label classification, the classification of objects into many, possibly inter-
dependent, but non-disjoint binary classes, has received a lot of attention in
recent years. Binary relevance (BR), the most basic method, predicts each label
independently and thus does not make use of label correlations. Further methods
can be divided into the families of (i) method adaptation schemes and (ii) prob-
lem transformation schemes. Method adaptation schemes develop multi-label
versions of standard machine learning schemes, like decision trees [2], k-Nearest
Neighbors [25], or neural networks [12]. The nerual network based approach
equips a previously known method with a different loss function. Using neural
networks as multi-label classifiers is an obvious and simple extension to neural
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networks. Problem transformation schemes, by contrast, transform the multi-
label problems into multiple single-label problems and then apply standard
single-label methods to the transformed problems – the single-label learners
and classifiers act as plug-ins. The results of the single-label classifiers are then
transformed back to calculate the multi-label classifications. Examples for this
approach are Ensembles of Classifier Chains (ECCs) [15]1 or methods using
matrix factorizations to obtain a smaller set of pseudo-labels or latent labels
as targets for standard single-label classifiers [17,24].2 Problem transformation
algorithms have some advantages over method adaptation methods: First, any
type of single-label classifier can be used as plug-in. (a) If a classifier has a suit-
able bias for a data set at hand, it can readily be used. (b) It can be chosen
depending on the practical requirements of a project (e.g., a preference for lower
errors over shorter running times, or vice versa). (c) New single-label learning
schemes can be immediately used and tested, if needed, without the need for a
potentially non-trivial adaptation of the method and time to achieve this. Fur-
ther, transformation methods do not depend on any specific type of data, for
instance, real-valued or graph data, as long as the base (single-label) classifier
can handle them as input. This affects mainly highly specialized algorithms,
like for instance method adaptation schemes based on specific neural networks
architectures, that are mostly restricted to real-valued data [8].

Orthogonal to the above distinction (method adaptation vs. problem trans-
formation), so-called label compression algorithms were suggested [17,19,24].
These algorithms compress the labels into a typically smaller label space and
make the predictions on the compressed labels. The prediction is done by decom-
pressing the predicted labels again. MLC-BMaD [24], for instance, uses Boolean
matrix decomposition to generate a compression of the labels, which is used
as input for a BR learner. The decompression is achieved by multiplying with
a matrix that contains carefully chosen basis vectors. Hence, the dependencies
among the labels are encoded in this basis matrix, which is part of the learned
model. Another approach similar to MLC-BMaD is multi-label classification
using the principal label space transformation [17]. This method uses singular
value decomposition instead of Boolean matrix factorization in the compres-
sion step. Label compression methods can also belong to the family of method
adaptation schemes, for instance, in neural network variants [8] (see below).

Almost all of the existing approaches aim to use the dependencies among the
labels to improve the prediction. Nevertheless, so far, only few of the classifiers
were able to cope with non-linear dependencies among the labels. One of the
approaches targeting non-linear dependencies among the labels was proposed
by Li and Guo [8]. Nevertheless, the method aims for a compression of both
the input (the features) and the output (the labels) together. This differs from
the one presented here, as we will solely focus on finding a compressed repre-

1 Notice that ECCs should still be considered as a strong baseline method as confirmed
by a quite recent extensive experimental comparison [10].

2 A yet different family of methods transforms larger multi-label problems into smaller
multi-label methods, like for instance HOMER [20] or RAKEL [22].
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sentation of the labels that encodes their dependencies. This allows us to make
use of base learners that can cope with features that are not readily embedded
into R

n (e.g. text, nominal). Li et al. [9] presented an algorithm that uses con-
ditional Restricted Boltzmann Machines (RBMs) to train models on data sets
with partially missing labels. All these methods belong to the method adaptation
schemes, with the above mentioned disadvantages. Read et al. [14] showed that
ensembles of classifiers can capture non-linear dependencies among the labels
by functioning as a layered network. This is achieved by using RBMs as a base
classifier in ECCs.

This paper makes three contributions to the field: (i) We introduce the first
method from the intersection of problem transformation approaches and label
compression approaches that is able to capture nonlinear label dependencies.
The algorithm, called Maniac3 (multi-label classification using autoencoders),
compresses the labels using autoencoders [6], and then learns a multi-label
model on the compressed label set. After the prediction, the same structure
(autoencoder) is used to decompress the labels and obtain the final predictions.
(ii) We introduce autoencoders to the set of available multi-label compressors
and decompressors in problem transformation approaches. So far, autoencoders
have surprisingly only been used on the whole data set, despite using them on
the labels only seems to be an obvious approach. (iii) We state exactly where the
algorithm performs well, namely on the task of “genuine” multi-label classifica-
tion problems with many labels and dependencies among the labels and when
the prediction of the correct bipartition of the labels is important.

The remainder of the paper is organized as follows: In the next section,
we describe in detail Maniac, the newly proposed algorithm. Subsequently, we
explain the evaluation approach. Finally, we discuss the experimental results and
give a conclusion.

2 Maniac – Multi-Label Classification Using
Autoencoders

The algorithm works similarly to other label compression based algorithms like
MLC-BMaD [24] or the method proposed by Tai and Lin [17] – Principal Label
Space Transformation (PLST). In the first step, the labels are compressed using
a compression algorithm. Then, base learners are trained on the compressed
labels (see Fig. 1). In the case of Maniac, we use autoencoders for compression,
in the case of MLC-BMaD Boolean matrix decomposition is used, Tai and Lin
use singular value decomposition. The difference in using the autoencoders in
this step is that unlike other approaches, this captures non-linear dependencies
among the labels. Boolean matrix decomposition and SVD cannot capture them,
hence the performance the prediction performance can be improved on data sets
with non-linear dependencies.

3 The implementation is available at https://github.com/kramerlab/maniac, as well
as directly integrated in Meka http://meka.sourceforge.net/.

https://github.com/kramerlab/maniac
http://meka.sourceforge.net/
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Fig. 1. Illustration of the training phase of Maniac. After the autoencoders are trained
(not visualized), Y is compressed using the trained autoencoders. Next, a BR model is
trained on the compressed labels.

Autoencoders [6] are neural networks that consist of a compressor and a
decompressor part, connected by a small central layer. (see Fig. 2). In the fol-
lowing, we will explain details of the autoencoder training.

Autoencoders can be trained in an unsupervised manner4. For this, training
data is clamped to the equally sized input and output layers of the autoencoder.
The training data is compressed using the compressor part of the network, and
then reconstructed again using the decompressor part. The result is compared to
the original data, the reconstruction errors are used to tune the parameters of the
compressor and the decompressor. More specifically, we used a Conjugate Gradi-
ent (CG) algorithm, and computed the necessary gradients from reconstruction
errors using classical backpropagation. If the training of an autoencoder is suc-
cessful, the output of the network is similar to the input data. Since the output is
reconstructed by the decompressor from the activations of neurons in the inner-
most layer, the small innermost layer of the autoencoder can be thought of as
an informational bottleneck. The activations of the neurons in this bottleneck
layer constitute an efficient low-dimensional representation of the input data.
In particular, this representation captures non-linear dependencies between the
activations of the neurons in the input layer.

Hinton and Salakhutdinov [6] proposed to treat pairs of layers (see Fig. 3)
of the autoencoder as Restricted Boltzmann Machines (RBMs), and train them
using the Contrastive Divergence (CD) algorithm. Connection weights and neu-
ron activation biases produced by contrastive divergence were then used as input
to the backpropagation-based optimization algorithm.

We use a variation of these ideas to train whole streams of increasingly deep
autoencoders. The training process of autoencoders is as follows. We start with
a trivial autoencoder that has a single neuron layer and no connections. Suppose
that we already have an autoencoder with 2n+1 layers. We apply the compressor
part to the data, and train a new RBM on the compressed data. The size of

4 It should be noted that, as we train the autoencoders on the labels, this could be
understood as supervised learning. Nevertheless, for the training of the autoencoders,
no additional target variable is used, and the labels are not treated as target variables
for this step, hence this is still unsupervised training.
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Fig. 2. Stream of increasingly deep
autoencoders. The deeper autoen-
coders are created from the shallower
ones by unfolding the innermost layer
and then tuning with backpropagation.

Fig. 3. Topology of a Restricted Boltz-
mann Machine (RBM). Nodes in the
lower layer (blue) are called visible units.
Nodes in the upper layer (green) are
called hidden units (Color figure online).

the new layer of hidden units (see Fig. 3) is determined by the compression
factor hyperparameter (see also appendix). Then we unfold the RBM and merge
it into the center of the original autoencoder, obtaining an autoencoder with
2n+ 3 layers (see Fig. 2). Hinton and Salakhutdinov originally proposed to keep
unfolding all RBMs until the desired depth is reached, and fine-tune the final
autoencoder with the backpropagation algorithm in the very end. However, we
have found it beneficial to treat the unfolded RBMs as small autoencoders of
depth 1 and also tune them with backpropagation. After gluing the new small
autoencoder into the center of the previously obtained (2n+1)-layer autoencoder,
we also tune the resulting (2n + 3)-layer autoencoder with backpropagation.5

We evaluated multiple training strategies for the autoencoders, and the
results showed that in contrast to the strategy originally suggested by Hinton
and Salakhutdinov [6], when using a stream of autoencoders, better results can
be achieved. Additionally, there seems to be no big difference from using the
parameters suggested by Hinton compared to using an optimization of these
parameters.

The next step is then to train a base classifier (a multi-target model) using
the compressed labels as new target variables. In the previous step, we extracted
the dependencies from the labels into the autoencoders, hence, in the best case,
there are no dependencies left among the latent labels. Therefore, it should not
be beneficial to use a sophisticated multi-target learner over a simple BR model.
Nevertheless, if the autoencoder does not manage to extract all dependencies,
it might be beneficial to use a more advanced multi-target learner. The training
phase of the algorithm is composed of these two steps, and the model consists
of the autoencoders and the multi-target (BR) model.

With an autoencoder, a threshold for binarization, and the trained base learn-
ers, one can easily predict labels for new instances. First, the multi-target model
is applied and the latent labels are predicted. Next, the autoencoders are used

5 Due to space limitations, we moved a more detailed version of this section, which is
more technically involved, to https://github.com/kramerlab/maniac/blob/master/
docs/supplementary.pdf.

https://github.com/kramerlab/maniac/blob/master/docs/supplementary.pdf
https://github.com/kramerlab/maniac/blob/master/docs/supplementary.pdf
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to decompress the latent labels. The final labels are obtained by thresholding,
so that the output is binary.

The predicted bipartition is calculated from the confidences given from the
autoencoder similar to other multi-label classifiers using a threshold. It should
be noted that the calculated confidences are mostly close to 0 and 1, and rarely
somewhere in between.

3 Evaluation

We optimized two parameters of the autoencoders, the compression factor
and the number of layers using an internal holdout evaluation. We have also
attempted to optimize the hyperparameters of Contrastive Divergence (used for
RBM training), but the optimization turned out to be expensive, while not hav-
ing much impact on the quality of the final model. In general, using RBMs for
pre-training seemed to speed up the computation, but the effect of fine-tuning
the small unfolded autoencoders and all the intermediate autoencoders seemed
to outweigh the effects of Contrastive Divergence on the quality of the model.
Therefore, all the parameters of Contrastive Divergence are essentially the same
as proposed originally [6]. The optimization of the parameter for the final thresh-
olding is very cheap, it can be accomplished by simple grid-search that tests
thresholds in the interval [0, 1] using 1000 steps for each column individually,
and only models need to be applied, not trained.

We compared our method to BR, ECC, and MLC-BMaD6. BR is a good
choice for a baseline as it uses no dependencies among labels, hence, a good
multi-label classifier should perform better than BR. ECC is a fast and well
performing method and currently considered as the benchmark method for multi-
label classification [10]. We evaluated the algorithm using a repeated holdout
evaluation with one third of the data set as test set, two thirds of the data set as
training set and ran all evaluations 15 times, as suggested by Nadeau and Bengio
[11], and calculated the corrected re-sampled t-test statistics implemented in
WEKA [11]. For ECC, we set the number of chains to 10, BR did not require
any parameters to be set, the parameters of MLC-BMaD we optimized using a
greedy search, as suggested by Wicker et al. [24]. As Wicker et al. showed that
their approach outperforms PLST [17], we did not compare to PLST seperately.

The choice of a multi-target base learners depends on the question whether
the autoencoder is capable of extracting all dependencies and returning a set of
latent labels that are completely independent. If this is the case, the learners
can be trained independently, and the multi-target version of BR can be used. If
there are dependencies left in the data, a more sophisticated multi-target learning
method should be chosen. In our experiments, we used an adaptation of ECC
for multi-target problems, as it has been proven to be a fast and well-performing
learner. Both base learners were used and compared to the other models.
6 As the authors of [8] did not share their code for experimental comparisons, and

we were not able to reproduce the published results, we did not compare to this
algorithm.
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3.1 Implementation

We implemented the algorithm in Mulan [21] using our own implementation of
autoencoders7. The implementation provides a way to train a stream of autoen-
coders, adding one layer at a time, given a compression factor. This is used to
speed up the optimization process of choosing the right number of layers. Using
an internal training set, autoencoders with one layer are trained. A model is
trained on this autoencoder and the performance is evaluated on a test set. The
autoencoders are extended to have more layers, and are evaluated again, and
so on. Hence, we do not need to repeat the process of training an autoencoder
with n layers, we can reuse the previous trained autoencoder and extend it. As
base learners, we used an adaptation of ECC and BR for multi-target problems.
These learners used random forests as a base learners due to their speed and typ-
ically good performance. We used no parameter optimization except an internal
holdout validation to optimize the number of layers and compression factor of
the autoencoders.

4 Experimental Results

We used nine standard multi-label data sets from the data set repository
of Mulan (see http://mulan.sourceforge.net/datasets.html). The results of the
experiments can be split into two parts: First, the performance of Maniac
regarding the split into positive and negative labels (bipartition-based measures
are given in Table 1), and second, the predicted ranking (confidence-based mea-
sures are given in Table 2)8. The predicted bipartitions give an overall good
performance. Yet the ranking or estimated confidences are rather bad. The lat-
ter is caused by the autoencoder decompression algorithm, which assigns each
label with high confidence in any case, yet the assignment of the confidence is not
reliable. Therefore, if a label is incorrectly assigned to be positive or negative, it
is not incorrectly assigned with a confidence a bit below the threshold, the con-
fidence is set to a value close to 1 or 0. In the overall ranking then, it can be in a
position in the ranking completely wrong and impact the quality of the ranking
strongly. Thus, a low number of false positives or negatives has a huge impact on
the ranking, much stronger than in the case of other classifiers. Hence all rank-
ing based measures as area under ROC curve, one error, or coverage are rather
bad for Maniac. Nevertheless, Maniac performs well regarding other measures
like accuracy or FMeasure, which simply take into account the bipartition. In
some cases they strongly improve the performance compared to ECC or BR,
even in the range of 20 % (e.g. the example-based accuracy of the medical data
set). Hence, in the following, we will focus on discussing the bipartition-based
measures.

7 The autoencoder implementation is available at https://github.com/kramerlab/
autoencoder.

8 Due to space limitations, we give only representative results, the full results are given
at https://github.com/kramerlab/maniac/blob/master/docs/supplementary.pdf.

http://mulan.sourceforge.net/datasets.html
https://github.com/kramerlab/autoencoder
https://github.com/kramerlab/autoencoder
https://github.com/kramerlab/maniac/blob/master/docs/supplementary.pdf
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Table 1. Evaluation using bipartition-based measures. Results for Maniac are given
both with BR and ECC as base classifier. The significant improvement • or degradation
◦ of Maniac using BR as base classifier compared to the associated classifier is given.
Note that the data sets are sorted according to the number of labels in descending order.

Data set Maniac
(BR)

BR ECC Maniac
(ECC)

MLC-
BMaD

Maniac
(single
layer)

Example-
Based
Accuracy

CAL500 0.25 0.21 • 0.20 • 0.25 0.01 • 0.25

enron 0.44 0.41 • 0.42 • 0.41 • 0.32 • 0.39 •
medical 0.54 0.46 • 0.44 • 0.47 • 0.41 • 0.17 •
genbase 0.74 0.93 ◦ 0.95 ◦ 0.65 0.90 ◦ 0.52 •
birds 0.57 0.59 0.55 0.60 0.57 0.53

yeast 0.51 0.50 • 0.51 0.52 0.50 • 0.52

flags 0.59 0.61 ◦ 0.62 ◦ 0.60 0.55 • 0.61

scene 0.58 0.60 0.58 0.56 0.47 • 0.60

emotions 0.52 0.53 0.55 0.53 0.48 • 0.54 ◦
[◦/ /•] [2/3/4] [2/4/3] [0/7/2] [1/1/7] [1/5/3]

Example-
Based
FMeasure

CAL500 0.39 0.34 • 0.33 • 0.39 0.01 • 0.39

enron 0.56 0.52 • 0.53 • 0.53 • 0.39 • 0.50 •
medical 0.58 0.48 • 0.46 • 0.50 • 0.43 • 0.18 •
genbase 0.76 0.94 ◦ 0.95 ◦ 0.66 0.91 ◦ 0.54 •
birds 0.60 0.61 0.57 0.62 0.59 0.55 •
yeast 0.63 0.61 • 0.62 • 0.64 0.61 • 0.63

flags 0.72 0.73 0.73 0.72 0.66 • 0.73

scene 0.61 0.60 0.59 0.59 0.48 • 0.61

emotions 0.61 0.61 0.62 0.62 0.54 • 0.64 ◦
[◦/ /•] [1/4/4] [1/4/4] [0/7/2] [1/1/7] [1/4/4]

Regarding the size of the data sets, the results show that the larger the
number of labels, the better the algorithm performs. In all three cases of CAL500
[23], enron [7], and medical [13], Maniac outperforms ECC without exception,
with in all cases a strong improvement in the range of up to 25 %. The higher the
number of labels, the easier it is for the autoencoders to generate sensible latent
labels, and capture the dependencies among the labels. On the other hand, data
sets with only few labels, like flags [5], scene [1], and emotions [18], only having 6
or 7 labels, are hard to compress any further. Hence the dependencies cannot be
extracted by the autoencoders. When using data sets of that size, a compression
based algorithm is rather useless. Hence the performance of Maniac on these
data sets is in almost all cases worse than BR or ECC. In the medium range of
number of labels, the trend is not that clear, in the case of the yeast data set [4],
small improvements were possible, on the other hand, on genbase [3], Maniac
does not seem to work. Here, other aspects like label cardinality seem to be more
important.
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Table 2. Evaluation using confidence-based measures. Results for Maniac are given
both with BR and ECC as base classifier. The significant improvement • or degradation
◦ of Maniac using BR as base classifier compared to the associated classifier is given.
Note that the data sets are sorted according to the number of labels in descending order.

Data set Maniac
(BR)

BR ECC Maniac
(ECC)

MLC-
BMaD

Maniac
(single
layer)

Micro-
Averaged
AUC

CAL500 0.76 0.81 ◦ 0.82 ◦ 0.76 0.79 ◦ 0.80 ◦
enron 0.87 0.91 ◦ 0.92 ◦ 0.91 ◦ 0.88 0.90 ◦
medical 0.94 0.98 ◦ 0.98 ◦ 0.95 0.97 ◦ 0.96 ◦
genbase 0.98 1.00 ◦ 1.00 ◦ 0.97 0.99 ◦ 0.97

birds 0.83 0.92 ◦ 0.92 ◦ 0.85 0.91 ◦ 0.89 ◦
yeast 0.82 0.85 ◦ 0.85 ◦ 0.83 0.85 ◦ 0.83

flags 0.80 0.82 ◦ 0.83 ◦ 0.80 0.82 ◦ 0.81

scene 0.91 0.96 ◦ 0.96 ◦ 0.90 0.84 • 0.93 ◦
emotions 0.83 0.87 ◦ 0.87 ◦ 0.84 0.86 ◦ 0.85

[◦/ /•] [9/0/0] [9/0/0] [1/8/0] [7/1/1] [5/4/0]

Especially in the mid range of number of labels, it becomes evident that cardi-
nality and density are important measures for Maniac. Despite yeast being simi-
lar in the number of labels to genbase and birds, it is easier for Maniac to predict
with a higher performance. The biggest difference between these data sets is the
cardinality and density. Cardinality in yeast is more than four times higher than
the cardinality in birds. While the number of instances is also higher, this does not
seem to have an effect on the other data sets. For instance CAL500 is the small-
est of the top three data sets in terms of instances, yet there is no difference in
performance. Other measures like the number of numeric or nominal features do
not have an influence on the performance of Maniac. They are simply an input
to the random forests and do not change anything for the autoencoders.

If we compare the performance of Maniac using the multi-target versions
of BR with Maniac using the multi-target version of ECC as base classifier,
we can see that in most cases there is no difference. If there is a difference,
BR outperforms ECC. This is a good indication that it is possible to extract
all dependencies from the labels using autoencoders. The resulting compression
consists of no dependencies, otherwise ECC would outperform Maniac using
BR. It was shown that ECC does not work well using regression models, due to
the stronger error propagation in the chains [16]. Nevertheless, in this setting,
this does not seem a problem: The performance is more or less the same, inde-
pendent of using BR or ECC as base learners. Hence the dependencies must be
extracted almost completely by the autoencoders, and the random forest most
likely only uses the features for the prediction of latent labels, ignoring other
latent labels in the case of ECC. Hence it is recommended to use BR as a base
learner for Maniac, as this is beneficial in terms of runtime and resources (the
data set for each base learner is smaller in terms of features for base learners in
BR compared to ECC).
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Fig. 4. Comparison of the number of layers depending on the compression factor on the
medical data set. The x-axis gives the number of layers used, the y-axis the example-
based accuracy.

We additionally compared Maniac to itself using only a single layer in the
autoencoders. This can give an indication to what extent non-linear dependencies
are exploited by Maniac. If the autoencoders only have a single layer, they are
a simple mapping function, not capable of handling non-linear dependencies.
The results show that in this case Maniac does not perform too well. Hence,
Maniac seems to use the non-linear dependencies to improve its classification.

Figure 4 shows the performance depending on the compression factor and
the number of layers. We evaluated several settings on the medical data set. The
behavior was similar on all other data sets, with exception of the less than small
data sets with 10 labels, where the compression was difficult due to the anyway
small size of the data set. Clearly, the smaller the compressed data sets due to
the compression factor, the faster the number of layers become too high to come
up with a meaningful representation, and the overall accuracy tends towards a
value of approximately 0.15. Nevertheless, with a compression factor of 0.8, the
accuracy is much more stable and a higher number of layers seems to become
beneficial. On the other extreme, with a compression factor of 0.2, after the first
layer, the number of layers is reduced to 20 % of the original size: One layer
appears to be the optimum. This is simply because after one layer the number
of latent labels would become too small, if another layer would be added.

Although the complexity of the algorithm seems to be high and the runtime
is certainly higher than that of other algorithms, as it adds a rather expensive
compression step, we were able to train autoencoders with one layer on a desk-
top9 for the labels of the biggest data set (CAL500 ) in 58 s, two layers could
be trained in only 133 s, using a compression factor of 0.85, which seems to be
a typical setting the optimization process ends with. In our experiments, most
optimal autoencoders used at maximum 4 layers in total. The most time con-
suming step is the optimization of the parameters, which is reduced by using
streams of autoencoders.

9 We used only a single core of an Intel R© CoreTMi7-4770 K CPU – 3.50 GHz Processor
and 4 GB of RAM.
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5 Conclusion and Future Work

In this paper, we presented a new approach to multi-label classification based on
label compression, called Maniac. Unlike previously presented transformation-
based methods, Maniac exploits non-linear dependencies among the labels. This
is achieved by compressing the label space with autoencoders. The results showed
that Maniac strongly outperforms standard baseline methods for multi-label
classification in the case of a high number of labels and seems to benefit from a
high cardinality. While Maniac produces a good bipartition, the confidence is
only a rough indication if a label is positive or negative and should not be used
for ranking.

While the method works already well for standard multi-label classification,
in particular for bipartition-based measures and genuine multi-label data sets, it
also has a high potential for online multi-label classification. Using the autoen-
coder compression in an online scenario is trivial, and hence, Maniac can be eas-
ily adapted for online learning. The base models can be trained using an online
learner, combined using BR, and the compression could be updated with every
instance. Nevertheless, this would lead to a large runtime in each step which might
not be practical for online learning. Hence, training the autoencoders in batches
could be more convenient. On the other hand, the online learning could be com-
pletely left to the autoencoders and the base models could be updated only from
time to time or vice-versa. Another extension of this method would be to transfer it
to multi-target learning, which has been recently done for many multi-label meth-
ods (e.g. by Spyromitros-Xioufis et al. [16]). This step would be quite straightfor-
ward, as autoencoders by default can compress numerical values.
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Abstract. Logistic Regression (LR) is a workhorse of the statistics com-
munity and a state-of-the-art machine learning classifier. It learns a lin-
ear model from inputs to outputs trained by optimizing the Conditional
Log-Likelihood (CLL) of the data. Recently, it has been shown that pre-
conditioning LR using a Naive Bayes (NB) model speeds up LR learning
many-fold. One can, however, train a linear model by optimizing the
mean-square-error (MSE) instead of CLL. This leads to an Artificial
Neural Network (ANN) with no hidden layer. In this work, we study the
effect of NB preconditioning on such an ANN classifier. Optimizing MSE
instead of CLL may lead to a lower bias classifier and hence result in bet-
ter performance on big datasets. We show that this NB preconditioning
can speed-up convergence significantly. We also show that optimizing a
linear model with MSE leads to a lower bias classifier than optimizing
with CLL. We also compare the performance to state-of-the-art classifier
Random Forest.

Keywords: Logistic regression · Preconditioning · Conditional log-
likelihood · Mean-square-error · WANBIA-C · Artificial neural networks

1 Introduction

Logistic Regression (LR) is a state-of-the-art machine learning classifier and is
widely used by statisticians [1,2]. It has been shown recently that LR training
converges more rapidly when each axis is scaled by the log of the naive Bayes
estimates of the conditional probabilities [3,4]. Such rescaling leads to an alterna-
tive parameterization with both naive Bayes parameters (learned generatively)
and LR parameters (learned discriminatively). The resulting parameterization
of LR is known as WANBIAC

CLL and has been shown to be effective for both
online and batch gradient based optimization for logistic regression1. LR opti-
mizes the conditional log-likelihood (CLL) of the data given the model. We
conjecture that optimizing the mean square error (MSE) should lead to more
accurate (low-biased) models, especially for bigger datasets because, it is mainly

1 Note, we add CLL as subscript to WANBIA-C to show explicitly the objective
function that it optimizes.

c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part I, LNAI 9651, pp. 341–353, 2016.
DOI: 10.1007/978-3-319-31753-3 28
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the bias that contributes to the error on the bigger datasets [5,6]. Note, that
a linear model optimizing MSE is an Artificial Neural Network (ANN) with no
hidden layer (the structure constitutes only an input layer with multiple nodes
and an output layer with multiple nodes).

This paper investigates the performance of linear classification models that
optimize MSE relative to those that optimize CLL and whether NB regulariza-
tion is as effective with the MSE objective function as it is with CLL. One can
view WANBIAC

CLL from two perspectives.

1. From the NB perspective, the parameters learned with discriminative training
are only alleviating NB’s independence assumption. It is irrelevant whether
the weights are optimized by the CLL or by the MSE objective function.

2. From the LR perspective, WANBIAC
CLL introduces NB weights that precon-

dition the search space. For CLL, which is a convex objective function, this
leads to faster convergence. A natural question is: will the same trend hold
for other objective functions which are not convex, such as MSE?

The contributions of this paper are two-fold:

1. We show that NB preconditioning is applicable and equally useful for learning
a linear classification model optimizing the MSE objective function.

2. Optimizing MSE leads to a lower bias classifier than LR optimizing CLL.
This leads to lower 0–1 loss and RMSE on big datasets.

The rest of this paper is organized as follows. We discuss LR and WANBIAC
CLL

in Sect. 2. We will derive NB preconditioning of a linear classification model
optimizing MSE in Sect. 3. Empirical analysis is given in Sect. 4. We conclude in
Sect. 5 with some pointers to future work.

2 WANBIAC
CLL

Let us start by explaining WANBIAC
CLL. Typically, an LR optimizes the following

objective function:

CLL(β) =
N∑

i=1

log PLR(y(i)|x(i)), (1)

where N is the number of data points. Note, we are constraining ourselves to
categorical attributes and multi-class problems only. We write PLR for categorical
features and multiple classes as:

PLR(y |x) =
exp(βy +

∑a
i=1 βy,i,xi

)∑
c∈ΩY

exp
(
βc +

∑a
j=1 βc,j,xj

) ,

= exp
(
βy +

a∑
i=1

βy,i,xi
− log

∑
c∈ΩY

exp
(
βc +

a∑
j=1

βc,j,xj

))
, (2)
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where a is the number of attributes and βy,i,xi
denotes the parameter associated

with class y, and attribute i taking value xi. On the other hand, naive Bayes is
defined as:

PNB(y |x) =
P(y)

∏a
i=1 P(xi |y)∑

c∈ΩY
P(c)

∏a
j=1 P(xj |c) .

One can add weights to NB to alleviate the attribute independence assumption,
resulting in the WANBIAC

CLL formulation, that can be written as:

PW(y |x) =
P(y)wy

∏a
i=1 P(xi |y)wy,i,xi∑

c∈ΩY
P(c)wc

∏a
j=1 P(xj |c)wc,j,xj

= exp
(
wy log P(y) +

a∑
i=1

wy,i,xi
log P(xi |y)

− log
∑

c∈ΩY

exp
(
wc log P(c) +

a∑
j=1

wc,j,xj
log P(xj|c)

))
. (3)

When conditional log likelihood (CLL) is maximized for LR and weighted NB
using Eqs. 2 and 3 respectively, we get an equivalence such that βc ∝ wc log P(c)
and βc,i,xi

∝ wc,i,xi
log P(xi |c). Thus, WANBIAC

CLL and LR generate equivalent
models. While it might seem less efficient to use WANBIAC

CLL which has twice
the number of parameters of LR, the probability estimates are learned very
efficiently using maximum likelihood estimation, and provide useful information
about the classification task that in practice serve to effectively precondition the
search for the parameterization of weights to maximize conditional log likelihood.

3 Method

In this section, we will derive a variant of WANBIAC
CLL that is optimized to

minimize MSE. But before doing that, we will first derive a variant of LR using
the MSE objective function — an ANN with no hidden layer.

ANN. Instead of optimizing the objective function in Eq. 1, one can optimize
the following MSE objective function: MSE(β) = 1

N

∑N
i=1

1
C

∑C
c=1(P(y|x(i)) −

P̂(c|x(i)))2, where y is the true label and C = |ΩY | . Let us simplify the above
equation slightly:

MSE(β) =
1
2

N∑
i=1

C∑
c=1

(
δ(y = c) − P(c|x(i))

)
2, (4)

where δ(.) is an indicator function which is 1 if its input parameter condition
holds and 0 otherwise. Note that unlike the CLL objective function in Eq. 1,
the above objective function (Eq. 4) is not convex. It is likely that one will be
stuck in local minimum and, therefore, local minimum avoidance techniques
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may be required. We will show in Sect. 4 that in practice one can obtain good
results with simple gradient descent based (such as quasi-Newton) optimization
algorithms without requiring specific mechanisms to avoid local minima.

In the following, we will drop the superscript (j) for simplicity. Optimizing
Eq. 4 requires us to compute its derivative with respect the parameters β. We
have the following:

∂MSE(β)
∂βk,i,xi

= −
N∑

i=1

C∑
c

(δ(y = c) − P(c|x))
∂P(c|x)
∂βk,i,xi

, (5)

where,

∂P(c|x)
∂βk,i,xi

=
∂

∂βk,i,xi

(
exp(βc +

∑
βc,i,xi

)∑
c′ exp(βc′ +

∑
βc′,i,xi

)

)
,

=
∂

∂βk,i,xi

exp

(
(βc +

∑
βc,i,xi

) − log(
∑
c′

exp(βc′ +
∑

βc′,i,xi
))

)
,

= P(c |x)
(

δ(c = k)δ(xi) −
(

βk +
∑

βk,i,xi∑
c′ exp(βc′ +

∑
βc′,i,xi

)

)
δ(xi)

)
,

= P(c |x)
(
δ(c = k)δ(xi) − P(k |x)δ(xi)

)
,

= P(c |x)(δ(c = k) − P(k |x))δ(xi),
(6)

where, δ(xi) is an indicator function if value of xi is same to the value with
which we are differentiating. Plugging in Eq. 5, we get:

∂MSE(w)
∂βk,i,xi

=−
N∑

i=1

C∑
c

(δ(y = c)−P(c|x))P(c|x)(δ(c = k) − P(k|x))δ(xi).

(7)

Note, the gradients with respect to the class parameters can be calculated sim-
ilarly. The gradients in Eq. 7 is the same as optimized by ANN with back-
propagation training algorithm. In the following, we will formulate WANBIAC

CLL

with MSE objective function.

WANBIAC
MSE. Given Eq. 3, assuming a Dirichlet prior, a MAP estimate of P(y)

is πy which equals: #y+m/C
N+m , where #y is the number of instances in the dataset

with class y and N is the total number of instances, and m is the smoothing
parameter. We will set m = 1 in this work. Similarly, a MAP estimate of P(xi |y)
is θxi|c which equals: #xi,y

+m/|xi|
#y+m , where #xi,y is the number of instances in the

dataset with class y and attribute values xi. Now, we have:

P(y |x) =
π

wy
y

∏a
i=1 θ

wy,i,xi

xi|y∑
c∈ΩY

πwc
c

∏a
j=1 θ

wc,j,xj

xi|y
.
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Using the above equation, let us optimize the MSE objective function by taking
gradients with respect to the parameters w. We write:

∂MSE(w)
∂wk,i,xi

= −
N∑

i=1

C∑
c

(δ(y = c) − P(c|x))
∂P(c|x)
∂wk,i,xi

, (8)

where wk,i,xi
denotes parameter associated with attribute i taking value xi and

class attribute k. Let us expand ∂P(c|x)
∂wk,i,xi

in the following way:

∂P(c|x)

∂wk,i,xi

=
∂

∂wk,i,xi

exp
(
wc log πc +

a∑

i=1

wc,i,xi log θxi |c

− log
∑

c′∈ΩY

exp
(
wc′ log πc′ +

a∑

j=1

wc′,j,xj
log θxj|c′

))
,

= P(c|x)
(
δ(c = k)δ(xi) log θxi |k

− exp(wk log πk +
∑a

j=1wk,j,xj log θxj |k)

log
∑

c′∈ΩY
exp
(
wc′ log πc′ +

∑a
j=1wc′,j,xj

log θxj|c′
)δ(xi) log θxi |k

)
,

= P(c|x)(δ(c = k) − P(k|x))δ(xi) log θxi |k,

and plug it in Eq. 8:

∂MSE(w)

∂wk,i,xi

= −
N∑

i=1

C∑

c

(
δ(y = c)− P̂(c|x)

)
P(y|x)(δ(y = k)− P(k|x)) log θxi |kδ(xi). (9)

The gradients for weights associated with class y (wy) can be computed similarly.
Comparing Eqs. 7 and 9, the following holds:

∂MSE(w)
∂wk,i,xi

=
∂MSE(β)
∂βk,i,xi

log θxi |k, and
∂MSE(w)

∂wk
=

∂MSE(β)
∂βk

log πk.

This shows that when optimizing MSE, just like CLL, naive Bayes precondition-
ing has the effect of scaling the gradients of a linear classification model by the
log of the NB probability estimates. Such scaling leads to faster convergence, as
is shown in the next section.

4 Experimental Results

In this section, we compare the performance of a linear model optimized with
the MSE objective function with and without NB preconditioning in terms of
0–1 loss, RMSE, bias, variance, training time and the number of iterations it
takes each algorithm to converge on 73 natural domains from the UCI repos-
itory (Table 1). We will also compare performance with LR and WANBIAC

CLL

optimized with the CLL objective function.
In this work, we use the bias and variance definitions of [7] together with

the repeated cross-validation bias-variance estimation method proposed by [8].
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The reason for performing bias/variance estimation is that it provides insights
into how the learning algorithm will perform with varying amount of data. We
expect low variance algorithms to have relatively low error for small data and
low bias algorithms to have relatively low error for large data [9].

The experiments are conducted on the datasets described in Table 1. There
are a total of 73 datasets, 40 datasets with less than 1000 instances, 21 datasets
with instances between 1000 and 10000, and 12 datasets with more than 10000
instances. The datasets with more than 10000 are shown in bold font in Table 1.

Table 1. Details of datasets (UCI Domains)

Domain Case Att Class Domain Case Att Class

Poker-hand 1175067 11 10 Annealing 898 39 6

Covertype 581012 55 7 Vehicle 846 19 4

Census-Income (KDD) 299285 40 2 PimaIndiansDiabetes 768 9 2

Localization 164860 7 3 BreastCancer (Wisconsin) 699 10 2

Connect-4Opening 67557 43 3 CreditScreening 690 16 2

Statlog (Shuttle) 58000 10 7 BalanceScale 625 5 3

Adult 48842 15 2 Syncon 600 61 6

LetterRecognition 20000 17 26 Chess 551 40 2

MAGICGammaTelescope 19020 11 2 Cylinder 540 40 2

Nursery 12960 9 5 Musk1 476 167 2

Sign 12546 9 3 HouseVotes84 435 17 2

PenDigits 10992 17 10 HorseColic 368 22 2

Thyroid 9169 30 20 Dermatology 366 35 6

Pioneer 9150 37 57 Ionosphere 351 35 2

Mushrooms 8124 23 2 LiverDisorders (Bupa) 345 7 2

Musk2 6598 167 2 PrimaryTumor 339 18 22

Satellite 6435 37 6 Haberman’sSurvival 306 4 2

OpticalDigits 5620 49 10 HeartDisease (Cleveland) 303 14 2

PageBlocksClassification 5473 11 5 Hungarian 294 14 2

Wall-following 5456 25 4 Audiology 226 70 24

Nettalk (Phoneme) 5438 8 52 New-Thyroid 215 6 3

Waveform-5000 5000 41 3 GlassIdentification 214 10 3

Spambase 4601 58 2 SonarClassification 208 61 2

Abalone 4177 9 3 AutoImports 205 26 7

Hypothyroid (Garavan) 3772 30 4 WineRecognition 178 14 3

Sick-euthyroid 3772 30 2 Hepatitis 155 20 2

King-rook-vs-king-pawn 3196 37 2 TeachingAssistantEvaluation 151 6 3

Splice-junctionGeneSequences 3190 62 3 IrisClassification 150 5 3

Segment 2310 20 7 Lymphography 148 19 4

CarEvaluation 1728 8 4 Echocardiogram 131 7 2

Volcanoes 1520 4 4 PromoterGeneSequences 106 58 2

Yeast 1484 9 10 Zoo 101 17 7

ContraceptiveMethodChoice 1473 10 3 PostoperativePatient 90 9 3

German 1000 21 2 LaborNegotiations 57 17 2

LED 1000 8 10 LungCancer 32 57 3

Vowel 990 14 11 Contact-lenses 24 5 3

Tic-Tac-ToeEndgame 958 10 2
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Each algorithm is tested on each dataset using 5 rounds of 2-fold cross valida-
tion. We report Win-Draw-Loss (W-D-L) results when comparing the 0–1 loss,
RMSE, bias and variance of two models. A two-tail binomial sign test is used
to determine the significance of the results. Results are considered significant if
p ≤ 0.05.

The datasets in Table 1 are divided into two categories. The first category
constitutes all the datasets. The category is denoted by All in the results. The
second category constitutes only datasets with more than 10000 instances. This
is denoted by Big in the results When comparing average results across All and
Big datasets, we normalize the results with respect to one of the comparative
technique and present the geometric mean.

Numeric attributes are discretized by using the Minimum Description Length
(MDL) discretization method [10]. A missing value is treated as a separate
attribute value and taken into account exactly like other values.

We employed L-BFGS quasi-Newton methods [11] for solving the
optimization2.

We used a Random Forest that is an ensemble of 100 decision trees [13].
We will denote a linear model optimized with the MSE objective function

with or without NB preconditioning as WANBIAC
MSE and ANN respectively.

4.1 MSE Vs. CLL

A win-draw-loss (W-D-L) comparison of bias, variance, 0–1 loss and RMSE of
WANBIAC

CLL and LR versus WANBIAC
MSE and ANN is given Table 2. It can

be seen that WANBIAC
MSE achieves significantly lower bias than WANBIAC

CLL,
whereas ANN has lower bias than LR but this difference does not achieve sta-
tistical significance. Both WANBIAC

MSE and ANN exhibit higher variance, but
this is statistically significant in the case of ANN vs. LR only. This suggests that
both WANBIAC

MSE and ANN are well suited for bigger datasets for which lower
bias is preferable [14]. This is also evident from Table 2 where WANBIAC

MSE

has significantly lower 0–1 loss than WANBIAC
CLL on Big datasets. Similarly,

the ANN results (with 9 wins, 1 draw and 2 losses), though not significantly
different, are better than LR.

In Fig. 1, we show the geometric average of the results. It can be seen that
WANBIAC

MSE and ANN are lower-bias and higher-variance models as compared
to WANBIAC

CLL and LR. The superior performance of WANBIAC
MSE, however,

comes at an extra cost. A comparison of the training and classification time of
WANBIAC

CLL and WANBIAC
MSE is shown in Fig. 1(e) and (f) respectively. It can

be seen that optimizing the MSE objective function, though low biased, is a
magnitude of order slower than optimizing the CLL objective function.

2 The original L-BFGS implementation of [12] from http://users.eecs.northwestern.
edu/∼nocedal/lbfgsb.html is used.

http://users.eecs.northwestern.edu/~nocedal/lbfgsb.html
http://users.eecs.northwestern.edu/~nocedal/lbfgsb.html
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Table 2. Win-Draw-Loss: WANBIAC
MSE vs. WANBIAC

CLL and ANN vs. LR. p is two-
tail binomial sign test. Results are significant if p ≤ 0.05.

WANBIAC
MSE vs. WANBIAC

CLL ANN vs. LR

W-D-L p W-D-L p

All datasets

Bias 45/7/20 0.002 38/5/28 0.276

Variance 19/6/47 <0.001 21/4/47 0.002

0–1 Loss 34/6/32 0.902 31/5/36 0.625

RMSE 29/4/39 0.275 31/3/38 0.470

Big datasets

0–1 Loss 10/1/1 0.011 9/1/2 0.065

RMSE 8/0/4 0.387 8/0/4 0.387

4.2 WANBIAC
MSE Vs. ANN

Now that we have established that optimizing the MSE for LR leads to a lower
bias model than that by CLL, in this section, we will compare WANBIAC

MSE and
ANN to see the effects of scaling and whether NB preconditioning is as effective
with the MSE as with the CLL objective function. We compare the scatter of
0–1 loss and RMSE values in Figs. 2 and 3 respectively. It can be seen that both
parameterizations lead to a similar scatter of 0–1 loss and RMSE. This suggests
the equivalence of two models (same model, different parameterizations).
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Fig. 1. An (geometric) average comparison of the 0–1 loss, RMSE, Bias and Variance

of WANBIAC
MSE and WANBIA-C on All and Big datasets.
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Fig. 2. Comparative scatter of 0–1 Loss of ANN and WANBIAC
MSE on All (Left) and

Big (Right) datasets.
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Fig. 3. Comparative scatter of RMSE of ANN and WANBIAC
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Big (Right) datasets.
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Fig. 5. Comparative scatter of number of iterations to convergence of ANN and

WANBIAC
MSE on All (Left) and Big (Right) datasets.

The training time and number of iterations to convergence for ANN and
WANBIAC

MSE is shown in Figs. 4 and 5 respectively. It can be seen that
WANBIAC

MSE greatly improves the training time of ANN. Note, the plots are on
the log scale. It can be seen that WANBIAC

MSE on some datasets is an order
of magnitude faster than ANN. Similarly, the number of iterations it takes
WANBIAC

MSE to converge are an order of magnitude less than for ANN.
Finally, let us have a look at the convergence plots of ANN and WANBIAC

MSE

in Fig. 6 on some sample datasets. The variation in mean-square-error is plot-
ted with varying number of iterations until convergence. It can be seen that
WANBIAC

MSE has a much better convergence profile than ANN. It is not only
converging in far fewer iterations but asymptoting far more quickly than ANN.
This is extremely desirable when learning from few passes through the data.

4.3 WANBIAC
MSE Vs. Random Forest

In Table 3, we compare the performance of WANBIAC
MSE with Random Forest. It

can be seen that though not significantly better, bias of WANBIAC
MSE is smaller

than that of Random Forest. The variance of RF is slightly lower than that
of WANBIAC

MSE. On bigger datasets, RF has lower error than WANBIAC
MSE

slightly more often than WANBIAC
MSE (winning on seven and losing on five

datasets). Note that none of the results in the table are significant. A comparison
of the training and classification time of WANBIAC

MSE and RF is shown in Fig. 7.
It can be seen that WANBIAC

MSE is an order of magnitude slower than RF on Big
datasets at training time but at classification time, it is many order of magnitude
faster than Random Forest.
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Table 3. Win-Draw-Loss: WANBIAC
MSE

vs. Random Forest. p is two-tail bino-
mial sign test. Results are significant if
p ≤ 0.05.

WANBIAC
MSE vs. RF100

W-D-L p

All Datasets

Bias 41/5/26 0.086

Variance 32/2/38 0.550

0–1 Loss 30/2/40 0.282

RMSE 27/0/45 0.044

Big Datasets

0-1 Loss 5/0/7 0.774

RMSE 5/0/7 0.774
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5 Conclusion

In this paper, we showed that a linear classifier optimizing MSE has lower bias
than vanilla LR optimizing CLL. We also showed that NB preconditioning, which
is very effective for LR, is equally effective for a linear model optimized with
MSE. We showed that NB preconditioning can speed-up convergence by many
orders of magnitude resulting in convergence in far fewer iterations. The low-bias
classification of a linear classifier optimized with MSE is competitive to state-
of-the-art Random Forest classifier with an added advantage of faster training
time. There are many interesting directions following from this work:

– This paper shows that NB preconditioning is effective for an ANN with no
hidden layers. It will be interesting to formulate similar preconditioning for
ANNs with hidden layers. WANBIAC

CLL provides scaling for the nodes in the
input layer, however, for nodes in the hidden layer, what weights one should
use is an open question that needs investigation.

– It will be interesting to run WANBIAC
MSE with MSE with stochastic gradient

descent (SGD) on very large datasets and compare the performance with
WANBIAC

CLL. We anticipate that WANBIAC
MSE will lead to lower error in

fewer iterations.
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Abstract. Frequent pattern mining has been widely studied in the past
decades and has been applied to many domains. In particular, numeri-
cal transaction databases, where not only the items but also the utility
associated with them are available in user transactions, are useful for real
applications. For example, customer mobile App traffic data collected by
mobile service providers contains such information. In this paper, we aim
to find frequent patterns that occupy a large portion of total utility of
the supporting transactions, to answer questions like “On which mobile
Apps do the customers spend most of their data traffic?” Towards this
goal, we define a measure called utility occupancy to measure the con-
tribution of a pattern within a transaction. The challenge of high utility
occupancy itemset discovering is the lack of monotone or anti-monotone
property. So we derive an upper bound for utility occupancy and design
an efficient mining algorithm called OCEAN based on a fast implemen-
tation of utility list. Evaluations on real world mobile App traffic data
and other three datasets show that OCEAN is efficient and effective in
finding frequent patterns with large utility occupancy.

Keywords: Frequent pattern mining · High utility mining · Utility
occupancy · Upper bound

1 Introduction

Frequent pattern mining has been extensively studied over decades and has been
applied to marketing, recommendation, and other important domains. In addi-
tion to the pattern frequency, other properties of patterns, such as utility [4]
and occupancy [14], have been studied to meet the needs of various applica-
tions and different types of transaction databases. Among them, transaction
databases with utility information, which reflects users’ interests to items, are
c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part I, LNAI 9651, pp. 354–365, 2016.
DOI: 10.1007/978-3-319-31753-3 29
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important to study. For example, mobile service providers may collect customer
mobile App usage profiles upon approval and use them to improve their service.
In this case, each customer mobile App traffic profile (daily or monthly) is a
transaction, with a mobile App as an item, and its traffic usage as its utility.
Another example can be found in browsing logs, where each website with its
browsing time can be viewed as an item and its utility.

In these databases, in order to better capture customer behaviors, e.g,
answering questions like “On which mobile Apps do the customers spend most
of their data traffic?”, it is useful to find frequent patterns that are supported
by a large portion of transactions and can explain individual customer behaviors
to a large extent. In particular, we want to find patterns that occupy a large
portion of total utility of the supporting transactions. Towards this goal, we
define a novel measure called utility occupancy to measure the utility contribu-
tion of a pattern within a transaction. Different from existing utility measures,
utility occupancy uses a relative utility ratio in each transaction to emphasize
the importance of a pattern to each customer.

In this paper, we propose a novel frequent pattern mining algorithm that
can find frequent patterns with high utility occupancy, and make the following
contributions:

1. A novel measure, called utility occupancy is proposed to describe the inter-
estingness of a frequent pattern for transactions with utility information.

2. An efficient mining algorithm, called OCEAN, is developed. OCEAN derive
the properties of utility occupancy upper bound to pruning the searching space
for high efficient pattern mining.

3. Extensive experiments were performed to evaluate the effectiveness and effi-
ciencies of OCEAN on various databases, including a real world mobile App
traffic usage dataset and three real world datasets that are often used to
evaluate high utility mining algorithms.

The rest of this paper is organized as follows. Section 2 discusses some of
the related work. Section 3 defines utility occupancy and presents the prob-
lem formulation. Section 4 derives an upper bound and presents the details of
OCEAN. Section 5 provides the detailed experimental evaluation of OCEAN.
Finally, Sect. 6 provides some concluding remarks.

2 Related Work

In addition to the pattern frequency, other properties and interestingness mea-
sures of frequent patterns and association rules have been studied in the litera-
ture [13], to fulfill the need for patterns with good quality, e.g, closed frequent
patterns [7], maximal frequent patterns [3,15], patterns with constraints [6],
and recently, patterns with high occupancy [14], which means the pattern that
occupies a large portion of the transactions it appears in. The occupancy of an
itemset in a transaction was defined as the ratio between the number of items
in the itemset and the number of items in the transaction, and the occupancy
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of an itemset in a transaction database was defined as the harmonic average
of its occupancy values in all supporting transactions in [14]. According to [14],
patterns with high occupancy were more effective in webpage print region recom-
mendation than maximal frequent patterns. Our work is an extension of itemset
occupancy in case of transaction databases with utility information. Since we are
dealing with a different type of data, the formulation and derivation of the upper
bound for utility occupancy is tight to the numerical nature of data closely.

Another related problem to our work, which is also an emerging and impor-
tant topic in marketing, is high utility itemset mining [2,4,5,10,11]. In this
problem, each transaction contains the quantity of a set of items, and an item
profit (utility) table is also available. The utility of an item in a transaction is
defined as the multiplication of its profit and its quantity in the transaction, and
the utility of an itemset is defined as the summation of the utilities of the items
in the itemset. High utility itemset mining is to find itemsets with high utility or
other utility related objectives defined by users. Recent works have been focusing
on discussions on different utility functions [8,9], and efficient mining algorithms
[2,5,10,11]. For example, HUI-miner [11] and FHM [5] can discover high util-
ity itemsets without candidate generation. Unlike other existing absolute utility
measures, the proposed measure utility occupancy is a relative measure, which
emphasizes whether a certain set of items is important for individual users.

3 Problem Formulation

Suppose a transaction database contains a set of transactions Γ . A transac-
tion t containing k items in Γ is in the form of {(item1, util1), (item2, util2),
· · · , (itemk, utilk)}, where itemi is the identification of the ith item in t and
utili is a numerical value to represent its utility in t. When a utility table is
available, such as shown in Table 1(a), utili is usually calculated as follows.

Definition 1. The utility of item i in transaction t, denoted as Ut(i), is the
product of the external utility of item i given in a utility table and the count of
item i in t. For example, UT2(c) = 4 × 3 = 12 in Table 1.

Table 1. Database

(a) Utility table

Item Utility

a 1
b 1
c 4
d 5
e 2
f 3
g 3

(b) Transaction table (item count)

Tid T1 T2 T3 T4 T5 T6 T7 T8

a 1 9 1 1
b 1 1 8 2
c 1 3 2 1 1
d 2 1 2
e 1 1 1 3
f 1 1 3 3
g 2 1 1 1

U(t) 8 42 8 4 32 7 18 13
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We say an itemset W is supported by a transaction t, if and only if, for each
itemi in W , itemi is also in t. We denote the set of supporting transactions of
W as ΓW . The support ratio of W , denoted as θ(W ), is calculated as |ΓW |

|Γ | .
The total utility of a transaction t is defined as the summation of the utilities

of all items in t, i.e, U(t) =
∑

itemi∈t Ut(itemi). For example, the utilities of all
transactions in Table 1(b) are shown in the last row. The utility of an itemset W
in a transaction t, denoted as Ut(W ), is defined as the summation of the utilities
of the items present in both t and W , i.e, Ut(W ) =

∑
itemi∈t∩W Ut(itemi).

For example, let W = {f, g}, UT2(W ) = 9. The transaction-y utilities of an
itemset W in a database Γ , denoted as TWU(W ), is defined as the summation
of the utilities of W ’s supporting transactions, i.e, TWU(W ) =

∑
t∈ΓW

U(t).
For example, let W = {f, g}, TWU(W ) = U(T2) + U(T5) + U(T7) = 42 + 32 +
18 = 92.

Now we are ready to define utility occupancy for an itemset W .

Definition 2. The utility occupancy of an itemset W in its supporting transac-
tion t is defined as

φt(W ) =
Ut(W )
U(t)

=

∑
itemi∈W,itemi∈t utili∑

itemi∈t utili
.

The utility occupancy of W in a database is defined as the arithmetic average of
the utility occupancy values of W in all its supporting transactions,

φ(W ) =

∑
t∈ΓW

Ut(W )
U(t)

|ΓW |
For example, let W = {f, g}, φT2(W ) = 9/42 and φ(W ) = (φT2(W ) +

φT5(W ) + φT7(W ))/3 = (9/42 + 6/32 + 12/18)/3 = 0.355.

Definition 3. Given a minimum support threshold α and a minimum utility
occupancy threshold β, the problem of high utility occupancy itemset min-
ing is to find all itemsets whose support ratio is no less than α and utility
occupancy is no less than β.

Note that the minimum support threshold must be specified, otherwise any
transaction itself is a high utility occupancy itemset with a value of 1. Clearly,
the utility occupancy measure does not hold downward closure property. In the
example of Table 1, φ({f, g}) = 0.355, φ({d, g}) = (16/42 + 13/32 + 8/8)/3 =
0.596, and φ({d, f, g}) = (19/42 + 16/32)/2 = 0.476, which means when an
itemset is extended, its utility occupancy can either increase or decrease.

Now we compare high utility occupancy itemsets with high utility itemsets
[4] and high occupancy itemsets [14] to have a better understanding of the nature
of high utility occupancy itemsets. If we view each transaction as a usage pattern
of a user, high utility occupancy itemset mining selects the itemsets that can
explain the usage of a group of users to a large extent, whereas high utility item-
sets simply represent the ones with highest overall utilities across the database.
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For example, compare itemset {a, b} with itemset {f, g} in our example. Both of
them appear in three supporting transactions (T1, T4, and T6 for {a, b}, T2, T5,
and T7 for {f, g}). {f, g} has much larger utility (U({f, g}) = 9 + 6 + 12 = 27)
than {a, b} (U({a, b}) = 2 + 2 + 3 = 7), however, the utility occupancy of
{a, b} (φ({a, b}) = (2/8 + 2/4 + 3/7)/3 = 0.392) is higher than that of {f, g}
(φ({f, g}) = 0.355). Our proposed high utility occupancy itemset mining is an
extension of the high occupancy itemset mining problem proposed in [14], which
defines occupancy using the cardinality of an itemset instead of utility. For exam-
ple, in transaction T6 of our example, the occupancy of {a, b} is higher than that
of {c} in terms of cardinality, however, φT6({c}) = 4/7 > φT6({a, b}) = 3/7.

4 High Utility Occupancy Itemset Mining

In this section, we first derive an upper bound for utility occupancy, and then
describe an efficient algorithm OCEAN to find qualified patterns with the help
of the derived upper bound.

4.1 Upper Bound of Utility Occupancy

The process of itemset mining can be viewed as an exploration of a set enu-
meration tree [12], whose root node is an empty set, and each node represents
an itemset and its children are extended itemsets from it by a certain order.
The order can be lexicographic order, or transaction-weighted utility ascending
order, which is a common choice in many high utility itemset mining algorithms.
In our example, according to the values of transaction-weighted utility, we have
b ≺ a ≺ e ≺ d ≺ g ≺ c ≺ f , and we use this order for the rest of the paper. Given
a subtree rooted at itemset X, the set of all possible items that can be added
to form itemsets in this subtree is called the extension set E. For example, let
us consider the subtree rooted at g for our example in Fig. 1, and E = {c, f} for
the node g.

Fig. 1. The subtree rooted at g

Given a subtree rooted at X, we need to derive an upper bound φ̂() of util-
ity occupancy for all possible qualified patterns residing in the subtree without
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actually generating these patterns. If φ̂(X) is less than the minimum utility occu-
pancy threshold, we can safely discard this subtree from further consideration.

Lemma 1. Given a subtree rooted at X, its supporting transaction set ΓX and
its extension set E, for any possible qualified itemset W in the subtree, we have

φ(W ) ≤
∑

t∈ΓW

Ut(X)+Ut(E)
U(t)

|ΓW | .

Proof. Since W − X ⊂ E, we have Ut(W − X) ≤ Ut(E). Therefore,

φ(W ) =

∑
t∈ΓW

Ut(W )
U(t)

|ΓW | =

∑
t∈ΓW

Ut(X)+Ut(W−X)
U(t)

|ΓW | ≤
∑

t∈ΓW

Ut(X)+Ut(E)
U(t)

|ΓW | .

�

Theorem 1. Given the minimum support ratio α, a subtree rooted at X, its
supporting transaction set ΓX and extension set E, for any possible qualified

itemset W in the subtree, φ̂(W ) =
∑

topα|Γ |,t∈ΓX
(

Ut(X)+Ut(E)
U(t) )↓

α|Γ | ≥ φ(W ).

Proof. Since ΓW is unknown, we calcultate Ut(X)+Ut(E)
U(t) for all transactions in

ΓX , and sort this vector in descending order, denoted as (Ut(X)+Ut(E)
U(t) )↓. The

average of top |ΓW | values of this vector is an upper bound of
∑

t∈ΓW

Ut(X)+Ut(E)
U(t)

|ΓW | .
Furthermore, since a qualified pattern should be supported by at least α|Γ |
transactions, we have α|Γ | ≤ |ΓW |. Put all together, we have

φ(W ) ≤
∑

t∈ΓW

Ut(X)+Ut(E)
U(t)

|ΓW | ≤
∑

top|ΓW |,t∈ΓX
(Ut(X)+Ut(E)

U(t) )↓

|ΓW |

≤
∑

topα|Γ |,t∈ΓX
(Ut(X)+Ut(E)

U(t) )↓

α|Γ | . �

For example, the sorted Ut(X)+Ut(E)
U(t) vectors are shown for each node in

Fig. 1. Suppose the minimum support ratio is 0.25. We can average the top
two values from the sorted vectors to calculate φ̂() for each node. To be specific,
φ̂({g}) = (12/18 + 21/42)/2 = 0.584. φ̂({g, c}) = (18/42 + 11/32)/2 = 0.387.
If the minimum utility occupancy ratio is 0.5, we can safely prune the subtree
rooted at {g, c}.

4.2 Design and Implementation of OCEAN

We design and implement our proposed high utility occupancy mining algorithm
based on an important data structure utility list, which was used in the state-
of-the-art high utility itemset mining algorithms: HUI-miner [11] and FHM [5].
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Algorithm 1. UpperBound
Input: PX : the root itemset

minSupp : the minimum support threshold
Output: the upper bound of utility occupancy for the subtree rooted at PX

1: Derive Ut(X)+Ut(E)
U(t)

from PX .UL as V ;

2: Vtop ← the largest minSupp × |Γ | values in V ;
3: sum ← 0;
4: for u ← 1 to minSupp × |Γ | do
5: sum ← sum + Vtop(u)
6: end for
7: occu ← sum/(minSupp × |Γ |);
8: return occu

For any given itemset X and its extension set E, its utility list is a list of
utility records in its supporting transactions. For each supporting transaction t,
the utility list contains a three-tuple record, i.e, (transaction id, Ut(X), Ut(E)).
Therefore, the itemset data structure in our algorithms has two fields, itemset
for the set of items, and UL for its utility list. In both HUI-miner [11] and FHM
[5], the direct summation of Ut(X) and Ut(E) for each itemset was used for
utiltiy prunning, whereas in OCEAN the upper bound of occupancy is more
complicated to calculate, which is given in Algorithm 1. Note that we do not
have to sort the entire Ut(X)+Ut(E)

U(t) vector to get the top minSupp × |Γ | values.
The utility records are sorted according to transaction id in all utility lists,

so that the merge of two utility lists can be done efficiently. Given two itemsets
PX and PY , suppose PX .itemset = X, PY .itemset = Y , and X ∩ Y = ∅,
the itemset X ∪ Y and its utility list can be easily constructed by scanning
PX .UL and PY .UL simultaneously and adding a utility record for each common
transaction t into PXY .UL. We name this procedure as merge(PX .UL, PY .UL)
and omitted its detailed implementation. In addition, Size(PX .UL) returns the
number of transaction records in PX .UL.

The main idea of our proposed algorithm OCEAN is to perform a depth
first search on the set enumeration tree of a database. In Algorithm2, for each
item i, we create an itemset Ii such that Ii.itemset = {i} and Ii.UL contains
its utility list. I is a set of such itemsets for all items and is sorted in ascend-
ing order according to the transaction-weighted utility of each item. Such order
is also used in the depth first search, which is implemented in Algorithm3. In
Algorithm 3, qualified itemsets are reported (in line 2 and 3) and node explo-
rations are coordinated by determining whether the node should be pruned (in
line 5 and 6) and preparing the set of extension itemsets of the node (in line 8
to 12) for its exploration (in line 13). To be specific, given an itemset X and its
extension set E, for each item y ∈ E, X ∪ y forms an extension itemset of X.
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Algorithm 2. OCEAN
Input:

D: a transaction database
minOccu : the minimum utility occupancy threshold
minSupp : the minimum support threshold

Output:
The set of itemsets with utility occupancy ≥ minOccu and support ≥ minSupp.

1: Scan D to build the utility list of each item i to form I and calculate transaction
utilities and item utilities.

2: sort I in ascending order according to the transaction-weighted utility of each
item.

3: Prune(∅, I, minOccu, minSupp)

Algorithm 3. Prune
Input: P : the itemset

ExP : the set of extension itemsets of P
minOccu : the minimum utility occupancy threshold
minSupp : the minimum support threshold

Output:
The set of itemsets with utility occupancy ≥ minOccu and support ≥ minSupp.

1: for each itemset PX ∈ ExP do
2: if Occu(PX .UL) ≥ minOccu ∧ Size(PX .UL) ≥ minSupp × |Γ | then
3: Output Px

4: end if
5: maxOccu ← UpperBound(PX)
6: if maxOccu ≥ minOccu ∧ Size(PX .UL) ≥ minSupp × |Γ | then
7: ExPX ← null;
8: for each item y such that y � X do
9: PXy.itemset ← PX .itemset ∪ {y}

10: PXy.UL ← merge(PX .UL, Iy.UL)
11: ExPX ← ExPX ∪ PXy

12: end for
13: Prune(PX , ExPX , minOccu, minSupp)
14: end if
15: end for

5 Experiment

We evaluated the effectiveness and efficiency of the proposed algorithm OCEAN
using four real world datasets. In addition to OCEAN, we also implemented
a variation: OCEAN without minOccu pruning as our baseline. All algorithms
were implemented in JAVA. Experiments were performed on a PC with a 3.4 Hz
Intel i7 processor and 8 GB memory running Windows7 OS.

The four datasets used in our experiments represent various applications,
itemset distributions, and other characteristics, as shown in Table 2 includ-
ing the number of transactions, the number of distinct items, the average
length of transactions, and the number of items in the longest transaction(s).
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Table 2. Characteristics of datasets

Database Trans Items Avelen Maxlen Type

MobileApp 109774 14 3.82 13 dense

Mushroom 8124 119 23 23 dense

Kosarak 990002 41270 8.1 2498 sparse

BMS 59602 497 2.5 267 sparse

MobileApp was obtained from a mobile service provider, with each transac-
tion recording the traffic data that a customer spends on various mobile Apps.
Mushroom, BMS, and Kosarak are benchmark datasets for high utility item-
set mining (downloaded from FIMI Repository [1]). Mushroom includes descrip-
tions of hypothetical samples corresponding to 23 species of gilled mushrooms,
each transaction contains 23 items. BMS is a real-life sparse click-stream data
from a webstore. Kosarak is a real-life sparse click-stream data of a hungarian
on-line news portal. Unlike MobileApp, the other three datasets provide transac-
tions without utility information. So we generated the external utilities for items
between 1 and 10 by using a log-normal distribution and randomly generated
item counts between 1 and 5 as in [5,11].

5.1 High Utility Occupancy Itemsets Vs. High Utility Itemsets

We used MobileApp to illustrate the effectiveness of high utility occupancy item-
sets for identifying the set of mobile Apps that users are interested in. Towards
this goal, we used OCEAN and FHM to generate 10 itemsets with highest util-
ity occupancy values and highest utilities, respectively. The results are shown
in Table 3. The itemsets found by OCEAN are more favorable than those found
by FHM for two reasons. First, high utility occupancy itemsets indicate high
interests of users in these itemsets. For example, itemset {7,9,14}, as shown in
Table 3, has a relatively low utility of 18.1 %, but it has a high utility occupancy
of 77.4 %, which means customers who use mobile Apps {7,9,14} spend 77.4 %
of their traffic quota on these applications on average. Second, the size of item-
sets found by OCEAN is larger than that by FHM in general, because larger
itemsets lead to a decrease in support ratio which usually harms utility values
as well. The diversity of found mobile Apps groups with high occupancy is more
favorable for the task of mobile App recommendation or promotion.

5.2 Efficiency of OCEAN

We evaluated the efficiency of OCEAN on BMS, Kosarak, and Mushroom
datasets. We compared the running time and the number of searched itemsets
for OCEAN and OCEAN without minOccu pruning, shorted as OCEAN no, to
see how effective our derived upperbound is. The results are shown in Fig. 2.
We fixed minOccu and varied minSupp in Fig. 2(a), (b) and (c), and we fixed
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Table 3. Top 10 results of MobileApp

(a) OCEAN

Pattern Occu(%) Util(%) Supp(%)

{7,9,14} 77.4 18.1 21.8
{2,9,10} 74.5 16.4 14.1
{7,10,14} 73.7 13.3 16.1
{7,9,10} 73.6 21.4 19.0
{7,14} 72.7 35.2 65.7
{9,14} 71.6 19.3 23.1
{9,10} 71.4 25.3 22.6
{10,14} 66.8 14.0 17.6
{8,9} 65.0 14.2 12.8
{14} 64.4 35.7 68.9

(b) FHM

Pattern Occu(%) Util(%) Supp(%)

{14} 64.4 35.7 68.9
{7,14} 72.7 35.2 65.7
{9} 42.4 25.4 44.3
{9,10} 71.4 25.3 22.6
{7,9} 45.6 21.8 38.1
{7,9,10} 73.6 21.4 19.0
{9,14} 71.6 19.3 23.1
{10} 43.8 19.1 38.1
{7} 77.4 18.8 41.4
{7,9,14} 77.4 18.1 21.8
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(f) Mushroom

Fig. 2. Running time and number of searched itemsets by OCEAN and OCEAN no

minSupp and varied minOccu in Fig. 2(d), (e) and (f). Clearly, with increas-
ing minOccu, OCEAN pruned more itemsets in addition and run in less time.
In general, the running time and the number of searched itemsets of OCEAN
decreased as minOccu and minSupp increased. For sparse datasets, small min-
Supp and minOccu can be effective too. For example, there are 41270 distinct
items in Kosarak. With minSupp and minOccu being 0.14 %, 10 % respectively,
OCEAN actually searched 12290355 itemsets, whereas there are 241270 possible
itemsets in total. We can see the trend more clearly in Fig. 3, in which we mea-
sured the running time of OCEAN with varying minSupp and minOccu. The
higher the minSupp or minOccu is, the fewer the number of searched itemsets
is and thus the less running time is.
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(a) BMS (b) Kosarak (c) Mushroom

Fig. 3. Running time by OCEAN

We also studied the memory consumption of OCEAN. We found that for all
databases we used, the memory consumption is stable. For example, for Mush-
room, the consumption is almost 161 MB for all minSupp and minOccu values.
We omitted the detailed memory consumption results due to space constraint.
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Fig. 4. Running time by OCEAN with various item orders on BMS

The efficiency of OCEAN is manifestly influenced by the processing order
of items. We recorded the running time of OCEAN using TWU (transaction-
weighted utility) ascending order, TWU descending order, item occupancy
ascending order, item occupancy descending order, and lexicographic order on
BMS. Figure 4 shows the experimental results. According to Fig. 4, the TWU
ascending order made a best performance as it can reduce the number of gener-
ated utility lists [11], thus OCEAN processes items by following this order. Note
that the curve of lexicographic order is not shown in Fig. 4 since no results were
generated under 1 × 105 s.

6 Conclusion

In this paper, we propose utility occupancy as a measure for interestingness of
itemsets with utility information.The proposed measure can lead to useful item-
sets that contribute a large portion of total utility for each individual transaction
representing user interests or user habit. We derive an upper bound for utility
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occupancy from an itemset for all possible extension itemsets from it, and design
an efficient mining algorithm using this upper bound based on a utility list data
structure and a depth first search procedure. Experimental evaluations on real
world data show that the proposed mining algorithm can find such patterns
effectively and efficiently.
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Abstract. In this work, we exploit the emotional consistency between
label information obtained by label propagation and distant supervision
to leverage tweet-level sentiment analysis. Existing methods are either
relied heavily on sufficient labeled data or sentiment lexicon resources,
which are domain-specific in social media. We propose a three-phase
approach to build a semi-supervised sentiment classifier for social media
data. Our framework leverages on both labeled, unlabeled tweets and
social relation graph data. First, we use label propagation to learn prop-
agated labels for unlabeled tweets and partition all tweets into two clus-
ters. Our label propagation is inspired by social science about emotional
behaviors of connected users, who tend to hold similar opinions. Sec-
ond, using sentiment lexicon resources, we use an unsupervised method
to obtain noisy labels, which is utilized to train a distant supervi-
sion classifier. Next, we determine the relevance of each classifier to
the unlabeled tweets, using the label consistency between the cluster-
ing given by the propagated tweet labels and the clustering given by
these trained sentiment classifiers. Third, we trade-off between using
relevance-weighted trained classifiers and the labeled tweet data. Our
method outperforms numerous baselines and a social networked senti-
ment classification method on two real-world Twitter datasets.

Keywords: Sentiment analysis · Opinion mining · Twitter · Social
networks · Semi-supervised classification · Distant supervision

1 Introduction

With the explosion of Web 2.0 services, popular social media mediums like Twit-
ter enable user to easily express and share their own opinion on various kinds
of topics [16]. These opinions often serve as helpful advice and influence fol-
lowing users’ decision making. For instance, when a customer wants to buy a
laptop on Amazon he/she will usually looks for reviews and comments written
by previous customers [13]. Sentiment analysis can also provide organizations or
company with the ability to listen customer’s voice on social media forums in
timely manner and act instantly. As such, advertisers, companies and politicians
are seeking ways to make sense user’s sentiments through social media on their
product, service and policy quality.
c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part I, LNAI 9651, pp. 369–381, 2016.
DOI: 10.1007/978-3-319-31753-3 30
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Sentiment analysis for social media platforms like Twitter and MySpace poses
several challenges for researchers [2,25]. In the past, sentiment classification has
been extensively investigated for user reviews [12,13] with good performance.
However, the social text data in blog posts is different substantially from the
traditional product review data. The social text data often contains short and
noisy messages [1]. It also contains lots of emotional abbreviations, emoticons
and has no syntactic structure. Because of highly discourse variations, sentiment
data in social media often lacks of sufficient labeled data. Thus, it is not easy to
automatically identify the sentiment meanings of these messages, though it can
be understood conveniently in human communications.

Besides textual content, social media platforms often provide additional infor-
mation about user-user relationships in online social networks. In particular, rela-
tions between messages can be represented via a matrix of between users and
messages and a matrix of between user interactions. Blog messages is potentially
networked through user connections. This is a distinct feature because it may
contain useful structural or community information that are not able to explore
from purely text-based methods for sentiment analysis. Social networks is useful
for two reasons. Firstly, social relation graph information is now more easily to
obtain in social media platforms’ API. Secondly, according to the principle of
homophily [11,17], if two users hold a personal relationship, they may be tend
to hold the same opinions about some affairs.

However, these popular sentiment analysis methods require sufficient texts
labeled with polarity, thereby, not suitable for social media data. Currently,
there are two ways to overcome this issue. The first way is supervised method
[14] to model message similarity by exploiting user relationship. The second way
is reducing the dependence on labeled texts by using either distant supervision
on noisy labels [9] or semi-supervised label propagation on unlabeled tweets upon
social relations [24]. To the best of our awareness, there has been no effort on
bringing together several of the above ideas for social media sentiment analysis.

This paper proposes a semi-supervised approach for sentiment analysis in
social media by leverage emotional consistency on label information obtained by
label propagation and distant supervision. In particular, it takes the advantage
of label propagation based on both textual and social relation information and
the emotional consistency of propagated labels and distant supervision labels in
tackling the insufficient labels issue and noisy nature of the tweets. We propose a
unified three-phase framework for semi-supervised sentiment classification. Our
framework leverages on both labeled, unlabeled tweets, social graph and sen-
timent lexicons. First, we use label propagation to learn propagated labels for
unlabeled tweets and partition all tweets into different clusters. Second, we train
a distant supervision classifier based on sentiment lexicon resources. We also
train a linear classification model based on training dataset. Next, we determine
the relevance of each classifier to the unlabeled tweet, using the label consistency
between the clustering given by the propagated tweet labels and the clustering
given by these trained sentiment classifiers. Third, we train the final classifier by
trading-off between using relevance-weighted trained classifiers and the labeled
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tweet data. Finally, we conduct empirical experiments to evaluate the effective-
ness of the proposed model. We compare the proposed three-phase framework
with state-of-the-art classification baselines for the sentiment analysis task, and
we find that our method outperforms the baselines.

2 Related Work

Sentiment analysis has been studied extensively on various kinds of text data
such as movie and product reviews [12,21]. The basic method is to build a hand-
crafted sentiment features, which can effectively express the sentiment of the
texts, and apply machine learning. With the growing popularity of social media
recently, sentiment analysis for user generated contents has attracted lots of
attention from researchers [2,4].

Existing methods cannot effectively exploits noisy, short texts in microblog-
ging and make use of the social relation information of micro-blogging [4]. Similar
to traditional methods, there are some ongoing efforts on sentiment analysis for
the micro-blogging data. Alec et al. [9] used distant supervision with noisy labels
obtained from emoticons for Twitter sentiment analysis. Barbosa and Feng [2]
analyze the linguistically features of tweets as well as the meta-data informa-
tion of words for Twitter sentiment. However, the above two methods have not
exploited the social relation information.

The current approaches for sentiment analysis on social media often rely on
pre-defined sentiment lexicons or vocabularies [15,18], which are highly domain-
dependent. Standard supervised classification methods improve the situation
somewhat [20,21], by training a text similarity model purely based on the con-
tent. However, these require sufficient text labeled with polarity. To overcome
this issue, some efforts have been made to explore other external information such
as emoticons [9] and especially social relation information [10,27], on sentiment
analysis. Distant supervision [9] based on noisy labels can reduce dependence on
labeled texts with promising performance. In addition, label propagation [24] is
develop to prorogate sentiment of labeled tweets to unlabeled tweets upon social
relations. In [14], a supervised method based on l1-norm least squares and Lapla-
cian graph regularization have also been proposed to model message similarity
by exploiting user relationship. The basis idea of above two algorithms is deter-
mining the sentiment of a tweet posted by a user based on both of sentiments
of its tweets and its neighbor’s tweets collectively upon social relation graph.

Our approach unifies the advantages of the above ideas. It differs from [24]
by incorporating both of textual and social graph. It leverages the unlabeled
data as compared with [14]. It goes beyond than merely use noisy labels [9] by
considering the relevancy.

3 Problem Statement

Given a corpus D = {t1, t2, ..., tn} of n tweets. Let L = {L1, L2, ..., Lk} be
sentiment lexicon resources, where each of them is a list of sentiment words
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corresponding to their sentiment polarity, e.g., positive or negative. We introduce
a feature extraction χ that maps a tweet t to its feature vector x. For each
message in the corpus ti ∈ D, ti = (xi, yi) ∈ R

m+c are tweet features and
corresponding sentiment label, where xi ∈ R

m is the tweet feature vector and
yi ∈ R

c is the sentiment label vector. The sentiment dataset has a some labeled
data Dl = {(xi, yi)}nl

i=1 and plenty of unlabeled data Du = {(xi)}nl+nu
nl+1 , where

nl is the number of labeled instances, nu is the number of unlabeled instances, xi

is the feature vector, yi is the corresponding label (if available). Let n = nl +nu.
Dl = [X,Y ], where X ∈ R

n×m is the feature matrix, Y ∈ R
n×c is the label

matrix, m is the number of tweet features, n is the number of tweets and c is
number of sentiment labels. Let u = {u1, u2, ..., ud} be the user set. Let U ∈
R

d×n be a user-tweet matrix, where Uij = 1 denotes that tweet tj is created by
user ui. Let F ∈ R

d×d be the user-user matrix, where Fij = 1 indicates that user
ui is connected by user uj .

Learning a sentiment classifier can then be abstracted to finding a function p
such that p(χ(t)) = p(x) = y. We define the problem sentiment analysis in social
media as : Given a corpus of tweets D = Dl ∩ Du with feature matrix X and
labels Y as well as the user-tweet relation U and user-user relation F, it aims
to learn a sentiment classifier p(χ(t)) = p(x) = y in order to predict sentiment
polarity for new tweets t.

4 Proposed Approach

In this section, we describe our three-phase approach, which comprises of a label
propagation, emotional clustering consistency and combined classifier learning
phases.

Our key idea is to exploit the concept of emotional consistency between label
information obtained by label propagation and distant supervision. The propa-
gated labels are obtained by spectral-based label propagation. The distant super-
vision labels are obtained by a sentiment classifier trained based on lexicon-based
unsupervised sentiment predictions, also known as noisy labels. There are two
main challenges in our approach. Firstly, it is not easy to effectively propagate
labels to unlabeled data based on both of textual content and social relation
graph. Secondly, how to effectively leverage the sentiment prediction perfor-
mance based on the distant supervision labels, a.k.a noisy labels. Although the
ground-truth labels and noisy labels come from the same dataset, they proba-
bly have different marginal distributions on the sentiment classess. If we merely
combine ground-truth labels and noisy labels to train a sentiment classifier, this
can produce a negative transfer phenomenon [22], where using knowledge from
noisy labels degrades the performance on the ground-truth labels.

To tackle these challenges, we propose a three-phase Robust Semi-supervised
Sentiment Propagation (RSSP) framework. Our method is inspired by [8] for
multi-class case. In the first phase, based on the social graph and textual con-
tent, we use label propagation to learn noisy labels for unlabeled tweets and
partition all tweets into different regions. In the second phase, we train two
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different sentiment classifiers: one linear classifier based on ground-truth labels
and one distant supervision classifier based on noisy labels. Next, we determine
the relevance of each classifier to a region, using the label consistency between
the clustering given by the propagated labels and the clustering given by these
trained classifiers. By using unlabeled data, we alleviate the lack of labeled sam-
ples for rarer classes due to imbalanced distributions in labels.

The third phase uses the relevances determined the second phase to produce
a reference predictor by weighing the pre-trained classifiers for each unlabeled
sample separately. The intention is to alleviate the effect of mismatched distri-
butions. The final classifier in the unlabeled data is trained on the labeled data
while taking reference from the reference predictions on the unlabeled data.
This ensures reasonable predictive performance even when all the noisy labels
are irrelevant and augments the rarer classes with examples in the unlabeled
data.

4.1 Phase 1: Label Propagation

To apply this idea to sentiment classification, we need to (i) partition the entire
data input space into clusters/regions and (ii) assign preliminary labels for all
the examples. We approximate the our data input space with all the samples
from Dl and Du. With data from both the labeled and unlabeled data sets, we
apply transductive inference or semi-supervised learning [28] to achieve both (i)
and (ii). By augmenting with unlabeled data Du, we aim to alleviate the effect
of imbalanced relation distribution, which causes a lack of labeled samples for
rarer classes in a small set of labeled data. Briefly, the known labels in Dl are
propagated to the entire target input space by encouraging label smoothness in
neighborhoods. The next three paragraphs give more details.

At present, we assume a similarity matrix W , where Wij is the similarity
between the ith and the jth input samples in Dl ∪ Du. Matrix W then determines
the neighborhoods and is defined as follows:

W = WSim + 0.5WSam + 0.5WSoc

where WSim
ij = Sim(ti, tj) denotes the pairwise kernel similarity based on textual

contents of ti and tj . Here, the similarity matrix WSim uses the Gaussian kernel
K(x, x′) = exp(‖x − x′‖2/2σ2), which is based on textual features. WSam =
UTU, WSam

ij = 1 indicates whether ti and tj as posted by the same user.
WSoc = UTFU, WSoc

ij = 1 indicates whether the authors of ti and tj are
connected friends in the social graph. Let Λ be a diagonal matrix where the
(i, i)th entry is the sum of the ith row of W . Let us also encode the labeled
data Dl in an n-by-c matrix H, such that Hij = 1 if instance i is labeled with
sentiment class j in Dl, and Hij = 0 otherwise. Our objective is the c-dimensional
sentiment-class indicator vector Fi for the ith instance, for every sample. This
is achieved via a regularization framework [28]:

min
{Fi}n

i=1

(
n∑

i,j=1

Wij

∥∥∥ Fi√
Λii

− Fj√
Λjj

∥∥∥2

+ μ

n∑
i=1

‖Fi − Hi‖2
)

(1)
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This trades off two criteria: the first term encourages nearby samples (under
distance metric W ) to have the same labels, while the second encourages samples
to take their labels from the labeled data. The closed-form solution is

F ∗ = (I − (1 + μ)−1L)−1H, (2)

where L = Λ−1/2WΛ−1/2; and the n-by-c matrix F ∗ is the concatenation of the
Fis.

Using vector F ∗
i , we now assign preliminary labels to the samples. For a

sample i, we transform F ∗
i into probabilities p1i , p

2
i , . . . , p

c
i using softmax. Our

propagated label �i for sample i is then

�i = arg max
j

pj
i (3)

Next, we partition the data in Dl ∪ Du into c regions, R1, R2, . . . , Rc, corre-
sponding to the c sentiment class labels. The intuition is to use the true label in
Dl when available, or otherwise resort to using the propagated label. That is,

xi ∈
{

Ryi
if xi ∈ Dl,

R�i if xi ∈ Du.

4.2 Phase 2: Emotional Clustering Consistency

In this section, we first use the lexicon-ratio method for sentiment analysis
[19,26] to build three different sentiment predictors base three different lexicons
resources. The three sentiment lexicon resources include: (1) MPQA Opinion
Corpus1 for daily sentiment words; (2) Twitter sentiment words2; and (3) pop-
ular Twitter emoticons3. Due to this unsupervised setting, logistic regression
classifier will be used for tweets, which does not have any sentiment words. We
then combine these three sentiment predictors to a final unsupervised predictor
based on majority voting, which outputs noisy labels for unlabeled tweets. Using
both ground-truth and noisy labels, we train a distant supervision classifier [9].
We also train a logistic regression classifier based on label data.

We use the concept of clustering consistency to determine the relevance of
a trained classifier to particular regions in the unlabeled input space. Figure 1
illustrates this. There, both enclosing circles in the left and right figures denote
the same input space of the target domain. There are four disjoint regions within
the input space, located at the left, right, top and bottom of the space. There
are two classes of labels: asterisk (∗) for positive sentiment and circle (◦) for
negative sentiment.

The labels in the left figure are given by a preliminary predictor in the original
data using label propagation, while the labels in the right figure are given by a
1 http://mpqa.cs.pitt.edu/corpora/mpqa corpus/.
2 http://saifmohammad.com/WebPages/lexicons.html.
3 http://www.datagenetics.com/blog/october52012/index.html.

http://mpqa.cs.pitt.edu/corpora/mpqa_corpus/
http://saifmohammad.com/WebPages/lexicons.html
http://www.datagenetics.com/blog/october52012/index.html
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Original input space with transductive
learning using labeled and unlabeled data.

Original input space with labels from the a
predictor trained on the noisy labels.

Fig. 1. Clustering consistency is used to determine the relevance of a trained classifier
to a region in the original input space. The bottom and right regions are more relevant
than the top and left regions. See text for explanation.

predictor trained on the noisy labeled data. Comparing the figures, we see the
preliminary predictor and noisy labeled predictor are consistent for the bottom
and right regions, but are inconsistent for the top and left regions. This suggests
that the predictor trained on noisy labels is very relevant for the bottom and
right regions of the target input space, but less so for the top and left regions.

We now quantify the clustering consistency between a trained predictor and
a region in the original input space. Intuitively, this is the agreement between
the trained predictor and the preliminary predictor within the original input
space. We use supervised weighting in the following manner. Let D1 = Dl =
{(xi, yi)}nl

i=1 and D2 = D = {(xi, li)}nl+nu
1 . For each subset of samples, say s,

we first train a sentiment predictor ps based on its training data Ds. Then, for
every region Rj , we compute the relevance score as:

ws,j =
∑

xi∈Rj
[[ps(xi) = �i]]/|Rj | (4)

where [[·]] is the Iverson bracket.

R1 R2
wD1 0.75 0.49
wD2 0.84 0.34

Fig. 2. Heat map of the relevance scores ws,j between each trained classifier with a
region in the original input space on OMD data set. A lighter shade means a higher
score, or more relevant.

Figure 2 shows the heat map of the relevance scores ws,j between the each
train classifier with the regions in original input space of OMD corpus. We
observe, for example, that the classifier trained on noisy labels (D2) data is
more relevant in the R1 region than R2 region of the original input space.
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These relevance scores will be used in the next phase of the framework to weigh
the contributions of each predictor to the eventual classifier.

4.3 Phase 3: Target Classifier Learning

This phase uses both of the previous predictions from all trained classifiers and
the labeled data Dl to learn a sentiment classifier. This ensures that the perfor-
mance of proposed method will not degrade badly even when most of the source
instances are irrelevant,

The previous phase has computed the relevance ws,j for trained classifier
ps in region Rj . We translate this to the relevance weight us,i for an exam-
ple xi: if xi ∈ Rj , then us,i = ws,j . From the previous phase, we also have
2 sentiment predictors ps that have been trained on Ds. We combine and
weight the predictions from multiple classifiers to obtain the reference prediction
r̂ji =

∑2
s=1 us,i(2[[ps(xi) = j]] − 1) for example xi belonging to sentiment class

j, using the ±1 encoding.
The sentiment classifier consists of c functions f1, . . . , fc using the one-versus-

rest decoding for multi-class classification.4 Based on the Domain Adaptive
Machine [6], we incorporate the reference predictions and the labeled data of
the target domain to learn the final classifier:

min
{fj}c

j=1

c∑
j=1

{
1
nl

nl∑
i=1

(fj(xi) − rji)
2 + γ ‖fj‖2H +

β

2

n∑
i=nl+1

‖fj(xi) − r̂ji‖2
}

, (5)

where rji = 2[[yi = j]] − 1 is the ±1 binary encoding for the i labeled sample
belonging to relation j. Here, we have three objectives: the first term specifies
the training error; the second governs the complexity of the functions fjs in the
Reproducing Kernel Hilbert Space (RKHS) H; and the third favors the predicted
labels of the unlabeled data Dl to be close to the reference predictions. The third
term provides additional pseudo-training samples for the rarer sentiment classes,
if these are available in Du. Parameters β and γ govern the trade-offs between
these objectives.

Let K(·, ·) be the reproducing kernel for H. By the Representer Theorem [23],
the solution for Eq. 5 is linear in K(xi, ·): fj(x) =

∑n
i=1 αji K(xi, x). Putting this

into Eq. 5, parameter vectors αj are [3]:

α∗
j = (JK + γ(nl + βnu)I)−1JRj . (6)

Here, Rj is an (nl + nu)-vector, where Rji = rji if instance i is in the labeled
set, and Rji = r̂ij if it is in the unlabeled set; and J is an (nl +nu)-by-(nl +nu)
diagonal matrix where the first nl diagonal entries are ones and the rest are βs.

4 For two-classes, though, only one function is needed.
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5 Performance Evaluation

5.1 Experimental Settings

We evaluate our algorithm using two corpora: the Stanford Twitter Sentiment
(STS) and the Obama-McCain Debate (OMD). Table 1 provides some statistics
on them.

Table 1. Statistics on STS and OMD

Properties STS OMD

# Tweets 22,262 1,827

# Users 8,467 735

# Max Degree of the Users 897 138

# Avg. Degree of the Users 36 21

# Avg. Tweets per User 2.63 2.49

The Stanford Twitter Sentiment (STS) was collected by Go et al. [9]. Due to
original purpose, it does not have social relation graph information among users.
To overcome this, we obtain the social graph by using the Twitter complete graph
crawled by Kwak et al. [16]. After that, we exclude tweets that its author has no
friend or has less than two tweets. Finally, we got a dataset consists of 22,262
tweets with labels.

The original Obama-McCain Debate (OMD) consists of 3,269 tweets collected
during the presidential debate [24]. Similar as in STS dataset, we also obtain the
social relation graph for this dataset by exploiting the Twitter complete follower
graph [16]. Next, we also filter out tweets as with the STS datasets. Finally, we
got a dataset of 1,827 tweets with labels.

We benchmark our approach with several other methods, including machine
learning and common sentiment analysis methods. These are described below.

Support Vector Machine (SVM) [5] is a typical text classification method.
Logistic Regression with l1-norm regularization (LG) [7] is also a tradi-

tional text classification.
Distant Supervision (DS) is a semi-supervised learning algorithm that makes

uses a noisy labels based on lexicon resources as mentioned in Sect. 4.2.
Label Propagation (LPROP) [24] is a semi-supervised graph regularization

based on exploiting relation between tweets.
Linear Regression with graph regularization (SANT) [14] is a supervised

method, which exploits user social relation graph.
RSSP-LP is a simple version of our approach, which combines ground-truth

and noisy labels to train the final classifier without doing Phase 2 and 3.

We use available libraries for SVM and LG. We also re-implement other
baselines according to published articles. In our experiments, we set μ = 0.8 in
Eq. 2; θ = 0.18 in Eq. 3; and γ = 0.1 and β = 0.3 in Eq. 5. We use five-fold cross
validation.
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Fig. 3. Sentiment classification accuracy comparison on STS and OMD datasets.

5.2 Experimental Results

Figure 3 presents the sentiment classification accuracy results on STS and OMD
datasets. We see that the proposed RSSP method has consistently outperformed
the other methods on accuracy. We also observe that although the noisy labels
learnt from RSSP are helpful on sentiment task, using only noisy labels to train
a classifier (DS) marginally increases the accuracy as compared with supervised
ground-truth methods like SVM and LG. This suggests that there would be
negative effects from the noisy labels. More importantly, we also see that RSSP-
LP, which exploits both text and social graph information, can also only gain
a marginal accuracy improvement as compared with LPROP and SANT. This
emphasizes the effectiveness of Phase 2 and 3 of RSSP, which considers the
relevance of each trained classifier to each unlabeled sample before training the
final classifier. As a result, RSSP outperforms the best SANT method by 5.5 %
on average.

Weakly-Supervised Setting: We conduct experiments to verify the sensitivity of
RSSP according to different training data sizes. We cross validate our model
with five-folds. in the Table 2(a) and (b), Dpercentage represents the percentage
of data used for training out of the entire training dataset. Due to five-fold cross
validation, 80 % of the entire dataset is used for training in each round of the
experiment. For instance, OMD50% indicates that 50 % of 80 % thus 40 % of the
whole dataset as training data. The test set always occupies 20 % of the entire
dataset.

From Table 2(a) and (b), we find that our method has consistently outper-
formed all the other methods on accuracy peformance. We first notice that DS
generally perform quite well, and it performs better than SVM and LG espe-
cially when the number of labeled instances is small. However, the training size
increases, the performance gap becomes smaller. The reason is that DS aims
to obtain a consensus on the entire dataset, and this will give a worse label
than SVM and LG when there are enough irrelevant and noisy labeled sam-
ples to influence the classification decision wrongly. There is another side effect
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Table 2. The sentiment classification accuracy on STS and OMD datasets in semi-
supervised settings with different training samples. The best performance for each
setting is in bold.

(a) STS

STS10%STS30%STS50%STS80%

SVM 0.650 0.684 0.701 0.713
LG 0.672 0.717 0.730 0.747
DS 0.681 0.721 0.738 0.755
LPROP 0.705 0.735 0.754 0.764
SANT 0.695 0.727 0.752 0.769
RSSP-LP 0.688 0.709 0.760 0.773
RSSP 0.748 0.775 0.795 0.816

(b) OMD

OMD10%OMD30%OMD50%OMD80%

SVM 0.593 0.614 0.649 0.668
LG 0.607 0.635 0.668 0.693
DS 0.618 0.649 0.674 0.702
LPROP 0.626 0.661 0.689 0.715
SANT 0.619 0.639 0.682 0.720
RSSP-LP 0.640 0.675 0.703 0.734
RSSP 0.686 0.715 0.756 0.784

of noisy propagated labels based on both textual and social graph information
under small training set situation. In fact, one can roughly deduce that a RSSP
classifier has few relevant noisy propagated labels by simply comparing rows
LPROP with rows RSSP-LP in the tables: a decrease in accuracy from LPROP
to RSSP-LP suggests that the noisy labels are somewhat irrelevant. For exam-
ple, for datasets STS10%, STS30%, OMD10% and OMD30%, we find that its
accuracy decreases from LPROP and RSSP-LP in Table 2(a), (b) when there
are only few labeled samples, which suggests that noisy labels from STS10%,
STS30%, OMD10% and OMD30% are generally irrelevant to train a classifier.
We investigate this further by examining the relevance scores ws,js, and we find
that the decreases in accuracy from LPROP and RSSP-LP happen when there
are more regions in the original input space to which noisy labels learnt by
RSSP-LP are irrelevant.

We find that LPROP, SANT and RSSP-LP are better than SVM and LG.
We also observe that label propagation methods such as LPROP and RSSP-
LP are generally better than distant supervision method DS. However, we find
that the performances of RSSP-LP is not quite stable: for example, on STS10%,
STS30%, OMD10% and OMD30% datasets. In contrast, we find the performance
of LPROP and SANT to be more stable. The reason is their reduced vulnerability
to negative effect from irrelevant noisy labels by relying on similarity of feature
vectors based on labeled, unlabeled data and social graph information. Further
improvements can still be made, as shown by the better performance of RSSP
over LPROP and SANT. This is achieved by further adjusting the relevances
between a trained classifier and a sample according to its region in the original
input space.

6 Conclusion

We have developed a robust semi-supervised sentiment propagation (RSSP) app-
roach for the social media sentiment analysis problem where labeled data is
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scarce and information about social relations is available. Existing sentiment
analysis approaches suffer from lacking of labeled data and under imbalanced
distributions with noisy labels. To overcome these, we have proposed a three-
phase approach to leverage only relevant information from the noisy labels, and
thus leverage accuracy performance on the unlabeled data. Experimental results
on OMD and STS have shown that the our semi-supervised method outperforms
the other methods on accuracy performance when only few labeled instances are
used. Because of the practical importance of sentiment analysis on social media
data due to lack of labeled data in these domains, we hope our research will
open up several investigations in the future.
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Abstract. Automatic hashtag segmentation is used when analysing twit-
ter data, to associate hashtag terms to those used in common language.The
most common formof hashtag segmentationuses adictionarywith aproba-
bility distribution over the dictionary terms, constructed fromsample texts
specific to the givenhashtagdomain.The language used inTwitter is differ-
ent to the common language found in published literature, most likely due
to the tweet character limit, therefore dictionaries constructed to perform
hashtag segmentation should be derived from a random sample of tweets.
We ask the question “How large should our sample of tweets be to obtain a
given level of segmentation accuracy?” We found that the Jaccard similar-
ity between the correct segmentation and the predicted segmentation using
a unigram model, follows a Zero-One inflated Beta distribution with four
parameters. We also found that each of these four parameters are functions
of the sample size (tweet count) for dictionary construction, implying that
we can compute the Jaccard similarity distribution once the tweet count of
the dictionary is known. Having this model allows us to compute the num-
ber of tweets required for a given level of hashtag segmentation accuracy,
and also allows us to compare other segmentation models to this known
distribution.

1 Introduction

Twitter is a dynamic environment, accumulating approximately 500 million
tweets per day from millions of users worldwide.1 Hashtags have become the
de facto standard for labelling the topic or intent of a tweet within Twitter.
Therefore, if we understand the hashtag, we gain a deeper insight into the intent
and sentiment of the tweet. Hashtag analysis usually involves breaking down the
hashtag or segmenting it into the words that are used in its formation, allowing
us to associate the hashtag to other words within a sample of tweets. Hashtag
segmentation has been used to assist search engines in providing more accurate
search results [2,6], to increase the effectiveness of topic identification [12], to
increase the effectiveness of sentiment analysis of tweets [11,13], and it has also
been used in the meta analysis of predicting hashtag trends [5].
1 According to https://about.twitter.com/company.
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Automatic segmentation is highly dependent on the segmentation dictionary,
which should be chosen so that it matches the domain of the text to be seg-
mented. Therefore, dictionaries for hashtag segmentation are best constructed
from a random sample of tweets. However, it is unclear how large this sample
should be.

In this article, we ask “How large should our sample of tweets be to obtain a
given level of segmentation accuracy?” To the best of our knowledge, this is the
first analysis of the relationship between the number of tweets used to construct
the segmentation dictionary and the accuracy of the hashtag segmentation.

The contributions of this article are:

– Identification of the hashtag segmentation Jaccard similarity distribution as
a Zero-One Beta distribution (Sect. 3),

– The presentation of closely fitting models for each distribution parameter, as
functions of the number of tweets used during dictionary creation (Sect. 4),

– A method of predicting the mean and standard deviation of the Jaccard
similarity for a given sample dictionary (Sect. 5).

The article will proceed as follows: Sect. 2 introduces the method of hashtag
segmentation, Sect. 3 provides an analysis of the distribution of the segmentation
accuracy, Sect. 4 examines the change in distribution parameters with respect
to the dictionary sample size, and Sect. 5 provides a model of predicting the
expected segmentation accuracy.

2 Hashtag Segmentation Using Dynamic Programming

The problem of hashtag segmentation is identical to the problem of string seg-
mentation described in [7], which is also applicable to tasks such as novelty
location [10] and popularity induction [8,9]. To segment a string of n characters,
we imagine n − 1 potential breaks in between each of the n characters which
we can turn on or off. If the break is turned on, we segment the string at that
point; if the break is off, we don’t segment the string at that point. Having n−1
potential breaks implies that we have 2n−1 possible segmentations of the given
string. To compute the most likely segmentation, we compute the likelihood of
each of the possible 2n−1 segmentations and retain the segmentation with max-
imum likelihood. We can see that as n grows this approach becomes infeasible
due to the exponentially increasing computation required. Rather than observ-
ing all 2n−1 possible segmentations, we can use the more sophisticated approach
of dynamic programming (also described in [7]), reducing the complexity to the
order of n2.

To obtain the segmentation, we require a method of computing the proba-
bility that a given segmentation of a hashtag would be written by the author of
the hashtag. A simple method of computing this probability is to assume each
term is independent, therefore the probability of a given segmentation is simply
the product of the probability of each word in the segmentation. In doing so, we
now only need the probability of each word in the segmentation.
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An estimate of the probability of an author writing a word can easily be
computed from a sample of the author’s writing, as the proportion of the fre-
quency of the word relative to the number of words in the sample. This set of
words and their associated probability is referred to as a dictionary. Tradition
text segmentation methods compute their dictionary from a large sample of text
with the same writing style as the author (e.g. to segment a string from a news
article, the dictionary would be constructed from a sample of news articles). In
fact, [3] found that segmentation is highly dependent on the dictionary used.

Note that segmentation methods such as [1] use additional features of the
hashtag to compute the probability of the segmented word sequence (such as
the case of the letters). For this analysis, we are concerned with the effect of
the number of tweets used to construct the dictionary, therefore we treat the
hashtag as a string and use no additional information to remove the variability
that would be introduced otherwise.

The language used in Twitter is unlike the language found in published media
[4]. It contains many short snippets of information that is regularly updated by
users worldwide, therefore the language used is constantly evolving. To effectively
segment hashtags, we must construct the dictionary based on the language used
in Twitter, which means using a random sample of tweets. Unfortunately, it
is unclear how large a sample we should take to obtain an acceptable level of
segmentation accuracy.

3 Segmentation Accuracy Distribution

In the previous section, we established that a random sample of tweets is required
to construct a hashtag segmentation dictionary, but we were unsure of how large a
sample to obtain. In this section, we will examine the distribution of the segmen-
tation accuracy to take a step towards identifying the required sample size.

To begin the analysis, we obtained a random sample of 251171 tweets to use
as our tweet pool. All further random samples of tweets were resampled from
this pool.

To compute the segmentation accuracy, we must obtain a random sample of
hashtags with known segmentations, which we then compare to the predicted
segmentation. To observe the distribution, we also require the random sample
to be large. Since hashtags are word sequences that have had the space between
words removed, we generated a set of hashtags by sampling one tweet at a
time from the pool, sampling a random sequence length from a shifted Poisson
distribution (with minimum of 1 and mean 3.5, found through analysis of existing
hashtag segmentations), then sampling a sequence of that length from the tweet
and combining it to form the hashtag. Doing so allowed us to obtain the hashtag
and the true segmentation. To ensure that the segmentation dictionary did not
contain the tweet in which the hashtag was generated from, we first obtained
a random sample of 100 tweets in which we generated one hashtag from each
tweet, we then constructed the dictionary using a sample from the remaining
tweets in the pool.
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The segmentation dictionary was constructed by removing URLs, user han-
dles and hashtags from the tweet sample. Numbers and punctuation were also
removed and each remaining term was case folded. Stemming and stop word
removal were not used to ensure that the dictionary contained the distribution
over all words and that good estimates of probabilities were obtained. Initial
experiments also showed that using stop word removal and stemming when cre-
ating a dictionary, harms the accuracy of the hashtag segmenter. This is likely
due to the unique spelling and acronyms used to write informative tweets within
the 140 character limit. By not removing stop words and not performing stem-
ming, we also remove the variability that would be introduced by the different
stop word lists and different stemming algorithms that can be used.

The true segmentation and the predicted segmentation are both sets of vari-
able length; if both sets are the same, the hashtag segmentation is correct, but
as the number of differing words between sets increases, the accuracy is reduced.
To evaluate the similarity between the true and predicted segmentation, we used
Jaccard similarity, since it is a measure of set similarity.

This hashtag generation and evaluation process was replicated 50 times for
each dictionary size, to obtain 5000 Jaccard similarity scores for each dictionary
size. The distribution of the 5000 Jaccard similarity scores is shown in Fig. 1 for
dictionaries constructed from tweet samples of size 100, 200, 500, 1000, 2000,
5000, 10000, 20000 and 50000. The histograms show a decreasing distribution
with a spike at 1 for all dictionary sizes. This implies that there are many Jaccard
similarity scores that have values of 0 and 1 and there are a subset that range
between 0 and 1. To examine this further, we plotted the histograms again, with
all scores of 0 and 1 removed and found the histogram shape to be similar to
a Beta density. By examining the Q-Q plot (shown in Fig. 2), comparing the
quantiles of the scores to the quantiles of the Beta distribution, we found that
this mid-band set of scores is very closely aligned to the Beta distribution.

After examining the plots we arrived at the Zero-One inflated Beta distri-
bution model for the probability distribution J of a Jaccard score for a given
dictionary size, where the probability of J being 0 is the proportion p0, being
1 is the proportion p1, and the probability of J being within 0 and 1 follows a
Beta distribution with parameters α and β, giving us four parameters for the
model.

The model is a mixture of three density functions where we can write the
mixture as the density fJ (x):

fJ (x) = p0δ(x) + pbfB(x;α, β) + p1δ(1 − x) (1)

where δ(x) is the Dirac delta function, pb = 1 − p1 − p0, and fB(x;α, β) is the
density function of the Beta distribution. It is possible to easily split fJ(x) into
its three components, as long as only one of the terms is non-zero for each x. This
is true for our model, as long as both α and β are greater than 1 (causing the
Beta density to be pinned to zero when x = 0 or 1). This property is apparent
in our model, since we have allocated the scores of 0 and 1 to the Dirac delta
functions, leaving a density of 0 for the Beta density function, so we will assume
that both α > 1 and β > 1.
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Fig. 1. Distribution of the Jaccard similarity. Each panel shows the distribution for a
given dictionary construction size, where the number of tweets used to construct each
dictionary ranges from 100 to 50000 tweets.

This model separation allows us to easily estimate the model parameters
from the data:

– p̂0 is the proportion of 0 scores (estimate of p0).
– p̂1 is the proportion of 1 scores (estimate of p1).
– p̂b = 1 − p̂0 − p̂1 is the proportion of scores between 0 and 1 (estimate of pb).
– α̂ = x̄b

(
x̄b(1 − x̄b)/s2b − 1

)
(estimate of α).

– β̂ = (1 − x̄b)
(
x̄b(1 − x̄b)/s2b − 1

)
(estimate of β).

where x̄b and sb are the sample mean and standard deviation of the mid-band
(excluding scores of 0 and 1) Jaccard scores. The Beta density parameters α and
β are estimated using the method of moments, which is a good approximation
to the true α and β when x̄b(1− x̄b) > s2b (ensuring both α and β are positive).
Fitting the model to the set of scores for each dictionary construction size pro-
vides us with the parameter estimates and standard errors of p̂1, p̂0, p̂b, α̂ and
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Jaccard similarity mid−band Q−Q plot
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Fig. 2. Q-Q plots of the Jaccard similarity mid-band (excludes all scores of value 0 and
1) and fitted Beta distribution. Each panel shows the Q-Q plot for a given dictionary
construction size, where the number of tweets used to construct each dictionary ranges
from 100 to 50000 tweets. The closeness of the points to the line show that both
distributions are very similar.

β̂ in Table 1, where the standard errors were computed from a bootstrap sample
of size 1000.

Table 1 contains the column “Dict Size”, showing the number of randomly
sampled tweets used to construct the dictionary. As Dict Size increases, we find
that p̂1 increases and p̂0 decreases, displaying that as more tweets are used
to construct the dictionary, the proportion of correct hashtag segmentations
increases, and the proportion of incorrect segmentations (containing no correct
words) decreases. Examining p̂b, we also find that the proportion of partially
correct segmentations decreases. The statistics x̄b and sb show the mean and
standard deviation of the mid-band Jaccard scores (the set of scores with 0
and 1 removed). We find that the mean increases, while the standard deviation
increases, then tapers off to stay around 0.15 as Dict Size increases.
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We also find that α̂ and β̂ are greater than 1 for all dictionary sizes and don’t
seem to be approaching 1, which was a required property for using the Method
of Moments to estimate the parameters and the provide the model partitioning.

4 Jaccard Similarity Distribution Parameters

Table 1 shows that as the dictionary size increases, p̂0 decreases, p̂1 increases, p̂b

decreases, α̂ increases and β̂ decreases, all as we expect to provide an increase
in mean Jaccard similarity. In this section, we will explore the relationships fur-
ther to gain a deeper understanding of each parameter of the Jaccard similarity
distribution, allowing us to make predictions of what dictionary size is needed to
obtain a given expected Jaccard similarity. We will first examine the proportions
p0 and p1, then proceed to examine the Beta distribution parameters α and β.

Table 1. Statistics of the fitted Jaccard score density model (Eq. 1) and their standard
error (shown in parentheses) for dictionaries constructed from 100 to 50000 randomly
sampled tweets.

Dict size p̂1 p̂0 p̂b x̄b sb α̂ β̂

100 0.1296 0.3160 0.5544 0.1713 0.1068 1.960 9.483

(0.0047) (0.0069) (0.0071) (0.0020) (0.0019) (0.0578) (0.3260)

200 0.1706 0.2428 0.5866 0.2030 0.1245 1.917 7.523

(0.0053) (0.0060) (0.0070) (0.0023) (0.0019) (0.0502) (0.2273)

500 0.2522 0.1886 0.5592 0.2421 0.1395 2.038 6.379

(0.0061) (0.0055) (0.0071) (0.0027) (0.0020) (0.0532) (0.1849)

1000 0.3188 0.1476 0.5336 0.2693 0.1459 2.221 6.024

(0.0065) (0.0049) (0.0070) (0.0029) (0.0018) (0.0537) (0.1606)

2000 0.3860 0.1274 0.4866 0.2945 0.1509 2.390 5.725

(0.0068) (0.0048) (0.0070) (0.0031) (0.0019) (0.0622) (0.1563)

5000 0.5084 0.0834 0.4082 0.3206 0.1526 2.678 5.673

(0.0072) (0.0040) (0.0072) (0.0034) (0.0020) (0.0767) (0.1653)

10000 0.5564 0.0784 0.3652 0.3349 0.1532 2.841 5.642

(0.0070) (0.0039) (0.0068) (0.0037) (0.0023) (0.0921) (0.1902)

20000 0.6120 0.0686 0.3194 0.3569 0.1533 3.126 5.633

(0.0069) (0.0034) (0.0067) (0.0038) (0.0023) (0.1094) (0.1879)

50000 0.6700 0.0616 0.2684 0.3718 0.1547 3.257 5.502

(0.0066) (0.0033) (0.0063) (0.0043) (0.0026) (0.1215) (0.2063)

100000 0.6996 0.0558 0.2446 0.3811 0.1582 3.206 5.207

(0.0061) (0.0032) (0.0057) (0.0045) (0.0026) (0.1191) (0.1931)

200000 0.7212 0.0470 0.2318 0.3869 0.1548 3.440 5.450

(0.0062) (0.0030) (0.0058) (0.0045) (0.0027) (0.1365) (0.2179)
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Both p1 and p0 are bound between 0 and 1, where we would expect p1 to
approach 0 and p0 to approach 1 and Dict Size d decreases. We would also
expect p1 to approach an upper limit that may be less than 1 (meaning that the
segmenter never achieves perfection for any dictionary size), and p0 to approach
a lower limit greater than 0 (meaning that there will always be hashtags that
cannot be segmented for any dictionary size) as d increases. Therefore, we would
expect p1 and p0 to be well approximated by a type of sigmoid function (to limit
p1 and p0 to the [0, 1] domain) of the log scale of d (to extend d to the real
domain). The form of the functions are:

p1 =
θ1

1 + exp(−θ2 log(d) + θ3)
=

θ1
1 + eθ3d−θ2

(2)

p0 = 1 − θ4
1 + exp(−θ5 log(d) + θ6)

= 1 − θ4
1 + eθ6d−θ5

(3)

The plot of the change in p1 and p0 with respect to d is shown in Fig. 3 with
the fitted models, weighted by standard error, providing parameters θ1 = 0.771,
θ2 = 0.569, θ3 = 4.267, θ4 = 0.958, θ5 = 0.498 and θ6 = 1.359. The error bars
show the 95 % confidence interval of the parameter. We can see that the models
for both p1 and p0 provide an excellent fit to the simulation.

When examining the plot of α vs. d, it was difficult to determine a direct
relationship, therefore we will examine the relationships between μb (mean of
the mid-band) and β, since α can be calculated from these. The mean μb has
the same conditions as the proportion p1, therefore we use the same model form.
The parameter β seems to be decreasing, but plateaus near 5 as d increases.
After examining the data, we arrived at the functions:
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Fig. 3. The point estimate (shown as circles) and 95 % confidence interval (given by
error bars) of the proportions p1 (left plot) and p0 (right plot), along with the fitted
sigmoid functions given in Eq. 2 as the curve, for segmentation dictionaries constructed
from various tweet sample sizes (given as Dictionary Size).
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μb =
θ7

1 + eθ9d−θ8
β =

θ10
d

+ θ11 (4)

The plot of the change in μb and β with respect to d is shown in Fig. 4 with the
fitted models, weighted by their standard error, providing parameters θ7 = 0.412,
θ8 = 0.406, θ9 = 2.181, θ10 = 399.21 and θ11 = 5.512. The error bars show the
95 % confidence interval of the parameter. We can see that the models for both
μb and β provide an excellent fit to the data.

0.20

0.25

0.30

0.35

0.40

1e+02 1e+03 1e+04 1e+05
Dictionary Size

B
et

a 
pa

ra
m

et
er

 μ

5

6

7

8

9

10

1e+02 1e+03 1e+04 1e+05
Dictionary Size

B
et

a 
pa

ra
m

et
er

 β

Fig. 4. The point estimate (shown as circles) and 95 % confidence interval (given by
error bars) of the mean μb (left plot) and parameter β (right plot) of the mid-band data,
along with the fitted functions given in Eq. 4 as the curve, for segmentation dictionaries
constructed from various tweet sample sizes (given as Dictionary Size).

To compute the values for σb the mid-band standard deviation, and α, we
use the known relationships of the Beta distribution:

α =
μb

(1 − μb)
β σ2 =

αβ

(α + β)2(α + β + 1)
(5)

where μb and β are given by the previous functions. The plot of the change in
σb and α with respect to d is shown in Fig. 5 with the fitted functions. The error
bars show the 95 % confidence interval of the parameter. We can see again that
the models for both σb and α provide an excellent fit to the data.

We have found that each of p1, p0, α and β can be accurately estimated
as functions of d (the number of tweets used to generate the dictionary), in
turn describing the Jaccard similarity distribution, once we have obtained fitted
values for the 11 parameters.

Note that a limitation of our analysis comes from taking each tweet sam-
ple from the pool of 251171 tweets. This sample size is sufficient for generating
hastags, and for dictionaries using a small number of tweets. But when randomly
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Fig. 5. The point estimate (shown as circles) and 95 % confidence interval (given by
error bars) of the standard deviation σb (left plot) and parameter α (right plot) of
the mid-band data, along with the computed functions given in Eq. 5 as the curve,
for segmentation dictionaries constructed from various tweet sample sizes (given as
Dictionary Size).

sampling 200000 tweets from the pool to compute a dictionary, the sample size
is of the same order as the population being sampled from, therefore the variance
introduced by randomly sampling for large dictionaries is reduced when compared
to a pure random sample from Twitter. We believe that this will only effect the
values of θ1, θ4 and θ7, but further analysis is required to test this effect.

5 Accuracy of the Model

The previous section showed that we can model the Jaccard accuracy as a func-
tion of d (the number of tweets used to construct the segmentation dictionary).
In this section, we will examine how well our model can estimate the four dis-
tribution parameters when not included in the parameter fitting process.

Our experiment consisted of a leave one out process, where we fitted the
eleven parameters using all data, excluding the data associated to the desired
d. We then used our model to compute the 11 distribution parameters and
then predict the mean and standard deviation of the Zero-One inflated Beta
distribution for the desired d (using the equations in Appendix A). This process
was repeated for all d. Table 2 contains the mean and standard deviation of the
Jaccard scores predicted by the model and computed from the sample data. We
find that the predictions from the model are very accurate, showing how closely
the sample data follows the model. The results show that this model can be used
to compute the expected Jaccard similarity, and hence compute the number of
tweets required to construct a dictionary in order to obtain a given expected
Jaccard similarity. Using knowledge of the distribution, other statistics can also
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Table 2. The mean and standard deviation of the Jaccard similarity for each segmen-
tation with dictionary computed using the given sample size of tweets (Dict Size). The
column “Sample” shows the values computed using the samples. The column “Model”
shows the estimate from the leave one out model. The column “Diff” shows the differ-
ence between the sample value and model estimate.

Dict size Mean Std. Dev.

Sample Model Diff Sample Model Diff

100 0.225 0.224 0.000 0.319 0.312 0.007

200 0.290 0.288 0.001 0.346 0.349 −0.002

500 0.388 0.386 0.001 0.382 0.381 0.001

1000 0.463 0.464 −0.001 0.394 0.395 −0.002

2000 0.529 0.541 −0.012 0.399 0.399 −0.000

5000 0.639 0.623 0.016 0.389 0.392 −0.003

10000 0.679 0.684 −0.005 0.381 0.379 0.002

20000 0.726 0.727 −0.001 0.365 0.365 −0.000

50000 0.770 0.771 −0.001 0.348 0.346 0.002

100000 0.793 0.794 −0.001 0.336 0.334 0.002

200000 0.811 0.810 0.001 0.322 0.325 −0.003

be computed (such as quantiles for confidence intervals). To assist in computing
the required statistics, or for model validation, the source code is available at
the authors’ Web site2.

6 Conclusion

Hashtag segmentation allows us to obtain a more in depth analysis of Twitter
data. Automatic hashtag segmentation requires a domain specific dictionary and
therefore should be computed from a random sample of tweets.

In this article we examined the effect of the tweet sample size, used to create
the segmentation dictionary, on the accuracy of automatic hashtag segmentation.
We found not only that the accuracy distribution is a Zero-One inflated Beta
distribution containing four parameters, but we also found that each of the four
parameters can be modelled on the number of tweets used to construct the
dictionary.

This model can be used to predict the distribution and statistics of the accu-
racy distribution for automatic hashtag segmentation, when using a given num-
ber of tweets to construct the dictionary. The model can also be used to gain
deeper understanding into the relationships between the model parameters.

2 http://www.scem.uws.edu.au/∼lapark/segmentHash.

http://www.scem.uws.edu.au/~lapark/segmentHash
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A Derivation of Model Mean and Variance

The mean and variance of our Jaccard similarity (Zero-One inflated Beta) density
function fJ (x) from Eq. 1 is derived from the expected value of J and J2.

E[J ] =
∫

x[p0δ(x) + pbfB(x;α, β) + p1δ(1 − x)]dx

= p0

∫
xδ(x)dx + pb

∫
xfB(x;α, β)dx + p1

∫
xδ(1 − x)dx

= pbμb + p1

=
pbα

α + β
+ p1

E[J2] =
∫

x2[p0δ(x) + pbfB(x;α, β) + p1δ(1 − x)]dx

= p0

∫
x2δ(x)dx + pb

∫
x2fB(x;α, β)dx + p1

∫
x2δ(1 − x)]dx

=
pbαβ

(α + β)2(α + β + 1)
+ pbμ

2
b + p1

Var(J) = E[J2] − E[J ]2

=
pbαβ

(α + β)2(α + β + 1)
+ pbμ

2
b + p1 − (pbμb + p1)2

=
pbαβ

(α + β)2(α + β + 1)
+ pbμ

2
b + p1 − p2bμ

2
b − p21 − 2pbp1μb

=
pbαβ

(α + β)2(α + β + 1)
+ (pb − p2b)μ

2
b + p1 − p21 − 2pbp1μb

=
pbαβ

(α + β)2(α + β + 1)
+

(pb − p2b)α
2

(α + β)2
− 2pbp1α

α + β
+ p1 − p21.
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Abstract. Social link identification SIL, that is to identify accounts across
different online social networks that belong to the same user, is an important task
in social network applications. Most existing methods to solve this problem
directly applied machine-learning classifiers on features extracted from user’s
rich information. In practice, however, only some limited user information can
be obtained because of privacy concerns. In addition, we observe the existing
methods cannot handle huge amount of potential account pairs from different
OSNs. In this paper, we propose an effective SIL method to address the above
two challenges by expanding known anchor links (seed account pairs belonging
to the same person). In particular, we leverage potentially useful information
possessed by the existing anchor link, and then develop a local expansion model
to identify new social links, which are taken as a generated anchor link to be
used for iteratively identifying additional new social link. We evaluate our
method on two most popular Chinese social networks. Experimental results
show our proposed method achieves much better performance in terms of both
the number of correct account pairs and efficiency.

Keywords: Social networks � Social Identity Link � Hometown inference

1 Introduction

Online social networks (OSNs), such as Twitter, Facebook, Sina Weibo, Renren and
Foursquare, have become more and more popular in recent years. Each social network
can be represented as an individual graph and focuses on a specific application.
Oftentimes, people are getting involved in numeric social networks concurrently. For
example, we can access the latest news from Twitter and Sina Weibo, post our photos
using Facebook and Renren, and share interesting places (or locations) with our friends
using Foursquare. Thus, it comes as no surprise that many users often have multiple
separate accounts in different OSNs, although there are no direct correspondences or
connections among these multiple accounts belonging to the same users from different
networks.
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DOI: 10.1007/978-3-319-31753-3_32



Discovering the correspondences between accounts of the same user, i.e. social
identity link (SIL) problem, by integrating information from multiple OSNs is a crucial
prerequisite for many practical Web based applications, such as detecting more
accurate community structures [1], finding rising stars in social networks [2], and
providing better customer support and personalized services matching the user pref-
erences. For example, if we know a user’s Twitter account, then its social connections
and location data in Twitter can be used to better recommend the taste to this user in the
Foursquare. However, existing research (such as [3–8]) have showed that it is very
challenging to identify user accounts of the same natural person across different social
media platforms. The main reason is that users and social platform operators take
extremely strict measures to avoid divulging user personal information.

Previous studies (such as [7, 9, 10]) assume that they can collect rich user
information/attributes about user profiles, user generated content, behaviors and friend
networks. After collecting all the rich attributes for each user from different social net-
works, existing methods mainly employ supervised learning techniques [3, 7, 8, 11–13]
(with an exception which uses unsupervised learning [14]) to build binary classification
models for SIL prediction. However, it is very difficult, if not impossible, to obtain user’s
private information in many real-world applications. As such, existing research will
suffer when only incomplete information is available.

The second facing challenge is that current classification methods are not feasible to
handle huge amount of potential account pairs from different OSNs. Particularly, the
computational cost for identifying pair-wise accounts is N1*N2 (N1 and N2 are the
number of accounts in source and target networks, respectively). We can imagine how
many account pairs could be generated given each OSN could have more than 1 billion
users (e.g. Facebook). Clearly, it will be extremely time consuming, if not impossible,
to perform the intensive classification task.

In this paper, we employ open APIs, provided by the social platform operators, to
only collect the publically available attributes, including 6 user profile attributes, such
as nickname, gender, birthday, university name, university entry year and location, and
friend network attribute. Thus, we are handling the SIL problem in a difficult but
practical scenario with incomplete information sources. In addition, we also observe
that many profile attributes have missing or false values, making this research even
more challenging. Additionally, to tackle the second challenge, contrast to existing
standard classification methods, we leverage anchor link information and propose a
local search strategy to iteratively identify the new social links. Our proposed approach
largely reduces the search space and is thus more feasible than existing methods for
handling those real-world large scale OSNs.

2 Related Works

SIL problem across different social platforms has been studied in recent few years. User
link was formalized as connecting identity problem across communities in [3–6] in the
early stage. Subsequently, various methods were proposed.

The performance of existing methods largely relies on the extracted features, from
user profiles, user generated content, behaviors and friend networks. Some research
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papers [15–19] heavily focus on username parsing to link multiple online identities of a
user, based on the assumption that same users will have the similar names from
different social platforms. Paper [20] studies three features extracted from the content
created by a user, i.e. timestamp of posts, geo-location attached to post and writing
styles. It finds that the geo-location of posts is the most powerful features to identify
social links. Another research explores the social meta path concept (which is a means
to capture connection information in the social networks) to generate useful compound
features from friendship, location, timestamp of post and post content [21]. Some
works have shown that other information about users, like their group memberships
[22] and tagging behavior [23], can also be used to uniquely identify users. More recent
papers [7, 10, 14, 24] have integrated as many features as possible to identify social
links across different social networks, since researchers believe that less features are not
sufficient enough to achieve good performance.

Unfortunately, in practice we can only obtain the limited information, leading to
limited or incomplete features and thus much worse results. In addition, the existing
methods are also inefficient and the computational costs are prohibitively high, as they
need to classify large amount of all the possible account pairs from different networks.
In this paper, we leverage those potentially useful information possessed by the anchor
link to overcome the above two weaknesses from the existing methods.

3 Overall Algorithm

Denote P as the set of all natural persons in real life. For a social network G, represent
V(G) as the set of all accounts, each belonging to a distinct user. An injective function
ϕG: V(G) → P maps each account in V(G) to a natural person in P.

Social Identity Link, SIL. Given an account Ii
S from a source network GS (i.e. Ii

S2V
(GS)), social identity link problem is to find a corresponding account Ij

T from a target
network GT(i.e. Ij

T2V(GT)), such that ϕS(Ii
S) = ϕT(Ij

T). This definition is very strict. In
fact, formula should be associated with a certain probability or confidence score.

Firstly, we need to collect a seed anchor link set ALS, consisting of the account
pairs where one account from source anchor set ARS in GS and the other account is
from target anchor set ART in GT: ALS = {(ari

S, ari
T)|(ari

S, ari
T) is an anchor link

provided, ari
S2ARS, ARS � V(GS), ari

T2ART, ART � V(GT)}. ALS can be obtained by
either questionnaires or rule-based filtering methods.

Secondly, starting from an anchor link from ALS, our proposed the anchor link
local expansion algorithm iteratively searches the new putative social identity links
until they cannot be found. Figure 1 shows the key idea of our proposed method. Given
an anchor link (ari

S, ari
T) (ari

S and ari
T are the anchor nodes from source or target

network respectively), we first visit 3S that is any one of neighbors of the account ari
S,

and then we try to find a best matching account from GT. If 1′T is found, the new social
link, called generated anchor link, (3S, 1′T), can be leveraged to further identify other
social links. Thus, a set of social links is identified in the order of the following
sequence (ari

S, ari
T)→(3S, 1′T)→(5S, 4′T)→(4S, 5′T).
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This detailed algorithm is shown in Algorithm 1. In step 1, we initialized a queue
Q as an empty set, which will be used to store the given anchor nodes in ARS or newly
generated anchor nodes from source network. We also initialize an output set O. Steps
2 and 3 mark all the nodes in the source network as “unvisited”. From steps 4 to 12, we
will go through all the anchor nodes ari in ARS and generated anchor nodes. Particu-
larly, for each unvisited anchor node in the source network (step 8), we first find all its
neighbors (step 9). Then, for each of the neighbors, function FindSIL() in step 10 is
used to find the best match account in the target network – the detailed process will be
introduced in next section. Step 11 will add the newly generated anchor nodes from the
source network into the queue Q. Finally, the results are returned in the step 13.

Algorithm 1 Overall Algorithm

Input: source network GS; target network GT; anchor link set ALS

Output: matched account pairs in O

1: Initialize a queue Q=∅; O=∅ //Initialize a queue Q and set O;
2: For (int j=0; j<|V(GS)|; j++) //For all the accounts in GS

3: Mark[v
j
]=unvisited;

4: For (int i=0;i<|ARS|;i++)     //For all the anchors in ARS

5: Q.enqueue(ar
i
); // ar

i
∈ARS

6: While (Q.empty())
7: u=Q.pop();
8: If (Mark[u]==unvisited) 
9: While (k<|N(u)|) // N

k
(u) is kth neighbor of u.

10: If (l=FindSIL(N
k
(u))) //FindSIL() is used to find the best

match account of N
k
(u) in target network GT.

11:  O = O∪{(N
k
(u), l)}

12:                     Q.enqueue(N
k
(u)) 

13: Return O as the set of matched account pairs

The worst-case time complexity of Algorithm 1 is O(|V(GS)||E(GS)|) time, where
|V(GS)| and |E(GS)| are the number of accounts and the number of edges between users
in source network GS respectively.
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Fig. 1. Key idea overview.
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The intra-network connections associated with the anchor link are very useful. In
particular, given an anchor link (ari

S, ari
T) and ari

S’s neighbor Ii
S, we believe the best

matching account Ij
T is likely to locate in a small range of the anchor account ari

T. This
is because, the friend connections in one network have higher chance to be re-occurred
in another network either directly (re-occurrence connections) or indirectly (friends’
friends). As such, our proposed technique can largely reduce the search space based on
this novel idea.

4 Optimal Search Range

Our goal is to solve SIL problem with minimum expected computational cost. We
define search range and use it to control computational cost in the target network GT.

We first define the shortest distance between two nodes u and v, i.e. d(u, v), as the
number of edges in the shortest paths. Let P(u, v) be the set of all paths that start from
u and end at v. Note d(u, v) is ∞ if v is not reachable from u:

dðu; vÞ ¼ arg minp2Pðu;vÞ pj j if Pðu; vÞ 6¼ £
1 otherwise:

�
ð1Þ

Search Range. Given an anchor link (ari
S, ari

T) where ari
S and ari

T are from network GS

and GT respectively, the search range Rd(ari
T) around ari

T in GT is defined by
Rd≤n(ari

T) = {IT2GT | d(ari
T, IT) ≤ n}.

Here, n is a non-zero natural number. In the best case, d is equal to 1; that is to say,
Rd=1(ari

T) represents a set of direct neighbors of ari
T. At worst case scenario, d is less

than or equal to infinity; that is to say, Rd≤inf(ari
T) represents a set of all accounts in GT.

Our strategy for selecting the search range is to gradually grow the value of the d from
1 to infinity according to specific requests. This strategy can largely reduce the search
space. The effect of the parameter d on the system performance of user identification is
discussed in the Subsect. 6.2 in detail.

5 Identity Matching

We introduce how to select a best match account from the candidate set. Particularly,
we first define some distinguishing features in nickname, hometown and friend net-
work. Learning models are subsequently used to find the best match accounts.

5.1 Features Definition

(1) Nickname Similarity: Features derived from the nickname have been widely
used to identify the social links across different social platforms. There are even a
few studies, such as [8, 11], which only use nickname features for identification.

However, in many real datasets, there are too few consistent names (namesakes)
across different social platforms. In our dataset, 98 % of ground-truth linked account
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pairs (which is created manually for the same users from different social platforms.)
possess different nicknames. Nonetheless, we find that many pairs of different nick-
names belonging to sameusers are somewhat related.Wehaveperformed comparison
of these ground-truth social links and summarized the most frequent relationships
between two nickname pairs as follows: (1) there exists a common substring, such as
(张金鹏, zjp金鹏042); (2) a common substring occurs many times in one nickname,
such as (辛倩文, 小辛辛辛辛辛); (3) there are no differences if Chinese characters
are converted into alphabets, such as (范一真, 范熠禎) (both are Fan Yizheng). In
order to tackle the case (3), we convert Chinese characters into their corresponding
alphabets when there are mismatches between two nicknames written in Chinese
characters.

Before calculating nickname features, we introduce some basic notations and
definitions. We denote the nickname of an account by Ni(.) for two accounts Ii

S

and Ij
T, and p = |Ni(Ii

S)\Ni(IjT)| is thus the size of common/overlapping characters
between Ni(Ii

S) and Ni(Ij
T). A function lcs(.) is to compute the longest continuous

common substring between two nicknames, which is implemented by the gen-
eralized suffix tree [25]. We define q = |lcs(Ni(Ii

S), Ni(Ij
T))| as the length of the

longest continuous common substring between Ni(Ii
S) and Ni(Ij

T). We use r and
s to represent the frequency which lcs(Ni(Ii

S), Ni(Ij
T)) occurs in Ni(Ii

S) and Ni(Ij
T),

and in all nicknames respectively. Finally, function len(.) and max(.) are used to
compute the length of a nickname, and the maximum nickname length.

Finally, the nickname similarity NiS(Ii
S, Ij

T) between Ni(Ii
S) and Ni(Ij

T) is defined
as follows: NiS(Ii

S, Ij
T) = (CoC(Ni(Ii

S), Ni(Ij
T)) + LoS(Ni(Ii

S), Ni(Ij
T)) + ReS(Ni(Ii

S),
Ni(Ij

T)) + SpS(Ni(Ii
S), Ni(Ij

T)))/4, where CoC(Ni(Ii
S), Ni(Ij

T)) = p/max(len(Ni(Ii
S)), len

(Ni(Ij
T))) is used to reflect the contribution from the common characters. LoS(Ni

(Ii
S), Ni(Ij

T)) = q/max(len(Ni(Ii
S)), len(Ni(Ij

T))) is used to reflect the contribution of
the longest common substring. ReS(Ni(Ii

S), Ni(Ij
T)) = r/(len(Ni(Ii

S)) + len(Ni(Ij
T))), on

the other hand, is used to reflect the contribution of the repetitions of the longest
common substring. SpS(Ni(Ii

S), Ni(Ij
T)) = 1=

ffiffi
s

p
, is used to reflect the contribution of

rarity of the longest common substring in all nicknames. Typically, those account
pairs with less rare longest common substring will get higher similarity than those
frequent ones, as they are more helpful for identification purpose.

(2) Hometown Similarity: We observe that different social networks could have
different types of location information. Sina Weibo and Twitter only possess the
current location, while Renren and Facebook possess many different types of
locations, such as hometown, current city and workplace. Because hometown in
Renren may be different from current location in Sina Weibo for same users (we
could move to other places for education or to make a living), we are facing a very
challenging task, i.e. how to compute hometown/location similarity based on
different types of location information.

Our two interesting observations help us to tackle this challenging problem.
One is that the hometown is still the same as the current location for some account
pairs. For example, in our ground-truth linked account pairs, there are 46 % of
account pairs, of which location in Sina Weibo is the same as hometown in
Renren (they are kind of permanent dwellers in their hometown). The other is that,
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for some accounts, some of their friends have been re-occurred in multiple net-
works, like a mirror. According to these two phenomena, we propose the fol-
lowing solution to this task.

Given an account Ii
S in GS and an account Ij

T in GT, we denote hometown of Ii
S

and Ij
T by Hi(Ii

S) and Ho(Ij
T) respectively. The probability score HoS(Ii

S, Ij
T) that Hi

(Ii
S) is equal to Ho(Ij

T) can be computed as follows: HoS(Ii
S, Ij

T) = P(Hi(Ii
S) = Ho

(Ij
T)). As mentioned above, Sina Weibo as the source network only has the current

location. Although Renren has the hometown, some accounts do not fill up the
hometown and some accounts may fill up the false hometown, to make our
problem even more difficult. In other words, we are not sure whether the value of
a hometown is true or not. As such, we cannot match the value of Hi(Ii

S) and value
of Ho(Ij

T) directly. In this paper, we propose a novel hometown inference model
by leveraging the location information of neighbors.

For an account Ii
S in GS, we denote the set of neighbors of Ii

S by N(Ii
S), and

denote the set of current location of accounts in N(Ii
S) by CL(N(Ii

S)). Likewise, we
use N(Ij

T) to represent the set of the neighbors of Ij
T in GT. The set of hometown of

accounts in N(Ij
T) is denoted by HT(N(Ij

T)). The intersection of sets CL(N(Ii
S)) and

HT(N(Ij
T)) is denoted by CH(Ii

S, Ij
T) = CL(N(Ij

T))\HT(N(IiS)), and let the size of CH
(Ii
S, Ij

T) be K.
In addition, the value of hometown of Ij

T is denoted as lh, which may be either
empty or filled up by user. If lh has been filled up, we should then take into
account the contribution of lh to the hometown similarity even though we can not
make sure whether lh is true or not. For this reason, we define a new hometown set
HT1(N(Ij

T)) = {HT(N(Ij
T)), lh}. Let CH1(Ii

S, Ij
T) be the intersection of CL(N(Ii

S)) and
HT1(N(Ij

T)).
We consider six different cases for the location and hometown mapping,

illustrated in Fig. 2. These cases represent different relationships among CL(N
(Ii
S)), HT(N(Ij

T)) and lh. The probability score HoS(Ii
S, Ij

T) will be computed
according to each specific case. The weight of each edge is the frequency of the
hometown/current.

Case (1) shown in Fig. 2(a). The intersection CH1(Ii
S, Ij

T) is empty, i.e., CH1

(Ii
S, Ij

T) = Ø. We can derive HoS(Ii
S, Ij

T) = 0.
Case (2) shown in Fig. 2(b). The value of hometown of Ij

T is empty and the
CH(Ii

S, Ij
T) is not empty, i.e., lh = Ø∧CH(Ii

S, Ij
T) ≠ Ø. The HoS(Ii

S, Ij
T) is computed

by the formula: HoSðISi ; ITj Þ ¼
PK

k¼1 PðHiðISi Þ ¼ lkÞPðHoðITj Þ ¼ lkÞ, where lk2CH
(Ii
S, Ij

T). For example, we can compute HoS(Ii
S, Ij

T) = 0.1 × 0.3 + 0.6 × 0.4 = 0.27.
Case (3)–(4) shown in Fig. 2(c)–(d). The value of hometown of Ij

T is not empty,
the CH1(Ii

S, Ij
T) is not empty, and lh does not appear in CH1(Ii

S, Ij
T), i.e., lh 62Ø∧CH1

(Ii
S, Ij

T) ≠ Ø∧lh 62CH1(Ii
S, Ij

T). The HoS(Ii
S, Ij

T) is computed by the following
formula: HoSðISi ; ITj Þ ¼

PK
k¼1 PðHiðISi Þ ¼ lkÞPðHoðITj Þ ¼ lkÞþ aPðHoðITj Þ ¼ lhÞ,

where lk2CH1(Ii
S, Ij

T), and a is the weight of the additional account-attribute rela-
tionship from Ii

S to lh, and assigned to the minimum of all weights related to Ii
S. The

weight a is used to reflect the contribution of lh to the hometown similarity. For
example, a is equal to 0.1 in Fig. 2(c). So HoS(Ii

S, Ij
T) is equal to 0.3 × 0.3 + 0.6 ×

0.6 + (0.1 × 0.1) = 0.46.
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Case (5)–(6) shown in Fig. 2(e)–(f). The value of hometown of Ij
T is not

empty, the CH1(Ii
S, Ij

T) is not empty, and lh appears in CH1(Ii
S, Ij

T), i.e.,
lh 62Ø∧CH1(Ii

S, Ij
T) ≠ Ø ∧lh2CH1(Ii

S, Ij
T). The HoS(Ii

S, Ij
T) is computed by the

formula (5), in which a is used to reflect the contribution of lh to the hometown
similarity, and is equal to P(hi(Ii

S) = lh). For example, a is equal to 0.1 in Fig. 2(e).
HoS(Ii

S, Ij
T) is equal

to 0.3.
(3) Friendliness: We suppose that accounts ari

S and ari
T belong to the same user, and

Ii
S is a neighbor of ari

S. If the degree of friendliness between Ij
T and ari

T is high, we
believe that Ii

S and Ij
T likely belong to the same user. The triadic closure principle

[26] can be used to indirectly explain this underlying inference.
Because the search range Rd(ari

T) constrains the friendliness score FrS(ari
T, Ij

T),
which is related to the parameter d. Then, FrS(ari

T, Ij
T) can be evaluated by the

following metrics: (1) FrS1(ari
T, Ij

T) = 1, d ≥ 1; (2) FrS2(ari
T, Ij

T) = |CN(ari
T, Ij

T)|,
d ≥ 2; (3) FrS3(ari

T, Ij
T) = |CN(N(ari

T), Ij
T)|, d ≥ 3. Here CN(.) represents the

common neighbors between two accounts, |CN(.)| is the size of CN(.).

5.2 Decision Model on Pairwise Similarity

(1) Machine Learning Models: Existing studies on the social identity link identi-
fication mainly rely on the supervised classification model. There are four clas-
sification models, namely multilayer perceptron (MLP) in [4], support vector
machine (SVM) in [7, 14], logistic regression (LR) in [8], and Naive Bayes
(NB) in [15], which have been demonstrated to perform well for this problem. As
such, we also build these four classification models using our labeled dataset so
that we can apply them to select the best match account from the candidate set in
the target network. The experiments are described in detail in Subsect. 6.2. The
results reported in Fig. 3 show that LR and MLP models are more accurate. Thus,
we select LR and MLP models for our experiments on the whole dataset.
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(2) Algorithm for Finding the Best Match Account: After all problems mentioned
above have been solved, we integrate all solutions into the algorithm FindSIL(),
which is used for finding the best match account Ij

T of Ii
S. Note the detailed

FindSIL() algorithm is shown in Algorithm 2, which is called in our overall
Algorithm 1.

Algorithm 2  FindSIL()  

Input: (1) account I
i

S, which is from GS and waiting for identification; (2) anchor 
links (ar

i

S, ar
i

T); (3) parameter d, which is used to control the search range R
d
(ar

i

T). 
Output: best match account I

j

T

1:   Define the search range R
d
(ar

i

T) according to ar
i

T and d.
2:   Find the best match account from the candidates through the decision model. 
3:   Return identified account I

j

T.

6 Experiments

6.1 Experimental Setup

(1) Data Preparation: As there is no publicly available benchmark datasets for social
identity link, we have to create our own data sets for performance evaluation
purpose. We leverage two publicly available large-scale social network data sets
from China for our experiments. One is Sina Weibo dataset, and the other one is
Renren dataset.

Before crawling user profile datasets from the two social networks for account
linking, we make sure that the profiles of the linked users have overlaps, at least
partially. In this paper, we request that the crawled accounts must satisfy a con-
straint, i.e. their university profile from two social platforms is equal to a specific
value. We crawled 40,618 Renren accounts and 20,448 Sina Weibo accounts. The
number of average friends per account in Renren and Sina Weibo is 339.9 and
27.5, respectively.

(2) Evaluation Metrics: We conduct our experiment on both the small set of labeled
data and the large set of unlabeled data, i.e. those nodes in the target network to be
identified. The objective of the former is to determine the best classification
models, while the objective of the latter is to identify as many social links as
possible.

For the first experiments on the small set of labeled data, we evaluate the
effectiveness of various methods, using precision, recall and F-score, which are
standard metrics in machine learning and information retrieval, and have widely
been used for user identification across different social networks [7, 19, 22].

For the second experiments on the large set of unlabeled data, we need to
manually check each of predicted linked account pairs, which can be classified
into three categories: correct account pairs (tp), uncertain account pairs (up) and
wrong account pairs (fp). Let the total number of predicted account pairs be
total = tp + up + fp. The correct ratio or precision (Pr), uncertain ratio (Ur) and
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wrong ratio (Wr) are computed as follows: Pr = tp/total, Ur = up/total, Wr =
fp/total. In addition, we evaluate the proportion of predicted account pairs in
whole data set. We define the coverage ratio (Cr) as Cr = total/min(N1, N2),
where N1 and N2 are the number of accounts in the source network and target
network, respectively.

(3) Comparative Methods: In this subsection, we compare our proposed methods
with the following state-of-the-art methods.

(1) Nickname Similarity Method (NSM): Many features extracted from nicknames
have been used to predict the social links. Especially, a few studies [8, 11] only
use the nickname similarity features. We also implement a NSM method (only
use the nickname features in Subsect. 5.1 (1)) to predict social link.

(2) Rule-based Filtering Method (RFM): The rule-based filtering method uses
hand-picked similarity features and rules designed to predict identity link. This
method achieves good performance [19]. We build a prototype RFM system
based on this paper, which has won the second prize in the third China
Software Developing Contest in 2014 (www.cnsoftbei.com).

(3) Our Method based on Logistic Regression (OM-LR): we use LR model to
select the best match account from the search range.

(4) Our Method based on Multilayer Perceptron (OM-MLP): we use MLP model
to select the best match account from search range.
Note that the performance of our proposed OM-LR and OM-MLP methods is
related to the parameter d in the search range Rd(ari

T).

6.2 Experimental Results

We first aim to find the best classification models through performing experiments on
the small set of labeled data. Here, the labeled dataset consists of 1,304 positive and
some negative instances where the number of negative instances is determined by an
imbalance ratio and the number of positive instances.

We partition the dataset into two groups using 10-fold cross validation (CV). Note
this is different from standard CV as we use less training data and more test data, to
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Fig. 3. Performance comparison of different classification models under imbalance ratios.
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better reflect the real scenario. We report the average results of 10-fold CV. In each
iteration of the cross validations, we sample the negative account pairs according to
different imbalance ratios. Figure 3 shows the performance comparison of 4 different
classification models under 4 different imbalance ratios (1:5). From Fig. 3, LR and
MLP get better performance than the other two methods, and their performance is very
close. So we choose both LR and MLP models for selecting the best match account
from candidates.

Secondly, we compare our methods, OM-LR and OM-MLP, with existing NSM
and RFM methods, based on the large set of unlabeled ground-truth data. As the
objective of this experiment is to identify as many social links as possible, the search
range includes all accounts from the target network (d = inf). Our methods use 186
randomly selected anchor links only and Table 1 shows experimental results for dif-
ferent methods. The first four columns show the performance in terms of various
evaluation metrics. The fifth column #coap denotes the number of correct account pairs
and the last column Total is the total number of predicted account pairs.

From Table 1, the performance of the NSM method is worst among all the methods,
as it predicted only 316 correct account pairs and with lowest coverage ratio 1.8 %. We
observe that rule based method RFM, albeit accurate (with highest precision), its
coverage ratio Cr = 5.4 %, is much lower than 13.7 % and 13.1 % of our proposed
OM-LR and OM-MLP respectively. In addition, the number of correct account pairs
identified by RFM is much less than that by our OM-LR and OM-MLP. In summary,
our methods, especially OM-LR, can identify much more correct social links than
existing methods, which cannot be identified by both NSM and RFM methods.

Table 1. Performance comparison of different methods on the unlabeled data (d = inf).

Pr Ur Wr Cr #coap Total

NSM 84.7 % 3.2 % 12.1 % 1.8 % 316 373
RFM 92.6 % 1.7 % 5.7 % 5.4 % 1017 1098
OM-LR 59.6 % 3.5 % 36.9 % 13.7 % 1667 2798
OM-MLP 58.8 % 3.1 % 38.1 % 13.1 % 1576 2673
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Fig. 4. The cumulative percentage of the matched account pairs (a) and of the correctly matched
account pairs (b) with regard to the different d; (c) Time cost.
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Finally, we evaluate the effectiveness of OM-LR and OM-MLP under different
values of parameter d. Fig. 4(a) shows the cumulative percentage of the matched
account pairs with regard to the different d. About 80 % of account pairs are matched
with d ≤ 2 by the OM-LR or OM-MLP. In particular, there are about 50 % of matched
account pairs, in which each account from the target network is found in Rd=1(ari

T);
Fig. 4(b) shows the cumulative percentage of the correctly account pairs with regard to
the different d. About 90 % of account pairs are correctly matched with d ≤ 2 by the
OM-LR or OM-MLP. Only about 7 % of account pairs are correctly matched with
d ≥ 5. These statistics reveal that most of correct social links can be found in small
range (d ≤ 2) around their anchor links and generated anchor links. As such, our
methods can solve the social link identification efficiently using a local search strategy.

6.3 Efficiency Evaluation

In existing methods, the computational cost of identifying pair-wise accounts is N1*N2

(N1 and N2 are the number of accounts in GS and GT respectively). For our method, the
computational cost is estimated as follows.

Given an account Ii
S in GS and an anchor link (ari

S, ari
T), the number of accounts in

the search range Rd(ari
T) of Ii

S is denoted by |Rd(ari
T)|. Assuming d ≤ m, |Rd≤m(ari

T)| = |
Rd=1(ari

T)| + …+|Rd=m(ari
T)| (\m

j¼1Rd¼jðarTi Þ ¼ £). Denote the corresponding search
tree by Tr(GT), and let the average number of friends per account in Tr(GT) is k2′, then
we can compute the number of accounts of Tr(GT) by N2′ = k2′*((k2′)

m − 1)/(k2′−1)
≈ (k2′)

m. Obviously, N2′ is much smaller than N2 when the depth parameter m is small.
Let us consider real social networks described in the Subsect. 6.1. The average

shortest path length of RenRen is about 5 (that was also confirmed by the work [27]).
Assume m = 4, which is less than the actual value. Then the average number of friends
per account is k2′ = 14.2 in the search tree Tr(GT). The actual average number of friends
per account in GT is about 340 computed by k2 = 2E2/N2, where E2 is the number of
friends. Obviously, there are 325.8 (340–14.2) redundant accounts. Knowing that about
93 % of account pairs are correctly matched with d ≤ 3 in our methods, the number of
accounts in the search range can be estimated by |Rd≤3(ari

T)| = |Rd=1(ari
T)| +…+|

Rd=2(ari
T)| = k2′+(k2′)

2 + (k2′)
3 ≤ k2 + k2k2′+(k2′)

3 = 8,031, which is much less (<20 %)
than N2 = 40,618. If we assume m = 5, then the number of accounts in the search range |
Rd≤3(ari

T)| = 3,766, which is smaller than that m = 4.
Next, we also use the total execution time to evaluate the efficiency of different

methods. We conduct experiments on our methods with different parameter values, i.e.
d = inf and d ≤ 3, where d = inf represents the computational cost N1*N2, while d ≤ 3
denotes the computational cost N1|Rd≤3()|. The parameter d ≤ 3 is reasonable because
about 93 % of account pairs are correctly matched with d ≤ 3 by our methods. The
experiments and latency observations are conducted on a PC, with Intel® Core™
i5-4460 processor and 8 GB main memory.

Figure 4(c) shows the relationship between the number of the matched accounts
and the time cost. The time cost of OM-LR (d ≤ 3) and OM-MLP(d ≤ 3) is significantly
less than the time cost of OM-LR(d = inf) and OM-MLP (d = inf) for identifying the
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same number of account pairs. Of course, the high efficiency of OM-LR(d ≤ 3) and
OM-MLP(d ≤ 3) is at the expense of slightly lower coverage ratio. Nevertheless, as we
handle large-scale networks, it is thus acceptable. In addition, the time cost of OM-LR
and OM-MLP with the same d value is very close.

7 Conclusion

In this paper, we address the problem of linking user accounts of the same natural
person across different social networks. Our proposed method is based on our unique
theoretical assumption inspired by the triadic closure principle. In particular, given two
user accounts of the same natural person across different social media platforms, their
friends/neighbors in different social platforms should still be directly or indirectly
connected to itself. Based on the theoretical assumption, we propose a novel method,
which is to link accounts across different social platforms using the local expansion
strategy. Experimental results demonstrate that our proposed method outperforms
existing methods significantly. Note our proposed method is generic and thus it can be
applied to link up user accounts across other Chinese or English social networks (e.g.
Twitter and Facebook), as long as we can collect their large-scale network data.
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Abstract. We introduce a new computational problem, the Backbone-
Discovery problem, which encapsulates both functional and structural
aspects of network analysis. While the topology of a typical road net-
work has been available for a long time (e.g., through maps), it is only
recently that fine-granularity functional (activity and usage) information
about the network (like source-destination traffic information) is being
collected and is readily available. The combination of functional and
structural information provides an efficient way to explore and under-
stand usage patterns of networks and aid in design and decision making.
We propose efficient algorithms for the BackboneDiscovery problem
including a novel use of edge centrality. We observe that for many real
world networks, our algorithm produces a backbone with a small subset
of the edges that support a large percentage of the network activity.

1 Introduction

In this paper we propose a novel formulation for discovering the backbone of
traffic networks. We are given the topology of a network (its structure) G =
(V,E) and a traffic log (functional activity) L = {(si, ti, wi)}, recording the
amount of traffic wi that incurs between source si and destination ti. We are
also given a budget B that accounts for a total edge cost. The goal is to discover
a sparse subnetwork R of G, of cost at most B, which summarizes as well as
possible the recorded traffic L.

The problem we study has applications for both exploratory data analysis and
network design. An example application of our algorithm is shown in Fig. 1. Here,
we consider a traffic log (Fig. 1, left), which consists of the most popular routes
used on the London tube. The backbone produced by our algorithm takes into
account this demand (based on the traffic log) and summarizes the underlying
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Fig. 1. London tube network, with nodes representing the stations. The figure on the
left shows a subset of the trips made, and the figure on the right shows the corre-
sponding backbone, as discovered by our algorithm. The input data contains only
source–destination (indicating start and end points of a trip) pairs and for visualiza-
tion purposes, a B-spline was interpolated along the shortest path between each such
pair. The backbone presented on the right covers only 24 % of the edges in the original
network and has a stretch factor of 1.58. This means that even with pruning 76 % of
the edges in the network, we are able to maintain shortest paths which are at most
1.58 times the shortest path length original graph.

network, thus presenting us with insights about usage pattern of the London
tube (Fig. 1, right). This representation of the “backbone” of the network could
be very useful to identify the important edges to upgrade or to keep better
maintained in order to minimize the total traffic disruptions.

We only consider source-destination pairs in the traffic log, and not full tra-
jectories, as source-destination information captures true mobility demand in a
network. For example, data about the daily commute from home (source) to
office (destination) is more resilient than trajectory information, which is often
determined by local and transient constraints, like traffic conditions on the road,
time of day, etc. Furthermore, in communication networks, only the source-ip
and destination-ip information is encoded in TCP-IP packets. Similarly, in a
city metro, check-in and check-out information is captured while the intervening
movement is not logged.

Example. To understand the key aspects of BackboneDiscovery problem
consider the example shown in Fig. 2. In this example, there are four groups of
nodes: (i) group A consists of n nodes, a1, . . . , an, (ii) group B consists of n
nodes, b1, . . . , bn, (iii) group C consists of 2 nodes, c1 and c2, and (iv) group
D consists of m nodes, d1, . . . , dm. Assume that m is smaller then n, and thus
much smaller than n2. All edges shown in the figure have cost 1, except the edges
between c1 and c2, which has cost 2. Further assume that there is one unit of
traffic between each ai and each bj , for i, j = 1, . . . , n, resulting in n2 source-
destination pairs (the majority of the traffic), and one unit of traffic between di
and di+1, for i = 1, . . . , m − 1, resulting in m − 1 source-destination pairs (some
additional marginal traffic).
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Fig. 2. The BackboneDiscovery problem solution results in a better network than
the one obtained from the Steiner forest solution. (a) A traffic network. We consider
a unit of traffic from each node in A to each node in B, and from each node in D to
its right neighbor. (b) Shown with thick edges is an optimal Steiner forest for certain
cost C. (c) Shown with thick edges is a backbone of cost at most C that captures the
traffic in the network better than the optimal Steiner forest.

The example abstracts a common layout found in many cities: a few busy
centers (commercial, residential, entertainment, etc.) with some heavily-used
links connecting them (group C), and some peripheral ways around, that serve
additional traffic (group D).

This example highlights advantages of the backbone discovery problem:

– We do not need to guarantee short paths for all pairs of nodes, but only for
those in our traffic log which makes our approach more general. In particular,
based on the budget requirements a backbone could be designed for the most
voluminous paths.

– Due to the budget constraint, it may not be possible to guarantee connectivity
for all pairs in the traffic log. In fact, it is possible that the optimal backbone
may even contain cycles while leaving pairs disconnected.

– Certain high cost edges may be an essential part of the backbone that other
problem formulations may leave out. For example, while the edge that con-
nects the nodes in C is a very important edge for the overall traffic (as it
provides a short route between A and B), the optimal Steiner-forest solu-
tion (see Related Work), shown in Fig. 2b, prefers the long path along the
nodes in D. Our algorithm includes the component C (as seen in Fig. 2c)
because it is an edge that is part of many shortes-paths between nodes (high
edge-betweenness).

The rest of the paper is organized as follows. In Sect. 2, we rigorously define
the BackboneDiscovery problem. In Sect. 3 we survey related work and dis-
tinguish our problem from other relevant approaches. Section 4 introduces our
algorithm based on the greedy approach, while Sect. 5 provides details of our
experimental evaluation, results and discussion. Section 6 is a short conclusion.

2 Problem Definition

Let G = (V,E) be a network, with |V | = n and |E| = m. For each edge e ∈ E
there is a cost c(e). Additionally, we consider a traffic log L, specified as a set of
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triples (si, ti, wi), with si, ti ∈ V , i = 1, . . . , k. A triple (si, ti, wi) indicates the
fact that wi units of traffic have been recorded between nodes si and ti.

We aim at discovering the backbone of traffic networks. A backbone R is a
subset of the edges of the network G, that is, R ⊆ E that provides a good sum-
marization for the whole traffic in L. In particular, we require that if the available
traffic had used only edges in the backbone R, it should have been almost as
efficient as using all the edges in the network. We formalize this intuition below.

Given two nodes s, t ∈ V and a subset of edges A ⊆ E, we consider the
shortest path dA(s, t) from s to t that uses only edges in the set A. In this
shortest-path definition, edges are counted according to their cost c. If there is
no path from s to t using only edges in A, we define dA(s, t) = ∞. Consequently,
dE(s, t) is the shortest path from s to t using all the edges in the network, and
dR(s, t) is the shortest path from s to t using only edges in the backbone R.

To measure the quality of a backbone R, with respect to some traffic log
L = {(si, ti, wi)} we use the concept of stretch factor. Intuitively, we want to
consider shortest paths from si to ti, and evaluate how much longer are those
paths on the backbone R, than on the original network. The idea of using stretch
factor for evaluating the quality of a subgraph has been used extensively in the
past in the context of spanner graphs [8].

In order to aggregate shortest-path information for all source–destination
pairs in our log in a meaningful way, we need to address two issues. The first
issue is that not all source–destination pairs have the same volume in the traffic
log. This can be easily addressed by weighting the contribution of each pair
(si, ti) by its corresponding volume wi.

The second issue is that since we aim at discovering very sparse backbones,
many source–destination pairs in the log could be disconnected in the backbone.
To address this problem we aggregate shortest-path distances using the harmonic
mean. This idea, proposed by Marchiori and Latora [5] and recently used by Boldi
and Vigna [1] in measuring centrality in networks, provides a very clean way to
deal with infinite distances: if a source–destination pair is not connected, their
distance is infinity, so the harmonic mean accounts for this by just adding a zero
term in the summation. Using the arithmetic mean is problematic, as we would
need to add an infinite term with other finite numbers.

Overall, given a set of edges A ⊆ E, we measure the connectivity of the traffic
log L = {(si, ti, wi)}, |L| = k by

HL(A) =

(
k∑

i=1

wi

)(
k∑

i=1

wi

dA(si, ti)

)−1

.

The stretch factor of a backbone R is then defined as

λL(R) =
HL(R)
HL(E)

.

The stretch factor is always greater or equal than 1. The closer it is to 1, the
better the connectivity that it offers to the traffic log L. This definition of stretch
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factor provides a principled objective to optimize connectivity while allowing to
leave disconnected pairs, when there is insufficient budget.

We are now ready to formally define the problem of backbone discovery.

Problem 1 (BackboneDiscovery). Consider a network G = (V,E) and a
traffic log L = {(si, ti, wi)}. Consider also a cost budget B. The goal is to find
a backbone network R ⊆ E of total cost B that minimizes the stretch factor
λL(R) or report that no such solution exists.

BackboneDiscovery is an NP-hard problem. The proof, omitted to due
lack of space, uses a reduction from the set cover problem.

3 Related Work

The BackboneDiscovery is related to the k-spanner and the Steiner-forest
problem [8,13]. In the k-spanner problem the goal is to find a minimum-cost
subnetwork R of G, such that for each pair of nodes u and v, the shortest path
between u and v on R is at most k times longer than the shortest path between
u and v on G. In our problem, we are not necessarily interested in preserving
the k-factor distance between all nodes but for only a subset of them.

In the Steiner-forest problem we are given a set of pairs of terminals {(si, ti)}
and the goal is to find a minimum-cost forest on which each source si is connected
to the corresponding destination ti. Our problem is different from the Steiner-
forest problem because we do not need all {(si, ti)} to be connected, and try
to optimize a stretch factor so that the structural aspect of the network are
also taken into account. The Prize collecting Steiner-forest problem (PCSF) [4]
is a version of the Steiner-forest problem that allows for disconnected source–
destination pairs, by imposing a penalty for disconnected pairs.

The BackboneDiscovery problem is also related to finding graph sparsi-
fiers, simplifying graphs and subgraph extraction [2,6,7,11,14]. However these
approaches do not consider budget constraints in the context of structural and
functional information.

There has been some work in social network research to extract a subgraph
from larger subgraphs subject to constraints [3,10]. The main focus of most of
these approaches is on the trade-off between the level of network reduction and
the amount of relevant information to be preserved either for visualization or
community detection.

4 Algorithm

The algorithm we propose for the BackboneDiscovery problem is a greedy
heuristic that connects one-by-one the source–destination pairs of the traffic
log L. A distinguishing feature of our algorithm is that it utilizes a notion of
edge benefit. In particular, we assume that for each edge e ∈ E we have available
a benefit measure b(e). The higher is the measure b(e) the more beneficial it is to
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include the edge e in the final solution. The benefit measure is computed using
the traffic log L and it takes into account the global structure of the network G.

The more central an edge is with respect to a traffic log, the more beneficial it
is to include it in the solution, as it can be used to serve many source–destination
pairs. In this paper we use edge-betweenness as a centrality measure, adapted
to take into account the traffic log. We also experimented with commute-time
centrality, but edge-betweenness was found to be more effective.

Our algorithm relies on the notion of effective distance �̂(e), defined as �̂(e) =
c(e)/b(e), where c(e) is the cost of an edge e ∈ E, and b(e) is the edge-between-
ness of e. The intuition is that by dividing the cost of each edge by its benefit,
we are biasing the algorithm towards selecting edges with high benefit. We now
present our algorithm in more detail.

4.1 The Greedy Algorithm

As discussed above, our algorithm operates with effective distances �̂(e) =
c(e)/b(e), where b(e) is a benefit score for each edge e. The objective is to obtain
a cost/benefit trade-off: edges with small cost and large benefit are favored to
be included in the backbone. In the description of the greedy algorithm that
follows, we assume that the effective distance �̂(e) of each edge is given as input.

The algorithm works in an iterative fashion, maintaining and growing the
backbone, starting from the empty set. In the i-th iteration the algorithm picks
a source–destination pair (si, ti) from the traffic log L, and “serves” it. Serving
a pair (si, ti) means computing a shortest path pi from si to ti, and adding
its edges in the current R, if they are not already there. For the shortest-path
computation the algorithm uses the effective distances �̂(e). When an edge is
newly added to the backbone its cost is subtracted from the available budget.
Here, the actual cost of the edge c(e) (instead of the �̂(e)) is used. Also its effective
distance is reset to zero, since it can be used for free in subsequent iterations of
the algorithm. The source–destination pair that is chosen to be served in each
iteration is the one that reduces the stretch factor the most at that iteration;
and hence the greedy nature of the algorithm. The algorithm proceeds until it
exhausts all its budget or until the stretch factor becomes equal to 1 (which
means that all pairs in the log are served via a shortest path). The pseudo-code
for the greedy algorithm is shown as Algorithm 1.

We experiment with two variants of this greedy scheme, depending on the
benefit score we use. (i) Greedy: we use uniform benefit scores, b(e) = 1;
(ii) GreedyEB: the benefit score of an edge is set equal to its weighted edge-
betweenness centrality, weighted by the traffic log L.

4.2 Speeding up the Greedy Algorithm

As we show in the experimental section the greedy algorithm provides solutions
of good quality, in particularly the variant with the edge-betweenness weighting
scheme. As the greedy algorithm is expensive, in this section we discuss a number
of optimizations. We start by analyzing the running time of the greedy.
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Algorithm 1. The greedy algorithm
Input: Network G = (V, E), edge costs c(e), benefit costs b(e), cost budget B, traffic

log L = {(si, ti, wi)}
Output: A subset of edges R ⊆ E of total cost c(R) ≤ B and small stretch factor

λ(R)
1: for all e ∈ E do
2: �̂(e) ← c(e)/b(e)
3: R ← ∅
4: λ ← ∞
5: while (B > 0) and (λ > 1) do
6: for each (si, ti, wi) ∈ L do

7: pi ←ShortestPath(si, ti, G, �̂)
8: λi ←StretchFactor(R ∪ pi, G, L)
9: p∗ ← mini{λi} // the path with min. stretch factor in the above iteration

10: R′ ← p∗ \ R // edges to be newly added
11: if c(R′) > B then
12: Return R // budget exhausted
13: R ← R ∪ R′ // add new edges in the backbone

14: �̂(R′) ← 0 // reset cost of newly added edges
15: B ← B − c(R′) // decrease budget
16: λ ←StretchFactor(R, G, L) // update λ
17: Return R

Running Time. Assume that the benefit scores b(e) are given for all edges
e ∈ E, and that the algorithm performs I iterations until it exhausts its budget.
In each iteration we need to perform O(k2) shortest-path computations, where
k is the size of the traffic log L. A shortest path computation is O(m + n log n),
and thus the overall complexity of the algorithm is O(Ik2(m + n log n)). The
number of iterations I depends on the available budget and in the worst case
it can be as large as k. However, since we aim at finding sparse backbones, the
number of iterations is typically smaller.

To improve the performance of greedy, we use a number of different optimiza-
tion techniques: (i) We maintain the connected components built by greedy. We
use this information to avoid re-computing shortest paths for all (si, ti) pairs for
which si and ti belong to different connected components. (ii) When computing
the decrease in the stretch factor due to a candidate shortest path to be added
in the backbone, for pairs for which we have to recompute a shortest-path dis-
tance, we first compute an optimistic lower bound, based on the shortest path on
the whole network (which we compute once in a preprocessing step). If this opti-
mistic lower bound is not better than the current best stretch factor then we can
skip the computation of the shortest path on the backbone. In practice, these two
optimizations lead to 20–35% improvement in performance (details in Sect. 5).
(iii) We use landmarks [9] to approximate the computation of shortest paths.
This reduces the complexity of our greedy algorithm to O(I�(k + m + n log n)),
where � is the number of landmarks. As we show in Fig. 4, this optimization
provides an improvement of up to 4 times in terms of runtime.
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5 Experimental Evaluation

The aim of the experimental section is to evaluate the performance of the pro-
posed algorithm, the optimizations, and the edge-betweenness measure. We also
compare our algorithm with other state-of-the-art methods which attempt to
solve a similar problem.

Datasets. We experiment with six real datasets: four transportation networks,
one web network and one internet-traffic network. For five of the datasets we
also obtain real traffic, while for one we use synthetically-generated traffic. The
characteristics and description of our datasets are provided in Table 1.

Table 1. Dataset statistics

Dataset Type # Nodes # Edges Real

network

Real

traffic

Network

description

Traffic log

description

LondonTube Transportation 316 724 � � London

subway

network

Subway

usage log

USFlights Transportation 1 268 51 098 � � US airport

network

Flight usage

data

UKRoad Transportation 8 341 13 926 � - UK road

network

Artificial

NYCTaxi Transportation 50 736 158 898 � � NYC road

network

Taxi usage

data

Wikispeedia Web 4 604 213 294 � � [12] [12]

Traffic Log for UKRoad. Since we were not able to obtain real-world traffic data
for the UKRoad network, we generate synthetic traffic logs L simulating differ-
ent scenarios. In particular we generate traffic logs according to four different
distributions: (i) power-law traffic volume, power-law s-t pairs; (ii) power-law
traffic volume, uniformly random s-t pairs; (iii) uniformly random traffic vol-
ume, power-law s-t pairs; and (iv) uniformly random traffic volume, uniformly
random s-t pairs. The goal is to understand the behavior of the algorithm with
respect to the characteristics of the traffic log L.

Baseline. To obtain better intuition for the performance of our methods we
define a simple baseline, where a backbone is created by adding edges in increas-
ing order of their effective distances �̂(e) = c(e)/b(e), where b(e) is edge-
betweenness; this was the best-performing baseline among other baselines we
tried, such as adding source–destination pairs one by one (i) randomly, (ii) in
decreasing order of volume (wi), (iii) in increasing order of effective distance
defined using closeness centrality, etc.

5.1 Quantitative Results

We focus our evaluation on three main criteria: (i) Comparison of the perfor-
mance with and without the edge-betweenness measure; (ii) effect of the opti-
mizations, in terms of quality and speedup; and (iii) effect of allocating more
budget on the stretch factor.
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Fig. 3. Effect of edge-betweenness on the performance of the Greedy algorithm, for
various datasets (a) LondonTube, (b) USFlights, (c) NYCTaxi, (d) Wikispeedia, (e–h)
UKRoad. Baseline is missing in figure (g) and (h) because the stretch factor was very
large or infinity. We see a consistent trend that using edge-betweenness improves the
performance. In Figure (e–h), (w) indicates traffic volume, and (l) indicates the log.

Effect of Edge-Betweenness. We study the effect of using edge-betweenness
in the Greedy algorithm. The results are presented in Fig. 3.

Effect of Landmarks. Landmarks provide faster computation with a trade
off for quality. Figure 4 shows the speedup achieved when using landmarks. In
the figures, BasicGreedyEB indicates the greedy algorithm that doesn’t use any
optimizations. GreedyEBCC makes use of the optimizations proposed in Sect. 4.2
which do not use approximation. GreedyEBLandmarks* makes use of the land-
marks optimatization and the * indicates the number of landmarks we tried.
Figure 5 shows the performance of GreedyEB algorithm with and without using
landmarks.

Budget vs. Stretch Factor. We examine the trade-off between budget and
stretch factor for our algorithm and its variants. A lower stretch factor for the
same budget indicates that the algorithm is able to pick better edges for the
backbone. Figure 3 shows the trade-off between budget and stretch factor for
all our datasets. In all figures the budget used by the algorithms, shown in the
x-axis, is expressed as a percentage of the total edge cost.

Key Findings. Our key findings are the following.

– The greedy algorithm and its variants performs much better than the baseline
(See Fig. 3). Note that the baseline is not included in Fig. 3(g,h) because the
edges in the baseline are added one-by-one and for a large interval of the cost,
the stretch factor was very large or even infinity.
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Fig. 4. Comparison of the time taken by the algorithm using different optimizations
mentioned in Sect. 4.2, for (a) LondonTube, (b) USFlights, (c) NYCTaxi, (d) Wikispeedia,
(e–h) UKRoad. BasicGreedyEB doesnt use any optimizations, GreedyEBCC is the ver-
sion using connected components, GreedyEBLandmarks* uses * landmarks. We can
clearly see a great improvement (up to 4x) in speed by using landmarks. As we increase
the number of landmarks, we trade-off speed with accuracy. In Figure (e–h), (w) indi-
cates traffic volume, and (l) indicates the log.

– The backbones discovered by our algorithms are sparse and summarize well
the given traffic (Figs. 3, 5). In all cases, with about 15 % of the edge cost in
the network it is possible to summarize the traffic with stretch factor close
to 1. In some cases, even smaller budget (than 15 %) is sufficient to reach a
lower stretch-factor value.

– Incorporating edge-betweenness as an edge-weighting scheme in the algorithm
improves the performance, in certain cases there is an improvement of at least
50 % (see Fig. 3; in most cases, even though there is a significant improvement,
the plot is overshadowed by a worse performing baseline). This is because,
using edges of high centrality will make sure that these edges are included in
many shortest paths, leading to re-using many edges.

– The optimizations we propose in Sect. 4.2 help in reducing the running time
of our algorithm (Fig. 4). For the optimizations not using landmarks, we see
around 30 % improvement in running time. Using landmarks substantially
decreases the time taken by the algorithms (3–4 times). While there is a
compromise in the quality of the solution, we can observe from Fig. 5 that the
performance drop is small in most cases and can be controlled by choosing the
number of landmarks accordingly. Our algorithms, using the optimizations we
propose, scale to large, real-world networks with tens of thousands of nodes,
which is the typical size of a road/traffic network.
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Fig. 5. Performance in terms of stretch factor of our greedy algorithm with and with out
using landmarks, for (a) LondonTube, (b) USFlights, (c) NYCTaxi and (d) Wikispeedia
(e–h) UKRoad. For all the datasets, as expected, we see a slight decrease in performance
using landmarks. In Figure (e–h), (w) indicates traffic volume, and (l) indicates the log.

5.2 Comparison to Existing Approaches

In this section, we compare the performance of BackboneDiscovery with
other related work in literature. The comparison is done based on two factors
(i) stretch factor and (ii) percentage of edges covered by the solution. Intuitively,
a good backbone should try to minimize both, i.e., produce a sparse backbone,
which also preserves the shortest paths between vertices as well as possible.

Comparison with Prize Collecting Steiner-Forest (PCSF). Prize Col-
lecting Steiner-forest [4] is a variant of the classic Steiner Forest problem, which
allows for disconnected source–destination pairs, by paying a penalty. The goal
is to minimize the total cost of the solution by ‘buying’ a set of edges (to connect
the s–t pairs) and paying the penalty for those pairs which are not connected.
We compare the performance of GreedyEB with PCSF, based on two factors
(i) stretch factor (Fig. 6a), and (ii) percentage of edges covered by the solution
(Fig. 6b). We use the same (s,t) pairs that we use in GreedyEB and set the traffic
volume wi as the penalty score in PCSF. We first run PCSF on our datasets
and compute the budget of the solution produced. Using the budget as input to
GreedyEB, we compute our backbone.

We can see from Fig. 6a that GreedyEB produces a backbone with a much
better stretch factor than PCSF. In most datasets, our algorithm produces a
backbone which is at least 2 times better in terms of stretch factor.

Figure 6b compares the fraction of edges covered by GreedyEB and PCSF. We
observe that the fraction of edges covered by our algorithm is lower than that
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Fig. 6. (a,b) Comparison of GreedyEB with PCSF, in terms of (a) stretch factor (b) Per-
centage of edges covered. (c,d) Comparison of GreedyEB with 2-spanner in terms of
(c) stretch factor (d) Percentage of edges covered. (e,f) Comparison of GreedyEB with
T-IGA, in terms of (e) stretch factor (f) Percentage of edges covered. The 4 variants
of UKRoad for the different traffic log are indicated by UKRoadab where a indicates
traffic volume, b indicates (s,t) pairs (r: random, p: powerlaw). (In (b) LondonTube is
not plotted because of a mismatch in scale).

of PCSF. This could be because GreedyEB re-uses edges belonging to multiple
paths. Figure 6(a,b) show that even though our solution is much better in terms
of stretch factor, we produce sparse backbones (in terms of the percentage of
edges covered).

Comparison with k-spanner. As described in Sect. 3, our problem is similar to
k-spanner [8] in the sense that we try to minimize the stretch factor. A k-spanner
of a graph is a subgraph in which any two vertices are at most k times far apart
than on the original graph. One of the main advantages of GreedyEB compared to
spanners is that spanners can not handle disconnected vertices. We also propose
and optimize a modified version of stretch factor in order to handle disconnected
vertices. Similar to PCSF, we first compute a 2-spanner using a 2 approximation
greedy algorithm and compute the budget used. We then run GreedyEB for the
same budget. Figure 6(c,d) show the performance of GreedyEB in terms of stretch
factor and percentage of edges covered. Our objective here is to compare the
cost GreedyEB pays in terms of stretch factor for allowing disconnected vertices.
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We can clearly observe that even though we allow for disconnected pairs, Greedy-
EB performs slightly better in terms of stretch factor and also produces a signifi-
cantly sparser backbone.

Comparison with the Algorithm of Toivonen et al. (T-IGA). Next, we
compare GreedyEB with the Iterative Global Algorithm proposed in Toivonen,
et al. [11] (T-IGA), a framework for path-oriented graph simplification, in which
edges are pruned while keeping the original quality of the paths between all pairs
of nodes. The objective here is to check how well we perform in terms of graph
sparsification. Figure 6(e,f) shows the comparison in terms of stretch factor and
percentage of edges covered. Similar to the above approaches, we use the same
budget as that used by T-IGA. We observe that for most of the datasets, their
algorithm works poorly in terms of sparsification, pruning less than 20 % of the
edges (Fig. 6(f)). Our algorithm performs better both in terms of the stretch of
the final solution as well as sparseness of the backbone.

The above results, comparing our work with the existing approaches showcase
the power of our algoritm in finding a concise representation of the graph, at
the same time maintaining a low stretch factor. In all the three cases, GreedyEB
performs considerably better than the related work.

Fairness. Though we claim that our approach performs better, we need to keep
in mind that there might be differences between these algorithms. PCSF does
not optimize for stretch factor. Spanners and T-IGA do not have a traffic log
((s,t) pairs). They also do not try to optimize stretch factor. For this section, we
were just interested in contrasting the performance of our approach with existing
state of the art methods and show how our approach is different and better at
what we do.

6 Conclusions

We introduced a new problem, BackboneDiscovery, to address a modern phe-
nomenon: these days not only is the structural information of a network available
but increasingly, highly granular functional (activity) information related to net-
work usage is accessible. For example, the aggregate traffic usage of the London
Subway between all stations is available from a public website. The Backbone-
Discovery problem allowed us to efficiently combine structural and functional
information to obtain a highly sophisticated understanding of how the Tube is
used (See Fig. 1) making it an important tool for network and traffic planning.
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Abstract. This paper discusses a complete and efficient algorithm for
enumerating densely-connected k-Plexes. A k-Plex is a kind of pseudo-
clique which imposes a Disconnection Upper Bound (DUB) by the
parameter k for each constituent vertex. However, since the parameter
is usually fixed not depending on sizes of our targeted pseudo-cliques,
we often have k-Plexes not densely-connected. In order to overcome
this drawback, we introduce another constraint using a parameter j
designating Connection Lower Bound (CLB). Based on CLB, we can
additionally enjoy a monotonic j-core operation and design an efficient
depth-first algorithm which can exclude hopeless vertex sets which can-
not be extended to their supersets satisfying both DUB and CLB. Our
experimental results show it can work well as a useful tool for detecting
densely-connected pseudo cliques in large networks including one with
over 800, 000 vertices.

1 Introduction

Detecting communities in a network has been an important task in Social Net-
work Analysis [10]. Cliques are typical vertex sets understood as potential com-
munities [11]. Moreover, the class of cliques has an anti-monotonicity property
helpful in designing an efficient enumerator for them. In a real world network,
however, the clique model is too restrictive to capture various communities
because it is rare for actual communities to appear as cliques. This would moti-
vates us to study clique relaxation models and various pseudo-clique models have
been proposed [11].

As another standard approach to community detection, graph clustering or
partitioning methods are well known to be useful (e.g. [8,9]). However, when
we aim at obtaining smaller communities, we shall use (pseudo-)clique detectors
instead of those methods because they usually suppose small numbers of clus-
ters whose sizes are consequently non-small and hence our targets are invisibly
merged and absorbed into those larger clusters.

In a density-based model of pseudo-cliques (e.g. [7]), some indices for mea-
suring the density of vertex sets are presented. Unlike the clique model, since
c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part I, LNAI 9651, pp. 423–435, 2016.
DOI: 10.1007/978-3-319-31753-3 34
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this class of pseudo-cliques do not satisfy the anti-monotonicity property, effi-
cient but heuristic detectors have often been proposed for searching them [7]. We
therefore might loose some vertex sets possibly valuable for us. Moreover, even
if we have a complete detector, it cannot process large scale networks because of
the hugeness of the number of pseudo-cliques. In spite of these difficulties, it is
still important to develop an efficient complete enumerator that can handle large
networks because such an enumerator is useful not only for community discovery
but also for analyzing the nature of large networks in terms of statistics about
(pseudo-)cliques [18].

As another clique relaxation models, a distance-based model, k-clique [2],
and diameter-based models, k-club and k-clan [3,4], have been proposed. The
parameter k controls admissible distances among vertices. As discussed in [5],
when we allow a longer distance, large dense subgraphs appear which are almost
cliques even when its subgraphs w.r.t. the original edge connection are not dense.

On the other hand, a k-Plex model [6] discusses the density in terms of
original connection by setting an upper bound for the number of missing edges
among vertices. The class of k-Plexes has an anti-monotonicity property which
helps us to design a simple bottom-up enumerator [1,15]. For this reason, we
discuss k-Plexes in this paper, introducing new constraints that can cover its
weakness we discuss just below.

A vertex set is called a k-Plex if, for each vertex x in it, the number of
vertices not adjacent to x is at most k. Disconnection Upper Bound (DUB) is
thus specified by the parameter k. Note that a k-Plex could be non-connected.
However, since it seems not interesting as a community, we exclude those ones
from our consideration.

For a very small k, connected k-Plex is in fact dense if its size is relatively
larger than k. On the other hand, as the size of densely connected vertex set
increases, the number of disconnected vertices, k per each vertex, shall be non-
small depending on density requirement. In other words, we think some con-
straint taking the sizes of targeted pseudo-cliques into account is important.
When we suppose a k-Plex of size n, then each vertex has at least n−k adjacent
vertices, where n−k must be a certain number provided we admit the vertex set
as a densely connected one. We thus introduce another constraint using a para-
meter j designating Connection Lower Bound (CLB). Then we try to enumerate
all maximal connected k-Plexes meeting the CLB constraint.

A naive strategy, computing maximal k-Plexes and then checking the CLB
constraint, does not work well when we consider non-small k because every
vertex set with size no larger than k is trivially a k-Plex so we have to examine
exponential number of such sets. The key to solve this problem lies in another
fact that, if a connected k-Plex X can be extendable to a maximal connected
k-Plex under the CLB constraint, X is involved in a “core” of X together with
candidates that are potential vertices to be added to X, where the term “core”
means the largest subset of vertices with at least j adjacents in the subset [19].

In this paper, j is fixed beforehand depending on the targeted vertex set size.
The monotonicity of core operation is suitable to standard k-Plex enumerator
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enjoying the anti-monotonicity of k-Plexness. Based on the monotonicities, we
can design an efficient complete depth-first algorithm which can exclude numer-
ous hopeless k-Plexes that cannot be extended to maximal ones meeting our
requirement. This realizes much improvement of performance of k-Plex enumer-
ator. In our experimentation, we compare our algorithm with a state-of-the-art
maximal k-Plex enumerator proposed very recently [1] from the viewpoints of
computational performance and quality of solution k-Plexes as pseudo-cliques.
For synthetic and real world large networks including a Web graph with over
800,000 vertices, it is verified that the CLB constraint as well as our pruning
mechanisms are quite effective and as the results, the proposed algorithm can
work very well as a practical tool for detecting dense pseudo-cliques.

2 Preliminary and Notation

An undirected graph is denoted by (V, Γ ), where V = {v1, ..., v|V |} is a set of
vertices and Γ (vn) = {vm ∈ V | vn, vm are adjacent}. Γ (vn) is assumed to not
include vn itself. An ordering ≺ over V is defined by vi ≺ vj and vi is said
younger than vj iff i < j. If the identifiers, i of vi, need not to be specified, we
prefer the notation for vertices as v, x, u and so on. For a vertex set X ⊆ V ,
G[X] is a subgraph of G induced by X. For a vertex x ∈ X, ΓX(x) denotes
Γ (x) ∩ X. |ΓX(x)| is often referred to as degX(x).

A vertex set X is called a k-Plex if |X − ΓX(x)| ≤ k for any x ∈ X. It
is easy to see that for a k-Plex Y , any subset X of Y is also a k-Plex, Thus,
the class of k-Plexes has an anti-monotonicity. A vertex y /∈ X is called a k-
Plex candidate if Xy is still a k-Plex, where Xy is an abbreviation of X ∪ {y}.
Cand(X) denotes the set of all k-Plex candidates of X. We especially discuss in
this paper connected k-Plexes (c-k-Plexes, for short).

For a vertex set X and a vertex y, the distance between X and y, dist(X, y),
is given by the minimum length of paths in G from X to y, where dist(X,x) = 0
whenever x ∈ X. dist(X, y) = ∞ only when y is not reachable from X. Dn(X)
is defined as {y ∈ V | dist(X, y) = n}. K1(X) = D1(X)∩Cand(X), the set of k-
Plex candidates directly connected to X, plays a key role in discussing c-k-Plexes
and is called a K1-candidate set at X.

3 Maximal Connected k-Plex

A maximal c-k-Plex, abbreviated as k-MPC, is a c-k-Plex that is maximal among
c-k-Plexes. It is clear a c-k-Plex X is extendable to its super c-k-Plex iff K1(X) 	=
∅. Thus, the extension is made by adding K1-candidates at X to X.

A formation Xf of c-k-Plex X w.r.t. an indexing f is a sequence of ver-
tices vf(i), (vf(1), vf(2), ..., vf(|X|)), where f(i) is the identifier of i-th vertex
added to form X = {vf(1), ..., vf(|X|)} as sets, and all the intermediate Xf

i =
{vf(1), ..., vf(i)} must be a c-k-Plex. That is,

vf(i+1) ∈ K1(X
f
i ). (1)
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The sequence (Xf
1 , ...,Xf

|X|) is also called a formation of X. For any k-MPC Z,

its formation ends at Z = Zf
|Z| with K1(Z) = φ.

We have multiple formations Zf for a k-MPC Z, depending on the order
of vertex addition. In fact, for an arbitrary initial vertex vn1 ∈ Z, repeat the
addition of vni

∈ Z such that vni
is adjacent to some vertex added prior to vni

.
Then any intermediate Xi(⊆ Z) is a c-k-Plex by the monotonicity of k-Plexes
and Zf with the index f such that f(i) = ni gives a formation of Z. In Sect. 5,
we introduce some control rules to disregard useless formations under the restric-
tion that formations must be those for k-MPCs whose density is guaranteed by
another parameter j.

4 j-Cored k-MPC

In this section, we define a class of k-MPCs, as our targets, which are dense in
the sense that each vertex has at least j adjacents in them. We then discuss how
to enumerate those targets completely and efficiently.

Given a graph G = (V, Γ ), a vertex set X is said to be j-cored if degX(x) ≥ j
for any x ∈ X. The largest j-cored set, denoted by corej(V ), is called j-core
of G [19]1. For a vertex set X, corej(X) is the j-core of the induced subgraph
G[X]. We can observe a monotonicity of j-core operation.

Fact (Monotonicity of j-Cores): For vertex sets X1,X2 of V , corej(X1) ⊆
corej(X2) holds whenever X1 ⊆ X2.

Fig. 1. Example of corej(X) for j = 3 case

The construction of corej(X) for a vertex set X is simple. Roughly speaking,
it can be obtained by iteratively removing vertices with degree less than j from
X. Since removing some vertices in general decreases degree of other vertices,
we can iterate such a removal until no vertex can newly be removed.

A behavior of j-core operation is illustrated in Fig. 1. Any connection towards
outside of X is ignored as we consider the subgraph G[X]. For this X, for i = 6, 7,
vi are firstly removed as degX(xi) = 2 < j = 3. By this removal, auxdeg(x5)
becomes 2. So x5 is furthermore removed. Then, no more removal is made by
1 The notion of j-core has originally been defined in [12]. We use in this paper the

definition and construction method for j-core, according to [19].
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degree lower bound constraint in this case, since all remaining vertices x1, x2, x3

and x4 still have at least j adjacents even after the removals so far.
Our target is now defined as a k-MPCs which is j-cored, called a j-cored k-

MPCs ((j, k)-MPCs, for short). The following discussion is devoted to an efficient
algorithm for enumerating every (j, k)-MPCs.

Unlike k-Plexes, the class of j-cored vertex sets does not have anti-
monotonicity property. In spite of this fact, we can give a sufficient condition for
c-k-Plexes to grow to j-cored ones. Then, we can use the condition conversely
to reject hopeless c-k-Plexes appearing in formations.

Fact (Hopeful c-k-Plex): Let X be a c-k-Plex extendable to some (j, k)-
MPCby adding vertices to X. Then

X ⊆ U(X), where (2)
U(X) = corej(X ∪ Cand(X)). (3)

X satisfying (2) is said to be hopeful. Conversely, hopeless ones are those
satisfying the negation of (2).

(Hopelessness) X − U(X) 	= φ (4)

The definition (3) of U(X) allowing k-Plex candidates Cand(X) before taking
j-core is weak particularly for small X with its size less than k. In that case, a
large number of vertices appear as k-Plex candidates independently of the length
of paths connecting X and candidates. As X is extended to include vertex y
more distant from X, the shortest path connecting X and y in the extension
becomes longer. Consequently, such an extended Y will not be k-Plex, because
there exist many vertices not adjacent to y on the path. As long as we target
connected k-Plexes including X, the distance limit becomes a key to define
U1(X) = U(X) ∩ D1(X) as a set of potential candidates to obtain (j, k)-MPCs.

Fig. 2. Examples showing how j-core is useful.

Figure 2 shows that j-core under such a distance limit is useful, and also
suggests that the construction of U(X) depends on the sizes of X. In the right
figure, for a singleton Y of the black circle y, Y ∪ Cand(Y ) is the whole vertex
set that is j-cored, where j = 2. Nothing is therefore removed by taking j-core
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for Y ∪ Cand(Y ). Nevertheless, note that the vertex z cannot be consistent
with Y to make a c-k-Plex, as dist(Y, z) = 4 > k = 3. More precisely, on the
paths connecting y and z, there are 4 vertices not adjacent to z including z
itself. Hence, there is no c-3-Plex involving Y z. For this reason we removed z
before we test if Y is extendable to j-cored c-k-Plexes. N3 is the set of remaining
candidates together with Y . Then corej(N3) = φ asserting that there exists no
j-cored c-k-Plex containing Y .

On the other hand, the left figure shows a case of X with |X| = 2. Simi-
larly, when k = 3, vertices with dist(X, z) > 3 cannot be members of c-3-Plex
including X. After excluding vertices violating the distance limit, we take 3-
core. y2, y3 are firstly removed, and then y1 is. The remaining part, surrounded
by dotted line and filled by pattern, is 3-cored and is a maximal 3-Plex in this
case.

4.1 Small C-k-Plex

A c-k-Plex X is said to be small if |X| < k. Note here that any connected X with
small size is a c-k-Plex. In this case, therefore, Cand(X) is given as V −X which
is generally large. To disregard useless candidates, we make a question whether
there exists some c-k-Plex Z such that Xy ⊆ Z for a small c-k-Plex X and
y /∈ X. When dist(X, y) = 1, Z = Xy is a trivial positive answer, so we analyze
the case of � = dist(X, y) ≥ 2. Consider the shortest path p = (y0, y1, ..., y�′ = y)
from X to y in G[Z], where y0 ∈ X and y1, ..., y�′ ∈ Z. Then, � ≤ �′, and y is
not adjacent to X, y1, ..., y�′−2 and y�′ = y itself. Z is a k-Plex, so it must be
|X| + (�′ − 2) + 1 ≤ k. Hence we have � ≤ �′ ≤ k − |X| + 1. In other words, y
with dist(X, y) > k − |X| + 1 can never be a member of any c-k-Plex including
X. So, we have more accurate definition for U(X) for small case as follows.

U(X) = corej(X ∪ K(X)),
K(X) =

⋃k−|X|+1
i=1 Di(X),where k − |X| + 1 is the distance limit.

The distance limit decreases as X enlarges, so K(X) is monotonic decreasing.

4.2 Medium c-k-Plex

We say that a c-k-Plex X is medium if k ≤ |X| < j+k. For a medium c-k-Plex X,
any vertex whose distance from X is greater than 1 is never a k-Plex candidate,
as it has no connection with at least k vertices in X. Hence, Cand(X) = K1(X),
and U(X) is exactly given as

U(X) = corej(X ∪ K1(X)).

4.3 Large c-k-Plex

We say that c-k-Plex X is large if |X| ≥ j + k. Any large X is j-cored, as
j ≤ |ΓX(x)| is derived from j + k ≤ |X| and |X − ΓX(x)| = |X| − |ΓX(x)| ≤ k.
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We need not take j-core, that is, U(X) = X ∩Cand(X). So we have the rule for
updating U as follows.

U(Xu) = U(X) ∩ Cand(Xu), where u ∈ U1(X).

The rule for large case is the same as one for k-Plexes.

4.4 Formations Revised for (j, k)-MPCs

Using U(X) thus defined depending on |X|, a formation Zf = (vf(1), ..., vf(|V |))
of (j, k)-MPC Z satisfies

U(Zf
i+1 = Zf

i vf(i+1)) ⊆ U(Zf
i ) and (5)

vf(i+1) ∈ U1(Z
f
i ), where U1 depends on |Zf

i |, (6)

U1(Z = Zf
|Z|) = φ. (7)

(6) is stronger than (1) since U1(Z
f
i ) ⊆ K1(Z

f
i ). The condition (7) holds because

U1(Z) ⊆ K1(Z) and K1(Z) = φ by the property of (j, k)-MPC as a k-MPC.

5 Search Control Rules, Right and Left Ones

As a c-k-Plex Z is more densely connected, the number of possible formations
of Z increases. For our efficient computation, we can enjoy two search control
rules, right and left rules, to avoid useless and duplicated formations.

With the right candidate control (abbreviated as RCC), we can exclude many
useless formations. A formation Zf = (vf(1), . . . , vf(|Z|)) can be obtained by
extending an intermediate Zf

i with a vertex in U1(Z
f
i ). In other words, for com-

plete enumeration of formations, we have to examine every vertex in U1(Z
f
i ) to

extend Zf
i . Some of them, however, result in non-maximal k-Plexes. Extending

an idea discussed in [13,14], we can identify the candidate set, R(Zf
i ), with the

property that adding member vertices in R(Zf
i ) only to the present Zf

i never
achieves a maximal k-Plex. Thus, the set of vertices actually used to extend Zf

i

is given as NR(Zf
i ) = U1(Z

f
i ) − R(Zf

i ), called non-right candidates. Our RCC
here can be regarded as an extended version of RCCs in [15] in the sense that
it is much more applicable for non-small Zf

i than that in [15]. Although we skip
the details due to space limitation, interested readers can refer to [16].

In addition to RCC, we can enjoy a left candidate control (abbreviated as
LCC) with which just one formation for each (j, k)-MPC can be composed. LCC
is in some sense a standard technique for set enumeration [17] and is almost sim-
ilar to what is stated in [13]. Roughly speaking, when we extend an intermediate
Zf

i , we do not need to care any vertex y such that y ≺ vf(i), called a left can-
didate, because any formation obtained by extending Zf

i with such a y can be
composed by extending another intermediate formation with some left candi-
date �(	= y). Thus, the set of vertices we actually use to extend Zf

i is given by
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NR(Zf
i ) − L(Zf

i ), where L(Zf
i ) is the set of left candidates. Although we do

not go into the details, effects of the control rules in the form of search tree are
illustrated in the next section.

6 Algorithm for (j, k)-MPCs

We present an algorithm in Fig. 4 for making formations for (j, k)-MPCs. The
algorithm is written using recursive calls of procedure Expand. This realizes a
depth-first search of (j, k)-MPCs.

Fig. 3. Search tree

We depict in Fig. 3 the invocation process of Expand in the form of search tree
with c-k-Plexes as its nodes. In the search tree, a path from the root, an empty set
∅, to a leaf just corresponds to a formation of c-k-Plex. Dark circle shows hopeless
c-k-Plexes from which no branch is expanded. Double circle is a (j, k)-MPC.
Single circle has chance of extension by choosing some of NR(X) − L(X) 	= φ.
Dark triangle is a c-k-Plex P such that every non-right candidate is left. This
means that (j, k)-MPC Z obtained by extending X is generated by another
branch with some left candidates � along the path. In other words, with some
initial segment X of Z and its non-left � ∈ NR(X), Z appears in the subtree
rooted by X�. Finally, white square J is a j-cored c-k-Plex which is not k-MPC.
It is maximal in the sense that there exists no j-cored c-k-Plexes including J .
Although it is straightforward to exclude such a J with the condition K1(X) 	= φ,
we allow to output J in addition to all possible (j, k)-MPCs.

Another point we have to note here is that every (j, k)-MPC is a subset of
global j-core corej(V ). In addition, since corej(V ) consists of several connected
components, and since our targets must be connected, we make the algorithm
run for each connected component C of corej(V ).

For setting parameters k and j, we assume a preferable size range [n1, n2]
and a density parameter τ . Then the connection lower bound will be j = n1τ ,
and the disconnection upper bound k = n2 ∗ (1 − τ).
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Fig. 4. Enumeration algorithm for (j, k)-MPCs

7 Experiments

We present in this section our experimental results. The proposed system,
referred to as JKMPC, has been coded in Java and executed on a PC with
Intel� CoreTM-i7 (1.7 GHz) processor and 8 GB memory. For several datasets,
we observe computation times and quality of solutions as pseudo-cliques.

In order to verify practical efficiency of JKMPC, we compare it with
MaxKplexEnum, a state-of-the-art maximal connected k-Plex enumerator [1]2.

As a synthetic dataset, we have created a small-world network, referred to
as WS, based on Watt-Strogatzs Model [20]. As real datasets, we have prepared
benchmark networks, DBLP and Google [21]. DBLP is a collaboration network
constructed from the DBLP Computer Science Bibliography. Authors as nodes
are connected if they have published a paper together. Google is a Web graph
consisting of web pages and their hyperlinks. Scale and degree distributions of
those networks are presented in Fig. 5.

As far as we know, there exists no algorithm devoted to enumerate all (j, k)-
MPCs. In this sense, it is difficult to farely compare JKMPC with others. However,
our target k-MPCs can be obtained by any maximal k-Plex enumerator with
j-coreness check. Therefore, we here observe computational performance of a
state-of-the-art enumerator, MaxKplexEnum [1], and our JKMPC in order to verify
practical efficiency of our system.

2 Its source codes in Python have been kindly provided by the authors of [1].
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Fig. 5. Scale and degree distributions of networks

Given a network, MaxKplexEnum can enumerate a designated number N
of maximal k-Plexes. That is, in order to completely obtain our target (j, k)-
MPCs with MaxKplexEnum, we have to give an adequate value of N which can
provide a set of candidates completely including all of our solutions. It is, how-
ever, impossible to identify such a suitable N in advance. Therefore, in our
comparison here, we first run JKMPC and identify the number of our solutions,
say Ñ . Then, we try to detect Ñ maximal k-Plexes by MaxKplexEnum. It is noted
here that those k-Plexes extracted by MaxKplexEnum do not always contain all of
our solution (j, k)-MPCs. That is, the value of Ñ can provide MaxKplexEnum the
best-case scenario.

7.1 Computational Performance

Figure 6 shows computation times by both systems, where solid lines are for
JKMPC and dotted lines for MaxKplexEnum. Data points for each k-value are dis-
tinguished by point types (e.g. •, �). Moreover, missing points mean we have
failed to extract all solutions within 12-hours.

The larger a j-value is, the smaller the number of (j, k)-MPCs becomes. That
is, the task of MaxKplexEnum would be easier at a higher range of j because
it is required to enumerate a smaller number of maximal k-Plexes. In fact,
MaxKplexEnum can run much faster than ours at higher ranges of j. However, its
performance suddenly gets worse, as j becomes slightly smaller. In most of the
cases, it has failed to complete enumerations within the time limit. For example,
in case of WS with k = 3 and j = 9, the number of solutions MaxKplexEnum has

Fig. 6. Computation times
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to extract is about 20 times larger than that in case with j = 10. The difference
has caused a rapid increase of computation time.

On the other hand, the performance of JKMPC is almost stable. Even in cases
quite hard for MaxKplexEnum, our system can enumerate all solutions. In other
words, JKMPC has an ability for extracting (j, k)-MPCs even with relatively small
size. This is a remarkable advantage of our system because it is quite difficult for
standard methods of graph clustering and partitioning to detect such small dense
subgraphs. Thus, it is verified that JKMPC is an efficient and practical system for
enumerating (j, k)-MPCs.

7.2 Quality of Solutions as Pseudo-Cliques

Since the notion of k-Plex has originally been proposed as a relaxation model of
clique, any maximal k-Plexes with lower densities would be undesirable. In order
to examine quality of solution k-Plexes from the view point of pseudo-cliques, we
observe density distributions of solutions obtained by MaxKplexEnum and JKMPC.

Fig. 7. Density distributions of solution k-Plexes

Figure 7 shows density distributions of solutions for each network. Upper
figures are distributions by MaxKplexEnum and lowers by JKMPC. For WS, solutions
by MaxKplexEnum have density of 0.80 on average with the standard deviation of
0.14. For DBLP and Google, the average densities are 0.65 and 0.75 on average,
where their standard deviations are 0.15 and 0.17, respectively. On the other
hand, for WS, the average density by JKMPC is 0.95 and the standard deviation
is less than 0.018. For both DBLP and Google, moreover, their average densities
are about 0.99 with the standard deviations less than 0.0018. It is obvious that
solutions by JKMPC have sufficient densities. All of them would be regarded as
pseudo-cliques without any doubt. However, solutions by MaxKplexEnum include
many maximal k-Plexes with relatively low densities. In other words, quality of



434 H. Zhai et al.

solutions by MaxKplexEnum is unstable. Thus, JKMPC can practically work as an
effective pseudo-clique detector.

8 Conclusion

In this paper, we designed an efficient complete algorithm for enumerating (j, k)-
MPCs. For efficient computation, we discussed several search mechanisms which
can effectively prune many useless search nodes. Our experimental results showed
the algorithm can work well as a practical tool for extracting densely-connected
pseudo cliques in large networks.

Although our j-coreness constraint can drastically reduce the number of solu-
tions to be enumerated, we would still suffer its hugeness when we are concerned
with much larger scale networks. It is, therefore, worth introducing some addi-
tional constraint which more tightly targets our solutions. The authors are cur-
rently developing a reasonable constraint, taking distance among communities
or separateness between clusters into account. Based on the consideration, we
expect efficiency of our algorithm can further be improved and it can practically
work even for huge networks with over million vertices.

Acknowledgments. The authors of [1] have kindly provided us their program codes
of MaxKplexEnum. We would like to sincerely appreciate their kindness.
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Abstract. With the development of service oriented computing, web
mashups which provide composite services are increasing rapidly in
recent years, posing a challenge for the searching of appropriate mashups
for a given query. To the best of our knowledge, most approaches on ser-
vice discovery are mainly based on the semantic information of services,
and the services are ranked by their QoS values. However, these meth-
ods can’t be applied to mashup discovery seamlessly, since they merely
rely on the description of mashups, but neglecting the information of
service components. Besides, those semantic based techniques do not
consider the compositive structure of mashups and their components. In
this paper, we propose an efficient consistent regularization framework to
enhance mashup discovery by leveraging heterogeneous information net-
work between mashups and their components. Our model also integrates
mashup discovery and ranking properly. Comprehensive experiments
have been conducted on a real-world ProgrammableWeb.com (http://
www.programmableweb.com) dataset with mashups and APIs (In
ProgrammableWeb.com, APIs are the service components of mashups.
Our model verified on the ProgrammableWeb.com dataset could also be
applied to other compositive service discovery scenarios.). Experimen-
tal results show that our model achieves a better performance compared
with ProgrammableWeb.com search engine and a state-of-the-art seman-
tic based model.

Keywords: Mashup discovery · Ranking · Heterogeneous ·
Regularization

1 Introduction

With the development of service oriented computing and the increasing demand
of service consumers, a single web service is far from enough to satisfy the
c© Springer International Publishing Switzerland 2016
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complex demand of users, contributing to the boom of composite services and
mashups. More and more developers are using mashup technologies to build
their own services, and publishing them for other users to invoke. Statistics from
ProgrammableWeb.com, a popular mashups and APIs management platform,
show that the number of mashups has reached up to 6,094, and that the number
of APIs has reached up to 10,634 by November 2014. In addition, the mashups
are increasing on a daily basis. The rapid increase of mashups demands a sys-
tematic approach to discover mashups with great accuracy and efficiency.

There have been many research works focusing on service discovery and
mashup discovery, which can be roughly divided into three categories: the
traditional web service discovery, mashup discovery and mashup components
discovery. Firstly, some literatures such as [9,13] propose reasoning-based sim-
ilarity algorithm to retrieve satisfied web services from the formalized descrip-
tion languages such as OWL-S and WSMO. But these methods cannot be
applied to mashup discovery seamlessly for the reason that there is no for-
malized description for mashups. Secondly, in [10,12], some semantic-based
approaches are used for mashup discovery, while only the semantic informa-
tion of mashups is considered, neglecting the relationship between mashups and
their components. Thirdly, many research works [3,11,14] focus on discovery and
recommendation for mashup components. Furthermore, ProgrammableWeb.com
has its own mashup search engine, but how the search algorithm works is
unknown to the public. According to our study, the mashup search system of
ProgrammableWeb.com only supports weak semantics searching and gives low
recall, losing many relevant results with similar semantics. For example, when
searching “film”, many mashups about “movie” will be lost, and when searching
“Cellular phone”, no results about “mobile” will be discovered.

Fig. 1. An example of mashup and API Fig. 2. A heterogeneous graph

In addition to the semantic information of mashups, the semantic information
of their related components and the relationship between them should also be
taken into consideration. Taking ProgrammableWeb.com as an example, it not
only records the information of each mashup and API, but also the composition
relationship between them. Figure 1 shows the detailed information of an mashup
and API. Specifically, we can find that the tags, description of Simple Latitude

http://ProgrammableWeb.com
http://ProgrammableWeb.com
http://ProgrammableWeb.com
http://ProgrammableWeb.com
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Mashup, as well as APIs of which the mashup is composed from the website.
Based on the information of Fig. 1, a composition network between mashups
and their related APIs can be constructed. Links exist between mashups and
APIs through the relation of “include” and “included by”. Besides, in our paper
we will also explore the relationship between mashups. If two mashups consist
of a common API, there should be a link between them. These two networks
containing the two described kinds of links are called heterogeneous network in
our paper. A sample heterogeneous network of ProgrammableWeb.com is shown
in Fig. 2. In this figure, GMA represents the network between mashups and APIs,
GM represents the network on the mashups layer.

The aim of this paper is to improve the discovery of mashups by introducing
the semantic information of mashups as well their components, and leveraging
the heterogeneous information network between mashups and their components.
We first construct a heterogeneous network on mashups and APIs. A probabilis-
tic model is proposed to calculate the relevance score of each mashup, integrat-
ing the semantic information of mashups and APIs, as well as the composition
network between mashups and APIs. Furthermore, a regularized framework is
proposed to ensure the consistency between mashups.

The contribution of this paper is summarized as follows:

– A probabilistic model is proposed to leverage the semantic information of
mashups as well as their components. Besides, this model also integrate dis-
covery and ranking process properly.

– A heterogeneous information network between mashups and their components
is constructed and a regularized framework with consistency hypothesis is
proposed to ensure the similarity consistency between mashups.

– We crawl 4,699 mashups and 937 related APIs from ProgrammableWeb.com
to evaluate the performance of our approach. Comprehensive experiments
show that our approach achieves a better performance comparing with
ProgrammableWeb.com search engine and a baseline method.

The remainder of this paper is organized as follows. Section 2 introduces the
related work of this paper. A probabilistic model and a heterogeneous network
based mashup discovery approach are shown in Sect. 3. Section 4 describes the
datasets we will use in our experiment and shows the experimental results and
analysis. Finally, we conclude and give some future directions in Sect. 5.

2 Related Work

In service oriented computing, discovery of appropriate web services has always
been a hot research topic. A number of approaches have been proposed for service
discovery. Many semantic-based approaches develop reasoning-based similarity
algorithms to retrieve relevant web services described using semantic web lan-
guages such as OWL-S and WSMO [9,13].

With the increase of mashup services, those traditional methods of service
discovery cannot be applied seamlessly to mashup discovery, since most of them

http://ProgrammableWeb.com
http://ProgrammableWeb.com
http://ProgrammableWeb.com
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only consider the information extracted from WSDL documents. Recently, more
and more research works are focusing on mashup searching or mashup discovery.
In [10], Li et al. provided a semantics extended framework to improve the preci-
sion and recall of mashup discovery as well as to improve the performance of the
mashup discovery processing time. Elmeleegy et al. [8] presented a recommen-
dation tool named MashupAdvisor, which used a semantic matching algorithm
and a metric planner to modify the mashup to produce the suggested output.
Bianchini et al. [2] proposed a recommendation system to design mashup appli-
cations based on the semantic description of mashup components, according to
their similarities with designer’s requirements and their mutual coupling.

Recently, some approaches using social networks to discover services are pro-
posed. In [15], the authors combine current discovery techniques with social
information as a mechanism to trade off exploration and exploitation. In [16],
Zhou et al. provided an approach that learns a semantic Bayesian network with
a semi-supervised learning method to build a web mashup network. Cao et al.
[3] proposed a recommendation approach for mashup service that utilizes both
users’ interests and the social network based on relationships among mashups,
APIs and tags. The inspiration of our paper mainly stems from some research
on expertise finding. In [7], Deng et al. proposed a joint regularized framework
to improve expertise retrieval by modeling heterogeneous networks as regular-
ization constraints. In [18], an incremental method based on multiple graphs
was proposed for document recommendation in a digital library. Besides, [17]
provides a strong theoretical support for learning with local and global consis-
tency. Inspired by those works, our paper builds a heterogeneous social network
between mashups and their components, and a regularized framework is pro-
posed to ensure the consistency.

3 Heterogeneous Network Based Mashup Discovery

3.1 Baseline Model for Mashup Discovery

The probabilistic model proposed in this subsection mainly follows the basic
idea of a document-centric probatilistic model, which is proposed to estimate the
expertise of a candidate by summing the relevance of its associated documents
[7]. In the contex of mashup discovery, we denote the relevance score of candidate
mashup mi related to a given query q as p(mi|q), and according to the document-
centric model,the relevance score of a mashup related to a given query can be
formulated as:

p(mi|q) = λ
∑

a∈Ami

p(mi|a)p(a|q) + (1 − λ)p(mi|q)

∝ λ
∑

a∈Ami

p(mi|a)p(q|a)p(a) + (1 − λ)p(q|mi)p(mi)
(1)

where Ami
denotes the APIs set of which mashup mi is composed of; p(mi|a)

denotes the probability of mashup mi being relevant to a given API a; p(q|a) and
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p(q|mi) denote the semantic similarities of API and mashup, respectively, for a
given query; p(a) and p(mi) can be seen as the quality of API a and mashup
mi, respectively; λ(0 ≤ λ ≤ 1) is a tuning parameter used to determine how
much the relevance score of a candidate mashup relies on the candidate mashup
itself and its API components. In this equation, the Bayes’ theorem is applied.
Intuitively, we argue that when we calculate the relevance score of a mashup
candidate, we should not only consider the information of the mashup, but also
the information of its components.

The right hand of Eq. (1) can be divided into two parts. The first term rep-
resents the relevance score contributed by APIs by aggregating the relevance
scores of APIs directly associated with a mashup. The second term denotes the
relevance score from the mashup itself. Those two terms are combined by a tun-
ing parameter λ. When λ = 0, only the information of mashup is considered,
and when λ = 1, only the information of mashup’s components is considered,
otherwise, the semantic information of mashup as well as its components are
integrated to improve the performance of mashup discovery.

Specifically, in this model, p(mi|a) represents the association between the
candidate and its components. Suppose that mashup mi consists of nmi

APIs,
then p(mi|a) = 1/nmi

if a is a component of mi, and zero otherwise. p(q|a) mea-
sures the relevance between q and API a, while p(q|mi) measures the relevance
between q mashup mi. These two probabilities can be determined by using the
language model. In this paper, we use Latent semantic indexing (LSI) mothod
[6] to calculate the semantic similarities between a query and APIs or mashups.
Before applying LSI, some standard process of natural language processing such
as case folding, tokenization, pruning, stemming and spell correcting will be con-
ducted on all APIs and mashups.

In addition, the prior probability p(a) and p(m) can be viewed as the quality
of an API and mashup respectively, which generally follow the uniform distribu-
tion. Indeed, the quality of an API or mashup can also be set to be how popular
the API or mashup is. In the context of our problem, since the popularity of
mashups are difficult to measure, the qualities of mashups are set to be uni-
form. However, in the information network of APIs and mashups, we define the
popularity of a particular API as the number of times that it is used in the
formation of mashups. For example, in Fig. 2, the “Twitter API” is used by four
mashups, then the popularity of “Twitter API” is 4. From our analysis, we can
find the distribution of API popularity is long tailed [1]. So we estimate p(a) by
the logrithm of the popularity of API.

For simplicity, let x be the relevance vector between API ai and query q with
xi = p(q|ai), y be the relevance vector between mashup mi and query q with
yi = p(q|mi), QA and QM be the diagonal matrix which represent the quality of
APIs and mashups respectively, and PMA be the composition matrix between
mashups and APIs. The primary model as shown in Eq. (1) can be rewritten as:

z = λPMAQAx + (1 − λ)QMy (2)
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where z represents the relevance score vector of all candidate mashups, and λ is
the tuning parameter which controls the weight between the mashups and their
components.

3.2 Heterogeneous Information Incorporation

In the previous subsection, we utilize the description of mashups and their com-
ponents to measure the relevance of candidate mashups for a given query. In
addition to the textual document information, some information of the hetero-
geneous network should also be considered. In this subsection, we will describe
a mashup consistency hypothesis and enforce the hypotheses by defining regu-
larization constraints.

Mashup Consistency Hypothesis: If two mashups share many common ser-
vices with respect to a given query, then their relevance score in the queried
field should be similar in some sense. As shown in Fig. 2, mashup m2 is com-
posed of “Google Maps API”, “Google Calendar API” and “Twitter API”, while
mashup m4 is composed of “Twitter API” and “Google Calendar API”, these
two mashups share two common APIs, so we can consider that their functional-
ity and quality are similar in some sense, and their relevance for a given query
should also be similar.

According to [17], we enforce the above hypothesis by defining the regulariza-
tion constraints. Suppose we are given a mashup graph GM = (VM , EM ), which
is a weighted undirected graph. Suppose that the pairwise similarities among
the mashups are described by matrix SM ∈ R

|M |×|M | measured based on GM .
Thus, we formulate to minimize a regularization loss function as follows:

Ω(z) = zT (I − SM )z + μ
∥∥z − z0

∥∥2
(3)

s.t. z0 = λPMAQAx + (1 − λ)QMy (4)

where μ > 0 is the regularization parameter. The first term of the loss function
defines the mashup consistency, which prefers small difference in relevance scores
between nearby mashups; the second term is the fitting constraint that measures
the difference between final scores z and the initial relevance scores z0. The
initial relevance score vector z0 can be calculated according to Eq. (2) in the
probabilistic model. Setting ∂Ω(z)/∂z = 0, we can see that the solution z∗ is
essentially the solution to the linear equation:

(I − αSM )z∗ = (1 − α)z0 (5)

where α = 1/(1+μ). Since the matrix SM is usually very sparse, calculating the
inversion of SM is of high time complexity. One solution to the above equation
is using a powerful iterative method [17]:

zt+1 ← βSMzt + (1 − β) [λPMAQAx + (1 − λ)QMy] (6)

where β = 1/(1 + μ), z∗ = z∞ is the solution.
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Now the interesting question is how to calculate SM among set M . For graph
data, a number of works [4] have been given on obtaining the similarity measures.
For undirected graph, SM is simply the normalized adjacency matrix W:

SM = Π−1/2WΠ1/2 (7)

where W is the adjacency matrix of mashups in GM , Wij = 1 if node i is linked
to node j, otherwise, Wij = 0, and Π is a diagonal matrix with Πii =

∑
j Wij .

3.3 Implementation

Figure 3 shows the framework of the proposed heterogeneous information net-
work based mashup discovery, which integrates the semantic information of
mashups and their components, as well as the similarity consistency between
mashups. The proposed framework is comprised of three components: heteroge-
neous network construction, data processing, and mashup ranking. The construc-
tion of heterogeneous network and data processing can be performed offline,
while the mashup ranking part should be conducted online according to the
query specified by a user.

Fig. 3. The heterogeneous network based mashup discovery framework
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4 Experiments

4.1 Experimental Setup

Dataset. ProgrammableWeb.com is one of the most popular platforms that
has collected lots of APIs and mashups used in Web and mobile applications.
To evaluate our proposed approach, we crawl all the mashups and their related
APIs from ProgrammableWeb.com as we can.

From the statistics, we totally get 4,699 mashups and 937 APIs in our data
collection. After the construction of the heterogeneous graph, we observe that
there are many edges on the mashup graph, while relatively few edges in the
graph of mashups and APIs. As for GM the density of matrix is nearly 17.0%,
while for GA the density of matrix is only 0.18%.

Evaluation Metrics. For the evaluation, several categories of Web search eval-
uation metrics are used to measure the performance of our proposed model from
different aspects, including some relevance based metrics, ranking based met-
rics and diversity based metrics. To measure the relevance of our search results,
we use the precision at rank k (P@K) which is widely used and is defined as:
P@K = # relevant in top K results

K . P@K measures the fraction of the top-K
retrieved results that are relevant for the given query. From the ranking aspect,
we use Mean Reciprocal Rank (MRR) to evaluate the ranking of our search
results. A larger MRR value means a better result. The MRR is defined as:
MRR = 1

|Q|
∑|Q|

i=1
1

ranki
, where |Q| is the size of query set. We expect that our

search results should not only have a high precision and reasonable ranking,
but also have a high diversity. Following [5], we use the α-DCG metric to mea-
sure the novelty and diversity of our retrieved results. The α-DCG is defined
as: α-DCGK =

∑K
i=1

Gi

log2(i+1) , where Gi =
∑n

j=1 J(mi, j)(1 − α)
∑i−1

k=1 J(mk,j);
n is the total number of topics the searching results contains; J(di, j) = 0, if
result mi contains topic j, otherwise, J(mi, j) = 1.

∑i−1
k=1 J(mk, j) represents

the degree of diversity and novelty of the searching result; α is a parameter. In
our model, α is set to be 0.5.

4.2 Comparison

In this subsection, comparisons between our method and the following
approaches have been made to show the effectiveness of our proposed approach.

– PW Search Engine: The ProgrammableWeb.com has its own search engine
for mashups and APIs discovery. From our observation, we find that the
search results is mostly based on the name, description and tags/categories of
mashups/APIs. In addition, the search results are all ranked by their updated
date.

– MD-Sim: This method which has been used in many state-of-the-art works
just utilizes the semantic information of mashups. The semantic similarities
between mashups and query are calculated by the LSI method.

http://ProgrammableWeb.com
http://ProgrammableWeb.com
http://ProgrammableWeb.com
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– MD-Sim+: Compared with the above two methods, our probabilistic model
(MD-Sim+) employs the semantic information of mashups, as well as the
semantic information of the related APIs which are the components of
mashups. The qualities of related APIs are also introduced in this approach.

– MD-HIN: This method is the extended version of the probabilistic model
(MD-Sim+). It proposes a consistency hypothesis on mashups firstly, and a
regularization constraints is employed.

Before comparing the performance of the above four methods, several points
should be made clear first. Since there is no published ground truth for compar-
ison, we select twenty queries of different topics to evaluate the performance on
the above metrics. According to the search results, if the categories of mashup
are related to a query, then the mashup will be considered to be relevant with the
query. We judge the degree of relevance by the number of followers of mashups.
Since most mashups have more than one tags, we will use the tags to evaluate
the diversity of results. The parameter settings of our approaches are λ = 0.4,
β = 0.5, #iteration = 100, and topic number of LSI is set as 20. The experi-
mental results are shown in Table 1, and the detailed investigations of parameter
settings will be provided in Sects. 4.3 and 4.4.

Table 1. Experimental results of our proposed method and other methods. The per-
centages of relative improvements(%) are also shown in this table.

P@10 P@20 P@50 MRR α-DCG

PW 0.595 0.493 0.431 - -

MD-Sim 0.555 0.488 0.553 0.121 2.920

MD-Sim+ 0.575 0.495 0.534 0.137 2.916

(vs MD-Sim) +3.60 % +1.43 % -3.44 % +13.22 % -0.01 %

MD-HIN 0.555 0.53 0.537 0.160 3.027

(vs PW) -6.72 % +7.51 % +24.59 % - -

(vs MD-Sim) 0.00 % +8.61 % -2.89 % +32.23 % +3.66 %

Based on the results in Table 1, we have the following observations:

– From the perspective of P@K, when the value of K is small, the perfor-
mance of ProgrammableWeb.com search engine is a litter better than our
approach (MD-HIN). While when the value of K is large, our approach has
a great advantage over ProgrammableWeb search engine. This is because as
K increases, the ProgrammableWeb.com search engine is unable to discover
so many mashups, which just depends on the utilization of the mashup infor-
mation, while our approach can find more related mashups by incorporating
the mashups and APIs’ information and leveraging the heterogeneous social
network between them.

http://ProgrammableWeb.com
http://ProgrammableWeb.com
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– From the perspective of ranking of results, our extented approach (MD-HIN)
achieves better performance than the probabilistic approach (MD-SIM) since
introducing the quality of APIs along with the similarity consistency on
mashup social network, making sure that the mashups with similar quality
will have similar ranking scores.

– Among all the discovery methods, our proposed method (MD-HIN) generally
achieves better performance on both P@20, MRR and α-DCG, indicating
that integrating the semantic information of mashups with APIs, and consid-
ering the similarity consistency on mashup social network will facilitate and
improve the discovery of mashups. These experimental results demonstrate
that our model leveraging the heterogeneous social network is practical and
effective.

4.3 Impact of λ

In our model, the parameter λ controls how much our method relies on the
semantic information of mashups and their related APIs. To study the impact
of λ on P@20, MRR and α-DCG, we vary λ from 0 to 1 with a step value 0.1.
The experimental results are shown in Fig. 4. Figure 4(a) shows that optimal
λ value settings can achieve better performance of mashup discovery, which
demonstrates that fusing the information of mashups and their related APIs with
our proposed approach will improve the discovery accuracy. As λ increases, the
P@20 value increases at first, but when λ surpasses a certain threshold, the P@20
value decreases with further increase of the value of λ. This phenomenon confirms
the intuition that purely using the semantic information of mashups or purely
employing the semantic information of their related APIs cannot generate better
performance than fusing these two factors together. From Fig. 4(b) and (c), we
can find that the value of λ also has an impact on the MRR and α-DCG
although the impact is small. This demonstrates that when we introduce the
semantic information and quality of APIs, the ranking and diversity of search
results will be improved.

(a) Impact of λ on P@20 (b) Impact of λ on MRR (c) Impact of λ on α-DCG

Fig. 4. Impact of λ
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4.4 Impact of β

In our model, β = 1/(μ+1) where μ is a regularization parameter which controls
the difference between final score z and the initial score z0. To study the impact
of β on the metrics of our approach, we change β from 0 to 1 with a step value
0.1. We set λ = 0.4, Top-K=20, and #iteration = 100 in this experiment. From
Fig. 5(a), we can find that value β has a significant impact on the precision of the
discovery results. When β increases to 1, the P@20 will decrease rapidly. This
is because that when β is near to 1, μ is near to 0, in this condition, we only
consider the similarity constraints of mashups, neglecting the constraint that the
final score value should be fitting to the initial value. Figure 5(b) and (c) show
that the value of β still has an effect on MRR and α-DCG, although the effect
is not obvious.

(a) Impact of β on P@20 (b) Impact of β on MRR (c) Impact of β on α-DCG

Fig. 5. Impact of β

5 Conclusion and Future Work

Based on some traditional semantic-based service discovery methods, we pro-
pose an approach to improve mashup discovery by integrating the semantic
information of mashups and their related APIs. Besides, a similarity consis-
tency between mashups is proposed and a regularization framework is employed
to achieve better performance. Comprehensive experiments on a real-world
ProgrammableWeb.com dataset are conducted, and the extensive experimental
analysis shows the effectiveness of our approach.

Although the data crawled from ProgrammableWeb.com is sufficient for eval-
uation purpose, we believe that there is a necessity for an experiment on tra-
ditional Web services described by a standard language such as WSDL. In our
future work, we plan to build a social network on traditional Web services and
verify our model. In addition, we will extend our ground truth with more queries,
and more information retrieval evaluation metrics will be introduced to enhance
the quality of our work. Furthermore, we are going to conduct more research on
the social network, a more complex social network including service users will
be built.

http://ProgrammableWeb.com
http://ProgrammableWeb.com
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Abstract. Recent years have witnessed the boom of heterogeneous
information network (HIN), which contains different types of nodes and
relations. Many data mining tasks have been explored in this kind of
network. Among them, link prediction is an important task to predict
the potential links among nodes, which are required in many applica-
tions. The contemporary link prediction usually are based on simple
HIN whose schema are bipartite or star-schema. In these HINs, the meta
paths are predefined or can be enumerated. However, in many real net-
worked data, it is hard to describe their network structure with simple
schema. For example, the knowledge base with RDF format include tens
of thousands types of objects and links. On this kind of schema-rich HIN,
it is impossible to enumerate meta paths. In this paper, we study the
link prediction in schema-rich HIN and propose a novel Link Prediction
with automatic meta Paths method (LiPaP). The LiPaP designs an
algorithm called Automatic Meta Path Generation (AMPG) to automat-
ically extract meta paths from schema-rich HIN and a supervised method
with likelihood function to learn weights of the extracted meta paths.
Experiments on real knowledge database, Yago, validate that LiPaP is
an effective, steady and efficient method.

Keywords: Heterogeneous Information Network · Link prediction ·
Similarity measure · Meta path

1 Introduction

Nowadays, the study of Heterogeneous Information Network (HIN) become more
and more popular in data mining area [5], where the network includes different
types of nodes and relations. Many data mining tasks have been exploited on
this kind of network, such as clustering [14], and classification [7]. Among those
researches in HIN, link prediction is a fundamental problem that attempts to
estimate the likelihood of the existence of a link between two nodes, based on
observed links and the attributes of nodes. Link prediction is the base of many
data mining tasks, such as data clearness and recommendation.
c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part I, LNAI 9651, pp. 449–460, 2016.
DOI: 10.1007/978-3-319-31753-3 36
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Some works have been done to predict link existence in HIN. Because of the
unique semantic characteristic of HIN, meta path [14], a sequence of relations
connecting two nodes, is widely used for link prediction. Utilizing the meta
path, these works usually employ a two-step process to solve link prediction
problem in HIN. The first step is to extract meta path-based feature vectors,
and the second step is to train a regression or classification model to compute the
existence probability of a link [3,12,13,15]. For example, Sun et al. [12] propose
PathPredict to solve the problem of co-author relationship prediction, Cao et al.
[3] propose an iterative framework to predict multiple types of links collectively
in HIN, and Sun et al. [13] model the distribution of relationship building time
to predict when a certain relationship will be formed. These works usually have
a basic assumption: the meta paths can be predefined or enumerated in a simple
HIN. When the HIN is simple, we can easily and manually enumerate some
meaningful and short meta paths [14]. For example, a biboligraphic network with
star schema is used in [12,13,15] and only several meta paths are enumerated.

However, in many real networked data, the network structures are more com-
plex, and meta paths cannot be enumerated. Knowledge graph is the base of
the contemporary search engine [10], where its resource description framework
(RDF) [1] < object, relation, object > naturally constructs a HIN. In such a HIN,
the types of nodes and relations are huge. For example, DBpedia [2], a kind of
knowledge graph, has recorded more than 38 million entities and 3 billion facts.
In this kind of network, it is hard to describe them with simple schema, so we call
them schema-rich HIN. Figure 1 shows a snapshot of the RDF structure extracted
from DBpedia. You can find that there are many types of objects and links in
such a small network, e.g., Person, City, Country. Moreover, there are many
meta paths to connect two object types. For example, for Person and Country
types, there are two meta paths: Person

bornin−−−−→ City
locatedIn−−−−−−→ Country and

Person
Diedin−−−−→ City

hasCapital−1

−−−−−−−−−→ Country. Note that Fig. 1 is one extreme
little part of the whole DBpedia network, and there will be huge number of

y:Franklin Roosevelt

y: Washington DC

y:United States

y:Hyde Park NY

y:Reese Witherspoon

y:Hodgenville KY y: Abraham Lincoln

y:New Orleans LA

hasName
"Hodgenville"

bornIn

gender

"Male"

title

"President"

hasName

"Abraham Lincoln"

BornOnDate "1809-02-12"

DiedOnDate"1865-04-15
"DiedIn

foundingYear

"1790"
hasName

"Washington D.C."

hasCapital

foundingYear

"1776"

hasNam
e

"United States"

locatedIn locatedIn

foundingYear

"1810"

bornIn

hasName

"Franklin D. Roosevelt"

gender

"Male"

title

"President"

foundingYear

"1718"

bornIn gender

"Female
"

title

"Actress"

bornOnDate

"1976-03-22
"

hasName

"Reese Witherspoon"

Fig. 1. A snapshot of the RDF structure extracted from DBpedia.
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meta paths can connect Person and Country in a real network. So that the meta
paths in this kind of schema-rich HIN are too many to enumerate and it’s hard
to analyze them.

To be specific, the challenges of link prediction in schema-rich HIN are mainly
from two aspects. (1) The meta path cannot be enumerated. As mentioned above,
there are tens of thousands of nodes and links in such schema-rich HIN and the
meta paths in the network have the same order of magnitude. It’s impossible
to enumerate meta paths between two node types. (2) It is also not easy to
effectively integrate these meta paths. Even though masses of meta paths can
be found between target nodes, most of them are meaningless or less important
for link prediction. So that we need to learn weight for each meta path, where
the weight represents the importance of paths for link prediction.

In this paper, we study the link prediction in schema-rich HIN and propose
the Link Prediction with automatic meta Paths method (LiPaP). The LiPaP
designs a novel algorithm, called Automatic Meta Path Generation (AMPG), to
automatically extract meta paths from schema-rich HIN. And then we design an
supervised method with likelihood function to learn the weights of meta paths.
On a real knowledge base Yago, we do extensive experiments to validate the
performances of LiPaP. Experiments show that LiPaP can effectively solve link
prediction in schema-rich HIN through automatically extracting important meta
paths and learning the weights of paths.

2 Preliminary and Problem Definition

In this section, we introduce some basic concepts used in this paper and give the
problem definition.

The Heterogeneous Information Network (HIN) [5] is a kind of infor-
mation network defined as a directed network graph G = (V,E), which consists
of either different types of nodes V or different types of edges E. Specifically,
a information network can be abstracted to a network schema M = (R,L)
where R is the set of the node types and L is the set of the edge types, and
there is a node type mapping function θ : V → R, and an edge type mapping
function ϕ : E → L. When the number of node types |R| > 1 or the number of
edge types |L| > 1, the network is a heterogeneous information network.
For example, in bibliographic database, like DBLP [4], papers are connected
together via authors, venues and terms, they can be organized as a star-schema
HIN. Another example is the users and items in e-commerce website which con-
stitutes a bipartite HIN [6].

In a HIN, there can be different paths connecting two entity nodes and
these paths are called as meta path [14]. A meta path

∏
that is defined as∏R1,··· ,Rl+1 = R1

L1−−→ R2
L2−−→ · · · Ll−→ Rl+1, which describes a path between two

node types R1 and Rl+1, is going through a series of node types R1, · · · , Rl+1 and
a series of link types L1, · · · , Ll. Taking the knowledge base in Fig. 1 as an exam-
ple, we can consider the knowledge base as an HIN, which includes many different
node types (e.g., person, city, country) and link types (e.g., bornIn and locate-
dIn). Two node types can be connected by multiple meta paths. For example,



452 X. Cao et al.

there are two meta paths connnecting Person and Country: Person
bornin−−−−→

City
locatedIn−−−−−−→ Country and Person

Diedin−−−−→ City
hasCapital−1

−−−−−−−−−→ Country.
Traditional HIN usually has a simple network schema, such as bipartite [16]

and star schema [9]. However, in some complex HINs, there are so many node
types or link types that it is hard to describe their network schema. We call the
HIN with many types of nodes and links as schema-rich HIN. In simple HIN,
the meta paths can be easily enumerated, but it is difficult to do the same in
the schema-rich HIN. Data mining in schema-rich HIN will face new challenges.
Specifically, we define a new task as follows:

Link Prediction in Schema-Rich HIN. Given a schema-rich HIN G and a
training set of entity node pairs φ = {(si, ti)|1 ≤ i ≤ k}, search a set of meta
paths Υ = {∏

i |1 ≤ i ≤ e} which can exactly describe the pairs. With these
meta paths, we design a model η(s, t|Υ ) to do link prediction on the test set
ψ = {(ui, vi)|1 ≤ i ≤ r}.

3 The Method Description

In order to solve the link prediction problem defined above, we propose a novel
link prediction method named Link Prediction with automatic meta Paths
method (LiPaP). This method includes two steps: Firstly, we design an algo-
rithm called Automatic Meta Path Generation (AMPG) to discover use-
ful meta paths with training pairs automatically. Secondly, we use a supervised
method to integrate meta paths to form a model for further prediction.

3.1 Automatic Meta Path Generation

In order to extract the appropriate and relevant meta paths as model features
for link prediction, we would like to show the AMPG algorithm, which can
generate useful meta paths smartly in schema-rich HIN. We would illustrate
AMPG through a toy example in Fig. 2, where the training pairs are {(1,8),
(2,8), (3,9), (4,9)}.

The main goal of AMPG is, given the training set of entity pairs, to find all the
useful and relevant meta paths connecting them. These paths to be found would
not only connect more training pairs, but also show much closer relationship to

isCitizenOf

Owns

Fig. 2. Subgraph example of schema-rich HIN.
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present implicit features of the training set. For example,
isCitizenOf−−−−−−−−→ is the meta

path initially found by our method in Fig. 3 and it is not only the shortest relation
but also the one connecting most training pairs. Besides, the meta paths to be
found are still most relevant in the candidate paths. Basically, we start to search
from the source nodes step by step to find out the useful meta paths greedily.
At each step, we select the meta path that is most relevant and maybe reaching
more target nodes. Then we check whether the path connects the training pairs
or not. If so, we pick out the meta path, otherwise make a move forward until the
unchecked meta paths are irrelevant enough. It guarantees that the generated
meta paths all well describe the relationship between each training pairs and the
selected paths are not too many to add noise paths.

The AMPG method is a greedy algorithm that heuristically chooses the opti-
mal paths at each step. For judging the priority of meta paths for selection,
AMPG utilizes a similarity score S as a selection criterion based on a similarity
measurement Path-Constrained Random Walk (PCRW) [8], which is to calcu-
late the relevance between the given entity pairs in the meta paths. The higher
similarity score S is, more likely the meta path is to be chosen.

Specifically, in AMPG, we use a data structure to record the situation of each
step. The structure records a meta path passed by, a set of entity pairs reached
and their PCRW values and the similarity score S of the current structure, as
Fig. 3 shown. Besides, we create a candidate set to record the structure to be
handled.

The similarity score S of the structure mentioned above is for judging the
priority of the structure. S measures the similarity of the whole arrival pairs in
the structure. The highest S means the most relevant relationship and the most
promising meta paths, so we get the structure with the highest S at every step.
The definition of similarity score S is as follows:

S =
∑

s

1
T

∑
t

[σ(s, t|
∏

) • r(s)], (1)

where s and t are source and reaching entity node respectively on meta path∏
, T is the number of reaching entity nodes and σ(s, t|∏) is the PCRW value.

r(s) = 1 − α • N is the contribution of s to the current structure for training
pairs selection balance, where α is the decreasing coefficient of the contribution
as 0.1 because of the good performance on it, and N is the number of the target
nodes that s has reached through other selected paths. It means if one of source
nodes in

∑
s has more target nodes matched before, N will be larger and S will

be reduced due to the smaller r(s). So that the structure with other source nodes
which have fewer matches will get high priority to be traversed greedily.

In order to get rid of the unimportant or the low pair-matched meta paths,
we set a threshold value l to judge the structures whether being put to the
candidate set or not.

l = ε • |A|, (2)

where ε is a limited coefficient, |A| is the number of entity pairs in the structure.
If S is no less than l, add this structure into the candidate set, otherwise delete it.
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Fig. 3. An example of meta-path automatic generation.

Furthermore, we explain AMPG with a case study shown in Fig. 3. The train-
ing pairs are (1, 8), (2, 8), (3, 9), (4, 9) and sources nodes are 1, 2, 3, 4. The case
starts with creating an initial structure No.1 and inserts it into the candidate set
as Fig. 3(A) shown. The entity pair is composed of the source node and itself and
no meta path is generated at this step. Our algorithm will read candidate set itera-
tively and choose the structure with highest S at each step. For each selected struc-
ture, it will be checked if any training pairs are matched. If not, we move one step in
HIN, as Fig. 3(B) shown. We can pass by three edge types

isCitizenOf−−−−−−−−→, wasBornIn−−−−−−−→
and WorkAt−−−−−→. For each passed edge type, we create new structures like No.2 and
No.4. Then, we check the new structures whether fit the conditions of expanding
further and insert them into the candidate set. Remove the used structure No.1
and read next structure. Otherwise, as Fig. 3(C) shown, four pairs are matched,

so a new relevant meta path
isCitizenOf−−−−−−−−→ is generated and its similarity value vec-

tor is recorded. Remove the used structure No.2 and continue to read next. The
algorithm terminates when the candidate set is empty.

Thedetail process ofAMPG is described inAlgorithm 1. Step 1–2 is the variable
initialization step. Step 3–26 shows the main process of searching meta paths by
greedy S in a loop. In every searching movement, we pop the structure with the
largest S to handle until the candidate set is empty. Finally, the algorithm will
generate a set of meta paths with the related similarity matrix of training pairs.
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Algorithm 1. AMPG(G, φ)
Input: G: shema-rich HIN; φ: set of entity training pairs;
Output: Υ : set of selected meta paths; M: similarity matrix of φ corresponding to Υ .

1 N ⇐ {0,0,. . . ,0}; //length: |φ|; element is times of each training pair matched to calculate S
2 Create the starting structure and insert to candidate set T
3 while T is not empty do
4 m ⇐ {0,0,. . . ,0}; //length: |φ|; record if meta path has pairs matched in this expanding
5 W ⇐ popping the structure with the largest score S from T .
6 for each pair (q, p) ∈ W do
7 if (q, p) ∈ φ then
8 m(q, p) ⇐ σ(q, p|∏);
9 N(q, p) ⇐ N(q, p) + 1;

10 if m has nonzero element then
11 add the meta-path

∏
of W into Υ ;

12 M ⇐ M
⋃

m;
13 break;

14 else
15 create a empty temp Map E inserted with (next passed link, related structure);
16 for each pair (q, p) ∈ W do
17 for each neighbor s without passed in HIN G do

18 ud ⇐ edge type u with direct d from p to s //forward: d=1; reverse:d=-1

19 if E does not have the key ud or the related structure then
20 create a new structure N from W adding into E.

21
∏ ⇐ the meta path of N

22 insert the tuple((q, s), σ(q, s|∏)) to N

23 for each structure K ∈ E do
24 K.S ⇐ cauculated by Equation (1)
25 if K.S > threshold value l then
26 add K into T

27 return Υ , M

3.2 Integration of Meta Path

Each meta path found by AMPG is important but has different importances
for further link prediction. It’s necessary to find a solution of measuring the
importance for each meta path and integrating them into a link prediction model.

The link prediction can be considered as a classification problem. So we
use the positive and negative samples to train a model to predict whether the
link exists between the given pairs or not. Positive samples are the training
pairs, while negative samples are generated by replacing the target nodes of
the training pairs with the same-typed nodes without the same relations. Thus
positive value is the similarity value vector of each positive pair on all selected
meta paths, while negative value is the vector of negative pair.

For training model, we assume that the weight of each meta path
∏

i is �i(i =
1, · · · , N), �i ≥ 0, and

∑N
i=1 �i = 1. In order to train the appropriate path

weights, we use the log-likelihood function. The specific formula is as follows:

max h =
∑

x+∈q+

ln(t(�,x+))
|q+| +

∑
x−∈q−

ln(1 − t(�,x−))
|q−| − ||�||2

2
, (3)

where t(�,x) is the Sigmoid function (i.e., t(�,x) =
e�T x

e�T x + 1
). x is similar-

ity value vector of sample pair in all selected paths, x+ positive sample and
x− negative. q+ is similarity matrix of positive pairs made of x+. And q− is



456 X. Cao et al.

similarity matrix of negative pairs made of x−.
||�||2

2
is the regularizer to avoid

overfitting.
After learning weights of relevant meta paths Υ , we use a logistic regression

model to integrate meta paths for link prediction.

η(s, t|Υ ) = (1 + e−(
∑

x∈Υ �x•σ(s,t|∏x)+�0))−1, (4)

where (s, t) is the pair we should do link prediction, and x is each selected meta
path feature, while �x is the weight of x we learn above. And Υ is the set of
selected meta paths. If η(s, t|Υ ) is larger than a specific value, we judge they
would be connected by the link predicted.

4 Experiment

In order to verify the superiority of our designed method of link prediction in
schema-rich HIN, we conduct a series of relevant experiments and validate the
effectiveness of LiPaP from four aspects.

4.1 Dataset

In our experiments, we use Yago to conduct relevant experiments and it is a
large-scale knowledge graph, which derives from Wikipedia, WordNet and GeoN-
ames [11]. The dataset includes more than ten million entities and 120 million
facts made from these entities. We only adopt “COREFact” of this dataset,
which contains 4484914 facts, 35 relationships and 1369931 entities of 3455
types. A fact is a triple: < entity, relationship, entity >, e.g., < NewY ork,
locatedin, UnitedStates >.

4.2 Criteria

We use receiver operating characteristic curve known as ROC curve to evaluate
the performance of different methods. It is defined as a plot of true positive rate
(TPR) as the y coordinate versus false positive rate (FPR) as the x coordinate.
TPR is the ratio of the number of true positive decisions and actually positive
cases while FPR is the ratio of the number of false positive decisions and actually
negative cases. The area under the curve is referred to as the AUC. The larger
the area is, the larger the accuracy in prediction is.

4.3 Effectiveness Experiments

This section will validate the effectiveness of our prediction method LiPaP on
accurately predicting links existing in entity pairs. Since there are no existing
solutions for this problem, as a baseline (called PCRW [8]), we enumerate all
meta paths, and the same weight learning method with LiPaP is employed.
Because meta paths with length more than 4 are most irrelevant, the PCRW
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enumerates the meta paths with the length no more than 1, 2, 3, and 4, and the
corresponding methods are called PCRW-1, PCRW-2, PCRW-3, and PCRW-
4, respectively. Based on Yago dataset, we randomly and respectively select
200 entity pairs from two relations isLocatedIn−−−−−−−−→ and

isCitizenOf−−−−−−−−→. Note that, we
assume that these two types of links are not available in the prediction task. In
this experiment, 100 entities pairs of them are used as the training set, the other
are used as the test set. In LiPaP, we set ε in Eq. (2) as 0.005 and the max path
length is also limited to 4.

The results of two link prediction tasks are shown in Fig. 4. It is clear that
LiPaP has better performances than all PCRW methods, which implies that
LiPaP can effectively generate useful meta paths. Moreover, the PCRW generally
has better performance when the path length is longer, since it can exploit more
useful meta paths. However, it will take more cost to search more meta paths,
most of which are irrelevant. For example, PCRW-3 generates more than 80
paths and PCRW-4 finds more than 600 paths with lots of irrelevant paths. On
the contrary, LiPaP only generates 30 meta paths for the

isCitizenOf−−−−−−−−→ task.
In order to intuitively observe the effectiveness of meta paths found, Table 1

shows the top 4 generated meta paths and the corresponding training weights
for the

isCitizenOf−−−−−−−−→ task. It is obvious that 4 meta paths are all relevant to
the link

isCitizenOf−−−−−−−−→. The most relevant one is the first meta path which shows
the fact that a person is born in a city and the city is located in a country. It
describes the citizen relationship in fact. The last one with length 4 seems not

Table 1. Most relevant 4 meta paths for isCitizenOf

Meta path Weight

Person
wasBornIn−−−−−−−−−→ City

islocatedIn−−−−−−−−−→ County 0.1425

Person
livesIn−−−−−−→ County 0.0819

Person
livesIn−−−−−−→ City

islocatedIn−−−−−−−−−→ County 0.0744

Person
wasBornIn−−−−−−−−−→ City

isLeaderOf←−−−−−−−−−Person
graduatedF rom−−−−−−−−−−−−−→ university

islocatedIn−−−−−−−−−→ County 0.0609
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Fig. 4. Prediction accuracy of different methods on two link prediction tasks.



458 X. Cao et al.

to be close, but actually has certain logistic relation with the link
isCitizenOf−−−−−−−−→.

However, these long and important meta paths can be missed if the maximum
length of meta path was limited too short, as PCRW does. While our method
can automatically find these paths and assign them a high importance.

4.4 Influence of the Size of Training Set

In this section, we evaluate the influence of the size of training set
on the prediction performances. The size of training set are set with
{2, 6, 10, 20, 40, 60, 80, 100}. Besides our LiPaP, we choose PCRW-2 as baseline,
since it can generate most of useful meta paths and achieve good performances
compared to other PCRW methods. As illustrated in Fig. 5, when the number
of training pairs is smaller than 10, the performances of both methods improve
rapidly with the size of pairs growing. However, when the size is more than 10,
the size of training set has little effect on the performances of both methods.
We think the reason lies in that too small training set cannot discover all useful
meta paths, while large training set may introduce much noise. When the size
of training set is from 10 to 20 in this dataset, it is good enough to discover all
useful meta paths and avoid much noise. Furthermore, it can save space and
time to learn model and make the performance of our method better.

4.5 Impact of Weight Learning

To illustrate the benefit of weight learning, we redone the experiments on the
isCitizenOf−−−−−−−−→ task mentioned in Sect. 4.3. We run LiPaP with the weight learning
or random weights, and with average weights. Figure 6 shows the performances
of these methods. It is obvious that the weight learning can improve prediction
performances. The model with random weight performs worst, owing to giving
the more relevant paths low weights. The model with weight just has a little
better performance than the model with average weight, because the meta path
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Fig. 5. Influence of different sizes of training set.
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features generated by AMPG are all relevant and important, the most important
feature also has not get a very low weight in the model with average weight. So
the performance of the model with average weight is also not poor in spite of
being inferior to the model with weight. Therefore, the weight learning can adjust
the importance of different meta paths so as to integrate them well and make
the model better.

4.6 Efficiency

In this section, we choose 5 different sizes of training set, i.e., {20, 40, 60, 80, 100},
to validate the efficiency of finding meta paths of different methods. Figure 7
demonstrates the running time on different models for the isLocatedIn−−−−−−−−→ task. It
is obvious that the running time of these models approximate linearly increase
with the increase of the size of training set. In spite of the small running time,
the short meta paths found by PCRW-1 and PCRW-2 restrict their prediction
performances. Our LiPaP has smaller running time than PCRW-3 and PCRW-4,
since it only finds a small number of important meta paths. In this way, LiPaP
has a better balance on effectiveness and efficiency.
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Fig. 7. Running times of different methods.

5 Conclusions

In this paper, we introduce a novel link prediction method in schema-rich HIN
named Link Prediction with automatic meta Paths (LiPaP), which proposes
an algorithm called AMPG to automatically extract meta paths based on given
training pairs and designs an supervised method to learn weights of the extracted
meta paths to form a link prediction model. Experiments on real knowledge
database, Yago, validate the effectiveness, efficiency, and feasibility of LiPaP.
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Abstract. Matrix Decomposition methods are applied to a wide range
of tasks, such as data denoising, dimensionality reduction, co-clustering
and community detection. However, in the presence of boolean inputs,
common methods either do not scale or do not provide a boolean
reconstruction, which results in high reconstruction error and low inter-
pretability of the decomposition. We propose a novel step decomposition
of boolean matrices in non-negative factors with boolean reconstruction.
By formulating the problem using threshold operators and through suit-
able relaxation of this problem, we provide a scalable algorithm that can
be applied to boolean matrices with millions of non-zero entries. We show
that our method achieves significantly lower reconstruction error when
compared to standard state of the art algorithms. We also show that the
decomposition keeps its interpretability by analyzing communities in a
flights dataset (where the matrix is interpreted as a graph in which nodes
are airports) and in a movie-ratings dataset with 10 million non-zeros.

1 Introduction

Given a boolean who-watched-what matrix, with rows representing users and
columns representing movies, how can we find an interpretation of the data with
low error? How can we find its underlying structure, helpful for compression,
prediction and denoising? Boolean matrices appear naturally in many domains
(e.g. user-reviews [3] or user-item purchases [16], graphs, word-document co-
occurrences [4] or gene-expression datasets [17]) and describing the underlying
structure of these datasets is the fundamental problem of community detection
[6] and co-clustering [15] techniques.

We address the problem of finding a low-rank representation of a given n×m
boolean matrix M, with small reconstruction error while easily describing M’s
latent structure. We propose FastStep, a method for finding a non-negative fac-
torization that, unlike commonly used decomposition methods, yields the best
interpretability by combining a boolean reconstruction with non-negative
factors. This combination allows FastStep to find structures that go beyond
blocks, providing more realistic representations. Figure 1a showcases three com-
munities (representing 3 venues) in the DBLP dataset that illustrate the impor-
tant hyperbolic structures found in real data; compare them to the community
c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part I, LNAI 9651, pp. 461–473, 2016.
DOI: 10.1007/978-3-319-31753-3 37
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Fig. 1. Realistic hyperbolic structure - Adjacency Matrices of real communities
in DBLP and a community found by FastStep.

found by FastStep in Fig. 1b representing the American community in the
Airports dataset.

Using our scalable method, we analyze two datasets of movie ratings and
airports flights and show FastStep’s interpretability power with intuitively
clear and surprising decompositions. As an additional example, Fig. 2 illustrates
an application of FastStep to the task of community detection. Using route
information alone, the world airports are decomposed in 10 factors that clearly
illustrate geographical proximity. As we explain in more detail in Sect. 4.3, the
communities we find have an arbitrary marginal and do not need to follow a
block shape.

Fig. 2. Intuitive non-block communities - Communities automatically found in
the Airports dataset from flight records (best viewed in color) (Color figure online).
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2 Background and Related Work

Real and Non-negative Matrix Decompositions. In the Singular Value
Decomposition (SVD) [7], a real matrix M is decomposed into UΣVT where U
and V are real orthogonal matrices and Σ is a k×k non-negative diagonal matrix.
While the Eckart-Young theorem [5] proves this to be the best approximation
using regular matrix multiplication and real entries, negative values in the factor
matrices make it hard to interpret. What does it mean for an element to have
a negative score in a component? For non-negative M, Non-Negative Matrix
Factorization (NNMF) [9] methods were developed to overcome this problem.

Neither of these methods have clear extensions to the boolean case as the
reconstructed matrix is not boolean. One simple idea is rounding or thresholding
the reconstructed matrix, but no guarantee can be given on the reconstruction
error. Another possibility is thresholding the factor matrices and using boolean
algebra in order to obtain a boolean reconstruction, but selecting the appropriate
threshold is a difficult problem as a clear cut-off might not exist.

Decomposition of Boolean Matrices. Tao Li [11] proposed an extension
of the K-means algorithm to the two-sided case where M is decomposed into
AXBT with A and B binary, and an alternating least squares method when
X is the identity matrix. Pauli Miettinen showed that Boolean Matrix Factor-
izations (BMF) methods could achieve lower reconstruction error than SVD in
boolean data and proposed an algorithm using association rules (ASSO) which
exploits the correlations between columns, but unfortunately it’s time complex-
ity is O(nm2). Zhang et al. [17] proposed two approaches for BMF, one using a
penalty in the objective function (BMF-penalty) which achieved good results
for dense datasets, and an alternative thresholding method (BMF-thresh)
which by thresholding factor matrices is better suited for sparse datasets. None
of these methods is scalable and they have the problem of forcing a tiling of the
data matrix, as each factor is effectively treated as a block. In particular, the
notion of “importance” inside a cluster, which previously existed in NNMF, is
now lost and the analysis of the resulting factors is limited. In Logistic PCA
(L-PCA), Schein et al. [12] replace PCA’s Gaussian assumption with a Bernoulli
distribution and fit their new model using an alternating least squares algorithm
that maximizes the log-likelihood. Their alternating algorithm has running time
O(nm) when applied to a n × m matrix and therefore does not scale. It is also
hard to interpret due to the possibility of negative values in the factors.

Related Techniques. There is a strong relationship between boolean matrices
and graph data, where matrix decompositions are linked to community detection
and graph partitioning, but we would like to refer the reader to a review on
spectral algorithms in this area for further details [6]. However, recent work such
as the Hyperbolic Community Model [2] has shown the non-uniform nature of
real-world communities and has highlighted the need for boolean decomposition
methods which do not discard node importance.

An important aspect of fast decomposition methods is their ability to
evaluate the reconstruction error ||M − R||2F in less than quadratic time.
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Leskovec et al. [10] approximated the log-likelihood of the fit by exploiting the
Kronecker nature of their generator. In the Compact Matrix Decomposition [14],
Jimeng Sun et al. approximated the sum-square-error (SSE) by sampling a set
of rows and columns and scaling the error in the submatrix accordingly.

Table 1 provides a quick comparison of some of the methods discussed in
this section. We characterize as Beyond blocks methods who do not force a rec-
tangular tiling of the data. Arbitrary Marginals refers to a method’s ability to
represent any marginal in the data (e.g. rectangles, but also triangles or hyper-
bolic structures). We define interpretability as the ability to easily select a subset
of elements representing a factor. Given our focus on efficient decompositions,
we will limit our comparison in Sect. 4 to scalable methods.

Table 1. Comparison of decomposition methods - FastStep combines inter-
pretability and beyond block structures for large datasets.

FastStep SVD NNMF ASSO THRESH HyCoM L-PCA

Scalability � � � �
Overlapping � � � � � � �
Beyond blocks � � � � �
Boolean reconstruction � � � � �
Arbitrary marginals � � � �
Interpretability � � � �

3 Proposed Method

As hinted in the previous section, there are two aspects for a strong interpretabil-
ity of a boolean matrix decomposition: boolean reconstruction allows clear pre-
dictions and explanations of the non-zeros, while the existence non-negative
factors establishes the importance of elements and enable the representation of
beyond-block structures. In this section, we introduce a new formulation using
a step operator that achieves both goals.

3.1 Formal Objective

Let M be a n × m boolean matrix. Our goal is to find a n × r non-negative
matrix A and a m × r non-negative matrix B, so that the product ABT is a
good approximation of M after thresholding:

min
A,B

||M − uτ (ABT )||2F =
∑
i,j

(
Mij − uτ (ABT )ij

)2

(1)

where || · ||F is the Frobenius norm and uτ (X) simply applies the standard step
function to each element Xij :

[uτ (X)]ij =

{
1 if Xij ≥ τ

0 otherwise
(2)
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where τ is a threshold parameter. Note that the choice of τ does not affect the
decomposition, as matrices A and B can always be scaled accordingly.

3.2 Step Matrix Decomposition

The thresholding operator renders the objective function non-differentiable and
akin to a binary programming problem. In order to solve it, we will approximate
the objective function of Eq. 1 by a function with similar objective:

min
A,B

∑
i,j

log

⎛
⎜⎜⎜⎝1 + e

−Mij∗

⎛

⎜
⎝

r∑
k=1

AikBjk − τ

⎞

⎟
⎠

⎞
⎟⎟⎟⎠ (3)

where M was transformed so that it has values in {−1, 1} by replacing all zeros
with −1.

Note that log(1+e−x) will tend to zero when x is positive and it will increase
when x is negative; the intuition is that this error function will be approximately
zero when Mi,j and (

∑r
k=1 Ai,kBj,k − τ) have the same sign and a linear penalty

is in place whenever their signs differ.
Given the above formulation, there are several methods for finding A and B

and one possibility is using gradient descent. The gradient is given by

Lemma 1. Let Sij =
r∑

k=1

AikBjk, then the gradient of the objective function in

3 is given by:

∂F

∂Aik
=

∑
j �∈Mi

Bjk

1 + eτ−Sij
−

∑
j∈Mi

Bjk

1 + eSij−τ
=

m∑
j=1

Bjk

1 + eτ−Sij
−

∑
j∈Mi

Bjk. (4)

Proof. Omitted for brevity.

The update rules for B are similar and are also omitted for brevity.
Due to the non-negativity requirement, matrices A and B are projected

after each iteration - this projection is made to a small value ε instead of to 0,
as A = B = 0 is a stationary point of the objective function and the algorithm
wouldn’t improve.

Different gradient descent algorithms and small variations can now be tried.
Our experiments indicate that stochastic gradient descent with batches corre-
sponding to factors provides the quickest convergence, as factors quickly converge
to different submatrices. Our results also indicate that initializing A and B to
small random numbers provides the best results. Comparing alternative gradient
descent methods is out of the scope of this paper.

It should also be noted that τ now impacts the gradient, as the relative

error
(

log(1 + eτ )
log(1 + e0)

)
of misrepresenting an element increases. However, it is clear
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that it should be chosen to be the highest possible value in order to improve
convergence and to get a sharper decomposition, as long as numerical stability
is not compromised. Our implementation uses τ = 20.

Complexity. A straightforward implementation would take O(TNMR2) time
where T is the number of iterations, N and M are the dimensions of the
matrix and R is the rank of the decomposition. However, by using additional
O(NM) memory, caching and updating S in each iteration, it can be reduced
to O(TNMR).

3.3 FastStep Matrix Decomposition

Unfortunately, the previous algorithm is not adequate for many datasets given
its quadratic nature; it grows linearly in O(NM). In many scenarios such as
community detection and recommender systems, M is extremely sparse and
algorithms must be linear (or quasilinear) in the number of non-zeros (E). In the
following, we describe how to quickly approximate F (A,B) and the respective
gradients of the sparse matrix.

Fast Gradient Calculation. As shown in Eq. 4, calculating the gradient
exactly requires O(NM) operations per factor because each Aik requires a sum-
mation over all elements Bjk. Furthermore, there is a AikBjk term in Sij , which
means that this loop cannot be easily unrolled or reused between elements of A.
The goal of this subsection is to approximate the gradient of the factor using
a number of operations in the order of O(E), the number of non-zeros in the
matrix.

Careful analysis of the structure of this summation in the gradient allows us
to quickly approximate it. The impact of position (i, j) in factor k is a sigmoid
function, scaled by Bjk and with parameter Sij . This means that only positions
with simultaneously high Sij and Bjk have a significant impact on the gradient,
which implies that we should first consider pairs (i, j) with high AikBjk, as that
correlates well with both metrics.

In other words, Eq. 4 can be approximated as

∂F

∂Aik
�

∑
(i,j)∈P (t)

Bjk

1 + eτ−Sij
−

∑
j∈Mi

Bjk (5)

where P (t) is the set of elements of M that the decomposition “believes” should
be reconstructed, i.e. with high AikBjk for some k. We define r sets of elements
Pk(t) that each factor k would like to reconstruct and P (t) =

⋃
Pk(t). The

intuition is that, initially, only non-zeros contribute to the gradient so we can
quickly calculate it with no error using the second summand of Eq. 5. As we
iterate, the error will gradually move from the non-zeros of M to some of the
zeros. However, given M’s sparsity and the symmetry of the error function – the
error of misrepresenting a one is the same as misrepresenting a zero – |P (t)| can
be kept small and in the order of O(rE); Fig. 3 shows the error as the size of
P (t) increases.



FastStep: Scalable Boolean Matrix Decomposition 467

Fig. 3. A small number of non-zeros
approximates the gradient – quick con-
vergence in the Airports dataset.

In order to quickly find the top-
t pairs (i, j) with highest AikBjk, let
ak and bk be columns k of matrices
A and B, respectively. After sorting
ak and bk, the biggest AikBjk not
currently in Pk can be selected from
a very small set of elements along
one sort of “diagonal” in the matrix.
In particular, it can be shown that
element (x, y) should not be added
to Pk before both (x − 1, y) and
(x, y − 1) are added, as they would
necessarily be at least as big. There-
fore, one can keep a priority queue
with O(min(n,m)) elements and it is possible to select a set of t non-zeros and
approximate the gradient of all elements in factor k in O(t + n log n + m log m)
operations.

Fast Function Evaluation. Given the method currently used to quickly calcu-
late the gradient, one possibility would be to only calculate the error at positions
E +P (t). Although fast, some positions of the matrix would never be considered
and the algorithm would over-fit, thus it cannot be used to detect convergence.

Therefore, in order to detect convergence and after each iteration of the gra-
dient descent (i.e. after all the batches are completed), we calculate an estimate
of the error F̃ (A,B) by considering all the non-zeros and a uniform sample of
the zeros of the matrix and then scaling the error accordingly. Additionally, in
order to decrease the probability of underestimating F (A,B) and compromising
future iterations of the gradient descent, we take the median of 9 simulations.

Complexity. Using the same notation as before, the time complexity is now
bounded by the number of non-zeros and P = |P (t)|, which as we showed can be
O(rE), and the number of samples S to check for convergence. The complexity
is now O(TR(E + P log(min(N,M)) + N log N + M log M + S)).

Obtaining Clusters from A and B. When a binary answer on whether a
given element “belongs” to a factor is desired (e.g. community detection), a clear
interpretation exists solely based on the principles of the decomposition:

Definition 1 Part of a Factor. A row element i belongs to a factor k if there
is non-zero in the reconstructed matrix in row i and if this factor contributed
with a weight above τ

r , i.e.:

Aik ≥ τ

r max(bk)
and Si,argmax(bk) ≥ τ.

We show that this method generates empirically correct clusters in the next
section.
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Table 2. Datasets used to evaluate FastStep.

Name Size Non-zeros Description

MovieLens100k 945× 1684 100000 User-movie ratings

MovieLens10m 71568× 10681 10000055 User-movie ratings

Airports 7733× 7733 34660 Airport to airport flight information

4 Experimental Evaluation

FastStep was tested on 2 fairly different real-world datasets, see Table 2 for
details. MovieLens100k and MovieLens10m are user-movie ratings datasets made
available by MovieLens and the Airports dataset is a graph made available by
OpenFlights. Unless otherwise specified, FastStep was run using the default
parameters defined in Sect. 3 and 1000000 samples.

We answer the following questions:
Q1. How scalable is the fast version of FastStep?
Q2. How does the reconstruction error compare to other methods?
Q3. How effective and interpretable is the FastStep decomposition?

4.1 Scalability

Fig. 4. Scalability: the FastStep decom-
position has linear running time on the
number of non-zeros.

The fast approximation of the gra-
dient has a runtime proportional
to the number of non-zeros of the
matrix. For the runtime to be repro-
ducible, we took different subsets of
the MovieLens10m dataset by remov-
ing all the ratings of movies produced
after a given decade. Please note that
the matrix was not resized, resulting
in columns (and possibly rows) full of
zeros.

Figure 4 shows the execution time
of the decomposition for these different matrices. Notice the sub-quadratic run-
ning time.

4.2 Low Reconstruction Error

When considering the same number of factors, a lower reconstruction error
implies better compression and potentially enables lower-rank representations
of the data. Given the boolean nature of M, the error function is intuitively
easy to represent. Let M represent the original dataset and R represent the
reconstructed matrix, then the error E is given by E = ||M − R||2F .

We compared FastStep to other methods that were quasilinear in the num-
ber of non-zeros. Table 3 compares the squared error of FastStep, SVD, NNMF
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and HyCoM in the MovieLens100k and Airports datasets when using 10 fac-
tors. For SVD and NNMF, as arbitrary values such as 0.5 do not guarantee the
lowest error, we tried all thresholds and considered the optimal. For FastStep,
we selected the lowest error from Fig. 3 and its equivalent in the MovieLens100k
data (which converged after considering only 2rE non-zeros). For HyCoM, we
considered as error the sum of the edges not represented and the mistakes made
inside each community. Among the state of the art methods, we did not compare
with non scalable algorithms (L-PCA, ASSO, BMF-Threshold).

Table 3. The FastStep Decomposition achieves lower squared error than
popular scalable methods.

Dataset FastStep SVD NNMF HyCoM

Airports 21206 26061 27235 29117

MovieLens100k 68863 70627 74040 86964

However, while comparing the reconstruction error of these methods might
be appropriate given the same number of parameters, their expressiveness is
not the same given their different characteristics. In this regard, by allowing
negative numbers, SVD is at an advantage when compared to the rest of the
methods. Please note that common techniques such as the Bayesian Information
Criterion (BIC) [13] or the Akaike Information Criterion (AIC) [1] would not
provide a fairer comparison because, as the number of parameters is the same,
all methods would keep the same relative rank. Techniques such as Minimum
Description Length (MDL) [8] measure the number of bits required to encode
both the error and the model, but it is not clear which method should be used
to represent real numbers, especially given that the importance of the bits is not
the same - as a result, methods such as HyCoM that uses integer values would
greatly benefit.

We can see that FastStep is able to simultaneously achieve a lower recon-
struction error while maintaining higher interpretability.

4.3 Discoveries

Fig. 5. MovieLens genre separation

MovieLens. The MovieLens100k
user-movie dataset was decomposed
using a rank-10 decomposition and
the factors were clustered as described.
Table 4 illustrates the top-5 movies
(ranked by score) in three of the fac-
tors and shows a grouping by movie
theme.

Figure 5 shows 3 clusters and the percentage of movies in each cluster that
correspond to a given genre (movies might have more than one tag, so genres
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Table 4. FastStep is able to automatically group similar movies in the
MovieLens dataset. Groups manually labeled according to their highest scoring
movies.

“Action” “Romance” “Drama”

Raiders of the lost ark Picture Perfect Titanic

The empire strikes back Addicted to Love Wag the Dog

Terminator 2: Judgment day Bed of Roses L.A. Confidential

The terminator My Best Friend’s Wedding Jackie Brown

Star Trek 3: The search for spock Fly Away Home Replacement Killers

do not sum to 1). We labeled group A as teenagers due to the clear prevalence
of Action and Adventure movies. In group B, most of the movies rated were
in categories of Comedy, Children’s, Animation and Adventure; we hypothesize
that users rating these movies are parents and labeled the group accordingly.
Finally, we labeled group C as females due to the Drama, Comedy and Romance
movie genres.

Airports. The Airports dataset is a symmetric matrix representing an undi-
rected unipartite graph, which implies that B = A as we are looking for com-
munities. The minimization problem is similar

(
min
A

||M − u(AAT )||2F
)

and the

gradient is omitted for brevity.
Figure 2 shows a geographical plot of the airports in the different communi-

ties; some big hubs, such as Frankfurt and Heathrow, appear in multiple commu-
nities and were coded with a single color to simplify visualization. Even though
no geographical information was used to perform this task, there is a very clear
distinction between north American airports, Brazilian airports, European air-
ports, previous French colonies in Africa, Russian airports, Middle-Eastern air-
ports and south-east Asia airports. Additionally, in order to illustrate one of the
surprising findings, Fig. 6 highlights the two European communities (in blue and
yellow) along with the overlapping airports (in green). While it would initially
seem that all these airports should be considered the same community, a quick
overview makes us realize that they are in fact divided by “major airports” and
“secondary airports”, usually operated by low-cost companies. The airports with
the highest score in the “major airports” community are Barcelona, Munich and
Amsterdam, while the airports with the highest score in the “low-cost” group are
Girona (85 km from Barcelona), Weeze (70 km from Dusseldorf) and Frankfurt-
Hahn (120 km from Frankfurt). We consider these and other surprising findings
to be very strong empirical evidence on FastStep’s usefulness for these tasks.

Another important improvement of the FastStep decomposition is its abil-
ity to reconstruct non-block clusters in the data. Figure 1b shows the adja-
cency matrix of the American community found in the previous decomposition.
As we have non-negative factors, lets explore the additional information avail-
able in matrix A. The airports with the highest score correspond to central
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Fig. 6. Intuitive split of European airports - FastStep identifies 2 European com-
munities, one with the major international airports (in blue) and the other with sec-
ondary airports (in yellow). Overlapping airports appear in green (Color figure online).

airports in continental United States with hubs from big airlines: Minneapolis,
Denver, Chicago, Dallas, Detroit, Houston, etc. Therefore, using this decompo-
sition alone, measures of centrality can be directly obtained.

Finally, the scores of the elements in the communities, when sorted in
descending order, closely follow a power-law. This characteristic has been previ-
ously observed in ground-truth communities using significantly different ground-
truth definitions [2]. Given that no bias was introduced in FastStep, we consider
this a strong indicator of its ability to detect realistic structures in graph data.

5 Conclusion

FastStep carefully combines a non-negative decomposition and a boolean
reconstruction for the best interpretability of the data. We have shown that
it achieves lower reconstruction error than similar methods and have provided
strong empirical evidence of its ability to find structural patterns in the data.
The main contributions of this work are the following:

1. New formulation and tractable approximation: We introduce a novel
FastStep Decomposition which exploits thresholding of the reconstructed
data in order to minimize the reconstruction error.

2. Scalable: A very efficient approximation enables a runtime linear in the
number of non-zeros.

3. Low reconstruction error when compared to standard methods.
4. Realistic representation which relates to nodes in clusters or degree inside

communities.
5. Meaningful and interesting discoveries in real-world datasets.
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Reproducibility. Available at http://cs.cmu.edu/∼maraujo/faststep/.
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ECML PKDD 2014, Part I. LNCS, vol. 8724, pp. 50–65. Springer, Heidelberg
(2014)

3. Bell, R.M., Koren, Y.: Lessons from the netflix prize challenge. ACM SIGKDD
Explor. Newslett. 9(2), 75–79 (2007)

4. Dhillon, I.S., Mallela, S., Modha, D.S.: Information-theoretic co-clustering. In: Pro-
ceedings of the Ninth ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 89–98. ACM (2003)

5. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank.
Psychometrika 1(3), 211–218 (1936). http://dx.org/10.1007/BF02288367

6. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)
7. Golub, G., Kahan, W.: Calculating the singular values and pseudo-inverse of a

matrix. J. Soc. Ind. Appl. Math. Ser. B Numer. Anal. 2(2), 205–224 (1965)
8. Grünwald, P.D.: The Minimum Description Length Principle. The MIT Press,

Cambridge (2007)
9. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix fac-

torization. Nature 401(6755), 788–791 (1999)
10. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., Ghahramani, Z.: Kro-

necker graphs: an approach to modeling networks. J. Mach. Learn. Res. 11, 985–
1042 (2010)

11. Li, T.: A general model for clustering binary data. In: Proceedings of the Eleventh
ACM SIGKDD International Conference on Knowledge Discovery in Data Mining,
pp. 188–197. ACM (2005)

12. Schein, A.I., Saul, L.K., Ungar, L.H.: A generalized linear model for principal com-
ponent analysis of binary data. In: Proceedings of the 9th International Workshop
on Artificial Intelligence and Statistics, pp. 14–21 (2003)

13. Schwarz, G., et al.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464
(1978)

14. Sun, J., Xie, Y., Zhang, H., Faloutsos, C.: Less is more: Compact matrix decompo-
sition for large sparse graphs. In: Proceedings of the Seventh SIAM International
Conference on Data Mining, vol. 127, p. 366. SIAM (2007)

15. Tanay, A., Sharan, R., Shamir, R.: Biclustering algorithms: A survey. Handb. Com-
put. Mol. Biol. 9(1–20), 122–124 (2005)

http://cs.cmu.edu/~maraujo/faststep/
http://dx.org/10.1007/BF02288367


FastStep: Scalable Boolean Matrix Decomposition 473

16. Vlachos, M., Fusco, F., Mavroforakis, C., Kyrillidis, A., Vassiliadis, V.G.: Improv-
ing co-cluster quality with application to product recommendations. In: 23rd ACM
Conference on Information and Knowledge Management, pp. 679–688 (2014)

17. Zhang, Z.Y., Li, T., Ding, C., Ren, X.W., Zhang, X.S.: Binary matrix factorization
for analyzing gene expression data. Data Min. Knowl. Disc. 20(1), 28–52 (2010)



Applications



An Expert-in-the-loop Paradigm for Learning
Medical Image Grouping

Xuan Guo1(B), Qi Yu2, Rui Li2, Cecilia Ovesdotter Alm2, Cara Calvelli2,
Pengcheng Shi2, and Anne Haake2

1 B. Thomas Golisano College of Computing and Information Sciences,
20 Lomb Memorial Drive, Rochester, NY 14623, USA

xxg3358@rit.edu
2 Rochester Institute of Technology, Rochester, USA

{qyuvks,rxl5604,coagla,cfcscl,spcast,arhics}@rit.edu
http://hccl.gccis.rit.edu

Abstract. Image grouping in knowledge-rich domains is challenging,
since domain knowledge and expertise are key to transform image pixels
into meaningful content. Manually marking and annotating images is not
only labor-intensive but also ineffective. Furthermore, most traditional
machine learning approaches cannot bridge this gap for the absence of
experts’ input. We thus present an interactive machine learning par-
adigm that allows experts to become an integral part of the learning
process. This paradigm is designed for automatically computing and
quantifying interpretable grouping of dermatological images. In this way,
the computational evolution of an image grouping model, its visualiza-
tion, and expert interactions form a loop to improve image grouping.
In our paradigm, dermatologists encode their domain knowledge about
the medical images by grouping a small subset of images via a carefully
designed interface. Our learning algorithm automatically incorporates
these manually specified connections as constraints for re-organizing the
whole image dataset. Performance evaluation shows that this paradigm
effectively improves image grouping based on expert knowledge.

Keywords: Dermatological images · Multimodal data · Image
grouping · Visual analytics · Interactive machine learning

1 Introduction

In visually-oriented specialized medical domains such as dermatology and radi-
ology, physicians explore interesting image cases from medical image repositories
for comparative case studies to aid clinical diagnoses, educate medical trainees,
and support medical research. This image browsing and lookup could benefit
from a grouping of medical images that is consistent with experts’ understand-
ing of the image content. However, it is challenging, because medical image
interpretation usually requires domain knowledge that tends to be tacit. There-
fore, to make expertise more explicit we propose an interactive machine learning
c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part I, LNAI 9651, pp. 477–488, 2016.
DOI: 10.1007/978-3-319-31753-3 38
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paradigm that has experts in the loop to improve image grouping. Particularly,
dermatologists encode their domain knowledge about the medical images by
grouping a small subset of images via an interface. Our learning algorithm auto-
matically incorporates these manually specified connections as constraints for
re-organizing the whole image dataset. In this way, the computational evolution
of an image grouping model, its visualization, and expert interactions form a loop
to improve image grouping. A user evaluation study shows that this paradigm
improves image grouping based on expert knowledge.

In order to minimize human efforts and provide experts with a good starting
point to group images, we create an initial image grouping using a multimodal
expert dataset described in Sect. 2 [18]. This initial image grouping is learned
through a multimodal data fusion algorithm flexible to incorporate new images
[11]. From here, the loop to improve image grouping begins (see Fig. 1). An
expert can inspect the image grouping and choose to improve it through an
interface. The interface design and the supported expert image manipulations are
presented in Sect. 3. The interface then parses expert manipulations as implicit
constraints by the rules described in Sect. 5 and incrementally learns the model,
and visualizes the new image grouping using the techniques in Sect. 4. An expert-
in-the-loop evaluation study is described in Sect. 6. Related studies, including
visual (text) analytics and interactive machine learning systems, are compared
with our learning paradigm in Sect. 7.

Fig. 1. Overview of the flow chart of our expert-in-the-loop paradigm. An expert
encodes domain knowledge as special constraints through rounds of interactions.
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2 Paradigm Initialization

The initial image grouping was learned from an offline collected expert dataset.
To elicit expert data, 16 physicians were asked to inspect 48 medical images
and describe the image content aloud towards a diagnosis, as if teaching a
student who was seated nearby [17]. Their eye movements were recorded, as
eye movement features highlight perceptually important image regions, which is
especially useful in knowledge-rich domains [9]. In this paper, we use experts’
eye fixation map to filter image features (SIFT features [16]). See Fig. 2 for an
example. A bag of visual words is created from the remaining image features, and
each image is described by a histogram of the visual words. Physicians’ verbal
image descriptions were also recorded concurrently, as they provide insights into
experts’ diagnostic image understanding. Figure 3 shows a sample transcription.
The medical concepts were extracted from the transcriptions using MetaMap,
a medical language processing resource [1,10]. These concepts formed a high
dimensional feature space, in which each image is described by the occurrences
of these medical concepts.

We choose a Laplacian sparse coding approach [8,20] over latent semantic
analysis (LSA) or latent Dirichlet allocation (LDA). LSA does not perform as
well as Laplacian sparse coding to cluster images by object [3]. LDA is affected
not only by an initial specification but also by the samples randomly generated
at each iteration [4]. It does not support users to make incremental changes, due
to the inconsistent results obtained from multiple runs.

(a) A sample image (b) SIFT features (c) Eye gaze (d) Filtered SIFT

Fig. 2. Image features filtered by an expert’s eye gaze. (Image courtesy of Logical
Images, Inc.)

(SIL) okay and so this is a classic in dermatology periungual warts uh (SIL) there are
plaque like areas of uh thickened hyperkeratotic skin (SIL) uh they uh they show areas of
hemorrhage kind of like the psoriasis does (SIL) but uh the uh distribution the thickness of
the keratin (SIL) uh and this tendency to to (SIL) fissure centrally and the (SIL) thicker
areas of the of the wart (SIL) uh is is kind of c- like characteristic (SIL) it’s interesting
that when you see this you almost always see (SIL) uh a person who has hangnails as well
(SIL) and uh and that’s because the virus gains entry through the defect in the hangnail
(SIL) so periungual warts

Fig. 3. A sample diagnostic narrative expressed by a dermatologist inspecting the
medical image shown in Fig. 2a. (SIL) represents silent pause.
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To initialize an image grouping based on the features extracted from multiple
modalities, we adopt a data fusion framework based on Laplacian sparse coding
[11]. The objective function is presented in Eq. (1). Matrices E ∈ R

ne×m and
V ∈ R

nv×m are eye gaze-filtered image features and verbal features, respectively
(ne being the number of visual words, nv being the number of verbal features, and
m being the number of images). This model provides flexibility to allow extra
data modalities by adding terms like the first two in Eq. (1). The coefficient
matrix C ∈ R

k×m (k being the number of latent topics) stores the new image
representations, each of which is a distribution of latent topics learned and stored
in the basis matrices P ∈ R

ne×k and Q ∈ R
nv×k. The matrices P and Q reveal

the transformation from the original feature spaces to latent topics.

min
P,Q,C≥0

‖E − PC‖2F + ‖V − QC‖2F + αG(W,C) + βS(C) (1)

where S(·) represents a sparsity constraint (l1-norm), and G(·, ·) represents a
graph-regularizer. These constraints form the Laplacian sparse coding that helps
capture underlying semantics behind observations in both modalities [14,20].
W is a neighboring matrix that indicates similarities between pairs of data
instances. A multimodal variation of the feature-sign search algorithm is devel-
oped to selectively update some elements of each data instance to tackle the
non-derivativeness of the l1-norm [14]. Since the sparse codes learned through
general-purpose machine learning algorithms usually do not reflect ideal expert
image understanding [12], we extend this framework with extra constraints from
expert knowledge to improve semantic image representations.

3 Interface Design

The initial image grouping purely based on offline collected expert data is first
visualized in the Older Image Organization in Fig. 4 (panel 1-a) for experts to
inspect and manipulate. In the case where domain expert users need further
information on the current image grouping, we provide two extra visualizations.
First, experts can see an image cluster and the top features contributing to this
cluster (see Fig. 6). Second, experts can click the buttons in Fig. 4 (panel 3) to
compare the image grouping obtained when using different subsets of features,
such as only primary morphology terms1 (Fig. 5a), with that using the whole
feature set; see Fig. 4 (panel 1-a).

Experts have two options to improve the image grouping in each round. First,
they can directly drag images toward or apart from each other in Fig. 4 (panel
1-a). The system parses such expert inputs and incorporates them for updat-
ing the neighboring graph-based regularizer (see Sect. 5.1). Second, experts can
select a topic from the listbox in Fig. 4 (panel 5), and indicate the least relevant
1 Primary morphology terms (PRI) and 8 other categories of terms were identified by

2 highly trained dermatologists as thought units in an annotation study to label the
stages in diagnostic reasoning [17]. Used here in this interface, these thought units
can disclose the influence of each category of terms on the medical image grouping.
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Fig. 4. Image grouping interface (details of algorithms behind this interface are
described in Sects. 4 and 5): Panel (1-a) visualizes the image grouping before each
round of expert image manipulation, and panel (1-b) visualizes the resulting image
grouping afterwards. Experts are allowed to select multiple images in (1-a) for manip-
ulation. Panels (2-a) and (2-b) are matrix views corresponding to (1-a) and (1-b),
respectively, to show global pairwise image similarities. A button set (3) pops up new
windows (shown in Fig. 5) to visualize image grouping initialized using various subsets
of features, such as primary morphology terms (PRI). BOD stands for body parts,
CD for correct diagnoses, and ET for eye gaze-filtered image features. Panel (4) allows
experts to specify the direction to manipulate the selected images. Panel (5) lists the
top key terms in each topic and allows experts to disconnect images from a topic.

image(s) according to the vocabulary distribution of the selected topic. Based on
such expert inputs, the system updates the image-topic distribution matrix (see
Sect. 5.2). After experts interact with the interface using either option, the image
grouping in the previous round is copied to Fig. 4 (panel 1-a), and the improved
one is shown in Fig. 4 (panel 1-b). In each round, both image groupings are
visualized following the approaches discussed in Sect. 4.

4 Visualizing Image Groups

To comprehensively visualize the image grouping, our interface presents both a
graph view shown in Fig. 4 (panel 1) and a matrix view shown in Fig. 4 (panel
2). Both views are automatically updated during expert interactions.

In the graph view, we adopt t-distributed stochastic neighborhood embed-
ding (t-SNE) algorithm [19]. It better visualizes the high dimensional struc-
ture of image grouping in 2D graph view than other dimensionality reduction
techniques, such as principal component analysis (PCA) [4]. We use a distance
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(a) Using primary morphology terms
(PRI)

(b) Using correct diagnosis terms (CD)

(c) Using body part terms (BOD) (d) Using image features filtered
by eye tracking features (ET)

Fig. 5. Image groupings generated using subsets of features.

metaphor to imply to experts that more similar images are spatially closer. How-
ever, this metaphor does not proportionally reflect all pairwise image similari-
ties2 in high-dimensional space, because of the difficulty to retain the whole data
structure for any dimensionality reduction algorithms. To tackle this issue, our
interface allows experts to see an image and its high dimensional close neighbors
in 2D visualization. The popup window visualizing these neighbors are illus-
trated in Fig. 6. The interface also presents a matrix view that serves to give an
overview of the pairwise image similarities, because it is impractical that experts
choose to see the close neighbors of all images in a 2D graph view. See Fig. 7 for
a magnified matrix view. The matrix view provides a global indexing of pairwise
image similarities in the learned representation.

5 Expert Knowledge Constraints

There are mainly two approaches in prior studies allowing user interac-
tions to help improve learning a model: document-level interactions [4,15], or
2 We do not define image similarity for domain experts to not restrict them by layper-

son definitions. We use t-SNE only as a feature projection technique for low dimen-
sional visualization.
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Fig. 6. An example visualization of an image and its high dimensional close neighbors.
The target image is shown in the upper left quarter, and its top 3 close neighbors in
the learned topic space are visualized in other quarters. The shared verbal features
are ranked by term frequency, and the top ones are listed below each corresponding
neighbor. The shared perceptually important image features are also ranked, and the
top ones are marked in both the target image and its neighbors. The colors of the
markers differentiate the image pairs. (Images courtesy of Logical Images, Inc.)

topic/cluster-level interactions [5,6]. In our scenario, to improve medical image
grouping, the documents are images. To develop this interface, we prefer docu-
ment (image)-level interactions for two reasons. On the one hand, the medical
conditions are more intuitive in the form of images than texts to physicians.
On the other hand, the topics we learned offline based on a multimodal expert
dataset are not easily visualizeable nor interpretable by physicians. Below are
two functions in the interface for receiving expert inputs and updating the model,
both to support image-level interactions.

5.1 Constraint on Neighboring Matrix, W

Let the images in the original feature space be denoted as x1, ..., xm. A nearest
neighbor graph G with m vertices can be constructed. A heat kernel can be used
to compute the element Wij in the neighboring matrix W of the graph G [2].

Wij = e− ‖xi−xj‖
σ (2)

If xi and xj are identical, then Wij equals 1; and if they are extremely different,
then Wij asymptotically approaches 0.
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Fig. 7. An example of the matrix view. The intensity of each block represents the
similarity between corresponding images. The darker the block is, the more similar the
images are. For example, the similarity between the images on the right is indicated
by the dark block circled in the matrix view on the left. (Image courtesy of Logical
Images, Inc.)

The interface can encode expert image manipulations as a transformation
of the neighboring matrix W . This transformation is determined by multiple
factors, including previous image grouping and experts’ interpretation of it. The
transformation of W can be simplified as F(·, ·) in Eq. (3) and be considered as
a constraint set by experts to guide the learning process.

min
P,Q,C≥0

‖E − PC‖2F + ‖V − QC‖2F + αG(F(W,K), C) + βS(C) (3)

where K denotes the set of images selected by an expert in Fig. 4 (panel 1-a). In
this paper, we use hard constraints, i.e., by moving one image toward or away
from another, experts can connect or disconnect them in the model. Such expert
constraint essentially sets a boundary regarding pairwise image similarities. Once
an expert begins to connect these images, the system sets all Wij ’s (i, j ∈ K,
i �= j) to be 1. Likewise, Wij ’s (i, j ∈ K, i �= j) are all set to be 0, if they
should be grouped differently. This rule is designed to update the neighboring
matrix W in Eq. (2). Once all Wij ’s specified by the expert are updated, the
algorithm will trigger the further learning process for the image representation C
and the visual and verbal topics P and Q with respect to the objective function
in Eq. (3).

5.2 Constraint on Topic-Coefficient Matrix, C

Experts can also improve the image grouping through the task illustrated in
Fig. 4 (panel 5). For each topic selected by experts in the listbox, its top terms in
the topic-term distribution are listed. The list of top terms explains the gist of the
topic to experts. The images that are considered highly relevant to the selected
topic by the algorithm are then displayed at the bottom. The task for experts is
to submit the least relevant image(s) to the topic to disconnect its/their link(s)
to the topic. After experts have indicated the least relevant image(s), the system
updates the coefficient matrix C according to the constraint in Eq. (4).
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min
P,Q,C≥0

‖E − PC‖2F + ‖V − QC‖2F + αG(W,C) + βS(C)

s.t. Cij = 0, i ∈ T , and j ∈ L(i)
(4)

where T is the collection of selected topics, and L(i) represents the least relevant
images for topic i. In this paper, the element Cij will be set to 0, if image j is
selected to be least relevant to topic i. Once all Cij ’s are updated, the algorithm
begins to learn P , Q and C further with respect to Eq. (4).

For both the update of neighboring matrix W and that of the topic-coefficient
matrix C, the model is learned incrementally, and it is consistent between suc-
cessive interactions. In order for experts to work on consistent image groupings,
we also keep the visualization consistent between successive interactions. This is
achieved by storing the 2D coordinates of images and using them as the starting
point in the graph view (Fig. 4 (panel 1)) for the next interaction [19].

6 Evaluation and Discussions

To evaluate the effectiveness of the paradigm per expert’s objectives, a domain
expert (co-author) was asked to provide a reference image grouping that best
matches her overall understanding of the relationships between medical images
in the database. In particular, for each image she listed its most similar images
in terms of their differential diagnoses. We designed an experiment to compare
the image grouping performances between the results of fully automated machine
learning and our expert-in-the-loop paradigm. For fully automated learning (case
1), the resulting image grouping was estimated by our model without expert
inputs. In our paradigm (case 2), the physician interacted with the model in the
loop towards a better image grouping result. She manipulated the images based
on her medical knowledge and the clinical information presented in these images.
To quantitatively evaluate the image grouping performances, we retrieved the
image neighbors and compared them to the corresponding reference image group-
ing for both cases.

Table 1 summarizes the performances of both cases given various modalities,
based on which the machine learns from experts. The image groupings with
expert interactive constraints consistently outperform the traditional learning
case. In particular, our paradigm performs much better than fully automated
learning with verbal feature of correct diagnosis (CD). This suggests that diag-
noses are the primary factor considered by the expert to group medical images.
For both cases, eye tracking filters boost the performance of image features (e.g.,
12.5 % → 17.86 %). Furthermore, learning from multimodal features achieves
the best performance for both cases. We also elicited the expert’s qualitative
evaluation through an interview. The expert noticed the improvement of each
iteration. Centroid-based clustering algorithms (e.g., K-means) and connectivity-
based clustering algorithms (e.g., hierarchical clustering [7]) are used for com-
parison purposes. Since these algorithms are not easily applied to the multiple
modalities, their multimodal performances are omitted. Their performances fall
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behind that of Laplacian sparse coding, and this suggests that Laplacian sparse
coding is a good learning framework. Density-based and distribution-based algo-
rithms do not work because of the small number of data instances.

Table 1. Image grouping performances of fully automated learning and our paradigm.
The measurement is the percentage of images in the reference list to appear within the
top 5 retrieved neighbors. Different combinations of modalities include primary mor-
phology terms only (PRI), body location terms only (BOD), correct diagnoses terms
only (CD), SIFT features only, SIFT features filtered by gaze features (SIFT+Gaze),
and multimodal data (overall).

Verbal SIFT SIFT+Gaze Multimodal

PRI BOD CD

Case 1 (fully K-means 29.46 11.61 14.29 8.93 14.29 –

automated) Hierarchical clustering 25.00 11.61 12.50 11.61 13.39 –

learning Laplacian sparse coding 33.04 14.29 36.61 10.71 14.29 52.68

Case 2 (our paradigm) 34.82 16.96 42.86 12.50 17.86 59.82

During the paradigm evaluation, we also recorded the expert’s verbal labeling
of the image groups. The labeling of image groups is useful to disclose her diag-
nostic reasoning while grouping images. This can be incorporated in future work
to optimize the semantic feature space. Another important part of our future
work involves implementing our paradigm on a larger dermatological image data-
base with more experts in the loop to test our paradigm’s robustness. An image
hierarchy can be learned and visualized. For the ease of expert interactions, a
few representative images can be selected from each group. In the case where
new images do not even have offline annotations, they can still be positioned in
an existing image grouping for further improvements, since single-modal features
can be easily projected into the unified topic space [11].

The presentation of image groupings could also be based on experts’ trade-off
between various factors, such as the primary lesion morphology and the causes of
the diseases. Our current visualization may not be feasible for a larger database.
It is necessary to design a more effective visualization strategy to allow experts
to explore both global structure and local details of image grouping.

By replacing the hard constraints in Eq. 3 with soft ones, the parameters in
neighboring graph can also be learned. In order to balance the influences between
the offline collected expert data and online expert inputs, soft constraints could
be applied by encoding expert interactions in a new penalty term.

7 Related Work

Existing systems that allow interactive user visual analysis usually adopt topic
modeling techniques [4–6,13,15]. Original features are reduced to a lower-
dimensional topic space, in which documents are grouped. One type of such
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system, including UTOPIAN [4] and iVisClustering [15], visualizes the topics,
so that users can adjust the topic-term distribution at the term granularity.
In contrast, our paradigm focuses experts on natural high-level image group-
ing tasks and encodes expert image manipulations as constraints to improve the
overall image grouping. Besides, in our domain the objects for experts to interact
with are medical images rather than latent topics, which may be confusing to the
experts. Another type of system, including LSAView [6] and iVisClassifier [5],
involves document-level interactions. These systems require users to change the
parameters of the algorithms. In contrast, our system updates the underlying
topic model based on experts’ natural manipulations of the images.

8 Conclusions

This paper presents an interactive machine learning paradigm with experts in
the loop for improving image grouping. We demonstrate that image grouping
can be significantly improved by expert constraints through incremental updates
of the underlying computational model. In each iteration, our paradigm allows
to accommodate our model to experts’ input. Performance evaluation shows
that expert constraints are an effective way to infuse expert knowledge into the
learning process and improve overall image grouping.
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Abstract. LASIK (Laser-Assisted in SItu Keratomileusis) surgeries
have been quite popular for treatment of myopia (nearsightedness),
hyperopia (farsightedness) and astigmatism over the past two decades.
In the past decade, over 10 million LASIK procedures had been per-
formed in the United States alone with an average cost of approximately
$2000 USD per surgery. While 99 % of such surgeries are successful, the
commonest side effect is a residual refractive error and poor uncorrected
visual acuity (UCVA). In this work, we aim at predicting the UCVA
post LASIK surgery. We model the task as a regression problem and
use the patient demography and pre-operative examination details as
features. To the best of our knowledge, this is the first work to system-
atically explore this critical problem using machine learning methods.
Further, LASIK surgery settings are often determined by practitioners
using manually designed rules. We explore the possibility of determin-
ing such settings automatically to optimize for the best post-operative
UCVA by including such settings as features in our regression model. Our
experiments on a dataset of 791 surgeries provides an RMSE (root mean
square error) of 0.102, 0.094 and 0.074 for the predicted post-operative
UCVA after one day, one week and one month of the surgery respectively.

Keywords: LASIK surgeries · UCVA · Uncorrected visual acuity ·
Regression

1 Introduction

Refractive surgeries for eye are performed to correct (normalize) the refractive
state of the eye, to decrease or eliminate dependency on glasses or contact lenses.
This can include various methods of surgical remodeling of the cornea or cataract
surgery. LASIK is a refractive eye surgery that uses a laser to correct nearsight-
edness, farsightedness, and/or astigmatism. In LASIK, a thin flap in the cornea
is created using either a micro-keratome blade or a femto-second laser. The sur-
geon folds back the flap, then removes some corneal tissue underneath using a
laser. The flap is then laid back in place, covering the area where the corneal
c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part I, LNAI 9651, pp. 489–501, 2016.
DOI: 10.1007/978-3-319-31753-3 39
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tissue was removed. With nearsighted people, the goal of LASIK is to flatten
the steep cornea; with farsighted people, a steeper cornea is desired. LASIK can
also correct astigmatism by smoothing an irregular cornea into a more normal
shape. LASIK surgeries are highly popular; over 10 million LASIK procedures
have been performed in the United States alone in the past decade1.

Motivation. While overall patient satisfaction rates after primary LASIK
surgery have been around 95 %, it may not be recommended for everybody for
two reasons: (1) high cost with potentially no significant improvement for certain
types of patients, and (2) possible eye complications after the surgery. LASIK
surgeries cost approximately $2000 USD per surgery. An ability to predict post-
operative UCVA can help patients make an informed decision about investing
their money in undergoing a LASIK surgery or not. It can also help surgeons
recommend the most promising type of laser surgery to the patients. How can
we perform this prediction? Further, while performing such surgeries, surgeons
need to set multiple parameters like suction time, flap and hinge details, etc.
These are often set using manually designed rules. Can we design a data driven
automated method to suggest the best settings for a patient undergoing a laser
surgery of a certain type?

Problem Definition. In this paper, we address the following problem.

Given: Pre-operative examination results and demography information about
a patient.

Predict: Post-operative UCVA after one day, one week and one month of the
surgery.

Challenges. The problem is challenging because (1) large amount of data about
such surgeries is not easily available; (2) there are a lot of pre-operative mea-
surements that can be used as signals; and (3) data is sparse, i.e., there are a lot
of missing values.

Brief Overview of the Proposed Approach. We model the task as a regres-
sion problem. We use domain knowledge to pre-process data by transforming
a few categorical features into binary features. We also use average values to
impute missing values for numeric features. For categorical features, we impute
missing values using the most frequent value for the feature. We evaluate multi-
ple regression approaches. Our experiments on a dataset of 791 surgeries provides
an RMSE of 0.102, 0.094 and 0.074 for the predicted post-operative UCVA after
one day, one week and one month of the surgery respectively.

Main Contributions. In summary, we make the following contributions in this
paper.

– We propose a critical problem of predicting post-operative UCVA for patients
undergoing LASIK surgeries.

1 http://www.statista.com/statistics/271478/number-of-lasik-surgeries-in-the-us/.

http://www.statista.com/statistics/271478/number-of-lasik-surgeries-in-the-us/
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– We model the task as a regression problem. We explore the effectiveness of
demographic, pre-operative features and surgery settings for the prediction
task. To the best of our knowledge, this is the first work to systematically
explore this critical problem using machine learning methods.

– Using a dataset of 791 LASIK surgeries performed on 404 patients from 2013
and 2014, we show the effectiveness of the proposed methods. The dataset is
made publicly available2.

Paper Organization. The paper is organized as follows. We start with a basic
introduction to laser surgery procedure in Sect. 2. In Sect. 3, we discuss various
features that can be used for post-operative UCVA prediction. Further, in Sect. 4,
we discuss various kinds of regression methods that can be used for the task. In
Sect. 5, we present dataset details, and also insights from analysis of results. We
discuss related work in Sect. 6 and conclude with a summary in Sect. 7.

2 Introduction to Laser Surgeries

In this section, we discuss main steps in a typical laser surgery. This will help
us understand the importance of features discussed in Sect. 3. Further, we also
discuss various types of laser surgeries depending on the laser ablation profile.

A laser surgery involves three main steps during the operation as follows.

– Flap creation: A soft corneal suction ring is applied to the eye, holding the
eye in place. Once the eye is immobilized, a flap is created by cutting through
the corneal epithelium and Bowman’s layer. This process is achieved with a
mechanical micro-keratome using a metal blade, or a femto-second laser that
creates a series of tiny closely arranged bubbles within the cornea. A hinge is
left at one end of this flap. The flap is folded back, revealing the stroma, the
middle section of the cornea.

– Laser remodelling: The second step of the procedure uses a laser to remodel
the corneal stroma. The laser vaporizes the tissue in a finely controlled manner
without damaging the adjacent stroma. The layers of tissue removed are tens
of microns thick.

– Repositioning of the flap: After the laser has reshaped the stromal layer, the
LASIK flap is carefully repositioned over the treatment area by the surgeon
and checked for the presence of air bubbles, debris, and proper fit on the eye.
The flap remains in position by natural adhesion until healing is completed.

There are four types of laser surgeries depending on laser ablation profiles as
follows.

– Plano-scan-LASIK: During the plano-scan LASIK procedure the corneal tissue
is evenly ablated by the laser beam.

– Aspheric-LASIK: Using the aspheric profile means to ablate the corneal tis-
sue in an “egg-shaped” way using a “flying spot” laser beam, similar to an
American football.

2 https://www.dropbox.com/s/xdm835jg1w5qvlu/lasik.txt?dl=0.

https://www.dropbox.com/s/xdm835jg1w5qvlu/lasik.txt?dl=0
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– Tissue-saving-LASIK: The tissue-saving profile is one where the aim is to save
as much corneal tissue as possible during the laser ablation time in case of
borderline cases with regard to the initial corneal thickness when the standard
LASIK procedure is no longer possible.

– Wavefront-guided-LASIK: In case of the application of the wavefront guided
LASIK procedure, which is often also called “individualized” or “personalized”
treatment LASIK, the eyes are measured pre-operatively using a wavefront
pattern scanner. By using the wavefront guided LASIK procedure aberrations
can be eliminated and therefore result in an optimum of visual acuity as well
in daylight as in night-vision.

For more details about the fundamentals, surgical techniques and complica-
tions in LASIK surgeries, the reader is redirected to [2].

3 Features for Post-operative UCVA Prediction

In this section, we discuss various features that we use to learn the regression
model for predicting post-operative UCVA.

3.1 Demography Features

Intuitively, post-operative UCVA must depend on features of the patient. Hence,
we consider two important demography features: age and gender.

3.2 Pre-operative Examination Features

Before the surgery, the patient’s corneas are examined with a pachymeter
to determine their thickness, and with a topographer, or corneal topography
machine, to measure their surface contour. Using a beam of light, a topographer
creates a topographic map of the cornea. Using this information, the surgeon
calculates the amount and the location of corneal tissue to be removed. We use
the following features obtained using such pre-operative examination.

– Left/right eye: This is a binary feature to indicate the eye which is being
operated upon: OD (right) or OS (left).

– Uncorrected Visual Acuity (UCVA): Visual acuity score without the aid of
glasses or contact lenses.

– Uncorrected Near vision: Visual acuity measured using a small chart held near
the patient.

– Corrected Near vision: Visual acuity measured using a small chart held near
the patient with glasses.

– BCVA with glasses: The best acuity score one can achieve with glasses.
– Sphere: This indicates the amount of lens power, measured in diopters (D),

prescribed to correct nearsightedness (−) or farsightedness (+). The term
“sphere” means that the correction for nearsightedness or farsightedness is
“spherical,” or equal in all meridians of the eye. This is measured using
retinoscopy as well as using an auto-refractor leading to two separate features.
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– Cylinder: This indicates the amount of lens power for astigmatism. The term
“cylinder” means that this lens power added to correct astigmatism is not
spherical, but instead is shaped so one meridian has no added curvature, and
the meridian perpendicular to this “no added power” meridian contains the
maximum power and lens curvature to correct astigmatism. This is measured
using retinoscopy as well as using an auto-refractor leading to two separate
features.

– Axis: This describes the lens meridian that contains no cylinder power to
correct astigmatism. The axis is defined with a number from 1 to 180. The
number 90 corresponds to the vertical meridian of the eye, and the number 180
corresponds to the horizontal meridian. This is measured using retinoscopy as
well as using an auto-refractor leading to two separate features.

– Spherical equivalent: This indicates the spherical power whose focal point
coincides with the circle of least confusion of a sphero-cylindrical lens. Hence,
the spherical equivalent is equal to the algebraic sum of the value of the sphere
and half the cylindrical value.

– Slit lamp Examination: Slit lamp is an apparatus for projecting a narrow flat
beam of intense light into the eye. It helps in the microscopic study of various
structures of the eye like eyelid(s), lashes, conjunctiva, cornea, anterior cham-
ber, pupil, iris, vitreous, and retina. Typical values for this column could be
“normal”, “corneal scar”, “sub epithelial scar”, “fuchs heterochromic iridocy-
clitis”, etc. We convert it to a binary column “normal” versus “abnormal”.

– IOP (intraocular pressure): The pressure of the intraocular fluid, usually mea-
sured in millimeters of mercury.

– Retina examination: This is a binary feature and can take the following val-
ues: “normal” or “abnormal”. Abnormal cases include various forms of retinal
issues like “Chorioretinal Atrophy”, “Familial Exudative Vitreo-retinopathy
(FEVR)”, “Barrage laser done”, “Retinal pigment epithelium (RPE) atro-
phy”, “Tilted disc with temporal pallor”, etc.

– Steep-K, Flat-K and Axis@Flat-K: For a given corneal topography reading,
the lower diopter number represents the less steep meridian of the cornea,
or the “flat-K”. The higher diopter number represents the steepest meridian
of the cornea, or the “steep-K”. Usually these are numbers between 40 and
50. The difference between the horizontal (higher) and vertical (lower) diopter
readings gives you the approximate amount of corneal astigmatism, or cylinder
correction. Axis@Flat-K is a number from 1 to 180.

– Thinnest Preop Corneal Thickness: The minimum thickness of the cornea.
This usually varies from 450 to 650 microns.

– Topography machine: This indicates the type of topography machine used. In
our dataset, three kinds of machines were used: Orbscan, Galilei and Oculyzer.

3.3 Surgery Settings

This set of features include various settings used when performing the surgery.
The following is the list of features used.
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– Surgery type: This depends on the laser ablation profiles and can be
of 4 types: Plano-scan-LASIK, Aspheric-LASIK, tissue-saving-LASIK, or
wavefront-guided-LASIK.

– Flap thickness: Most surgeons choose flap thicknesses between 100µ and
120µ.

– Suction time: Suction time should be as short as possible to minimize optic
nerve head and retinal ischemia (i.e., reduced vision) during LASIK. This
usually varies from half a minute to a minute.

– Optic zone: This is the size of the treatment area. Common optic zone diameter
is between 6–7 mm. It has been shown that a larger surgical optical zone
diameter significantly decreases higher order aberrations after LASIK.

– Flap diameter: Diameter of the flap.
– Flap side cut angle: Previously, all side cuts were made at 90◦. But now

surgeons believe that certain cut angles could lead to stronger adhesion, less
dry eyes, or better cosmetic looks3.

– Hinge details: This includes hinge position, hinge angle, and the hinge width.
Hinge position is usually kept at 90 for most of the surgeries. Hinge angle can
be varied from 40 to 60◦. Hinge width varies from 3 to 4.5 mm.

4 Approaches for Post-operative UCVA Prediction

We model the post-operative UCVA prediction task as a regression problem using
the features described in Sect. 3. We explore four approaches for regression as
follows.

– GDBT Regression: We used an efficient implementation of the Multiple Addi-
tive Regression Trees (MART) gradient boosting algorithm. MART learns an
ensemble of regression trees, which is a decision tree with scalar values in its
leaves. The ensemble of trees is produced by computing, in each step, a regres-
sion tree that approximates the gradient of the loss function, and adding it to
the previous tree with coefficients that minimize the loss of the new tree. The
output of the ensemble produced by MART on a given instance is the sum of
the tree outputs.

– Online Gradient Descent based Regression: Linear regression is used for mod-
eling the relationship between a scalar dependent variable and one or more
explanatory variables (or independent variables). Linear regression models are
often fitted using the least squares approach. Stochastic gradient descent is
a gradient descent optimization method for minimizing an objective function
that is written as a sum of differentiable functions. Online Gradient Descent
based Regression is a form of linear regression which uses Stochastic gradient
descent for optimization.

– Neural network based regression: A neural network model is defined by the
structure of its graph (namely, the number of hidden layers and the number
of neurons in each hidden layer), the choice of activation function, and the

3 http://www.reviewofophthalmology.com/content/i/1777/c/32309/.

http://www.reviewofophthalmology.com/content/i/1777/c/32309/
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weights on the graph edges. The neural network algorithm tries to learn the
optimal weights on the edges based on the training data. We use a neural
network with one hidden layer and a single output neuron.

– Poisson Regression: Poisson Regression assumes that the unknown func-
tion, denoted Y has a Poisson distribution, i.e., given the instance x =
(x0, x1, ..., xD−1), for every k = 0, 1, ..., the probability that its value is k
is given by Eq. 1.

p(k|x; θ) =
[E(Y |x)]ke−E(Y |x)

k!
(1)

where E(Y |x) = e
∑

θixi . Given the set of training examples, the algorithm
tries to find the optimal values for θ0, ..., θD−1 by trying to maximize the log
likelihood of the parameters given the input. The likelihood of the parame-
ters θ0, ..., θD−1 is the probability that the training data was sampled from a
distribution with these parameters.

5 Experiments

In this section, we describe our dataset, metrics and experiments to analyze
relative accuracy of various methods proposed in Sect. 4 for the post-operative
UCVA prediction problem.

5.1 Dataset

The dataset contains information for 404 patients in the age range of 18 to
47 years. 215 of these patients are females, and the rest are males. The 791 LASIK
surgeries were done in 2013 and 2014. 397 of the surgeries were performed on
the left eye and remaining ones on the right eye. Most of the surgeries are either
of the Wavefront-guided-LASIK type or of the Plano-scan-LASIK type. Orbscan
is the most popular topography machine used; Oculyzer being the second most
popular one. Pre-operative UCVA values vary between 0.15 and 2. Post-operative
UCVA values vary between −0.2 and 1 for day 1,−0.3 and 1 for week 1 and
−0.2 and 0.95 for month 1 after the operation. Although usually large datasets
improve accuracy of the learned machine learning models, it is difficult to obtain
large datasets in this domain.

Data Pre-processing. The dataset contains features like “Slit lamp examina-
tion” and “Retina examination”. Although these columns contain a few cases
of various abnormalities, specific types of abnormalities are not very useful due
to low occurrence frequency of such abnormal cases in the dataset. Hence, we
group all abnormal cases into a single attribute value called “abnormal” and
convert the two features to binary-valued features with two values: “normal”
and “abnormal”.

The dataset contains a lot of missing values. On average around 83 instances
have missing values across all attributes. The most number of missing values
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(272) were for the IOP attribute. Categorical features were converted to numeric
features by mapping them to consecutive integers. Missing values were replaced
by the average value for the column for numeric features, and by the most
frequent value for the column for categorical features.

5.2 Metrics

Measuring Visual Acuity. Visual acuity is measured by a psycho-physical
procedure and as such relates the physical characteristics of a stimulus to a
subject’s percept and his/her resulting responses. Measurement can be done by
using an eye chart, by optical instruments, or by computerized tests like the
FrACT4. Visual acuity is often measured according to the size of letters viewed
on a Snellen chart or the size of other symbols, such as Landolt Cs5 or the
Tumbling E6.

In some countries, acuity is expressed as a vulgar fraction, and in some as a
decimal number. Using the meter as a unit of measurement, (fractional) visual
acuity is expressed relative to 6/6 (normal vision). Otherwise, using the foot,
visual acuity is expressed relative to 20/20. For all practical purposes, 20/20
vision is equivalent to 6/6. In the decimal system, acuity is defined as the recip-
rocal value of the size of the gap (measured in arc minutes) of the smallest
Landolt C, the orientation of which can be reliably identified. A value of 1.0 is
equal to 6/6.

LogMAR is another commonly used scale, expressed as the (decadic) log-
arithm of the minimum angle of resolution. The LogMAR scale7 converts the
geometric sequence of a traditional chart to a linear scale. It measures visual
acuity loss: positive values indicate vision loss, while negative values denote nor-
mal or better visual acuity. In this paper, we use the LogMAR scale for visual
acuity. In practice, LogMAR values can vary from −0.3 (equivalent to 20/10) to
2 (equivalent to 20/2000).

Evaluating Regression Results. In this work, we use regression to predict
post-operative UCVA in LogMAR. To evaluate regression results, we use three
metrics: L1, L2 and Root Mean Squared Error (RMSE). Let N be the number
of instances. Consider 2 vectors of UCVA across various instances: true (T) and
predicted (P). The three metrics are then defined as follows.

– Avg L1 =
∑

i
|Ti−Pi|

N

– Avg L2 =
∑

i
|Ti−Pi|2

N
– RMSE (Root mean squared error) is the square-root of the L2 error.

Lower values of L1, L2 and RMSE are better.

4 http://michaelbach.de/fract/.
5 https://en.wikipedia.org/wiki/Landolt C.
6 https://en.wikipedia.org/wiki/E chart.
7 https://en.wikipedia.org/wiki/LogMAR chart.

http://michaelbach.de/fract/
https://en.wikipedia.org/wiki/Landolt_C
https://en.wikipedia.org/wiki/E_chart
https://en.wikipedia.org/wiki/LogMAR_chart


Predicting Post-operative Visual Acuity for LASIK Surgeries 497

5.3 Results

We use four different regression mechanisms for the prediction task. 10-fold cross
validation is used to report accuracy values. Tables 1, 2 and 3 show the accuracy
numbers for day 1, week 1 and month 1 after the operation without using the
surgery settings features. Values in the brackets indicate standard deviation. We
can see that in all the cases, GDBT Regression performs the best. This is in line
with various other studies which claim that ensemble based methods perform
well.

Table 1. 10-Fold cross validation accuracy of day 1 UCVA predictions using vari-
ous models without surgery settings features (Numbers in brackets indicate standard
deviation)

Model L1(avg) L2(avg) RMS(avg)

Online gradient descent 0.0771 (0.0084) 0.0136 (0.0065) 0.1155 (0.026)

Poisson regression 0.0744 (0.008) 0.0128 (0.0049) 0.1108 (0.0217)

GDBT regression 0.0695 (0.0123) 0.0108 (0.0051) 0.1024 (0.0234)

Regression neural network 0.082 (0.0077) 0.0142 (0.0068) 0.1179 (0.027)

Table 2. 10-Fold cross validation accuracy of week 1 UCVA predictions using vari-
ous models without surgery settings features (Numbers in brackets indicate standard
deviation)

Model L1(avg) L2(avg) RMS(avg)

Online gradient descent 0.0638 (0.0068) 0.0132 (0.0057) 0.112 (0.0244)

Poisson regression 0.061 (0.0118) 0.0118 (0.0067) 0.1064 (0.0298)

GDBT regression 0.0577 (0.007) 0.0094 (0.0032) 0.094 (0.0161)

Regression neural network 0.0643 (0.011) 0.0149 (0.0073) 0.1184 (0.03)

Figure 1 shows the variation of true versus predicted post-operative UCVA
for the one-day after the surgery prediction. The figure illustrates the accuracy
of the prediction model.

We also experimented by adding the surgery settings features. The metrics
improve a little compared to using only demography and pre-operative exami-
nation features. However, the results are not significant. This could be because
the current surgery settings are already set to optimum values, or because of the
small amount of available training data.

Finally, we performed feature selection to identify the most important fea-
tures using the CfsSubsetEval attribute selector [13] and the Best First search
method. CfsSubetEval evaluates the worth of a subset of attributes by consid-
ering the individual predictive ability of each feature along with the degree of
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Table 3. 10-Fold cross validation accuracy of month 1 UCVA predictions using vari-
ous models without surgery settings features (Numbers in brackets indicate standard
deviation)

Model L1(avg) L2(avg) RMS(avg)

Online gradient descent 0.0514 (0.0115) 0.0099 (0.0068) 0.0933 (0.0344)

Poisson regression 0.051 (0.006) 0.0097(0.0051) 0.0955 (0.0247)

GDBT regression 0.0458 (0.0097) 0.0057 (0.0029) 0.0736 (0.0184)

Regression neural network 0.0539 (0.0099) 0.0102 (0.0058) 0.0967 (0.0283)

Fig. 1. True vs predicted UCVA for day 1

Table 4. Most important features

Day 1 Week 1 Month 1

BCVA with glasses BCVA with glasses Age

Spherical equivalent Spherical equivalent Uncorrected near vision

Slit lamp examination Corrected near vision BCVA with glasses

IOP Thinnest Preop Corneal Thickness Axis

Axis@Flat K Axis@Flat K Spherical equivalent

redundancy between them. The most important features across the datasets are
shown in Table 4.

Surprisingly, pre-operative UCVA does not turn up in the top important
features possibly due to high correlation with the above features. We show the
variation of each of these important features with respect to the post-operative
UCVA (day 1) in Fig. 2.
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Fig. 2. Variation of important features with respect to the Post-Operative UCVA
(day 1)

6 Related Work

Data Mining in Healthcare. Recently there has been a lot of work in the
data mining community across various aspects of health care. Main areas of focus
include personalized medicine [9], phenotyping [7,14,15], analysis of electronic
medical records [5,18], mortality prediction [11,16], patient re-admission risks [4,
6]. However, there has not been much work on applying machine learning and
data mining techniques to problems in ophthalmology.

Visual Acuity Prediction. Our work is most related to previous work on
visual acuity prediction. There has been some previous work on predicting visual
acuity in the ophthalmology community but it differs from our work in multi-
ple aspects like the type of surgeries, the type of features used and the type
of methods used for prediction as detailed in the following. Baron et al. [3] use
pupil size, ablation size, refractive error, and photoreceptor directional sensi-
tivity as features and a point-spread function as the method to predict visual
acuity. We explore a much larger set of features using regression. Also, their
aim is to predict correlations only rather than the post-operative UCVA values.
Besides this they perform analysis for PRK (photorefractive keratectomy) surg-
eries while we focus on LASIK surgeries. Olsen et al. [17] use coloboma size,
optic nerve color, foveal development, and subfoveal retinal pigment epithelial
changes as features and linear regression as the method to predict visual acuity
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for children. Unlike our work, this is not related to LASIK surgeries, and is useful
for children only. There are various instruments like white-light interferometer
(Lotmar Visometer) and a Snellen chart projector (Guyton-Minkowski Potential
Acuity Meter) to predict visual acuity after cataract surgeries [10,19] but none
for predicting post-operative UCVA for LASIK surgeries. Another line of work
deals with expressing visual acuity as a function of various other eye metrics
like “pupil plane” and “image plane” [12], 31 different metrics of image qual-
ity [8,20], wavefront aberrations [21], Zernike Mode and Level of Root Mean
Square Error [1]. However, all of these approaches are for estimating current
visual acuity rather than for predicting post-operative visual acuity. In short, to
the best of our knowledge, the proposed work is the first work to systematically
explore the critical problem of predicting the UCVA after LASIK surgeries using
machine learning methods.

7 Conclusion

Predicting post-operative UCVA is a critical task. We modeled the task as a
regression problem. We experimented with multiple regression models and also
a large number of pre-operative examination features. We found that BCVA with
glasses, Spherical equivalent, Slit lamp examination, IOP, Retina examination,
Axis@Flat K are very important features. Our models can provide predictions
for UCVA after 1 day, 1 week and 1 month with an RMSE of 0.102, 0.094 and
0.074 respectively. The surgery settings seemed to reduce the RMSE but the
reduction was not statistically significant. In the future, we plan to examine the
impact of surgery settings on the UCVA prediction task with larger amount of
data. We also plan to extend the set of features to include other features like
ethnicity and profession of patients, and also features related to surgeons like
their expertise, experience, etc.
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Abstract. Collaborative filtering techniques have been successfully
applied in recommender systems recently. In order to improve recom-
mendation accuracy for better user experience, the review texts should
be exploited due to its rich information about users’ explicit preferences
and items’ features, which cannot be fully revealed only by rating scores.
In this paper, we propose an effective algorithm called LBMF to explore
review texts and rating scores simultaneously. We directly correlate user
and item latent dimensions with each word in review texts and ratings
in our model, so semantic word vectors can be easily learned and effec-
tively clustered based on rating values. On the other hand, the learned
semantic word vectors can justify the rating values, which can promote
better learning of user and item latent vectors for rating prediction. The
learned latent dimensions by our model can reasonably explain why users
rated items the way they did. This revelation can promote better mod-
eling of user profiles and item information, and enable further analysis
of user behaviors. Experimental results on several real-world datasets
demonstrate the efficiency and effectiveness of LBMF comparing to the
state-of-the-art models.

Keywords: Recommender systems · Collaborative filtering

1 Introduction

Recent years, more and more shopping websites have employed recommender
systems to help improve shopping experience for customers. A functional recom-
mendation algorithm should tell sellers whether or not a user prefers an item, and
it is more valuable if the algorithm can discover the reason for users’ preferences.
Traditional recommendation techniques usually only based on rating scores. For
example, a recommender system may recommend a new movie to a certain user
considering the ratings the user given to other movies previously, but the review
texts the user wrote are typically ignored. Although this approach have gained
success to some extend, due to the ignorance of review information, it cannot
give reasonable explanations for users’ behavior. Especially, it cannot tell us the
interaction between user’s preferences and item’s features.

Customers always express mixed emotions at items due to their attitude
towards different items’ features. For example, maybe a user likes the size of a
c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part I, LNAI 9651, pp. 502–513, 2016.
DOI: 10.1007/978-3-319-31753-3 40
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telephone’s screen, and prefers the brand but has no interest in the color. This
diverse meaning cannot be digged out by rating information simply. A rating
score can only reflect a customer’s overall impression on a product, but the
subtle emotion beneath the rating information cannot be revealed, so this is a
big drawback of recommendation algorithms that only based on rating scores.

Up to present, only a few works have taken notice of the importance and
benefits of leveraging review texts to promote recommendation performance.
However, due to the complexity of natural language and the rich information
the review texts may contain, it is still a challenging task to extract effective
information from review texts for recommendation task. Different from other
text processing fields, review comments usually contain much emotional infor-
mation, and customers always express their opinions on products by writing
comments. Therefore, understanding the subjectivity of the review texts is the
main point for such approach. Most existing works try to combine latent topic
factors found by topic models such as Latent Dirichlet Allocation (LDA) [3], but
the improvements are modest.

In this paper, we propose a novel recommendation algorithm based on the
log-bilinear document model [8]. Specifically, we state the following two points:
First, we assume the review texts and ratings are consistent and both of them
are determined by users’ or items’ latent space. Then the review texts and rating
information can be directly linked together through users’ and items’ dimensions.
Second, we adopt a modified log-bilinear document model to exploit the coher-
ence of topics in each comments. This is a probabilistic model with log-bilinear
energy function to model the bag of words distribution of a document. Previous
experiments [8] proved that the log-bilinear document model is more powerful
than LDA in capturing word semantic and sentiment features.

Meanwhile, we apply a softmax transformation to project the users’ and
items’ latent space into the semantic space. By this correlation, the latent fac-
tors can have a correspondence with the topics revealed by review texts. Different
from other methods, we assume each user and item has a sentiment space respec-
tively, and we map the latent factor space to the semantic word space directly
and causally, making the model more effective and explainable. The experimental
results on 9 real-world datasets show that our algorithm gains real improvement
on prediction performance comparing to the state-of-the-art models.

2 Related Work

Recommender techniques can be roughly classified into two categories: content-
based filtering techniques [1] and collaborative filtering techniques [11]. Content-
based filtering systems try to use content information such as users’ profiles,
review texts and item tags. The methods based on collaborative filtering can
be classified into neighborhood based algorithms and latent factor models [4].
Neighborhood based methods usually recommend an item to a user based on
the behavior of similar users, and it is common to use rating information to find
people who have the same interest. The latent factor based models denote users’
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and items’ latent factors as vectors, and the product of certain element of the
user’s vector and item’s vector reflects the user’s preference for the corresponding
item’s feature. The most popular methods to learn the latent vectors are matrix
factorization [10] and non-negative matrix factorization methods [6].

In order to provide more flexible models, more and more works try to combine
contend-based methods and collaborative filtering techniques for better recom-
mendation performance. Among them, the combination of rating information
and review texts receives more and more attentions. In the early work, [12] pro-
poses a probabilistic graphical model called CTR, which first defines a document
as the set of all reviews of an item and then uses the LDA model to learn the
topic similarity between each document.

Inspired by CTR, two related models (i.e., HFT and RMR) try to combine
the topic factors with the latent user factors or latent item factors in different
ways. Different from CTR, HFT [9] supposes that the latent factors are directly
mapped to the topic vectors in LDA rather than by a sampling process. RMR
[7] assumes users’ latent space is correspondent to a mixture of Gaussian distri-
butions and the ratings are sampled from a Gaussian mixture model.

To give each user or item a semantic space, researchers recently treat each
review text as a document. SUIT [13] supposes user, item and topic latent factors
co-determine each rating and then uses tensor factorization to learn the model.
However, since all three factors are at the same level, it ignores the causal rela-
tionships among them and the model is hard to explain. In another work [2],
the authors propose a model called topicMF. Like HFT and our work, it maps
users’ and items’ latent space to the semantic space. The difference is that it
uses nonnegative matrix factorization to learn topic factors, a primary drawback
of this approach is the time complexity, hence it does not scale well and is not
suitable for real-world large datasets.

3 Preliminaries

In this section, we first give the notations, then briefly address latent factor
models.

3.1 Notations

We assume that there are N users and M items in the datasets. U ∈ R
N×K ,

V ∈ R
M×K and θ ∈ R

K×L are user, item and topic factor matrix respectively,
where K denotes the number of latent dimensions of each user, item and review
text. K is a free parameter and can be set manually, a larger K means the user
and item latent factors can carry richer information, and meanwhile each review
text can be represented by a more detailed topic weightings.

We denote each user and item as u and i, meanwhile the corresponding latent
vector is denoted by Uu and Vi respectively (i.e., the row vector of U and V ).
The rating score that user u gives to item i is Rui. The review text given by
user u to item i is represented as dui and the review texts collection is denoted
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as D. The topic distribution vector of a particular review text is θui, which is a
corresponding vector in θ.

We also use w to denote a single word in dui. The number of words a review
text contains is represented as Nui. We use k to denote words’ index in the
corresponding review text. And β ∈ R

K×|W | is a word representation matrix
denotes the words’ association strength with respect to each latent topic dimen-
sion, where |W | is the vocabulary size. The notations are shown in Table 1.

Table 1. Notations used in this work

Notations Description

D review collection

L number of review texts

N number of users

M number of items

K number of latent dimensions or topics

Uu K-dimensional latent factors for user u

Vi K-dimensional latent factors for item i

bu bias parameter of user u

bi bias parameter of item i

μ global bias parameter

U RN×K matrix denotes all user factors

V RM×K matrix denotes all item factors

Rui rating value given by user u for item i

dui review text for item i by user u

θui K-dimensional topic weighting vector

Nui number of words in dui

w a single word in dui

|W | vocabulary size

β RK×|W | word representation matrix

φwk K-dimensional word representation vector

bw bias parameter of word w

3.2 Latent Factor Models

Latent factor models use the low dimensional latent factors of users and items to
approximate the rating matrix and then use the latent factors to predict ratings
that are missed in the original rating matrix. It assumes that the preference of a
user u for an item i can be denoted as a product of their latent factors: UuV T

i .
Then the rating matrix can be estimated by the product of the two low-rank
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latent matrices: R = UV T . Many latent factor models further add user bias term
bu and item bias term bi to offset local effects. The optimization function is

arg min
U,V

∑
u,i

(Rui − UuV T
i − μ − bu − bi)2 + Θ (1)

where μ is the global mean rating value and the regularization term Θ is
λu

∑
u ||Uu||2 + λi

∑
i ||Vi||2 + λbu

∑
u b2u + λbi

∑
i b2i . Here λs are free regular-

ization parameters for the purpose of avoiding over-fitting. Various optimization
algorithms have been developed to find optimal solutions of U and V [5].

4 Log-Bilinear Matrix Factorization

In this section we introduce a new model called Log-Bilinear Matrix Factoriza-
tion (LBMF). It is based on the log-bilinear document model, however these
two methods have some intrinsic differences in modeling review texts. LBMF
integrates rating scores and review texts simultaneously and naturally, thus this
approach enables the latent dimensions have clearer interpretations, meanwhile
this implication can have some practical meanings which we will analyze in
detail.

4.1 Log-Bilinear Document Model

Log-bilinear document model [8] is a probabilistic model for learning semantic
word vectors. It maps θd to each word w in the corresponding document and
assumes that words in a document are conditionally independent given the mix-
ture variable θd. Here θd is the semantic space and can be regarded as a weighting
over topics. Different from LDA, θd is not sampled from Dirichlet distribution.
Log-bilinear document model [8] uses a Gaussian prior on θd. Given a review
text dui, it assumes each word wk ∈ dui is conditionally independent of other
words in dui given θui and wk depends on θui directly. The probability of the
review text is given by:

p(dui) =
∫

p(dui, θui)dθui

=
∫

p(θui)
Nui∏
k=1

p(wk|θui)dθui

(2)

where dui denotes the review text of user u given to item i. Nui is the number
of words in dui and wk is the k-th word in dui. Here p(wk|θui) is defined as a
log-linear model. It has two parameters: β ∈ R

K×|W | is a semantic-word matrix
like LDA, and bw ∈ R is bias for the word w in the vocabulary W , which captures
local features of each word.

The energy assigned to a word w given these model parameters is:

E(w; θui, φw, bw) = −θT
uiφw − bw (3)
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where φw = βw is a K dimensional vector related to the corresponding word’s
column in β. w is represented as a one-on vector, where for the k-th word wk = 1.
Then it uses softmax to represent p(w|θui) as:

p(w|θ;β, b) =
exp(−E(w; θui, φw, bw))∑

w′∈W exp(−E(w′; θui, φw′ , bw′))

=
exp(θT

uiφw + bw)∑
w′∈W exp(θT

uiφw′ + bw′)

(4)

The intuition is that if a word w’s representation vector φw matches the
direction of θui better, then its occurrence probability is higher in the corre-
sponding review text. The log-bilinear document model aims to capture word
representations and further to discover semantic and topic information. It can
be employed in the field of sentiment analysis and subjectivity detection.

4.2 LBMF

In LBMF, we try to mine features and preferences information buried in review
texts and utilize the information to enforce better learning of user latent dimen-
sions and item latent dimensions. Different from previous works, we use direct
mappings from user and item latent dimensions to the topic dimensions, and
meanwhile the topic dimensions of each review text have a direct correlation
with each word in the corresponding review text as the log-bilinear document
model, hence the user and item latent dimensions can be more interpretable.
The review texts information serves as a regulariser for the rating values, each
word given by user u for item i can regularize the latent factor models, thus
the latent user and item dimensions can embody textual information.

We do not restrict θ in the Dirichlet simplex space, but project it into the user
or item latent space. It is based on the fact that the users’ preferences or items’
features determine both ratings and review texts, which is more reasonable than
CTR and HFT. The mapping function needs to be monotonic, since a large
Uuk or Vik should corresponds to a larger θkui, which means the corresponding
feature or preference is talked more frequently in the review text. So we define
it as a softmax function:

θkui =
exp(k1|Uuk| + k2|Vik|)∑K

k′(exp(k1|Uuk′ | + k2|Vik′ |)) (5)

Specifically, |Uuk| describes the user’s level of interest at the dominant proper-
ties of the item and |Vik| denotes that whether or not the item possesses the
corresponding property. To consider the negative values is critical, a large neg-
ative value may indicates that the user talks certain features of the item a lot
in the review text but in a negative attitude. By this transformation, θkui is the
weighting of topic k. And k1 and k2 are introduced to moderate the proportions
of users’ and items’ affect.

There are other choices for the mapping relation, and we also consider only
mapping topic dimensions into latent user space or latent item space separately.
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We propose two new algorithms called LBMFu and LBMFi. The mapping rela-
tions are defined as:

θkui =
exp(k|Uuk|)∑K

k′(exp(k|Uuk′ |)) (6)

θkui =
exp(k|Vik|)∑K

k′(exp(k|Vik′ |)) (7)

We can regard LBMFu and LBMFi as special cases of LBMF.
Different from the log-bilinear document model, by Eqs. 4 and 5, we correlate

each word distribution to user latent dimensions {Uu}N
1 and item latent dimen-

sions {Vi}M
1 directly, hence the θ matrix is more coherent. Furthermore, unlike

the log-bilinear document model, we confine θ in the unit simplex, hence θ can
be regarded as a distribution over topics, thus endow θ with a clearer interpreta-
tion. Our model aims at learning semantic and topic information in review texts
rather than sentiment information directly as the log-bilinear document model
does. To capture the rating coherence, we use probabilistic matrix factorization
proposed in [10]. Given the rating set {Rui} and review texts collection D, we
assume each document and rating is i.i.d sampled, then we wish to learn the
parameters {Uu}N

1 , {Vi}M
1 , {bu}, {bi}, {φw} and {bw} of LBMF.

In LBMF, {Uu}N
1 and {Vi}M

1 determine rating values and word distributions
simultaneously, thus the latent user or item vectors correspond to features or
preferences information. Since word distributions in the corresponding review
text reflect this inexplicit features or preferences information exactly, it is sen-
sible to use word distributions information to regularize the rating prediction
models. The word distributions embody the textual information, which endow
the latent user or item dimensions with clearer implications. This intuition moti-
vates LBMF to substitute the log-likelihood of the review collection for the Θ in
the latent factor models to promote better recommendation results. The objec-
tive optimization function is defined as:

L =
∑

u,i∈D

(UuV T
i + bu + bi − Rui)2 − γl(D) (8)

Where l(D) = log
∏

u,i∈D

∫
p(θui)

∏Nui

k=1 p(wk|θui)dθui is the log-likelihood func-
tion of the review collection.

Since θui is directly determined by Uu and Vi, we can substitute θ̂ui for the
integral. Then Eq. 8 can be approximated as

L =
∑

u,i∈D

(UuV T
i + bu + bi − Rui)2 − γ log

∏
u,i∈D

p(θ̂ui)
Nui∏
k=1

p(wk|θ̂ui) (9)

where γ is introduced to balance the affect of the two components. A larger γ
means the word distributions regularize the latent factor models more heavily.
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In the following derivations, we set γ to 1 for clarity. Since θui is directly deter-
mine by Uu and Vi, we substitute Eq. 5 into Eq. 9. Hence the optimization para-
meters here are U , V , β, k1, k2 and bias parameters. We optimize LBMF based
on gradient descent (GD) by computing the corresponding gradients given Eq. 9:

∂L
∂Uu

=
∑

i

2δui(UuV T
i + bu + bi − Rui)Vi

−
∑

i

∑
Nui

[φw − Φw] θui(1 − θui)
Uu

|Uu|
(10)

∂L
∂Vi

=
∑

u

2δui(UuV T
i + bu + bi − Rui)Uu

−
∑

u

∑
Nui

[φw − Φw] θui(1 − θui)
Vi

|Vi|
(11)

where δui = 1 if u gives rating to i and Φw =
∑

w′∈Nui
(φw′ exp(θT

uiφw′+bw′ ))
∑

w′∈Nui
exp(θT

uiφw′+bw′ ) .

∂L
∂φwk

= −
∑

wk∈dui

[
θui − θui exp(θT

uiφwk
+ bwk

)∑
w′∈Nui

exp(θT
uiφw′ + bw′)

]
+ λβφwk (12)

∂L
∂bwk

= −
∑

wk∈dui

[
1 − exp(θT

uiφwk
+ bwk

)∑
w′∈Nui

exp(θT
uiφw′ + bw′)

]
(13)

Where wk is a one-hot vector indicating the selected word representation vec-
tor and we add a regularization term for β. The optimization procedures for
LBFMu and LBMFi are similar to LBMF so we omit them, and the optimiza-
tion equations of user and item bias parameters are also omitted due to space
limitation.

From Eq. 9, we can find the differences between LBMF with other models.
LBMF regards each review text as a document which is more sensible than CTR
and HFT, in which review texts are combined for each users or items. Since users
have inherent bias towards different features of items, it is not reasonable to com-
bine all the review texts of a item to model a given user’s preferences. This can
account for our model’s effectiveness over CTR and HFT partly. Furthermore,
the mapping relation we adopted link θui and latent user or item dimension is
more reasonable than CTR and HFT.

LBMF assumes each word is directly correlated with θui, and random variable
θui defines a distribution over a variety of topics. Meanwhile, θui is determined
by latent user and item factors, hence this transformation can bridge the gap
between review texts and rating scores. On the one hand, word distributions
indicates topics diversity and the variety of individual preferences information,
and on the other hand each word in review texts can shape the latent user and
item factors, in other words, the user and item latent dimensions correlate with
the word distributions via the features and preferences information, thus the
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learned latent user and item factors are robust and interpretable. The utilization
of the log-bilinear document model rather than LDA is critical. Since most of the
review texts are short and sparse, we doubt about the effectiveness of LDA for
such learning task. Compared with SUIT, we presume that topics and preferences
information are determined by the latent user dimensions and item dimensions
rather than a tensor outer product approach.

5 Experiments

In this section, we investigate the performance of our model for recommendation
task. We train our model on several large real-world datasets collected from
Amazon.com to tune the parameters. The description of the datasets can be
found in [9] and we omit it due to the space limitation.

5.1 Compared Algorithms

We implement several baseline models for comparison. We list the models below
and give simple summaries.

PMF: This is the traditional matrix factorization model which only models
ratings.

HFT: This is the state-of-the-art method that models ratings and reviews
simultaneously. HFT combines matrix factorization model with LDA to explore
the rich information in review texts that can enhance the performance of the
rating prediction.

CTR: This model focuses on recommending scientific articles to potential
readers. CTR utilizes rating scores and review texts simultaneously. The key
property of CTR lies in how the item vector is generated. By adjusting the pre-
cision parameter c, CTR can solve the one-class collaborative filtering problem.

SUIT: SUIT is a new supervised user-item based topic model, which utilizes
the textual topics and latent user-item factors simultaneously. The model uses
tensor outer product of text topic proportion vector, user latent factor and item
latent factor to model the sentiment label generalization.

TopicMF-AT: This model is proposed in [2]. It incorporates the nonnegative
matrix factorization with the standard matrix factorization model. It adopts the
NMF to uncover hidden topics information in review texts. Both user latent
vectors and item latent vectors are correlated with the topic factors via an expo-
nential transform function analogous to the one adopted by HFT.

RMR: This method is recently proposed in [7]. It employs a model similar to
LDA to explore interpretable topics to improve performance of rating prediction.
It uses a mixture of Gaussian distributions rather than matrix factorization
based methods. The item is modeled as a distribution of topics, together with
the user-topic specific Gaussian distributions, determine how a user would rate
an item.
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5.2 Evaluation

We first evaluate rating prediction performance of various models. For each
dataset we randomly select 80 % as training set and the remaining parts are
evenly split into validation set and testing set. We adopt mean squared error
(MSE) to evaluate our model and baseline models, a lower MSE on the test
set indicates better rating prediction performance. We report the MSE of the
test set which has the lowest MSE on the validation set. The initial parameters
are randomly assigned. For all the models, across various datasets, the latent
dimension K is set to 5. To assess the parameter sensitivity, we assign the latent
dimension K to a variety of values later. We set all the regularization parameters
to 0.01 and the learning rate to 0.001. The training of compared baseline models
follow the same parameter settings. For our results, the balance parameter is set
to 1. Other choices are also considered for the purpose of parameter sensitivity
analysis.

5.3 Rating Prediction

Rating prediction task is to predict the rating values that users have not rated yet
on the test set. Experimental results in terms of MSE are shown in Table 2, where
the best performance result is in bold font. The main points and observations
from the performance comparison include:

(1) The last eight models (CTR, HFT, TopicMF, SUIT, RMR, LBMF, LBMFu,
LBMFi) combine ratings with review texts, which show great improvements
in rating prediction performance comparing to PMF. Because review texts
can embody users’ preference for items, the learned latent vectors are more
reasonable. The improvement in rating prediction is result of this combina-
tion.

(2) LBMF achieves the most accurate rating prediction on almost all the
datasets. Careful examinations show that LBMF gains prediction improve-
ments over HFT and topicMF up to 6.03 % and 1.41 % across all the datasets
on average. This is in conformity with our previous analysis. Further, we
observe that in several datasets, such as ‘arts’ and ‘jewelry’, our model per-
forms exceedingly better than other approaches. The statistics of these cat-
egories reveal two important facts. First, there are fewer words per review
in these datasets. Second, products in these categories are only reviewed by
a small number of people. Despite the short and sparse review texts, our
method has proved to perform exceedingly well in contrast with the LDA-
based models. As for denser texts, our method is also competitive. Lengthy
review texts may contain extra noises, this fact can explain why LBMF
has better performance on sparser texts. Further text processing technique
can be conducted on the review texts to exclude noisy information so as to
achieve more accurate results.
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Table 2. Performance of compared models (K = 5).

Method Arts Automotive Baby Beauty Cell & Gourmet Industrial & Jewelry Musical

accessories foods scientific instruments

PMF 1.5437 1.4814 1.5932 1.4010 2.1907 1.5823 0.3873 1.3902 1.5488

CTR 1.4221 1.4718 1.5729 1.3601 2.1813 1.4692 0.3832 1.2111 1.4239

HFT 1.4916 1.4725 1.5706 1.3923 2.1309 1.5547 0.3527 1.3116 1.4968

topicMF 1.3948 1.4165 1.5017 1.3348 2.1580 1.4128 0.3625 1.2056 1.3786

SUIT 1.4128 1.4562 1.5821 1.3622 2.2107 1.4528 0.3729 1.2121 1.4089

RMR 1.4138 1.4668 1.6768 1.3707 2.1625 1.4836 0.3821 1.2290 1.4188

LBMF 1.3408 1.4112 1.4540 1.3036 2.1307 1.3928 0.3576 1.1709 1.3659

LBMFu 1.3550 1.4226 1.4573 1.3160 2.1320 1.4125 0.3633 1.1792 1.3800

LBMFi 1.3428 1.4189 1.4429 1.3093 2.1378 1.4102 0.3557 1.1760 1.3754
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Fig. 1. (a) Performance by varying latent dimension k; and (b) Performance by varying
parameter γ.

5.4 Parameter Sensitivity

We also examine the parameter sensitivity of our model on three datasets: Arts,
Jewelry, Industrial &Scientific. The two important parameters of our model
are the latent dimension k and the balance parameter γ. First we keep λ fixed,
and vary k to be {5, 10, 15, 20}. As the Fig. 1(a) shows, our model is stable for dif-
ferent ks, which indicates our method is insensitive to different dimensions. This
is different from conventional latent factor models, which tend to perform better
as dimension increases. Then we fix k and vary γ to be {0.1, 0.2, 0.5, 1, 2, 5, 10}.
The results of Fig. 1(b) show that although we set γ to different values, the model
performance is consistent on different datasets, indicating that our algorithm is
not sensitive to γ.

6 Conclusion

In this paper, we have presented a novel recommendation algorithm called Log-
Bilinear Matrix Factorization (LBMF). LBMF can predict ratings that users
have not yet conducted on relative products. LBMF also suits other tasks such
as word representation learning, alleviating the cold-start problem and find-
ing helpful reviews. Extensive experiments show the effectiveness and efficiency
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of our approach comparing to the state-of-the-art methods. Future works are
needed in capturing personalization information and exploring other application
scenarios.
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Abstract. The amount of data generated by systems is growing quickly
because of the appearance of mobile devices, wearable devices, and
The Internet of Things (IoT), to name a few. Because of that, the
importance of personalized recommendations by recommender systems
becomes more important for consumers inundated with vast amount of
choices. Many different types of data are generated implicitly (for exam-
ple, purchase history, browsing activity, and booking history), and less
intrusive recommendation systems can be built upon implicit feedback.
There are previous efforts to build a recommender system with implicit
feedback by estimating the latent factors or learning the personalized
ranking but these approaches do not fully take advantage of various
types of information that can be created from implicit feedback such
as implicit profiles or a popularity of items. In this paper, we propose a
hybrid recommender system which exploits implicit feedback and demon-
strate better performance of the proposed recommender system based on
the expected percentile ranking and a precision-recall curve against two
state-of-the-art recommender systems, Bayesian Personalized Ranking
(BPR) and Implicit Matrix Factorization methods, using hotel reserva-
tion data.

Keywords: Hotel recommendation · Hybrid recommender system ·
Collaborative filtering · Matrix factorization · Bayesian Personalized
Ranking

1 Introduction

As e-commerce gains its popularity, it is challenging for customers to sort through
an enormous number of products to find ones that align with their interest.
The main task of recommender systems is to provide a customer with the most
appropriate products matching the customer’s preference, and thus to enhance
user satisfaction and loyalty. The product provider analyzes vast amounts of data
including (but not limited to) product profile, user profile, purchase history,
and user ratings generated from marketplace implicitly or explicitly to create
an efficient, applicable, and personalized recommender system. Recommender
systems emerged as an independent and active research area in the mid-90’s,
c© Springer International Publishing Switzerland 2016
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when explicit user rating was the main resource to build the system [8,15,17].
The goal of recommender systems using explicit user feedback is to estimate
the rating of unrated products so that the system can use estimated ratings in
order to recommend to the users the new items. Adomavicius and Tuzhilin [1]
provided a mathematical formulation of the recommendation problem as follows.
Let V and I be the set of all users and the set of all possible items that can
be recommended respectively. Also u is a utility function that maps the pair of
item i and user v to a real number R which is a metric of user’s utility, i.e.,
u : V ×I → R. Then, for each user v ∈ V, we want to choose an item i′v ∈ I that
maximizes the user’s utility. More formally, ∀v ∈ V, i′v = arg maxi∈I u(v, i).

Depending on how the utility function is computed and how users and items
are modeled, there are two main approaches to building recommender systems:
collaborative filtering [10] and content-based approach [1]. Recommender sys-
tems can also be differentiated based on the type of source data on which the
system is built - explicit or implicit user feedback. Though explicit feedback is a
clear indication of the user’s preference over the item, it is not always available
and it is intrusive to users, because it requires a significant level of user engage-
ment. On the other hand, implicit user feedback such as purchase history can
be automatically generated and the properties of implicit feedback (such as no
negative feedback, inherent noise, indication of confidence, need of appropriate
measure) are listed in [9]. In addition, the amount of implicit data today is sig-
nificantly larger than the amount of explicit data, thanks to increased number
of devices generating data (mobile phone, wearable devices, to name a few). Dif-
ferent approaches have their own limitations. We propose a hybrid recommender
system which not only uses observations from implicit feedback but also utilizes
implicit profiles of users and items. The experiment indicates that the proposed
recommender system outperforms two state-of-the-art methods for implicit feed-
back datasets on its accuracy.

The rest of this paper is organized as follows. Previous research on recom-
mender systems is reviewed in Sect. 2 and We propose hybrid recommender sys-
tem in the context of hotel recommendations in Sect. 3. The specification of
source data and the comparison of performance is demonstrated in the following
section and conclusions and future works are made in Sect. 5.

2 Previous Work

2.1 Content-Based and Collaborative Filtering Methods

Content-based methods use a set of attributes that characterize an item and
generate content-defined user profile by analyzing items previously rated or seen
by each user. With the item and user profiles given, the utility function computes
the similarity between user and item to create the recommendation. Suppose
the item i and user v can be represented by l dimensional vector, g i and hv.
Then utility function u takes g i and hv as inputs and computes the similarity
between item i and user v. One of the most widely used similarity measures is
cosine similarity, u(v, i) = cos(hv, g i) = hv·gi

‖hv‖2×‖gi‖2
.
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Collaborative filtering methods compute the utility for a pair of user v and
item i, u(v, i), either by grouping similar users or items using explicit or implicit
feedback. An observation matrix U ∈ R

m×n is defined such that its element,
uvi, represents the observation that associates user v and item i. Two repre-
sentative methods of collaborative filtering are neighborhood model and latent
factor model.

Neighborhood Model: The model has been used in a variety of applications in
early stage of the recommender system [7]. The underlying idea of neighborhood
model is to estimate unknown ratings by using similar users or items. Two
similarity measures are frequently used, Pearson correlation coefficient and cosine
similarity, which can be computed from an observation matrix U . Utility of item
i for user v can be estimated by identifying k most similar items among those
rated by user v. If we define Ik(i; v) as such k items, and sij as a similarity
between item i and j, then the utility is given as weighted sum of similarities of
k similar items.

u(v, i) =

∑
j∈Ik(i;v) sijuvj∑

j∈Ik(i;v) sij
. (1)

Latent Factor Model: Latent factor model explains the observed ratings with
finite number of latent factors and this approach was one of the winning algo-
rithms of Netflix prize announced by Netflix in 2006 [2]. Among various attempts,
Singular Value Decomposition (SVD) model [12,16] became popular because of
its scalability and accuracy. The idea is to represent the users and items using f
dimensional vector, xv ∈ R

f and yi ∈ R
f , and to estimate the unknown ratings

or utility by a dot product of two vectors, u(v, i) = xT
v yi.

An observation matrix can be decomposed by two lower dimensional matrices
X ∈ R

m×f and Y ∈ R
f×n through the optimization with a regularized model

to avoid overfitting.

min
x�,y�

∑
ui,j is known

(uij − xT
i yj)2 + λ(‖xi‖2 + ‖yj‖2) (2)

where λ is a parameter for a regularization.

2.2 Methods with Implicit Feedback

We introduce two state-of-the-art methods to build a recommender system with
implicit feedback. Two methods can be considered as an adaption of collaborative
filtering methods and learn embeddings of users and items in a f -dimensional
factor space. But the main difference comes from the optimization criterion.

Weighted Regularized Matrix Factorization (WR-MF): [9,11] proposed
a recommender system with implicit feedback based on a matrix factorization.
They both extended an objective function with a regularization term to avoid
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an overfitting and introduced an additional parameter to assign more weights
on positive feedback. The optimization criterion is given as∑

v∈V

∑
i∈I

cvi(〈xv, yi〉 − 1)2 + λ(‖X‖2 + ‖Y ‖2). (3)

A parameter, cvi, is given a priori and [9] sets up this parameter proportional
to the number of observations between user v and item i while [11] suggests to
have cvi = 1 for positive feedback and smaller values for unobserved feedback.

Bayesian Personalized Ranking (BPR): BPR [14] computes the parameter
of an arbitrary model class to differentiate the user’s preference on two items.
The optimization maximizes the likelihood of the parameter by using Bayesian
approach in order to find the correct personalized ranking.∑

(v,i,j)∈Ds

ln(σ(ûvij)) + λ‖Θ‖2 (4)

where σ is the logistic sigmoid function, ûvij is a real-valued function parame-
terized with Θ evaluating the difference between items with positive feedback
and no feedback. Ds is the set of user, observed, and unobserved item tuple.

2.3 Hybrid Model

Main motivation of the hybrid recommender system is to deal with a cold-start
or sparsity problem of collaborative filtering or content-based approach and to
further improve the performance of the recommender system. The strategies of
hybrid recommender systems can be divided into seven categories [5] depending
on how they combine multiple or same techniques: weighted, switching, mixed,
feature combination, feature augmentation, cascade, and meta-level. As we can
see from the complete survey of hybrid recommender systems in [4], most of
previous works implemented and tested hybrid recommender system for explicit
user feedback such as MovieLens, EachMovie dataset and almost no systems
have been implemented on implicit feedback.

3 Our Model

In this section we describe a hybrid model for implicit feedback by explaining
different components of the system and the method to combine them.

3.1 Collaborative Component

We conducted an empirical study on collaborative filtering methods with dif-
ferent types of observation matrices and similarity measures. Three different
observations are investigated as an element of observation matrix - binary vari-
able, term frequency (TF), and term frequency/inverse document frequency (TF-
IDF). The idea is to put more weights on more observations to reflect higher
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confidence on items. To derive observations, we first define rvi which indicates
the observed action of user v on item i, for example, the number of consump-
tions of item i from user v. Binary variable pvi indicates whether user v has ever
consumed item i:

pvi =

{
1 if rvi > 0
0 if rvi = 0

. (5)

Unobserved value, rvi = 0, for implicit feedback cannot be ignored as no action
on item i from user v is also meaningful feedback and should not be handled
as missing values as opposed to explicit feedback. For example, there are cases
where item i was not available when user v consumed other items. Furthermore,
a specific item was not chosen because of demographic reason in the case of hotel
reservation system. Thus we treat zero values of rvi as a low confidence from
user v on item i instead of a negative feedback on item i.

TF and TF-IDF are mainly used in specifying keywords weights for text-
based documents. Suppose fij is the number of keyword j appearing in document
i. Then normalized TF is defined as TFij = fij

maxz fiz
where fij is normalized

by the maximum number of appearance of keywords in the same document.
IDF is often used to diminish the weights of words that occur frequently in the
documents and to increase the weights of keywords specific to the document,
IDFj = log n

nj
, where n is the total number of documents and nj is the number

of documents in which keyword j appears.
We borrow the concept of TF-IDF and re-define it in the setting of user-item

pair for implicit feedback datasets as follows. We replace fij by rvi and n, nv are
the total number of items and the number of items consumed by user v.

bvi = TFvi =
rvi

maxj rvj
, wvi = TFvi × IDFv =

rvi
maxj rvj

log
n

nv
. (6)

Using the above definition, bvi represents the number of consumption of item i
by user v normalized by maximum number of consumption on any items from
user v and IDFv is the weights associated with user’s previous action on items.
The interpretation of wvi in user-item pair is that an item can be better repre-
sented by users having consumed on specific items, than by users who consumed
on broad range of items. Note that three different types of m × n observation
matrices U can be created by arranging three different observations, pvi, bvi, and
wvi into the matrix. We used cosine similarity measure for neighborhood model
and actual similarity depends on the type of observation used.

spij = cos(Up
·i, U

p
·j), sbij = cos(U b

·i, U
b
·j), swij = cos(Uw

·i , Uw
·j ) (7)

where the superscript indicates which observation is used.
Next step is to compute the utility for the pair of item i and user v as an

aggregate of similarity of k similar items. In general, the utility is computed as
a sum of similarity weighted by its own observation as seen in Eq. (1). As stated
earlier, however, a positive observation of implicit feedback can be considered as
higher confidence level of the preference. Consequently, we introduce a method
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to aggregate similarities, which is computed from a binary variable, of k similar
items weighted by our confidence in observing pvi.

ucf(v, i) =

∑
j∈Ik(i;v) spijbvj∑
j∈Ik(i;v) spij

. (8)

In our empirical experiment, a similarity measure based on binary variable, spij ,
weighted by bvj is chosen after comparing different combinations of similarity
measures in Eq. (7) but the results of comparison are not provided due to the
limited space. We name this approach as Term-Frequency k-Nearest Neighbor
(TFkNN) to simplify the notation.

3.2 Content-Based Component

A profile vector of an item, g i, is built from attributes of an item and we used
summation as a method to aggregate content-based user profile, hv. Cosine
similarity measure is used to compute the similarity between user and item,
which is the utility for content-based method, ucb(v, i) = cos(hv, g i).

3.3 Hybrid System

As the first step of a hybrid recommender system, we use a linear weighting
scheme for collaborative filtering and content-based components as follows.

ucf cb(v, i) = βucb(v, i) + (1 − β)ucf(v, i). (9)

Another utility to be added to hybrid recommender system is a popularity
measure, which can readily computed from implicit feedback datasets. Popularity
measure of item i is defined by a rank of the item i and a total number of items,
n. Let ranki be a rank of item i within the reversely ordered list of all items
based on the number of users consumed that item. Then, the item that the most
users consumed has 1 as popularity measure and it decreases by 1

n for the rest
of items.

popi = upop(v, i) =
ranki

n
. (10)

A popular item is known to be one of the appropriate items to be presented to
users without many observations, and to be an efficient solution for extracting
the most value about users [13]. But at the same time, we want to design a
hybrid recommender system that relies more on personal data as more user
feedback is accumulated. We therefore propose an adaptive approach to create a
hybrid recommender system that uses a popularity measure combined with a user
dependent weighting scheme. The utility of the proposed hybrid recommender
system by taking into account implicit feedback, implicit profile of users, and
popularity measure is computed as:
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uhybrid(v, i) = α log nv (βucb(v, i) + (1 − β)ucf(v, i))︸ ︷︷ ︸
Collaborative &Content-based component

+ upop(v, i)︸ ︷︷ ︸
Popularity component

(11)

= α log nvucf cb(v, i) + upop(v, i).

Note that the user adaptive weighting scheme is intuitive in a sense that a weight
for personalized recommendation increases as the number of items that a user has
consumed increases. In an extreme example where the user consumes only 1 item,
i.e. nv = 1, the hybrid recommender system becomes a system based purely on a
popularity measure. After an exhaustive search, we found that α = 2.0, β = 0.01
to work the best for datasets used in an experimental study.

4 Experimental Study

4.1 Data Description

In order to test and evaluate the hybrid recommender system proposed in Sect. 3,
we conducted an experimental study with a real dataset consisting of hotel
reservation records. We collected 30 months of hotel reservation records from
a reservation system for a large enterprise US corporation. Personally identifi-
able information or personally sensitive information (e.g.: credit card number)
is not extracted or is anonymized for the purpose of this research. Data includes
reservation records from an online reservation system or a direct phone call to
the designated travel agency.

Among available fields in the hotel reservation data include time information
such as reservation date, arrival date, departure date, and hotel-specific infor-
mation such as room type, daily rate, hotel chain and brand, hotel name, and
address. We found 711,111 booking records from 92,323 users to 19,788 hotels
in 5,052 different cities globally (density is 0.0389%). Density of representative
public datasets [3] with explicit feedback is about 4.61% for MovieLens 1 M
dataset, 1.308% for MovieLens 10 M dataset, 1.17% for Netflix dataset, 55.84%
for Jester dataset, and 2.36% for EachMovie dataset. Only the Book-crossing
dataset is sparser than our implicit dataset with density of 0.0014%.

Out of 30 months of data, training data was constructed with 24 months of
data before the most recent month (which was held for test data) in the entire
dataset. If user v has ever booked hotel i, then pvi = 1 and rvi is the number
of reservations. bvi is the number of reservations normalized by the maximum
number of bookings from user v across all hotels. Lastly, a weight dependent on
the number of hotels for user v are applied to compute wvi. Test data is similarly
constructed as training data for the most recent one month of the entire dataset.
Another input to the recommender system, in addition to the identity of the
traveler, is a destination city to pre-filter the list of hotels before the system
sorts them by utility value - it does not make sense to recommend hotels not
in the destination city. The number of hotels in one city ranges between 1 and
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190 in our dataset and we excluded data with city having only one hotel from the
test data because there are no multiple choices against which the recommender
system needs to prioritize. Furthermore, we did not remove the possibility to
recommend the same hotel to a user, as opposed to recommendations for many
other application domains such as movies and book recommendations.

There are 38,418 user-hotel pairs in the test data and we used best performing
TFkNN method as a collaborative component of the hybrid recommender sys-
tem. The content-based recommender system was created based on the implicit
user profiles and the hierarchy of hotel chains and brands. With 324 differ-
ent hotel chains encoded in the dataset, content vector for hotel g i and user
hv is defined as l(= 324)-dimensional vector. Finally, a popularity measure is
integrated with the hybrid recommender system which computes the utility of
user-hotel pair as in Eq. (11).

4.2 Evaluation Methods

The recommender system was evaluated by two measures, the expected per-
centile ranking [9] and a precision-recall measure for recommending top-N
items [6]. A recall-based expected percentile ranking is a measure which is appro-
priate to implicit user feedbacks where type I error (false positive) cannot be
detected. Suppose rankvi is the percentile rank of hotel i within a destination
city to which user v travels. Then, the expected percentile rank is given as fol-
lows.

rank =

∑
v,i r

t
virankvi∑
v,i r

t
vi

(12)

where superscript t is a notation for test data.
A recall-precision measure is a widely used measure to evaluate the perfor-

mance of recommender system whose output is top-N recommended items. By
changing the number of items recommended to the user, N , recall and precision
can be examined. The range of N in our case, however, does vary depending on
the destination city of individual test data point. To overcome this discrepancy,
we define N as a percentile instead of a raw rank of recommended hotels as
explained in percentile rank measure. Now, N ranges between 0 and 100 and
recall having 1 with lower value of N is desired for the recommender system.
The precision and recall for a given recommender system with T test data points
are defined as below.

recall(N) =
#test data with rankvi < N

T
, (13)

precision(N) =
#test data with rankvi < N

NT
=

recall(N)
N

. (14)

4.3 Results and Discussion

Our experiments tested TFkNN, a hybrid recommender system based on
TFkNN, WR-MF, and two BPR approaches, BPR-MF and BPR-kNN respec-
tively. For WR-MF and BPR-MF, the number of factors ranges from 8 to 128.
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Overall results of comparison are shown in Figs. 1, 2 and we have the following
observations.

Comparison Among TFkNN, WR-MF, and BPR Methods: The
expected percentile ranking of TFkNN methods is lower than two BPR based
methods and WR-MF method. This shows the importance of augmenting the
similarity between hotels by number of bookings from each user when the rec-
ommender system is built for implicit feedback to accommodate the different
level of confidence on a positive feedback. Also, the expected percentile rank-
ing of WR-MF method is increasing as the number of factor increases. It is
known that a matrix factorization model learned by singular vector decomposi-
tion (SVD) suffers from an overfitting and we can see the same problem from
our experiment.

Improvement Through Hybrid Approach: Though not shown in Fig. 1, the
expected percentile ranking was reduced a little bit to rank = 7.2353% from
rank = 7.3577% when a content-based component was added. Note that we used
a limited number of hotel profiles, the hierarchy of chains and brands, due to the

Fig. 1. Comparison of the expected percentile ranking for five different methods - WR-
MF, BPR-MF, BPR-kNN, TFkNN, a proposed hybrid recommender system based on
TFkNN.

Fig. 2. Comparison of hybrid recommender system with WR-MF and BPR methods
in terms of recall vs. percentile ranking (left) and recall vs. precision (right).
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Table 1. Percentage of test users in terms of number of previous hotel reservations in
training time period

# Reservation # Total users % of users

1 1,155 5.37 %

2 1,210 5.63 %

3 1,153 5.36 %

4 1,041 4.84 %

5 1,021 4.75 %

> 5 15,927 74.05 %

Total 21,507

limitation of data availability. But there are many other profiles that can improve
the performance such as a distance from a meeting location, the order of display
in the online reservation system and so on. We reserve further improvement of the
hybrid recommender system through content-based components as future works.
Addition of a popularity measure to a hybrid recommender system achieved the
lowest expected percentile rank, rank = 6.6183%.

Comparison of Precision-Recall: We picked the number of factor for WR-
MF and BPR-MF based on their lowest expected percentile ranking shown in
Fig. 1 and did not include TFkNN method to narrow down the comparison.
Recall in terms of percentile ranking N , and precision-recall relation are plotted
in Fig. 2. It is observed from the left figure that the probability that WR-MF,
BPR-kNN, BPR-MF, and hybrid model can correctly recommend the actually
booked hotel in top 10th percentile ranking is 38.02 %, 33.92 %, 42.90 %, and
52.52 % respectively. Precision recall metric from the right figure again confirms
that the hybrid recommender system outperforms the other approaches based
on the area under the curve. Each line shows precision measure when recall
is provided and from the figure, when recall is 0.4, then precision of WR-MF,
BRP-kNN, BPR-MF, and hybrid model is 0.038, 0.032, 0.044, and 0.063. In
other words, the percentile ranking of our proposed hybrid model, with recall of
0.4, is lower than other models by about 30 % to 50 %.

Impact of the Number of Previous Observations: We also analyzed the
results to ensure our assumption that including a popularity measure results in
a performance improvement particularly for users with less number of bookings
in their history. The percentage of users in terms of number of bookings in
training period is shown in Table 1 and it says that about 25 % of users have
reserved less than 6 different hotels in train data. For these users, coming up with
personalized hotel recommendations with favorable accuracy is difficult due to
the lack of data to learn a personal preference from. Collaborative filtering, either
neighborhood or latent factor models, or content-based methods suffer from the
same problem. We think a popularity measure especially in the context of a
business travel is a good recommendation for users with less number of bookings
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Fig. 3. Expected percentile ranking in terms of the number of hotels previously booked.

because a popularity of hotels stems from an enterprise compliance policy or
frequently traveled places. Figure 3 shows the expected percentile rank for 4
different methods used in our experiment according to the number of previously
booked hotels. First, it is clear that rank is gradually decreasing for users with
more booking histories though the effect is not very noticeable for BPR-MF
method. Secondly, we noticed that hybrid recommender system benefits from
popularity measure mostly for users with less number of previous booked hotels
because the decrease of rank happens largely for smaller value on x axis.

5 Conclusions and Future Works

In this work we studied a hybrid recommender system for implicit user feed-
back datasets with the combination of TFkNN, content-based method, and a
popularity measure. Possible extensions include introducing the recency of the
observation, modifying the confidence level by analyzing the order of display in
the reservation system for inferring user preference on unobserved user-item pair
interactions. Content-based method using a hierarchy of hotel chains also con-
tributes to the improved accuracy of the recommender system. We think that the
limited amount of hotel profiles used in this empirical study explains the small
amount of improvement on the expected percentile rank by adding content-based
approach. The last component of the hybrid recommender system was a popular-
ity measure which was adaptively added to the recommender system depending
on the number of each user’s reserved hotels in training period.

The proposed hybrid recommender system was implemented and tested with
hotel reservation data. We evaluated the performance of the hybrid recommender
system using two measures with the consideration of the property of implicit
datasets. Recall based measures were examined and we were able to observe the
improved performance of the hybrid recommender system over two state-of-the-
art methods. Our proposed method strives to point users to hotels that they like
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to reserve by taking a balance between personalized and popular flavor of hotels.
We are motivated to do further research on statistical analysis of the results,
finding a dependency of property of items on the choice of each components of
the hybrid recommender system, and how components can be integrated.
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Abstract. As obesity has become a worldwide problem, a number of
health programs have been designed to encourage participants to main-
tain a healthier lifestyle. The stakeholders often desire to know how effec-
tive the programs are and how to target the right participants. Motivated
by a real-life health program conducted by an Australian supermarket
chain, we propose a novel method to track customer behavior changes
induced by the program and investigate the program’s effect on differ-
ent segments of customers, split according to demographic factors like
age and gender. The method: (1) derives customer preferences from the
transaction data, (2) captures the customer behavior changes via a tem-
poral model, (3) analyzes the program effectiveness on different customer
segments, and (4) evaluates the program influence using a one-year data
set obtained from a major Australian supermarket. Our results indicate
that while overall the program had positive effect in encouraging cus-
tomers to buy healthy food, its impact varied for the different customer
segments. These results can inform the design of personalized health
programs that target specific customers in the future and benefit more
people. Our method can also be applied to other programs that use
transaction data and customer profiles.

Keywords: Customer behaviors · Temporal preference modeling ·
Health programs · Shopping data analysis

1 Introduction

The World Health Organization (WHO) reports that in 2014 more than 1.9 bil-
lion adults were overweight, and over 600 million were obese [1]. Being overweight
or obese increases the risk of cardiovascular problems, diabetes, and muscu-
loskeletal disorders. To address the obesity problem, numerous behavior change
c© Springer International Publishing Switzerland 2016
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programs have been designed, aiming at encouraging participants to maintain a
healthier lifestyle, e.g. change their diet and perform physical activity [2,3]. The
program stakeholders often desire to know to what extent their program influ-
ences the participants, and more importantly, how to improve the program to
benefit a broader population in the future. Therefore, mining the vast amount
of participant behavior data collected by the program and understanding the
behavior changes have become critical and timely research tasks.

The existing studies of health programs mainly report customer demographic
statistics and customer survey results, and use statistical tests to examine the
overall effect of the programs [2–4]. Although these studies can evaluate the
general impact of a health program, they often overlook how the behavior of
different types of participants is influenced by the program, which can poten-
tially facilitate effective personalized programs. Thus, our aim is to explore in
more depth how the participant behavior changes over time and investigate how
participants from different segments are affected by the program.

We propose a systematic approach for tracking the customer behavior
changes induced by the health program and evaluate how customers from differ-
ent demographic segments (e.g. age and gender) are influenced by the program.
The method comprises four specialized modules: we extract customer prefer-
ences from their transaction data, construct the temporal preference models,
then analyze behavior change since joining the program, and most importantly,
quantify the program effectiveness on different types of customers.

We evaluate our approach using a large-scale real-life health program deliv-
ered by an Australian supermarket chain. The program offered 10 % discount
on fresh produce to participants, in order to encourage them to eat healthier.
The duration of the discount was 24 weeks, but the purchase data of the par-
ticipants for the entire year was collected, which allows us to compare their
behavior before, on, and after the program. We analyze the data collected by
the program using the proposed method and study how the purchase behavior of
different types of customers is affected. We examine four customer segmentation
criteria and show that female customers, younger customers, customers who live
with their family, and obese customers are more likely to be encouraged by the
program. Hence, the contributions of our work are as follows:

• We construct a temporal preference model that tracks and visualizes prefer-
ence changes of the program participants over time.

• We quantify the customer preference changes as well as the program effective-
ness on different types of customers.

• We evaluate the effectiveness of an Australian health program. Our method
and results can be used to inform future personalized health programs.

2 Related Work

Behavior analytics has been recognized as an indispensable part of business intel-
ligence [5,6]. Understanding customer behavior changes allows various stakehold-
ers to monitor dynamic business environment and evaluate their policies and
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marketing campaigns [7,8]. A health program is a specific type of campaign,
which promotes a healthier lifestyle and behavior [2].

The effectiveness of a program is usually evaluated by investigating customer
behavior changes, which can be categorized into two groups: (1) incremental
approach, that continuously adjusts the model with new transactions [9], and
(2) direct approach, that models the behavior data at different time periods
to identify differences [7,10]. Rule-based methods like association rules [7] and
decision trees [10], are frequently used due to their easy interpretation. The
incremental approach is sensitive to noise, while the direct approach can be too
coarse-grained to reflect the temporal dynamics. Our goal is to design a model
that facilitates direct comparison across multiple time periods – instead of just
before and after the program – and track changes in customer preferences.

Temporal collaborative filtering (CF) techniques are powerful tools for ana-
lyzing patterns of customer preference over time. TimeSVD++ [11] introduces
a time-dependent factor into each user-feature for modeling customer preference
changes on the items. In [12], preference changes are analyzed via Bayesian ten-
sor factorization, where the tensor is a three-dimensional array of user-item-time
tuples. In contrast, [13] considers temporal dependence in Bayesian matrix fac-
torization to model the frequency of preference changes for different types of cus-
tomers. As the base underpinning for our temporal customer preference model,
RMGM-OT [14] takes the advantage of probabilistic topic models to explicitly
model the customer preference distributions over item groups; in addition, the
method can illustrate how the customer preferences drift over time.

3 Methodology

This section introduces the proposed method for measuring the effectiveness of
a health program. As shown in the flow chart in Fig. 1, our method consists
of four modules: (1) extracting customer preferences from the transaction data,
(2) constructing temporal model for customer preferences, (3) analyzing prefer-
ence changes over time, and (4) evaluating program influence on different types
of customers. The method can visualize customer preferences and provide pro-
gram analytics as the output.

3.1 Extracting Customer Preferences

The first module extracts the customer preferences from the transaction data.
Our program data consists of two parts: (1) transaction data, i.e. purchase
records, of 931 participants captured through loyalty cards between 1st January
and 31st December, and (2) self-reported survey data addressing their demo-
graphic and health information. The original transaction data set covers over
35,600 items from 200 categories. As we are interested in food and drinks rel-
evant to the health program, the data set was reduced to 3,394 items from 24
categories, ranging from vegetables and fruits to snacks and soft drinks. Hence,
we used 884 out of the 931 customers, who had a sufficient range of categories
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Fig. 1. Flow chart of the proposed method.

and number of purchased items in their transaction data. Specifically, each pur-
chase record shows the customer ID, item ID, item metadata (name, code, and
category), purchased quantity and the time-stamp.

Given the transaction data set comprising N customers and M items, each
transaction record is a tuple (ui, vj , quantity, time), which indicates that cus-
tomer ui purchased quantity of item vj at time. We represent all the transaction
tuples as a tensor, X ∈ {1, . . . , R}N×M×T , where each element Xijt denotes ui’s
preference in R levels on vj at t ∈ {1, . . . , T}. The whole time span of the
transaction data is evenly partitioned into T periods, and the time index t is
determined by the period into which time falls. For example, if each time period
corresponds to one month, t = 1 indicates January transactions. Then, we denote
X as T preference matrices {X(1), . . . ,X(T )} corresponding to the T periods; and
each X(t) contains the preference information of N customers for M items in
time period t. The series of preference matrices {X(1), . . . ,X(T )} can inform the
temporal analysis of customer preference changes.

In our study, the transaction data is partitioned monthly, so the dimension of
X is 844 customers × 3394 items × 12 months. Each element Xijt is a nominal
preference value based on the aggregated amount of item vj bought in month t.
In more detail, the sum of amounts bought by customer ui in period t is com-
puted and discretized into 5 levels {1, 2, 3, 4, 5} item-wisely. For a certain item,
we sort all N ×T monthly sum values in ascending order; the value smaller than
the first 5-quantile (i.e. ranked within the first 20 %) becomes 1 – the lowest
preference level, and the value greater than the first 5-quantile but smaller than
the second 5-quantile (i.e. ranked within 20 %–40 %) becomes 2, and so on. If ui

did not purchase vj in month t, then Xijt is a missing value.

3.2 Constructing Temporal Model for Customer Preferences

The key component of investigating how the health program influences customer
behavior is to build a temporal model for customer preferences on all item
categories. However, the item-level preference matrix X(t) can be very sparse
in real-life cases, and the missing values do not necessarily mean the lowest
preference level in that period (it is common for customers not to buy certain
items at certain periods). Therefore, temporal CF techniques can be exploited to
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estimate and smooth customer preferences across the time periods. In our study,
we are particularly interested in customer preference changes at the category
level, rather than at individual item level. Considering the above requirements,
we adapt the temporal CF method RMGM-OT [14] to our problem setting to
capture the temporal dynamics of the customer preference for item categories.

Fig. 2. Illustration of factorizing customer preference tensor X

The preference matrix X can be factorized by X̂ = PBQ�, as schemati-
cally shown in Fig. 2. In the setting of customer preference analysis, the above
factorization results in K latent customer groups and L latent item groups.
B is a K × L group-level preference matrix, which represents the preferences
of K customer groups for L item groups. P ∈ [0, 1]N×K , where each row pi

can be interpreted as ui’s membership distribution over K customer groups,
and

∑
k pik = 1 (soft-membership). Q ∈ {0, 1}M×L represents the membership

information of M items over L item groups. It is worth noting that, in our study,
we adopt predefined categories of supermarket products, e.g. vegetables, fruits,
and soft drinks, to define the item groups. Thus, vj belongs to only one item
category: qjl = 1 if l is the predefined category; otherwise, qjl = 0.

By taking the temporal domain into consideration, the varying customer
preference over time can be modeled based on {X(1), . . . ,X(T )}. We can obtain
customer-group membership matrix P(t) for each time period, while the group-
level preference matrix B is shared across all the time periods and the item-group
membership matrix Q is predefined. We further assume that the customer-
group membership satisfies the Markov property, i.e. the state at t depends
on the previous state at t−1. Considering the empirical Bayes approach, we can
simply use the preceding customer-group membership P(t−1) as the prior distri-
bution of the current customer-group membership P(t) in the model (shown by
the dotted arrows in Fig. 2).

We adapt the collapsed Gibbs sampler used in [14] to our problem setting,
where item categories Q are given. In other words, item latent variables zvij are
known in advance and we only need to infer customer latent variables zuij . The
conditional distribution of zuij for Gibbs sampling is

P (zuij = k|z¬(ij), l,X(t)) ∝
(

n
¬(ij)
klr + β/R∑
r n

¬(ij)
klr + β

)(
n

¬(ij)
ikt + λp(t−1)

ik

)
(1)
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where α and β are hyper-parameters, and λ is the weight of the prior
knowledge. The conditional distribution is proportional to the product of two
Dirichlet-multinomial distributions: the first is the proportion of preference r
in customer-item joint group (k, l) and the second is the proportion of prefer-
ence records falling in customer group k (for customer ui in time period t). It
is worth noting that the prior distribution of p(t)

i is Dirichlet(α) for t = 1 and
Dirichlet(λp(t−1)

i ) for t = 2, . . . , T ; so by marginalizing out p(t)
i , there exists a

pseudo counting λp(t−1)
i in the second Dirichlet-multinomial distribution.

After obtaining the sample zuij , we can estimate B and P(t) as follows

Bkl =
R∑

r=1

r

(
nklr + β/R∑

r nklr + β

)
, p(t)

ik =
nikt + λp(t−1)

ik∑
k nikt + λ

∑
k p(t−1)

ik

(2)

where nklr denotes the number of preference r in customer-item joint group
(k, l), nikt denotes the number of preference records of ui in customer group k
in time period t, and both nklr and nikt are counted based on zuij . Intuitively,

p(t)
i B ∈ [0, R]1×L reflects the preferences of customer ui for L item categories

in period t. Therefore, the temporal preferences of N customers can be modeled
using {P(1), . . . ,P(T )} and B.

3.3 Analyzing Customer Preference Changes

Thus far, the preference change of customer ui has been modeled by p(t)
i B for

t ∈ {1, . . . , T}. To further understand if the change is in the direction targeted
by the health program, we label each item category l as either healthy, neutral
or unhealthy. Among the 24 food categories in our transaction data, 5 categories
are labeled healthy (vegetables, mushrooms, fruit snacks, fruit desserts, pack-
aged salads), 5 are labeled unhealthy (biscuits &cookies, chilled desserts, snacks,
soft drinks, confectionery), and the remaining 14 categories are labeled as neu-
tral1. Our aim is to investigate whether the customer behavior changes due to
their participation in the health program, and more specifically, whether their
preference for the healthy categories increases.

Based on the category labels, we let h ∈ {0, 0.5, 1}L be the healthy indicator
vector, and for each category l ∈ {1, . . . L}

hl =

⎧⎨
⎩

1 if l is healthy,
0.5 if l is neutral,
0 if l is unhealthy.

(3)

Similarly, the indicator vector for unhealthy categories is defined as 1−h, which
means the value is 0 for all healthy categories, 1 for all unhealthy categories, and
0.5 for neutral categories.

1 Although this manual labeling may be simplistic and coarse-grained, we posit that
it generally reflects the accepted health perception of food categories.
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For customer ui, we compute the correlation coefficient between the customer
preference p(t)

i B for the L categories and the healthy indicator h, and also the
correlation coefficient between p(t)

i B and the unhealthy indicator 1 − h. The
difference between these two correlation coefficients defines the health score for
customer ui in time period t as follows

health score
(t)
i = corr((p(t)

i B)�,h) − corr((p(t)
i B)�,1 − h) (4)

where corr(x,y) denotes Pearson’s correlation coefficient.
Given the program starting time tp, we split the T time periods into two

phases: the first includes the periods before the program t ∈ {1, . . . , tp − 1}
and the second includes the remaining periods t ∈ {tp, . . . , T}. The change in
customer preferences towards the healthy food categories δi is quantified by the
difference between the average health score in the second phase and the average
health score in the first phase. More formally,

δi =
1

T − tp + 1

T∑
t=tp

health score
(t)
i − 1

tp − 1

tp−1∑
t=1

health score
(t)
i (5)

The positive value of δi indicates an increase in customer ui’s preference towards
healthy categories after joining the program, while a higher value of δi implies
a greater change in the right direction. Therefore, δi is the key measure for
evaluating the effect of the program on customer ui.

3.4 Evaluating Program Influence on Customer Segments

The values of δi for all the customers can provide a general understanding of
the health program effect. However, we are also interested in determining the
types of customers that are more responsive to the program. This insightful
information can inform the design of future personalized programs targeting
specific customers.

Generally, the entire customer base can be segmented using a number of
features, e.g. geographic, demographic or behavioral [15]. In our study, the self-
reported demographic and health information collected by completing a survey
is used for customer segmentation. We consider four features: gender, age, who
customers live with (alone, with partner, with family), and Body Mass Index
(BMI). All the customers are partitioned into SA segments with respect to the
value of an attribute A, such that the customers in segment s ∈ {1, . . . , SA} have
the same value of A. If an attribute is numeric, e.g. age, its values are discretized
into SA levels.

As transaction data of customers not participating in the program is unavail-
able, we split the customers into experimental group and control group according
to the duration of their participation in the program. Specifically, the experimen-
tal group completed two surveys – 1) at the start of the program and 2) 12 weeks
after the start date, and they participated in the entire program; whereas the
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control group completed only the first survey, so that they participated only in
half of the program or less.

Overall, the observed changes δi in the behavior of individual customers are
minor and hard to pick in the short period of one year. Thus, to quantify the
effect of the program in customer segment s, we sort all the customers in s accord-
ing to their δi, and measure the portion of the experimental group customers in
the set of top-n customers with the highest δi. Intuitively, this reflect whether the
experimental group customers have greater preference changes towards healthy
categories than the control group customers. We define the effectiveness of the
program for a segment s as:

effs =
∑Ns

n=1 countern
(1 + Ns)Ns

(6)

where Ns is the number of customers in s and countern is the number of exper-
imental group customers in top-n customers. The baseline for effs is 0.5 and
greater effs values imply that the experimental group customers are ranked
higher than the control group customers, indicating that the program is more
effective in segment s. Importantly, effs is computed for each customer segment
and it is used as the main metric for evaluating the effect of the health program.

4 Results for Our Case Study

This section presents the results for our case study on how the health program
influences the behavior of the program participants. The evaluation involves 884
participants and 3,394 items from 24 categories, as described in Sect. 3.1. The
experimental group comprises 190 customers who participated in the complete
program, whereas the remaining 694 customers are in the control group. The
program started in May (i.e. tp = 5), so t ∈ {1, . . . , 4} is the first phase, and
t ∈ {5, . . . , 12} is the second phase.

Following the four-step approach described in Sect. 3, we convert the transac-
tion data into customer preference tensor, and construct the temporal preference
model by factorizing X̂(t) = P(t)BQ� in each month. The parameters are con-
figured as follows: the number of customer groups K = 20, the item groups L
are the 24 predefined categories, the number of preference levels R = 5, λ is set
to 10, and the hyper-parameters α and β are set to 1 as in [14].

4.1 Visualization of Customer Preference Changes

We visualize customer group membership p(t)
i and customer preference p(t)

i B
over the 12 months in Fig. 3. We select three customers who clearly demonstrate
different degrees of variability in group membership and category preferences
over time.

The subplots for customer group memberships are shown in the upper row of
Fig. 3. Each column in a subplot indicates the mixed membership of 20 customer
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Fig. 3. Visualization of customer group membership distribution (upper row) and cor-
responding customer preferences for all item categories over the 12 months (bottom
row). The three columns, from left to right, are for customers 14, 36, and 64.

groups in one month (sum of each column is 1). Customer 14 had a stable
membership over all the time periods, consistently belonging to group 12. On
the contrary, customer 36 had a mixed membership in groups 7, 10, and 17. It
is interesting to note that the membership in group 17 was identified in June,
after joining the program and it was observed till the end of the year. Customer
64 gradually switched from group 20 to group 8 in the middle of the year.

The subplots in the bottom row of Fig. 3 demonstrate how customer prefer-
ences for all the 24 categories change over the 12 months. Each row in a subplot
reflects the fluctuations of the customer preference for a certain item category
over the 12 months, and each column indicates the customer preferences for all
the 24 item categories in one month. Customer 14 preferred category 23 (pack-
aged salads) and did not like categories 13 (cheese), 16 (beef), and 17 (lamb),
which implies that this customer purchased more vegetables. As for customer
36, the preference for category 20 (vegetables) was consistently high, while the
preference for category 22 (fruit desserts) increased gradually, especially after
June. The visualizations, such as those shown in Fig. 3, can provide an intuitive
understanding of temporal preference changes of individual customers.

4.2 Program Effects for Different Types of Customers

This section quantifies customer preference changes and the program effective-
ness. For the control group, the mean preference change is δi = 0.0204, while for
the experimental group the mean change is δi = 0.055, which is more than twice
as much as that of the control group. This observation generally shows that the
experimental group had a greater preference change towards healthy categories
than the control group.

The overall effectiveness of the program, without segmenting customers, is
eff = 0.527. To get an insight of the fine-grained program effects, the customers
are partitioned into segments according to four different criteria: gender, age,
who customers live with, and BMI. For each segment, we report in Table 1 the
size and the program effectiveness effs . The customers who had not provided
their demographic and health information were excluded from this analysis.
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Table 1. Program effectiveness for different customer segments.

Segments Number of Number of Experimental effs

Customers Customers

Male 349 72 0.4898

Female 517 118 0.5533

Age <=30 184 30 0.5844

30 < Age <= 40 347 83 0.5431

40 < Age <= 50 232 54 0.5067

Age > 50 100 23 0.4574

Live Alone 91 21 0.4929

With Partner 344 68 0.5038

With Family 385 91 0.5555

Normal 329 73 0.5592

Overweight 303 77 0.4787

Obese 220 34 0.5705

Segmentation by Gender. As shown in the first section of Table 1, male cus-
tomers account for about 40 % of all the program customers and 37.8 % of the
experimental group. The effectiveness of the program is 0.5533 for the female
customers, which is higher than 0.4898 observed for the male customers. This
implies that the female customers in the experimental group were effectively
motivated to purchase healthier food, while the male customers from the exper-
imental group were less responsive to the program. Therefore, the program was
found to be more effective for female customers.

Segmentation by Age. The reported age of the participants varied from 19 to
67. The participants are partitioned into four equal-width segments as shown in
the second section of Table 1). The program effectiveness drops significantly from
0.5844 for customers younger than 30 to 0.4574 for customers older than 50. The
difference between these two effectiveness scores supports that different customer
segments have different responsivenesses to the program. We notice that the pro-
gram effectiveness decreases gradually as the age increases. One possible reason
is that it might be easier for younger customers to change their dietary habits.
However, this does not imply that customers older than 50 purchase unhealthy
food. On the contrary, they might purchase healthier food consistently before
and after joining the program, resulting in smaller preference changes. As our
effectiveness measure focuses on the “behavior changes”, the results show that
the program did not influence older customers as much as younger customers.

Segmentation by Who Customers Live With. Based on the survey ques-
tion “who you live with”, the customers are partitioned into three segments:
live alone, live with partner, and live with family. The segment of “living with
their family” is the largest, comprising 46.95 % of all participants. The program
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influence on this segment is 0.5555, which is higher than the other two seg-
ments. For the customers who live alone or with partner, the effectiveness scores
are relatively low, being 0.4929 and 0.5038, respectively. Thus, from the per-
spective of who customers live with, the results show that customers living with
family achieved a greater preference change towards healthy food than the other
customers.

Segmentation by BMI. The BMI is derived from the height and weight of
a person, and its value is classified as underweight, normal, overweight, and
obese [1]. As the proportion of underweight customers is less than 1.5 %, we
excluded them from the analysis. It is worth noting that the overweight and obese
segments together take up 61.4 % of all customers, which shows the severity of
the overweight problem and the necessity of encouraging people to eat healthily.
The obese segment achieves the highest effectiveness 0.5705, closely followed by
the normal segment with 0.5592, and leaving the overweight segment behind with
0.4787. The effectiveness scores of the obese and normal segments are close, but
there is a substantial gap between these segments and the overweight segment.
The results suggest that the program was more effective for obese and normal
weight customers than for overweight customers.

Discussion. Our results clearly demonstrate that different types of customers
were influenced by the program to a different extent. For the four segmenta-
tion criteria, the program was found to be more effective for female customers,
younger customers, customers who live with their family, and obese or normal
weight customers. However, the program effectiveness across all the segments was
relatively low. There are four main possible reasons: (1) the offered 10 % discount
on fruits and vegetables may not be attractive enough for customers to notably
change their behaviors; (2) the lack of real control group may have undermined
the significance of the results, since using the customers, who participated in
part of the program as the control group, may not truly represent customers
not participating in the program; (3) the actual family size is unknown, so that
the results may be inaccurate when comparing customers who purchased food,
for example, for a family of 2 vs. for a family of 5; (4) the one-year duration
of the program may not be sufficiently long to identify stable behavior changes
of the customers. Despite these shortcomings of the program data, the evalua-
tion results are encouraging and allow the health program stakeholders to get a
fine-grained insight into the impact of the program. This allows tailoring or per-
sonalizing future programs, to motivate customers who are not very responsive,
such as male customers, senior people and overweight customers in our case.

5 Conclusion

In this paper, we proposed an approach for tracking the customer preferences
over time and evaluating the effectiveness of a health program for different types
of customer segments defined by demographic and health attributes such as age,
gender, living arrangements and BMI. We used data from a large-scale one-year
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program conducted by an Australian supermarket, which was designed to encour-
age customers to build healthy dietary habits. We analyzed how customers from
different segments change their preferences over time for various food categories.
Overall, the results showed that the program successfully motivated customers
to purchase healthier food. The segment-wise effectiveness results demonstrated
that different types of customers were influenced to a different extent. We found
that female customers, younger customers, customers who live with their family
and obese customers were more responsive to the program than their counter-
parts. Our results can be used to provide guidelines to enhance future health
programs, in order to target and motivate the customers who were less respon-
sive in this program and benefit the wider society. Although our method has
been designed for a health program, it is a generic method that can be applied
to other programs involving transaction records and customer profiles.

References

1. World Health Organization: World health organization factsheet: obesity and over-
weight (2015). http://www.who.int/mediacentre/factsheets/fs311/en/

2. Ball, K., McNaughton, S.A., Le, H.N., Gold, L., Mhurchu, C.N., Abbott, G.,
Pollard, C., Crawford, D.: Influence of price discounts and skill-building strate-
gies on purchase and consumption of healthy food and beverages: outcomes of the
supermarket healthy eating for life randomized controlled trial. Am. J. Clin. Nutr.
101(5), 1055–1064 (2015)

3. Berkovsky, S., Hendrie, G., Freyne, J., Noakes, M., Usic, K.: The healthieru portal
for supporting behaviour change and diet programs. In: Proceedings of the 23rd
Australian National Health Informatics Conference, vol. 214. IOS Press (2015)

4. Brindal, E., Hendrie, G., Freyne, J., Coombe, M., Berkovsky, S., Noakes, M.: Design
and pilot results of a mobile phone weight-loss application for women starting a
meal replacement programme. J. Telemedicine Telecare 19(3), 166–174 (2013)

5. Sheth, J.N., Mittal, B., Newman, B.I.: Customer Behavior: Consumer Behavior
and Beyond. Dryden press fort worth, Texas (1999)

6. Cao, L.: Behavior informatics and analytics: let behavior talk. In: Proceedings of
the IEEE International Conference on Data Mining Workshops, pp. 87–96. IEEE
(2008)

7. Chen, M.C., Chiu, A.L., Chang, H.H.: Mining changes in customer behavior in
retail marketing. Expert Syst. Appl. 28(4), 773–781 (2005)

8. Huang, C.K., Chang, T.Y., Narayanan, B.G.: Mining the change of customer
behavior in dynamic markets. Inf. Technol. Manage. 16(2), 117–138 (2015)

9. Masseglia, F., Poncelet, P., Teisseire, M.: Incremental mining of sequential patterns
in large databases. Data Knowl. Eng. 46(1), 97–121 (2003)

10. Liu, B., Hsu, W., Han, H.-S., Xia, Y.: Mining changes for real-life applications. In:
Kambayashi, Y., Mohania, M., Tjoa, A.M. (eds.) DaWaK 2000. LNCS, vol. 1874,
pp. 337–346. Springer, Heidelberg (2000)

11. Koren, Y.: Collaborative filtering with temporal dynamics. Commun. ACM 53(4),
89–97 (2010)

12. Xiong, L., Chen, X., Huang, T.K., Schneider, J.G., Carbonell, J.G.: Temporal col-
laborative filtering with bayesian probabilistic tensor factorization. In: Proceedings
of the 2010 SIAM International Conference on Data Mining, vol. 10, pp. 211–222.
SIAM (2010)

http://www.who.int/mediacentre/factsheets/fs311/en/


Who Will Be Affected by Supermarket Health Programs? 539

13. Li, R., Li, B., Jin, C., Xue, X., Zhu, X.: Tracking user-preference varying speed in
collaborative filtering. In: Proceedings of the 25th AAAI Conference on Artificial
Intelligence (2011)

14. Li, B., Zhu, X., Li, R., Zhang, C., Xue, X., Wu, X.: Cross-domain collaborative
filtering over time. In: Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, pp. 2293–2298. AAAI Press (2011)

15. Baker, G.A., Burnham, T.A.: Consumer response to genetically modified foods:
market segment analysis and implications for producers and policy makers. J.
Agric. Resource Econ. 26, 387–403 (2001)



TrafficWatch: Real-Time Traffic Incident
Detection and Monitoring Using Social Media

Hoang Nguyen1(B), Wei Liu2, Paul Rivera1, and Fang Chen1

1 National ICT Australia, Eveleigh, NSW 2015, Australia
{hoang.nguyen,paul.rivera,fang.chen}@nicta.com.au

2 Advanced Analytics Institute, University of Technology Sydney, Sydney, Australia
wei.liu@uts.edu.au

Abstract. Social media has become a valuable source of real-time infor-
mation. Transport Management Centre (TMC) in Australian state gov-
ernment of New South Wales has been collaborating with us to develop
TrafficWatch, a system that leverages Twitter as a channel for trans-
port network monitoring, incident and event managements. This system
utilises advanced web technologies and state-of-the-art machine learn-
ing algorithms. The crawled tweets are first filtered to show incidents
in Australia, and then divided into different groups by online cluster-
ing and classification algorithms. Findings from the use of TrafficWatch
at TMC demonstrated that it has strong potential to report incidents
earlier than other data sources, as well as identifying unreported inci-
dents. TrafficWatch also shows its advantages in improving TMC’s net-
work monitoring capabilities to assess network impacts of incidents and
events.

Keywords: Social media · Incident detection · Classification

1 Introduction

Social media including micro blogging service such as Twitter has received great
attention recently in order to capture real-time events. This joint research project
between us and NSW Transport Management Centre (TMC)1 aims to leverage
social media as an additional channel for transport monitoring and incident
management, with the ultimate goal of having more comprehensive views on
traffic situations.

Processing Twitter feeds is very challenging. With over 280 million monthly
active users and 500 million tweets sent per day,2 there is a large volume of tweets
from all over the world that satisfy a given query. However, very few tweets
are from NSW, Australia and many of them contains words such as ‘crash’ or
‘accident’ but they are actually non-relevant to traffic tweets.

1 http://www.transport.nsw.gov.au/tmc.
2 https://about.twitter.com/company.
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Our Twitter based incident monitoring system, named TrafficWatch, has
been developed to assess its usefulness in assisting traffic and incident manage-
ment on a day-to-day basis as well as during special events. The detected events
or incidents were classified by advanced machine learning (ML) algorithms before
visualised on an online map and presented to TMC operators in real time. We
also introduce the annotation schema and computational model for extracting
the traffic related entities within the tweets (e.g. street, incident type, vehicle,
lanes, directions...). These entities are essential for automatic construction of the
official TMC logs as well as supporting the classification and significant evalua-
tion of the incidents.

The main contribution in this application paper is the novel employment
of Conditional Random Fields (CRFs) in social media analysis specifically for
traffic incident detection. We will show that the use of CRFs boosts up the
performances of several popular classification algorithms. The CRFs model also
generalises the content of the tweets into named entity features and then com-
bines them with regular keyword-based features.

2 Related Work

There is great research interest in event and incident detection from social media
within the last few years. For detecting large scale incidents using Twitter, vari-
ous ML approaches have been proposed [7,12]. For small scale incident detection,
Twitcident is a mashup for filtering, searching, and analyzing social media infor-
mation about small scale incidents [1]. Li et al. (2012) introduce a system for
searching and visualization of tweets related to small scale incidents, based on
keyword, spatial, and temporal filtering [9].

There are also existing research for using Twitter to support live traffic mon-
itoring and reporting. He et al. (2013) examined whether social media could
improve the long-term (beyond 1 h) traffic prediction by analysing the correla-
tion between traffic volume and tweets counts with various granularities [5]. In
some other research, traffic information was extracted from Twitter using syn-
tactic analysis with simple keywords matching and rule-based method [6,14]. In
[14], tweets were classified into two categories: point (e.g. car crash) and link (e.g.
traffic jam) with accuracies of 76.85 % and 93.23 % respectively. Twitter is also
employed by the TMC in some cities (Sydney, Jakarta) to spread the news of traf-
fic. NLP techniques were used by [3] to get the data of traffic from Jakarta TMC
official account, so that the traffic information can be presented in map view as a
mobile application. While most systems analysed social media content by simple
rule-based and string matching methods, the only research that employed ML
algorithms combining text classification and semantic enrichment of microblogs
was presented in [13]. They introduced a system for real-time detection of small
scale incidents with an accuracy of 89 %. In their study, the open source NLP
tools (Google Spellchecking, Stanford CoreNLP [10]) and ML library (Weka [4])
were utilised to build the incident classifier and decision maker. However, none of
these previous studies were able to provide comprehensive analyses of the tweets
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in terms of detecting incident related information to improve the classification
process as demonstrated in our study.

3 Methods

Figure 1 illustrates our system architecture for crawling and processing public
Twitter posts. The architecture is considered as two different phases: machine
learning (ML) training process and real-time incident detection.

Fig. 1. System architecture.

3.1 Filters

To estimate the location distribution, 10,000 tweets were initially crawled using
a keyword-based query. By default, Twitter APIs return tweets that satisfied the
query from all over the world while the NSW TMC is only interested in traffic
incidents within NSW which is less than 1 % of total tweets. A query in Twit-
ter API is allowed to specify the geo-tagged tweets within certain parameters.
However, only 3 % of tweets contain geo-tags as the users do not usually want
others to see their current locations. Our country filter is based on the combi-
nation of the following fields ordered by their verification priority: geo-location,
time zone, location and country from user’s profile. This filter can remove most
oversea posts and return over 90 % relevant tweets from Australia given most
users set the correct time zones and have their profile locations filled.

3.2 NLP Components

The NLP cutting edge techniques are employed to pre-processing the crawled
tweets. First, very frequent words like stop words and special characters are
removed as they are not valuable as features for ML algorithms. To prepare for
the feature generation step, the words are normalised to their root forms using
the Stanford lemmatizer.3 Furthermore, the Stanford POS tagger4 is applied to
3 http://nlp.stanford.edu/software/corenlp.shtml.
4 http://nlp.stanford.edu/software/tagger.shtml.

http://nlp.stanford.edu/software/corenlp.shtml
http://nlp.stanford.edu/software/tagger.shtml
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identify the word form such as noun, verb, adjective... Finally, the advanced pat-
tern recognizer based on regular expressions and finite state automata is utilised
to capture the date, time and incident’s location (e.g. street name, suburb) [11].

When there is no geo-tag, it is very difficult to identify the exact location of
incident from the text due to lack of detailed address (e.g. house number). The
common useful description of incident location contains two roads, main road
and secondary road at the nearest intersection along with suburb. One example
of standard tweet from TMC account is “SYD traffic ACCIDENT 3 vehicles -
CASULA Hume Hwy at De Meyrick Ave” which contains suburb (CASULA),
main road (Hume Highway) and secondary road (De Meyrick Avenue). Traf-
ficWatch’s pattern recogniser is trainable and flexible on text structure by sim-
ply adding new training examples. It is capable of identifying all popular road
address representations in Australia such as Street, St, Road, Avenue, Highway...

3.3 Machine Learning Processes

Incident Related Tweet Classification. The public APIs provided by Twit-
ter is limited by keyword search. Because of this, there are many tweets that
contain words such as ‘accident’, ‘crash’, ‘delay’ or ‘traffic’ but they are not
related to any recent traffic incidents. Example of non-relevant tweet is ‘Hear
loud airplane sound. Fully expects it to crash into a building’. Importantly, the
TMC would like to capture as many traffic incidents as possible but at the same
time they do not want to spend much effort looking at many non-relevant tweets.
Based on this requirement, the classifier performance was targeted to reach a
reasonably balanced precision and recall.

Table 1. Example of recorded incident from TMC logs.

Date Time Type Sub-type Location

03/10/13 11:42:03 AM Accident Car WILLIAM ST YURONG ST
DARLINGHURST 2010
SYDNEY (LGA) NSW

03/10/13 8:57:21 AM Breakdown Breakdown SYD EINFELD DR OXFORD
ST W BND BONDI
JUNCTION 2022
WAVERLEY (LGA) NSW

03/10/13 2:50:58 PM Queue Moving SMS: PITT ST - PARK ST;
SYDNEY (235) W/B

Besides bag of words, additional features were added during the feature selec-
tion process. Finally, the following features were extracted to train incident
related tweets classifier:
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– Bag of words: the weight score of each word feature within a tweet is calculated
by an accumulated tf-idf score over all positive tweets.

– Lemma, part-of-speech and chunk features: the Stanford Twitter tagger is
specifically tuned for English tweets and outputs the lemma, part-of-speech
tags and chunk tags [2].

– Pattern recogniser: this feature distinguishes the plain words with non-word
tokens such as date, time, number and special characters.

– Bag of tags: this feature indicates the traffic related entities tagged by the
computational annotation model (presented in next section). Entity is the
generalisation of the frequent key words used to report incidents.

The experiments were executed using Weka [4]. Several ML algorithms which
cover major types of classifiers have been investigated including:

– Instance based: k Nearest Neighbour (kNN).
– Generative: Bayesian Network (BN).
– Discriminative: Support Vector Machines (SVMs) and decision tree (C4.5).

Traffic Incidents Entities Annotation. During the process of obtaining the
incident information, TMC operators usually ask for many details (e.g. incident
type, vehicles involved, lanes blocked, direction) to put in the record. Table 1
shows example of major fields in TMC incident logs. To automatically populate
structural logs; this project involves the annotation of tweets to identify the
components needed to complete an incident report. In this process, free-text
tweets are annotated for examples of the information to be extracted and then
algorithms are developed that use the examples to compute a more general model
of the desired content. The model is evaluated and the algorithm revised in a
feedback process to produce a more accurate result. This is continued over a
series of experiments until an optimal model is identified.

The annotation model is trained based on CRFs which is an advanced method
for sequential labelling [8]. The same first three feature sets from classification
model was applied to train the CRFs entities tagger.

Instead of using a general NER to identify traffic entities in the text as in
[13], we have designed a special tag set which is more relevant to the incident
information extraction task. This tag set is better controlled and does not contain
redundant information which can add noise to mislead the classification process.
An online collaborative environment based on Brat annotation tool5 was set
up to support rapid labelling of the tweets. Figure 2 illustrates the annotation
schema and example annotated tweets.

Besides the tags that describe non-relevant and duplicated tweets, the anno-
tation schema is divided into four main groups:

– Location tags include State, Suburb, Street, Point of Interests (e.g. Harbour
Bridge, Opera House, Darling Harbour...), place (school, church, park...).

– Entity tags include the objects involved in the accident such as people (man,
children), vehicles (car, truck) and stationary objects (e.g. tree, traffic light).

5 http://brat.nlplab.org/.

http://brat.nlplab.org/
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Fig. 2. Examples of annotated tweets and the traffic entities annotation schema.

– Incident type tags include the main categories of the incidents (e.g. queue,
accident, breakdown, police activities, road work...).

– Incident properties tags includes the general descriptions about the incident
on the road, they are lanes (e.g. 2 lanes closed or affected), directions (e.g.
north bound, both ways), time and current status (clear or delayed).

The tagged entities are essential input for the incident’s significant level rank-
ing system. For example, the incident with type of ‘accident’, involved ‘multi-
vehicle’, several ‘people’ and blocked ‘both ways’ on ‘motorway’ should be ranked
higher than just a normal ‘delay’ on one ‘direction’ of a small road. The ranking
criteria based on the detected entities are fully configurable as the TMC may
have different interest over time or special events. The important tweets will be
highlighted and presented to the operator to process as a priority.

In terms of ML, traffic related entities are implemented as key features to
train the classification model. Because the same incident details can be described
by different key words (e.g. high way/hwy, break down/stall/stationary), gen-
eralising them into categories and entities will help the model to learn these
variations more efficiently.

For management purposes, the tweets are indexed by entities rather than
normal key words, which will allow rapid retrieval of the incidents that satisfied
certain criteria. For instance, the system supports the query ‘retrieve all the break-
down incidents that caused delays on single direction of the freeway’. Furthermore,
the automatic annotation models are extendable to analyse and index the official
TMC’s logs based on the same schema to serve the same management purpose.
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Online Clustering Algorithm. With the volume of rich data returned from
Twitter, our system aims to extract more useful information for users by aggre-
gating tweets into meaningful clusters. This effectively gives users a summary
of the popular incident types in the tweets as they emerge over time. Figure 3
is an example of a cluster identified on 13 Jan 2015 where the user can easily
interpret the time of first tweets and the growing pattern of the cluster.

Fig. 3. Example of an incident cluster detected by TrafficWatch on 13 Jan, 2015.

We have implemented an online algorithm to incrementally cluster the tweets
from live stream data using cosine similarity and Hamming distance evaluation.
This algorithm is designed to gradually improve its centroids when more data
is available. Besides the predefined incident types, the unsupervised clustering
algorithm provides a more general view of the tweet clusters on the common key
words used.

The key difference between our proposed method and previous online clus-
tering algorithms is the cluster time frame threshold. Because similar incidents
could be seen on different days, this parameter is used to remove old and out-
dated clusters to avoid redundant and non-relevant information. Depending on
specific applications, it can be configured to span over several hours (e.g. traffic
incidents) or several days (e.g. special events).

4 Experiments and Results

4.1 Data Set

The data set comprises of 5000 filtered tweets (mostly from NSW, Australia)
crawled using Twitter REST API in September, 2014. These tweets were then
labelled by TMC as relevant/non-relevant and used to train the ML models.
10-fold cross-validation was applied to evaluate models’ performance based on
averaged Precision, Recall and F1-score.
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Table 2. Performance of traffic entities annotation model over 10-fold cross-validation.

Tag TP FP FN Precision (%) Recall (%) F1 (%) Total

Accident 1275 64 31 95.22 97.63 96.41 1306

Breakdown 358 16 21 95.72 94.46 95.09 379

Queue 131 5 6 96.32 95.62 95.97 137

Hazard 20 1 15 95.24 57.14 71.43 35

Police 32 0 2 100 94.12 96.97 34

Roadwork 7 0 3 100 70 82.35 10

Special event 2 0 1 100 66.67 80 3

Direction 678 40 17 94.43 97.55 95.97 695

Lane 171 4 3 97.71 98.28 97.99 174

Status 589 21 37 96.56 94.09 95.31 626

Vehicle 631 41 50 93.9 92.66 93.27 681

People 118 8 28 93.65 80.82 86.76 146

Object 12 1 3 92.31 80 85.71 15

Street 1879 32 34 98.33 98.22 98.27 1913

POI 38 1 3 97.44 92.68 95 41

Place 6 0 6 100 50 66.67 12

OVERALL 5947 234 260 96.21 95.81 96.01 6207

4.2 Named-Entity Recognition

Table 2 shows the performance of the computational annotation model with over-
all F1-score of 96 %. The State and Suburb entities were excluded because they
can be identified by string matching from a pre-defined list. From this table, the
most popular reported incident type is ‘Accident’ followed by ‘Breakdown’ and
‘Queue’. All of these high frequency incident types were extracted with both
Precision and Recall of approximately 95 % or higher. In addition, the model
correctly identified most of the street information from the text which is crucial
for geo-locating the incidents on the map.

The accuracy of individual tags varies greatly due to the fact that some
tags were extremely rare with high variety level (e.g. hazard, place and special
events), and thus it was difficult to learn when these tags were relevant.

4.3 Classification

The incident related entities recognised from the computational model were then
become the important features for the classifier. Table 3 illustrates the classi-
fication performance using 4 different algorithms. The baseline features with
bag of words archived the best F-score performance of more than 90 % using
BN. Adding POS tagger and pattern recogniser features slightly improved the
performance by approximately 1 %. With the support of Bag of tags features,
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Table 3. Classification performance using 4 algorithms.

Features Methods Precision (%) Recall (%) F1-score (%)

Bag of words BN 90.2 91.4 90.8

SVMs 87.4 89.5 88.4

kNN 83.1 92.4 87.5

C4.5 86.9 90.7 88.7

Bag of words BN 91.5 92.3 91.9

POS tagger SVMs 88.2 92.5 90.3

Pattern recognizer kNN 83.7 92.9 88.1

C4.5 88.6 91.2 89.9

Bag of words BN 94.2 96.6 95.4

POS tagger SVMs 92.8 95.7 94.2

Pattern recognizer kNN 85.5 97.8 91.2

Bag of Tags C4.5 90.1 95.7 92.8

the performances of all four algorithms further increased significantly by 2 % to
3 %. Finally, the best F1-score of 95.4 % was recorded from BN method with
precision of 94.2 % and recall of 96.6 %.

4.4 Incident Detection for Special Event

TrafficWatch has monitored traffic conditions during the International Fleet
Review (IFR) special event in Sydney, Australia for the time period from 6:00
am October 3 to 10:44 am October 10, 2013. In total, 45753 IFR-related tweet
messages were extracted, 1056 of which were traffic related.

With regard to locating incidents, 2.87 % (1222 tweets) were originally associ-
ated with device geo-locations, while TrafficWatch further identified 19 % (8065
tweets) with geo-locations by using text analysis. Hence in total about 21 % of
the entire tweets had been visualised by TrafficWatch on maps.

Detecting Incidents Earlier than TMC Log Time
Case study 1 : a heavy traffic condition at around military road in Mosman
(Fig. 4). TrafficWatch detected this heavy traffic condition about 3 h earlier than
the time this incident was logged in TMC.
Case study 2 : a tweet-based incident saying an over-height truck blocked access
to the Harbour Tunnel at North Sydney, suggesting all traffic to use the Harbour
Bridge (Fig. 5). TrafficWatch detected this tunnel blockage about 3 h and 47 min
earlier than the time this incident was logged in TMC.

Discovering Incidents that are not Reported to TMC
Case study 3 and 4 : The tweet in the left table of Fig. 6 shows a queue of 7 kms
at Brooks road, possibly caused by a truck accident. The tweet in right table
is about a car accident on the corner of Elizabeth and George Street. Both
incidents cannot be found in TMC logs.



TrafficWatch: Traffic Incident Detection Using Social Media 549

Fig. 4. Case study 1: incident detected sooner than TMC log.

Fig. 5. Case study 2: incident detected sooner than TMC log.

Fig. 6. Case study 3 and 4: incident was not reported to TMC.

Identifying Twitter Users that Are of Great Interest to NSW
Traffic. Based on the analysed tweets, TrafficWatch has identified a list of Twitter
accounts/users that have great interest in NSW traffic. TrafficWatch has ranked
these accounts by their frequency of twittering activity, i.e., the accounts that are
ranked higher are the ones who post more traffic-related tweets. From this list, the
top ranked accounts in NSW are Snarltraffic, 2DayFM, Cbemergency.

5 Live Traffic Monitoring System

To provide TMC with a real-time overview of the traffic picture in NSW, the
TrafficWatch interface was developed based on Cesium Bing map which is a
geospatial visualisation software for running inside web browsers without plugins.

After pre-processed and classified, only the relevant and geo-located tweets
are loaded onto the live map within a few seconds from time of posting. Figure 7
illustrates the TrafficWatch snapshot for NSW around 16:43 19 Nov 2014.
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Fig. 7. Real-time NSW Traffic Watch interface with record and playback timeline on
3D Bing map. Tweets were classified and displayed by different colours.

When the user clicks on any tweet, a pop-up window will be opened to show its
content, e.g. ‘Don’t go in the Sydney Harbour tunnel if you’re heading south.
Car crash blocking both lanes’. Furthermore, the timeline feature of Subspace
enables review of any past incidents and events. This function is very useful to
learn the tweet patterns from the historical data including first mention about
the incident, the total number of re-tweets, similar and related tweets.

6 Conclusions

The TrafficWatch research project carried out detailed analysis and visualisa-
tions of the Twitter stream to monitor the daily traffic of the NSW state of
Australia. It is capable of providing useful information to TMC in a real-time
manner which helps TMC to be informed about issues and incidents that could
potentially affect operations of public transport services, and be able to make
better management decision with respect to the operations of the transport and
event planning.

Besides the capacity of detecting the road incidents sooner or incidents not
reported to TMC, TrafficWatch also suggests frequent traffic Twitter accounts
that can be of good value to the TMC, since they are very active in releasing
traffic information that can help to understand the traffic conditions.

In this study, we also introduced the general annotation schema and high
accuracy computational model for detecting traffic related entities. This NER
model is applicable to detect similar incident information from other social media
sources as well as from official TMC’s incident logs. Furthermore, the novel
employment of CRFs to support the classification of Twitter feeds demonstrated
significantly higher results in all investigated ML algorithms.
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Abstract. The efficiency of Public Transportation (PT) Networks is a
major goal of any urban area authority. Advances on both location and
communication devices drastically increased the availability of the data
generated by their operations. Adequate Machine Learning methods can
thus be applied to identify patterns useful to improve the Schedule Plan.
In this paper, the authors propose a fully automated learning frame-
work to determine the best Schedule Coverage to be assigned to a given
PT network based on Automatic Vehicle location (AVL) and Automatic
Passenger Counting (APC) data. We formulate this problem as a cluster-
ing one, where the best number of clusters is selected through an ad-hoc
metric. This metric takes into account multiple domain constraints, com-
puted using Sequence Mining and Probabilistic Reasoning. A case study
from a large operator in Sweden was selected to validate our method-
ology. Experimental results suggest necessary changes on the Schedule
coverage. Moreover, an impact study was conducted through a large-scale
simulation over the affected time period. Its results uncovered potential
improvements of the schedule reliability on a large scale.

Keywords: Unsupervised learning · Public transportation · Big data ·
Schedule plan · Schedule coverage · Sequence mining · Probabilistic
reasoning

1 Introduction

Public Transport (PT) reliability is a major issue in modern cities. A good oper-
ational planning is necessary to deliver such service quality requirements while
maintaining a balanced relationship between resource usage and obtained rev-
enues. Nowadays, major PT operators have their fleets equipped with Global
Positioning System (GPS) antennas, communicational devices (e.g. 3G) and
Radio-frequency Identification readers able communicate the vehicle’s position-
ing (i.e., Automatic Vehicle Location (AVL)) and its ridership (i.e., Automatic
Passenger Counting (APC)) to a central server [1].

To mine this novel source of data is a massive challenge. It contains infor-
mation about the patterns of human behavior while traveling (as drivers or pas-
sengers) on an urban environment. Such patterns can provide useful insights to
c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part I, LNAI 9651, pp. 552–564, 2016.
DOI: 10.1007/978-3-319-31753-3 44
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improve the operational planning of mass transit agencies - namely, its Sched-
ule Plan (SP). Such improvement may bring multiple benefits by providing
ways of reducing costs (e.g. fleet (re)sizing or fuel saving due to a decrease of
the necessary number of trips) and/or improving the passenger experience.

A Schedule Planning (SP) process for a given route relies on two main steps
[2]: (1) the first step is to define the number k of schedules and their individual
coverage, Si. Consequently, this first step defines different schedules for days
that are characterized by different traffic and demand patterns due to seasonal
variations, for instance. Secondly, (2) the timetables are assigned for each route
schedule containing the time the buses pass at each schedule time point (per
trip). This process is done for all routes. While the timetables are defined route-
wise (e.g. high/low frequency routes), the number of schedules (i.e. k) and their
coverage (Si,∀i ∈ {1, .., k}) must be defined networkwise. Such definition is key
to ease PT operations (e.g. maintenance tasks) and, most of all, to facilitate the
SP memorization by the passengers.

Automated data driven frameworks that aim to improve the SP are com-
monly focused on timetabling tasks, thus skipping the coverage definition. Some
of the most well-known approaches include finding the optimal slack time and
round-trip time to put into the schedule using Genetic/Ant Colony Algorithms
[3,4], mining distribution rules able to discover feature subspaces (i.e. scenarios)
for an increased travel time uncertainty [5], or clustering trips based on APC
data regarding their frequency setting, i.e. high/low [6]. However, the coverage
definition can easily constrain the timetable construction (e.g. two days with dis-
tinct demand peak periods should have different timetables). At the best of our
knowledge, only Mendes-Moreira et al. [2] covers the improvement of Schedule
Coverage: a Consensual Clustering framework groups days with similar behavior
(using AVL data standalone) given a predefined number of schedules k.

This paper is a comprehensive extension of the work in [2]. It aims to gener-
alize this framework’s usage for every scenario that fully exploits the information
available on the data repository while still minimizing the required human input
to reach a decision. The contributions are threefold:

1. a novel ad-hoc domain-oriented metric to select the most adequate number of
schedules to put in place based on Sequential Itemset Mining [7] and Prob-
abilistic Reasoning. It settles on a trade-off between the entropy within the
clusters and the operational adequacy of the resulting coverage.

2. a hybrid computation of the daily profiles using APC/AVL data simultane-
ously by decomposing the round trip times into a sum of link travel times
(the run times between two consecutive stops) and dwell times1. Their com-
putation may highlight demand peaks which would be smoothed otherwise.

3. the application of a Gaussian Mixture Model (GMM) [8] to perform the nec-
essary clustering for the individual routes, thus replacing the originally pro-
posed k-Means (see Sect. 5 in [2]). By doing so, we obtain a soft assignment
of the samples, reducing the overfitting chances.

1 Reports stoppage time at stops. Includes a fixed delay due to door opening and
closing time, and a variable delay caused by passengers boarding/alighting activities.
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The proposed framework was evaluated using data acquired from a large bus
operator in Sweden throughout a period of six months. Numerical experi-
ments suggested a change to the agency’s original coverage. The impact of such
change was measured by assigning a theoretical timetable to the affected period.
A before-and-after schedule reliability study was conducted. The results are
promising.

The remainder of the paper is structured as follows: methodology is described
in Sect. 2, by doing an analysis of the previous work and a formal explanation
of our contributions. The case study is presented in Sect. 3, along with some
summary statistics of the used datasets. The results are presented in the Sect. 4,
followed by a brief discussion. Finally, conclusions are drawn.

2 Methodology

A stepwise methodology is hereby proposed to automatically set both the number
of schedules and their daily coverage. This description follows closely the one
proposed in Sect. 4 of [2]. It elaborates on the principle that days where the route
trips have a similar behavior (e.g. round-trip times) throughout the day should
be assigned to the same schedule. Let L = {r1, ..., rn} denote a set of routes of
interest. Firstly, for each r ∈ L, the running times and the boardings/alightings
at each stop (if existing) are extracted from its original AVL/APC dataset.
Secondly, the daily profiles are generated. If there is no APC data available for
a specific route, the procedure originally suggested in [9] is used. Otherwise, a
biased dwell time model is generated based on APC data to account demand
peaks/valleys. Its output is added to the link travel times computed through the
AVL data - as described in Sect. 2.1.

The next two steps generate a distance matrix between the days (using their
daily profiles) and cluster them. The first task is conducted using a Euclidean-
flavoured Dynamic Time Warping, while the latter is addressed using a GMM.
Conversely to previous works, the clustering is made for a user-defined set of
admissible number of schedules K ⊂ N, i.e. ∀k ∈ K instead of a single predefined
k value. The above mentioned steps are repeated for all routes.

Step 5 selects the best possible k ∈ K to define the best number of schedules
to put in place. This is made using a two-stage process, where an ad-hoc metric is
devised to evaluate the clustering result for each pair (r, k),∀r ∈ L, k ∈ K. Then,
a consensual k, i.e. K is found through a domain-oriented weighted mean of the
previously computed metrics - as described in Sect. 2.3. Finally, a Consensual
Clustering procedure is devised using the clustering pieces obtained for k = K
to compute the suggested Schedule Coverage, following the original procedure
proposed in [2]. An illustration of our methodology is presented in Fig. 1. The
remainder of this Section describes our contributions.

2.1 Modeling the Daily Profiles

Let L = {L1, L2, ..., Ln} be a set of the available AVL datasets for n consid-
ered routes, and C = {C1, C2, .., Cn} a set of the corresponding APC datasets.
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Fig. 1. A generic representation of the proposed methodology. The contributions of
this paper are highlighted by the dashed blue rectangles.

If Ci �= ∅, the round-trip time for every trip is obtained by adding the dwell
times at stops and the link travel times as they are described in the AVL data.

By using trip-level APC data, we expect to express the demand peaks/valleys
as slight increases/decreases of the computed round-trip time. Let r be a route
of interest with the associated datasets (Li, Ci) where t is the number of trips
and s is its number of stops. This procedure starts by modeling the dwell time at
stop through a decomposition in multiple factors. It can be computed as follows:

δo,j = max(α × ao,j , β × bo,j) + doc (1)

where α and β are constants that denote the alighting and boarding time per
passenger, respectively, and doc denotes the time allocated for operations that
take place on every stop, e.g. the opening and closing of doors. On the other
hand, ao,j and bo,j are the number of passengers that alight/board on a stop j
during a trip o, respectively, where o ∈ {1, 2, ..., t} and j ∈ {1, 2, ..., s}.

Using the available values for dwell times (AVL) δo,j and the values of ao,j

and bo,j (APC), we perform a linear regression procedure to estimate the val-
ues of α, β and doc. It consists of three steps: firstly, we isolate the samples
(i.e. boardings/alightings and dwell times for every pair of [trips/stops] avail-
able) where ao,j = 0 and bo,j = 0 into two different partitions. This allows
to transform Eq. 1 into a linear one. Secondly, we estimate values for α, β and
two possible values for doc, i.e. doca, docb. Finally, the doc value is computed as
doc = doca+docb

2 . Then, we use the resulting constants to compose a novel func-
tion for the dwell time (i.e. δ̂o,j). This function is used with the original APC
data to compute novel dwell time estimations, which are summed up to the link
travel times observed in the original AVL data.

The induction model used to do the abovementioned linear regression proce-
dure is a modified version of the well-known least squares, where we replace its
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typical loss-function (a sum of the squared residuals) for the mean absolute devi-
ation (MAD) (i.e. which results in a simple sum of the residuals). This change
increases the framework’s tolerance to large errors (i.e. demand peak/valleys),
which will result in an under/overestimation of the dwell times under such con-
ditions. This effect aims to model the demand peaks/valleys inside the daily
profiles of round trip times typically used by [2]. By producing a daily profile
based on heterogeneous sources of data, we aim to adequately express the dif-
ferences between the route behavior - both in terms of cruising time and in its
demand - on the schedule coverage definition.

2.2 Expectation-Maximization (EM) for Clustering Analysis

[2] proposed k-Means algorithm to perform the routewise clustering in the con-
text of this application. This approach assumes a deterministic clustering step
where the model is only given by the Euclidean Distance to the incrementally
computed centroids (i.e. spherical clusters, parametric). Such characteristics may
easily lead to an undesired overfitting, where the samples are erroneously ini-
tially assigned to a non-homogeneous cluster, potentially increasing the variance
within. To overcome this limitation, we propose a GMM (a general version of
k-Means), which (briefly) operates as follows: firstly, it (a) softly assigns a sam-
ple to a cluster, i.e., computing the probability of any point belonging to every
centroid; then, it (b) estimates the parameters of the probability distribution,
taking the sample-based covariances into account.

2.3 Automated Selection of Number of Schedules

The selection of the best number of clusters is a complex problem in data analy-
sis. One of the most well-known metrics to do it so is the Bayesian Information
Criterion (BIC) [10], which computes an entropy-based probabilistic score that,
when maximized over a set of values, i.e. K, aims to return the optimal k by
minimizing the entropy between samples of the same cluster and maximizing
the one between samples of different ones. However, such optimization problem
may not lead to a good solution for a real-world context, given the constraints
that each application domain encloses. Consequently, ad-hoc metrics are often
devised to address such issues (e.g. market segmentation in [11]).

In this context, we depart from BIC to set up an ad-hoc metric, i.e. m for
this problem as a linear combination of multiple factors. These factors were con-
sidered in light of two main constraints: (1) the cost of increasing the number
of defined schedules (which reduces the schedule’s interpretability as well as its
easy memorization, the operators’ ability to easily put it in place, and conse-
quently, the route’s riderships) must be necessarily balanced by a gain on the
punctuality of the offered service, by reducing significantly the entropy on the
produced clusters; (2) the cluster’s output must model a frequent pattern (e.g.
the Saturdays should be grouped with the Sundays throughout five months of
an year). Such factors can be expressed as follows:

m(k, r) =
(
nbic(k, r) − f(k, r)2

)
+

(
q(k, r) − σ̂(k, r)

)
, k ∈ K, r ∈ L (2)
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where nbic(k, r) is the normalized2 value of BIC. (1) The first term of Eq. 2
addresses the number of clusters. High values of nbic will bring a gain on the
punctuality of a suitable timetable defined for such partitioning. On the other
hand, the increase of the number of schedules to maximize such punctuality
must be done if and only if such gain is significant. Consequently, we need
to model a trade-off between an eventual gain given by increasing the number
of schedules and the associated cost of decreasing its interpretability. We do it
so by introducing a penalty term f(k, r)2 that favors lower values of k, where
f(k, r) = k/max(K),∀r ∈ L.

The second term of Eq. 2 addresses the cohesion and consistency of the par-
titioning for a number of schedules k. Empirically, we know that a SP in PT
should cover a static set of daytypes (e.g. Mondays) throughout a relatively long
set of weeks. Consequently, a suitable cluster would be one that provides such
frequent pattern. The suitability of each cluster is given by an ad-hoc quality
metric, i.e. q(k, r). It is computed in two stages: (2a) frequent itemset mining
and (2b) compatible pattern merging. This procedure is detailed as follows.

Cluster Quality Computation. A frequent pattern in this problem can be
modeled through a sequence mining problem to find frequent itemsets of daytypes
among the weeks (i.e. transactions) covered by the input data (e.g. Mondays to
Fridays). Let γ, φ ∈ [0, 1] denote two user-defined parameters for the minimum
support to consider a given itemset as frequent (i.e. the minimum amount of
weeks to define a schedule) and for the minimum cluster’s mass ratio to be
covered by it, respectively. The PrefixSpan algorithm [7] is hereby adopted to
find such frequent itemsets, i.e. FIi among the daytype’s transactions obtained
from each partition Si. Let N denote the number of weeks in the input data.
The frequent pattern of each cluster, i.e. FP is then selected as follows:

FPi = arg max
FIi⊆Si

(
Γ (FIi) · |FIi|

N

)
subject to: Γ (FIi) ≥ γ, FPi ≥ φ (3)

where Γ (FIi) is the support of the frequent itemset FIi on the partition Si.
After such procedure, each cluster possesses a FPi (which may be ∅). The

quality of each cluster is then computed as q(k, r) =
∑k

i=1
Γ (FPi)

k . However, in
this domain, it is very common to find complementary schedules (e.g. work-
days for all year and workdays during summer vacations, with a support of 0.9
and 0.1, respectively). Together, these complementary clusters would present a
very meaningful frequent pattern which is penalized by the q(k, r) computation
formula introduced above. Consequently, we introduced a merging step which
aims to find such clusters and to merge them in order to obtain the overall qual-
ity of the coverage proposed by a given value of k. This merging step aims to find
clusters which have frequent itemsets complementary to a given FPi by relaxing,
at most, one of the two constraints imposed in Eq. 3. The algorithm to do it so
is introduced by Fig. 2. Note that two clusters are considered as complementary
if they overlap, at most, 10% of the weeks of the input data.
2 All the normalizations done throughout this section used the Euclidean distance.
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Fig. 2. Merging Procedure for Complementary Clusters/Coverages.

Given the resulting clusters after the merging procedure (with a number of
k′ clusters), we can compute the final cluster’s quality as

q(k, r) =

⎧⎪⎨
⎪⎩

∑k′

i=1
Γ (FPi)

k′ if k′ = k(∑k′

i=1
Γ (FPi)

k′

)(
1− χ

2

)
, χ = max(FPMi) otherwise.

(4)

where FPMi denotes the support of the frequent itemset of a merged clus-
ter. Obviously, the resulting clusters may also contain other samples regarding
daytypes not included in the frequent itemset (e.g. a cluster modeling the week-
ends which have two Mondays within). These samples are referred to as noise in
this context. Such noise naturally decreases the adequacy of the frequent pattern
modeled by each cluster. This effect is introduced by term σ̂(k, r) in Eq. 2. σ̂(k, r)
is calculated based on the standard deviation between the relative frequencies
of every day within a particular cluster. It can be computed as:

σ̂(k, r) =
1
2

×
√∑k

i=1

σ(frk,Si,r)
k

(5)

where frk,Si,r is the vector of relative frequencies of the days within the cluster
i, where a relative frequency of a daytype d within a cluster Si is given by the
number of days of daytype d divided by the cluster’s mass.

Given such metric computation for all pairs (r, k), we can now compute a
consensual number of clusters K. Let η(r) denote the normalized (see Footnote
2) number of trips for the route r. The consensual number of clusters K is defined
by a weighted average of k ∈ K. We can express K ∈ N as follows:⌈ ∑

r∈L

∑
k∈K

m(k, r)2 × k × η(r)
Ψ

/ ∑
r∈L

η(r), Ψ =
∑

k∈K
m(k, r)2

⌉
(6)
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3 Case Study

Our case study was a large urban bus operator in Sweden. We used data from
four high-frequency (maximum planned headway of 10 min between 7:00–19:00)
routes A1/A2/B1/B2, i.e. two bus lines A/B. Line A links residential areas to
a PT hub as well as major shopping areas. B connects the southern parts of
the city to the city center, traversing by a PT hub, major hospitals as well as a
logistic center. This study covers six months between August 2011 and January
2012. The coverages in place are relative to two time periods: Summer, from 19
June till 14 December and Winter: from 15 December till 18 June. Two schedules
are defined for each period: workdays and weekends/holidays.

As preprocessing, a trip pruning was performed by removing trips with more
than 80 % of missing link travel times. Reversely, we performed data imputation
on the remaining samples by following the interpolation procedure suggested in
[2]. The dwell times were also pruned by using the 99 % percentile to remove
erroneous measurements. APC data was used as is.

Table 1 presents an overview of the resulting dataset, detailed per route. It
contains the (i) total number of trips (NT), (ii) its number of stops, (iii) the
Daily Trips (DT), (iv) the Round Trip Times (RTT) and (v) the loads (i.e. total
number of boarding passengers). Both have a similar NT, while line A has a
larger RTT than B.

4 Experiments

The experiments were conducted using the R language [12]. The model-based
clustering was performed using the GMM implementation of mclust package
[13]. To compute the frequent itemsets used in the cluster’s quality computation,
a C++ implementation of PrefixSpan [14] was employed. This framework has
three parameters: K, γ and φ. Their values were set to 2 ≤ k ≤ 7,∀k ∈ K,
0.25 and 0.4, respectively. The first used the range suggested by the original
experimental setup in [2]. The value of γ was empirically set such that a schedule
can only be set for a period of, at least, four weeks; on the other hand, φ was
selected out of three possible values 0.4, 0.5, 0.6 through an iterative parameter
tuning setting conducted on a small subset of the training data.

The application of the proposed methodology to the available dataset sug-
gested a novel SP - as detailed further in this Section. Its impact on the agency’s
operations in terms of schedule reliability was assessed through a simulation
procedure, described in the next section.

4.1 Impact Evaluation Through a Data-Driven Simulation

Any change of the schedule coverage will result in one of two scenarios: (i) a
group of days B changes from one coverage to another among the ones that were
already in place or (ii) it will take a completely novel timetable. The procedure
that we describe hereby is focused on the type-i Scenarios. Let A and Z be two
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Table 1. Statistics per Route. The values are as mean ± s.d.. Times in seconds.

Nr. Trips Stops DT RTT Loads

A1 17953 33 134 ± 27 3017 ± 425 101 ± 50

A2 16353 33 133 ± 30 2755 ± 480 98 ± 51

B1 16280 25 127 ± 23 2607 ± 465 70 ± 37

B2 16353 25 124 ± 22 2746 ± 448 60 ± 29

groups of days with different coverages and, consequently, distinct timetables
assigned where B ⊆ A. Our goal is to test whether the time period B would
benefit from having the same timetable of Z instead of its original one (i.e. from
B). This procedure is done in three steps: firstly, we need to assign a timetable
to B - which will change from the one in place in A to the one used in Z3. Then,
we need to simulate which would be the (a) link travel times and (b) the dwell
times generated by such timetable given the available AVL/APC data.

The (a) link travel times are generated through a k-Nearest Neighbors regres-
sion [16] (k = 1), where the departure time of each stop is used as an independent
variable. The demand on each stop is generated by using the headways computed
through (a). These headways correspond to the idle time on a given bus stop bsi,
τi. The passenger arrivals at stops are modeled by iteratively sampling passenger
arrival times pavi from an exponential distribution, i.e. pavi ∼ Exp(λi). Then,
the number of boardings on each stop is computed as follows:

boi = arg max
x

∑x

j=1
pavi

j , subject to:
∑x

j=1
pavi

j ≤ τi∧pavi
j ∼ Exp (λi) (7)

where λi is computed as time-dependent Poisson process for every specific pair
(r, bs) by considering averages of boardings on one hour periods of the days with
similar daytypes (e.g. the number of passengers boarded on a given route between
8am and 9am of every Monday) - which are linearly normalized according to the
amount of idle time available to compute each boi � x. The alightings are then
computed based on an assumption that the passengers traverse up to 25 % of the
route. The resulting dwell times are computed using the Eq. 1 and the constant
values obtained through the procedure described in Sect. 2.1.

The impact evaluation study is conducted on a before-and-after fashion,
where schedule reliability metrics are firstly computed for the current case
study (using the original AVL/APC data, as well as the SP in place). Then,
the same metrics are also computed for the simulated data obtained through
the abovementioned procedure. Four schedule reliability metrics were employed:
On-Time Performance, Run-Time Variation, Headway Variation and Excess
Waiting Time. Details about these metrics can be found in Sect. 4 of the Survey
in [1].
3 Note that this naive timetabling procedure is done only for this specific purpose.

Once the coverage is changed, the entire timetable of the affected periods need to be
recomputed. The reader can consult the work in [15] to know more about this topic.
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4.2 Results

This framework typically runs in linear time, where a single-core CPU processed
the 16 k trips of our case study in ∼ 600 s. Figure 3 illustrates the computed val-
ues for the ad-hoc metric hereby devised to assess the quality of the partitioning
provided by each value of k. These values resulted in a consensual K = 3. Figure 4
shows an example of the clustering results obtained for a particular route using
its best value of k, i.e. k = 5. The consensual clustering results are exhibited in
Fig. 5. Finally, Fig. 6 presents the schedule reliability evaluation metrics of the
before-and-after study performed through the simulation described in the above
Section.

4.3 Discussion

Figure 3 clearly exhibits the penalty effects of the term f(k, r)2 as there is a clear
trend of reducing the computed score with the increase of k. Yet, the weighted
voting schema proposed in Eq. 6 ends up by finding a consensus around K = 3 -
and not 2 as the charts may empirically suggest. As it is detailed by Fig. 4,
this happens mainly due to a particular merge between the S2 and S4. Figure 5
illustrates the obtained coverage. It differs largely from the one in place by sug-
gesting that the winter schedule should be in place four weeks earlier than it
is (i.e. a change from mid-December to mid-November). The affected period
was used as case study to conduct the simulation-based impact study described
along Sect. 4.1. The obtained results (exhibited by Fig. 6) clearly outline high
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Fig. 6. Before-and-after impact evaluation of the novel schedule coverage reliability
assessed using a data-driven simulation procedure.

potential gains of performing such change. However, such gains are mainly theo-
retical boundaries. They may be biased by the multiple constraints of daily PT
operations, as well as by the oversimplification of the dwell time’s computation
(i.e. used the constants computed as described in Sect. 2.1). Consequently, an
on-field deployment of this new coverage would be necessary to determine the
exact impact of the suggested changes.

5 Final Remarks

This paper introduces a novel procedure to improve schedule coverage on PT
networks. It is based solely on AVL/APC data. The final goal is to improve
PT reliability and, consequently, their ridership and cost efficiency. Our main
contribution is an ad-hoc metric to select the best number of schedules to put
in place giving four decision factors - punctuality, adequacy, interpretability and
reliability - modeled throughout sequence mining and probabilistic reasoning. To
the best of our knowledge, this is first data driven framework to automatically
select the number of schedules to be put in place using real-world data from
a PT operator. Experimental results uncovered the potential gains introduced
by this framework. As future work, the authors intend to evaluate it on a real-
world testbed. Moreover, we also expect to create adequate exceptions on the



Automated Setting of Bus Schedule Coverage 563

concept of frequent itemset to relevant outliers on this domain (e.g. a schedule
for the Christmas week) and identify when changes in round-trip times require
introducing a novel schedule. This is still an open research question.
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Abstract. Australia’s critical water pipes break on average 7, 000 times
per year. Being able to accurately identify which pipes are at risk of fail-
ure will potentially save Australia’s water utilities and the community
up to $700 million a year in reactive repairs and maintenance. However,
ranking these water pipes according to their calculated risk has mixed
results due to their different types of attributes, data incompleteness
and data imbalance. This paper describes our experience in improving
the performance of classifying and ranking these data via local metric
learning. Distance metric learning is a powerful tool that can improve the
performance of similarity based classifications. In general, global metric
learning techniques do not consider local data distributions, and hence do
not perform well on complex / heterogeneous data. Local metric learning
methods address this problem but are usually expensive in runtime and
memory. This paper proposes a fuzzy-based local metric learning app-
roach that out-performs recently proposed local metric methods, while
still being faster than popular global metric learning methods in most
cases. Extensive experiments on Australia water pipe datasets demon-
strate the effectiveness and performance of our proposed approach.

1 Introduction

Based on a report by Australasian Corrosion Association (ACA), the Australian
water industry faces many challenges, particularly in the areas of asset manage-
ment of aging infrastructure and the training required to support the prevention
of corrosion1. Failures of critical water mains typically bring severe consequences.
Closing highways, massive street flooding and damages, traffic and giant sink-
holes are just some of the impacts of water main failures. Based on official reports,
these costs have been estimated at $91 million per annum to the Australian urban
water industry. Moreover the total cost of corrosion in Australia is $982 million

1 http://www.pacetoday.com.au/news/cost-of-urban-water-infrastructure-failure.
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per year, which equates to an approximate annual cost of $60 for every adult in
the country.

The maintenance process is a very critical process in water main industry.
The maintenance process starts by prioritizing high risk pipes. Then proceeding
to physically inspect these assets to confirm their actual condition, before finally
deciding on whether to renew them or not. Hence, forecasting and ranking the
pipelines according to their risk (i.e., likelihood to fail) are critical to reducing
maintenance and repair costs, to save the repair and/or rehabilitation time and
for safety.

Therefore, it is very useful to be able to rank accurately the water pipelines
to find the most risky pipelines in each year. However, ranking water pipeline
data has shown mixed results due to the characteristics of water data. On one
hand, the data is sparse so that most pipes do not fail or fail just once during the
observation period. On the other hand, the data is heterogeneous which means
that their attributes have different types and/or scales and they are coming from
different sources. In this paper, we consider the ranking problem in a pointwise
manner. It is viewed as a regression or classification problem of predicting the
specific relevance score for each category. In such cases, where the data is large,
imbalanced and heterogeneous, learning a distance as a crucial step in classifi-
cation is a very challenging issue.

Motivated by this problem, a lot of research has been done to identify similari-
ties/distances between instances by proposing efficient metric learning techniques
[11,12,15,22]. Earliermetric learningmethods learn a global distancemetricwhich
determines the importance of different features and their correlations. However,
when the problem is more complex, like in the water pipeline case, a global met-
ric may not be able to fit the distance over the data manifold very well [1]. Local
metric learning methods address this problem by learning a metric on each neigh-
bourhood, or learning different metrics across the space [2,18–20].

Although local metric methods outperform global ones in many complex
cases, they are prone to overfitting when they learn one metric per instance or
when they learn completely independent metrics for different areas in data space.
This overfitting problem has been addressed recently, by considering the rela-
tionships between the different metrics learnt [13,16]. However, these proposals
still learn different metrics for different chosen areas, and their performance still
depends on the way that the most appropriate areas cover the different data dis-
tributions are chosen. Secondly, same as the most local metric learning methods,
they come with high CPU and memory costs [1].

Based on these observations, we exploit the properties of fuzzy c-means
(FCM) clustering technique to learn one metric per cluster and parameterize
the metrics by considering the membership degree of each instance for different
clusters. This process will overcome the overfitting problem by parameterizing
the metric matrix of each instance as a linear combination of basis metrics of
cluster centres (as mentioned in [16]). To further speed up the process, ball trees
are used to search for target neighbours and imposters that will be described
later. As shown by experiments, the proposed fuzzy based local metric learning
method is faster than the state-of-the-art local.
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However, FCM may fail to find the optimal clusters when the clusters are
not spherical or/and when the similarities are not linear [5]. It is also practically
desirable for a metric learning method to support heterogeneous types of data
like water pipeline data. Most metric learning methods do not address these
issues [4]. Therefore, in this paper, a new non-linear framework is proposed to
enhance FCM with kernel density functions. In this framework, all the features
are mapped into a non-linear feature space based on their density quantities,
so that it can handle heterogeneous datasets with numerical, categorical and
mixed features. We call our approach: kernel density fuzzy-based metric learning
(KDFuzzyML).

2 Related Works

Wang et al. [17] presented a robust statistical analysis by developing five multiple
regression models and applied them on 15-year water pipe failure data of a
Canadian water distribution network. To develop regression models, this research
focused on individual water pipes rather than similar groups of pipelines and
considered a wide variety of factors that may affect the break rate. Tebesh et al.
[14] presented two failure prediction models based on artificial neural network
(ANN) and neuro-fuzzy systems to improve the accuracy of water pipeline failure
rate prediction. The proposed models are applied to real data of one of the
water distribution networks in Iran. The results showed that failure prediction
using ANN model is more accurate and realistic than using neuro-fuzzy and
multivariate regression models.

Jafar et al. [7] investigated the application of ANN in water pipe condition
prediction to estimate the rate of failure and find the best time to replace the
pipelines. They tested the performance of six ANN models constructed using a
cross-validation approach on an urban water distribution system in France. This
study approved the efficiency of using the ANN approach to make a decision on
the maintenance of water mains to reduce water pipe breaks.

Kleiner and Rajani [8] have done one of the most recent researches in this
area. Four different models including a heuristic model, a näıve bayesian classifi-
cation model, a logistic regression based model and a probabilistic model based
on non-homogeneous poisson process (NHPP) have been developed. The pro-
posed models have been used to rank the failure probability of some of the pipes
which are expected to fail in the future. The models were applied to six various
datasets from three different water distribution networks. The results of compar-
ing these four models showed that NHPP-based model outperforms other models
in terms of the prediction of the average number of failures for each pipe each
year. However, it is not possible to select a model that is superior in terms of its
ranking ability. In fact, different models had different but reasonable results on
different scenarios.

Xu et al. [21] have done research on the water distribution network of Beijing
and proposed a model to help decision makers to have a cost-effective plan for
water pipe maintenance. They first developed a pipe break prediction model
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based on the failure data of the Beijing water distribution network between 2008
and 2011 using genetic programming and then set up an economically efficient
pipe replacement model.

Recently Li et al. [9] proposed a non-parametric model using hierarchical
beta process (HBP) to enhance the performance of pipe condition assessment.
They addressed the limitations of parametric models since they usually have a
fixed model structure based on a set of assumptions on the data behaviour.

Prioritization of risky pipelines can bring significant savings to water utilities.
Hence in this paper, a local metric learning based model is presented to further
increase the accuracy of this process to avoid critical main failures and also to
avoid replacing any pipe that is still in working condition. To the best of our
knowledge, there is no work in literature that has used metric learning based
method to assess water pipeline conditions.

3 The Proposed Method

3.1 Data Collection

We use the data from two different Australian regions. Region A is a highly
urbanised commercial area, and Region B is a lower density suburban area.
We have access to two datasets for each region. The information of pipelines in
each area is accessible through the first dataset. Attributes include: identifica-
tion number, laid date, length, material, diameter size, location, protective coat-
ing and surrounding soil type. The second dataset contains the failure records
between 1998 and 2012. The failure information includes failure date and time,
failure type, failure location, etc.

In these regions, the oldest pipes were laid from 1800, with an average age of
60 years for Region A and 38 years for Region B. The fourteen years observation
period was relatively short compared to the life cycle of water pipes such that
most (about 99%) pipes have not failed or failed just once during the observation
period Hence the data is sparse or imbalanced in the other words. The soil types
were similar for all the water mains belonging to the same region. Region A
and B have 14, 765 and 17, 877 water pipes and 1, 696 and 6, 672 failure records
respectively.

3.2 Fuzzy-Based Local Metric Learning

In this paper, we focus on supervised learning. We assume that we have a labelled
dataset S = (x1, y1), (x2, y2), ..., (xn, yn), where xi’s are D-dimensional instances
and yi’s are class labels from a set of c = 1, 2, ..., C. First, we assume that all the
features are numeric. Mahalonobis distance between two instances is given by:

dM (xi, xj) =
√

(xi − xj)T · M · (xi − xj) (1)

A linear metric learning method learns the positive semidefinite metric matrix
M , based on some constraints. The most popular one is the large margin nearest
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neighbour method that is based on triplet constraints. Considering a triplet
constraint (xi, xj , xl), in a projected space based on M , the distance between
xi and xj will be smaller than the distance of xi and xl. In a more complex
problem, like when the data is large and heterogeneous, learning a single metric
will not be able to model complexity of the problem. To address this problem,
local metrics are learned for each learning instance or set of learning instances.

Learning a metric per instance makes the method slow and complex [1].
Therefore, in this paper, we will learn a set of metrics for a set of instances defined
by FCM clustering method. A local metric function can be approximated by a
linear combination of weighted metrics {M1,M2, ...,Mk}. Hence the local metric
of each instance xi is parameterized by Mi =

∑
k

wikMk; wik ≥ 0,
∑
k

wik = 1.

We use FCM clustering to find the anchor points and the weight matrix w.
w is a n ∗ k matrix where its wik entry is the membership degree of instance xi

to the cluster k. The wik is calculated as:

wik =
1∑

j

(d(zk,xi)
d(zj ,xi)

)
2

(α−1)
where zk =

∑
xi

wα
ikxi∑

xi

wα
ik

(2)

where (zk) is centre of the kth cluster.
The metric Mk is parameterized for instance xi with the instance membership

degree wik. Although this metric is used to calculate the distance of xi from all
other instances, the metric parameterization avoids overfitting. We use a similar
objective function as in [16] to learn the basis metrics {M1,M2, ...,Mk}:

min
M1,M2,...Mk,ξ

α1

∑

k

‖Mk‖2F −
∑

ijl

ξijl + α2

∑

ij

∑

k

wikd2Mk
(xi, xj)

s.t.
∑

k

wik(d
2
Mk

(xi, xl) − d2Mk
(xi, xj))≥1−ξijl ∀i, j, l; ξijl ≥ 0 ∀i, j, l; and Mk ≥ 0 ∀k.

(3)

Speed up Using Ball Trees. Storing data samples in a hierarchical structure
can make the nearest neighbour search faster. Ball trees are one of the hierarchi-
cal structures that have been used by Liu, et al. [10] for fast k-nearest neighbours
(kNN) search. Ball tree partitions data points into a set of D-dimensional hyper-
spheres called balls. Each ball contains a subset of data points. The distance of
each data sample to each ball is easily computed. The distance of a test point
xt to any trained point xi in a ball tree S, has a bound as follows:

∀xi ∈ S ‖xt − xi‖ ≥ max(‖xt − cs‖ − rs, 0) (4)

where cs is the centre and rs is the radius of the ball s.
To further speed up the proposed method, we create one ball tree for the

training samples of each class in each cluster. The created ball trees are used to
search for target neighbours and the imposters. Searching for target neighbours
and imposters are the most time consuming processes in the proposed method.
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Note that for each data sample xi, the imposters are data samples with different
class labels that are closer to the xi than its target neighbours. The target
neighbours are the k nearest neighbours of xi with the same class labels. If xj is
the kth closest point of xt and its distance to the xt is less than the bound from
Eq. 4, all the training samples inside the ball can be left unexplored.

3.3 The Proposed Kernel Density-Based Fuzzy Metric Learning

This subsection is our main contribution in this paper where we propose a new
fuzzy clustering method based on the kernel density and show how to learn
the local metrics for the data in the new non-linear feature space. First, we
need to know how to calculate the distance between instances in the new space.
Considering two inputs xi and xj , Euclidean distance after mapping the inputs
to the density probability space φ(x) is:

d2(xi, xj) = (φ(xi) − φ(xj))
T (φ(xi) − φ(xj)) =

D∑

d=1

C∑

c=1

[Pd(c, xi,d) − Pd(c, xj,d)] (5)

And Mahalonobis distance is formulated as d2(xi, xj) = (φ(xi) −
φ(xj))T M(φ(xi) − φ(xj)), where M is a positive semidefinite matrix that we
are trying to learn in different areas of the space.

Based on FuzzyML framework, we should first cluster the data using fuzzy
clustering technique. Hence, we need to know how to calculate the cluster
centre and the membership degree matrix. Let the cluster centre be Zk =
[zk,1, ..., zk,d], 1 ≤ d ≤ D, for clusters 1 ≤ k ≤ K, where each attribute of
Zk is a vector of probabilities zk,d = [zk(1, d); ...; zk(c, d)], 1 ≤ c ≤ C; zk(c, d) is
calculated as:

zk(c, d) =

∑
xi

wα
kixi(c, d)∑

xi

wα
ki

. (6)

More formally, each feature value of a cluster centre is a vector of conditional
probability densities. Each item of the vector will be mean of the feature con-
ditional probability density of all the points, weighted by degree of belonging
of the points to the cluster. With fixed centres, weight matrix w is updated as
Eq. 2 where:

d(zk, xi) =
D∑

d=1

C∑
c=1

[zk(c, d) − Pd(c, xi,d)] (7)

We call this clustering approach as kernel density fuzzy c-means (KDFCM).
After clustering, all the basis metrics are learned. Considering Uk and γijl

as dual forms of Mk and ξijl in Eq. 3, the dual formulation of objective function
is obtained by substituting the following expression into the Lagrangian form of
the objective function:

M∗
k =

U∗
k +

∑
ijl

γ∗
ijlwikGijl − α2

∑
ij

wikAij

2α2
(8)
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where this expression is obtained by setting the first deviation of Lagrangian of
the objective function over Mk and ξijl to zero. Hence the dual formulation is
defined as:

max
U1,...Uk,γ

∑
ijl

γijl −
∑

k

1
4α1

.‖Uk +
∑
ijl

γijlwikGijl − α2

∑
ij

wikAij‖2F

s.t. 0 ≤ γijl ≤ 1; ∀ijl Uk ≥ 0; ∀k

(9)

where Aij is equal to the outer product of each instance pair, and Gijl is xT
ilxil −

xT
ijxij . The outer product of each pair xi, xj in the new feature space should be

calculated as:

Aij = xT
ijxij =

C∑
c=1

D∑
d=1

xd(c, ij)xd(c, ij) (10)

where x(c, ij) is a vector of xij over all the D dimensions. xij = xi − xj is a
vector of concatenation of all the D (xi,d − xj,d) where each (xi,d − xj,d) is a
vector of concatenation of all the C (Pd(c, xi,d) − Pd(c, xj,d)). Similarly, Gijl is
calculated as:

Gijl =
C∑

c=1

D∑
d=1

xd(c, il)xd(c, il) −
C∑

c=1

D∑
d=1

xd(c, ij)xd(c, ij) (11)

To make the defined optimization problem easier to solve, given a fixed γijl,
Eq. 9 can be simplified to:

min
Uk

1
4α1

‖Uk +
∑
ijl

γijlwikGijl − α2

∑
ij

wikAij‖2F s.t.Uk ≤ 0 ∀l (12)

Defining a symbol A = α2

∑
ij

wilAij−
∑
ijl

γijlwilGijl, Uk has a closed form solution

which is the positive part of A. So we will have: U∗
k = (A)+

Therefore the basis metric (Eq. 8) is simplified into M∗
k = 1

2α1
(A)+ − A.

4 Experiments and Results

We conduct extensive experiments to evaluate the proposed method and com-
pare our results to the competing methods for predicting water pipe failures.

First we consider the problem as a binary classification problem, i.e., failed
and non-failed pipelines. Table 1 depicts the results of applying different methods
for classifying these water pipes. We observe that KDFuzzyML has the lowest
error rate (7.94%). The water pipeline dataset is very imbalanced, so FScore and
GMean values are better indictors than error rate. The methods with higher Pre-
cision, Recall, FScore and AUC have better performance. As shown in Table 1,
kNN has the worst performance on the water pipe data. After that, BoostMetric
is the second worst. Overall, our proposed method has the least error rate and is
also at least slightly better than other methods based on all measurements. Since
identifying every water pipe failure (in advance) saves lots of money, according
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Table 1. Performance of different methods on the water utility data set

kNN LMNN BoostMetric PLML FuzzyML KDFuzzyML

Error Rate 10.37 8.40 8.49 8.10 8.12 7.49

Precision 0.31 0.48 0.44 0.49 0.50 0.56

Recall 0.25 0.54 0.30 0.57 0.57 0.61

FScore 0.27 0.51 0.35 0.53 0.57 0.58

AUC 0.60 0.75 0.63 0.76 0.76 0.78

to this experiment, our method is the best choice for pipe classification in the
water pipeline condition assessment application.

KDFuzzyML outperforms other methods in water pipe classification as shown
in Table 1. Next, we need to rank the problematic water pipelines according to
their likelihood to fail, so inspectors can inspect the more problematic pipelines
according to their urgency and available resources. The pipelines that are in
danger of bursting (or failing) are said to be susceptible. We rank the sus-
ceptible pipelines using KDFuzzyML and two other popular survival analysis
methods, Weibull [6] and HBP [9], using some real water pipeline data from
two Australian regions. We choose Weibull, as a baseline for comparison, and
HBP as a non-parametric method that has been very recently proposed for water
pipeline condition assessment. The results are shown in Fig. 1. Y-axis indicates
the percentage of susceptible pipelines actually found, and x-axis indicates the
amount of inspection carried out in the water pipeline network in the region. It
shows that KDFuzzyML allows more accurate, targeted inspection on susceptible
pipelines than HBP and Weibull. For example, by following KDFuzzyML rank-
ing of the susceptible pipelines in Region A, inspectors can identify more than
60 % susceptible pipelines by inspecting less than 20 % of the water pipelines in
the region. When using the other two methods, they will need to inspect more
than 40 % and 70 % of the pipelines, respectively, to achieve the same result.
This is practically very significant, as a huge amount of resources (esp. money)
can be saved for water pipeline maintenance.

Similar as Fig. 1, Table 2 uses different measurements to compare the per-
formance of KDFuzzyML, Weibull and HBP use the real water pipeline data.
As shown, for example, using AUC, KDFuzzyML is at least 20% better than
Weibull and HBP.

To investigate the significance of the results shown in Table 2, Friedman and
Nemenyi tests [3] have been chosen to further analyse the results. Friedman test is
used to compare different classification results according to their similarity. Fried-
man test, as a non-parametric test, is more suitable than parametric tests when
more than two classifiers are involved [3]. Friedman test compares the average
ranks of algorithms under a null-hypothesis. The null-hypothesis assumes that all
the algorithms perform the same and hence their output ranks should be the same.
Table 3(a) presents the results of Friedman test and hence we reject the hypothesis,
i.e., the algorithms do not perform the same. Friedman test has been performed
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(a) Region A (b) Region B

Fig. 1. Results of pipe failure prediction for regions A and B using different methods

Table 2. The performance diagnostics of different models

Metrics Region A Region B

KDFuzzyML HBP Weibull KDFuzzyML HBP Weibull

Sensitivity 0.63 0.58 0.54 0.74 0.65 0.59

Specificity 0.62 0.59 0.54 0.73 0.66 0.6

FScore 0.57 0.48 0.44 0.71 0.48 0.43

AUC 0.74 0.57 0.5 0.82 0.61 0.58

considering the results of 10 times performing all three methods on water data
in both regions. The χ2

F values namely Chi-Square more than 0 with p < 0.05
for all the performance diagnostics suggest that there are significant differences
between performance measurements values of these three methods (KDFuzzyML,
HBP and Weibull). In other words, these results illustrate that even if we perform
these methods several times on different data samples, the performance will not
be similar and their performances can be ranked.

When the null-hypothesis is rejected, we can proceed with a post-hoc test.
Nemenyi tests are used here to show the difference between each pair of the
algorithms and rank the methods based on their performance. In other words,
Nemenyi test is a post-hoc test for pairwise comparisons (Table 3(b)) that
are used after Friedman test. Nemenyi test is to test the same hypothesis as
Friedman’s but just between two methods at a time. As shown in the compari-
son between KDFuzzyML and HBP in Table 3(b), critical value (q) more than 0
with p < 0.05 rejects the null-hypothesis. This means that KDFuzzyML performs
better than HBP on all measurements. Similarly, as shown in the comparison
between KDFuzzyML and Weibull in Table 3(b), q more than 0 with p < 0.05
implies that KDFuzzyML outperforms Weibull. The higher the critical value is,
the bigger difference between their performances is. For instance, for AUC, the
critical value from Nemenyi on KDFuzzyML and Weidbull is 8.65, which is larger
than the critical value from Nemenyi on KDFuzzyML and HBP (i.e., 7.98). This
implies that for AUC, KDFuzzyML performs the best, followed by HBP and
then Weidbull. This is consistent with the results shown in Table 2.
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Table 3. Comparison between the proposed method and other methods using (a)
Friedman test and then (b) Nemenyi test

Metrics (a) Friedman test (b) Nemenyi tests

Critical values KDFuzzyML vs. HBP KDFuzzyML vs. Weibull

Sensitivity χ2
F = 13.85, p < 0.05 q = 4.95, p < 0.05 q = 5.37, p < 0.05

Specificity χ2
F = 14.41, p < 0.05 q = 5.34, p < 0.05 q = 6.10, p < 0.05

FScore χ2
F = 32.02, p < 0.05 q = 9.54, p < 0.05 q = 9.78, p < 0.05

AUC χ2
F = 17.21, q = 7.98, p < 0.05 q = 8.65, p < 0.05

Table 4. Speed of the algorithms against data size on water pipeline dataset

# Samples CPU Time (s) Train Error (%) Test Error (%)

KDFuzzyML

5000 7 8.10 10.16

15000 16 8.58 12.49

76000 384 0.17 0.52

350000 755 0.16 0.54

PLML

5000 86 8.11 10.40

15000 237 8.51 12.03

76000 5455 0.17 0.45

350000 26283 0.16 0.50

LMNN

5000 636 7.87 9.23

15000 3180 8.53 10.35

76000 4640 0.29 0.79

350000 >1 day N/A N/A

In addition, the scalability of KDFuzzyML is shown by experiments on water
pipeline datasets with different sample sizes. Table 4 shows the speed (in CPU
time) of different algorithms on water pipeline datasets with different sizes. For
every experiment, 10-fold cross validation is performed and average over 10 runs
is obtained. Table 4 is divided into 3 sections. Each section shows the perfor-
mance of one algorithm on various sizes of the water pipe dataset. Based on
the results, the proposed KDFuzzyML works much faster than LMNN on the
water pipeline dataset with any sample size. For example, it takes just 755s for
the proposed KDFuzzyML on the dataset with 350000 samples, whereas it takes
more than a day for LMNN to finish the computation. Even when the sample
size is less, like 15000 samples, KDFuzzyML is still about 200 times faster than
LMNN with the same error rate. Hence, it can be concluded that the proposed
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Table 5. Performance of various methods on data sets with different data types

Data set Index LMNN BoostMetric PLML FuzzyML KDFuzzyML

Contraceptive Error rate 57.64 57.71 66.37 75.62 53.29

Precision 0.43 0.43 0.29 0.08 0.51

Recall 0.43 0.42 0.36 0.33 0.49

Statlog Heart Error rate 22.22 20.74 22.22 21.85 18.15

Precision 0.79 0.76 0.79 0.80 0.83

Recall 0.76 0.69 0.78 0.77 0.82

Hayes-Roth Error rate 24.21 28.82 40.92 37.8 22.28

Precision 0.67 0.73 0.53 0.55 0.74

Recall 0.63 0.71 0.55 0.54 0.73

KDFuzzyML is scalable to the dataset with hundred thousands of data samples.
This is practically very useful for the task of water pipe condition assessment.

Finally, to show the generalization ability of the proposed method on other
tasks, different datasets are employed for comparisons. All the selected data sets
have been collected from UCI Machine Learning Repository2. All the exper-
iments have been done 10 times using 10-fold cross validation on each data
set. The average of the results over 10 runs has been presented in Table 5.
KDFuzzyML is able to handle the categorical features by its nature. For all other
techniques, we mapped all the categorical values to binary numbers. For example,
for a categorical feature with n different values, all the values are transformed
to a n bit binary. For each particular value, 1 digit will be equal to 1 and all
the other digits will be equal to 0. Table 5 shows that the proposed KDFuzzyML
method has a comparable performance against other popular metric learning
methods on various heterogeneous data sets. We observe that KDFuzzyML has
the lowest error rate and higher precision and recall on all the data sets.

5 Conclusion

We have proposed an efficient local metric learning approach to predict and rank
water pipelines according to their likelihood to fail. Compared to traditional sta-
tistical modelling approaches, metric learning based methods are more flexible
and able to adapt to the data complexity. When the data is large (heterogeneous
and possibly imbalanced), global metric learning methods do not perform well
in most cases. While local metric learning techniques perform better in those
cases, they are expensive in terms of time and space. In this paper, we have
proposed a local metric learning called KDFuzzyML that uses fuzzy clustering
to make it fast and yet with at least similar performance as other metric learning

2 https://archive.ics.uci.edu/ml/datasets.htm.

https://archive.ics.uci.edu/ml/datasets.htm
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methods. Experiments have shown that our proposed approach outperforms pre-
vious parametric and nonparametric approaches for water pipe condition assess-
ment. In practice, this represents major financial savings through more targeted
inspections.

References

1. Bellet, A., Habrard, A., Sebban, M.: A survey on metric learning for feature vectors
and structured data. arXiv preprint arXiv:1306.6709 (2013)
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Abstract. In this paper, a fuzzy classification with quantification algo-
rithm is proposed for solving the air quality monitoring problem using
e-noses. When e-noses are used in dynamic outdoor environment, the
performance suffers from noise, signal drift and fast-changing natural
environment. The question is, how to develop a prediction model capa-
ble of detecting as well as quantifying gases effectively and efficiently?
The current research work has focused either on detection or quantifica-
tion of sensor response without taking into account of dynamic factors.
In this paper, we propose a new model, namely, Fuzzy Classification with
Quantification Model (FCQM) to cope with the above mentioned chal-
lenges. To evaluate our model, we conducted extensive experiments on
a publicly available datasets generated over a three-year period, and the
results demonstrate its superiority over other baseline methods. To our
knowledge, gas type detection together with quantification is an unsolved
challenge. Our paper provides the first solution for this kind.

Keywords: E-nose · Gaussian process regression · MOX · Noise · Drift ·
Classification · Clustering · e-nose

1 Introduction

Big cities around the world are facing serious air quality and air pollution prob-
lems, which prompted governments to introduce more tightened emission and
safety regulations. The study of gas identification and measurement using chemo-
sensors known as electronic noses, is important in emission control. E-noses
can provide an economical solution for air quality and air pollution monitoring.
c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part I, LNAI 9651, pp. 578–590, 2016.
DOI: 10.1007/978-3-319-31753-3 46



Classification with Quantification for Air Quality Monitoring 579

Despite their popular usage, they suffer from serious problems such as drift,
noise, selectivity and their inability to provide true concentrations [1,2].

An electronic nose is a device used to identify, measure, and analyse chemical
analytes [3]. Various applications exist for e-nose including: agriculture, disease
detection, foods and beverages, air quality and environment protection, water
and waste water quality control [3,4]. Despite their wide applications, they are
very susceptible to noise and drift, making them unstable. The stability issue
can be resolved via periodic recalibration. Unfortunately, recalibration process is
an expensive and complex task. Compensation for the need of periodic recalibra-
tion and ability to postpone the recalibration period using machine learning will
need to solve the aforementioned dynamic matters. In general, the performance
of e-noses is affected by drift and noise. Sensor drift is unpredictable degradation
of sensor sensitivity and selectivity over time. The degradation can be due to
sensor poising, sensor ageing, and environmental fluctuations such as humidity,
temperature, pressure and system sampling non-specific adsorption [1,2]. In con-
trast, noise is random signal deviation caused by unknown effect. Sensor noise
can be due to electronic circuit error, environmental effects, sensor poising and
aging. Because sensor drift is not deterministic, it is difficult, if not impossible,
to distinguish it from noise and vice versa [5].

Based on above discussion, it is challenging to predict gas concentrations by
means of a chemical measurement system. In this paper, we propose a new app-
roach to detect gas types together with the quantification of the detected gases
in a dynamic environment. The fundamental idea of our approach is to detect
the gas types first, then the confidence of this prediction can be measured. After
that, the quantification of the detected gases with high confidence can be car-
ried out by using a regression approach. The primary contributions of our work
are as follows: (1) An ensemble classifier of Kernel Fuzzy C-Mean with Fuzzy
Support Vector Machine (FCQM-KFSVM) is trained in different chunks of the
data. (2) We present a technique to estimate classifier confidence scores. (3) We
focus on improving the model sensitivity to air quality exposure limits rather
than attempting to predict just gas concentrations. (4) We present a new frame-
work by integrating classification and quantification technique with confidence
evaluation to address both of concept drift, identification and quantification of
gases in a dynamic environment.

The rest of the paper is organized as follows. Section 2 discusses the related
work. Section 3 describes the Methodology. Our proposed approaches of fuzzy
based classification, confidence scores and Scalable gaussian quantification
method will be introduced. Section 4 describes the experiments and evaluates
the results. Finally, Sect. 5 concludes our paper.

2 Related Work

The ultimate goal of electronic e-nose outdoor air quality monitoring systems is
to identify and quantify gases in the ambient air. Chemo-sensors has the ability
to measure a specific gas concentration in a mixture of gases using a chemical
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interface. The chemo-sensor interface interacts selectively with predefined gases.
These sensors have the ability to measure gas concentrations with good accuracy
in a closed environment. Installing e-nose in an outdoor environment introduces
many challenges such as noise, drift and high uncertainties. Several machine
learning models including Self Organizing Maps (SOMs), multiple SOM, and
neural networks have been used for gas identification [6–8]. Various quantifica-
tion methods have been used in the literature such as Support Vector Regression
(SVR), partial least squares regression (PLS), and Artificial Neural Network
(ANN). Desai et al. used SVR in soft sensor applications to demonstrate the
conversance and generalization capability of SVR. Feed forward neural networks
(FFNNs) were used by Gulbag and Temuras [9] to quantify two gas concen-
trations (trichloroethylene and acetone). Linear regression methods such PCR
and PLS have been used in the literature due to their ability to reduce the
dimensions before fitting a regression function [10,11]. In [12] they use gaussian
process to recalibrate the sensors while in our work we do not calibrate the sen-
sors. Instead we are interested in identifying then quantifying gas concentrations
levels without recalibration.

Large portions of the existing work have focused on odour classification using
chemo-sensors and few attempts have been made to address the quantification
part. Moreover, very few works in the literature have focused on a holistic app-
roach that considers gas type detection and concentration measurement using
e-noses for air quality monitoring system. This motivated us to introduce a new
methodology which is different than other problems found in the literature. On
this research we are interested in a model able to classify and quantify data
instances while taking into considerations confidence scores, underestimation
and overestimation rates of gas concentrations.

3 Methodology

In this section we formulate a new data mining research problem which is applica-
ble for real world applications such as air quality monitoring. We attempt to
predict air quality level with high confidence rather than predicting gas con-
centrations with high accuracies. Therefore, the proposed model should tolerate
overestimation and be more sensitive to underestimation of high concentrations.

Problem Definition. Consider a multi-class classification problem with a set of
features x produced by a gas sensor. Let S1, . . . , St be a batch of examples received
from e-nose sensor at time interval t.St consists of labeledL andunlabeledU exam-
ples, S = L ∪ U . The labeled sets Lt = {(x1t, y1t, z1t), . . . , (xnt, ynt, znt)} are of
size tn where xnt ∈ RN and ynt ∈ {1, . . . , M} where M refers to the class label
(gas type) of instance xnt and m ∈ M . Gas concentration for instance xnt is rep-
resented by znt where znt > 0. The unlabeled examples of size tn are given by
Ut = {x1t, . . . , xnt}. Therefore, each example can be represented by < S, Y,N >
where Y ∈ {1, . . . , M}, indicating the class label of a labeled example xnt ∈ S;
N ∈ {0, 1}, indicating whether a given example S is labeled (N = 1) or unlabelled
(N = 0). Each Instance in L is labeled, represented by < S, Y ∈ M,N = 1 >.
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Consequently, each instance in U is unlabeled and can be represented by
< S, Y =?, N = 0 >. Our objective is to train classifiers fm using the training
set T (L) and a validation set V (U) such that the unlabeled gas data U can be cor-
rectly classified with high confidence Φ. The classification decision process is made
by applying all classifiers represented by fp for p ∈ {1, . . . , P} to new unlabeled
sample xnt ∈ U and predicting the gas type ŷnt for which the corresponding clas-
sifier reports the highest confidence score:

ŷnt ∈ argmax
p∈{1,...,P}

fp(xnt) where Φnt = max
p∈{1,...,P}

Φp(xnt). (1)

3.1 System Architecture

Gas type detection together with quantification is an unsolved challenge. Differ-
ent gases may be present in the atmosphere which will reduce sensor selectivity
for differentiating different types of gases. Furthermore, as explained previously,
sensors are subject to high uncertainties due to environmental changes. More-
over, chemo-sensors suffer from drift and noise. Therefore, the identification and
quantification models should consider all the variabilities surrounding e-nose
sensors. To address these issues we propose a three stage approach. At the first
stage, we construct multiple FCQM-KFSVM classifiers to detect the gas type. At
the second stage, a confidence evaluation is conducted to evaluate the prediction
generated by all classifiers. Only samples with high confidence will be passed
to the third stage for quantification. For each gas type (class) a corresponding
training data is created for gas quantification measurement. Finally, at the third
stage, the concentration of the predicted gas is estimated using FCQM-SGP.
Fig. 1 illustrates the full life cycle of the proposed approach.

Fig. 1. The top part shows the E-nose gas detection process. The bottom part demon-
strates the On-line gas quantification for e-noses.
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3.2 Feature Extraction

The performance of e-nose classification is highly dependent on the effectiveness
of features being used. Features that provide high discrimination power between
different classes will result in a better classification performance for a learning
model. The practical value of metal oxide-based gas sensors is affected due to
their poor selectivity, sensitivity, stability, and slow response. Many authors have
demonstrated the ability to improve sensor performance using intelligent meth-
ods for sensor feature extraction and selection [13]. Various methods have been
used for feature extraction of sensor arrays, such as the Fast Fourier Transform
(FFT) and Discrete Wavelet Transform (DWT) [14,15]. Transforming signals
from the time domain to the frequency domain fails to preserve important tran-
sient characteristics of the original signal. Therefore, using a method that can
preserve the signals transient characteristics is very important. In this study, we
initially considered steady-state and dynamic-based feature extraction meth-
ods, which are standard method for chemo-sensory feature extraction. Steady-
state features, are extracted from the steady-state response produced by a gas
sensor refer to Fig. 2a. When a gas sensor is exposed to the same gas, it can
produce a static change in resistance as long as the same gas concentration
keeps flowing [14]. The change in resistance of a semiconductor gas sensor Δ
R is the difference between the maximal resistance change and the base line
as shown in this equation ||ΔR|| = Rgas−Rair

Rair
. Rgas is the sensor response to

a given gas in steady-state, Rair is the sensor response to pure air, which is
used as a baseline. The steady-state feature Δ R has two major issues. Firstly,
it becomes available late in the response as shown in Fig. 2a. Secondly, it is
susceptible to drift. Therefore dynamic feature enable us to capture the tran-
sient phase of the signal. Dynamic-based features are extracted from transient
chemical gas sensor response (adsorption and desorption). In the adsorption
stage of gas sensor responses, the resistance R increases, while in the desorption
stage, the resistance R decreases, as shown in Fig. 2a. Dynamic features can pro-
vide information about the analyte that can’t be extracted using steady-state
methods. Furthermore, steady-state values are rarely reached due to gas sensors
slow response and environmental complexity (e.g. airflow turbulence). Therefore,
dynamic features are used to capture transient features to reduce the effect of
dynamic real environment. Considering transient features promises to improve
classification performance by reducing the sensitivity to drift and providing more
discriminate information about each gas. Hence, combining transient features
with steady-state can boost classifier performance and improve the quantifica-
tion process. Exponential moving average (emaα) is used to capture the sensor
dynamics of the increasing/decaying transient portion of the sensor responses;
see Fig. 2a. This method is borrowed from financial market stock forecasting [2].
The exponential moving average emaα transforms sensors discrete-time signal
x[k] into: y[k] = (1 − α)y[k − 1] + α(r[k] − r[k − 1]), where α is a smoothing
factor between [0, 1], k = 1, 2, .., T and y is the forecasted signal and initially
set to zero(y[1] = 0). Various features are extracted from raw sensor responses
using different smoothing parameters α e.g. (α = 0.1, α = 0.01, α = 0.001)
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Fig. 2. (a) Raw sensor response when exposed to 223 ppmv of Ethylene. (b) Shows the
exponential moving average analysis when α = 0.01.

3.3 Classification

Because e-noses generate unpredictable and unstable sensor response, we pro-
pose a fuzzy approach to address this issue. When e-nose is exposed to mixture of
gases unknown signal output can be produced. This output could belong to mul-
tiple classes with different relevance rates. Thus sensory signal output will have
various levels of importance or relevance. The standard Support Vector Machine
(SVM) suffers from noise sensitivity because all data points receive same treat-
ments.Therefore, we introduce Sample Relevance (SR) which defines how each
sample xi contributes to a given class Cn. SR creates useful cluster representa-
tions to identify gas sensor samples’ relevance to each class. We seek to obtain a
high degree of SR with little redundancy between classes (no overlapping). For
each training pair (xi, yi) an SR value si is calculated, the pairs with high si
degree will effect the prediction decision more than pairs with a lower si degree.
A Kernel-based Fuzzy C-Means clustering (KFCM) [16] algorithm is used to
calculate SR which will be used as input for the fuzzy classifier. Finally, our
approach address concept drift more efficiently and provide more generalization
because a fuzzy ensemble is trained on different chunks of data.

Using sensor data, KFCM model will calculate SR degrees. After that, mul-
tiple classifiers are trained using KFSVM model [1,17]. Improved predictability
and generalization is anticipated when using SR with FSVM ensemble. In order
to find the ideal training model, a grid search is executed to find the best γ and C
in [2−10, 2−9, . . . , 24, 25] and [2−5, 2−4, . . . , 29, 210]. FCQM-KFSVM is performed
using the following algorithm:

3.4 Confidence Scores

The incoming unlabelled sensor data has high prediction uncertainties due to
noise and drift. Therefore performing regression directly is biased. In our pro-
posed approach, confidence classification evaluation is applied on the prediction
received from the FCQM-KFSVM ensemble. The output then is evaluated using
ranking and confidence functions. Instances with high confidence are extracted
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Algorithm 1. Fuzzy SVM Ensemble

1: Input:
bn: Input batches b1, b2, . . . , bn
Uopt: SR matrix
σ , γ and ε parameters

2: Output: predictions matrix PR
3: Train multiple FCQM-KFSVM classifiers and perform parameter initialization

for kernel function, number of clusters, and stop flag ε.
4: Apply the SRs generated by KFCM to FSVM. An SR degree will be assigned to

each sensor output and FSVM will be trained using {xi, yi, si }, where s is the SR
degree.

5: Perform gas type prediction for incoming Xtn.
6: return PR.

to be used by the FCQM-SGP model. The ranking function R is used to measure
the ranking level for the predicted class label of the input instance:

Rt(j) =

(
k∑

a=1

I(K(a) = M(j))
N

)
where Rt(j) ≥ 0,

n∑
j=1

Rt(j) = 1. (2)

Where Rt is the ranking for class M for the incoming data points at time t. I is
an indicator function which outputs 0 or 1.

The confidence level Ct for class M for the incoming data points at time t is
defined by the following:

Ct(j) =

⎛
⎝ ∑

k∈K|fk=M(j)

C(fk)

⎞
⎠ where Ct(j) ≥ 0,

n∑
j=1

Ct(j) = 1. (3)

Φt(m) =
1
2

⎛
⎝ n∑

j=1

(Rt(j) + Ct(j))

⎞
⎠ where, Φt(i) ≥ 0,

n∑
j=1

Φt(i) = 1. (4)

Φ̂nt = max
m∈{1,...,M}

Φm(xnt) where Φm(xnt) ≥ Γ. (5)

The final confidence score for each class m is given by the confidence function
Φ for incoming point x at time t (Eq. 4). As we are interested in incoming sensor
data with high prediction confidence for a given class, we select the predicted
gas type which has the highest confidence, exceeding a given threshold Γ . Only
the data points xnt with the highest confidence Φ̂nt are selected to be used in
the gas concentration prediction.
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3.5 Scalable Gaussian Process for Quantification

The ultimate goal for e-nose monitoring system is to classify and quantify the
detected gas. We define the quantifier as a mapping function between the gas
sensor response and the reference gas set provided in the training stage. To map
gas sensor signals into concentrations, a prior distribution is used. We use a
probabilistic approach inspired by Gaussian Process Regression (GPR) for gas
quantification. This method, called the Scalable Gaussian process (FCQM-SGP)
which was introduced by Belisle et al. [18]. The traditional GP has a very high
computational cost, typically n3 where n is the number of data points. How-
ever, FCQM-SGP significantly reduces the computational time, allowing on-line
learning. The FCQM-SGP approach consists of three steps. First step is batch
query processing. In this step, the query points are grouped by similarity. The
number of points per query group is determined by a parameter e. Secondly, the
training database is condensed by eliminating similar data, where an arbitrary
condensation parameter is chosen. In this work, we used a value of 1 %. This
means that when the measure of similarity between two points in the training
set is smaller than 1 %, these two points are merged. Finally, for each group of
query points formed in the first step, a subset of the training data created during
the second step is selected to perform the GP. The points are chosen according to
a distance measure, keeping only the points from the training set that are close
to each query group. The number of points in the training set is determined by
the parameter a (accuracy). This method is described in Algorithm 2. In this
work, we use the covariance matrix introduced by Gibbs and MacKay [19]:

K(X,X ′) = σ2
f exp

⎧⎨
⎩−1

2

n∑
j=1

(xi − x′
j)

2

wj

⎫⎬
⎭ + σ2

nδ(X,X ′). (6)

Where δ is the Kronecker delta function, σ2
f refers to variance of the process,

n is the total number of points, X are vectors with length equal to the number
of dimensions, x elements of these vectors and w is the Gaussian kernel width.

4 Experiments and Evaluation

Experimental Design. A publicly available dataset is used in this paper [2,20].
The data set was generated over three years using metal-oxide sensor array
for six-gases/analytes. Different type of gases was emitted to the sensors with
varying concentrations. The main objective was to detect the type of gases in the
presence of drift regardless of their concentrations. It was shown by Vergara et al.
that sensor drift actually occurred. A total of 13,910 samples were generated over
36 months. For more details about the dataset, the reader is referred to [2,20].
The experiments are divided into two parts, the first part is FCQM-KFSVM
gas detection and the second part is FCQM-SGP gas quantification. In FCQM-
KFCM the model is evaluated against different classifiers including Neural Net
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Algorithm 2. FCQM-SGP algorithm

1: Input:
X: Training database
E: Predictions database
θ condensation
e number of query points per group
a prediction accuracy

2: Output: final quantification predictions matrix QFM
3: Group E, using agglomerative clustering, until e points per group.
4: Condense X, using parameter θ
5: For each group formed in step 1:

Select a subset of the condensed training set and perform GP.
The size of the training subset is defined by a.

6: return QFM

with weight decay, NN with dropout, NN with sigmoid, and SVM. After, FCQM-
KFSVM identify the gas type with high confidence the predicted data points will
be used by FCQM-SGP quantification model.

To evaluate the quantification model, we tested the performance of differ-
ent algorithms with different combinations of training and testing data sets. In
order to create a dataset that represents a variety of scenarios and capture dif-
ferent sub spaces, five different training and testing proportions where created
(10, 30, 50, 70, 90). In 10% proportion we use 90% of the training set and only
10% for testing. On the other hand 90 % indicates that we use only 10% for train-
ing and 90% for testing. In the 10% proportion if we assume the data set we have
contains 600 points, then 540 points will be used for training and 60 for testing.
We use 10 fold cross validation to evaluate our model in each proportion. This
ensures the generalization and the accuracy of the estimated error measures.It
is important to mention that data points which are misclassified or has low con-
fidence level will be ignored by FCQM-SGP.Predictions with FCQM-SGP was
executed using the following parameters: θ = 1%, e = 4 and a = medium. We
compare the proposed method with Linear Regression (LR), DynaTree Linear
(DT-LIN), DynaTree Constant (DT-CST), Linear SVM Regression(LSVM) and
Least Squares SVM (LS-SVM). We evaluate our method in term of Classifica-
tion accuracies,Root Mean Square Error (RMSE), Mean Absolute Error (MAE),
Mean Bias Error (MBE), Correlation Diversity, and outliers rate.

RMSE =

√√√√ 1
n

n∑
i=1

(Pi − Ti)2 and MAE =
1
n

n∑
i=1

|(Pi − Ti)|

Correlation Diversityρ =
∑n

i=1 TiPi −
∑n

i=1 Ti

∑n
i=1 Pi

n√(∑n
i=1 T 2

i − (
∑n

i=1 Ti)2

n

) (∑n
i=1 P 2

i − (
∑n

i=1 Pi)2

n

) .
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Results and Discussion. To evaluate the classifiers ability to deal with drift
we only used batch 1 for testing and remaining are used for testing. Batch 1 is
generated in the first 2 month therefore it doesn’t contain drift, while batch 2–10
contain drift because it was generated after 3 month refer to [2,20]. Figure 3a
show the prediction accuracies of different classifiers. Our proposed classifier
FCQM-KFSVM performed better than other classifiers in batch 5 to 10 indicat-
ing it is ability to perform better in drift situations. FCQM-KFSVM archived
best overall average accuracies with 58.419%

RMSE and MAE results in Fig. 3b, c and d indicate the superiority of FCQM-
SGP compared to other methods. FCQM-SGP was able to maintain good per-
formance even when the training data set is low (10%). From MAE results in
Fig. 3c and d it is clear that all methods produced inferior results compared to
FCQM-SGP when the training dataset is very small (10 %). This indicates that
FCQM-SGP approach is able to produce better results with the lowest number
of training data points. This is very important due to the fact that labelling
e-nose data is a very expensive task.

We can observe from Fig. 3c, d and f the stability of our method compared
to other baseline methods. It is clear that the outliers percentage produced
by the FCQM-SGP method is significantly less than the alternative methods.
This is due to the fact that FCQM-SGP utilizes confidence evaluation, batch
query processing, and co-clustering to achieve scalability and efficiency, as well
as managing noise more efficiently than other models. Further more, drift and
noise are reduced because an ensemble of fuzzy classifiers are trained on different
parts of the data.

(a) Classification Accs (b) RMSE Ex Outliers (c) MAE

(d) MAE Ex Outliers (e) FCQM AVG Per Class (f) FCQM Summary

Fig. 3. The proposed model performance indicators using sixteen MOX sensors.
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Air Quality Monitoring and Exposure Limits. One of the main objectives
of this work is to be able to predict outdoor air quality level with high confidence.
It is critical to say that we are not attempting to predict the gas concentrations
accurately, rather we use the predicted gas concentrations to identify air quality
level. Therefore, low concentrations are irrelevant in this sense. U.S Department
of Labour, Occupational Safety & Health Administration (OSHA) has provided
exposure limits for different substances [21]. Figure 4a shows the exposure limits
for different gases used in our experiments.

To identify the model sensitivity to exposure limit we estimate concentration
underestimation and overestimation percentage for each model. Figure 4b shows
the overestimation percentage for each model. From the figure clearly FCQM-
SGP model tend to have low rate of overestimation while other models tend to
highly overestimate concentrations. The underestimation graph in Fig. 4c shows
than DT-CST and DT-LIN has the lowest underestimation percentage when the
training set is 90 % and testing is 10 %. Having said, that FCQM maintain best
results when training proportions are 30 % and 50 %.

Gas Class Exposure Limits
Acetone 5 1000 PPM
Ethanol 1 1000 PPM
Toluene 6 300 PPM

Acetaldehyde 4 200 PPM
Ethylene 2 200 PPM
Ammonia 3 50 PPM

(a) Exposure Limits (b) Overestimation Rate (c) Underestimation Rate

Fig. 4. The OSHA PEL Exposure Limits and overestimation and underestimation rates
for various models.

5 Conclusions and Future Work

In this paper, a new method have been proposed to deal with a real world
problem that have not been addressed previously. The proposed model is able
to identify and quantify gases data produced by electronic noses. The results
have shown the efficiency and stability of our proposed approach in dealing with
e-nose gas detection together with quantification. The proposed FCQM method
produced less outliers and achieved better results even when a low rate of training
data is used.

Our future work will focus on finding the minimum number of sensors that
can be used to achieve the best quantification performance. In this paper we
used all 16 MOX sensors in the FCQM model. The reduced number of MOX
sensors will significantly save the cost and provide dimensionality reduction.
Secondly, despite the performance of the proposed method, it requires a large
amount of training data. Manually generating labelled data for e-noses is a very
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expensive task. We need to work on a huge amount of labelled data to contin-
uously update FCQM. Updating FCQM continuously with new training data
using semi-supervised techniques can reduce the drift effect. Finally, we will
apply the proposed model to different real world applications which have similar
characteristics to air quality monitoring.

6 Reproducibility

An online implementation of our quantification model is available at: http://
www.crct.polymtl.ca/SGP/run gp.php.
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Abstract. Drug-target interactions map patterns, associations and rela-
tionships between drugs and target proteins. Identifying interactions
between drug and target is critical in drug discovery, but biochemi-
cally validating these interactions are both laborious and expensive. In
this paper, we propose a novel interaction profiles based method to pre-
dict potential drug-target interactions by using matrix completion. Our
method first arranges the drug-target interactions in a matrix, whose
entries include interaction pairs, non-interaction pairs and undetermined
pairs, and finds its approximation matrix which contains the predicted
values at undetermined positions. Then our method learns an approxima-
tion matrix by minimizing the distance between the drug-target interac-
tion matrix and its approximation subject that the values in the observed
positions equal to the known interactions at the corresponding positions.
As a consequence, our method can directly predict new potential inter-
actions according to the high values at the undetermined positions. We
evaluated our method by comparing against five counterpart methods
on “gold standard” datasets. Our method outperforms the counterparts,
and achieves high AUC and F1-score on enzyme, ion channel, GPCR,
nuclear receptor and integrated datasets, respectively. We showed the
intelligibility of our method by validating some predicted interactions in
both DrugBank and KEGG databases.

Keywords: Drug-target interaction · Matrix completion · Drug
discovery

1 Introduction

Associations between drugs and targets are essential for understanding the phar-
macology of drugs and for repositioning known drug [1–4]. Capturing associa-
tions between drugs and targets using traditional biochemical experiments is a
laborious and time-consuming procedure that is also very expensive [5–7]. One
alternative is to compute potential associations between drugs and targets via
c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-31753-3 47
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in-silico way [8,9]. Molecular docking [10–15], literature mining [16] and ligand-
bases [17–19] are three common computational approaches. Docking requires
information about the 3D structure of a target/protein to calculate how well
each drug candidate can bind with the target, but this type of information is
missing for many targets, like GPCR and ion channel [20,21]. Moreover, dock-
ing is computationally expensive, which makes it difficult to process large-scale
datasets. Text mining approaches is heavily relied on domain dictionaries to deal
with semantic ambiguity like aliases and synonyms in the literature [16]. Ligand-
based approaches such as QSAR (Quantitative Structure Activity Relationship)
compare a candidate ligand with the known ligands of a target protein to pre-
dict its bindings [17,18], and the performance of ligand-bases approach decreases
when the number of known ligands is limited [19].

Recently, machine learning methods has been shown to be effective in finding
the drug-target interactions based on chemical properties of drug compounds,
genomic properties of targets, and interaction profiles [22–27]. Those approaches
share the identical assumption that similar drugs tend to interact closely with
similar target proteins [28,29]. Existing studies utilized drug/target similarity
information and known interactions to capture potentially novel interactions
between drugs and targets. For instance, Jacob and Vert proposed a SVM-
based method [30–32] called pairwise kernel method (PKM) to generate sim-
ilarity kernels over drug-target pairs [27]. Yamanishi [22] proposed the kernel
regression-based method (KRM) to infer unknown drug-target interaction in a
unified space called “pharmacological space”. Yamanishi [23] proposed the bipar-
tite graph inference (BLM) method, which builds a bipartite local model to pre-
dict links between drugs and targets in a bipartite graph. Gonen [24] proposed
Kernelized Bayesian matrix factorization (KBMF2K) to predict interactions by
projecting drug compounds and target proteins onto a unified subspace via joint
Bayesian formulation. Laarhoven [25] proposed a Gaussian interaction profile
(GIP) method to predict drug-target interactions by generating a Gaussian ker-
nel from interaction profiles and similarity information among drugs and among
targets. Xia [26] proposed a NetLapRLS method by incorporating Laplacian reg-
ularized least square (LapRLS) and a new kernel established from the known
interaction network in a unified framework. Moreover, Wang and Zeng [33] built
a restricted boltzmann machine (RBM) method to predict drug-target pairs and
to describe types of predicted pairs.

Some methods utilize similarity information and partial drug-target interac-
tion profiles to predict potential interactions between drugs and targets. How-
ever, similarity information might not be available in some cases. For example,
it is extremely difficult to collect complete similarity information in large scale
database like STITCH [34] and the 3D shape similarity of many proteins/targets,
especially GPCRs are unavailable [21,35]. On the other side, drug similarity can
be calculated based on different types of biological knowledge such as chemi-
cal structure (CS), and anatomical therapeutic chemical classification system
(ATC) [32], and target similarity can also be calculated from genomic sequence
(GS) [22,36] and gene ontology (GO) [37,38]. It is difficult to decide which types
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of similarity is the most appropriate one, as each measure has its private biochem-
ical properties. Zheng [39] showed that the effect of the same type of similarity
might vary dramatically on different datasets. For example, the GS similarity
over target is very critical for predicting interactions on GPCR dataset, while
it is almost useless on the nuclear receptor, ion channel and enzyme datasets.
Therefore, integrating different similarity metrics is still a challenging problem.

Drug-target interaction prediction problem can infer interactions with less
information. For example, Cheng [40] proposed a network-based inference (NBI)
method to predict interactions by using the interaction profiles only. Moreover,
Cobanoglu and Bahar etc. [41] assumed that all the samples obey the Gaussianly
distributed probability to present probabilistic matrix factorization (PMF) to
predict pairs by only using the interaction profiles. Experiments demonstrate
that the prediction of NBI is more reliable than drug-based similarity infer-
ence (DBSI) and target-based similarity inference (TBSI), because choosing an
improper similarity data may introduce extra noise to the model building process
due to inaccurate selection of similar pairs. Although above mentioned methods
exhibit a satisfactory AUC value (area under ROC curve) performance, its pre-
cision and recall are still unsatisfactory.

In this paper, we proposed a novel drug-target interaction prediction method
which uses the matrix completion for prediction based on only interaction infor-
mation. Our method assumes that similar drugs often interact with similar pro-
teins and converts the interaction prediction problem into a collaborative filtering
problem, which infers missing entries in the interaction matrix by using known
interactions. We evaluated our method by comparing with the existing methods
and ten-fold cross-validation on a “gold standard” datasets including enzyme,
ion channels, G-protein-coupled receptors (GPCRs), nuclear receptor and inte-
grated datasets. Experimental results show that our method achieves high per-
formance in both AUC and F1-score, and validation of predicted pairs in the
latest DrugBank and KEGG databases shows that our method is intelligible.

2 Methods

2.1 Drug-Target Interaction Databases

In the drug-target interaction prediction literature, four datasets include enzyme,
ion channels, GPCRs, and nuclear receptor are usually regarded as the “gold
standard” dataset [22–27,39,40]. In this study, we also combined them together
to generate an integrated dataset for further verification. Yamanishi [22] pro-
posed a widely used benchmark for drug-target interactions which includes four
subsets for different types of targets: enzyme, ion channels, GPCRs and nuclear
receptor. These datasets were collected from curated databases including KEGG
BRITE [42], BERENDA [43], SuperTarget [44] and DrugBank [45], respectively.
The numbers of drugs, targets and drug-target interactions are listed in Table 1.
We also generated an integrated dataset that combines all four subsets. The
integrated data of these four datasets contains 5127 interactions between 989
target proteins and 791 drugs.
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Table 1. Summary of the drug-target interaction datasets.

Datasets # of drugs # of targets # of drug-target interactions

Enzyme 445 664 2926

Ion channel 210 204 1476

GPCR 223 95 635

Nuclear receptor 54 26 90

Integrated 791 989 5127
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Fig. 1. Visualization of the low-rank pattern of drug-target interactions. The pat-
tern of sorted interactions in four datasets. (a) Sorted interaction between first fifty
drugs/target proteins in enzyme dataset. (b) Sorted interactions between first fifty
drug/target proteins in ion channel dataset. (c) Sorted interactions between first twen-
tieth drugs/target proteins in nuclear receptor dataset. (d) Sorted interaction between
first fifty drug/target proteins in GPCR dataset.

2.2 Motivation by Data Visualization

To predict unknown interactions from the drug-target dataset, we first ana-
lyze the “gold standard” datasets. Due to drug-target interaction matrix is too
sparse to difficult find some observations, we sorted the drug and target protein
in descending order by their number of interactions to make figure. Figure 1 is
an example to show the interaction matrix of the first fifty or twenty drugs/
target proteins based on sorted interactions in four datasets. From Fig. 1(a),
we can observe that many drugs have similar interactions, such as drugs #16
to #23 [KEGG:D00538, D00224, D00377, D00391, D00401, D01069, D00136,
D00569], and drugs #28 to #34 [KEGG:D03778, D03781, D00947, D00963,
D01397, D02441, D03776] have very similar interactions. The same observation
can also be found from the target protein side in Fig. 1(a). For instance, if a
target protein has interactions from drugs #28 to #34, it may also have inter-
action with drug #2 [KEGG:D00521], because there exists a strong relationship
between drug #28 to #34 and drug #2. From the above observation, it is evi-
dent that correlation does exist between node instances in the enzyme dataset.
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For instance, if a target has interactions with drug #28 to #34, then it has a high
probability to interact with #2. The same phenomenon can also be observed on
the other subsets. We also analyzed the most important part of the ion channel,
nuclear receptor and GPCR subset and found the same observations in Fig. 1(b),
(c), and (d), respectively. In Fig. 1(c), we only select the first twenty drug/target
proteins from the nuclear receptor subset, as the interaction matrix size is a
56 × 26 matrix. From Fig. 1(c) and (d), the observation is less evident compar-
ing with Fig. 1(a) and (b), but the same observation can still be found from tar-
get proteins #9 to #13 [KEGG:hsa3174, hsa367, hsa4306, hsa5241, hsa5465] in
Fig. 1(c) and from drugs #10 to #13 [KEGG:D00136, D00139, D00180, D00225],
and from target proteins #6 to #9 [KEGG:hsa1129, hsa1131, hsa1132, hsa1133]
in Fig. 1(d).

According to these observations, all four subsets have some latent factors that
contribute to the prediction of interactions. In other words, from the viewpoint
of drugs, all drugs interact with the target proteins in a few patterns, and thus
we can leverage the known interaction information to predict unknown interac-
tions by predicting missing values of the interaction matrix. It is also true from
the viewpoint of target proteins. It therefore motivates us to apply the matrix
completion technique to the drug-target interaction prediction problem.

2.3 The Drug-Target Interaction Prediction Method

The original interaction dataset needs to be pre-processed in order to apply
the matrix completion. In the benchmark dataset, the value 1 denotes a con-
firmed/annotated interaction (positive sample), while all other unknown drug-
target pairs in the training data are assumed to be non-interacted (negative
sample), which is denoted by the value 0. However, our method regards 0 val-
ued entries as the ones to be predicted. Therefore, directly performing matrix
completion on original dataset may lead confusion. So we fill non-interaction
entries by one value a and interaction entries by another value b, where a �= b
and {a, b} �= 0. Our method first fills missing entries with value 0 in the origi-
nal matrix to be recovered by using the matrix completion, and then iteratively
updates the missing entries with the predicted value.

Given a drug-target interaction matrix M ∈ RNd×Nt involving Nd drugs and
Nt targets. The set Xd = {d1, d2, ..., dNd

} is the drug set and the set Xt =
{t1, t2, ..., tNt

} is the target protein set. Let M(i,j) : (i, j) ∈ Ω denote the set of
the known samples, and ω the index set of the rest known samples. We formulate
the interaction prediction problem as below:

min
X

fτ (X)

s.t., PΩ (X) = PΩ (M)
(1)

where fτ (X) is a nonlinear function of candidate solution matrix X. PΩ is a
orthogonal projector, and PΩ(X) is equal to X(i, j) if (i, j) ∈ Ω, and PΩ(X) is
equal to zero otherwise. In matrix completion, the predicted matrix X is usually
expected to be low-rank. We therefore rewrite (1) as the following problem to
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minimize the rank of X because nuclear norm of X is a convex surrogate of its
rank:

min
X

τ‖X‖∗ + 1
2 ‖X‖2

F

s.t., PΩ (X) = PΩ (M)
(2)

where ‖X‖∗ signifies the nuclear norm of X which is actually the sum of singular
value of matrix X, and ‖X‖F is the Frobernius norm of matrix X, and τ ≥ 0 is
a thresholding which will be used in soft-thresholding operator.

According to [46], the problem (2) can be optimized by using the Lagrangian
multipler method. Specially, we introduce a Lagrangian multiplier Y and get the
Lagrangian function of (2) as below:

L(X,Y ) = fτ (X)+ < Y,PΩ(M) − PΩ(X) > (3)

Applying the Uzawas algorithm [47] to find a saddle point of (3) until conver-
gence.

The Uzawas algorithm first updates X with Y fixed as

Xk = Dτ (Y k−1) (4)

followed by updating Y with X fixed as

Y k = Y k−1 + δkPΩ(M − XK) (5)

where {δk}k≥1 is a sequence of step size, and the soft-thresholding operator Dτ

is defined as follows:
Dτ (X) := UDτ (Σ)V
Dτ (Σ) = diag({δi − τ}+), (6)

Singular value decomposition (SVD) of a matrix X can obtain a sequence of
positive singular values σi. And diag({σi−τ}+) is the positive part of σi−τ , and
σi − τ is equal to zero, if σi − τ < 0. The physical meaning of soft-thresholding
operator can be understood that it filters the data and only leaves the most
important part of the dataset. Therefore, noise or redundancy information can
be eliminated via the soft-thresholding operator. According to [42], the iterative
method can converge to an unique solution when 0 < δ < 2.

The matrix completion method iteratively updates (4) and (5) until the stop-
ping criteria is met. In this study, we choose the well-known K.K.T. condi-
tions [48] as the stopping criteria:

PΩ(M − Xk)F ≤ εPΩ(M)F (7)

where ε is the predefined tolerance, e.g., 10−4.

2.4 Performance Metrics

We choose two metrics including AUC (Area under the Receiver Operating
Characteristic Curve) and F1-score to evaluate the performance of our method.
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The ROC curve plots the values of TPR (true positive rate) versus FPR (false
positive rate), and it is one of the well-known metrics to evaluate the perfor-
mance of existing interaction prediction method in the current study. TPR and
FPR are defined as:

TPR =
TP

TP + FN
(8)

FPR =
FP

FP + TN
(9)

where TP, FP, TN, and FN denote true positive, false positive, true negative,
false negative, respectively. However, AUC is insufficient to evaluate the perfor-
mance of methods on bio-dataset because most bio-datasets have a highly imbal-
anced class distribution between positive samples and negative samples [49]. For
example, the enzyme dataset contains less than 1 % interaction entries (pos-
itive samples) in the whole dataset and the remaining 99 % elements are non-
interaction entries (negative samples). A naive prediction method that randomly
predicts all elements as non-interaction entries can achieve a small false positive
rate because most elements in original dataset are non-interaction entries. On
the other hand, the true positive rate can be high even though we only find one
correct interaction entry, because the number of real interaction is small. That
is why existing prediction methods can easily achieve a decent of AUC about
80 %–99 %. Practically speaking, the ability of predicting as many as potentially
correct interactions can maximize the probability of validating the unverified
interaction pairs via biochemical experiments. Since AUC is insufficient to eval-
uate performance of model, F1-score is used as a standard information retrieval
metric, to evaluate the performance of our method and its counterparts. The F1-
score is defined based on two critical metrics including Precision and Recall, i.e.

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1 = 2 · precision · recall

precision + recall
(12)

The difference between the F1-score and AUC is the precision term and the
utilization of FPR. FPR mainly focus on the non-interaction prediction perfor-
mance while the F1-score mainly focus on the overall interaction prediction per-
formance. In general, precision represents the interaction prediction success rate.

3 Result

This section evaluates the effectiveness of our method in terms of both AUC
and F1-score with 10-fold cross validation CV on “gold standard datasets”. In
this experiment, we empirically set the step size = 1.5 and the stopping toler-
ance = 10−4. We compared our method to five representative methods including
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Table 2. AUC value of 10-fold cross validation of six methods sample.

AUC Enzyme Ion channel GPCR Nuclear receptor Integrated data

Our method 0.9708 0.9778 0.9123 0.6640 0.9659

NBI 0.8941 0.9284 0.8357 0.6653 0.9087

PMF 0.9109 0.9575 0.9311 0.8245 0.8314

GIP 0.9516 0.9761 0.9272 0.8609 NA

KBMF2K 0.8475 0.9111 0.8741 0.8490 NA

Table 3. F1-score of 10-fold cross validation of six methods.

F1 score Enzyme Ion channel GPCR Nuclear receptor Integrated data

Our method 0.8437 0.8975 0.7083 0.5204 0.8281

NBI 0.8325 0.8233 0.6663 0.4960 0.7925

PMF 0.6556 0.8351 0.6940 0.5295 0.5536

GIP 0.7150 0.8273 0.6730 0.6021 NA

KBMF2K 0.6889 0.6764 0.5580 0.5381 NA

NBI [40], GIP [25], KBMF2K [24], PMF [41] and NetLapRLS [26] according
to Hao’s review [49]. For GIP, KBMF2K, and NetLapRLS, we used the source
codes provided by the authors; for NBI and PMF, we implemented the algo-
rithm described in their paper. Note that GIP, KBMF2K and NetLapRLS need
to exploit both similarity information and interaction profiles as input to pre-
dict interactions. As the performance of NetLapRLS was verified in a slightly
different way from the remaining methods, we first compared our method to
NBI, GIP, KBMF2K, and then compared it against NetLapRLS separately in
the next subsection.

3.1 Performance Comparison of NBI, GIP, KBMF2K, PMF
and Our Method on Gold Standard Datasets

One reason to use F1-score as the performance metric is that existing interaction
datasets tend to exhibit an imbalanced distribution of positive and negative
samples, as illustrated in Table 1. A large number of non-interaction entries
make AUC insufficient for measuring the performance. On the contrary, the
F1-score penalizes false positives much more than ROC [49,50], and thus it can
characterize the performance better in interaction prediction. Tables 2 and 3
list the AUC and F1-scores of NBI, PMF, GIP, KBMF2K and our methods
on both “gold standard” and integrated datasets, respectively. Table 2 shows
that our method achieves the highest AUC value (around 0.97) on the enzyme,
ion channel and the integrated datasets; and its AUC value is also good on
the GPCR dataset (above 0.9). Table 3 demonstrates that our method has the
highest F1-scores on all test sets except for the nuclear receptor subsets.
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In summary, our method can achieve the best performance on the Enzyme,
Ion channel and integrate databases while it requires much less information
comparing with the similarity-bases methods. Moreover our method has the
higher AUC and F1 value on most datasets comparing with the NBI and PMF
methods.

3.2 Comparison with the NetLapRLs Method

In this experiment, we compared the performance of our method against that
of the NetLapRLS method. The main difference between NetLapRLS method
and other methods is that the NetLapRLS method only utilizes known inter-
actions entries (positive instances) for prediction, while the remaining methods
treat unknown interaction as non-interactions (negative instances) in the train-
ing data. We investigate the effects of introducing negative instances into the
training data on the performance of our method and NetLapRLS methods. To
do this, we performed a series of performance test by randomly adding 0 %,
10 %, . . . , 90 % negative samples into the training dataset. In each test, we per-
formed 10-fold cross validation.

When the percentage of negative samples equals to 0 %, our method only
uses positive samples to predict all unknown interaction entries like NetLapRLs.
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Fig. 2. AUC and F1 of our method versus NetLapRLs on Enzyme (a), (b) and on Ion
channel datasets (c), (d), respectively.
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Fig. 3. AUC and F1 of our method versus NetLapRLs on GPCRs (a), (b) and on
Nuclear receptor datasets (c), (d), respectively.
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We can see from Figs. 2 and 3 that when the percentage of negative samples
increases, both AUC and F1-score of our method can be gradually improved
(especially for F1-scores). More importantly, we can clearly see that even if the
AUC values are stable, the F1-score significantly improves. This also reflects the
importance of including F1-score for performance evaluation.

4 Discussion

4.1 Validated New Pairs in the Latest Databases

In order to illustrate the capability of our method in the real case, we devel-
oped a small tool [51] by Python that can automatically validate predicted
links using the knowledge from DrugBank and KEGG. We decide the value of
threshold when the F1 score is the highest. If the prediction value is larger than
the threshold, we regard it as candidate interaction, otherwise, non-interaction.
Table 4 summaries the validation links in four datasets. According to Table 4,
the percentages of new validated interactions are 16.90%, 17.24%, 40.78% and
22.22% for enzyme, ion channel, GPCR and nuclear subsets datasets, respec-
tively. Figure 4 shows two instances of new validated drug-target interactions we
truly find them in the latest database. Both drugs D00691 and D00528 interact
with the same target hsa5150 and both drugs D00563 and D00283 interact with
the same target hsa152. We can find that D00691 has a similar chemical struc-
ture with D00528, and D00563 has a similar chemical structure with D00283.
Although our method does not apply any similarity information in the model,
the result also reflects that the similar drugs tend to interact closely with similar
target proteins. More materials are available at [51].

Table 4. Summary of validated interactions of four datasets.

#Predicted interactions #Validated interactions

Enzyme 71 12

Ion channel 58 10

GPCR 76 31

Nuclear receptor 18 4

4.2 Limitation

Due to our method only utilized interaction profiles to mine potential inter-
action, it requires only existing correlation between samples. In this work, we
analysis four datasets and find some drugs have very similar interactions between
targets. Therefore, we can fill the missing interaction entries based on observed
interactions. Some biological missing value cannot be predicted by this method
such as IC50, EC50, Ki and Kd value [52] in structure activity relationship (SAR)
dataset because it does not have clear correlations between samples.
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Fig. 4. Examples of drug chemical structures of the same target.

5 Conclusions

Our method is the first work to predict drug-target interactions by using the
matrix completion technique [2] based on the observation that most drug-target
interaction matrices are low-rank. Our method first fills missing entries with 0 in
the original matrix to be recovered, and it iteratively updates the missing entries
with predictive value. Moreover, in extreme case, a strong drug-drug and target-
target correlation makes the interaction matrix to a low-rank one. Therefore,
our method tends to adopt the lowest-rank approximate matrix as the correct
solution during the iterative process.

We chose both AUC and F1-score to evaluate the prediction performance.
Five representative models: NBI, PMF, GIP, KBMF2K, NetLapRLS are used
for comparative study. Among them, GIP, KBMF2K and NetLapRLS apply
interaction profiles as well as similarity information of drugs/target proteins.
NBI,PMF and our method predict the interaction pairs only based on interaction
information. Our method outperforms other methods in terms of both AUC and
F1-score. As there is no standard similarity strategy of bio-data, our method only
applies interaction profiles to predict drug-target interactions. For future work,
we will extend our method by introducing similarity learning on bio datasets.
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