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Abstract. Privacy-preserving data mining aims to keep data safe, yet
useful. But algorithms providing strong guarantees often end up with low
utility. We propose a novel privacy preserving framework that thwarts
an adversary from inferring an unknown data point by ensuring that the
estimation error is almost invariant to the inclusion/exclusion of the data
point. By focusing directly on the estimation error of the data point, our
framework is able to significantly lower the perturbation required. We
use this framework to propose a new privacy aware K-means clustering
algorithm. Using both synthetic and real datasets, we demonstrate that
the utility of this algorithm is almost equal to that of the unperturbed
K-means, and at strict privacy levels, almost twice as good as compared
to the differential privacy counterpart.

1 Introduction

Data mining is transforming the world. The scope is enormous. Not only do
institutions collect data, people too “exhume” data - from black-boxes in their
cars, to Fitbits they wear, to posts on Facebook. Personal data, however, cannot
be accessed freely. But we could quickly learn about dangerous road conditions
if we could utilize the data from each car. In another scenario, we could give
early warnings of a heart attack if we could access and integrate data from
various sources such as Fitbit and hospital Electronic Medical Records data.
For decades, we have protected sensitive data by barricading it. This has choked
potential benefits available from data utilization. Privacy preserving data mining
offers a way to be able to utilize all the data safely.

Privacy preserving data mining has become an active research area. There are
different ways to achieve privacy. For example, Agrawal and Srikant [1] developed
a privacy preserving decision tree by perturbing data. Another way to protect pri-
vacy is anonymization. In this approach, sensitive information like name, date of
birth, social security number are removed from data. However, Sweeney showed
that if an adversary has access to auxiliary information, these frameworks may
be revealing [2]. She also proposed a k-anonymity framework [2] where some
attributes of the data are removed such that if a record is in the database,
there are at least k-1 identical records in the database. This reduces the risk of
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revealing up to k records. This framework gave rise to a number of privacy pre-
serving methods (see survey in [3]). Privacy can also be achieved using additive
noise, data swapping or synthetic data [4]. These methods aim to retain useful
statistical information about data while changing individual records.

An important task in data mining is clustering, where similar records are
grouped together. Clustering has enormous applications for data explorations
[5], data organization [6] and retrieval [7]. One of the most popular clustering
algorithm is K-means. The need to perform clustering in a privacy aware man-
ner has prompted researchers to develop privacy preserving K-means algorithms.
Vaidya and Clifton [8] propose one such algorithm for vertically partitioned data
using secure multiparty computation. A similar algorithm for horizontally parti-
tioned data was proposed by Inan et al. [9]. In a more general work, Jagannathan
and Wright extended these works for both the horizontally and vertically parti-
tioned data [10]. All these works assume that the adversary does not have access
to auxiliary information. In real world, when such assumptions do not hold, these
methods may not protect privacy leading to distrust among the users about the
system.

Recently, differential privacy [11] has emerged as a strong privacy preserving
framework. It protects the data privacy even when an adversary has access to
auxiliary information. Several machine learning and data mining models using
this framework have been explored such as logistic regression [12], decision tree
learning [13] and matrix factorization [14]. Differentially private K-means clus-
tering algorithms are proposed in [15–17]. In [15], Blum et al. proposed SuLQ
framework, which releases noisy answer for a query. They used K-means algo-
rithm as an example to demonstrate the SuLQ framework. Similarly, PINQ
system was proposed by McSherry [16], who provided a programming interface
for privacy preserving analysis. K-means clustering has been implemented using
PINQ as an example of data analysis algorithm. Su et al. [17] proposed a differ-
entially private K-means under different settings where the learner is distrusted.
Although differential privacy provides a strong guarantee on privacy, it often
perturbs the output of algorithms so much that their utility drops to unaccept-
able levels. The problem of developing a privacy framework that provides high
utility under strong privacy guarantees is therefore still open.

Inspired from a recent private random forest model [18], we propose a new
privacy preserving framework that provides strong guarantee on privacy of each
data point in the database ensuring high utility. This framework can handle
arbitrary amounts of auxiliary knowledge about the database, that is, even if
an adversary has access to all but a one data point, the framework still thwarts
the adversary from inferring the unknown data point. We achieve this by ran-
domizing the output of the algorithm using a well known statistical estimation
technique known as bootstrap aggregation. Exploiting the randomness offered
by bootstrap, our framework ensures that the variance of the error in the adver-
sary’s estimation does not reduce significantly due to the participation of a data
point in the database. By ensuring that the error in estimation by the adversary
is almost invariant to the inclusion/exclusion of the data point in the database,
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the adversary is defeated. Our framework significantly departs from differen-
tial privacy in the manner that in presence/absence of a data point, differential
privacy preserves the likelihood of algorithm output while our framework pre-
serves the error variance. By focusing directly on the estimation error for the
data point, our framework is able to use significantly smaller perturbation in the
algorithm output compared to the differential privacy.

Using our new privacy framework, we construct a novel, privacy preserving
K-means algorithm. The key idea is to perturb the cluster centroids before their
release. We do this by using bootstrap aggregation to compute the cluster cen-
troids. We analyze our method theoretically, and derive bounds on the size of
bootstrap ensemble to ensure the stipulated privacy. We consider two cases -
when the cluster a data point belongs to is either known or unknown to the
adversary. Using both synthetic and real datasets, we compare our algorithm
against baselines - the conventional, non-private K-means and differentially pri-
vate K-means. The results are remarkable - at high levels of privacy, the utility of
our method is almost the same as the non-private K-means, and at least twice as
good as the differential privacy counterpart. This is because for the same privacy
level, we need to add significantly lower levels of noise compared to differential
privacy - as example, the noise in our framework is almost 20 times lower for
high privacy stipulated by leakage parameter ε less than 0.1.

In summary, our contributions are:

– A new privacy preserving framework;
– A novel privacy preserving K-means algorithm with high utility using the

proposed privacy framework;
– Theoretical analysis of the proposed K-means algorithm and a derivation of

the upper bound on the size of bootstrap ensemble to guarantee the requisite
privacy;

– Illustration and validation of the usefulness of the proposed K-means through
experiments on both synthetic and real datasets.

2 The Proposed Solution

In this section, we present a new privacy framework where our goal is to provide
strong guarantee on privacy of every data point in the database while ensuring
that utility of algorithms remain high. The proposed framework is capable of
handling the arbitrary amount of auxiliary knowledge about the database in
the sense that even if an adversary has access to all but one data point, the
framework still thwarts an adversary from inferring the unknown data point.
We use this new framework of privacy to develop a privacy preserving K-means
clustering algorithm that has high clustering performance.

2.1 A New Privacy Framework

Let us denote by DN = {x1, x2, ..., xN}, xi ∈ Rd a dataset with N data points.
Further denote by DN\r a dataset that all the data points of DN except a data
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point xr. Next assume that f(DN ) and f
(
DN\r

)
are the randomized answers

of a system for a statistical query about the dataset DN and DN\r respectively.
Inspired by the strong guarantees of differential privacy framework [11,19], we
demand our framework to protect the privacy of a data point xr even when an
adversary has access to data points in DN\r. Specifically, our proposed frame-
work controls the level of privacy leakage for the data point xr based on a
pre-specified leakage parameter ε. In particular, the adversary’s estimation of
xr derived using f (DN ) is guaranteed to be only “ε-fraction better” than a
estimate that is derived using f

(
DN\r

)
. Thus the presence of the data point

xr in the database brings only negligible risk on its privacy for a small value
of ε. Assume that the variance of the error in the adversary’s estimate of j-th
attribute of xr using f (DN ), which is computed with data points including xr,
is denoted as Einc (x̂rj). Similarly, assume that the variance of the error in the
adversary’s estimate of j-th attribute of xr using f

(
DN\r

)
, which is computed

using all data points except xr, is denoted as Eexc (x̂rj). Formally, our proposed
framework ensures the inequality

Einc(x̂rj)
Eexc(x̂rj)

≥ exp (−ε) . (1)

In the above inequality, when the value of ε is 0, the strongest level of privacy
is offered. In other words, adversary can not estimate xr any better than an
estimate that is obtained without xr’s participation in the database. As the
value of ε is increased, the level of privacy drops. We refer to this framework as
Error Preserving Privacy (EPP).

2.2 Privacy Preserving K-Means Clustering

Given the dataset DN , the K-means clustering algorithm aims to partition DN

into K disjoint sets {C1, C2, ..., CK} by minimizing the following cost function:

min
C1,...,CK

K∑

k=1

∑

xi∈Ck

‖xi − mk‖2 (2)

where mk is the centroid of cluster Ck. The most popular algorithm for K-means
clustering is due to Lloyd [20]. This algorithm first randomly picks K data points
and uses them to initialize the centroids m1,m2, ...,mK . Using these centroids,
the algorithm assigns a data point xi to cluster Ck if mk is the nearest centroid.
After this assignment, each centroid mk is re-computed by averaging all data
points that belong to cluster Ck. The algorithm is iterated between these two
steps until it converges or exceeds the maximum number of iterations.

We propose a new privacy preserving K-means algorithm that can cluster the
data while maintaining the data privacy under our proposed privacy framework
in (1). The key to achieving privacy is to use a randomization in the answer of
the query such that the inequality in (1) is satisfied. In doing so, our effort should
be to use a mechanism for the randomization that does not degrade the utility of
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the answer for intended tasks. Motivated by this idea, we use a mechanism that
is based on bootstrap sampling [21] of data points. The proposed mechanism
not only offers the desired randomness but also retains the high utility of the
original algorithm.

Similar to the Lloyd’s algorithm, our algorithm iterates between the two
steps of data assignment to cluster centroids and centroid re-computation until
no improvement can be made. However, in the last iteration of our algorithm,
the centroids are estimated using bootstrap aggregation (bagging) [21]. For each
cluster, it generates a bag of data points through bootstrap sampling, i.e. uni-
formly randomly sampling of data points with replacement. The number of data
points in each bag remains same as that in the original cluster. For each bag,
the centroid is estimated by averaging the data points. A total of B such bags
are generated and the aggregate centroid is computed by averaging the centroid
estimates of all B bags. A step-by-step summary of our proposed algorithm is
provided in Algorithm 1.

In the following analysis, we present a theoretical analysis of our algorithm
showing that as long as the number of bags B in the bootstrap aggregation are
smaller than a certain upper bound, the privacy of the algorithm is maintained
under the framework of (1). This means given the bootstrap-perturbed cluster
centroids and the data points except xr, the adversary can not estimate xr

significantly better than an estimate made by using the centroids that were
computed without xr. We refer to this model as Error Preserving Private
K-means (EPP-KM).

2.3 The Analysis of Privacy Preserving K-Means Algorithm

Due to the randomness of bootstrapping, the adversary’s estimate of unknown
data point xr is perturbed. In this section, we theoretically analyze the proposed
model in the light of the adversary estimation of the unknown point. In general,
we have the two possible cases: ‘the adversary knows which cluster the unknown
data point belongs to’ or ‘otherwise’.

Case-1 (The adversary knows which cluster xr belongs to): Let us assume
that the adversary knows that xr ∈ Ck. Let us denote by Nk the number of data
points in the cluster Ck and let xij be the j-th attribute value of data point
xi ∈ Ck. Using the centroid mk and other data points of Ck, the best estimate
of xrj is given by:

x̂rj = Nk × mkj −
∑

xi∈Ck\xr

xij . (3)

where mkj is the j-th attribute of the centroid mk. When the mkj is estimated
using bagging, it is a random variable. We will show that this randomness is
used to preserve the privacy of xrj . In (3), Nk and the sum of attributes are
already known. Thus, the variance of the estimation error of x̂rj is given by:

Einc(x̂rj |DN\r,mk, zr = k) = N2
kvar(mkj |DN\r), (4)
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where the cluster indicator variable zr = k encodes the knowledge xr ∈ Ck.
Because of the bagging ensemble used in our privacy preserving algorithm, mkj

is given by:

mkj =
1
B

× 1
Nk

×
∑

xr∈Ck

αrxrj ,

where αr denotes the number of times xr is sampled in B bags of bootstrap dur-
ing the computation of mk. Clearly, αr is a random variable following a binomial
distribution with mean B and variance B(1 − 1

Nk
). Therefore, the conditional

variance of mk is:

var(mkj |DN\r) =
var(αr)
B2N2

k

(
∑

xr∈Ck

x2
rj

)

=
1

BN2
k

(1 − 1
Nk

)

(
∑

xr∈Ck

x2
rj

)

. (5)

Plugging (5) in (4), we have Einc(x̂rj |DN\r,mk, zr = k) = 1
B (1 −

1
Nk

)
(∑

xr∈Ck
x2
rj

)
. To ensure that this estimation error variance follows the

privacy framework in 1, the number of bootstrap bags B has to satisfy

B ≤ (1 − 1
Nk

) × (∑
xr∈Ck

x2
rj

)

Eexc(x̂rj) × exp (−ε)
. (6)

The above bound is applicable to protect the j-th attribute of the data point
xr. Since the framework is required to protect all the attributes of all the data
points in the cluster, the following needs to be satisfied

B ≤ min
j

(1 − 1
Nk

) × (∑
xr∈Ck

x2
rj

)

Eexc(x̂rj) × exp (−ε)
(7)

We refer to this case as EPP-KM (1).

Case-2 (The adversary doesn’t know which cluster xr belongs to): In
this case, the adversary does not have the information of the cluster membership
of xr. The unavailability of this information creates a bias in his estimation. To
see this, consider the adversary model in (3). Assuming that xr truly belongs to
cluster k′, the expectation of the adversary estimate is given as

E (x̂rj) = Ezr (E (x̂rj | zr)) = πk′xrj

where zr is a random variable and zr = k implies that xr belongs to cluster
Ck. We use πk′ to denote the probability that xr belongs to the cluster Ck′ . The
probability πk′ can be approximately estimated using the partition of data DN\r.
Clearly, the estimate x̂rj , in this case, is biased as E (x̂rj) �= xrj . The variance
of the error 2 in the estimation can be derived by the law of total variance as
below

Einc(x̂rj |DN\r,m1:K)

= Ezr

[
var(x̂rj |zr,DN\r,m1:K)

]
+ varzr

[
E(x̂rj |zr,DN\r,m1:K)

]

=
K∑

k=1

[
πk

B
(1 − 1

Nk
)

(
∑

xr∈Ck

x2
rj

)]

+ πk′ (1 − πk′) x2
rj
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To satisfy the privacy framework in 1, the number of bootstrap bags B has to
satisfy

B ≤
∑K

k=1 πk

(
1 − 1

Nk

) (∑
xr∈Ck

x2
rj

)

Eexc(x̂rj) × exp (−ε) − πk′ (1 − πk′) x2
rj

(8)

Once again, since the above bound should be applicable to protect all the
attributes of all the data points in the cluster, the following needs to be sat-
isfied

B ≤ min
j,r

∑K
k=1 πk

(
1 − 1

Nk

) (∑
xr∈Ck

x2
rj

)

Eexc(x̂rj) × exp (−ε) − πk′ (1 − πk′) x2
rj

(9)

We refer to this case as EPP-KM (2).

Algorithm 1. Error Privacy Preserving K-means algorithm
Input: Dataset D = {x1, ..., xN}, xi ∈ Rd, number of clusters K.
Output: The bootstrap estimated cluster centroids: m1, ..., mK .
Initialization: Randomly initialize the cluster centroids m1, ..., mK .
1: repeat
2: for each point xi do
3: if xi is the closest to mk out of all centroids m1, ..., mK then
4: Assign xi to Ck

5: end if
6: end for
7: for k = 1 to K do
8: Compute mk by averaging all xi ∈ Ck

9: end for
10: until clustering converges
11: for k = 1 to K do
12: Calculate the value of B using (7) or (9) depending on if the adversary knows
the cluster membership of data points or not.
13: Compute mk using aggregation of B bootstrap samples.
14: end for

3 Experiments

We experiment with a total of three clustering datasets: one synthetic and two
real datasets. Experiments with the synthetic data illustrate the behavior of our
proposed model in a controlled setting. Experiments with the real datasets show
the effectiveness of our model for clustering under privacy constraints.

Baselines Methods. To evaluate the efficacy of our model, we compare its per-
formance with the following baseline methods:
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– The Original K-means (Non-Private): This algorithm is the standard
K-means algorithm. We note that this method does not protect privacy of
database. We refer to this method as KM.

– Differentially Private K-means: This algorithm is a variant of K-means
that protects the privacy of database under the framework of differential pri-
vacy [22]. In this algorithm, the j-th element of k-th K-means centroid is
made ε-differential private by adding to it a noise ηkj that follows a Lapla-
cian distribution with mean zero and standard deviation Skj/ε where Skj

is the sensitivity of the j-th element of the k-th centroid. The sensitivity
Skj with respect to the presence/absence of any data point is approximately
1
Nk

maxr xrj , where Nk is the number of data points in the k-th cluster. We
refer to this method as DP-KM.
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Fig. 1. Results using Synthetic dataset with N = 180, K = 3. (a) Average perturbation
in cluster centroid with respect to ε, (b) NMI with respect to ε, (c) Ratio of variance for
estimation errors Einc and Eexc, (d) NMI for varying number of data points at ε = 0.1.

Performance Measures. We use four different metrics for performance evalua-
tion: Normalized Mutual Information (NMI) [23], Rand Index [23] and Purity
[23] to evaluate the clustering performance, and Average Perturbation (AP) of
privacy-preserving models to evaluate how much noise a model adds to the clus-
ter centroids before releasing them for end use. The first three measures are
widely used in clustering literature. The last evaluation measure is a normalized
version of mean absolute error (MAE). Given K clusters with the original cen-
troids {mk}Kk=1and the perturbed centroids {m′

k}Kk=1, the average perturbation

is calculated as AP = 1
K

∑
k

‖mk−m′
k‖

‖mk‖ .
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Experimental Setting. For both synthetic and real data experiments, the clus-
tering performance of each algorithm is studied with respect to varying privacy
levels (ε) and the number of data points in the database. For the experiments
showing clustering performance with respect to ε, we average the performance of
each algorithm for 30 random centroid initializations for each value of ε. For the
experiments showing clustering performance with respect to varying number of
data points (N), we vary N from 25 % to 100 % of the data set size at a step of
25 %. The average performance is reported over 40 different random subsamples
of size N and 20 random centroid initializations. To demonstrate the privacy
guarantee of the proposed model, we estimate every data point in the database
using the perturbed means and the adversary model in Eq. (3). We report the
ratio of the estimation errors made by the adversary under presence/absence of
the data points in the database as per our EPP framework (see Eq. (1)).

3.1 Experiments with Synthetic Data

We generate a synthetic data with 3 clusters in a 2-dimensional space. The
centroids of these clusters are at [0, 0], [5, 0] and [4, 4]. For each cluster, we
generate 60 random data points from a bi-variate Gaussian distribution with its
mean at the cluster centroid and a standard deviation of 1 along each dimension.
Our goal is to illustrate the behavior of the proposed model in terms of its
clustering utility and privacy guarantees.

Figure 1 shows the experimental results for the synthetic dataset. Figure 1a
compares the two cases of the proposed model with DP-KM in terms of aver-
age perturbation. As seen from the figure, DP-KM has much higher amount of
perturbation compared to both EPP-KM (1) and EPP-KM (2) when ε is small.
Figure 1b compares the proposed models with original K-means (KM) and DP-
KM in terms of NMI score with respect to increasing values of ε. The NMI score
of KM is the highest. This is not surprising as this method does not perturb the
centroids and thus does not offer any privacy. However, it is interesting to note
that the NMI scores of EPP-KM methods are not very different from that of
KM in spite of the strong privacy guarantees offered by EPP-KM. On the other
hand, DP-KM performs poorly as its NMI scores are significantly lower com-
pared to the other methods. This poor performance of DP-KM is evident from
the high levels of perturbations made by this algorithm to the cluster centroids.
In Fig. 1c, we demonstrate the privacy guarantee offered by EPP-KM models.
As seen from the figure, the variance of the error in an adversary’s estimation
for any data point changes by a factor of only exp (−ε) due to its participation
in the database. We can see that for low values of ε, e.g. when ε = 0.001, the
ratio of the error variance in the adversary’s estimation is around 1, meaning
that no extra reduction in uncertainty is achieved by the adversary. At the other
values of ε, the plot follows the EPP framework of Eq. (1). We also study the
effect of the number of data points in the database on the clustering perfor-
mance. Figure 1d compares the NMI score of the proposed models with KM and
DP-KM. For this experiment, the privacy parameter ε is fixed at 0.1. The per-
formance of all the algorithms improve with the number of data points due to
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reduction in the perturbation. The NMI scores of EPP-KM variants are close to
that of KM. Once again the performance of DP-KM is poor in the beginning as
it needs high perturbations due to small cluster size.

3.2 Experiment with Real Data

We use the following datasets from UCI machine learning repository1:

– Seeds dataset: This dataset consists of 210 data points of three wheat types:
Kama, Rosa and Canadian. Each data point has 7 geometric attributes of
wheat kernels: area, perimeter, compactness, length of kernel, width of ker-
nel, asymmetry coefficient, length of kernel groove. Our task is to use these
attributes to cluster the data points in 3 different categories.

– User Knowledge Modeling dataset (UKM): The dataset is about stu-
dent’s knowledge level about a subject of Electrical DC Machines. There are
4 levels of knowledge: Very Low, Low, Middle, High. The UKM dataset has
258 data points and each data point has 5 attributes: STG, SCG, STR, LPR,
PEG. Our task is to use these attributes to cluster the data points in 4 dif-
ferent categories.

Experimental Results. The experimental results with the Seeds dataset and
the UKM dataset are shown in Figs. 2 and 3 respectively. The results follow
similar patterns as in the Synthetic dataset. As seen from Figs. 2a and 3a, the
average perturbations used in the centroids by both the proposed EPP-KM
variants are quite small. In contrast, the average perturbation by DP-KM is
extremely high for small values of ε. The NMI performance of the proposed
EPP-KM models with respect to ε is approximately 0.7 and 0.3, which is close
to that of KM (see Figs. 2b and 3b) while the performance of DP-KM is extremely
poor at small values of ε and only improves at higher values of ε. Similar to the
Synthetic dataset, Figs. 2c and 3c demonstrate that the adversary gains almost
no extra information about any data point at small values of ε (at strict privacy).

We also study the effect of the number of data points in the database on the
clustering performance. From Figs. 2d and 3d we can see that the NMI score of
both EPP-KM variants are almost same as that of KM. On the contrary, the
performance of DP-KM is quite poor as when using 25% fraction of data points,
NMI score of DP-KM drops to as low as 0.54 and 0.17 for Seeds and UKM
dataset respectively.

A more complete set of results showing other clustering measures, in partic-
ular, Purity and Rand Index are reported in Table 1. As seen from the Table,
both EPP-KM variants consistently achieve high level of clustering performance
in terms of all three evaluation metrics. At times, we observed that the per-
formances of EPP-KM (2) were slightly better than even KM. After further
investigation, we found that this happens due to the robustness of bootstrap
sampling to outliers [24].

1 available at URL https://archive.ics.uci.edu/ml/datasets.html.

https://archive.ics.uci.edu/ml/datasets.html
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Fig. 2. Results using Seeds dataset with N = 210, K = 3, (a) Average perturbation in
cluster centroid with respect to ε, (b) NMI with respect to ε, (c) Ratio of variance for
estimation errors Einc and Eexc, (d) NMI for varying number of data points at ε = 0.1.
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Fig. 3. Results using UKM dataset with N = 258, K = 4, (a) Average perturbation in
cluster centroid with respect to ε, (b) NMI with respect to ε, (c) Ratio of variance for
estimation errors Einc and Eexc, (d) NMI for varying number of data points at ε = 0.1.
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Table 1. Comparison with the baselines in terms of various metrics at ε = 0.1. Average
results over 30 random centroid initializations are reported with the standard errors in
parenthesis. The bold face indicates the best results among private algorithms.

Synthetic Seeds UKM

NMI KM 0.9152 (0.0128) 0.7010 (0.0014) 0.2778 (0.0107)

EPP-KM (1) 0.9160 (0.0121) 0.7017 (0.0016) 0.2781 (0.0109)

EPP-KM(2) 0.9162 (0.0128) 0.7010 (0.0014) 0.2790 (0.0106)

DP-KM 0.8514 (0.0192) 0.6709 (0.0064) 0.2534 (0.0108)

Purity KM 0.9707 (0.0112) 0.8933 (0.0004) 0.5683 (0.0078)

EPP-KM (1) 0.9709 (0.0110) 0.8938 (0.0004) 0.5686 (0.0080)

EPP-KM (2) 0.9711 (0.0112) 0.8933 (0.0004) 0.5691 (0.0078)

DP-KM 0.9446 (0.0128) 0.8759 (0.0047) 0.5536 (0.0062)

Rand index KM 0.9669 (0.0093) 0.8732 (0.0003) 0.6819 (0.0033)

EPP-KM (1) 0.9672 (0.0090) 0.8736 (0.0003) 0.6820 (0.0033)

EPP-KM (2) 0.9674 (0.0093) 0.8732 (0.0003) 0.6823 (0.0033)

DP-KM 0.9368 (0.0115) 0.8559 (0.0041) 0.6642 (0.0046)

Average perturbation EPP-KM (1) 0.0108 (0.0007) 0.0131 (0.0008) 0.0210 (0.0008)

EPP-KM (2) 0.0075 (0.0004) 0.0071 (0.0004) 0.0183 (0.0007)

DP-KM 0.3275 (0.0227) 0.2811 (0.0176) 0.7059 (0.0433)

4 Conclusion

We proposed a novel framework for privacy preserving data mining and developed
a K-means clustering algorithm under this framework. The proposed framework
provides strong privacy guarantees even when an adversary has access to auxiliary
knowledge about the database. Our private K-means algorithm calculates cluster
centroids using bootstrap aggregation, which introduces just enough perturbation
to ensure that privacy of every data point is maintained. We theoretically analyze
our method and derive bounds on the size of bootstrap ensemble, which ensures
the privacy under the proposed framework. The experimental results clearly show
that our algorithm has high utility with strong privacy guarantees.

References

1. Agrawal, R., Srikant, R.: Privacy-preserving data mining. ACM SIGMOD Rec.
29(2), 439–450 (2000). ACM

2. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzzi-
ness Knowl. Based Syst. 10(05), 557–570 (2002)

3. Ciriani, V., di Vimercati, S.D.C., Foresti, S., Samarati, P.: k-anonymous data min-
ing: a survey. In: Aggarwal, C.C., Yu, P.S. (eds.) Privacy-Preserving Data Mining.
Advances in Database Systems, vol. 34, pp. 105–136. Springer, US (2008)

4. Malik, M.B., Ghazi, M.A., Ali, R.: Privacy preserving data mining techniques:
current scenario and future prospects. In: ICCCT 2012, pp. 26–32. IEEE (2012)



400 T.D. Nguyen et al.

5. Begelman, G., Keller, P., Smadja, F., et al.: Automated tag clustering: improving
search and exploration in the tag space. In: Collaborative Web Tagging Workshop
at WWW2006, pp. 15–33 (2006)

6. Fred, A.L., Jain, A.K.: Data clustering using evidence accumulation. In: ICPR
2002, vol. 4, pp. 276–280. IEEE (2002)

7. Zeng, H.-J., He, Q.-C., Chen, Z., Ma, W.-Y., Ma, J.: Learning to cluster web search
results. In: ACM SIGIR 2004, pp. 210–217 (2004)

8. Vaidya, J., Clifton, C.: Privacy-preserving k-means clustering over vertically par-
titioned data. In: KDD 2003, pp. 206–215. ACM (2003)

9. Inan, A., Kaya, S.V., Saygın, Y., Savaş, E., Hintoğlu, A.A., Levi, A.: Privacy
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