
Active Learning Based Entity Resolution
Using Markov Logic

Jeffrey Fisher(B), Peter Christen, and Qing Wang

Research School of Computer Science, Australian National University,
Canberra, ACT 0200, Australia

{jeffrey.fisher,peter.christen,qing.wang}@anu.edu.au

Abstract. Entity resolution is a common data cleaning and data inte-
gration problem that involves determining which records in one or more
data sets refer to the same real-world entities. It has numerous appli-
cations for commercial, academic and government organisations. For
most practical entity resolution applications, training data does not exist
which limits the type of classification models that can be applied. This
also prevents complex techniques such as Markov logic networks from
being used on real-world problems. In this paper we apply an active
learning based technique to generate training data for a Markov logic
network based entity resolution model and learn the weights for the for-
mulae in a Markov logic network. We evaluate our technique on real-
world data sets and show that we can generate balanced training data
and learn and also learn approximate weights for the formulae in the
Markov logic network.

1 Introduction

Entity resolution (ER) is a common data cleaning and data integration task
that involves determining which records in one or more data sets refer to the
same real-world entities. It has numerous applications for commercial, academic
and government organisations including matching customer databases following
a corporate merger, combining different data sets for research purposes, and
detecting persons of interest for national security [4].

In many applications, a domain expert can perform the ER task manually,
albeit in a very time-consuming fashion [4]. If a domain expert is presented with
two records and their context, they can usually determine whether or not the
two records refer to the same real-world entity. As a result, one approach that
has been used successfully for ER is active learning [1,2,23,29], where an active
learning algorithm selects pairs of records to present to an expert who then
manually classifies them as either matches or non-matches. The results are then
used to build an automated classification model.

However, in domains such as group linkage [11,20] or population reconstruction
[6], a simple pair-wise classification model may be insufficient to accurately per-
form ER and the classification model may need to be more complex to capture the
characteristics of the data sets involved. Collective classification techniques such as
c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part II, LNAI 9652, pp. 338–349, 2016.
DOI: 10.1007/978-3-319-31750-2 27

Active Learning Based Entity Resolution Using Markov Logic 339

those proposed by Bhattacharya and Getoor [3], Kalashnikov and Mehrotra [15],
and Markov logic networks (MLNs) [22,27], are all effective at capturing the
intricacies of complex ER problems such as matching bibliographic data, group
linkage and population reconstruction. In this paper we demonstrate how we can
use active learning to incorporate the domain knowledge of experts into an active
learning based framework to generate and refine the rules for an MLN based ER
model. While the expert still classifies pairs of records as either matches or non-
matches, the rule-based approach of MLNs allows a much more sophisticated
ER model to be developed.

The rest of this paper is structured as follows: In Sect. 2 we describe recent
literature relating to active learning, MLNs and ER, and provide a short back-
ground on MLNs. In Sect. 3 we describe our notation and formally define the
problem we are attempting to solve. In Sect. 4 we then present our approach for
using active learning to create the rules and weights for an MLN based ER model.
In Sect. 5 we evaluate our approach and in Sect. 6 we present our conclusions and
some directions for future work.

2 Related Work and Background

Entity resolution has been the subject of a large amount of literature, and several
recent surveys have been conducted [9,17]. In this section we briefly outline
recent techniques relating to MLN based ER and active learning based ER.

Markov logic networks have attracted considerable research and been applied
to a range of problems. Proposed by Richardson and Domingos [22] they combine
first-order logic and probabilistic graphical models into a single approach. First-
order logic allows a compact representation and expression of knowledge, and
probabilistic graphical models allow treatment of uncertainty. Combining these
two techniques allows MLNs to perform inference on a wide variety of problems
and to handle contradictory knowledge and uncertainty.

A number of techniques have been proposed to determine the parameters of an
MLN using a variety of different methods [13,16,26]. However, these techniques
all rely on training data being available which is often not the case for ER [4].
Moreover, due to the fact that the classes of matches and non-matches are typi-
cally unbalanced, it can become very expensive to generate training data [29]. For
example, a random sampling might require reviewing hundreds or thousands of
non-matches for every match found.

Markov logic networks have successfully been used to perform ER [27]. The
scalability of MLNs is a problem which has been partially overcome by Rastogi
et al. [21]. Their experiments showed that MLN based techniques can achieve
very high quality ER in situations where training data exists and the scalability
problems can be overcome. As a result, an approach that uses active learning to
generate training data can be used to learn the rules and weights for an MLN.
In doing so it would allow the full power of MLNs to be applied to many more
entity resolution applications where training data does not exist.

Active learning has been used in many fields as a way to generate training
data so that supervised classification techniques can be applied. It has been

340 J. Fisher et al.

extensively studied and a survey of relevant literature has been conducted by
Settles [24]. In its traditional form, it involves presenting examples to an expert
for manual classification and the features of these examples are used to build a
classification model.

Active learning has been successfully applied to the ER problem [1,2,23,29].
As described above, one particular problem when using active learning for entity
resolution is that the classes of matches and non-matches are typically very
unbalanced. As a result, a challenge with each of these techniques is to select
representative examples of each class to present to the expert for manual clas-
sification. This has been addressed in several ways including exploiting cluster
structure in the data [29] and using a multi-stage algorithm that prunes redun-
dant pairs [7]. However, active learning has not been used to generate a training
set for use in creating an MLN based ER model.

Active learning techniques vary based on the way examples are selected for
manual classification. Of particular relevance to this paper are techniques deal-
ing with variance reduction and density weighted methods. Variance reduction
based techniques aim to reduce generalisation errors by minimising output vari-
ance and have been applied to classification models such as neural networks [18]
and conditional random fields [25]. Density based techniques such as that pro-
posed by Settles and Craven [25] aim to ensure that the examples chosen for
manual classification are not only uncertain, but also somehow representative
of the underlying distribution. This means that the expert does not waste time
classifying outliers, which may be uncertain, but have minimal impact on the
overall classification quality.

Finally, while traditional active learning techniques make use of an all-
knowing domain expert to perform the manual classification, from a practical
perspective this may not always be possible. Variations have been proposed
which deal with noisy oracles, i.e. experts who return the wrong classification
result [8]. Instead of a domain expert, other techniques make use of crowd-
sourcing to perform the labelling [28]. While our technique does not explicitly
deal with these variations, there is no reason why different forms of oracles could
not be used instead of the traditional domain expert.

2.1 Markov Logic Networks

An MLN consists of a set of weighted first-order logical formulae (rules). In a
traditional first-order knowledge base, a single violation of a formula invalidates
the entire knowledge base. However, for an MLN, the weight of a formula indi-
cates the relative strength of the formula, i.e. its likelihood of being true. As a
result, an MLN can handle noisy or inconsistent data without requiring a huge
number of very specific formulae. Formally, given a set of first-order formulae
and their weights, {(ui, wi)}, and a finite set of constants, we can instantiate an
MLN as a Markov random field where each node is a grounding of a predicate
and each feature is a grounding of one of the formulae. The joint probability
distribution is given by:

Active Learning Based Entity Resolution Using Markov Logic 341

P (X = x) =
1
Z

exp

(∑
i

wini (x)

)
(1)

where ni is the number of times the ith formula is satisified in world x, and Z is
a normalisation constant [22].

The formulae in an MLN can be defined by an expert or determined using
inductive logic programming [16], and a number of techniques have been devel-
oped to determine their weights using training data, both in batch mode [13,26]
and online [14,19].

3 Notation

We briefly describe the notation we will use in this paper. We begin with a data
set R. We assume a finite list of rules U = 〈u1, u2, . . . uk〉, where each rule u ∈ U
is a function that takes as input two records ri, rj ∈ R and returns either True
or False. We denote the number of rules in U as |U|. Each rule u ∈ U has a
real valued weight denoted w(u). An example of a rule is:

u(r1, r2) = HasName(r1, n1) ∧ HasName(r2, n2) ∧ SameName(n1, n2)
which returns True if records r1 and r2 have values n1 and n2 respectively in
the Name attribute, and n1 and n2 are the same, and False otherwise. Rules
with positive weights indicate positive evidence that records ri and rj refer to the
same entity (match), while rules with negative weights indicate negative evidence
that ri and rj refer to the same entity (non-match). By creating rules in this
format and relating them to whether the records are a match or non-match,
these rules can later be easily converted to formulae for the MLN model [27].
We assume that the initial list of rules is provided by a domain expert who will
be performing the manual classification in the active learning process.

We define a rule vector as a binary vector v, and the set of such rule vectors
as V. We generate a rule vector by applying each u ∈ U to a pair of records
ri, rj ∈ R using a function Ψ(U, ri, rj) which returns a rule vector v of length
|U| where v[k] = 1 if uk(ri, rj) = True and v[k] = 0 if uk(ri, rj) = False
for 1 ≤ k ≤ |U|. Since different pairs of records may produce the same rule
vector, for each rule vector vx we define a set of record pairs P (vx) = {〈ry, rz〉 :
ry, rz ∈ R, Ψ(U, ry, rz) = vx}. The cardinality of P (vx) is denoted |P (vx)|.
Since V only includes rule vectors that are produced by a pair of records in R,
its size is limited to the smaller of O(|R|2) and O(2|U|) and in practice it is
significantly smaller than both these limits. The weight of each v is defined as
w(v) = (

∑
w(uk) : 1 ≤ k ≤ |U| and v[k] = 1). In essence, w(v) is the sum of the

weights of those rules that are set to True in v.
Our technique uses a domain expert E (or an oracle, crowd sourcing, etc.

as per other active learning techniques [24]) to perform manual classification as
part of our approach. However, typically the expert can only classify a certain
number of record pairs so we assume a total budget of manual classifications
b with b ≥ 1. The budget is divided into q manual classifications per round,

342 J. Fisher et al.

over n rounds, where q ∗ n = b. In future work we intend to investigate ways
to adaptively distribute the budget [29]. We denote the output of the manual
classification of records rj and rk as ojk where ojk = True if rj and rk are
classified as a match by the expert and ojk = False if they are classified as a
non-match.

During the active learning process we need a way of determining which record
pairs 〈ri, rj〉 to present to the expert for manual classification. We define a
strategy S as an ordering of the rule vectors in V. After ordering V by S,
we select one candidate pair from each of P (v1) . . . P (vq) to be presented to
the expert, where q is the number of manual classifications each round. Some
possible strategies for S include selecting: (1) the most definite positive examples
(S+ := descending sort of w(v)), (2) the most definite negative examples (S− :=
ascending sort of w(v)), (3) the most definite examples of either type (Sd :=
descending sort of |w(v)|), (4) the most ambiguous cases (Sa := ascending sort
of |w(v)|, since the most ambiguous cases have a total weight close to 0), (5)
the most commonly occuring vectors (Sc := descending sort of |P (v)|) and (6)
Sr := random ordering.

Problem Statement: Given a data set R, an initial set of rules Us, a budget b,
a strategy S, and an expert E who can make manual classifications, the problem
is to generate a balanced set of training examples for an MLN based ER model,
a final set of rules Un, and values of w(ui) for each ui ∈ Un.

4 Methodology

The basic idea of our approach is that we apply traditional active learning tech-
niques [23] by presenting pairs of records to an expert for manual classification.
However, in addition to classifying each pair as either a match or a non-match
we ask the expert to specify the reason for their decisions - i.e. the rule(s) that
most influenced their decisions. In the case where the expert’s classification of
a pair contradicts the weight of the corresponding rule vector, i.e. a record pair
which produces a rule vector with w(v) > 0 but the expert classifies the pair as
a non-match, or w(v) < 0 but the expert classifies the pair as a match, we allow
the expert to specify a new rule that would cover the particular pair. We could
also use inductive logic programming based techniques [16] to specify the new
rule instead. This new rule is then added to the current list of rules and is used
to evaluate record pairs in the next iteration of the active learning process.

Our approach is described in Algorithm 1. We begin with an initial list of rules
Us created by the domain expert, along with a selected strategy S. Throughout
the process, we refine the list of rules along with the weights in order to end up
with a final list of rules that will be converted to formulae in an MLN based ER
model. Our algorithm assumes the budget is split into n rounds, with q manual
classifications per round, such that q ∗ n = b. Each iteration of the main loop
(lines 2 – 22) is one round of the algorithm.

Within each round, we start by creating an empty set of rule vectors (line 3).
Because calculating a rule vector for each pair ri, rj ∈ R has time complexity

Active Learning Based Entity Resolution Using Markov Logic 343

Algorithm 1. Active Weight Learning

Input:

- Set of records: R

- Initial list of rules: Us

- Strategy: S

- Budget: b split into q, n such that q ∗ n = b // Questions per round, number of rounds

- Expert: E

Output:

- Final list of rules: Un

1: i := 1, U0 := 〈 〉 // Set U0 to an empty list

2: while i ≤ n and Ui �= Ui−1 do:

3: V := ∅, Ui := Ui−1 // Create Ui, for i = 1, U1 := Us

4: B := GenerateBlocks(R) // Create a set of blocks

5: foreach ba ∈ B do: // In practice we only do this for a proportion of blocks in B

6: foreach 〈rj , rk〉 ∈ ba do:

7: vjk := Ψ(Ui, rj , rk) // vjk is generated by applying the rules in Ui to rj , rk
8: if vjk ∈ V do:

9: UpdateRuleV ector(V, vjk) // Update P (vjk) if we have seen vjk before

10: else do:

11: V.add(vjk) // Otherwise add vjk to V with P (vjk) =
{〈rj , rk〉}

12: V∗ := Order(V, S) // Order V based on strategy S

13: for vj ∈ V∗ and 1 ≤ j ≤ q do: // For the first q rule vectors in V∗
14: 〈ra, rb〉 := P (vj).random // Randomly select a candidate pair from P (vj)

15: oab := ManualClassify(ra, rb, E) // Get the true match status from expert

16: UpdateRuleWeights(Ui, oab) // Update rule weights based on expert

17: if (oab = True and w(vj) < 0) or (oab = False and w(vj) > 0) do:

18: unew := GetNewRule // Get a new rule to cover the pair

19: Ui.append(unew)

20: while |Ui| > |Us| do: // Check if we added some rules

21: RemoveLowestPredictiveRule(Ui) // And if we did, remove the least useful rules

22: i + +

23: return Un

O(|R|2), we make use of blocking to reduce the number of rule vectors calculated.
Blocking is the processwhereby adata set is split into subsets called blocks and only
records within the same block are compared [5]. We assume the blocking process is
a black box where we pass a data set and get back a set of blocks (line 4). Within
each block, we evaluate the rules on each pair of records to generate the rule vectors
(lines 5–11).

We apply the strategy S to the rule vectors in V to produce an ordering V∗

(line 12). Then, we select a candidate pair from each of the first q rule vectors in
V∗ to be presented to the expert E for manual classification (lines 14–15). Based
on the output of this manual classification we update the weights of the rules
in Ui, and if the manual classification result is contrary to what the weights
of the rule vectors indicate, i.e. w(vij) > 0 but oij = False or w(vij) < 0
but oij = True, we ask the expert to create a new rule that would cover the
incorrectly classified pair (line 18). Alternatively, techniques such as inductive
logic programming based learning [16] could also be used to refine the rules in
Ui so that the incorrectly classified pair is fixed.

Finally, if our number of rules has increased in the current round (line 20), we
look at removing the least informative rules from Ui based on a combination of
the absolute values of their weights and their coverage. For each rule uj ∈ Ui,
we calculate a score s = |w(uj)| ∗ log(|T (uj)|) where T (uj) = {ra, rb : ra, rb ∈
R, uj(ra, rb) = True}. We then remove the rules with the lowest score (line 21)
which allows us to avoid overfitting and keeps rules with a balance of high predic-
tive power (both positive and negative) and high coverage.

344 J. Fisher et al.

4.1 Building Blocks of the Algorithm

We discuss some aspects of the approach in more detail, namely blocking, the
choice of strategy S, and some considerations to prevent overfitting.

Blocking. In our approach we treat the blocking step in line 4 as a black
box. However, there are some blocking techniques that are more appropriate to
our approach than others. One practical consideration is that ideally we will
use the same blocks from our algorithm in the MLN based ER model. Since
the scalability of MLNs is typically very poor, this means we need to limit the
maximum block size by using sorted neighbourhood based blocking [12] or a
size-constrained clustering approach similar to Fisher et al. [10].

In addition, the rules in Ui can be used to inform the blocking. If we sort
the rules in Ui based on w(u) and use the rules with the highest weights to
generate blocks, we typically get a blocking approach that is well aligned with
an MLN based ER model. For example, if having the same surname is strong
evidence that the records are a match (as indicated by a large positive weight
to the associated rule), then by placing records with the same surname into
blocks, we know that during the ER process, the records being compared have
a higher likelihood of being matches since they satisfy at least one rule with a
large positive weight. After we have generated the set of blocks B, we need to
use the candidate pairs in each b ∈ B to generate our rule vectors.

Even when blocking is used, computing Ψ(U, ri, rj) for all candidate pairs
within all blocks is equivalent to the complete matching step in a traditional
ER approach [4]. Since it is impossible to present all the pairs to the expert for
manual classification anyway, we instead sample a large number of pairs. While
this does not mathematically guarantee that every rule vector is generated, in
practice it means that the frequently ocurring ones are present. In addition, after
the first round (i.e. once i > 1) if a rule vector vk is missing but was present in
an earlier round, we can apply U to the pairs in P (vk) from the earlier round
to ensure that vk is also represented in the current round.

Selection Strategy. In Sect. 3 we described several possible strategies for S
based on w(v) and |P (v)|. In practice we also wish to record the number of
manually classified examples for each v ∈ V, along with their counts of True
and False from the manual classifications. This is because if we keep the same S
for each round, it is likely the ordering of V does not change significantly between
rounds. As a result, we end up sampling candidate pairs for the same rule vectors
in each round. We can avoid this problem by incorporating previous results into
the ordering. If the manual classification for a rule vector always returns the
same value of True or False we can lower its priority in the ordering. However,
if a rule vector produces a mix of True and False values when being manually
classified, we may wish to increase its priority in the ordering. It is also possible
to change the strategy S between rounds. For example, we can start by looking
at the most frequently occuring rule vectors (highest values of |P (v)|) and once

Active Learning Based Entity Resolution Using Markov Logic 345

we have a good list of rules for the frequent pairs we can change strategies to
deal with the difficult cases (lowest values of |w(v)|). In the future we intend to
investigate ways to determine the optimal choice of strategy.

Overfitting. In practice care needs to be taken to prevent overfitting. In the
implementation of our approach described in Algorithm 1, we assume the starting
number of rules is the desired number for the final model. However, there is
no reason this needs to be the case and we can use a different mechanism to
limit the number of rules such as specifying a different maximum number of
rules or a minimum score smin, using the scoring method described in Sect. 4.0.
In practice it can be the case that the newly added rule has the lowest score and
we end up removing it straight away. This essentially means that the expert E
has ended up manually classifying an outlier or exception, so using it to inform
other matching decisions will lead to overfitting.

5 Experimental Evaluation

We have evaluated our approach on two data sets. (1) Cora: This is a public
bibliographic data set of scientific papers that has previously been used to eval-
uate ER techniques [27]. This data set contains 1,295 records and truth data is
available. (2) UKCD: This data set consists of census data for the years 1851
to 1901 in 10 year intervals for the town of Rawtenstall and surrounds in the
United Kingdom. It contains approximately 150,000 individual records of 32,000
households. A portion of this data (nearly 5,000 records) has been manually
linked by domain experts. Fu et al. [11] have used this data set for household
based group linkage where the task was to link households across time.

Instead of presenting candidate pairs to the expert E for manual classifica-
tion, we limited our evaluation to the portions of the two data sets that truth
data was available and oij was known for all pairs of ri, rj ∈ R, i.e. the entirety of
Cora and about 5,000 records in UKCD. Instead of allowing the expert to select
significant rules and altering their weights appropriately we adjusted the weights
automatically. For each rule vector vij , where a candidate pair 〈ri, rj〉 ∈ P (vij)
was selected for manual classification, we adjusted the weights for each uk ∈ U
where uk(ri, rj) = True as follows: if oij = True and w(uk) > 0 we increased
w(uk) by 10% and if oij = True and w(uk) < 0 we decreased w(uk) by 10%.
If oij = False we performed the opposite adjustments. Essentially this meant
that rules that were True and correctly predicted the classification result had
their weights increased while those that were True but incorrectly predicted the
classification result had their weights decreased.

All our experiments were performed on a Macbook Air with an Intel I5
1.3 Ghz CPU, 4 GBytes of memory and running OS X. All programs were written
in Python 3. None of our experiments took longer than five minutes to run 20
rounds of 10 manual classifications each (200 manual classifications in total).
Since in a practical ER application each manual classification is likely to take a

346 J. Fisher et al.

0 5 10 15 200.0

0.5

1.0

1.5

2.0
S+

S−

Sd

Sa

Sc

0 5 10 15 200.0

0.5

1.0

1.5

2.0
S+

S−

Sd

Sa

Sc

Fig. 1. The ratio of matches / non-matches for different strategies and different values
of n.

few minutes, our approach runs fast enough that the slowest part of the process
will be most likely be the manual classification step.

For our evaluation we consider two measures, the ratio of candidate pairs
classified as matches to the candidate pairs classified as non-matches by the
expert E, and the rule weights generated by our techniques. To generate a bal-
anced training set the ratio between matches and non-matches should be as close
to 1 as possible. We also examine the weights that are generated for the rules
in Un at the end of our algorithm as ideally these will be used as the weights
for the corresponding formulae in the MLN. We consider both the total sum of
the weights calculated as |∑(w(ui) : ui ∈ Un)| as well as the maximum value
of |w(ui)| : ui ∈ Un.

For both data sets, we created a list of rules based on simple attribute equality
and assigned weights of 1 to those rules that were positive evidence that the two
records might be the same (i.e. the values in the attribute were the same) and
weights of −1 to those rules that were negative evidence that the two records
might be the same (the values in the attribute were different). For Cora we used
a total of eight rules, four with positive weights and four with negative weights,
and for UKCD we used 10 rules, five with positive weights and five with negative
weights. For both data sets we set q = 10 and varied the value of n to simulate
different budgets b.

Figure 1 shows the ratio of candidate pairs classified as matches vs non-
matches in the manual classification step for the strategies described in Sect. 3.
Figure 2 shows the sum of the rule weights for the rules in Un and Fig. 3 shows
the largest value of |w(ui)| for ui ∈ Un. As can be seen in the results, the
strategies that produce the most balanced splits of the training data between
matches and non-matches are S+ and Sa with the other strategies generally
performing poorly. The strategy S+ orders the rule vectors by descending walue
of w(v) which means that a candidate pair from rule vectors with the highest
positive weights are always presented to the expert for manual classification in
each round. Since apriori these are the rule vectors most likely to be matches,
this strategy is effective at overcoming the class imbalance between matches and

Active Learning Based Entity Resolution Using Markov Logic 347

0 5 10 15 20

100

101

102

S+

S−

Sd

Sa

Sc

0 5 10 15 20

100

101

102

103

S+

S−

Sd

Sa

Sc

Fig. 2. The total weight of the rules in Un for different strategies and different values
of n.

0 5 10 15 20

101

102

S+

S−

Sd

Sa

Sc

0 5 10 15 20

101

102

103

S+

S−

Sd

Sa

Sc

Fig. 3. The maximum value of |w(ui)| for ui ∈ Un for different strategies and different
values of n.

non-matches. While Sa selects candidate pairs from rule vectors that are hard
to classify, i.e. w(v) is close to 0, it means that although it starts by selecting a
higher proportion of non-matches, as the algorithm proceeds the negative rule
weights get further away from 0. This means that the candidate pairs that are
presented to the expert are more likely to have satisfied positive rules and thus
be matches which leads to a degree of balance in the classifications. This is also
true of the weights generated by these two strategies which do not get very large,
either in terms of the sum of the weights or the largest absolute weight.

However, strategies S−, Sd and Sc all produced very poor results overall.
This is because after the initial rounds, these strategies mean that the expert
is almost exclusively being presented with non-matches which creates a com-
pounding feedback loop where the weights on the negative rules get more and
more negative. As a result, none of these strategies produce balanced training
sets and the weights they produce for the rules are not useful at all for an MLN
based entity resolution model.

While the weights generated by the strategies S+ and Sa are plausible for an
MLN based ER model, they do not resolve to an equilibrium around the correct
weights like we had hoped for. As a result, in the future we intend to combine

348 J. Fisher et al.

our technique with an online weight learning algorithm such as those proposed
by Mihalkova and Mooney [19] or Huynh and Mooney [14]. By linking the weight
learning with the generation of training data through active learning we hope to
be able to generate weights for an MLN with our technique.

6 Conclusions and Future Work

In this paper we have presented an active learning technique for generating
training examples for a Markov logic network based entity resolution model, as
well as a technique for learning the necessary weights for the MLN formulae. We
have also presented a method which allows a domain expert to add new rules to
the MLN to capture pairs of records that are not being correctly classified by the
existing model. We show that our technique is effective at generating balanced
training sets to be used for learning an MLN based ER model, however it is
currently less effective at generating appropriate weights for the MLN formulae.

In the future we intend to extend the work in several directions. We aim to
investigate ways of adaptively distributing the budget of manual classifications,
both in terms of the number of questions per round and the number of rounds
similar to Wang et al. [29]. We also aim to test our techniques on other data
sets and ER problems such as population reconstruction [6]. Finally, due to the
fact that our techniques were not as successful at learning correct weights for the
formulae in the MLN, we intend to investigate using our technique in conjunction
with an online weight learning approach for MLNs, such as those proposed by
Mihalkova and Mooney [19] or Huynh and Mooney [14].

References

1. Arasu, A., Götz, M., Kaushik, R.: On active learning of record matching packages.
In: ACM SIGMOD, pp. 783–794, Indianapolis (2010)

2. Bellare, K., Iyengar, S., Parameswaran, A.G., Rastogi, V.: Active sampling for
entity matching. In: ACM SIGKDD. ACM (2012)

3. Bhattacharya, I., Getoor, L.: Collective entity resolution in relational data. ACM
TKDD 1(1), 5 (2007)

4. Christen, V.: Data Matching: Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Data-Centric Systems and Applications.
Springer, Heidelberg (2012)

5. Christen, P.: A survey of indexing techniques for scalable record linkage and dedu-
plication. IEEE TKDE 24(9), 1537–1555 (2012)

6. Christen, P., Vatsalan, D., Fu, Z.: Advanced record linkage methods and privacy
aspects for population reconstruction - a survey and case studies. In: Bloothooft,
G., Christen, P., Mandemakers, K., Schraagen, M. (eds.) Population Reconstruc-
tion, pp. 87–110. Springer, Switzerland (2015)

7. Dal Bianco, G., Galante, R., Gonalves, M., Canuto, S., Heuser, C.: A practical
and effective sampling selection strategy for large scale deduplication. IEEE KDE
27(9), 2305–2319 (2015)

8. Du, J., Ling, C.: Active learning with human-like noisy oracle. In: IEEE ICDM,
pp. 797–802 (2010)

Active Learning Based Entity Resolution Using Markov Logic 349

9. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: a
survey. IEEE TKDE 19(1), 1–16 (2007)

10. Fisher, J., Christen, P., Wang, Q., Rahm, V.: A clustering-based framework to
control block sizes for entity resolution. In: ACM SIGKDD (2015)

11. Fu, Z., Christen, P., Zhou, J.: A graph matching method for historical census
household linkage. In: Tseng, V.S., Ho, T.B., Zhou, Z.-H., Chen, A.L.P., Kao, H.-
Y. (eds.) PAKDD 2014, Part I. LNCS, vol. 8443, pp. 485–496. Springer, Heidelberg
(2014)

12. Hernandez, M.A., Stolfo, S.J.: Real-world data is dirty: Data cleansing and the
merge/purge problem. DMKD 2(1), 9–37 (1998)

13. Huynh, T.N., Mooney, R.J.: Discriminative structure and parameter learning for
Markov logic networks. In: ACM ICML (2008)

14. Huynh, T.N., Mooney, R.J.: Online max-margin weight learning for Markov logic
networks. In: SDM, pp. 642–651 (2011)

15. Kalashnikov, D., Mehrotra, S.: Domain-independent data cleaning via analysis of
entity-relationship graph. ACM TODS 31(2), 716–767 (2006)

16. Kok, S., Domingos, P.: Learning the structure of Markov logic networks. In: ACM
ICML (2005)

17. Köpcke, H., Rahm, E.: Frameworks for entity matching: a comparison. Data Knowl.
Eng. 69(2), 197–210 (2010)

18. MacKay, D.J.: Information-based objective functions for active data selection.
Neural Comput. 4(4), 590–604 (1992)

19. Mihalkova, L., Mooney, R.: Learning to disambiguate search queries from short
sessions. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.)
ECML PKDD 2009, Part II. LNCS, vol. 5782, pp. 111–127. Springer, Heidelberg
(2009)

20. On, B.W., Elmacioglu, E., Lee, D., Kang, J., Pei, J.: Improving grouped-entity
resolution using quasi-cliques. In: IEEE ICDM, pp. 1008–1015 (2006)

21. Rastogi, V., Dalvi, N., Garofalakis, M.: Large-scale collective entity matching.
VLDB Endowment 4, 208–218 (2011)

22. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–
136 (2006)

23. Sarawagi, S., Bhamidipaty, A.: Interactive deduplication using active learning. In:
ACM SIGKDD (2002)

24. Settles, B.: Active learning literature survey. Computer Sciences Technical Report
1648, University of Wisconsin, Madison (2010)

25. Settles, B., Craven, M.: An analysis of active learning strategies for sequence label-
ing tasks. In: ACL Empirical methods in NLP (2008)

26. Singla, P., Domingos, P.: Discriminative training of Markov logic networks. AAAI
5, 868–873 (2005)

27. Singla, P., Domingos, P.: Entity resolution with Markov logic. In: IEEE ICDM,
pp. 572–582 (2006)

28. Wang, J., Kraska, T., Franklin, M.J., Feng, J.: CrowdER: crowdsourcing entity
resolution. Proc. VLDB Endow. 5(11), 1483–1494 (2012)

29. Wang, Q., Vatsalan, D., Christen, P.: Efficient interactive training selection for
large-scale entity resolution. In: Cao, T., Lim, E.-P., Zhou, Z.-H., Ho, T.-B.,
Cheung, D., Motoda, H. (eds.) PAKDD 2015. LNCS, vol. 9078, pp. 562–573.
Springer, Heidelberg (2015)

	Active Learning Based Entity Resolution Using Markov Logic
	1 Introduction
	2 Related Work and Background
	2.1 Markov Logic Networks

	3 Notation
	4 Methodology
	4.1 Building Blocks of the Algorithm

	5 Experimental Evaluation
	6 Conclusions and Future Work
	References

