
Adaptive Seeding for Gaussian Mixture Models

Johannes Blömer and Kathrin Bujna(B)

Paderborn University, 33098 Paderborn, Germany
{bloemer,kathrin.bujna}@uni-paderborn.de

Abstract. We present new initialization methods for the expectation-
maximization algorithm for multivariate Gaussian mixture models. Our
methods are adaptions of the well-known K-means++ initialization and
the Gonzalez algorithm. Thereby we aim to close the gap between simple
random, e.g. uniform, and complex methods, that crucially depend on the
right choice of hyperparameters. Our extensive experiments indicate the
usefulness of our methods compared to common techniques and methods,
which e.g. apply the original K-means++ and Gonzalez directly, with
respect to artificial as well as real-world data sets.

1 Introduction

Gaussian mixture modelling is an important task, e.g., in the field of clus-
ter analysis. A common approach is the method of maximum likelihood for
which the Expectation-Maximization (EM) algorithm [13] can be applied. The
EM algorithm iteratively tries to improve a given initial mixture model and
converges to a stationary point of the likelihood function. Unfortunately, the
likelihood function is generally non-convex, possessing many stationary points
[23]. The initial model determines to which of these points the EM algorithm
converges [5].

1.1 Maximum Likelihood Estimation for Gaussian Mixtures

A Gaussian mixture model (K-GMM) over RD can be described by a parameter
θ = {(wk, μk, Σk)}k=1,...,K , where wk ∈ R is the mixing weight (

∑K
k=1 wk = 1),

μk ∈ R
D is the mean, and Σk ∈ R

D×D is the covariance matrix of the k-
th mixture component. Its probability density function is given by N (x|θ) =
∑K

k=1 wkN (x|μk, Σk), where we denote the D-variate Gaussian distribution by
N (·|μ,Σ). Given a data set X ⊂ R

D, the Maximum Likelihood Estimation
(MLE) problem is to find a K-GMM θ that maximizes the likelihood L(θ|X) =∏

x∈X N (x|θ). For K = 1, there is a closed-form solution [8]. For K > 1, the EM
algorithm, whose outcome heavily depends on the initial model, can be applied.

1.2 Related Work

A common way to initialize the EM algorithm is to first draw means uniformly
at random from the input set and then to approximate covariances and weights
c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part II, LNAI 9652, pp. 296–308, 2016.
DOI: 10.1007/978-3-319-31750-2 24

Adaptive Seeding for Gaussian Mixture Models 297

[7,21,24,25]. To compensate for the random choice of initial means, several can-
didate solutions are created and the one with the largest likelihood is chosen.
Often, few steps of the EM, Classification EM, or Stochastic EM algorithm are
applied to the candidates. Similarly, the K-means algorithm may be used [8, p.
427]. Due to the random choice of the initial means, all these methods are bet-
ter suited for spherical and well-separated clusters. Furthermore, testing several
candidates is computationally expensive.

Other popular initializations are based on hierarchical agglomerative cluster-
ing (HAC). For instance, in [21,24,25], HAC (with different distance measures)
is used to obtain mean vectors. Since HAC is generally very slow, it is usually
only executed on a random sample [24]. However, the size of any reasonable sam-
ple depends on the size of the smallest optimal component. Moreover, it is often
outperformed by other methods (e.g. [24,25]). Another approach using HAC is
presented in [21]. It aims at finding the best local modes of the data set in a
reduced m∗-dimensional space and applies HAC only on these modes. However,
this method is time-consuming and the choice of m∗ is crucial [21, p. 5, 13].
Moreover, in [22] it is outperformed by simple random methods.

[25] presents a density based approach which not only determines an initial
solution but also the number of components. It initializes the means by points
which have a “high concentration” of neighbors. To this end, the size m of the
neighborhood of a point (i.e., the minimum number of points in a cluster) has to
be fixed in advance. In our experiments, we found that the performance crucially
depends on the choice of m. Hence, we ignore this method in this paper.

In [27], a greedy algorithm is presented which constructs a sequence of mix-
ture models with 1 through K components. Given a model θk with k components,
it constructs several new candidates with k + 1 components. Each candidate is
constructed by adding a new component to θk and executing the EM algorithm.
Hence, this method is only useful if several values of K need to be considered.

In [20] a modification of the Gonzalez algorithm for GMMs is presented.
Furthermore, there are some practical applications using the K-means++ algo-
rithm for the initialization of GMMs (e.g., in [19] GMMs are used for speech
recognition). Additional initialization methods can be found e.g. in [6,15,21,26].

1.3 Our Contribution

Clearly, there is no way to determine the best initialization algorithm that out-
performs all other algorithms on all instances. The performance of an initializa-
tion depends on the given data and the allowed computational cost. Nonetheless,
the initializations presented so far (except the simple random initializations) face
mainly two problems: Firstly, they are rather complex and time consuming. Sec-
ondly, the choice of hyperparameters is crucial for the outcome.

In this paper, we present new methods that are fast and do not require
choosing sensitive hyperparameters. These methods can be seen as adaptions
of the K-means++ algorithm [3] and the Gonzalez algorithm [17] and as an
extension of the initial work in [19,20]. We present experiments indicating the
superiority of our methods compared to a large number of alternative methods.

298 J. Blömer and K. Bujna

2 Baseline Algorithms

The most widely used initializations start by choosing K data points:

Unif draws K points independently and uniformly at random from X.
HAC computes a uniform sample S of size s · |X| of the input set X and executes

hierarchical clustering with average linkage cost on S.
G executes the algorithm given in [17], which yields a 2-approximation for the

discrete radius K-clustering problem. Iteratively, it chooses the point with
the largest Euclidean distance from the already chosen points.

KM++ executes the K-Means++ algorithm [3], which has been designed for the
K-means problem. In each round, KM++ samples a data point (i.e. the next
mean) from the given data set X with probability proportional to its K-means
cost (with respect to the points chosen so far). In expectation, the resulting
K-means costs are in O(log(K) · opt). KM++ is particularly interesting since
the K-means algorithm is a special case of the EM algorithm [8].

Then, given K data points, Algorithm 1 is used to create a GMM, which is then
the initial solution that is fed to the EM algorithm.

Algorithm 1. Means2GMM(X ⊂ R
D, C ⊂ R

D, |C| = k)
1: Derive a partition {C1, . . . , Ck} by assigning each x ∈ X to a closest point in C.
2: for l = 1, . . . , k do
3: Set μl := 1/|Cl|

∑
x∈Cl

x, wl := |Cl|/|X|, Σl := 1/|Cl|
∑

x∈Cl
(x − μl)(x − μl)

T .

4: If Σl is not positive definite, set Σl := 1/(D·|Cl|)
∑

x∈Cl
‖x − μl‖2 · ID

5: If Σl is still not positive definite, set Σl := ID
6: return θ = {(wl, μl, Σl)}l=1,...,k.

A popular alternative is to apply the K-means algorithm with the chosen data
points before executing Algorithm 1. The main idea behind this is that starting
the EM algorithm with a coarse initial solution (where e.g. not all clusters are
covered well) might impose a high risk of getting stuck at a poor local minimum.
To avoid this problem, one first runs a different algorithm that optimizes a
function similar to the likelihood, i.e. the K-means costs (cf. [8, p. 427, 443]).
We refer to the K-means algorithm as an intermediate algorithm and indicate
its use by the postfix “km”.

3 Adaptive Seeding for GMMs

Our new adaptive methods construct a sequence of models with k = 1 through
k = K components adaptively. Given a (k − 1)-GMM θk−1, our methods try to
choose a point from the data set that is not described well by the given θk−1 and
which is hopefully a good representative of a component of an optimal k-GMM.
The idea behind is that this point can lead us to a significant refinement of θk−1.

Adaptive Seeding for Gaussian Mixture Models 299

Choosing a Point. The negative log-likelihood of a point x ∈ R
D, given the

GMM θk−1, measures how well x is described by θk−1.1 Unfortunately, it may
take negative values and does not scale with the data set and the GMM2. This
also applies to the minimum component-wise negative log-likelihood

min
{− log

(
(2π)D/2|Σl|1/2

)
+ 1

2 (x − μl)T Σ−1
l (x − μl) | (wl, μl, Σl) ∈ θk−1

}
,

due to the first summand. Hence, we use the minimum Mahalanobis distance

m(x|θk−1) := min
{
(x − μl)T Σ−1

l (x − μl) | (wl, μl, Σl) ∈ θk−1

}
.

Our first method chooses the point x ∈ X maximizing m(x|θk−1). Since these
points are more likely to be outliers, we also consider choosing a point only from
a uniform sample of X, which is chosen in advance (cf. Algorithm 2).

Our second method chooses point x ∈ X with probability ∝ m(x|θk−1)
(cf. Algorithm 3). In order to reduce the probability to choose an outlier, we
also consider adding an α portion of uniform distribution, i.e. drawing x with
probability

mα(x|θk−1) := α · m(x|θk−1)/
∑

y∈X m(y|θk−1) + (1 − α) · 1/|X|.

Constructing a GMM. Then, given a point x ∈ X and the means of θk−1,
we construct a k-GMM. In our first experiments, we used Algorithm 1 to con-
struct a k-GMM. However, it turned out that estimating only spherical covari-
ance matrices (with variable variances) yields a better performance than esti-
mating full covariance matrices. We assume that this is due to the fact that
θk−1 is only a very coarse estimate of (k − 1)-components of an optimal k-
GMM. Formally, we replace the covariance update in Line 3 of Algorithm 1 by
Σl = 1/(D·|Cl|)

∑
x∈Cl

‖x − μl‖2 · ID. We denote this version of Algorithm 1 as
Means2SphGMM. Given the resulting k-GMM, our methods then again choose a
new point from X as already described above.

Intermediate Algorithm. Recall that some baselines use the K-means algorithm
as an intermediate algorithm (cf. Sect. 2). Since we do not only construct means
but GMMs, we apply a hard-clustering variant of the EM algorithm, i.e. the Clas-
sification EM algorithm (CEM) [10], and let it only estimate spherical covari-
ances. We indicate its use by the postfix “cem”.

Algorithms 2 and 3 summarize our methods. Note that we do not optimize
the hyperparameters α and s in our experiments.

Comparison to Baselines. Our adaptive initializations can be seen as adap-
tions of the Gonzalez and Kmeans++ algorithm. Simply speaking, these meth-
ods assume that each component is represented by a Gaussian with the same

1 The (inverse) pdf is unsuited due to the exponential behavior (over-/underflows).
2 Even wrt. a single Gaussian, i.e. log N (c · x|c · μ, c2 · Σ) = log N (x|μ, Σ) − D ln(c).

300 J. Blömer and K. Bujna

fixed spherical covariance matrix and fixed uniform weights. In contrast, our
goal is to estimate also the covariance matrices adaptively. Furthermore, in [20]
another adaption of the Gonzalez algorithm is presented, which we denote by
KwedlosGonzalez (KG). Unlike our method, it chooses weights and covariance
matrices randomly and independently of the means (and of each other).

Algorithm 2. SphericalGonzalez
(SG)
Require: X ⊂ R

D, K ∈ N, s ∈ (0, 1]
1: θ1 := optimal 1-MLE wrt. X
2: If s < 1, let S be a uniform sample of X of

size �s · |X|�. Otherwise, set S = X.
3: for k = 2, . . . , K do
4: p := argmaxx∈S m(x|θk−1)
5: Mk := {μ|(·, μ, ·) ∈ θk−1} ∪ {p}
6: θk := Means2SphGMM(X, Mk)
7: (optional) Run CEM algorithm
8: return θK

Algorithm 3. Adaptive (Ad)

Require: X ⊂ R
D, K ∈ N, α ∈ [0, 1]

1: θ1 := optimal 1-MLE wrt. X
2: for k = 2, . . . , K do
3: Draw p from X with probability

mα(p|θk−1).
4: Mk := {μ|(·, μ, ·) ∈ θk−1} ∪ {p}
5: θk := Means2SphGMM(X, Mk)
6: (optional) Run CEM algorithm
7: return θK

4 Experiments

We evaluated all presented methods with respect to artificial as well as real world
data sets. Our implementation as well as the complete results are available at
[9]. Due to space limitations, we omit the results of those algorithms that are
consistently outperformed by others. These results are available at [9] as well.

Quality Measure. Recall that the goal of our paper (and the EM algorithm) is
to find a maximum likelihood estimate (MLE). Thus, the likelihood is not only
the common but also the appropriate way of evaluating our methods.

Other measures need to be treated with caution: Some authors consider their
methods only with respect to some specific tasks where fitting a GMM to some
data is part of some framework. Hence, any observed effects might be due to
several reasons (i.e. correlations). In particular, GMMs are often compared with
respect to certain classifications. As already pointed out by [14], the class labels
of real world data sets do not necessarily correspond to the structure of an
MLE. The same holds for data sets and classifications generated according to
some GMM. Moreover, a cross-validation, that examines whether methods over-
fit models to training data, is not reasonable, since our methods do not aim at
finding a model that does not fit too well to the given data set. Finally, one
should not generate data sets according to some “ground truth“ GMM θgt and
compare GMMs with θgt because in many cases (e.g. small |X|) one cannot
expect θgt to be a good surrogate of the MLE.

Setup. Recall that in Algorithms 2 and 3 hyperparameters α and s are used.
We do not optimize them, but test reasonable values, i.e. α ∈ {0.5, 1} and

Adaptive Seeding for Gaussian Mixture Models 301

s ∈ {0.1, 1}. We execute each method with 30 different seeds. On the basis of
some initial experiments, we decided to execute the intermediate algorithms for
25 rounds and the EM algorithm for 50 rounds. If only the EM algorithm is
applied, then we execute it for 75 rounds.

4.1 Artificial Data Sets

Data Generation. We create 192 test sets, each containing 30 data sets that
share certain characteristics [9]. For each data set, we first create a GMM3 at
random but control the following properties: First, the components of a GMM
can either be spherical or elliptical. We describe the eccentricity of Σk by ek =
maxd λkd

mind λkd
, where λ2

kd denotes the d-th eigenvalue of Σk. Second, components can
have different sizes, in terms of the smallest eigenvalue of the corresponding
covariance matrices. Third, components have different weights.

(a) cθ = 0.5 (b) cθ = 1 (c) cθ = 2

(d) cθ = 0.5 (e) cθ = 1 (f) cθ = 2

Fig. 1. Examples for different separa-
tion parameters. Figures show orthog-
onal projections to random plane. Data
sets in (a)–(c) have D = 3. (d)–(f) have
D = 10.

Fourth, components can overlap more
or less. Following [12], we define the
separation parameter cθ = minl 	=k

‖μl − μk‖/
√

max {trace(Σl), trace(Σk)}.
In high dimension D � 1, cθ = 2 cor-
responds to almost completely separated
clusters (i.e. points generated by the same
component), while cθ ∈ {0.5, 1} indi-
cates a slight but still negligible overlap
[11]. However, in small dimension, cθ ∈
{0.5, 1} corresponds to significant over-
laps between clusters, while cθ = 2 implies
rather separated clusters (cf. Fig. 1).

We generate random GMMs as fol-
lows. Initially, we draw means uniformly
at random from a cube with a fixed
side length. For the weights, we fix some
cw ≥ 0, construct a set of weights
{2cw·i/

∑K
j=1 2cw·j}i=1,...,K and assign these weights randomly. To control the

sizes and the eccentricity, we fix the minimum and maximum eigenvalue and
draw the remaining values uniformly at random from the interval. Then, we set
Σk = QT diag(λ2

k1, . . . , λ
2
kD)Q for a random Q ∈ SO(D). Finally, the means are

scaled as to fit the predefined separation parameter. Given the resulting GMM
θ, we first draw some points according to θ. Then, we construct a bounding
box, elongate its side lengths by a factor 1.2, and draw noise points uniformly
at random from the resized box.

We created a test set (i.e. 30 data sets) for each combination of the following
parameters: K = 20, |X| ∈ {1000, 5000}, D ∈ {3, 10}, cθ ∈ {0.5, 1, 2}, cw ∈
{0.1, 1}, different combinations of size and eccentricity (i.e., equal size and ek = 10,

3 As explained before, our goal is not to identify these GMMs.

302 J. Blömer and K. Bujna

equal size and ek ∈ [1, 10], different size and ek = 1, different size and ek ∈ [1, 10]),
and without or with 10 % noise points.

Evaluation Method. We consider the initial solutions produced by the initial-
ization (possibly followed by an intermediate algorithm) and the final solutions
obtained by running the EM algorithm afterwards. For each data set, we compute
the average log-likelihood of the initial and final solution, respectively. Based on
these averages, we create rankings of the algorithms4. Then, we compute the
average rank (and standard deviation of the rank) of each algorithm over all
datasets matching certain properties.

Results. In general, we observe that one should use an intermediate algorithm
before applying the EM algorithm. Thus, we omit the results of some methods [9].

Data without Noise. For these rather simple data sets, there is no method that
constantly outperforms all others. Nonetheless, it is always one of our adaptive
or the Gkm initialization that performs best.

Table 1. Average ranks (± std.dev.) for generated data with K = 20, |X| = 1000,
D = 10, different weights, and without noise.

The results depicted in Tables 1 and 2 suggest that, regardless of the weights,
the performance is determined by the separation. Furthermore, a good initial
solution does not imply a good final solution. Given overlap (cθ = 0.5) or moder-
ate separation (cθ = 1), SGcem(s = 1) and Adcem(α = 1) work best, even though
their initial solutions have low average ranks compared to KM++km. Given higher
separation (cθ = 2), we expect it to be easier to identify clusters and that skewed
covariance matrices do not matter much if means are assigned properly in the
first place. Indeed, the simple Gkm and KG do the trick.
4 Averaging the (average) log-likelihood values over different data sets is not mean-

ingful since the optimal log-likelihoods may deviate significantly.

Adaptive Seeding for Gaussian Mixture Models 303

Table 2. Average ranks (± std.dev.) for generated data with K = 20, |X| = 1000,
dimension D = 10, equal weights, and without noise.

Table 3. Average ranks (± std.dev.) for generated data with K = 20, |X| = 1000,
dimension D = 10, and without noise. Only final solutions.

Table 3 shows that Adcem(α = 1) works well for elliptical data, while Gkm

should be chosen for spherical data. Recall that there are no noise points yet. We
expect that the performance of Gkm degenerates in the presence of noise since it
is prone to choose outliers. Overall, given data sets without noise, Adcem(α = 1)
performs best.

Noisy Data. When introducing noise, our adaptive methods are still among the
best methods, while the performance of some others degenerates significantly.
Tables 4 and 5 show that SGcem and Adcem still work well for cw ≤ 1 and, in
contrast to data without noise, also for separated instances (cw = 2). KG and
Gkm are now among the methods with the lowest average rank. This is not a
surprise since our noise contains outliers. From the results depicted in Table 6
one can draw the same conclusion, i.e. KG and Gkm can not handle noisy data.
For noisy data, our Adcem methods outperform the others.

304 J. Blömer and K. Bujna

Table 4. Average ranks (± std.dev.) for generated data with K = 20, |X| = 1000,
dimension D = 10, different weights, and 10 % noise.

Table 5. Average ranks (± std.dev.) for generated data sets with K = 20, |X| = 1000,
dimension D = 10, equal weights, and 10 % noise.

Table 6. Average ranks (± std.dev.) for generated data sets with K = 20, |X| = 1000,
dimension D = 10, and 10 % noise. Only final solutions.

Adaptive Seeding for Gaussian Mixture Models 305

Table 7. Average ranks (± std.dev.) for generated data (K = 20, |X| = 1000, D = 3).

Low Dimensional or High Sample Size Data. We expect that, if the dimension is
low or the sample size is large enough, it is generally easier to identify clusters.
Indeed the results differ significantly from our previous results. In general, the
KM++km and Unifkm perform best. For data sets with D = 3 and |X| = 1000,
Table 7 shows that the KM++km method works well even in the presence of noise.
However, if we are given noise and small separation, the simple Unifkm does well.
We also increased the sample size to |X| = 5000 and the dimension to D = 10,
expecting that the higher sample size can make up for the higher dimension
(results available in [9]). Indeed, for data sets without noise, where clusters can
presumably be identified easier, KM++km still suffices. However, given noise or
too small a separation, our Adcem methods and the simple Unifkm work better.

4.2 Real World Data Sets

We use four publicly available data sets: Covertype (|X| = 581 012, D = 10 real-
valued features) [4]; two Aloi data sets (|X| = 110 250, D ∈ {27, 64}) based on
color histograms in HSV color space [18] from data provided by the ELKI project
[2] and the Amsterdam Library of Object Images [16]; Cities (|X| = 135 082,
D = 2) is a projection of the coordinates of cities with a population of at least
1000 [1]; Spambase (|X| = 4601, D = 10 real-valued features) [4].

The results are depicted in Fig. 2: For Aloi (D = 27) and Spambase (K = 3),
SGcem(s = 1) is considerably better than the other methods. For Cities and
Spambase (K = 10), SG(s = 1) does better (without running the CEM). For
Aloi (D = 64) and the Covertype, Adcem(α = 1) works better than the others.

4.3 Time Measurement

The run times of the compared methods match our expectation (cf. Table 8).
First, (intermediate) steps of the CEM algorithm are faster than (more) steps of
the EM algorithm. Second, sampling and running methods on a random subset
of the data should in general reduce the run time.

306 J. Blömer and K. Bujna

(a) Aloi (D = 27, K = 10) (b) Aloi (D = 64, K = 10,
normalized features)

(c) Covertype (K = 10)

(d) Spambase (K = 3) (e) Spambase (K = 10) (f) Cities (K = 10)

Fig. 2. Results for the real world data sets depicted as boxplots (final solutions only).

Table 8. Average run times (in seconds) over 12 data sets with |X| = 103 and D = 10
and different runs per data set using an Intel Core i7-3770 CPU (3.40 GHz, 8 GB
RAM).

SG(s = 1) 0.314 SG(s = 0.1) 0.307 Adcem(α = 1) 0.226 Unifkm 0.206

SGcem(s = 1) 0.225 SGcem(s = 0.1) 0.197 Adcem(α = 0.5) 0.253 HAC(s = 1) 1.588

Gkm 0.205 KG(s = 1) 0.315

5 Conclusion and Future Work

If you need a fast and simple method, then we suggest to use one of the following
methods: Given a data set with a large number of points per cluster or low
dimension, the K-means++ initialization followed by the K-means algorithm
and Means2GMM should do well. Otherwise, we recommend our new methods
Ad and SG followed by the spherical CEM algorithm, especially if your data is
presumably noisy. Last but not least, whatever you prefer, we suggest trying
intermediate steps of the spherical CEM or K-means algorithm.

For the K-means++ algorithm and the Gonzalez algorithm there are prov-
able guarantees. We hope that our results are a good starting point for a theo-
retical analysis that will transfer these results to the MLE problem for GMMs.

Adaptive Seeding for Gaussian Mixture Models 307

References

1. GeoNames geographical database. http://www.geonames.org/
2. Achtert, E., Goldhofer, S., Kriegel, H.-P., Schubert, E., Zimek, A.: Evalua-

tion of Clusterings - Metrics and Visual Support. http://elki.dbs.ifi.lmu.de/wiki/
DataSets/MultiView

3. Arthur, V.: k-means++: The advantages of careful seeding. In: SODA 2007 (2007)
4. Asuncion: UCI machine learning repository (2007). http://www.ics.uci.edu/

mlearn/MLRepository.html
5. Baudry, J.-P., Celeux, G.: EM for mixtures. Stat. Comput. 25(4), 713–726 (2015)
6. Biernacki, C.: Initializing EM using the properties of its trajectories in Gaussian

mixtures. Stat. Comput. 14(3), 267–279 (2004)
7. Biernacki, C., Celeux, G., Govaert, G.: Choosing starting values for the EM algo-

rithm for getting the highest likelihood in multivariate Gaussian mixture models.
Comput. Stat. Data Anal. 41(3–4), 561–575 (2003)

8. Bishop, C.: Pattern Recognition and Machine Learning. Information Science and
Statistics. Springer, Secaucus (2006)

9. Bujna, K., Kuntze, D.: Supplemental Material. http://www-old.cs.upb.de/
fachgebiete/ag-bloemer/forschung/clusteranalyse/adaptive seeding for gmms.
html

10. Celeux, G., Govaert, G.: A classification EM algorithm for clustering and two
stochastic versions. Comput. Stat. Data Anal. 14(3), 315–332 (1992)

11. Dasgupta, S.: Experiments with random projection. In: UAI 2000 (2000)
12. Dasgupta, S.: Learning mixtures of gaussians. In: FOCS 1999 (1999)
13. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete

data via the EM algorithm. J. R. Stat. Soc. Ser. B Stat. Methodol. 39(1), 1–38
(1977)

14. Färber, I., Günnemann, S., Kriegel, H., Kröger, P., Müller, E., Schubert, E., Seidl,
T., Zimek, A.: On using class-labels in evaluation of clusterings. In: MultiClust
2010 (2010)

15. Fayyad, U., Reina, C., Bradley, P.S.: Initialization of iterative refinement clustering
algorithms. In: KDD 1998 (1998)

16. Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The Amsterdam library
of object images. Int. J. Comput. Vis. 6(1), 103–112 (2005)

17. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci. 38, 293–306 (1985)

18. Kriegel, H.-P., Schubert, E., Zimek, A.: Evaluation of multiple clustering solutions.
In: MultiClust 2010 (2010)

19. Krüger, A., Leutnant, V., Haeb-Umbach, R., Ackermann, M., Blömer, J.: On the
initialization of dynamic models for speech features. In: Sprachkommunikation 2010
(2010)

20. Kwedlo, W.: A new random approach for initialization of the multiple restart EM
algorithm for Gaussian model-based clustering. Pattern Anal. Appl. 18(4), 757–770
(2015)

21. Maitra, R.: Initializing partition-optimization algorithms. IEEE/ACM Trans.
Comput. Biol. Bioinform. 6(1), 144–157 (2009)

22. Maitra, R., Melnykov, V.: Simulating data to study performance of finite mix-
ture modeling and clustering algorithms. J. Comput. Graph. Stat. 19(2), 354–376
(2010)

http://www.geonames.org/
http://elki.dbs.ifi.lmu.de/wiki/DataSets/MultiView
http://elki.dbs.ifi.lmu.de/wiki/DataSets/MultiView
http://www.ics.uci.edu/mlearn/MLRepository.html
http://www.ics.uci.edu/mlearn/MLRepository.html
http://www-old.cs.upb.de/fachgebiete/ag-bloemer/forschung/clusteranalyse/adaptive_seeding_for_gmms.html
http://www-old.cs.upb.de/fachgebiete/ag-bloemer/forschung/clusteranalyse/adaptive_seeding_for_gmms.html
http://www-old.cs.upb.de/fachgebiete/ag-bloemer/forschung/clusteranalyse/adaptive_seeding_for_gmms.html

308 J. Blömer and K. Bujna

23. McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. Wiley Series
in Probability and Statistics, 2nd edn. Wiley-Interscience, New York (2008)

24. Meilă, M., Heckerman, D.: An experimental comparison of several clustering and
initialization methods. In: UAI 1998. Morgan Kaufmann Inc., San Francisco (1998)

25. Melnykov, V., Melnykov, I.: Initializing the EM algorithm in Gaussian mixture
models with an unknown number of components. Comput. Stat. Data Anal. 56,
1381–1395 (2011)

26. Thiesson, B.: Accelerated quantification of Bayesian networks with incomplete
data. University of Aalborg (1995)

27. Verbeek, J.J., Vlassis, N., Kröse, B.: Efficient greedy learning of Gaussian mixture
models. Neural Comput. 15(2), 469–485 (2003)

	Adaptive Seeding for Gaussian Mixture Models
	1 Introduction
	1.1 Maximum Likelihood Estimation for Gaussian Mixtures
	1.2 Related Work
	1.3 Our Contribution

	2 Baseline Algorithms
	3 Adaptive Seeding for GMMs
	4 Experiments
	4.1 Artificial Data Sets
	4.2 Real World Data Sets
	4.3 Time Measurement

	5 Conclusion and Future Work
	References

