
Linear Upper Confidence Bound Algorithm
for Contextual Bandit Problem with Piled

Rewards

Kuan-Hao Huang and Hsuan-Tien Lin(B)

Department of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan

{r03922062,htlin}@csie.ntu.edu.tw

Abstract. We study the contextual bandit problem with linear payoff
function. In the traditional contextual bandit problem, the algorithm iter-
atively chooses an action based on the observed context, and immedi-
ately receives a reward for the chosen action. Motivated by a practical
need in many applications, we study the design of algorithms under the
piled-reward setting, where the rewards are received as a pile instead of
immediately. We present how the Linear Upper Confidence Bound (Lin-
UCB) algorithm for the traditional problem can be näıvely applied under
the piled-reward setting, and prove its regret bound. Then, we extend
LinUCB to a novel algorithm, called Linear Upper Confidence Bound
with Pseudo Reward (LinUCBPR), which digests the observed contexts to
choose actions more strategically before the piled rewards are received. We
prove that LinUCBPR can match LinUCB in the regret bound under the
piled-reward setting. Experiments on the artificial and real-world datasets
demonstrate the strong performance of LinUCBPR in practice.

Keywords: Contextual bandit · Piled rewards · Upper confidence
bound

1 Introduction

We study the contextual bandit problem (CBP) [13], which is an interactive
process between an algorithm and an environment. In the traditional CBP, the
algorithm observes a context from the environment in each time step. Then, the
algorithm is asked to strategically choose an action from the action set based
on the context, and receives a corresponding feedback, called reward, while the
reward for other actions are hidden from the algorithm. The goal of the algorithm
is to maximize the cumulative reward over all time steps.

Because only the reward of the chosen action is revealed, the algorithm needs
to choose different actions to estimate their goodness, called exploration. On the
other hand, the algorithm also needs to choose the better actions to maximize
the reward, called exploitation. Balancing between exploration and exploitation
is arguably the most important issue for designing algorithms of CBP.
c© Springer International Publishing Switzerland 2016
J. Bailey et al. (Eds.): PAKDD 2016, Part II, LNAI 9652, pp. 143–155, 2016.
DOI: 10.1007/978-3-319-31750-2 12

144 K.-H. Huang and H.-T. Lin

ε-Greedy [3] and Linear Upper Confidence Bound (LinUCB) [10] are two
representative algorithms for CBP. ε-Greedy learns one model per action for
exploitation and randomly explores different actions with a small probability ε.
LinUCB is based on online ridge regression, and takes the concept of upper-
confidence bound [2,5] to strategically balance between exploration and exploita-
tion. LinUCB enjoys a strong theoretical guarantee [5] and is state-of-the-art in
many practical applications [10].

The traditional CBP setting assumes that the algorithm receives the reward
immediately after choosing an action. In some practical applications, however,
the environment cannot present the reward to the algorithm immediately. This
work is motivated from one such application. Consider an online advertisement
system operated by a contextual bandit algorithm. For each user visit (time
step), the system (algorithm) receives the information of the user (context) from
an ad exchange, and chooses an appropriate ad (action) to display to the user. In
the application, the click from the user naturally acts as the reward of the action.
Nevertheless, to reduce the cost of communication, the ad exchange often does
not reveal the individual reward immediately after choosing an action. Instead,
the ad exchange stores the individual reward first, and only sends a pile of
rewards back to the system until sufficient number of rewards are gathered. We
call the scenario as the contextual bandit problem under the piled-reward setting.

A related setting in the literature is the delayed-reward setting, where the
reward is assumed to come at several time steps after the algorithm chooses an
action. Most existing works on the delayed-reward setting consider constant delays
[6] and cannot be easily applied to the piled-reward setting. Several works [8,9,12]
propose algorithms for bandit problems with arbitrarily-delayed rewards, but their
algorithms are non-contextual. Thus, to the best of our knowledge, no existing
work has carefully studied the CBP under the piled-reward setting.

In this paper, we study how LinUCB can be applied under the piled-reward
setting. We present a näıve use of LinUCB for the setting and prove its theoretical
guarantee in the form of the regret bound. The result helps us understand the
difference between the traditional setting and the piled-reward setting. Then, we
design a novel algorithm, Linear Upper Confidence Bound with Pseudo Reward
(LinUCBPR), which is a variant of LinUCB that allows more strategic use of
the context information before the piled rewards are received. We prove that
LinUCBPR can match the näıve LinUCB in its regret bound under the piled-
reward setting. Experiments on the artificial and real-world datasets demonstrate
that LinUCBPR results in strong and stable performance in practice.

This paper is organized as follows. Section 2 formalizes the CBP with the
piled-reward setting. Section 3 describes our design of LinUCB and LinUCBPR
under the piled-reward setting. The theoretical guarantees of the algorithms are
analyzed in Sect. 4. We discuss the experiment results in Sect. 5 and conclude in
Sect. 6.

Linear UCB Algorithm for Contextual Bandit Problem with Piled Rewards 145

2 Preliminaries

We use bold lower-case symbol like u to denote a column vector, bold upper-case
symbol like A to denote a matrix, Id to denote the d×d identity matrix, and [K]
to denote the set {1, 2, ...,K}.

We first introduce the CBP under the traditional setting. Let T be the total
number of rounds and K be the number of actions. In each round t ∈ [T], the
algorithm observes a context xt ∈ R

d with ‖xt‖2 ≤ 1 from the environment.
Upon observing the context xt, the algorithm chooses an action at from K
actions based on the context. Right after choosing at, the algorithm receives a
reward rt,at

that corresponds to the context xt and the chosen action at, while
other rewards rt,a for a �= at are hidden from the algorithm. The goal of the
algorithm is to maximize the cumulative reward after T rounds.

Now, we introduce the CBP under the piled-reward setting. Instead of receiv-
ing the reward right after choosing an action (and thus right before observing
the next context), the setting assumes that the rewards come as a pile after
observing multiple contexts in a round. We shall extend our notation above to
the piled-reward setting as follows. In each round t, the algorithm sequentially
observes n contexts xt1 ,xt2 , ...,xtn

∈ R
d with ‖xti

‖2 ≤ 1 from the environ-
ment. For simplicity, we assume that n is a fixed number while all the technical
results in this paper can be easily extended to the case where n can vary in
each round. We use ti to denote the i-th step in round t. For example, 35 means
the 5-th step in round 3. Upon observing the context xti

in round t, the algo-
rithm chooses an action ati

from K actions based on the context, and observes
the next context xti+1 . In the end of round t, the algorithm receives n rewards
rt1,at1

, rt2,at2
, ..., rtn,atn

that correspond to xti
and ati

, while other rewards rti,a

for a �= ati
are hidden from the algorithm. The goal is again to maximize the

cumulative reward
∑T

t=1

∑n
i=1 rti,ati

after T rounds.
In other words, the piled-reward setting assumes that the context comes

at time steps {11, 12, ..., 1n, 21, 22, ..., t1, t2, ..., Tn−1, Tn}, while the rewards come
after every n contexts as a pile. Note that the traditional setting is a special case
of the piled-reward setting when n = 1.

In this paper, we consider the CBP with linear payoff function. We
assume that rti,a connects with xti

linearly through K hidden weight vec-
tors u1,u2, ...,uK ∈ R

d with ‖ui‖2 ≤ 1. That is, E [rti,a | xti
] = x�

ti
ua. Let

a∗
ti

= arg maxa∈[K] x�
ti
ua be the optimal action for xti

. We define regret of an
algorithm to be (

∑T
t=1

∑n
i=1 rti,a∗

ti
−∑T

t=1

∑n
i=1 rti,ati

). The goal of maximizing
the cumulative reward is equivalent to minimizing the regret.

Linear Upper Confidence Bound (LinUCB) [5] is a state-of-the-art algo-
rithm for the traditional CBP (n = 1). LinUCB maintains K weight vectors
wt1,1,wt1,2, ...,wt1,K to estimate u1,u2, ...,uK at time step t1. The K weight
vectors are calculated by ridge regression

wt1,a = argmin
w∈Rd

(‖w‖2 + ‖X(t−1)1,aw − r(t−1)1,a‖2) , (1)

146 K.-H. Huang and H.-T. Lin

where X(t−1)1,a is a matrix with rows being the contexts x�
τ where τ are the

time steps before round t and aτ = a, and r(t−1)1,a is a column vector with each
element representing the corresponding reward for each context in X(t−1)1,a. Let
At1,a = (Id + X�

(t−1)1,aX(t−1)1,a) and bt1,a = (X�
(t−1)1,ar(t−1)1,a). The solution

to (1) is wt1,a = A−1
t1,abt1,a.

When a new context xt1 comes, LinUCB calculates two terms for each
action a: the estimated reward r̃t1,a = x�

t1wt1,a and the uncertainty ct1,a =
√
x�

t1A
−1
t1,axt1 , and chooses the action with the highest score r̃t1,a + αct1,a,

where α is a trade-off parameter. After receiving the reward, LinUCB updates
the weight vector wt1,at1

immediately, and uses the new weight vector to choose
the action for the next context. LinUCB conducts exploration when the chosen
action is of high uncertainty. After sufficient (context, action, reward) informa-
tion is received, r̃t1,a shall be close the expected reward, and ct1,a will be smaller.
Then, LinUCB conducts exploitation with the learned weight vectors to choose
the action with the highest expected reward.

3 Proposed Algorithm

We first discuss how LinUCB can be näıvely applied under the piled-reward
setting. Then, we extend LinUCB to a more general framework that utilizes the
additional information within the contexts before the true rewards are received.

Since no rewards are received before the end of the current round t, the
näıve LinUCB does not update the model during round t, and only takes the
fixed wt1,a and At1,a to calculate the estimated reward r̃ti,a and the uncer-
tainty cti,a for each action a. That is, LinUCB only updates wt1,a before the
beginning of round t as the solution to (1) with (X(t−1)1,a, r(t−1)1,a) under the
traditional setting replaced by (X(t−1)n,a, r(t−1)n,a) under the piled-reward set-
ting. In addition, At1,a can be similarly defined from X(t−1)n,a instead.

The näıve LinUCB can be viewed as a baseline upper confidence bound algo-
rithm under the piled-reward setting. There is a possible drawback for the näıve
LinUCB. If similar contexts come repeatedly in the same round, because wti,a

and Ati,a stay unchanged within the round, LinUCB will choose similar actions
repeatedly. Then, if the chosen action suffers from low reward, LinUCB suffers
from making the low-reward choice repeatedly before the end of the round.

The question is, can we do even better? Our idea is that the contexts xti

received during round t can be utilized to update the model before the rewards
come. That is, at time step ti, in addition to the labelled data (context, action,
reward) gathered before time step (t−1)n that LinUCB uses, the unlabelled data
(context, action) gathered at time steps {t1, t2, . . . , ti−1} can also be included
to learn a more decent model. In other words, we hope to design some semi-
supervised learning scheme within round t to guide the upper-confidence bound
algorithm towards more strategic exploration within the round.

Our idea is motivated from the regret analysis. In Sect. 4, we will show that
the regret of LinUCB under the piled-reward setting is bounded by the summa-
tion of cti,a over all time steps. But note that cti,a only depends on xti,a and

Linear UCB Algorithm for Contextual Bandit Problem with Piled Rewards 147

Algorithm 1. LinUCBPR under the piled-reward setting
1: Parameter: α ∈ R

+

2: Initialize: Â11,a ← Id, b̂11,a ← 0d×1, ŵ11,a ← Â−1
11,ab̂11,a

3: for t = 1, 2, 3, ..., T do
4: for i = 1, 2, 3, ..., n do

5: Observe xti and choose ati = argmaxa∈[K]x
�
ti
ŵti,a + α

√
x�

ti
Â−1

ti,axti

6: Calculate the pseudo reward pti,ati

7: Âti+1,ati
← Âti,ati

+ xtix
�
ti

, b̂ti+1,ati
← b̂ti,ati

+ xtipti,ati

8: ŵti+1,ati
← Â−1

ti+1,ati
b̂ti+1,ati

9: end for
10: Receive rewards rt1,at1

, rt2,at2
, ..., rtn,atn

11: for a ∈ [K] do
12: Â(t+1)1,a ← Ât1,a +

∑
ati

=a xtix
�
ti

, b̂(t+1)1,a ← b̂t1,a +
∑

ati
=a xtirti,ati

13: ŵ(t+1)1,a ← Â−1
(t+1)1,ab̂(t+1)1,a

14: end for
15: end for

Ati,a, but not the reward. That is, upon receiving xti
and choosing an action

ati
, the term cti,ati

can readily be updated without the true reward. By updat-
ing cti,ati

within the round, the algorithm can explore different actions strategi-
cally instead of following similar actions when similar contexts come repeatedly
in the same round.

This idea can be extended to the following framework. We propose to couple
each context xt1 ,xt2 , . . . ,xti−1 with a pseudo reward pτ,aτ

, where τ is the time
step, before receiving the true reward rτ,aτ

. The pseudo reward can then pretend
to be the true reward and allow the algorithm to keep updating the model
before the true rewards are received. Note that pseudo rewards have been used
to speed up exploration in the traditional CBP [4], and can encourage more
strategic exploration in our framework. We name the framework Linear Upper
Confidence Bound with Pseudo Reward (LinUCBPR). The framework updates
the weight vector and the estimated covariance matrix by

ŵti,a = argmin
w∈Rd

(‖w‖2 + ‖X(t−1)n,aw− r(t−1)n,a‖2 + ‖X̂ti−1,aw−pti−1,a‖2) (2)

Âti,a = Id + X�
(t−1)n,aX(t−1)n,a + X̂�

ti−1,aX̂ti−1,a (3)

where X̂ti−1,a is a matrix with rows being the contexts x�
τ with t1 ≤ τ ≤ ti−1

and aτ = a, and pti−1,a is a column vector with each element representing the
corresponding pseudo reward for each context in X̂ti−1,a.

When receiving the true rewards in the end of round t, we discard the change
from pseudo rewards, and use the true rewards to update model again. We show
the framework of LinUCBPR in Algorithm 1.

The only remained task is what pτ,a should be. We will study two variants,
one is to use pτ,a = r̃τ,a, the estimated reward of actions. We name the variant
LinUCBPR with estimated reward (LinUCBPR-ER). Another variant is to be

148 K.-H. Huang and H.-T. Lin

Algorithm 2. BaseLinUCB under the piled-reward setting at round t

1: Parameter: α ∈ R
+, Ψt ⊆ {11, 12, ..., (t − 1)n}

2: Āt1 ← IdK +
∑

τ∈Ψt

x̄τ,aτ x̄
�
τ,aτ

, b̄t1 ← 0dK×1 +
∑

τ∈Ψt

x̄τ,aτ rτ,aτ , w̄t1 ← Ā−1
t1

b̄t1

3: for i = 1, 2, 3, ..., n do
4: Observe xti and calculate x̄ti,1, x̄ti,2, ..., x̄ti,K

5: for a ∈ [K] do

6: widthti,a ← (1 + α)
√

x̄�
ti,aĀ

−1
t1

x̄ti,a

7: ucbti,a ← x̄�
ti,aw̄t1 + widthti,a

8: end for
9: end for

even more aggressive, and set pτ,a = r̃τ,a − βcτ,a, a lower-confidence bound of
the reward, where β is a trade-off parameter. The lower-confidence bound can be
viewed as the underestimated reward, and should allow more exploration within
the round, at the cost of more computation. We name the variant LinUCBPR
with underestimated reward (LinUCBPR-UR).

4 Theoretical Analysis

In this section, we establish the theoretical guarantee for the regret bound of Lin-
UCB and LinUCBPR-ER under the piled-reward setting. Similar to the analysis
of LinUCB in the immediate-reward setting [5], there is a difficulty. In particular,
the algorithms choose actions based on previous outcomes. Hence, the rewards
in each round are not independent random variables. To deal with this prob-
lem, we follow the approach of [5]. We modify the algorithm to a base algorithm
which assumes the independent rewards, and construct a master algorithm which
ensures that the assumption holds.

Note that [5] takes a CBP setting with one context per action instead for
our setting of the one context share by actions. To let the notation be con-
sistent with [5], we simply cast our setting as theirs by following steps. We
define a (dK)-dimensional vector ū to be the concatenation of u1,u2, ...,uK ,
and define a (dK)-dimensional context x̄τ,a per action with xτ , where x̄τ,a =
[
0 0 · · · 0 x�

τ 0 · · · 0]� with xτ being the a-th vector within the concatenation.
All X̄τ , Āτ , r̄τ , b̄τ , and w̄τ can be similarly defined from X̂τ,a, Âτ,a, rτ,a, b̂τ,a,
and ŵτ,a.

4.1 Regret for LinUCB Under the Piled-Reward Setting

Algorithm 2 lists the base algorithm for LinUCB under the piled-reward setting,
called BaseLinUCB. We first prove the theoretical guarantee of BaseLinUCB.

Let c̄ti,a =
√

x̄�
ti,aĀ

−1
t1 x̄ti,a. We can establish the following lemmas.

Linear UCB Algorithm for Contextual Bandit Problem with Piled Rewards 149

Lemma 1 (Li et al. [5], Lemma 1). Suppose the input time step set Ψt ⊆
{11, 12, ..., (t − 1)n} given to BaseLinUCB has property that for fixed con-
text x̄ti,a with ti ∈ Ψt, the corresponding rewards rti,a are independent random
variables with means x̄�

ti,aū. Then, for some α = O(
√

ln(nTK/δ)), we have with
probability at least 1 − δ/(nT) that

∣
∣x̄�

ti,aw̄ti
− x̄�

ti,aū
∣
∣ ≤ (1 + α)c̄ti,a.

Note that in Lemma 1, the bound is related to the time steps. We want the
bound to be related to the rounds, and hence establish Lemmas 2 and 3.

Lemma 2. Let ψt be a subset of {t1, t2, ..., tn}. Suppose Ψt+1 = Ψt ∪ ψt in
BaseLinUCB. Then, the eigenvalues of Āt1 and Ā(t+1)1 can be arranged so that

λt1,j ≤ λ(t+1)1,j for all j and c̄2ti,a ≤ 10
∑dK

j=1

λ(t+1)1,j−λt1,j

λt1,j
.

Proof. The proof can be done by combining Lemmas 2 and 8 in [5].

Lemma 3. Let Φt+1 = {t | t ∈ [T] and ∃ j such that tj ∈ Ψt+1}, and assume
|Φt+1| ≥ 2. Then

∑
ti∈Ψt+1

c̄ti,a ≤ 5n
√

dK |Φt+1| ln |Φt+1|.

Proof. By Lemma 2 and the technique in the proof of Lemma 3 in [5], we have

∑

ti∈Ψt+1

c̄ti,a ≤
∑

ti∈Ψt+1

√
√
√
√10

dK∑

j=1

λ(t+1)1,j − λt1,j

λt1,j

≤
∑

t∈Φt+1

n

√
√
√
√10

dK∑

j=1

λ(t+1)1,j − λt1,j

λt1,j
≤ 5n

√
dK |Φt+1| ln |Φt+1|.

We construct SupLinUCB on each round similar to [5]. Then, we borrow
Lemmas 14 and 15 of [2], and extend Lemma 16 of [2] to the following lemma.

Lemma 4. For each s ∈ [S],
∣
∣Ψs

T+1

∣
∣ ≤ 5n · 2s(1 + α)

√
dK

∣
∣Φs

t+1

∣
∣ ln

∣
∣Φs

t+1

∣
∣.

Based on the lemmas, we can then establish the following theorem for the
regret bound of LinUCB under the piled-reward setting.

Theorem 1. For some α = O(
√

ln(nTK/δ)), with probability 1 − δ, the regret

of LinUCB under the piled-reward setting is O(
√

dn2TK ln3(nTK/δ)).

150 K.-H. Huang and H.-T. Lin

Proof. Let Ψ0 = {11, 12, ..., Tn} \ ⋃
s∈[S] Ψ

s
T+1. Observing that s−s ≤ 1/

√
T ,

given the previous lemmas and Jensen’s inequality, we have

Regret =
T∑

t=1

n∑

i=1

(
E[rti,a∗

ti
] − E[rti,ati

]
)

=
∑

ti∈Ψ0

(
E[rti,a∗

ti
] − E[rti,ati

]
)

+
S∑

s=1

∑

ti∈Ψs
T+1

(
E[rti,a∗

ti
] − E[rti,ati

]
)

≤ 2√
T

∣
∣Ψ0

∣
∣ +

S∑

s=1

23−s
∣
∣Ψs

T+1

∣
∣

≤ 2√
T

∣
∣Ψ0

∣
∣ +

S∑

s=1

40n(1 + α)
√

dK
∣
∣Φs

t+1

∣
∣ ln

∣
∣Φs

t+1

∣
∣

≤ 2n
√

T + 40n(1 + α)
√

dK ln T

S∑

s=1

√∣
∣Φs

t+1

∣
∣

≤ 2n
√

T + 40n(1 + α)
√

dK ln T
√

ST .

The rest of proof is almost identical to the proof of Theorem 6 in [2]. By substitut-
ing α = O(

√
ln(nTK/δ), replacing δ with δ/(S + 1)S, substituting S = ln(nT),

and applying Azuma’s inequality, we obtain Theorem1.

Note that if we let nT = C to be a constant, the original regret bound under

the traditional setting (n = 1) in [5] is O(
√

dCK ln3(CK/δ)), while the regret

bound under the piled-reward setting is O(
√

dnCK ln3(CK/δ)), which is the
original bound multiplied by

√
n.

4.2 Regret for LinUCBPR-ER Under the Piled-Reward Setting

We first prove two lemmas for LinUCBPR-ER.

Lemma 5. After updating with the context xti
and the pseudo reward pti,a =

r̃ti,a, the estimated reward of LinUCBPR-ER is the same. That is, r̃ti+1 = r̃ti
.

Proof. Because pti,a = x�
ti
ŵti,a = r̃ti,a, xti

and pti,a will not change ŵti,a. Thus
the reward stays the same.

Lemma 6. After updating with the context xti
and the pseudo reward pti,a =

r̃ti,a, the uncertainty of LinUCBPR-ER for the context is non-increasing. That

is, for any x,
√

x�Â−1
ti+1,ax ≤

√
x�Â−1

ti,ax.

Proof. By Sherman-Morrison formula, we have

x�Â−1
ti+1,ax = x�Â−1

ti,ax − x�Â−1
ti,axti

x�
ti
Â−1

ti,ax

1 + x�
ti
Â−1

ti,axti

= x�Â−1
ti,ax −

(
x�Â−1

ti,axti

)2

1 + x�
ti
Â−1

ti,axti

.

The second term is greater than or equal to zero, and implies the lemma.

Linear UCB Algorithm for Contextual Bandit Problem with Piled Rewards 151

Similarly, we can construct BaseLinUCBPR-ER and SupLinUCBPR-ER. By
Lemma 5, we have that for each time step ti in the round t, the estimated
reward x̄�

ti,aw̄ti
= x̄�

ti,aw̄t1 does not change. Furthermore, By Lemma 6, we

have
√
x�Â−1

ti,ax ≤
√
x�Â−1

t1,ax. Hence, all lemmas we need also hold for
BaseLinUCBPR-ER. Similar to LinUCB, we can then establish the following
theorem. The proof is almost identical to Theorem 1.

Theorem 2. For some α = O(
√

ln(nTK/δ)), with probability 1 − δ, the regret

of LinUCBPR-ER under the piled-reward setting is O(
√

dn2TK ln3(nTK/δ)).

5 Experiments

We apply the proposed algorithms on both artificial and real-world datasets to
justify that using pseudo-rewards is useful. In addition, we follow [1], and take
the simple supervised-to-contextual-bandit transformation [7] on 8 multi-class
datasets to evaluate our idea.

Artificial Datasets. For each artificial dataset, we first sample unit vectors
u1,u2, ...,uK uniformly from R

d to simulate the K actions. In each round t,
the context xti

is sampled from an uniform distribution within ‖xti
‖ ≤ 1. The

reward is generated by rti,ati
= u�

ati
xti

+ εti
, where εti

∈ [−0.05, 0.05] is a
uniform random noise. In the experiments, we let nT = 50000 to be a constant,
and consider parameters d ∈ {10, 30}, K ∈ {50, 100}, and n ∈ {500, 1000}.

Table 1. ACR on artificial datasets (mean ± std)

d = 10 d = 30
K = 50 K = 100 K = 50 K = 100

n = 500 n = 1000 n = 500 n = 1000 n = 500 n = 1000 n = 500 n = 1000

Ideal
0.6607 0.6607 0.7061 0.7061 0.3930 0.3930 0.4252 0.4252

±0.0002 ±0.0002 ±0.0002 ±0.0002 ±0.0002 ±0.0002 ±0.0002 ±0.0002

ε-Greedy
0.6265 0.6329 0.6317 0.6538 0.3566 0.3690 0.3537 0.3739

±0.0030 ±0.0016 ±0.0043 ±0.0030 ±0.0030 ±0.0014 ±0.0022 ±0.0026

LinUCB
0.6555 0.6513 0.6866 0.6868 0.3905 0.3880 0.4188 0.4164

±0.0004 ±0.0005 ±0.0011 ±0.0011 ±0.0003 ±0.0004 ±0.0007 ±0.0004
LinUCB
PR-ER

0.6591 0.6535 0.7000 0.7040 0.3917 0.3896 0.4227 0.4224
±0.0001 ±0.0002 ±0.0012 ±0.0003 ±0.0002 ±0.0002 ±0.0004 ±0.0004

LinUCB
PR-UR

0.6586 0.6533 0.6978 0.7027 0.3911 0.3887 0.4210 0.4215
±0.0001 ±0.0001 ±0.0011 ±0.0003 ±0.0002 ±0.0002 ±0.0002 ±0.0003

QPM-D
0.6552 0.6502 0.6925 0.6860 0.3897 0.3871 0.4172 0.4123

±0.0003 ±0.0004 ±0.0010 ±0.0013 ±0.0003 ±0.0003 ±0.0007 ±0.0010

We compare the performance of ε-Greedy, LinUCB, LinUCBPR-ER and
LinUCBPR-UR under the piled-reward setting. We also compare Queued Partial
Monitoring with Delays (QPM-D) [9], which uses a queue to handle arbitrarily-
delay rewards. Furthermore, we consider an “ideal” LinUCB under the tradi-
tional setting (n = 1) to study the difference between the traditional setting

152 K.-H. Huang and H.-T. Lin

Table 2. Datasets

Dataset D K

shuttle 9 7

poker 10 10

pendigits 16 10

letter 16 26

satimage 36 6

acoustic 50 3

covtype 54 7

usps 256 10

Table 4. t-test at 95% confidence level (win/tie/loss)

Algorithm Competitor
ε-Greedy LinUCB LinUCB PR-ER LinUCB PR-UR QPM-D

ε-Greedy – 0/0/8 0/0/8 0/0/8 0/0/8

LinUCB 8/0/0 – 0/1/7 2/4/2 1/6/1

LinUCBPR-ER 8/0/0 7/1/0 – 5/3/0 6/2/0

LinUCBPR-UR 8/0/0 2/4/2 0/3/5 – 2/5/1

QPM-D 8/0/0 1/6/1 0/2/6 1/5/2 –

Table 3. ACR on supervised-to-contextual-bandit datasets (mean ± std)

shuttle poker pendigits letter satimage acoustic covtype usps

Ideal
0.9373 0.4866 0.8929 0.6271 0.8344 0.7216 0.6987 0.9358

±0.0005 ±0.0075 ±0.0056 ±0.0117 ±0.0014 ±0.0006 ±0.0020 ±0.0012

ε-Greedy
0.8844 0.4766 0.8667 0.4746 0.8062 0.6992 0.6736 0.9009

±0.0092 ±0.0086 ±0.0058 ±0.0247 ±0.0024 ±0.0012 ±0.0035 ±0.0023

LinUCB
0.9168 0.4863 0.8876 0.5696 0.8225 0.7103 0.6888 0.9192

±0.0068 ±0.0087 ±0.0043 ±0.0176 ±0.0016 ±0.0016 ±0.0039 ±0.0017
LinUCB
PR-ER

0.9200 0.4865 0.8901 0.6053 0.8236 0.7112 0.6915 0.9221
±0.0029 ±0.0046 ±0.0019 ±0.0137 ±0.0022 ±0.0007 ±0.0021 ±0.0011

LinUCB
PR-UR

0.9170 0.4846 0.8872 0.6017 0.8189 0.7099 0.6913 0.9179
±0.0027 ±0.0107 ±0.0043 ±0.0167 ±0.0045 ±0.0021 ±0.0014 ±0.0025

QPM-D
0.9166 0.4860 0.8844 0.5585 0.8221 0.7101 0.6915 0.9185

±0.0046 ±0.0033 ±0.0044 ±0.0225 ±0.0024 ±0.0012 ±0.0013 ±0.0018

and the piled-reward setting. The parameters of algorithms are selected by grid
search, where α, β ∈ {0.05, 0.10, ..., 1.00} and ε ∈ {0.025, 0, 05, ..., 0.1}. We run
the experiment 20 times and show the average cumulative reward (ACR), which
is the cumulative reward over the number of time steps, in Table 1. From the
table, Ideal LinUCB clearly outperforms others. This verifies that the piled-
reward setting introduces difficulty in applying upper-confidence bound algo-
rithms. It also echoes the regret bound in Sect. 4, where LinUCB under the piled-
reward setting suffers some penalty when compared with the original bound.

Next, we focus on the influence of the pseudo rewards. LinUCBPR-ER and
LinUCBPR-UR are consistently better than LinUCB on all datasets. Figures 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.45

0.5

0.55

0.6

0.65

0.7

d=10, K=100, n=500

normalized rounds

A
C

R

Ideal
ε−Greedy
LinUCB
LinUCBPR−ER
LinUCBPR−UR
QMP−D

Fig. 1. ACR versus round

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
500

1000

1500

2000

2500

3000

3500

4000

4500

5000
d=10, K=100, n=500

normalized rounds

re
gr

et

Ideal
ε−Greedy
LinUCB
LinUCBPR−ER
LinUCBPR−UR
QMP−D

Fig. 2. Regret versus round

Linear UCB Algorithm for Contextual Bandit Problem with Piled Rewards 153

and 2 respectively depict the ACR and the regret along normalized rounds, which
is t/T , when d = 10, K = 100, and n = 500. Note that LinUCBPR algorithms
enjoy an advantage in the early rounds. This is because the exploration is gener-
ally more important than the exploitation in the early rounds, and LinUCBPR
algorithms encourage more strategic exploration by using pseudo rewards.

We take ε-Greedy to compare the effect of conducting exploration within
the round based on randomness rather than pseudo rewards. Table 1 suggests
LinUCBPR algorithms reach much better performance, and justifies the effec-
tiveness of the strategic exploration. We also compare LinUCBPR algorithms
with QPM-D. Table 1 shows that LinUCBPR algorithms are consistently better
than QPM-D. The results again justify the superiority of LinUCBPR algorithms.

LinUCBPR-ER and LinUCBPR-UR perform quite comparably across all
datasets. The results suggest that we do not need to be more aggressive than
LinUCBPR-ER. The simple LinUCBPR-ER, which can be efficiently imple-
mented by updating Ati,a only, can readily reach decent performance.

Supervised-to-Contextual-Bandit Datasets. Next, we take 8 public multi-
class datasets1 (Table 2). We randomly split each dataset into two parts: 30 % for
parameter tuning and 70 % for testing. For each part, we repeatedly present the
examples as an infinite data stream. We let nT = 10000 for parameter tuning
and nT = 30000 for testing. We consider n = 500 for all datasets. The parameter
setting is the same as the one for artificial datasets.

Table 3 shows the average results of 20 experiments. LinUCBPR-ER is consis-
tently better than others, and LinUCBPR-UR is competitive with others. The
results again confirm that LinUCBPR algorithms are useful under the piled-
reward setting, and also again confirm that LinUCBPR-ER to be the best algo-
rithm. We further compare these algorithms with a two-sample t-test at 95 %
confidence level in Table 4. The results demonstrate the significance of the strong
performance of LinUCB-ER.

Real-World Datasets. Finally, We use two real-world datasets R6A and R6B
released by Yahoo! to examine our proposed algorithms. The datasets are the
only two public datasets for the CBP to the best of our knowledge. They first
appear in ICML 2012 workshop on New Challenges for Exploration and Exploita-
tion 3 and also appear in [10]. They are about the news article recommendation.

Note that the action set of the two datasets are dynamic. To deal with this,
we let algorithms maintain a weight vector wti,a for each action. The dimensions
of the contexts for R6A and R6B are 6 and 136 separately. The rewards for both
datasets are in {0, 1}, which represent the clicks from users. We note that in
R6B, there are some examples that do not come with valid contexts. Hence we
remove these examples and form a new dataset, R6B-clean. We use click through
rate (CTR) to evaluate the algorithms, and use the technique described in [11]
to achieve an unbiased off-line evaluation.

1 available from http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

154 K.-H. Huang and H.-T. Lin

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.04

0.045

0.05

0.055

0.06

0.065

0.07

normalized rounds

C
T

R

ε−Greedy
LinUCB
LinUCBPR−ER
LinUCBPR−UR
QMP−D

(a) R6A

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.04

0.045

0.05

0.055

0.06

0.065

normalized rounds

C
T

R

ε−Greedy
LinUCB
LinUCBPR−ER
LinUCBPR−UR
QMP−D

(b) R6B

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

normalized rounds

C
T

R

ε−Greedy
LinUCB
LinUCBPR−ER
LinUCBPR−UR
QMP−D

(c) R6B-clean

Fig. 3. CTR versus round on real-world datasets

We split the datasets into two parts: parameter tuning part and testing part.
For R6A, we let nT = 10000 for parameter tuning and nT = 300000 for testing.
For R6B and R6B-clean, we let nT = 10000 for parameter tuning and nT =
100000 for testing. We consider n = 500 for each dataset. The parameter setting
is the same as the one for artificial datasets.

Figures 3 shows the experiment results. Unlike the results of artificial
datasets, the CTR curve is non-monotonic. This is possibly because the action
set is dynamic, and the better actions may disappear from the action set in the
middle, which leads to some dropping of CTR.

LinUCBPR algorithms and QPM-D usually perform better than LinUCB and
ε-Greedy in these datasets. LinUCBPR-ER is stable among the better choices,
while LinUCBPR-UR and QPM-D can sometimes be inferior. The results again
suggest LinUCBPR-ER to be a promising algorithm for the piled-reward setting.

6 Conclusion

We introduce the contextual bandit problem under the piled-reward setting and
show how to apply LinUCB to this setting. We also propose a novel algorithm,
LinUCBPR, which uses the pseudo reward to encourage strategic exploration to
utilize received contexts that are temporarily without rewards. We prove a regret
bound for both LinUCB and the LinUCBPR with estimated reward (-ER), and
discuss how the bound compares with the original bound. Empirical results show
that LinUCBPR perform better in early time steps, and is competitive in the
long term. Most importantly, LinUCBPR-ER yields promising performance on
all datasets. The results suggest LinUCBPR-ER to be the best choice in practice.

Acknowledgements. We thank the anonymous reviewers and the members of the
NTU CLLab for valuable suggestions. This work is partially supported by the Ministry
of Science and Technology of Taiwan (MOST 103-2221-E-002 -148 -MY3) and Asian
Office of Aerospace Research and Development (AOARD FA2386-15-1-4012).

Linear UCB Algorithm for Contextual Bandit Problem with Piled Rewards 155

References

1. Agarwal, A., Hsu, D., Kale, S., Langford, J., Li, L., Schapire, R.E.: Taming the
monster: a fast and simple algorithm for contextual bandits. In: ICML, pp. 1638–
1646 (2014)

2. Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. J. Mach.
Learn. Res. 3, 397–422 (2003)

3. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

4. Chou, K.C., Chiang, C.K., Lin, H.T., Lu, C.J.: Pseudo-reward algorithms for con-
textual bandits with linear payoff functions. In: ACML, pp. 344–359 (2014)

5. Chu, W., Li, L., Reyzin, L., Schapire, R.E.: Contextual bandits with linear payoff
functions. In: AISTATS, pp. 208–214 (2011)

6. Dud́ık, M., Hsu, D., Kale, S., Karampatziakis, N., Langford, J., Reyzin, L., Zhang,
T.: Efficient optimal learning for contextual bandits. In: UAI, pp. 169–178 (2011)

7. Dud́ık, M., Langford, J., Li, L.: Doubly robust policy evaluation and learning. In:
ICML, pp. 1097–1104 (2011)

8. Guha, S., Munagala, K., Pal, M.: Multiarmed bandit problems with delayed feed-
back, arxiv:1011.1161 (2010)

9. Joulani, P., György, A., Szepesvári, C.: Online learning under delayed feedback.
In: ICML, pp. 1453–1461 (2013)

10. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to
personalized news article recommendation. In: WWW, pp. 661–670 (2010)

11. Li, L., Chu, W., Langford, J., Wang, X.: Unbiased offline evaluation of contextual-
bandit-based news article recommendation algorithms. In: WSDM, pp. 297–306
(2011)

12. Mandel, T., Liu, Y.E., Brunskill, E., Popovic, Z.: The queue method: handling
delay, heuristics, prior data, and evaluation in bandits. In: AAAI (2015)

13. Wang, C.C., Kulkarni, S.R., Poor, H.V.: Bandit problems with side observations.
IEEE Trans. Autom. Control 50(3), 338–355 (2005)

http://arxiv.org/abs/1011.1161

	Linear Upper Confidence Bound Algorithm for Contextual Bandit Problem with Piled Rewards
	1 Introduction
	2 Preliminaries
	3 Proposed Algorithm
	4 Theoretical Analysis
	4.1 Regret for LinUCB Under the Piled-Reward Setting
	4.2 Regret for LinUCBPR-ER Under the Piled-Reward Setting

	5 Experiments
	6 Conclusion
	References

