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Abstract. Finding genes associated with human genetic disorders is
one of the most challenging problems in bio-medicine. In this context,
to guide researchers in detecting the most reliable candidate causative-
genes for the disease of interest, gene prioritization methods represent a
necessary support to automatically rank genes according to their involve-
ment in the disease under study. This problem is characterized by highly
unbalanced classes (few causative and much more non-causative genes)
and requires the adoption of cost-sensitive techniques to achieve reli-
able solutions. In this work we propose a network-based methodology
for disease-gene prioritization designed to expressly cope with the data
imbalance. Its validation over a benchmark composed of 708 selected
medical subject headings (MeSH) diseases, shows that our approach is
competitive with state-of-art methodologies, and its reduced time com-
plexity makes its application feasible on large-size datasets.

Keywords: Gene-disease prioritization · Graph-based node ranking ·
Cost-sensitive learning

1 Introduction

Linkage studies for determining relevant genes for specific human diseases
can point to a genomic region containing hundreds of genes, while the high-
throughput sequencing approach will often identify a great number of non-
synonymous genetic variants. Although the detection of potentially deleterious
variants can be easily automated, this can often result in the identification of
thousands candidate disease genes. Since the experimental verification of an indi-
vidual gene can be both difficult and time consuming, an efficient way to reduce
the validation cost is to narrow down the large list of candidate genes to a small
and manageable set of promising genes; a process called gene prioritization (GP).

As manual examination of biological databases in order to select the most
promising causative genes for the disease of interest has been only partially
successful, since the selection is based solely on the subjective impressions of
the researcher and genetic disorders often involve several primarily responsible
genes, various computational GP methods have been proposed for this purpose.
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Earlier works [1] investigated gene-diseases associations based on gene expres-
sion profiles or genome wide association studies (GWAS). Genome-wide associ-
ation studies identify genes involved in human disease by searching the genome
for small variations, called single nucleotide polymorphisms (SNPs), that occur
more frequently in people with a particular disease than in healthy people. Each
study can look at hundreds or thousands of SNPs at the same time. However,
this approach tends to produce many false positive results, and the experimental
validation of these candidate genes, for instance through resequencing, pathway
or expression analysis, is still expensive and time consuming [2].

For these reasons other GP approaches have been investigated, such as guilt-
by-association (GBA), in which candidate disease genes are ranked by exploit-
ing the assumption that similar genes tend to share similar diseases [3]. The
input of these methods is represented by gene networks, in which nodes repre-
sent genes and connections encode precomputed functional relationships among
genes, such as common functional annotations (e.g. Gene Ontology annotations
[4]), transcriptional co-expression regulation, direct molecular interactions [5]. In
this context, many approaches have been adopted to compute the GP ranking,
ranging from protein-protein interaction network analysis and semi-supervised
graph partitioning [5], to flow propagation [6], and random walks [7].

To improve the accuracy of GP methods, recent studies have investigated
the advantage of integrating multiple data sources, including expression profiles,
SNP genotype data, expression quantitative trait loci, functional profiles, and
network-based sources, such as gene-chemical networks, protein complexes and
genetics/physical interactions [8]. A general approach in data source integration
ranks each candidate gene according to each individual data source using various
metrics, and then combine ranks from all data sources by using order statistics
to obtain an overall rank [3]. For network-based integration approaches, a con-
sensus network is constructed by combining the structure and the characteristics
of each network, through different network integrating strategies [9]. The con-
sensus network tends to provide better signal-to-noise ratio and complementary
information about genes, thus leading to an improvement in prediction accuracy
in most of cases [9,10].

Apart from the disadvantages and the benefits discussed above for each dif-
ferent approach, the main drawback shared by the above-mentioned GP meth-
ods is that they completely neglect the class imbalance problem characterizing
GP: there are much fewer causative genes (the positive instances) than non-
causative ones (the negative instances). For instance, around 40% (10/09/15
update) of known genetic diseases in the OMIM (Online Mendelian Inheritance
in Man) database have still fewer or almost none established gene-disease asso-
ciations [11]. Computational methodologies usually suffer from a drastic per-
formance deterioration in case of imbalance classes, since algorithms tend more
to focus on the classification of major class samples while ignoring or misclas-
sifying minority class samples [12]. Unfortunately, in our context the minority
class carries almost all the information we have about the disease under study,
and this makes necessary the adoption of specifically designed imbalance-aware
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machine learning algorithms, often referred to as cost-sensitive. For instance,
cost-sensitive techniques obtained successful result in similar contexts, e.g. in
the protein function prediction [13,14].

Here we propose a novel network-based approach for detecting disease-gene
association which aims at coping with the label imbalance by ‘transforming’ the
input network so as to effectively represent the label imbalance, and by applying
cost-sensitive methodologies on the obtained network representation. In partic-
ular, our procedure can be summarized as follows: (1) by following the approach
proposed in [15], the input network is projected onto a bidimensional space,
where each labeled input node corresponds to a labeled point whose coordinates
depend on its positive and negative neighborhood in the input network, respec-
tively; (2) the obtained couple of coordinates/features for each point are given in
input to a cost-sensitive family of regressors to learn an cost-sensitive model to
rank the unlabeled nodes. The node projection at Step 1 embeds the imbalance
between positive and negative genes at each neighborhood in the corresponding
point position. Moreover, working with just two features makes the Step 2 of our
procedure very fast, thus allowing our method to efficiently handle large data
sets. Finally, the method in general enough to include strategies for integrat-
ing heterogeneous network sources in a dedicated preprocessing step, so as to
exploit the benefit of working with more reliable and informative networks. We
experimentally validated our method on a public benchmark data set for GP,
including almost nine thousands of human genes and around seven hundreds
diseases collected from the Medical Subject Headings database1.

The paper is organized as follows: in Sect. 2 we formalize the problem, while
Sect. 3 is devoted to describe both the gene networks and the network inte-
gration techniques adopted in the benchmark experimental setting. In Sect. 4 we
introduce our proposed two-step procedure; then in Sect. 5 we check its effective-
ness by comparing its performance with state-of-the-art methodologies. Finally,
Sect. 6 concludes the paper.

2 Problem Setting

The disease-gene prioritization problem can be seen as a semi-supervised bipar-
tite ranking problem on undirected graphs [16]. Specifically, a gene network
can be represented through an undirected weighted graph G = (V,W ), where
V = {1, 2, . . . , n} is the set of vertices corresponding to genes, and W is the n×n
weight matrix, where each element Wij ∈ [0, 1] represents some notion of func-
tional similarity between vertices i and j. Vertices in V can be partitioned into
two subsets: S ⊂ V containing instances labeled according to a specific MeSH
subject heading, and its complement U = V \ S, including unlabeled instances
and therefore representing the object of our inference. As for the former, the set
of positive/negative instances are denoted respectively with S+ and S−.

The taskwe are called to solve consists in learning a ranking functionφ : U → R

that assigns values to future positive instances higher than to negative ones,
1 http://www.nlm.nih.gov/mesh.

http://www.nlm.nih.gov/mesh
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ranking therefore the former higher than the latter. From this standpoint, GP is
cast as a semi-supervised learning problem on graphs, since gene ranking can be
inferred by exploiting both labeled and unlabeled nodes (genes) and the connec-
tions among them.

To make the problem even harder, the family of graphs under investigation
is subjected to a strong imbalance between negative and positive instances, pre-
senting a strong disproportion in favor of negative labeled nodes.

3 Materials

The input connection matrix W represents a complex set of interactions or
similarities between genes and/or their products (such as proteins), obtained
as integration of several heterogeneous data sources. We adopt the bench-
mark experimental setting proposed in [9], which is composed of nine human
gene networks covering 8449 genes, and describing functional interactions, tran-
scriptional co-expression/regulation and localization, gene expression profiles,

Table 1. Gene networks used in experimental campaign.

finet Functional interaction network – A network covering 8441
selected proteins and containing protein-protein interactions
inferred by a Naive Bayes classifier [18].

hnnet Human net – Functional gene network integrating 21 large-scale
genomics and proteomics datasets from four species [19], span-
ning diverse distinct lines of evidence.

cmnet Cancer module network – Gene-gene network composed of 8849
genes, where two genes are connected if they share at least one
of the 263 biological and clinical conditions considered in [20],
collecting expression profiles in different tumors.

gcnet Gene chemical network – A network of 7649 genes constructed
starting from the genes-chemicals interactions available at the
CTD database.

dbnet BioGRID database network – A protein-protein interaction net-
work of 8449 proteins based upon direct physical and genetic
interactions obtained from BioGRID [21]

bgnet BioGRID projected network – Network obtained by: (i) con-
structing a bipartite graph exploiting interactions between genes
available in BioGRID; and (ii) inserting an edge between two
genes if they share at least one neighbor in the bipartite graph.

bpnet, mfnet, ccnet Semantic similarity-based networks – Three networks obtained
by considering the Gene Ontology terms [4] in the three
branches (biological process, molecular function, and cellular
component). Each connection weight is the maximum Rensik
semantic similarity between all the terms for which the two
genes are GO annotated.
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genes-chemicals relationships, protein-protein physical and genetic interactions,
and GO semantic similarity (see Table 1). The database also provides the asso-
ciations of such genes with 708 selected MeSH (Medical Subject Headings) dis-
eases, downloaded from the CTD database [17]. The selected MeSH disease terms
include between 5 and 200 causative genes.

3.1 Network Integration

Since the various networks have different number of genes, before their combina-
tion we extend them to the union of genes in the single networks, by filling each
network with zeros in the corresponding missing rows/columns. As done in [9],
in a pre-processing step we delete smaller edges so as to remove too small (and
putative noisy) similarities, and ensure at least one neighbor for each node.

As integration scheme we adopt the unweighted integration of single net-
works, which performed better among the unweighted schemes proposed in [9].
It is the simple average of the m available network adjacency matrices, i.e.
W ∗ =

∑m
d=1 W (d)/m. Finally, we apply to W ∗ the Laplacian normalizazion

D− 1
2 W ∗D− 1

2 , where D is a diagonal matrix Dii|ni=1, with Dii =
∑

j W ∗
ij .

We performed our experimentations on two networks: the first, called Net6
hereinafter, was obtained by integrating the six gene networks with the exclusion
of the semantic similarity-based ones; the latter (Net9) is defined as unweighted
integration of all the nine single networks reported in Table 1.

4 Methods

We decided to solve the bipartite ranking problem introduced in Sect. 2 in terms
of a generalized linear model (GLM) where the response variable, suitably thresh-
olded through the sign function, decrees the membership to either the positive
or negative class, while the predictors have been chosen so as to exploit the
nodes similarity coded in the weight matrix W . In order to keep the compu-
tational burden low and to exploit the network topology, we extract from the
input network two features2, as follows: each node i ∈ S is associated with a
point Δi = (Δ+

i ,Δ−
i ) in the plane, where

Δ+
i =

∑

j∈S+

wij , Δ−
i =

∑

j∈S−

wij (1)

Intuitively, the more node i is functionally similar to positive nodes and the
higher will be the value of its Δ+

i coordinate; analogously for the contribution
given by negative nodes to the second coordinate. Remembering the one-to-one
correspondence between genes and vertices, with this projection we hope to find
a bipartition of nodes in S which concentrates positive nodes mostly toward the
rightmost lower region of the first quadrant, and negative ones in the remaining
2 Actually the number of predictors, including the two-way interaction term (i.e. the

product of the two features), is equal to 3.
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portion of it. This network projection onto the plane, already adopted in [15],
also allows to both avoid the curse of dimensionality problem, since the projected
space has just two dimensions, and deal with the class imbalance problem, since
the projected positive and negative two-dimensional points can be associated
with different misclassification costs during the learning of the GLM.

Table 2. GLMs adopted in the experimental campaign.

LR Linear regression model. Usually disregarded in case of dichotomous
categorical dependent variables, mainly to avoid the risk of “impossi-
ble predictions” (i.e. results outside of the unit interval), we include it
in our analysis in view of both the straightforward interpretability of
its coefficients, the not negligible speed-up factor observed when large
datasets are given in input to the model, and the groundlessness of
the aforementioned risks when interactions terms are included in the
model [22].

LogR Logit regression model. Together with probit model, it is one of the widely
used regression models for binary response variables. Despite the dif-
ferent assumptions the two models make about the error distribution,
results tend to be so similar each other that preference for one over the
other model tends to vary by discipline. We opted to work with logistic
regression (whose link function reads as g(x) = log(x/(1 − x))) mainly
for the straightforward interpretation of the estimated coefficients.

CLogLR Cloglog regression model. While logit and probit are symmetric link func-
tions, the choice of a skewed link function provides a better fit to unbal-
anced data [23]. Binomial regression model with complementary log-log
link function (defined as g(x) = log(− log(1 − x))) is frequently used
when the probability of events’ occurrence is very small.

PR Poisson regression model. As an alternative to an asymmetric link func-
tion, the choice of a discrete and skewed distribution for the response
variable is often suggested [24]. Poisson regression with the canonical log
link function is widely used in case of binary outcome variables to cope
with rare events. Indeed, imbalance classification problems represent a
typical scenario to apply Poisson regression, since the main assump-
tion which the model relies on that expected value and variance of the
response variable coincide, is always (at least approximately) satisfied.

We adopted the four GLM models, described in Table 2. Within the various
cost-sensitive schemes proposed to allow regression models handling imbalance
classes [25], one of the most effective is maximum weighted likelihood estimation
[26], which consists in maximizing the sum of the log-density of each sample
item, suitably weighted by a coefficient ω ∈ R

+
0 : the higher the coefficient and

more influential will be the corresponding sample point in the overall optimiza-
tion. Here we propose two variants of the above vanilla regression models, by
introducing two weighting schemes ωa and ωb, as follows. Having denoted with
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n+ and n− respectively the number of positive and negative instances:

ωa
i =

{
1/n+ if gene i ∈ S+

1/n− otherwise
ωb
i =

{
Δ+

i /
∑

j∈S+
Δ+

j if gene i ∈ S+

1/n− otherwise
(2)

Intuitively, both schemes try to compensate the class imbalance by giving higher
weights to infrequent instances. Scheme ‘b’ breaks the flatness of positive weights
by assigning higher influence to positive nodes when they are functionally more
similar to nodes belonging to the same class. In other words, the higher is the
positive neighborhood of a positive node and the higher will be its influence in
the overall maximization process.

Summing up all possible combinations of GLMs and weight schemas, we
obtained a total of 12 models, which we refer to with the schema “[W]GP-mod
[ws]”, where WGP stands for Weighted Gene Prioritization, mod is one of the
four GLM acronyms used in Table 2, the weights schema ws ∈ {‘a’,‘b’}, and
square brackets are used to denote optional arguments.

5 Results and Discussion

In order to have a fair comparison, the experimental validation of the proposed
models follows the setting adopted in [9]. We compared our method with the
state-of-the-art techniques briefly described in Table 3, and estimated the gener-
alization performances by averaging the performances observed through the clas-
sical k-fold cross-validation (CV), with k = 5. Performances have been assessed
using both the Area Under the ROC Curve (AUC) and the Precision at different
Recall levels (PXR). Concerning the experimental campaign, as performed in [9],
firstly we run our methods on the network Net6 (see Sect. 3.1). Table 4 shows the
corresponding average AUC sorted in decreasing order. Apart from GP-PR and
GP-CLogLR, all our methods outperform the top-performing benchmark algo-
rithm (SAV t = 5). This witnesses the high informativeness of the two projected
features defined in Eq. (1) and the effectiveness of the GLM to cope with the
label imbalance at each node neighborhood. Moreover, to appreciate the benefit
of the cost-sensitive models w.r.t. the corresponding vanilla versions, we per-
formed the one-side Wilcoxon Signed Rank test between all couples of methods
within the same family to assess whether their population mean ranks differ. As
a results, we observed a meaningful increase in performance of the ‘b’ scheme
over the ‘a’ variant – confirming our initial assumption that positives, carrying
more information than negatives, should be taken into account when learning
the predictive model – and singularly of both cost-sensitive models w.r.t. their
vanilla version (p-value < 0.001). This regularity breaks down in both linear and
Poisson regressions, where scheme ‘a’ outperforms variant ‘b’ (p-value = 0.025).
We conjecture that such results are due to the convergence of GLM fitting pro-
cedures toward spurious optima in rare instances which, in turn, may be caused
by the peaked landscape of weights distribution in ‘b’ scheme. Finally, due to the
fast convergence of regression performed in the 2-dimensional projected space,
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Table 3. Competitor benchmark methods.

our method is also scalable, taking around 5 seconds to perform the entire 5-
fold CV procedure for a single MeSH disease on a Intel i7-860 CPU 2.80 GHz
machine with 16 GB of RAM.

To better investigate the improvements achieved by cost-sensitive methods,
we show in Fig. 1 the paired AUC obtained by vanilla regression and the cor-
responding cost-sensitive ‘b’ version for cloglog and logit link functions (similar
trends were obtained for all other paired comparisons – results not shown). It is
immediate to observe a large majority of bullets lying above the bisector, showing
that cost-sensitive variants achieve higher AUC values for most of the considered
MeSH diseases. Indeed, in the first two columns of Table 5 we report the propor-
tion of MeSH terms where cost-sensitive methods outperform the corresponding
vanilla ones. Such proportion ranges from 70.1% to 85.9%.

Similar AUC results are obtained when running the proposed methods over
the network Net9, as reported in Table 6. Results obtained by GBA, RW and
RWR methods are not reported in the referenced papers due to their low per-
formances. All our methods (except for GP-CLogLR) perform better than the
top-performing benchmark method (SAV t = 5). Note how the best method (GP-
CLogLR b) makes more noticeable the gain due to the adopted cost-sensitive
approach, ranking the correspondent vanilla version at thirteenth place. The
Wilcoxon Signed Rank test confirms the results observed for the network Net6,
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Table 4. Average AUC across MeSH terms on the network Net6.

Method AUC Method AUC Method AUC

WGP-CLogLR b 0.8777 RWR θ = 0.6 0.8565 SkNN t = 1, k = 19 0.8138

WGP-LogR b 0.8767 GP-PR 0.8563 RW t = 3 0.7937

WGP-CLogLR a 0.8762 SAV t = 2 0.8562 RW t = 5 0.7773

WGP-LR b 0.8757 SAV t = 10 0.8548 RW t = 10 0.7720

WGP-LR a 0.8748 SAV t = 1 0.8538 SkNN t = 10, k = 3 0.7636

WGP-LogR a 0.8737 RWR θ = 0.6 0.8533 SkNN t = 5, k = 3 0.7405

GP-LR 0.8705 SkNN t = 10, k = 19 0.8374 SkNN t = 3, k = 3 0.7332

WGP-PR a 0.8680 GP-CLogLR 0.8365 SkNN t = 2, k = 3 0.7304

WGP-PR b 0.8665 GBA 0.8313 SkNN t = 1, k = 3 0.7280

GP-LogR 0.8648 SkNN t = 5, k = 19 0.8251 SNN t = 10 0.7251

SAV t = 5 0.8596 SkNN t = 3, k = 19 0.8199 SNN t = 5 0.7020

SAV t = 3 0.8580 RW t = 2 0.8186 SNN t = 3 0.6968

RW t = 1 0.8566 SkNN t = 2, k = 19 0.8170 SNN t = 2 0.6950

SNN t = 1 0.6934

Fig. 1. Paired AUC comparison between cost-sensitive ‘b’ schema and the correspond-
ing vanilla version for: (a) cloglog and (b) logit link functions.

Table 5. Proportion of wins (in terms of AUC) of cost-sensitive vs. cost-insensitive
methods, observed over all the considered MeSH terms.

Network Net6 Network Net9

WGP a WGP b WGP a WGP b

GP-LR 0.701 0.709 0.688 0.756

GP-LogR 0.743 0.804 0.441 0.579

GP-CLogLR 0.833 0.859 0.610 0.638

GP-PR 0.768 0.732 0.513 0.535
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Table 6. Average AUC across MeSH terms on the network Net9.

Method AUC Method AUC Method AUC

WGP-CLogLR b 0.8897 GP-PR 0.8877 SkNN t = 5, k = 19 0.8500

WGP-LR b 0.8895 GP-LR 0.8860 SkNN t = 3, k = 19 0.8413

WGP-CLogLR a 0.8894 SAV t = 5 0.8831 SkNN t = 2, k = 19 0.8368

WGP-LogR b 0.8890 GP-CLogLR 0.8827 SkNN t = 1, k = 19 0.8322

WGP-LR a 0.8889 SAV t = 3 0.8811 SNN t = 10 0.7437

GP-LogR 0.8889 SAV t = 2 0.8792 SNN t = 5 0.7106

WGP-PR b 0.8884 SAV t = 1 0.8765 SNN t = 3 0.7014

WGP-PR a 0.8884 SAV t = 10 0.8761 SNN t = 2 0.698

WGP-LogR a 0.8881 SkNN t = 10, k = 19 0.8665 SNN t = 1 0.695

with some exceptions. Firstly, we observe no meaningful differences between both
the two cost-sensitive variants of the Poisson model, and ‘a’ schema with its naive
version (p-value > 0.05). Moreover, the only model privileging the vanilla vari-
ant w.r.t. its ‘a’ schema counterpart is the logistic one (p-value < 0.001). The
exceptional nature of such an event is confirmed by the entries reported in the
last two columns of Table 5: despite the less pronounced proportion of wins of
cost-sensitive methods over their cost-insensitive variants than those observed
for network Net6, six out of eight entries still shows a remarkable disproportion
in favor of cost-sensitive schemas.

Fig. 2. Performance distribution of the proposed methods across MeSH terms for:
(a) network Net6, and (b) network Net9. Box colors depict the performance ranking of
each method, as explained by the legend reported below the graphs. In such setting,
boxes sharing the same colors represent indistinguishable methods.

To better analyse the AUC distributions over MeSH diseases, in Fig. 2 we
report the box-and-whiskers plot of all proposed methods. Boxes are colored so
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as to reflect the ranking of the methods, obtained by performing all pairwise
comparisons under the one-side Wilcoxon Signed Rank test. Models sharing the
same color represent maximal sets of indistinguishable methods under the above
test with 0.05 significance level. The darker the color, the worst is the ranking, as
shown in the legend under the picture. In particular, all methods ranking fourth
downward are joined together in the same class, for the sake of visualization.
Apart from the already discussed over-performance of cost-sensitive methods, we
appreciate both a smaller variance and a reduced presence of outliers (not shown
in the pictures). It is worth noting the marked skewness toward lower AUC values
in all experiments, as confirmed by the fact that the means of AUC distributions
(black markers in the pictures) are always lower than their medians (depicted
with notches). Evaluating performances through means, as done in Tables 4
and 6, strongly penalizes all methods, being mean values strongly affected by
the presence of outliers having low AUC values. To guarantee a fair comparison
with benchmark results, we still make use of such estimator, noting that median
values give a more informative and less biased view of the overall performances.

Fig. 3. PXR levels achieved on the network: (a) Net6, and (b) Net9.

We conclude this analysis by showing in Fig. 3 the PXR results for recall
levels ranging from 0.1 to 1, with steps of 0.1. Undoubtedly, the performances
of the proposed methods are very close each others; for this reason, for the sake
of readability, we report just the results for vanilla and cost-sensitive ‘b’ scheme
methods, since ‘a’ scheme achieves almost indistinguishable results. To better
appreciate the advantage of working with cost-sensitive methods, we use a light
gray level for all vanilla methods, and a dark gray one for their cost-sensitive
variants. Apart from the slight but always remarkable behavior of the latter, we
observe a noticeable gain w.r.t. SAV t = 2, the only method of which authors
published the PXR performances, with the exception of precision value at a recall
level of 0.1 in picture (b), where light and dark gray lines are almost overlapped,
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apart from GP-LR method which performs slightly worse. Note that in Fig. 3(a),
vanilla methods tend to be more accurate for lower levels of recall. Nevertheless,
for all the remaining recall values, in particular in the range [0.3, 1], cost-sensitive
methods always outperform cost-insensitive ones.

6 Conclusions

In this work we propose a novel approach for gene-disease prioritization which
is specifically designed to deal with imbalanced data, such as those character-
izing databases of seed genes for known human diseases. We have shown that
imbalance-aware methods can noticeably improve the performance in detecting
gene-disease associations, evaluating the effectiveness of the proposed approach
on a larged sized benchmark for gene prioritization problem. Future works will
be devoted to exploit the hierarchical contribution coming from ontologically
related gene classes.
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