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Abstract. Computer models have become valuable tools for the study
and comprehension of the complex phenomena of cardiac electrophysiol-
ogy. However, the high complexity of the biophysical processes translates
into complex mathematical and computational models. In this paper we
evaluate a hybrid multicore and graphics processing unit numerical algo-
rithm based on mesh adaptivity and on the finite volume method to cope
with the complexity and to accelerate these simulations. This is a very
attractive approach since the electrical wavefront corresponds to only a
small fraction of the cardiac tissue. Usually, the numerical solution of
the partial differential equations that model the phenomenon requires
very fine spatial discretization to follow the wavefront, which is approxi-
mately 0.2 mm. The use of uniform meshes leads to high computational
cost as it requires a large number of mesh points. In this sense, the tests
reported in this work show that simulations of three-dimensional models
of cardiac tissue have been accelerated by more than 626 times using
the adaptive mesh algorithm together with its parallelization, with no
significant loss in accuracy.

1 Introduction

The phenomenon of electric propagation in the heart comprises a set of complex
non-linear biophysical processes. Its multi-scale nature spans from nanometre
processes such as ionic movements and protein dynamic conformation, to cen-
timetre phenomena such as whole heart structure and contraction.

Computer models [4] have become valuable tools for the study and compre-
hension of such complex phenomena, as they allow different information acquired
from different physical scales and experiments to be combined to generate
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a better picture of the whole system functionality. Not surprisingly, the high
complexity of the biophysical processes translates into complex mathematical
and computational models. The modern cardiac models are described by non-
linear systems of partial differential equations (PDE) coupled to a non-linear set
of ordinary differential equations (ODE) resulting in a problem with millions of
variables and hundreds of parameters.

The bidomain model [14] is considered to be the most complete description
of the electrical activity in cardiac tissue. Under suitable assumptions the bido-
main equations (a non-linear system of PDEs) may be reduced to a simpler
model, called monodomain, which is less computationally demanding. Unfortu-
nately, large scale simulations, such as those resulting from the discretization of
an entire heart, still a computational challenge. In spite of the difficulties and
the complexity associated with the implementation and use of these models, the
benefits and applications justify their use. Computer models have been used
during the tests of new drugs, development of new medical devices, new tech-
niques of non-invasive diagnosis for several cardiac disease, cardiac arrhythmia,
reentry, fibrillation or defibrillation and have been the research topic of many
studies [2,7,11].

In the simulations of cardiac electrophysiology, the electrical wave front that
travels through the heart is very sharp. Due to this sharp spatial variation
the numerical methods need fine spatial discretizations to follow the wavefront,
which is approximately 0.2 mm [5], to ensure sufficiently accurate results. The
execution of cardiac simulations on meshes with a large number of nodes is com-
putationally expensive as it requires repeated solutions of linear systems with
millions degrees of freedom. In addition, the memory requirements of such sim-
ulations become increasingly large. The use of adaptive mesh methods provides
a solution to these problems. By maintaining the extremely fine resolution only
where it is needed (i.e., near the wavefront) the number of degrees of freedom is
significantly reduced, resulting in faster computations, lower memory usage and
reducing the need for disk space for the recording of the output files.

In this paper we extend the parallel accelerated adaptive mesh algorithm, pre-
sented in [9] by making the following improvements: 1. extension of the math-
ematical formulation to be able to make simulations using three-dimensional
meshes; 2. inclusion of a graphics processing unit (GPU) parallel implementa-
tion to solve the system of ODEs; 3. inclusion of a pre-conditioner for solving
the linear system associated to the PDE.

2 Monodomain Model

The wave of excitation propagates through the cardiac tissue because the car-
diac cells are electrically coupled via special proteins called gap junctions. This
phenomenon can be described mathematically by a reaction-diffusion equation
called monodomain model, given by

βCm
∂V (x, y, t)

∂t
+ βIion(V (x, y, t), η(x, y, t)) = ∇ · (σ(x, y)∇V (x, y, t)) + Istim(x, y, t)

(1)
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∂η(x, y, t)

∂t
= f (V (x, y, t), η(x, y, t)), (2)

where V is the variable of interest and represents the transmembrane potential,
i.e. the difference between intracellular to extracellular potential; η is a vector of
state variables that also influence the generation and propagation of the electric
wave, and usually includes the intracellular concentration of different ions (K+,
Na+, Ca2+) and the permeability of different membrane ion channels; β is the
surface-volume ratio of heart cells; Cm is the membrane capacitance, Iion the
total ionic current, which is a function of V and η, Istim is the current due to
an external stimulus and σ is the monodomain conductivity tensor. We assume
that the boundary of the tissue is isolated, i.e., no-flux boundary conditions
(n · σ∇V = 0 on ∂Ω) are imposed.

In this work, two cell models from distinct species with different levels of
complexity were considered to simulate the kinetics of the reaction term Iion

in Eq. 2. The Bondarenko et al. model [3] that describes the electrical activity
of left ventricular cells of mice and the ten Tusscher-Panfilov model for human
ventricular tissue [16]. The Bondarenko et al. model (BDK) model consists of
the sum of 15 transmembrane currents. In short, Bondarenko’s model is based
on a system of ODEs with 41 differential variables that control ionic currents
and cellular homeostasis. In this model most of the ion channels are represented
by Markov chains (MCs). The ten Tusscher-Panfilov (TT2) model has 19 state
variables which are described by ODEs, and it also describes the intracellu-
lar calcium concentration and conductances of the ionic channels. A complete
description of the currents, the equations and parameters of the BDK and TT2
can be found in [3,16] respectively.

2.1 Finite Volume Model Applied to Monodomain

In this section we will make a brief description of the Finite Volume Method
(FVM) applied to the monodomain equations. Details about the FVM applied
to monodomain for two-dimensional problems can be found in [9,10].

The reaction and diffusion part of the monodomain equations can be split by
employing the Godunov operator splitting. Each time step involves the solution
of two different problems: a nonlinear system of ODEs

∂V

∂t
=

1
Cm

[−Iion(V, ηi) + Istim] (3)

∂ηi

∂t
= f(V, ηi) (4)

and a parabolic linear PDE

∂V

∂t
=

1
βCm

[∇ · (σ∇V )] (5)

The spatial discretization of the parabolic PDE results in a linear system of
equations that has to be solved at each time step.
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Time Discretization. The time derivative present in Eq. (5), which operates
on V is approximated by an implicit first-order Euler scheme:

∂V

∂t
=

V n+1 − V n

Δt
, (6)

where V n represents the transmembrane potential at time tn and Δt the time
step.

Space Discretization. The diffusion term of Eq. (5) needs to be spatially dis-
cretized. To do this we will consider the following relations:

J = −σ∇V (7)

where J (µA/cm2) represents the density of the intracellular current flow and

∇ · J = −Iv. (8)

In this expression, Iv(µA/cm3) is a volumetric current and corresponds to the
left side of Eq. (5).

For simplicity, we will consider a tri-dimensional uniform mesh, consisting of
cubes (called “Volumes”). Situated in the center of each volume is a node and
the transmembrane potential V is associated with each node of the mesh.

After defining the geometry of the mesh and the partitioning of the domain
in control volumes, the FVM-specific equations can be presented. Equation (8)
can be integrated spatially over a specific cube, leading to:

∫
Ω

∇ · Jda = −
∫

Ω

Iv da. (9)

applying the divergence theorem, we find that
∫

Ω

∇ · Jda =
∫

∂Ω

J · n, (10)

where n is the vector normal to the surface.
Finally, assuming that Iv represents an average value in each particular cube,

and using Eq. (5), we have the following relationship:

β

(
Cm

∂V

∂t

) ∣∣∣∣
(i,j,k)

=
− ∫

∂Ω
J · n

h3
, (11)

where h3 is the volume of the control cell and n represents the vector normal to
the surface.

For the three-dimensional problem, formed by a uniform grid of cubes with
face area h2, the calculation of J can be split as the sum of the flows on the six
faces: ∫

∂Ω

J · n = h2 ·
6∑

l=1

Jl (12)
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where,

6∑
l=1

Jl = Jxi+1/2,j,k − Jxi−1/2,j,k + Jyi,j+1/2,k − Jyi,j−1/2,k

+ Jzi,j,k+1/2 − Jzi,j,k−1/2 ,

The tensor σ = diag[σx, σy, σz] must be determined at the interfaces of the
volume. For this, we use the harmonic mean:

σxi+1/2,j,k =
2σxi,j,k

σxi+1,j,k

σxi+1,j,k + σxi,j,k

(13)

A similar reasoning can be used to calculate σxi−1/2,j,k , σyi,j+1/2,k , σyi,j−1/2 ,
σzi,j,k+1/2 and σzi,j,k−1/2 .

The flows Jxm,n,o
, Jym,n,o

and Jym,n,o
are calculated at the faces ((m,n, o)

= (i + 1/2, j, k), (i − 1/2, j, k), (i, j + 1/2, k), (i, j − 1/2, k), (i, j, k + 1/2) or
(i, j, k − 1/2)) as follows:

Jxm,n,o
= σx(m,n, o)

∂V

∂x

∣∣∣∣
(m,n,o)

, (14)

Jym,n,o
= σy(m,n, o)

∂V

∂y

∣∣∣∣
(m,n,o)

, (15)

Jzm,n,o
= σz(m,n, o)

∂V

∂z

∣∣∣∣
(m,n,o)

. (16)

Adaptive Non-uniform Mesh (ALG). When the electrical wave is propa-
gating through the heart, only a fraction of the excitable medium is occupied by
wavefronts. In these regions, the solution or its derivatives change rapidly. There-
fore, the numerical solution of the differential equations in these regions requires
the use of an extremely fine mesh. Thus, the use of uniform meshes leads to high
computational costs. Therefore, adaptive procedures that take into account the
scale differences in the phenomena present reliable and efficient solutions.

Recently, the use of adaptive refinement to obtain meshes suitable for the
representation of the cardiac electrophysiology equations has been investigated,
see, for example [1,15]. The application of ALG in the simulations of cardiac
electrophysiology for 2-dimensional meshes can be found in [9,10]. In this work
we are proposing the application of ALG in 3-dimensional cardiac meshes.

In order to apply FVM in ALG, we will approximate the partial derivatives
of V on the interfaces using the following finite difference scheme, considering
uniform discretizations in space (Δx = Δy = Δz = h). For sake of simplicity,
we only show the equations for direction x since the equations for y and z can
be obtained similarly.

∂V

∂x

∣∣∣∣
(i+1/2,j,k)

=
m1∑
c=1

Vr,c − Vi,j,k

h1
, (17)
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∂V

∂x

∣∣∣∣
(i−1/2,j,k)

=
m2∑
c=1

Vi,j,k − Vl,c

h2
, (18)

where m1 is the number of neighbors at right of the cell centered at (i, j, k) and
m2 is the number of neighbors at left; Vr,k are neighbors at right, and Vl,k are
the neighbors at left. The discretizations are defined by:

h1 = hi,j if Li,j > Lr,k and h1 = hr,k otherwise,
h2 = hi,j if Li,j > Ll,k and h1 = hl,k otherwise, (19)

where L is the refinement level of the cell. Rearranging and substituting the
discretizations in (11) and decomposing the operators as described by Eqs. (3),
(4) and (5) yields:

Cm

V ∗
i,j,k − V n

i,j,k

Δt
=

−
(S1J∗

xi+1/2,j,k
− S2J∗xi−1/2,j,k+S3J∗

yi,j+1/2,k
− S4J∗

yi,j−1/2,k
+S5J∗

zi,j,k+1/2
− S6J∗

zi,j,k−1/2
)

βh3
i,j,k

(20)

Cm

V n+1
i,j,k − V ∗

i,j,k

Δt
= −Iion(V

∗
i,j,k, η

n
) (21)

∂ηn+1

∂t
= f(η

n
, V

∗
, t) (22)

where:

S1Jxi+1/2,j,k = −σxi+1/2,j,k

m1∑
c=1

Vr,c − Vi,j,k

h1
S1 (23)

S2Jxi−1/2,j,k = −σxi−1/2,j,k

m2∑
c=1

Vi,j,k − Vl,c

h2
S2 (24)

For a regular grid we have S1 = h2
1 and S2 = h2

2, i.e., the area of the volume
face. Therefore, we can simplify the above equations, obtaining:

Jxi+1/2,j,k = −
m1∑
c=1

σxr′,c(Vr,c − Vi,j,k)h1 (25)

Jxi−1/2,j,k = −
m2∑
c=1

σxl′,c(Vi,j,k − Vl,c)h2 (26)

where σxr′,c , σxl′,c σyb′,k are the conductivity values calculated using Eq. 13.
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Developing all the equations, we can now define the formula for each volume:

αV ∗
i,j,k −

m1∑
c=1

σxr′,c(Vr,c − Vi,j,k) +
m2∑
c=1

σxl′,c(Vi,j,k − Vl,c)

−
m3∑
c=1

σyt′,c(Vt,c − Vi,j,k) +
m4∑
c=1

σyb′,c(Vi,j,k − Vb,c)

−
m5∑
c=1

σzf′,c(Vf,c − Vi,j,k) +
m6∑
c=1

σzbk′,c(Vi,j,k − Vbk,c)

= V n
i,j,kα

(27)

where α = (βCmh3
i,j)/Δt.

3 Methods

In this section, we discuss the parallel numerical implementation and experimen-
tal setup of the various cardiac simulations we performed.

3.1 Parallel Numerical Implementations

Algorithm 1 describes the steps used for the numerical resolution of monodomain
model. As can be seen, we have to reassemble the monodomain matrix at each
time step if a refinement or derefinement operation has been performed in that
step. In this paper, the criteria used for refinement and derefinement are based
on the flux across the interface of neighboring cells, as described in [9].

Algorithm 1. Steps used for the numerical resolution of monodomain model
1: set cell model initial conditions;

2: assemble the monodomain matrix (Linear system form PDE);

3: while t < final t do

4: update cell Model state vector;

5: solve cell model;

6: solve linear system (PDE) via conjugate gradient method;

7: refine-derefine
8: reassemble the monodomain matrix if needed;

9: t = t + dt

10: end while

Computer simulations, such as those resulting from fine spatial discretiza-
tion of a tissue, are computationally expensive. For example, when a 100µm
discretization is used in a 5 cm × 5 cm × 5 cm 3D tissue, and the Bondarenko
model, which has 41 differential equations, is used as cardiac cell model a total
of 500 × 500 × 500 × 41 = 5, 125, 000, 000 unknowns must be computed at each
time step. In addition, to simulate 150 ms of cardiac electrical activity 5 billions
of unknowns of the nonlinear systems of ODEs and the PDE with 125,000,000
of unknowns must be computed 15,000 times (with Δt = 0.01 ms). To deal
with this high computational cost we parallelized, using OpenMP, the functions
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described in line 8 (assembly of the monodomin matrix) and 6 (conjugate gra-
dient method); and using CUDA the function in line 5 (solution of odes) of
Algorithm 1. The full description of the OpenMP implementation can be found
in [10].

Differently from [10], in this work we use a Jacobi preconditioner [14] to accel-
erated the convergence of the conjugate gradient method. Despite being simple,
the Jacobi preconditioner suites very well for the adaptive mesh algorithm, as
we do not need to rebuild the preconditioning matrix every refine/derefine step,
as this method uses only the diagonal of the linear system matrix as the precon-
ditioning matrix.

To solve the non-linear systems of ODEs present in the BDK model, the
explicit Euler (EE) method was used. Although it is well known that explicit
numerical methods have strong limitations because of stability and accuracy
restrictions, they are widely used due to their simplicity of implementation [6].

For the TT2 model, the numerical solution of ODEs at each volume was per-
formed using the Rush-Larsen (RL) method [12]. The RL method is an explicit
method, easy to implement and has better stability properties than the explicit
Euler method. Thus, it allows the use of larger time steps resulting in an efficient
method for the numerical solution of cell models of cardiac electrophysiology.
Unfortunately, this method is not suitable for every model, like BDK due to the
use of Markov chains [6].

The solution of these ODEs is a embarrassingly parallel problem regardless
of the numerical method. No dependency exists between the solutions of the
different systems of ODEs at each finite volume V oli,j,k. Therefore, it is quite
simple to implement a parallel version of the code: each thread is responsible to
solve a fraction of the non-linear systems of ODEs.

In order to accelerate even further our simulations, we also used GPU imple-
mentations, using CUDA, for the solutions of ODEs using both numerical meth-
ods (RL and EE). A description of these implementations can be found in [13].

3.2 Computational Simulations

In this section we present the numerical experiments and the computing envi-
ronment used to perform them. We also report the results of the experiments
and compare the performance of the parallel adaptive mesh approach with the
fixed mesh implementation.

Computing Environment. All the numerical experiments were performed
using a GNU/Linux 4.1.13 machine, with 32 GB of memory and a Intel Core
i7-4930K 3.40 GHz processor with 6 cores. Our monodomain solver was imple-
mented in C++ and compiled using GNU GCC 5.2.0 with −O3 optimization
flag enabled. For the GPU tests we used a GeForce GTX 760, with 1152 CUDA
cores organized in 6 multiprocessors. This GPU has a total of 4 GB of memory.
The CUDA code was compiled with NVIDIA nvcc compiler version 7.5.17 with
the same optimization flags of the CPU code.
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Test Problems. In order to evaluate the acceleration and to validate our adap-
tive mesh implementation we used 2 different test problems, using simplified
geometries. A brief description of these problems is presented here.

Benchmark Problem. In [8], a benchmark problem was proposed to help the
validation of implementations of the monodomain model. In this problem, the
domain is a rectangular region of size 2×0.7×0.3 cm3 and the fibers are parallel
to the longitudinal direction and the conductivity tensor is considered trans-
versely isotropic. The conductivity in the fiber direction is 1.334mS/cm and
the conductivity in the cross-fiber direction is 0.176mS/cm. Other parameters
are defined as: χ = 1400 cm−1 and Cm = 1µF/cm2. The TT2 is used in this
test case. An external stimulus of −50 000µA/cm3 is applied during 2ms in a
small cubic region of 0.15 cm3 at one corner of the tissue to trigger the electrical
activity. This test problem will be referenced as Test 1.

Modified Benchmark. In order to better evaluate the performance of our imple-
mentation, we modified the Benchmark problem described above, by using the
BDK model as the cellular model. This test case was develop as we wanted
to evaluate the performance of our approach when using a more complex and
complicated model to solve. This test problem will be referenced as Test 2.

As we interested in the impact of spatial discretisation and the parallel imple-
mentation on the execution times of the simulations, we solved the test problems
using the following configurations:

– Test 1:
• 150 ms of cardiac activity simulation.
• Δt = 0.05 for both EDOs and EDP.
• Fixed mesh with Δx = 100µm. Adaptive mesh with minimum Δx =

100µm and maximum Δx = 400µm (referred to as 100–400). Adaptive
mesh with minimum Δx = 125µm and maximum Δx = 500µm (referred
to as 125–500).

– Test 2:
• 150 ms of cardiac activity simulation.
• Δt = 0.05 for EDP and Δt = 0.0001 for the EDOs.
• Fixed mesh with Δx = 100µm. Adaptive mesh with minimum Δx =

100µm and maximum Δx = 400µm. Adaptive mesh with minimum Δx =
125µm and maximum Δx = 500µm.

Figure 1(a)–(d) shows the propagation of the electrical wave in the benchmark
problem mesh from the initial stimulus until its complete activation.

Fig. 1. Propagation of the electrical wave in the benchmark problem mesh.



Simulations of Cardiac Electrophysiology 331

4 Results

In this section, we present the results with respect to execution time and speedup
associated with the solution of our test problems using our parallel adaptive mesh
implementation.

4.1 Test 1

The benchmark was solved using the configurations described in Sect. 3.2. All
the parallel executions were performed using 6 threads. To measure the accuracy
of our implementation we considered the activation time of a node, which was
defined as the time at which the transmembrane potential v reaches the value
of 0 mV. We used same metric that [8] used to compare the results of several
codes.

Figure 2a shows the activation times of CARP [17] compared with our imple-
mentations using different mesh configurations. The activation times resulting
for ALG simulations are almost identical to the one presented by CARP, either
using fixed or adaptive meshes. This result shows that our implementation can be
used to perform simulations of the electrical activity of cardiac tissue. Is worth
noting that the OpenMP and the GPU code resulted in the same activation
times.

Table 1 shows the achieved speedups for different mesh and code configu-
rations when compared to the execution with a serial code using 100µm fixed
mesh (≈ 175.2 min). By only using an adaptive mesh our implementation became
50.02× faster for the 125–500 configuration and 16.4× faster for the 100–400.

We also tested our implementations using the hybrid OpenMP and GPU
version of the code and compared the resolution time with a serial code using
100µm fixed mesh. As can be seen in Table 1, our code using multicore and
GPU was 118.17× faster for the 125–500 configuration and 51.02× faster for the
100–400.

Fig. 2. Comparison of the activation times for Test 1 and Test 2.
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Table 1. Speedups over a 100µm fixed mesh for Test 1.

Mesh Code Speedup

125–500 serial 50.02

125–500 OpenMP+GPU 118.17

100–400 serial 16.4

100–400 OpenMP+GPU 51.02

Table 2. Speedups over a 100µm fixed mesh for Test 2.

Mesh Code Speedup

125–500 serial 255.65

125–500 OpenMP+GPU 626.75

100–400 serial 120.28

100–400 OpenMP+GPU 292.70

4.2 Test 2

After the validation of our implementation using the benchmark problem, we
solved the modified benchmark in order to investigate the behaviour of our code
when using a more complex cellular model as the BDK model. In Fig. 2b we
have the activation times for the three configurations of Test problem 2. As can
be seen, the activation time are very close for all mesh configurations.

In Table 2 we show the speedups by using parallel computing and adaptive
meshes over the serial fixed mesh code (≈ 392.5 h). For this problem, our parallel
implementation achieved speedups of 626.75× and 292.70× for the 125–500 and
the 100–400 configurations.

The difference of the achieved speedups between the two test problems can be
explained by one main reason: the BDK model used in Test 2 is more complex
to solve than the TT2, used in Test 1. Because of this, if we solve less BDK
EDOs (by using adaptive meshes) we are saving more time than with we solve
less TT2 EDOs. Furthermore, for the same complexity reason, the GPU solver
of the BDK model is more efficient as we have more computation over memory
accesses than the TT2 GPU solver.

5 Conclusions

In this paper we developed, implemented, parallelized and validated an adaptive
mesh strategy in order to speed up cardiac electrophysiology simulations for 3D
domains. The achieved results are very promising, indicating that the use of
ALG and parallel computing is able to reduce the execution time of a simulation
by more than 626× (from 16 days to less then 38 min) for a complex cellular
model, compared to the use of fixed meshes and serial executions using only a
single node with 6 cores and a inexpensive GPU.
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