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Abstract We present the spectral decomposition of the isotropic stiffness hexadic
that appears in Mindlin’s strain gradient elasticity, where the kinematic variable is
the second gradient of the displacement field. It turns out that four distinct eigen-
modes appear, two of which are universal for all isotropic strain gradient materials,
and two depend on an additional material parameter. With the aid of the harmonic
decomposition, general interpretations of the eigenmodes can be given. Further, the
material parameters are related to commonly employed special cases, namely the
cases tabulated in Neff et al. (Int J Solids Struct 46(25–26):4261–4276, 2009) and
isotropic gradient elasticity of Helmholtz type.
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1 Introduction

It is well known that classical elasticity cannot account for size effects that are
observed in very small structures (Liebold and Müller 2013). Mostly, the specific
stiffness of fine structures is increased. It is also well known that one can overcome
this shortcoming by including a strain gradient dependence in the elastic energy. The
isotropic extension of linear elasticity has been given by Mindlin (1964). It involves
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a sixth-order stiffness tensor with five independent parameters, which relates the
strain gradient to the hyperstress tensor. The aim of the present work is to give a
spectral decomposition of this hexadic. The eigenmodes of this hexadic may be inter-
preted geometrically, similar to the eigenmodes of the well-known Hooke-tetradic of
classical isotropic linear elasticity, which are volume- and shape changing deforma-
tions. The eigenmodes can be interpreted in terms of displacement fields, curvature,
volume- and shape changing deformations, local rotations, and so on. By this, the
eigenvalues and hence the 5 independent parameters of the hexadic become inter-
pretable. For convenience, we have included a conversion of some special cases from
the literature to the five independent parameters in Mindlin’s strain gradient elastic-
ity. A more general account to strain gradient theories on this topic can be found in
Bertram (2015).

The present article builds on isotropic strain gradient elasticity (Mindlin and Eshel
1968) and decomposition and representation theorems for isotropic tensors of arbi-
trary order, as found in Golubitsky et al. (1988), Zheng and Zou (2000), Olive and
Auffray (2014), Auffray et al. (2013).

Notation

We prefer a direct notation, but make use of Einstein’s summation convention
(implicit summation over pairs of indices) whenever necessary. Scalars, vectors,
second- and higher-order tensors are denoted by italic letters (like a or A), bold
minuscules (like a), bold majuscules (like A), and blackboard bold majuscules (like
A), respectively.Moreover, {ei} denotes an orthonormal basis. The single contraction
and the dyadic product are denoted by · and ⊗, respectively. Multiple contractions
act in the same sense on either tensor, e. g., (a ⊗ b ⊗ c) · ·(d ⊗ e) = (b · d) (c · e) a.

For groups and vector spaces, we use calligraphic letters, such asH for the space
of right subsymmetric third-order tensors H, for which H · ·A = H · ·AT holds. In
particular, we denote harmonic tensor spaces of order i by Hi. I, IS , I and ε� denote
the identities on vectors, symmetric second-order tensors, subsymmetric third-order
tensors and the third-order permutation tensor.

2 Isotropic Stiffness Hexadic

In general, the elastic energy of a strain gradient material is written in terms of the
symmetric second-order strain tensor E = sym(u ⊗ ∇) = sym(H) and a third-order
tensor with one subsymmetry as the strain gradient variable H. The latter may be
the gradient of the strain E ⊗ ∇, or the second gradient of the displacement u(x0, t).
Mindlin (1964) refers to these two choices as strain gradient elasticity of form 1
and form 2. In any case, the third-order tensor H has one subsymmetry (left or
right), and therefore only 18 independent components. It is interesting to note that
these symmetries have different origins. In one case, the subsymmetry is a purely
mathematical consequence (Schwartz’ theorem), in the other case it comes from
purging the rotations from the first gradient deformation measure.
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Here, we will use the second gradient of the displacement u as the strain gradient
variable, i.e., we take

H = u ⊗ ∇ ⊗ ∇. (1)

Approaching the elastic energy density as a quadratic form, we get

w = 1

2
CijklEijEkl + CijklmEijHklm + 1

2
CijklmnHijkHlmn (2)

w.r.t. an ONB. Here appear the fourth-, fifth- and sixth-order stiffness tensors
〈4〉
C,

〈5〉
C

and
〈6〉
C, all of which are determined only up to some subsymmetric part that is due

to the symmetries of the involved variables E and H. Further,
〈4〉
C and

〈6〉
C have the

principle symmetry, since they are multiplied twice with the same variable,

Cijkl = Cklij = Cjikl = Cijlk, (3)

Cijklm = Cjiklm = Cijkml, (4)

Cijklmn = Clmnijk = Cikjlmn = Cijklnm. (5)

Presuming these index symmetries alone,
〈4〉
C ,

〈5〉
C and

〈6〉
C have 21, 108, and 171 indepen-

dent components, respectively. However, these numbers can be drastically reduced
when material symmetries are taken into account. A particular case is isotropy. The
components of any isotropic tensor can be given in terms of Kronecker- and Levi–

Civita symbols w.r.t. an ONB. Due to the index symmetries of
〈4〉
C,

〈5〉
C and

〈6〉
C and

the anti-symmetry of the Levi–Civita symbol, only Kronecker-deltas appear, which

means that
〈5〉
C = O in case of centrosymmetric isotropy. For

〈4〉
C and

〈6〉
C, we have

the well-known representations (see, e.g., Mindlin 1964, 1965; Lazar and Maugin
2005; dell’Isola et al. 2009; Bertram and Forest 2014). In Mindlin’s notation with
ηijk := uk,ij, the strain gradient energy density is

w = 2c2ηkiiηkjj + c4ηijkηijk + 2c3ηijkηjki + c5
2

ηjjiηkki + 2c1ηiikηkjj. (6)

This can be written as a quadratic form ui,jkCijklmnul,mn/2 with a stiffness hexadic

〈6〉
C =[

c1(δjkδimδnl + δjkδinδml + δjiδklδmn + δjlδikδmn) (7)

+ c2(δjiδkmδnl + δjmδkiδnl + δjiδknδml + δjnδikδml) (8)

+ c3(δjmδklδin + δjlδinδkm + δjnδimδkl + δjlδimδnk) (9)

+ c4(δjnδilδkm + δjmδknδil) (10)

+ c5δjkδilδmn
]
ei ⊗ ej ⊗ ek ⊗ el ⊗ em ⊗ en. (11)
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We summarize the different combinations of Kronecker symbols that belong to each
parameter ci with the basis {ei ⊗ ej ⊗ ek ⊗ el ⊗ em ⊗ en} to five base hexadics {Bi},
such that

〈6〉
C =

5∑

i=1

ciBi. (12)

The metric of the basis {Bi} is

Bi · · · · · · Bj =

⎡

⎢⎢⎢⎢
⎣

168 96 96 24 36
96 192 72 48 12
96 72 192 48 12
24 48 48 72 18
36 12 12 18 27

⎤

⎥⎥⎥⎥
⎦

. (13)

We observe that 1
2B4 maps every subsymmetric triadic onto itself, that 1

3B5 maps
every tensor of the form v ⊗ I onto itself, and that 1

8B2 maps every tensor of the form
I ⊗ v into its right subsymmetric part.

2.1 An Orthogonal Basis

Before turning to the spectral decomposition, a more suitable basis is introduced

B̃1 := − 1

15
(B1 + B2 + B5) + 1

6
(B3 + B4), (14)

B̃2 := 1

12
(2B1 − B2 − 2B3 + 4B4 − 4B5), (15)

B̃3 := 1

60
(6B1 − 9B2 + 16B5), (16)

B̃4 := 1

6
√
5

(3B1 − 4B5), (17)

B̃5 := 1

20
(−2B1 + 3B2 + 8B5). (18)

The metric of this basis is diagonal with B̃i · · · · · ·B̃i = (7, 5, 6, 6, 6). The compo-

nents of
〈6〉
C with respect to this basis are

c̃1 := 2 (c4 − c3), (19)

c̃2 := 4 c3 + 2 c4, (20)

c̃3 := 1

6
(12 c1 − 16 c2 + 2 c3 + 9 c5), (21)
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c̃4 := 2
√
5

3
(3 c1 + 2 c2 + 2 c3) , (22)

c̃5 := 1

2
(4 c1 + 8 c2 + 2 c3 + 4 c4 + 3 c5). (23)

2.2 Eigenvalues and Projectors

In terms of the latter basis {B̃i} and components c̃i, the spectral decomposition of
〈6〉
C

is given by

〈6〉
C =

4∑

i=1

λiPi (24)

with the eigenvalues

λ1 = c̃1, (25)

λ2 = c̃2, (26)

λ3 = c̃5 + cr, (27)

λ4 = c̃5 − cr (28)

with

cr =
√

c̃23 + c̃24 (29)

and the eigenprojectors

P1 = B̃1, (30)

P2 = B̃2, (31)

P3(κ) = 1

2

(
B̃5 + c̃3

cr
B̃3 + c̃4

c̃r
B̃4

)
, (32)

P4(κ) = 1

2

(
B̃5 − c̃3

cr
B̃3 − c̃4

c̃r
B̃4

)
(33)

with

cos κ = c̃3
cr

⇔ sin κ = c̃4
cr

. (34)
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For the spectral decomposition, the representation of
〈6〉
C with the dimensionless

parameter κ and the four eigenvalues is more convenient than with the parameters
{c1, c2, c3, c4, c5} or {c̃1, c̃2, c̃3, c̃4, cr}. One can check that

P3(κ) = P4(κ + π), (35)

λ3(κ) = λ4(κ + π) (36)

holds, i.e., it is reasonable to restrict κ to the interval [0, π). The metric of the
projectors is diagonal with Pi · · · · · ·Pi = (7, 5, 3, 3), thus the multiplicities of the
eigenvalues are 7, 5, 3 and 3. Further, we have the projector properties

Pi · · · Pj =
{

Pi if i = j,

O if i �= j,
(37)

4∑

i=1

Pi = I, (38)

where I is the sixth-order identity tensor on triads with the right subsymmetry. These
equations resemble those of the spectral decomposition of a transversely isotropic
stiffness tetradic (see Appendix A of Kalisch and Glüge 2015), which also has in
general five independent components and four distinct eigenvalues.

The above formulae are convenient when one knows the parameters c1,2,3,4,5, and
seeks the eigenvalues and the third and fourth eigenprojector. The other way around,
the coefficients c1,2,3,4,5 are given by

c1 = (10λ1 − 4λ2 − 3(λ3 + λ4) + 3(λ3 − λ4)(cos(κ) + √
5 sin(κ)))/60, (39)

c2 = (−10λ1 − 8λ2 + 9(λ3 + λ4) + 9(−λ3 + λ4) cos(κ))/120, (40)

c3 = (−λ1 + λ2)/6, (41)

c4 = (2λ1 + λ2)/6, (42)

c5 = (−5λ1 − λ2 + 3(λ3 + λ4) + (λ3 − λ4)(2 cos(κ) − √
5 sin(κ)))/15 (43)

in terms of {λ1,2,3,4, κ}.

3 The Eigenmodes and the Harmonic Decomposition

The latter result becomes clearer from the point of view of the harmonic decomposi-
tion of a third-order tensor with one subsymmetry (Golubitsky et al. 1988; Zheng and
Zou 2000; Olive and Auffray 2014). The third and fourth projector—more precisely:
the parameter κ—distinguish a specific decomposition of the first-order harmonic
contribution, which is discussed next.
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The space of all second gradients H = u ⊗ ∇ ⊗ ∇ is subsequently denoted by
H . By virtue of the harmonic decomposition a tensor is decomposed into a sum of
mutually orthogonal tensors,

H =
N∑

i=1

Hi, (44)

0 = Hi · · · Hj, i �= j. (45)

These correspond to the eigentensors of
〈6〉
C, where N is the number of different

eigenvalues. Each Hi is related to a harmonic tensor
〈n〉
Hi by virtue of an isotropic

linear mapping Li

Hi =
〈3+n〉
L i · · ·︸︷︷︸

n dots

〈n〉
Hi. (46)

The order n of the harmonic tensors does not exceed that of the decomposed tensor.
The harmonic tensor spaces are denoted by Hi. Their dimensions are

dim(Hi) = 2i + 1, (47)

which is due to the fact that all elements fromHi are completely symmetric, and all
possible index contractions (like Hijj) are zero.

On the whole, the tensor space H is decomposed into the direct sum (⊕) of
mutually orthogonal subspaces. These subspaces are closed under the action of the
Rayleigh product with an orthogonal tensor Q, which can be considered as a rotation
of H by Q. The Rayleigh product is defined as

Q ∗ (Hijkei ⊗ ej ⊗ ek) = Hijk(Q · ei) ⊗ (Q · ej) ⊗ (Q · ek), (48)

whereas the closedness under its action is

Q ∗ H ∈ Hi ⇔ H ∈ Hi (49)

for all proper orthogonal tensors Q. A further decomposition without loss of this
property is not possible, which is why this decomposition is sometimes referred to
as irreducible.

The harmonic decomposition can be thought of as the diagonalization of a matrix.
The matrix originates from the action of the group of all proper orthogonal tensors
on the tensor space (rotation of tensors by means of the Rayleigh product). Sub-
spaces for harmonic spaces of equal order form block matrices on the main diagonal,
the dimension of which corresponds to the number of subspaces of equal order. If
we define additional orthogonal decompositions, we can diagonalize these block
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matrices as well. It is shown below that the angle κ parametrizes such an additional
decomposition in the present case.

For sufficiently smooth fields u, the respective tensor H can be represented by a
linear combination of products of the form

H =
∑

i=1...3;j=1...6

Cij ei ⊗ Ej, (50)

where {ei} and {Ej} are orthonormal bases in the three-dimensional Euclidean space
and the space of symmetric second-order tensors, respectively. The harmonic decom-
position of these spaces is given by H1 and H0 ⊕ H2, respectively. The three-
dimensional space cannot be decomposed into harmonic subspaces, hence it is repre-
sented by the three-dimensional spaceH1. The six-dimensional space of symmetric
second-order tensors is decomposed into the well known spherical and deviatoric
symmetric parts, the first is one-dimensional and corresponds toH0, and the second
is five-dimensional and corresponds to H2.

Similar to the decomposition (50), the spaceH can be constructed as the dyadic
product of the form

H = H1 ⊗ (H0 ⊕ H2). (51)

With the Clebsch–Gordan rule (Golubitsky et al. 1988)

Hm ⊗ Hn =
m+n⊕

k=|m−n|
Hk (52)

we obtain

H ∼=H1 ⊗ (H0 ⊕ H2) (53)

= (H1 ⊗ H0) ⊕ (H1 ⊗ H2) (54)

=H1 ⊕ H1 ⊕ H2 ⊕ H3 (55)

=H3 ⊕ H2 ⊕ H ⊕ 2
1 . (56)

Thus, we get two three-dimensional, one five-dimensional and one seven-dimen-
sional subspace, altogether forming the 18-dimensional space of third-order tensors
with one symmetry.

The harmonic decomposition is unique regarding the number and the dimensio-
nality of the subspaces. However, when two equally-dimensioned subspaces appear,

there is an arbitrariness in the isomorphisms that connect Hi and
〈n〉
Hi. In our repre-

sentation, this arbitrariness corresponds to the angle κ that determines the direction
of the two eigenprojectors P3 and P4 of the eigenvalues λ3 and λ4, each having the
multiplicity 3. The specifications of Eq. (46) are
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H1 = H1, (57)

H2 = ε� · H2, (58)

H3 = h3 · (cos(κ/2)P4/1 + sin(κ/2)P4/2/
√
5), (59)

H4 = h4 · (− sin(κ/2)P4/1 + cos(κ/2)P4/2/
√
5). (60)

On both sides of these equations, the index indicates the ordering of the eigenspaces.
The Hi on the left side represent second displacement gradients that are eigentensors

in the indexed eigenspaces. TheH1,H2,h3 andh4 (denotedmore general as
〈n〉
Hi) on the

right side are harmonic (fully symmetric and traceless) tensors of order 3, 2, 1 and 1,
hence having 7, 5, 3 and 3 independent components. The number of these independent
components corresponds to the dimension of the eigenspaces. Further, P4/1,2 are the
isotropic projectors from the spectral decomposition of isotropic stiffness tetradics
with the compression modulus K and the shear modulus G,

〈4〉
C = 3K

1

3
I ⊗ I

︸ ︷︷ ︸
P4/1

+2G (IS − 1

3
I ⊗ I)

︸ ︷︷ ︸
P4/2

. (61)

IS = 1
2 (δikδjl + δilδjk)ei ⊗ ej ⊗ ek ⊗ el is the identity on symmetric second-order ten-

sors. With this symbolic representation of the eigenmodes, we can examine their
properties by virtue of the traceless and symmetric properties of their corresponding
harmonic tensors.

3.1 The 7-Dimensional Eigenspace H3

With H1 being harmonic, we find the traces and index symmetries

ui,jj = 0, (62)

ui,ik = 0, (63)

ui,jk = uj,ik . (64)

Thus, u is a harmonic function, and the volumetric strain must be homogeneous.
After Helmholtz’ representation theorem (Helmholtz 1858), there exist a scalar field
φ and a divergence free (solenoidal) vector field a (Coulomb’s gauge) such that

u = ∇φ + ∇ × a, a · ∇ = 0. (65)

Using ui,i = u · ∇ = Δφ, we find with Eq. (64)

∇ (Δφ) = o. (66)
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Equation (64) can be rewritten as

(u × ∇) ⊗ ∇ = O, (67)

i.e., the rotational part of u is homogeneous. Then, the Helmholtz representation and
Coulomb’s gauge imply

(Δ a) ⊗ ∇ = O. (68)

Given sufficiently smooth fields, Laplacian and gradient commute. Thus, Δφ =
ui,i and Δa are homogeneous (Eqs. 66 and 68) and ∇ φ and a ⊗ ∇ are harmonic
functions.

In conclusion, the displacement fields that generate eigenstrain-gradients in H3

• are free from volumetric strain gradients,
• have zero mean curvature of the displacement components, and
• the gradient of the axial vector u × ∇ vanishes everywhere, i.e., the rotational part
of the displacement field is homogeneous.

3.2 The 5-Dimensional Eigenspace H2

For convenience, we drop the index atH2 in this paragraph. In index notation w.r.t. an
ONB we get

ui,jk = 1

2
(εijlHlk + εiklHlj), (69)

where ui is a displacement field that produces only strain gradients in the 5-
dimensional eigenspace that is isomorphic to H2.

We cannot directly transfer the traceless and symmetric properties of H to the
displacement gradient, since a summation index is involved in H but not in ui,jk .
Taking the two independent traces of ui,jk gives

ui,jj = 1

2
(εijlHlj + εijlHlj) = εijlHlj = 0 ⇔ axi(skw(H)) = o, (70)

uj,jk = 1

2
(εjjlHlk + εjklHlj) = 1

2
εijlHlj = 0 ⇔ 1

2
axi(skw(H)) = o, (71)

i.e., they give the same information. The skew part of H (and hence the axial vector
w = axi(skw(H)) implicitly defined by w × x = skw(H) · x) is zero by definition.
Thus, we find that the eigenstrain gradients of the 5-dimensional eigenspace belong
to harmonic displacement fields without volumetric strain gradient, as in the case
before. Now we consider
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(εnij ui,j),k = εnij ui,jk (72)

= εnij (ui,jk − uj,ik)/2 (73)

= εnij (2εijm Hmk + εikm Hmj − εjkm Hmi)/4 (74)

= (2εijnεijmHmk + εijnεikmHmj − εjniεjkmHmi)/4 (75)

= δnmHmk + [(δjk δnm − δjm δnk) Hmj (76)

− (δnk δim − δnm δik] Hmi)/4 (77)

= Hnk + (Hnk − δnk Hmm − δnk Hmm + Hnk)/4 (78)

= 3Hnk/2. (79)

In symbolic notation we thus have

H ∝(u × ∇) ⊗ ∇ (80)

=(−Δ a) ⊗ ∇ (81)

= − Δ(a ⊗ ∇). (82)

H is symmetric and deviatoric. The latter property is in accordance with Coulomb’s
condition on a. The symmetry of H implies another constraint on a.

Δ(a ⊗ ∇) = Δ(∇ ⊗ a), (83)

⇔ O = Δ(a ⊗ ∇ − ∇ ⊗ a) (84)

O = Δε · (a × ∇) (85)

= ε · (Δ (a × ∇)), (86)

⇔ o = Δ(a × ∇) (87)

= (Δ a) × ∇ (88)

The divergence of Eq. (84) provides—by means of Coulomb’s gauge

o = (Δ (a ⊗ ∇ − ∇ ⊗ a)) · ∇ (89)

= Δ [(a ⊗ ∇) · ∇ − (∇ ⊗ a) · ∇] (90)

= Δ(Δ a − ∇ (a · ∇)) (91)

= ΔΔ a. (92)

Thus, a must be a biharmonic function. In conclusion, the displacement fields that
generate eigenstrain-gradients inH2

• are free from volumetric strain gradients,
• have zero mean curvature of the displacement components, and
• the divergence of the gradient of the axial vector u × ∇ vanishes everywhere.

These restrictions are weaker (third bullet point) than in case of eigenstrain-gradients
of H1. This is not surprising, as we have less constraints to exploit, namely only one
zero trace and one index symmetry, due to H2 being a second order tensor.
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3.3 The 3-Dimensional Eigenspaces

Unfortunately h3,4 have no symmetry or zero trace which could be exploited. The
third and fourth eigenmode depend on the angle κ , which depends on the coefficients
c1,2,3,5 through Eq. (34). Thus, we can determine canonical angles κ by taking one
of the ci as infinite, or consider more general directional limits with fixed ratios
between the ci. In doing so, two special cases emerge, namely when c2 or c5 are
taken to infinity. In both cases, the third eigenvalue λ3 becomes infinite, and its
eigenprojector P3 becomes 1

8B2 or 1
3B5, respectively. The angles κ that belong to

these materials can be inferred from Eq. (34), and one finds

c2 → ∞ : cos κ → −2

3
, P3 = 1

8
B2, λ3 → ∞, (93)

c5 → ∞ : cos κ → 1, P3 = 1

3
B5, λ3 → ∞. (94)

However, we can also adjust κ and the eigenvalues λ1,2,3,4 independently.

3.3.1 The Case cos κ = −2/3

The eigentensors of the third and fourth eigenvalue are related to the harmonic tensors
h3 and h4 through

H3 = h3 · IS = sym23I ⊗ h3, (95)

H4 = h4 · (IS − 6P4/1)/
√
5. (96)

This case is closest to the usual strain decomposition into dilatoric and deviatoric
parts. The eigenmodes to the third eigenvalue are gradients of the volumetric strain.
The fourth eigenmode does not correspond to a gradient of a deviatoric strain. By
considering

cos κ = c̃3
cr

= −2

3
, (97)

sin κ = c̃4
cr

=
√
5

3
, (98)

(remember that κ ∈ [0, π)), eliminating cr and summarizing, one finds that this case
corresponds to

4c1 + 2c3 + c5 = 0. (99)
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3.3.2 The Case cos κ = 1

The eigentensors of the third and fourth eigenvalue are related to the harmonic tensors
h3 and h4 through

H3 = h3 · P4/1, (100)

H4 = h4 · P4/2. (101)

A calculation similar to the symbolic examination of the 5- and 7-dimensional
eigenspaces shows that both eigenstrain gradients H3 and H4 result from displace-
ment fields with a biharmonic field φ in their Helmholtz representations. In terms of
ci, this case corresponds to

3c1 + 2c2 + 2c3 = 0. (102)

4 Relation to Other Forms of Strain Gradient Elasticity

For convenience, we summarize the conversion of parameters between the two forms
of strain gradient elasticity and for special cases of the first form of strain gradient
elasticity (Mindlin and Eshel 1968). We follow the list given in Neff et al. (2009)
(Eq.2.10) and Lazar’s proposal of gradient elasticity of Helmholtz type (Po et al.
2014).

4.1 Mindlin’s Second Form of Strain Gradient Elastictiy

The two forms of strain gradient elasticity (Mindlin and Eshel 1968) are

w1 = 1

2
u ⊗ ∇ ⊗ ∇ · · · C · · · u ⊗ ∇ ⊗ ∇, (103)

w2 = 1

2
∇ ⊗ sym(u ⊗ ∇) · · · Ĉ · · · ∇ ⊗ sym(u ⊗ ∇), (104)

where we use the very same base tensors B1,2,3,4,5, but with the parameters ĉ1,2,3,4,5.
The conversion between the two variants is

c1 = ĉ1/2 + ĉ2/2, (105)

c2 = ĉ1/2 + ĉ2/4 + ĉ5/4, (106)

c3 = 3ĉ3/4 + ĉ4/4, (107)

c4 = ĉ3/2 + ĉ4/2, (108)

c5 = ĉ2. (109)
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Our conversion differs from the one given in Mindlin and Eshel (1968) (Eq.2.6),
since here we considered the components of the stiffness hexadic w.r.t. the base
tensors Bi, whereas Mindlin considered the coefficients in the strain gradient energy.
The differences are due to symmetrizations, see Eq. (6). Apart from that, the ordering
is different.

4.2 Common Strain Gradient Extensions

We translate directly the forms in Table2.10 from Neff et al. (2009) (Table1).

4.3 Gradient Elasticity of Helmholtz Type

In order to reduce the number of elasticity constants, Lazar et al. (2006) recommend
to use

Cijklmn = l2Cjkmnδil, (110)

in the second form (Eq.104),with the fourth-order stiffness tetradic and the additional
material parameter l. In case of anisotropic elasticity, the second-order tensor that
extends the stiffness tetradic is invariant under the action of the material symmetry
group. In case of isotropy and cubic elasticity, this is a multiple of the identity tensor,

Table 1 Special cases of strain gradient elasticity translated into the parameter set c1,2,3,4,5, where
the left column contains the strain energy density, the center column the corresponding parameters
ci and the right column the eigenvalues λi and the angle κ

El. energy w c1,2,3,4,5 λ1,2,3,4, κ

‖u ⊗ ∇ ⊗ ∇‖2 0, 0, 0, 1, 0 2, 2, 2, 2, arbitrary

‖Δu‖2 0, 0, 0, 0, 2 0, 0, 6, 0, 0

‖sym(u ⊗ ∇) ⊗ ∇‖2 0, 0, 1/4, 1/2, 0 2, 1/2, 2, 1/2, arccos(1/9)

‖devsym(u ⊗ ∇) ⊗ ∇‖2 0, −1/6, 1/4, 1/2, 0 2, 1/2, 7/6, 0, arccos(19/21)

‖skw((u × ∇) ⊗ ∇)‖2 −1/2, 1/4, 0, 0, 1 0, 0, 3, 0, arccos(−1/9)

‖(u × ∇) × ∇‖2 −1, 1/2, 0, 0, 2 0, 0, 6, 0, arccos(−1/9)

‖(u · ∇)∇‖2 0, 1/2, 0, 0, 0 0, 0, 4, 0, arccos(−2/3)

‖(u × ∇) ⊗ ∇‖2 0, 0, −1/2, 1, 0 0, 3, 3, 0, arccos(−1/9)

‖dev((u × ∇) ⊗ ∇)‖2 0, 0, −1/2, 1, 0 0, 3, 3, 0, arccos(−1/9)

‖sym((u × ∇) ⊗ ∇)‖2 1/2, −1/4, −1/2, 1, −1 0, 3, 0, 0, arbitrary

‖devsym((u × ∇) ⊗ ∇)‖2 1/2, −1/4, −1/2, 1, −1 0, 3, 0, 0, arbitrary

‖sym(sym(u ⊗ ∇) × ∇)‖2 1/8, −1/16, −1/8, 1/4, −1/4 0, 3/4, 0, 0, arbitrary
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with the parameter l2. The conversion to c1,2,3,4,5 is

c1 = 0, (111)

c2 = l2(K/4 − G/6), (112)

c3 = l2G/4, (113)

c4 = l2G/2, (114)

c5 = 0. (115)

Thus, the third and fourth eigenmode depend via κ on the internal length parameter
l and the compression and shear moduli K and G. In terms of Mindlin’s second form
of strain gradient elasticity (see Sect. 4.1), we have only two nonzero parameters,
namely

ĉ1 = 0, (116)

ĉ2 = 0, (117)

ĉ3 = 0, (118)

ĉ4 = Gl2 = μl2, (119)

ĉ5 = Kl2 − 2Gl2/3 = λl2, (120)

where the inheritance from the classical isotropic stiffness tetradic with Lamé’s
constants λ and μ is more obvious.
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