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Abstract A comprehensive survey is presented on two-phase and multi-phase con-
tinuum poroelasticity theories whose governing equations at a macroscopic level are
based, to different extents, either on the application of classical variational principles
or on variants of Hamilton’s least Action principle. As a focal discussion, the ‘closure
problem’ is recalled, since it is widespread opinion in the multiphase poroelasticity
community that even the simpler two-phase purely-mechanical problem of poroelas-
ticity has to be regarded as a still-open problem of applied continuum mechanics.
This contribution integrates a previous review by Bedford and Drumheller, and cov-
ers the period from the early use of variational concepts by Biot, together with the
originary employment of porosity-enriched kinematics by Cowin and co-workers,
up to variational theories of multiphase poroelasticity proposed in the most recent
years.
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1 Introduction

Theoretical poroelasticity has a very wide range of applications. Besides the well
known applications to soil mechanics (Fillunger 1936; Terzaghi 1936; Biot 1956),
poroelastic models have been increasingly applied for the description of complex
biological phenomenology such as biological tissue mechanics and remodeling
processes (see e.g., Cowin 1999; Giorgio et al. 2014; Andreaus et al. 2014; Madeo
et al. 2011; Ateshian and Ricken 2010; Ehlers and Bluhm 2013; Mow et al. 1980).
However, most problems of geomechanics and biomechanics require a multiphase
continuum description for a proper understanding and prevision of several inter-
twined mechanical phenomena. As well-known in geomechanics, this is the case of
saturated and partially saturated soils (Schrefler 2002; Madeo et al. 2013). Similarly,
in biomechanics, cartilaginous tissues have been described as mixtures of a solid
phase made up of structural macromolecules plus an interstitial fluid phase consist-
ing of water and solutes (Lai et al. 1991; Gu et al. 1998; Huyghe and Janssen 1997;
Travascio et al. 2014).

However, the achievement of a general consistent theory for two-phase continuum
poroelasticity, capable of addressing systemswith any degree and range of compress-
ibility of the constituent phases, represents a long dated challenge of theoretical and
applied continuum mechanics.

The insightful historical retrospective survey by de Boer (1996) provides evi-
dence of the complexity of the construction of a standard continuum theory of this
type, undertaken over the last century. In particular, by the term standard we refer
to the formulation of a generally agreed minimal set of mathematically consistent
and physically plausible governing equations of two-phase poroelasticity, deducible
from the classical principles of physics with assessed predictive capabilities. The
review by de Boer covers a large part of the approaches extending from the early
Terzaghi–Fillunger dispute (Fillunger 1936; Terzaghi 1936), including the funda-
mental theoretical contributions by Biot (1956) and the fundamental experimental
evidences from geomechanics (Skempton 1954; Nur and Byerlee 1971), up to the
more recent group of theories frequently gathered under the term Theories of Immis-
cible Mixtures (TIM).

A comprehensive survey on TIMs proposed until 1983 has been provided by
Bedford and Drumheller (1983). Such a review includes mixture theories derived
from continuous models more general than classical Cauchy one which are based on
continuummechanics frameworks employing enhancedmicrostructural descriptions
for the solid phase: in particular the theory of linear elasticity with microstructure by
Mindlin (1964), Eringen’smicromorphic theory (Eringen 1968), as well as Goodman
and Cowin’s theories which employ an additional equation of motion in either postu-
lated form (Goodman and Cowin 1972) or developed proceeding from a postulated
variational principle (Cowin and Goodman 1976).

After the middle of the eighties, driven by the increase of applications in geome-
chanics, biomechanics, environmental engineering and material engineering, theo-
retical research efforts have been aimed at developing general and comprehensive
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multiphase flow theories. Nevertheless, investigators kept searching for a fundamen-
tal set of governing equations achieving general consensus. Research in this area has
accordingly experienced a proliferation of porous media frameworks which have
proceeded quite independently by stressing different arguments in order to achieve
the formulation of a standard macroscopic governing set of continuum equations.

To logically organize the research efforts driven by such a multiplication of
languages from the eighties until current times, classifications of the mainstream
approaches can be attempted, without any claim of completeness and of clean-cut
separation.

A first classification can be considered by identifying two approaches:

1. Purely Macroscale Theories (PMT) which are based on the introduction of kine-
matic descriptors or constitutive features expressly at the macroscale level;

2. Upscaling/Averaging Theories (AT) which proceed from considering a detailed
representation of the geometry and flow processes at the microscale.

A general agreement on the superiority of either PMT and AT has not been reached
yet (see e.g. the debates in Gray et al. 2013a, b; Baveye 2013). In any case, PMT are
exposed to the criticismof lacking a strong connectionwith the pore scale physics and
of performing implicit approximations, while AT can be criticized for introducing
assumptions justifiable only on a heuristic basis, and also for lacking a clear link
with the macroscopic measurement processes.

Among PM theories, a further classification can be performed according to the
setting employed for the definition of energy potentials of the constituent phases
(Gajo 2010). Two families can be identified: the first one includes PMT approaches
where a single macroscopic energy potential of the whole saturated mixture gives
rise to stresses for both solid and fluid phases (see, e.g., Coussy et al. 1998); the other
one includes approaches where the two phases can be treated as superposed continua,
each one endowed with a separate energy potential. As observed by several authors,
this second and more general approach requires, alongside of linear momentum and
mass balances, an additional governing equation (Svendsen andHutter 1995), usually
referred to as closure equation.

In this respect, several candidate closure equations have been proposed for the
identification of the additional equation (or of the set of additional equations), capa-
ble of providing the minimal set of governing balance equations necessary to achieve
a general consistent formulation of compressible poroelasticity. Within a wide fam-
ily of more general formulations (see for instance Bowen 1982; Hassanizadeh and
Gray 1990; Schrefler 2002) the closure of the poroelastic problem has been sought
by supplementing momentum and mass balance equations with the second law of
thermodynamics, in agreement with an early indication by Truesdell (quoted by Bed-
ford and Drumheller) according to which “the ‘missing principle’, surely, is a proper
generalization of the Clausius–Duhem inequality”.

Similar to Drumheller (1978), Bowen (1982) includes the evolutions equations
of volume fractions, as well as momentum of momentum balances, among the gov-
erning equations, tracing back to Cosserat’s theory (Cosserat and Cosserat 1909;
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Eringen and Kafadar 1976). A further closure of the biphasic problem has been pro-
posed by incorporating of the saturation constraint in the entropy inequality, using
an incompressibility hypothesis and a Lagrangian multiplier (Svendsen and Hutter
1995; de Boer 1996). Moment of momentum balance is also considered together
with a multiplicative decomposition of the strain tensor (Diebels 1999).

Alternatively, porosity was added as an additional independent state field by
Albers and Wilmański (2006) and by Wilmański (1998), who investigated several
additional balance equations in the form of porosity balance or integrability condition
for the deformation of the solid skeleton. A geometric saturation constraint has also
been employed, combined with a multiplicative decomposition of the deformation
gradient, as a closure equation of the formulation (de Boer 2005).

It is therefore evident that even the simpler two-phase purely-mechanical problem
of poroelasticity has to be regarded as a still-open problem of continuum mechanics.
This opinion is widely spread in the multiphase poroelasticity community. As stated
by de Boer: “the necessity to attack the problem of developing a consistent general
poroelasticity theory is still existent” (de Boer 2005), as well as by Lopatnikov and
Gillespie (2010) “... in spite of a tremendous number of publications in this field, the
discussion continues about physical background of the poroelastic theory. Even the
form of basic governing equations are sufficiently different [...] in frame of different
approaches that one can find in literature. It seems that there is no final agreement
about consistency of proposed different approaches.”

Turning to the objective of the present survey, attention is herein focused on the
subclass of two-phase continuum poroelasticity theories which can be classified to be
of variational type and ascribable to the PMT group. Thus, ruling out themajor effort
of an accurate updated review of the currently available porous media frameworks,
this contribution is aimed at providing an updated survey on the variational subclass
of poroelastic multiphase theories, since the authors share the convincement that
variational statements are privilegedmeans for the continuum description of physical
phenomena ensuring“a natural and rigorously correct way to think of [...] continuum
physics” (Oden and Reddy 2012).

A further, highly relevant feature of the variational approach is that the principle
of minimization is very convenient as a basis for numerical simulations. Indeed, it
is well-known that Finite Element (FE) methods are the natural discretization of
theories presented in weak formulation. More specifically, numerical investigation
of poroelastic continua has greatly benefited from the development of high-regularity
FE schemes such as isogeometric analysis (see Hughes et al. 2005, as one of the stem
works), a technique that is particularly suitable for generalized continuum theories
as recently shown in different contexts (Greco and Cuomo 2014, 2016; Cazzani et al.
2014; Cuomo et al. 2014).

For the purpose of the present contribution, we include under the term varia-
tional theories of poroelasticity all continuum theories of porousmultiphasematerials
(including single phase theories) which found the derivation of governing equations
upon the application of classical variational principles: Hamilton Least Action Prin-
ciple of mechanics (Landau and Lifshitz 1976; Moiseiwitsch 2013; Berdichevsky
2009), Principle of Virtual Powers (for functionals admitting first differentials), and
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Principle of Virtual Works (see also the retrospective by dell’Isola and Placidi 2012
on the application of variational principles to continuum mechanics).

Concerning the focus on PMT, it has to be added that the already mentioned
microstructured continua theory can be seen as a general framework in which one
can find higher gradient continuum theories as a particular case. Researches on
microstructured and higher gradient continua are experiencing a significant inten-
sification, especially in connection with the development of computer-aided manu-
facturing techniques (as high-precision and multi-material 3D-printing) which allow
the designing and the fabrication of micro- and even nanostructures characterized by
a high degree of complexity, whose effects at the macroscale cannot be captured by
standard continuum theories (dell’Isola et al. 2015).

2 Variational Theories of the 70’s and the 80’s

An important remark should be made concerning the notation adopted hereafter. As
always happens when a research field gradually produces a considerable amount of
literature, there is a general tendency towards a relative uniformity in the notation
and conventions which is agreed within the scientific community of specialists in the
topic. This fact has obvious advantages, allowing for the immediate understanding of
the equations in a paper without requiring a detailed reading of the discursive parts.
On the other hand, the literature usually converges only asymptotically towards
this status, and there are many cases (especially among pioneering works) in which
substantially different notations and conventions are used. Thus, it appeared illogical
to the authors not to exploit the advantages of a coherent and uniform notation even
though this has meant, in some cases, the modification of the original format of
some equations. Therefore, all equations and formulas in the present work have to
be intended as conceptually identical (but not philologically accurate) rendering of
the original ones in the cited papers.

The first use of some of the ideas of variational approaches in the derivation of
a theory of mixtures has been claimed by Truesdell and Toupin (1960) (p. 567) to
trace back to Duhem (1893).

It is also important to recall that the seminal and influential poroelastic theory
by Biot (1941, 1956, 1962), while originarily obtained on a somewhat intuitive
definition of stress measures and elastic relations based on concise mechanical con-
siderations (Bear and Corapcioglu 2012), was subsequently framed by Biot (1972)
into a variational theoretical framework in the context of quasi-static and isothermal
deformations. Therein, the equilibrium equations are obtained proceeding from the
statement of a principle of virtual work, and later extended to account for nonisother-
mal deformations and to include dynamical forces (Biot 1977).

In particular, variational concepts are applied by Biot (1972), proceeding from
the introduction of an ‘isothermal free energy density function’ which depends on
the finite strain of the solid and on a quantity m defined therein as the total mass of
fluid added in the pores of the sample during deformation. This particular choice for
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the descriptors, referred to open mechanical systems where mass can enter or leave,
has been criticized by more than one author. For instance, it has been observed that
it is not possible to construct a true variational principle as the Biot model contains
nonequilibrium variables, see, e.g., Wilmański (2006).

Further works in the seventies, containing some applications of variational con-
cepts to the derivation ofmultiphase porousmedia theories, are the papers byKenyon
(1976) where a variational postulate is proposed to justify the linear momentum bal-
ance equations introduced by Truesdell (1969) in postulated form. The kinematic
descriptors considered are the densities and the deformation gradients of each phase;
however, this theory makes no use of volume fractions. Also, an application of varia-
tional concepts to formulate a theory of two-phase mixtures is reported by Aizicovici
and Aron (1977), although this study proceeds from postulated equations of motion.

2.1 Cowin’s Theories Including Porosity

Theories of ideal multiphase mixtures which, in some respects, can be stated to
have a variational character are those by Nunziato and Walsh (1980) and Passman
(1977). These frameworks consist of extensions of the continuum theory for granular
materials (Goodman and Cowin 1972), and rely on the key idea to add the volume
fraction of the solid phase (φ) as an additional kinematic continuum scalar descriptor.
Moreover the frameworks by Nunziato and Walsh (1980) and Passman (1977) use
an additional balance scalar equation, proposed by Goodman and Cowin (1972)
and denominated therein equation of balance of equilibrated force. This additional
equation pairs the number of unknown fields, incremented by one as a result of the
introduction of φ among the kinematic descriptors, with the number of momentum
balance scalar PDEs.

Although the theory byGoodman and Cowin (1972) cannot be termed variational,
since it is based on thermodynamic arguments and ad-hoc modified forms of the
momentum and energy balances, the balance of equilibrated force is motivated by
a variational analysis. Later, Cowin and Goodman (1976) have shown that the so
called balance of equilibrated forces can be derived proceeding from a postulated
variational principle. In particular, such variational theory is derived by addressing
the dependence of a density of stored energy function upon the solid volume fraction,
the true density of the solid porous phase ρ, the solid volume fraction φ and its space
gradient φ∇.

It should be remarked that the variational theory by Cowin and Goodman (1976)
is not a standard variational theory in several respects. Actually, Eq. (13) therein
presents a postulated condition, directly expressed in the form of first-variations
containing two postulated quantities: a quantity H, stated to be a self-equilibrated
stress system, and a secondquantity l, stated to be a self-equilibrated body force. There
is a potential misunderstanding in this last choice. Indeed, talking about stress seems
to focus just on classical (Cauchy-type) external actions, while the proposed model
entails the presence of more general external actions. Thus, generalized stress would
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probably have been a more appropriate wording in this case. A further uncommon
feature of this theory is that the stress tensor of the solid phase is originally defined
as a quantity work-associated with the solid true density ρ, instead of being defined
as a quantity work-associated with the symmetric part of the displacement gradient
in a standard way.

2.2 Mindlin’s Variational Single-Phase Theory of Materials
with Microstructure

Although not directly applied to multiphase problems, the (single phase) continuum
theory of materials with microstructure by Mindlin (1964) has provided a useful
(and in some respects ‘canonical’) background for the subsequent development, on a
variational basis, of multiphase poroelastic continuum frameworks which, exploiting
ideas similar to those in Cowin and Goodman (1976), Passman (1977), Nunziato and
Walsh (1980), employ enhanced kinematics with additional descriptors such as the
porosity.

In Mindlin’s theory the equations of motion are derived by using Hamilton’s
principle which can be conveniently written as follows:

δ

t2∫

t1

(T − V)d t +
t2∫

t1

δWd t = 0, (1)

where t1 and t2 are two arbitrarily assigned time instants, T is the kinetic energy, V is
the internal potential energy while the term δW is the virtual work of external body
forces, external traction vectors, generalized body forces and generalized surface
forces (termed double forces by Mindlin).

A quite general framework is considered in which a macroscopic second-order
tensor field ψ is added as a further kinematic descriptor, termed microdeformation,
complementing the displacement field u.

As a consequence of such choice of kinematic descriptors, it is derived from (1)
a vector linear momentum balance, expressing the stationarity of (1) with respect to
u plus additional stationarity scalar conditions expressing stationarity with respect
to the independent components ψij.

The strainmeasures of this theory are the standard strain tensor ε = sym(∇u) plus
two additional strain measure fields related to ψ : the so-called relative deformation
field, defined as γ = ∇u − ψ , and a microdeformation gradient field κ = ∇ψ . On
this basis, the strain energy is a homogeneous quadratic function of ε, γ and κ .
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2.3 The Variational Theory of Immiscible and Structured
Mixtures by Bedford and Drumheller

A fundamental advancement in the derivation of variational theories of multiphase
porous media and structured mixtures has been provided by Bedford and Drumheller
(1978, 1979, 1983). These authors have extended the ideas laying the basis of
single-continuum framework of microstructured continua by Mindlin (1964) and
the approaches for the variational treatment of a single continuum in solid and fluid
mechanics (Lanczos 1970; Herivel 1955; Eckart 1960; Finlayson 2013; Leech 1977;
Oden and Reddy 2012) to derive the balance equations for porous multiphase prob-
lems by means of Hamilton’s principle. Accordingly, momentum balance equations
are derived from a stationarity condition representing a variant of Eq. (1).

A multiphase framework is considered with index of the generic phase ξ hereby
indicated by script (·)(ξ). From a constitutive point of view, denoting by φ(ξ) the
volume fraction of the generic ξ th phase and by ρ̂(ξ) its ‘true density’, related to the
relevant apparent density ρ̄(ξ) by the usual relation:

ρ̂(ξ) = ρ̄(ξ)

φ(ξ)
, (2)

it is assumed (Bedford and Drumheller 1979) that each phase ξ has a strain energy
density ψ which is only dependent on ρ̂(ξ) while in (Bedford and Drumheller 1978)
a dependence of upon ρ̂(ξ) and the (infinitesimal) strain tensor ε is considered.

The primary descriptors of such formulation are fields φ(ξ) and ρ̂(ξ), together with
the placement field χ (ξ) which operates the association x(ξ) = χ (ξ)

(
X(ξ)

)
between

the current position of phase ξ and its material position X(ξ). This choice of fields
amounts to a total of five fields per each phase. In agreement with Leech (1977), the
least-action condition is written integrating over a fixed reference volume domain
containing a fixed mass of mixture.

It is important to remark that, in the formulation stated byBedford andDrumheller,
the primary descriptors are not unconstrained fields. Actually, fields φ(ξ), ρ̂(ξ), and
χ (ξ) are constrained by the equations of mass balance:

J(ξ)ρ̄(ξ) = ρ̄
(ξ)
0 (3)

and by the volume fraction constraint stating that space is completely saturated by
the phases so that the sum of volume fractions equals unity, viz.:

N∑
ξ=1

φ(ξ) = 1, (4)
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where N is the number of phases. In order to respect (3) and (4), the variations δφ(ξ),
δρ̂(ξ) and δx(ξ) are also constrained each other. Such constraints are included by
Bedford and Drumheller through the addition of (3) and (4) into (1) with the aid of
Lagrange multipliers λ and μξ . The resulting equation has the format:

δ

t2∫

t1

(T − V)d t +
t2∫

t1

δWd t

+
t2∫

t1

⎡
⎣ N∑

ξ=1

∫

	

μξδ

(
J(ξ) − φ

(ξ)
0 ρ̂

(ξ)
0

φ(ξ)ρ̂(ξ)

)
dV0 −

∫

	

λδ

⎛
⎝ N∑

ξ=1

φ(ξ)

⎞
⎠

∣∣∣∣∣∣
x

dV0

⎤
⎦ d t = 0.

(5)

The physical interpretation of λ andμξ is also discussed by Bedford and Drumheller
(1978). Resorting to the standard notion of Lagrangemultipliers as generalized forces
ensuring the constraints to be satisfied, and to some considerations on pressure force
balances, the authors justify the interpretation of λ as an interface pressure between

constituents, and infer for μξ the relationship μξ = p(ξ)φ(ξ)

J(ξ)
, where p(ξ) indicates

the pressure of the ξ th constituent.
In this respect, it is important to remark that the mechanical consistency of the

choice of incorporating of the effect of constraints in a variational framework has
been subjected to debate and objections between researchers. In their valuable review,
Bedford andDrumheller (1983) recall a criticismbyTruesdell andToupin (1960) (pp.
594, 595) who have indeed observed that incorporating the effect of constraints in
variational principles “... is a somewhat dubious blessing”. Bedford and Drumheller
have rebutted that the volume fraction constraint does not entail ill-posedness issues
and have remarked that the admissibility and usefulness of the volume fraction con-
straint in multiphase theories can be standardly accepted as a continuum mechani-
cal analogue to the treatment of connections between rigid parts in the variational
description of the mechanics of rigid bodies.

3 Most Recent Theories

In more recent years, researches on multiphase theories on a variational macroscopic
basis have still continued to appear in the specialized literature. Referring the readers
to the original papers for further details, a brief account of these theories and of the
key ideas is given in this subsection, proceeding in chronological order.
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3.1 Variational Theories by Lopatnikov and Co-workers

The Least Action principle has been employed by Lopatnikov and coworkers to
obtain continuum governing equations for binary poroelastic mixtures (Lopatnikov
and Cheng 2004; Lopatnikov and Gillespie 2010). Important differences with the
framework by Bedford and Drumheller are the following:

• As a peculiar feature of this formulation, distinction is characteristically made
between a notion of internal strain tensor and a notion of external strain ten-
sor. For the definition of these quantities, the reader is referred to the original
papers where these concepts are introduced (Lopatnikov and Cheng 2002, 2004;
Lopatnikov and Gillespie 2010). Relationships between variations of external and
internal parameters of thematerial are introduced and referred to asmaterial struc-
tural equations. Such relations have a constitutive nature and, hence, appear to be
medium-dependent. Lopatnikov and Gillespie (2010) discuss several options for
their definition (see p. 482 therein).

• This theory is essentially formulated in infinitesimal displacements.
• The least Action condition is formulated without making explicit statement of
the recourse to Lagrange multipliers, even if the theory contains constraints for
the variation fields. Specifically, the system of governing equations contains mass
conservation equations. Most importantly, the authors infer from mass conserva-
tion relationships between variation of porosity δφ(f ) and δρ̂(f ) involving also the
gradient of porosity φ(f )∇.

Lopatnikov and Gillespie remark that the presence of a dependence upon φ(f )∇
in their mass conservation relation is an important difference with respect to other
previously proposed multiphase variational frameworks such as the one by Bedford
and Drumheller. Actually, they show that, in nonhomogenous media, an additional
volume force interaction between solid and fluid phases appears in the governing
equations. This force, which is proportional to φ(f )∇, is traced back by the authors to
an interaction force term deduced earlier by Nikolaevskiy (see Nikolaevskiy 2005),
based on phenomenological reasoning.

This theory is next deployed to analyze the equilibrium state of a fluid and elas-
tic penetrable material, encapsulated in a rigid volume (Lopatnikov and Gillespie
2011). In Lopatnikov and Gillespie (2012) the derivation of interfacial conditions,
compatible with the governing differential equations of the theory, is presented.

3.2 Variational Higher Gradient Theories
by dell’Isola and Co-workers

An investigation of porous media following a consistent variational approach is the
one pursued by Madeo et al. (2013), dell’Isola et al. (2009), Sciarra et al. (2007),
dell’Isola et al. (2005a, b, 1998).
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In dell’Isola et al. (1998), a micro–macro identification is indeed performed for
a compaction of grounds with fluid inclusions with the fluid being confined into the
pores. The work particularly focuses on the effect of a length-scale l characterizing
pore size. The model is a microstructured continuum of the type introduced by
Eringen, and the main result is the dependence of evolution equations on the length l.

In Sciarra et al. (2005), the behavior of a sponge under an increase of the outside
fluid pressure is studied by using the Principle ofVirtual Power,with second gradients
of the displacement included as a further deformationmeasure. In particular, a simple
idea is introduced: the boundary pressure is divided between the solid and fluid
pressures, pf = df pext , ps = dspext with df + ds = 1; quantity, pext is the external
pressure and df and ds are coefficients which depend on the constituent apparent
densities, regarded as state parameters, under the condition that the work performed
by these tractions vanishes in every cyclic process over the parameter space. This
condition restricts the permissible constitutive relations for the dividing coefficient,
which turns out to be characterized by a single material parameter. Moreover, a
stability analysis of the solutions is performed by Sciarra et al. (2005).

In dell’Isola et al. (2009), a (classical) solid fluid mixture is studied in the frame-
work of an extended Hamilton–Rayleigh principle. A general set of boundary con-
ditions at fluid-permeable interfaces between dissimilar fluid-filled porous matrices
is established, including jump conditions, friction and inertia effects. In particular,
solid and fluid domains Bs ⊂ �3 and Bf ⊂ �3 are introduced, as well as the maps

χ s : Bs × (0, T) → �3 χ f : Bf × (0, T) → �3, (6)

which represent the (time dependent) placement of the solid and fluid constituent;
the motion of the fluid inside the solid matrix is described by the function

χ sf : Bs × (0, T) → Bf . (7)

General motion equations relative to a representative elementary volume are then
derived through lengthy computations:

−
(
ρ̄(s)v̇s + ρ̄(f )v̇

s©
f

)
+ div

(
FT

s · ∂Ψ

∂E

)
− ∂Ψ

∂χ s
= −div

(
Js(ΠΠΠ

s©
f )T · F−T

s

)

ρ̄(f )

[
FT

s · v̇
s©

f + ∇
(

∂Ψ

∂ρ̄(f )

)]
= FT

s ·
[
Jsκ

s© − div
(

Js(ΠΠΠ
s© − ΠΠΠ

s©
f )T · F−T

s

)]

(8)
with the following boundary conditions:

[∣∣∣∣Fs · ∂Ψ

∂E
− (v

s©
f − vs) ⊗ D + Js(ΠΠΠ

s©
f )T · F−T

s

∣∣∣∣
]

· Ns = o
[∣∣∣∣G−T

s ·
(

ρ̄(f ) ∂Ψ

∂ρ̄(f )
Ns − 1

2
ρ̄(f )

(
v
s©

f

)2 · Ns + FT
s · v

s©
f ⊗ D · Ns

)
· Γ s©

∣∣∣∣
]

+
[∣∣∣G−T

s · FT
s ·

(
Js

(
(ΠΠΠ s© − ΠΠΠ

s©
f )T

)
· F−T

s · Ns − ||Js F−T
s · Ns||σ s©)

· Γ s©∣∣∣
]

= o.
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In the previous equations, the following definitions are used: Fi = ∇χ i, Gs = ∇χ sf ,

vi = ∂χ i
∂t , ui = ∂χ sf

∂t . Moreover, in the general case Ψ is the sum of a non homo-
geneous deformation energy potential Ψi(E, ρ̄(f ), Xs) and a potential accounting
for external body forces Ψg = (ρ̄(s) + ρ̄(f ))Ep(χ s, Xs). Finally, Js = detFs, E is the
Green-Lagrange strain tensor, ΠΠΠ is the Brinkman stress tensor, ΠΠΠ f is the fluid vis-
cous stress tensor and the acceleration fields v̇s, v̇f are the time derivatives of vs

and vf respectively, ρ̄(s) and ρ̄(f ) are apparent mass densities for the solid and the
fluid, and the symbol s© denotes the transport of a tensor field from the configuration
where it is defined to Bs; for the meaning of the remaining symbols κ , σ , Ep, for the
meaning of the (·) operations and for other details we refer the reader to the paper,
and especially to the technical Appendices in (dell’Isola et al. 2009).

3.3 The VMTPM Framework and the Extrinsic/Intrinsic
Treatment

Among more recent contributions, a two-phase poroelastic formulation, also based
on the least-action principle, has been proposed in (Serpieri and Rosati 2011) and
in (Serpieri 2011). Chronologically, such formulation is subsequent to the works
of Lopatnikov and co-workers, and dell’Isola and co-workers. This theory, hereby
abbreviated in VMTPM (Variational Macroscopic Theory of Porous Media), con-
sists of an application to poroelastic problems of a generalized continuum formula-
tion with additional kinematic descriptors, in the wake of the ideas of Mindlin and
Beford and Drumheller. However, in contrast to previous applications of generalized
continua theories to poroelastic problems, the kinematic of VMTPM is enriched
with a so-called scalar field of intrinsic volumetric strain Ĵ(s) in place of a porosity
field. More specifically, Ĵ(s) is an additional macroscopic scalar field, introduced
on a purely kinematic rationale, which essentially corresponds to the ratio ρ̂(s)/ρ̂

(s)
0

between ‘true’ densities before and after deformation. This field is independent from
the primary macroscopic volumetric strain measure J̄(s) = det(∇χ) which remains
instead ordinarily defined as the determinant of the macroscopic deformation gradi-
ent, and termed extrinsic volumetric strain in order to remark its difference with Ĵ(s).
It should be noted that Ĵ(s) has a direct relation with the porosity field. In a region
of a porous medium undergoing a macroscopically homogeneous deformation, the
value of Ĵ(s) can be macroscopically measured by the following relation which links
Ĵ(s) to the porosities before (φ

(f )
0 ) and after deformation (φ(f )):

Ĵ(s) = J̄(s)
(
1 − φ(f )

)
/
(
1 − φ

(f )
0

)
. (9)

Hence if the medium is saturated and with completely interconnected pores, the
measurement of Ĵ(s) can be translated into the measurement of the fluid leaving or
entering this region as a consequence of a loading-induced deformation.
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Based on this choice of extrinsic/intrinsic kinematic descriptors, the associated
stress measures consist of an extrinsic stress tensor, work-associated with the extrin-
sic strain (σ̌ (s)), and an scalar intrinsic pressure p̂(s) (Serpieri et al. 2013, 2015;
Serpieri and Travascio 2015; Travascio et al. 2015). In such works it is shown that,
in undrained conditions (i.e., when no relative solid-fluid motion takes place in a
region of a biphasic mixture), VMTPM predicts that the external stress, the fluid
pressure, and the stress tensor work-associated with the extrinsic strain of the solid
phase are partitioned according to a relation which is formally strictly compliant
with Terzaghi’s law, irrespective of the microstructural and constitutive features of
a given medium.

In (Serpieri and Travascio 2015) and (Travascio et al. 2015) the constitutive
response for isotropic media is found to be strongly determined by an additional
dimensionless parameter k̄r with bounds −1 ≤ k̄r ≤ 0, in a way similar to the role
played by the Poisson’s coefficient in characterizing the isotropic response of a single
continuum medium. In particular, k̄r appears in the expression for linear isotropic
media in undrained conditions (i.e., fast loading) of Skempton’s coefficientB, defined
as the ratio between the induced pressure p of the interstitial fluid and the applied
stress, t(ext)

x (Skempton 1954). Specifically:

B = p

t(ext)
x

= −
(
1 + k̄r

)
k̂sf[

2μ̄ + λ̄ + (
1 + k̄r

)2
k̂sf

] , (10)

where μ̄ and λ̄ are Lamémoduli and k̂sf is a coupling modulus of intrinsic stiffness in
series. The reader is again referred to Serpieri and Travascio (2015) for an exhaustive
definition of these parameters on a variational basis. Serpieri and Travascio (2015)
have found a peculiar mechanical behavior predicted by VMTMP which is discrim-
inated by k̄r : the extrinsic pressure can actually become tensile (negative) even in
presence of compressive external stresses under specific values of k̄r . Although such
behavior may appear counterintuitive at first sight (by drawing a straightforward
parallel with the traditional Cauchy stress tensor in single continuum mechanics), it
is shown in the referenced work that such condition entails no violation of positive
definiteness of strain energy, so that compressive external tractions always induce
compressive strains and the interstitial fluid pressures is always positive and com-
pressive.

Also, Travascio et al. (2015) have reported another unique feature characterizing
VMTPMmixtures and, once more, modulated by k̄r : during displacement-controlled
static compression, themixture can express either a stress-relaxing or a stress-tensing
behavior. The stress relaxation is a well-known phenomenon in poroelasticity, whose
description has been documented in several studies (Mow et al. 1980; Ehlers and
Bluhm 2013): the solid stress increases as the compression is applied; subsequently,
fluid redistribution within the mixture occurs, and the stress relaxes to an equilibrium
value which is held indefinitely, as long as the system is compressed. The behavior
of stress tensing mixtures is substantially different: during compression, the solid
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stress progressively tenses upon reaching, in its drained state, an equilibrium value
once again depending on applied deformation and stiffness of the solid phase. As
a further confirmation of the important role played by k̄r , Travascio et al. (2013)
showed in a numerical study simulating uniaxial stress relaxation tests on bovine
articular cartilage that the consolidation time of the tissue reduces three-fold when
k̄r varies from 0 to −0.25.

4 Conclusions

The present survey on variational macroscopic continuum approaches to multiphase
poroelasticity highlighted the existence of fundamental features shared by the theo-
ries reviewed in this paper. Also, several aspects have been pointed out, where agree-
ment between the surveyed theories is not found. As such, these aspects deserve
further investigation by the generalized continua community.

A fundamental feature which almost all the theories herein presented have in
common is the resort to kinematicswith additional descriptors (i.e., porosity, intrinsic
strain, etc.) for a proper formulation of the problem. In this respect, generalized
continua models appear to be the natural setting to properly address the multiphase
problem, even in absence of a specific focus onmicrostructural or multi-scale effects.

On theother hand, some important still-open issues canbe identified,where further
investigation is needed either to assess the higher degree of mechanical consistency
and of predictive capabilities of any of the existing frameworks over the others, or
to formulate more comprehensive theories. In particular, the following issues are
considered to be relevant:

• The role of constraints in relation to the variational treatment, with special refer-
ence to mass balance; in particular the well-posedness of the variational statement
of the problem in presence of mass balance constraints for the primary fields
appears to be a relevant research issue.

• In variational theories making use of Lagrange multipliers, an assessment of the
physical meaning of stress quantities in relation to boundary data and to themacro-
scopic measurement process could be a relevant research endeavor.

• Even if the set of Euler–Lagrange equations for multiphase problems appears to be
very broad (as very broad are the possibilities of conceiving enriched kinematics in
generalized continua frameworks) an important objective for the generalized con-
tinua community should be the agreement on a set ofminimalmedium-independent
equilibrium equations.Moreover, any new theory should be downward compatible
with such equations.

• The theory should be based on theminimumpossible number of parameters, which
should have a clear physical-mechanical meaning. In addition, their experimental
characterization should be possible.

• The identification of a generally agreed set of governing balance equations neces-
sary to achieve a consistent formulation of compressible poroelasticity in a vari-
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ational multiphase framework could benefit from contributions coming from all
disciplines (e.g., theoretical mechanics, geomechanics, biomechanics, etc.) with
the aim of identifying appropriate benchmark programs for validation of contin-
uum poroelasticity theories.
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