
On Strain Rate Tensors and Constitutive
Equations of Inelastic Micropolar Materials

Holm Altenbach and Victor A. Eremeyev

Abstract Following Altenbach and Eremeyev (Int J Plast 63:3–17, 2014) we
introduce a new family of strain rate tensors formicropolarmaterials.With the help of
introduced strain rates we discuss the possible forms of constitutive equations of the
nonlinear inelastic micropolar continuum, that is micropolar viscous and viscoelas-
tic fluids and solids, hypo-elastic and viscoelastoplastic materials. Considering the
fact that some of strain rates are not true tensors but pseudotensors we obtain some
constitutive restrictions following from the material frame indifference principle.
Using the theory of tensorial invariants we present the general form of constitutive
equations of some types of inelastic isotropic micropolar materials including several
new constitutive equations.

Keywords Micropolar continua · Strain rate ·Constitutive equations · Finite defor-
mations

1 Introduction

Nonlinearmicropolar continuummodel allows to describe complexmicro-structured
media, for example, polycrystals, foams, cellular solids, lattices, masonries, particle
assemblies, magnetic rheological fluids, liquid crystals, etc., for which the rotational
degrees of freedom of material particles are important. In the case of inelastic behav-
ior the constitutive equations of the micropolar continuum have more complicated
structure, the stress and couple stress tensors as well as other quantities depend
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on the history of strain measures. For the basics of micropolar mechanics we refer
to Nowacki (1986), Eringen (1999), Eringen and Kafadar (1976), Eringen (2001),
Eremeyev et al. (2013), Łukaszewicz (1999).

Below we discuss the constitutive equations of the nonlinear micropolar con-
tinuum considering strain rates. The discussion of strain measures for polar elastic
materials presented by Pietraszkiewicz and Eremeyev (2009a, b), where the natural
Lagrangian and Eulerian strain measures are introduced. Strain–stress pairs within
the framework of micropolar mechanics are discussed in Ramezani and Naghd-
abadi (2007). Using strain rate tensors incremental equations of the micropolar
hypo-elasticity were presented in Ramezani and Naghdabadi (2010), Ramezani et al.
(2008). The interrelations between strain rates in discrete and continual models are
discussed in Trovalusci and Masiani (1997), Pau and Trovalusci (2012). Here we
discuss the Rivlin–Ericksen analogues of strain rate tensors for micropolar mechan-
ics and several types of the constitutive equations of inelastic micropolar solids are
summarized.

2 Basic Relations of the Micropolar Mechanics

Following Eringen (1999), Pietraszkiewicz and Eremeyev (2009a), Eremeyev et al.
(2013) let us recall the basic equations of micropolar mechanics under finite defor-
mations. In what follows we use the standard direct tensor notations (Lebedev et al.
2010; Truesdell 1966; Truesdell and Noll 2004). For example, the gradient and diver-
gence operators in the actual and reference configurations are defined as follows

grad (•) = ∂(•)

∂xk
⊗ rk, div (•) = ∂(•)

∂xk
· rk, ri = ∂r

∂xi
, ri · rk = δk

i ,

Grad (•) = ∂(•)

∂Xk
⊗ Rk, Div (•) = ∂(•)

∂Xk
· Rk, Ri = ∂R

∂xi
, Ri · Rk = δk

i ,

where xi and Xi are the Eulerian and Lagrangian coordinates, respectively, and δ
j
i is

the Kronecker symbol.

2.1 Kinematics

We describe the micropolar continuum deformation by the following relations:

r = r(R, t), H ≡ dk ⊗ Dk = H(R, t). (1)
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Vector r(t) describes the position of the particle of the continuum at time t, whereas
H(t) defines its rotation. The linear velocity is given by the relation

v = dr
dt

, (2)

the angular velocity vectorωωω can be presented by

ddk

dt
= ωωω × dk, k = 1, 2, 3,

where × is the vector (cross) product. ωωω can be also expressed using the derivative
of H as follows

ωωω = −1

2

(
dH
dt

· HT

)
×

, (3)

where subindex × stands for the vectorial invariant of second-order tensor (Lebedev
et al. 2010).

2.2 Motion Equations

The Eulerian equations of motion of micropolar media are

ρ
dv
dt

= divT + ρf, j
dωωω

dt
= divM − T× + ρm, (4)

whereT andM are the stress and couple stress tensors of Cauchy type which are non-
symmetric, in general, ρ is the density in the actual configuration, j is the measure
of rotatory inertia of particles of micropolar medium, f and m are the external forces
and couples, respectively.

2.3 Constitutive Equations

In the pure mechanical theory of the micropolar continuum with memory the con-
stitutive equations consist of dependence of the stress and the couple stress tensors
of the history of deformations. As a result, T and M take the following form:

T(t) = A1[Ft(s), Ht(s),GradHt(s)], M(t) = A2[Ft(s), Ht(s),GradHt(s)], (5)

where we introduced the histories of the deformation gradient

Ft(s) = F(t − s), F(t) = Grad r(t), s ≥ 0,
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and of the microrotation tensor

Ht(s) = H(t − s), s ≥ 0.

Here A1 and A2 are operators describing the micropolar material behavior.
The further reduction of (5) is possible using the principle of material frame-

indifference. The stress measures T and M should be indifferent (objective) quanti-
ties. In classical mechanics, two motions r and r∗ are called equivalent if they relate
as follows

r∗ = a(t) + O(t) · (r − r0), (6)

where O(t) is an arbitrary orthogonal tensor, a(t) is an arbitrary vector function and
the constant vector r0 represents a fixed point position (a pole). We assume that in
the equivalent motion the directors dk transform similarly to r:

d∗
k = O(t) · dk or H∗ = O(t) · H. (7)

Denoting by superscript “*” the stress tensors in the equivalent motions we for-
mulate the property of objectivity for T and M as follows

T∗ = O(t) · T · O(t)T , M∗ = det O(t) O(t) · M · O(t)T (8)

for any orthogonal tensor O(t). Let us note that M is an pseudotensor, that is a reason
of difference in transformation rules (8).

Thus, operators A1 and A2 satisfy the relations

A1 [Ot(s) · Ft(s), Ot(s) · Ht(s), Ot(s) · GradHt(s)]
= O(t) · A1[Ft(s), Ht(s),GradHt(s)] · OT (t),

(9)

A2 [Ot(s) · Ft(s), Ot(s) · Ht(s), Ot(s) · GradHt(s)]
= det O(t) O(t) · A2[Ft(s), Ht(s),GradHt(s)] · OT (t)

(10)

Finally, we can prove that (5) can be represented as follows

T(t) = H(t) · B1[Et(s), Kt(s)] · HT (t), M(t) = H(t) · B2[Et(s), Kt(s)] · HT (t),
(11)

where B1 and B2 are operators depending on histories of two Lagrangian strain
measures E and K defined by formulas (Pietraszkiewicz and Eremeyev 2009a)

E = HT · F − I, K = −1

2
εεε : (HT · GradH). (12)
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2.4 Elastic Materials

In the case of elastic behaviour Eq. (11) reduce to

T(t) = H(t) · f1[E(t), K(t)] · HT (t), M(t) = H(t) · f2[E(t), K(t)] · HT (t), (13)

where vector functions f1 and f2 canbe expressedwith use of the strain energy function
W = W(E, K). For isotropic micropolar elastic solids W is considered as a function
of two strain measures which can be represented as a scalar function depending
on 15 joint invariants of E and K, see Eringen and Kafadar (1976), Eremeyev and
Pietraszkiewicz (2012)

W = W(I1, . . . , I15).

In particular, assuming W in the form W = W1(E) + W2(K) one obtains that func-
tions W1 and W2 depend on six invariants of E and K. An isotropic scalar-valued
function of one non-symmetric tensor E can be constructed as a function of six
invariants In, n = 1, . . . , 6, where

I1 = trE, I2 = trE2, I3 = trE3, I4 = tr (E · ET ), I5 = tr (E2 · ET ), I6 = tr (E2 · ET2).

(14)

An isotropic scalar-valued function of two non-symmetric tensors E and K depends
on the following 15 invariants:

I1 = trE, I2 = trE2, I3 = trE3,

I4 = tr (E · ET ), I5 = tr (E2 · ET ), I6 = tr (E2 · ET2),

I7 = tr (E · K), I8 = tr (E2 · K), I9 = tr (E · K2),

I10 = trK, I11 = trK2, I12 = trK3,

I13 = tr (K · KT ), I14 = tr (K2 · KT ), I15 = tr (K2 · KT2)

(15)

3 Relative Strain Measures

For using the fadingmemory concept let us introduce relative strainmeasures.Within
the framework of so-called relative description of deformation of continuum we
consider the actual configuration χ at instant t as the reference one while the actual
configuration χ at instant τ is considered as actual one. The relative deformation
gradient and the relative microrotation tensor are introduced by formulas

Ft(τ ) = F(τ ) · F−1(t), Ht(τ ) = dk(τ ) × dk(t) = H(τ ) · H−1(t). (16)
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Obviously, Ft(t) = I, Ht(t) = I. Using Ft(τ ) and Ht(τ ) we introduce the relative
strain measures Et(τ ), Kt(τ ) by the relations

Et(τ ) = Ht(τ )T · Ft(τ ) − I, Kt(τ ) = −1

2
εεε : [

Ht(τ )T · GradHt(τ )
]
. (17)

In what follows we denote the histories of relative tensors Ft(τ ), Ht(τ ), etc., as
follows

Ft
t(s) = Ft(t − s), Ht

t(s) = Ht(t − s).

From (16) and (17) it follows the following relations:

Ut(s) = HT (t)·Ut
t(s) · H(t) · U(t), Yt(s) = HT (t) · Yt

t(s) · H(t) · U(t), (18)

Et
t(s) = Ut

t(s) − I, Kt
t(s) = Yt

t(s) − B(t) (19)

and
Ut

t(0) = I, Yt
t(0) = B(t), Et

t(0) = 0, Kt
t(0) = 0,

where we introduced the histories

Ut
t(s) = Ut(t − s), Yt

t(s) = Yt(t − s), Et
t(s) = Et(t − s), Kt

t(s) = Kt(t − s).

4 Relations of Isotropic Materials with Relative Strain
Measures

Substituting Eqs. (18) and (19) into (11) we obtain

T(t) = H(t) · B1
[
HT (t) · (

Ut
t(s) − I

) · H(t) · U(t),
HT (t) · (

Yt
t(s) − B(t)

) · H(t) · U(t)
] · HT (t),

M(t) = H(t) · B2
[
HT (t) · (

Ut
t(s) − I

) · H(t) · U(t),
HT (t) · (

Yt
t(s) − B(t)

) · H(t) · U(t)
] · HT (t).

The latter relations transform to

T(t) = H(t) · C1
[
U(t), Y(t), HT (t) · Ut

t(s) · H(t), HT (t) · Yt
t(s) · H(t)

] · HT (t),
M(t) = H(t) · C2

[
U(t), Y(t), HT (t) · Ut

t(s) · H(t), HT (t) · Yt
t(s) · H(t)

] · HT (t)

with new operators C1 and C2.
Further reduction of constitutive equation is possible assuming some type of

anisotropy as was done by Eremeyev and Pietraszkiewicz (2012). In what follows
we restrict ourselves by isotropic behavior. In this case C1 and C2 should satisfy the
restrictions
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OT · C1

[
U(t), Y(t), HT (t) · Ut

t(s) · H(t), HT (t) · Yt
t(s) · H(t)

]
· O

= C1

[
OT · U(t) · O, (det O) OT · Y(t) · O,

OT · HT (t) · Ut
t(s) · H(t) · O, (det O) OT · HT (t) · Yt

t(s) · H(t) · O
]
,

(det O)OT · C2

[
U(t), Y(t), HT (t) · Ut

t(s) · H(t), HT (t) · Yt
t(s) · H(t)

]
· O

= C2

[
OT · U(t) · O, (det O) OT · Y(t) · O, OT · HT (t) · Ut

t(s) · H(t) · O,

(det O) OT · HT (t) · Yt
t(s) · H(t) · O

]
(20)

for all orthogonal tensors O, O−1 = OT . As the result we obtain

T(t) = C1
[
H · U(t) · HT (t), H · Y(t) · HT (t), Ut

t(s), Yt
t(s)

]
,

M(t) = C2
[
H · U(t) · HT (t), H · Y(t) · HT (t), Ut

t(s), Yt
t(s)

]
.

Thus, the constitutive equations of any isotropic micropolar medium with memory
take the following form

T(t) = D1[e(t), k(t), Ut
t(s), Yt

t(s)], M(t) = D2[e(t), k(t), Ut
t(s), Yt

t(s)], (21)

whereD1 andD2 are isotropic operators and the Eulerian strain measures defined by

e = I − H · F−1, k = H · K · F−1, u = H · F−1. (22)

5 Rivlin–Ericksen Tensors

The history of Ut(τ ) and Yt(τ ) can be represented as series with respect of two
families of tensors Ak and Bk as follows

Ut
t(s) =

∞∑
k=0

(−1)k

k
skAk(t), Yt

t(s) =
∞∑

k=0

(−1)k

k
skBk(t). (23)

In the micropolar continuum tensors Ak and Bk play a role of the Rivlin–Ericksen
tensors used in the nonlinear viscoelasticity of simple materials. They are given by
the recurrent relations

Ak+1 = d

dt
Ak + Ak · gradv − ω × Ak, A0 = I,

Bk+1 = d

dt
Bk + Bk · gradv − ω × Bk, B0 = B.
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Tensors Ak and Bk can be also represented using the derivative of U and Y as
follows

Ak = H · dkU
dtk

· F−1, Bk = H · dkY
dtk

· F−1, (24)

or by formulae
Ak+1 = A◦

k, Bk+1 = B◦
k, (25)

where the corotational derivative is defined by the relations

(. . .)◦ = H · d

dt

[
HT · (. . .) · F

] · F−1 ≡ d

dt
(. . .) + (. . .) · gradv − ω × (. . .). (26)

Let us note that A1 and B1 coincide with the strain rates used in the theory of
micropolar continuum

A1 = εεε ≡ grad v − I × ωωω, B1 = κκκ ≡ gradωωω. (27)

For example, stress power in the micropolar continuum is given by w = T :
εεε + M : κκκ.

6 Examples of Constitutive Equations

6.1 Linear Viscous Micropolar Fluid

The simplest example of an inelastic micropolar material is the micropolar viscous
fluid with the constitutive equations (Aero et al. 1965; Eringen 1966)

T = −p(ρ)I + α1εεε + α2εεε
T + α3I trεεε, M = β1κκκ + β2κκκ

T + β3I trκκκ, (28)

where p is the pressure, ρ is the density, α1, α2, α3 and β1, β2, β2 are viscosities.

6.2 Non-linear Viscous Micropolar Fluid

The further generalization of (28) is non-linear viscous micropolar fluid with the
following constitutive equations:

T = −p(ρ)I + Tv(εεε,κκκ), M = Mv(εεε,κκκ), (29)

whereTv(εεε,κκκ) andMv(εεε,κκκ) are non-linear isotropic functions of two non-symmetric
2nd order tensors. Such model may be applied for highly viscous suspensions or



On Strain Rate Tensors and Constitutive Equations … 9

ferrofluids. Assuming the existence of a dissipative potential that is a scalar isotropic
function Φ(εεε,κκκ) ≥ 0 such that

Tv = ∂Φ

∂εεε
, Mv = ∂Φ

∂κκκ
,

we can apply the theory of invariants for representation of Φ. As a result Φ depends
on 15 invariants of Ij(εεε,κκκ), j = 1, . . . , 15 and should satisfy the requirement

Φ(I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11, I12, I13, I14, I15) (30)

= Φ(I1, I2, I3, I4, I5, I6,−I7,−I8, I9,−I10, I11,−I12, I13,−I14, I15),

since I7, I8, I10, I12, I14 are the relative invariants and change sign during the non-
proper transformations. For linear viscous fluid Φ is a quadratic potential

Φ = α1I21 + α2I2 + α3I4 + β1I210 + β2I11 + β3I13

and Eq. (29) reduce to the linear case (28).

6.3 Viscoelastic Micropolar Fluids

The model of viscous micropolar fluid can be generalized to the case of viscoelastic
behaviour. The viscoelastic micropolar fluid has the following constitutive relations
(Yeremeyev and Zubov 1999):

T = H1[ρ(t), B(t), Et
t(s), Kt

t(s)], M = H2[ρ(t), B(t), Et
t(s), Kt

t(s)], (31)

where H1 and H2 are isotropic operators. In particular, we define the viscoelas-
tic micropolar fluid of differential type of order (m, n) as a micropolar fluid with
following constitutive dependencies:

T = h1(ρ, B, A1 . . . Am, B1 . . . Bn), M = h2(ρ, B, A1 . . . Am, B1 . . . Bn), (32)

where h1 and h2 are tensor-valued isotropic functions of m + n + 1 tensorial argu-
ments. SinceM,Bk , k = 0, 1, . . . n are pseudo-tensorswe prove thath1 andh2 satisfy
the relations

h1(ρ, B, A1 . . . Am, B1 . . . Bn) = h1(ρ,−B, A1 . . . Am,−B1 . . . − Bn),

−h2(ρ, B, A1 . . . Am, B1 . . . Bn) = h2(ρ,−B, A1 . . . Am,−B1 . . . − Bn).
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6.4 Micropolar Hypo-elasticity

Original model of hypoelastic material was introduced in Truesdell (1963). For
micropolar solids it was generalized in Tejchman and Bauer (2005), Ramezani et al.
(2008), Ramezani and Naghdabadi (2010), Surana and Reddy (2015). Within the
framework of the hypo-elastic micropolar solids the constitutive equations for T and
M are formulated as follows

T◦ = ηηη1(T, εεε,κκκ), M◦ = ηηη2(M, εεε,κκκ), (33)

where ◦ denotes an objective time derivative, and ηηη1 and ηηη2 are isotropic functions
of their arguments and linear with respect to strain rates εεε and κκκ. As a result, Eq. (33)
take the form

T◦ = C1(T) : εεε + C2(T) : κκκ, M◦ = C3(M) : εεε + C4(M) : κκκ, (34)

where C1, C2, C3, C4 are 4th-order tensors, which depend on stress and couple stress
tensors, in general. The following restrictions for ηηη1 and ηηη2 and Ck:

ηηη1(T, εεε,κκκ) = ηηη1(T, εεε,−κκκ), −ηηη2(M, εεε,κκκ) = ηηη2(M, εεε,−κκκ), (35)

which lead to constraints C2 = 0, C3(M) = −C3(−M), C4(M) = C4(−M).
Constitutive equations (33) or (34) can be extended as follows

T◦ = ηηη1(T, M, εεε,κκκ), M◦ = ηηη2(T, M, εεε,κκκ),

T◦ = C1(T, M) : εεε + C2(T, M) : κκκ, M◦ = C3(T, M) : εεε + C4(T, M) : κκκ
(36)

with the following constraints

ηηη1(T, M, εεε,κκκ) = ηηη1(T,−M, εεε,−κκκ), −ηηη2(T, M, εεε,κκκ) = ηηη2(T,−M, εεε,−κκκ),

(37)
C1(T, M) = C1(T,−M), −C2(T, M) = C2(T,−M),

−C3(T, M) = C3(T,−M), C4(T, M) = C4(T,−M).

6.5 Viscoelastic Materials

Considered finite approximation of series (23) we obtain the model of micropolar
material of order (m, n)

T(t) = F1[e(t), k(t), B(t), A1(t) . . . Am(t), B1(t) . . . Bn(t)],
M(t) = F2[e(t), k(t), B(t), A1(t) . . . Am(t), B1(t) . . . Bn(t)], (38)

where F1 and F2 are isotropic operators.



On Strain Rate Tensors and Constitutive Equations … 11

Finally, in order to consider various form of rate-type constitutive equations of
micropolar materials we introduce implicit constitutive equations of differential type
in the following form

g1[T◦{M} . . . T◦, M◦{N} . . . M◦, M(t), e(t), k(t), B, A1 . . . Am, B1 . . . Bn] = 0,

g2[T◦{M} . . . T◦, M◦{N} . . . M◦, M(t), e(t), k(t), B, A1 . . . Am, B1 . . . Bn] = 0,

(39)

where g1 and g2 are isotropic tensor-valued functions of M + N + m + n + 3 tenso-
rial arguments, and ◦{k} stands for kth objective derivative.

The constitutive equation (21) include various forms of micropolar viscoelastic
behaviour under finite deformations. Here we present few examples of constitutive
equations of differential type. The constitutive equations of the form

T = ΦΦΦ1(e, k, εεε,κκκ), M = ΦΦΦ2(e, k, εεε,κκκ), (40)

τ1T◦ + T = ΨΨΨ 1(εεε,κκκ), τ2M◦ + M = ΨΨΨ 2(εεε,κκκ), (41)

τ1T◦ + T = ΩΩΩ1(e, k, εεε,κκκ), τ2M◦ + M = ΩΩΩ2(e, k, εεε,κκκ) (42)

play a role ofKelvin–Voigt,Maxwell and standardmodels inmicropolar viscoelastic-
ity, respectively. Here ◦ denotes an objective time derivative, τ1 and τ2 are relaxation
time parameters and ΦΦΦ1, ΦΦΦ2, ΨΨΨ 1, ΨΨΨ 2, ΩΩΩ1 and ΩΩΩ2 are constitutive tensor-valued
functions. Using higher order objective time derivatives and tensors Ak , Bk one can
present constitutive equations of differential type of any order.

7 Conclusions and Discussion

Following Altenbach and Eremeyev (2014) we presented a family of non-symmetric
strain rate tensors for micropolar materials and discussed constitutive equations of
inelastic micropolar materials. Using basics principles of continuum mechanics that
is the principle of equipresence and the material frame indifference we discussed
the constraints for the constitutive equations. In particular, considering the fact that
part of strain rates are not true tensors but pseudotensors we obtain some constitutive
restrictions following from the material frame indifference principle.

Considering difference betweenmodels of classic continua and Cosserat continua
let us note that some classic methods of constitutive modelling used in the Cauchy
mechanics can be straightforward extended for the micropolar continuum. Among
them are the theory of local material symmetry group, invariance properties applied
for the micropolar elasticity (Eringen 1999; Ramezani et al. 2009; Pietraszkiewicz
and Eremeyev 2009a; Eremeyev and Pietraszkiewicz 2012, 2016), micropolar hypo-
elasticity (Ramezani and Naghdabadi 2010), and mechanics of viscous micropolar
fluids (Aero et al. 1965; Eringen 1966, 2001). Several generalizations of yield cri-
terium for elasto-plastic materials and other models for micropolar elastoplasticity
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are given by (Lippmann 1969; de Borst 1993; Steinmann 1994; Grammenoudis and
Tsakmakis 2007, 2009). But in some case such straightforward extensions are impos-
sible, let us mention the logarithmic Hencky’s strain measure and related logarithmic
strain rate (Xiao et al. 1997a, b; Bruhns 2014). Introduction of similar strain tensors
based on logarithmic objective derivative in micropolar mechanics is more difficult
or impossible, in general.

Similar to introduced above non-symmetric strain measures and strain rates are
also used for description of two-level deformations of inelastic materials consider-
ing independent spin (Trusov et al. 2015) for derivation of generalized models of
elasticity (Lurie et al. 2005).
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