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Preface

Generalized Continua have been in the focus of scientists from the end of the
nineteenth century. A first summary was given in 1909 by the Cosserat brothers.
After World War II, a true renaissance in this field occurred with the publication of
Ericksen and Truesdell in 1958. Further developments were connected with the
fundamental contributions of scientists from Germany, Russia, and France. During
the past years the centennial of the Cosserat book was celebrated by two colloquia,
both held in Paris in 2009. In addition, previous trilateral seminars Mechanics of
Generalized Continua—from Micromechanical Basics to Engineering Applications
(Wittenberg 2010, 2012) and the CISM Course Generalized Continua—from the
Theory to the Engineering Applications (Udine 2011) discussed problems related to
the theory and applications. During a new Advanced Seminar (Magdeburg,
September 2015), attention was paid to the most recent research items, i.e., new
generalized models, materials with a significant microstructure, multi-field load-
ings, or identification of constitutive equations. Last but not least, a comparison of
discrete modeling approaches have been discussed.

This book contains 21 papers submitted to the Advanced Seminar Generalized
Continua as Models for Materials with Multi-Scale Effects or Under Multi-Field
Actions or discussed during the seminar. Finally, after reviewing and acceptance
they were collected as a unique collection of papers. The authors are from France,
Germany, and Russia, the traditional countries of the previous trilateral seminars,
completed by authors from Egypt, Estonia, Finland, Great Britain, Italy, and the
United States.

The editors thank the anonymous reviewers for their carefully performed job,
Mrs. Johanna Eisenträger and Mrs. Barbara Renner for proofreading, Mr. Marcus
Aßmus for the technical support in latex processing and compiling the whole book.
Special thanks to Christoph Baumann from Springer Publisher for supporting this
project.

Magdeburg, Germany Holm Altenbach
Paris, France Samuel Forest
February 2016
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On Strain Rate Tensors and Constitutive
Equations of Inelastic Micropolar Materials

Holm Altenbach and Victor A. Eremeyev

Abstract Following Altenbach and Eremeyev (Int J Plast 63:3–17, 2014) we
introduce a new family of strain rate tensors formicropolarmaterials.With the help of
introduced strain rates we discuss the possible forms of constitutive equations of the
nonlinear inelastic micropolar continuum, that is micropolar viscous and viscoelas-
tic fluids and solids, hypo-elastic and viscoelastoplastic materials. Considering the
fact that some of strain rates are not true tensors but pseudotensors we obtain some
constitutive restrictions following from the material frame indifference principle.
Using the theory of tensorial invariants we present the general form of constitutive
equations of some types of inelastic isotropic micropolar materials including several
new constitutive equations.

Keywords Micropolar continua · Strain rate ·Constitutive equations · Finite defor-
mations

1 Introduction

Nonlinearmicropolar continuummodel allows to describe complexmicro-structured
media, for example, polycrystals, foams, cellular solids, lattices, masonries, particle
assemblies, magnetic rheological fluids, liquid crystals, etc., for which the rotational
degrees of freedom of material particles are important. In the case of inelastic behav-
ior the constitutive equations of the micropolar continuum have more complicated
structure, the stress and couple stress tensors as well as other quantities depend

H. Altenbach
Lehrstuhl für Technische Mechanik, Institut für Mechanik,
Fakultät für Maschinenbau, Otto-von-Guericke-Universtät Magdeburg,
Universitätsplatz 2, 39106 Magdeburg, Germany
e-mail: holm.altenbach@ovgu.de

V.A. Eremeyev (B)
Faculty of Mechanical Engineering, Rzeszów University of Technology,
al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
e-mail: veremeyev@prz.edu.pl
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2 H. Altenbach and V.A. Eremeyev

on the history of strain measures. For the basics of micropolar mechanics we refer
to Nowacki (1986), Eringen (1999), Eringen and Kafadar (1976), Eringen (2001),
Eremeyev et al. (2013), Łukaszewicz (1999).

Below we discuss the constitutive equations of the nonlinear micropolar con-
tinuum considering strain rates. The discussion of strain measures for polar elastic
materials presented by Pietraszkiewicz and Eremeyev (2009a, b), where the natural
Lagrangian and Eulerian strain measures are introduced. Strain–stress pairs within
the framework of micropolar mechanics are discussed in Ramezani and Naghd-
abadi (2007). Using strain rate tensors incremental equations of the micropolar
hypo-elasticity were presented in Ramezani and Naghdabadi (2010), Ramezani et al.
(2008). The interrelations between strain rates in discrete and continual models are
discussed in Trovalusci and Masiani (1997), Pau and Trovalusci (2012). Here we
discuss the Rivlin–Ericksen analogues of strain rate tensors for micropolar mechan-
ics and several types of the constitutive equations of inelastic micropolar solids are
summarized.

2 Basic Relations of the Micropolar Mechanics

Following Eringen (1999), Pietraszkiewicz and Eremeyev (2009a), Eremeyev et al.
(2013) let us recall the basic equations of micropolar mechanics under finite defor-
mations. In what follows we use the standard direct tensor notations (Lebedev et al.
2010; Truesdell 1966; Truesdell and Noll 2004). For example, the gradient and diver-
gence operators in the actual and reference configurations are defined as follows

grad (•) = ∂(•)

∂xk
⊗ rk, div (•) = ∂(•)

∂xk
· rk, ri = ∂r

∂xi
, ri · rk = δk

i ,

Grad (•) = ∂(•)

∂Xk
⊗ Rk, Div (•) = ∂(•)

∂Xk
· Rk, Ri = ∂R

∂xi
, Ri · Rk = δk

i ,

where xi and Xi are the Eulerian and Lagrangian coordinates, respectively, and δ
j
i is

the Kronecker symbol.

2.1 Kinematics

We describe the micropolar continuum deformation by the following relations:

r = r(R, t), H ≡ dk ⊗ Dk = H(R, t). (1)
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Vector r(t) describes the position of the particle of the continuum at time t, whereas
H(t) defines its rotation. The linear velocity is given by the relation

v = dr
dt

, (2)

the angular velocity vectorωωω can be presented by

ddk

dt
= ωωω × dk, k = 1, 2, 3,

where × is the vector (cross) product. ωωω can be also expressed using the derivative
of H as follows

ωωω = −1

2

(
dH
dt

· HT

)
×

, (3)

where subindex × stands for the vectorial invariant of second-order tensor (Lebedev
et al. 2010).

2.2 Motion Equations

The Eulerian equations of motion of micropolar media are

ρ
dv
dt

= divT + ρf, j
dωωω

dt
= divM − T× + ρm, (4)

whereT andM are the stress and couple stress tensors of Cauchy type which are non-
symmetric, in general, ρ is the density in the actual configuration, j is the measure
of rotatory inertia of particles of micropolar medium, f and m are the external forces
and couples, respectively.

2.3 Constitutive Equations

In the pure mechanical theory of the micropolar continuum with memory the con-
stitutive equations consist of dependence of the stress and the couple stress tensors
of the history of deformations. As a result, T and M take the following form:

T(t) = A1[Ft(s), Ht(s),GradHt(s)], M(t) = A2[Ft(s), Ht(s),GradHt(s)], (5)

where we introduced the histories of the deformation gradient

Ft(s) = F(t − s), F(t) = Grad r(t), s ≥ 0,
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and of the microrotation tensor

Ht(s) = H(t − s), s ≥ 0.

Here A1 and A2 are operators describing the micropolar material behavior.
The further reduction of (5) is possible using the principle of material frame-

indifference. The stress measures T and M should be indifferent (objective) quanti-
ties. In classical mechanics, two motions r and r∗ are called equivalent if they relate
as follows

r∗ = a(t) + O(t) · (r − r0), (6)

where O(t) is an arbitrary orthogonal tensor, a(t) is an arbitrary vector function and
the constant vector r0 represents a fixed point position (a pole). We assume that in
the equivalent motion the directors dk transform similarly to r:

d∗
k = O(t) · dk or H∗ = O(t) · H. (7)

Denoting by superscript “*” the stress tensors in the equivalent motions we for-
mulate the property of objectivity for T and M as follows

T∗ = O(t) · T · O(t)T , M∗ = det O(t) O(t) · M · O(t)T (8)

for any orthogonal tensor O(t). Let us note that M is an pseudotensor, that is a reason
of difference in transformation rules (8).

Thus, operators A1 and A2 satisfy the relations

A1 [Ot(s) · Ft(s), Ot(s) · Ht(s), Ot(s) · GradHt(s)]
= O(t) · A1[Ft(s), Ht(s),GradHt(s)] · OT (t),

(9)

A2 [Ot(s) · Ft(s), Ot(s) · Ht(s), Ot(s) · GradHt(s)]
= det O(t) O(t) · A2[Ft(s), Ht(s),GradHt(s)] · OT (t)

(10)

Finally, we can prove that (5) can be represented as follows

T(t) = H(t) · B1[Et(s), Kt(s)] · HT (t), M(t) = H(t) · B2[Et(s), Kt(s)] · HT (t),
(11)

where B1 and B2 are operators depending on histories of two Lagrangian strain
measures E and K defined by formulas (Pietraszkiewicz and Eremeyev 2009a)

E = HT · F − I, K = −1

2
εεε : (HT · GradH). (12)
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2.4 Elastic Materials

In the case of elastic behaviour Eq. (11) reduce to

T(t) = H(t) · f1[E(t), K(t)] · HT (t), M(t) = H(t) · f2[E(t), K(t)] · HT (t), (13)

where vector functions f1 and f2 canbe expressedwith use of the strain energy function
W = W(E, K). For isotropic micropolar elastic solids W is considered as a function
of two strain measures which can be represented as a scalar function depending
on 15 joint invariants of E and K, see Eringen and Kafadar (1976), Eremeyev and
Pietraszkiewicz (2012)

W = W(I1, . . . , I15).

In particular, assuming W in the form W = W1(E) + W2(K) one obtains that func-
tions W1 and W2 depend on six invariants of E and K. An isotropic scalar-valued
function of one non-symmetric tensor E can be constructed as a function of six
invariants In, n = 1, . . . , 6, where

I1 = trE, I2 = trE2, I3 = trE3, I4 = tr (E · ET ), I5 = tr (E2 · ET ), I6 = tr (E2 · ET2).

(14)

An isotropic scalar-valued function of two non-symmetric tensors E and K depends
on the following 15 invariants:

I1 = trE, I2 = trE2, I3 = trE3,

I4 = tr (E · ET ), I5 = tr (E2 · ET ), I6 = tr (E2 · ET2),

I7 = tr (E · K), I8 = tr (E2 · K), I9 = tr (E · K2),

I10 = trK, I11 = trK2, I12 = trK3,

I13 = tr (K · KT ), I14 = tr (K2 · KT ), I15 = tr (K2 · KT2)

(15)

3 Relative Strain Measures

For using the fadingmemory concept let us introduce relative strainmeasures.Within
the framework of so-called relative description of deformation of continuum we
consider the actual configuration χ at instant t as the reference one while the actual
configuration χ at instant τ is considered as actual one. The relative deformation
gradient and the relative microrotation tensor are introduced by formulas

Ft(τ ) = F(τ ) · F−1(t), Ht(τ ) = dk(τ ) × dk(t) = H(τ ) · H−1(t). (16)
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Obviously, Ft(t) = I, Ht(t) = I. Using Ft(τ ) and Ht(τ ) we introduce the relative
strain measures Et(τ ), Kt(τ ) by the relations

Et(τ ) = Ht(τ )T · Ft(τ ) − I, Kt(τ ) = −1

2
εεε : [

Ht(τ )T · GradHt(τ )
]
. (17)

In what follows we denote the histories of relative tensors Ft(τ ), Ht(τ ), etc., as
follows

Ft
t(s) = Ft(t − s), Ht

t(s) = Ht(t − s).

From (16) and (17) it follows the following relations:

Ut(s) = HT (t)·Ut
t(s) · H(t) · U(t), Yt(s) = HT (t) · Yt

t(s) · H(t) · U(t), (18)

Et
t(s) = Ut

t(s) − I, Kt
t(s) = Yt

t(s) − B(t) (19)

and
Ut

t(0) = I, Yt
t(0) = B(t), Et

t(0) = 0, Kt
t(0) = 0,

where we introduced the histories

Ut
t(s) = Ut(t − s), Yt

t(s) = Yt(t − s), Et
t(s) = Et(t − s), Kt

t(s) = Kt(t − s).

4 Relations of Isotropic Materials with Relative Strain
Measures

Substituting Eqs. (18) and (19) into (11) we obtain

T(t) = H(t) · B1
[
HT (t) · (

Ut
t(s) − I

) · H(t) · U(t),
HT (t) · (

Yt
t(s) − B(t)

) · H(t) · U(t)
] · HT (t),

M(t) = H(t) · B2
[
HT (t) · (

Ut
t(s) − I

) · H(t) · U(t),
HT (t) · (

Yt
t(s) − B(t)

) · H(t) · U(t)
] · HT (t).

The latter relations transform to

T(t) = H(t) · C1
[
U(t), Y(t), HT (t) · Ut

t(s) · H(t), HT (t) · Yt
t(s) · H(t)

] · HT (t),
M(t) = H(t) · C2

[
U(t), Y(t), HT (t) · Ut

t(s) · H(t), HT (t) · Yt
t(s) · H(t)

] · HT (t)

with new operators C1 and C2.
Further reduction of constitutive equation is possible assuming some type of

anisotropy as was done by Eremeyev and Pietraszkiewicz (2012). In what follows
we restrict ourselves by isotropic behavior. In this case C1 and C2 should satisfy the
restrictions
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OT · C1

[
U(t), Y(t), HT (t) · Ut

t(s) · H(t), HT (t) · Yt
t(s) · H(t)

]
· O

= C1

[
OT · U(t) · O, (det O) OT · Y(t) · O,

OT · HT (t) · Ut
t(s) · H(t) · O, (det O) OT · HT (t) · Yt

t(s) · H(t) · O
]
,

(det O)OT · C2

[
U(t), Y(t), HT (t) · Ut

t(s) · H(t), HT (t) · Yt
t(s) · H(t)

]
· O

= C2

[
OT · U(t) · O, (det O) OT · Y(t) · O, OT · HT (t) · Ut

t(s) · H(t) · O,

(det O) OT · HT (t) · Yt
t(s) · H(t) · O

]
(20)

for all orthogonal tensors O, O−1 = OT . As the result we obtain

T(t) = C1
[
H · U(t) · HT (t), H · Y(t) · HT (t), Ut

t(s), Yt
t(s)

]
,

M(t) = C2
[
H · U(t) · HT (t), H · Y(t) · HT (t), Ut

t(s), Yt
t(s)

]
.

Thus, the constitutive equations of any isotropic micropolar medium with memory
take the following form

T(t) = D1[e(t), k(t), Ut
t(s), Yt

t(s)], M(t) = D2[e(t), k(t), Ut
t(s), Yt

t(s)], (21)

whereD1 andD2 are isotropic operators and the Eulerian strain measures defined by

e = I − H · F−1, k = H · K · F−1, u = H · F−1. (22)

5 Rivlin–Ericksen Tensors

The history of Ut(τ ) and Yt(τ ) can be represented as series with respect of two
families of tensors Ak and Bk as follows

Ut
t(s) =

∞∑
k=0

(−1)k

k
skAk(t), Yt

t(s) =
∞∑

k=0

(−1)k

k
skBk(t). (23)

In the micropolar continuum tensors Ak and Bk play a role of the Rivlin–Ericksen
tensors used in the nonlinear viscoelasticity of simple materials. They are given by
the recurrent relations

Ak+1 = d

dt
Ak + Ak · gradv − ω × Ak, A0 = I,

Bk+1 = d

dt
Bk + Bk · gradv − ω × Bk, B0 = B.
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Tensors Ak and Bk can be also represented using the derivative of U and Y as
follows

Ak = H · dkU
dtk

· F−1, Bk = H · dkY
dtk

· F−1, (24)

or by formulae
Ak+1 = A◦

k, Bk+1 = B◦
k, (25)

where the corotational derivative is defined by the relations

(. . .)◦ = H · d

dt

[
HT · (. . .) · F

] · F−1 ≡ d

dt
(. . .) + (. . .) · gradv − ω × (. . .). (26)

Let us note that A1 and B1 coincide with the strain rates used in the theory of
micropolar continuum

A1 = εεε ≡ grad v − I × ωωω, B1 = κκκ ≡ gradωωω. (27)

For example, stress power in the micropolar continuum is given by w = T :
εεε + M : κκκ.

6 Examples of Constitutive Equations

6.1 Linear Viscous Micropolar Fluid

The simplest example of an inelastic micropolar material is the micropolar viscous
fluid with the constitutive equations (Aero et al. 1965; Eringen 1966)

T = −p(ρ)I + α1εεε + α2εεε
T + α3I trεεε, M = β1κκκ + β2κκκ

T + β3I trκκκ, (28)

where p is the pressure, ρ is the density, α1, α2, α3 and β1, β2, β2 are viscosities.

6.2 Non-linear Viscous Micropolar Fluid

The further generalization of (28) is non-linear viscous micropolar fluid with the
following constitutive equations:

T = −p(ρ)I + Tv(εεε,κκκ), M = Mv(εεε,κκκ), (29)

whereTv(εεε,κκκ) andMv(εεε,κκκ) are non-linear isotropic functions of two non-symmetric
2nd order tensors. Such model may be applied for highly viscous suspensions or
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ferrofluids. Assuming the existence of a dissipative potential that is a scalar isotropic
function Φ(εεε,κκκ) ≥ 0 such that

Tv = ∂Φ

∂εεε
, Mv = ∂Φ

∂κκκ
,

we can apply the theory of invariants for representation of Φ. As a result Φ depends
on 15 invariants of Ij(εεε,κκκ), j = 1, . . . , 15 and should satisfy the requirement

Φ(I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11, I12, I13, I14, I15) (30)

= Φ(I1, I2, I3, I4, I5, I6,−I7,−I8, I9,−I10, I11,−I12, I13,−I14, I15),

since I7, I8, I10, I12, I14 are the relative invariants and change sign during the non-
proper transformations. For linear viscous fluid Φ is a quadratic potential

Φ = α1I21 + α2I2 + α3I4 + β1I210 + β2I11 + β3I13

and Eq. (29) reduce to the linear case (28).

6.3 Viscoelastic Micropolar Fluids

The model of viscous micropolar fluid can be generalized to the case of viscoelastic
behaviour. The viscoelastic micropolar fluid has the following constitutive relations
(Yeremeyev and Zubov 1999):

T = H1[ρ(t), B(t), Et
t(s), Kt

t(s)], M = H2[ρ(t), B(t), Et
t(s), Kt

t(s)], (31)

where H1 and H2 are isotropic operators. In particular, we define the viscoelas-
tic micropolar fluid of differential type of order (m, n) as a micropolar fluid with
following constitutive dependencies:

T = h1(ρ, B, A1 . . . Am, B1 . . . Bn), M = h2(ρ, B, A1 . . . Am, B1 . . . Bn), (32)

where h1 and h2 are tensor-valued isotropic functions of m + n + 1 tensorial argu-
ments. SinceM,Bk , k = 0, 1, . . . n are pseudo-tensorswe prove thath1 andh2 satisfy
the relations

h1(ρ, B, A1 . . . Am, B1 . . . Bn) = h1(ρ,−B, A1 . . . Am,−B1 . . . − Bn),

−h2(ρ, B, A1 . . . Am, B1 . . . Bn) = h2(ρ,−B, A1 . . . Am,−B1 . . . − Bn).
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6.4 Micropolar Hypo-elasticity

Original model of hypoelastic material was introduced in Truesdell (1963). For
micropolar solids it was generalized in Tejchman and Bauer (2005), Ramezani et al.
(2008), Ramezani and Naghdabadi (2010), Surana and Reddy (2015). Within the
framework of the hypo-elastic micropolar solids the constitutive equations for T and
M are formulated as follows

T◦ = ηηη1(T, εεε,κκκ), M◦ = ηηη2(M, εεε,κκκ), (33)

where ◦ denotes an objective time derivative, and ηηη1 and ηηη2 are isotropic functions
of their arguments and linear with respect to strain rates εεε and κκκ. As a result, Eq. (33)
take the form

T◦ = C1(T) : εεε + C2(T) : κκκ, M◦ = C3(M) : εεε + C4(M) : κκκ, (34)

where C1, C2, C3, C4 are 4th-order tensors, which depend on stress and couple stress
tensors, in general. The following restrictions for ηηη1 and ηηη2 and Ck:

ηηη1(T, εεε,κκκ) = ηηη1(T, εεε,−κκκ), −ηηη2(M, εεε,κκκ) = ηηη2(M, εεε,−κκκ), (35)

which lead to constraints C2 = 0, C3(M) = −C3(−M), C4(M) = C4(−M).
Constitutive equations (33) or (34) can be extended as follows

T◦ = ηηη1(T, M, εεε,κκκ), M◦ = ηηη2(T, M, εεε,κκκ),

T◦ = C1(T, M) : εεε + C2(T, M) : κκκ, M◦ = C3(T, M) : εεε + C4(T, M) : κκκ
(36)

with the following constraints

ηηη1(T, M, εεε,κκκ) = ηηη1(T,−M, εεε,−κκκ), −ηηη2(T, M, εεε,κκκ) = ηηη2(T,−M, εεε,−κκκ),

(37)
C1(T, M) = C1(T,−M), −C2(T, M) = C2(T,−M),

−C3(T, M) = C3(T,−M), C4(T, M) = C4(T,−M).

6.5 Viscoelastic Materials

Considered finite approximation of series (23) we obtain the model of micropolar
material of order (m, n)

T(t) = F1[e(t), k(t), B(t), A1(t) . . . Am(t), B1(t) . . . Bn(t)],
M(t) = F2[e(t), k(t), B(t), A1(t) . . . Am(t), B1(t) . . . Bn(t)], (38)

where F1 and F2 are isotropic operators.
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Finally, in order to consider various form of rate-type constitutive equations of
micropolar materials we introduce implicit constitutive equations of differential type
in the following form

g1[T◦{M} . . . T◦, M◦{N} . . . M◦, M(t), e(t), k(t), B, A1 . . . Am, B1 . . . Bn] = 0,

g2[T◦{M} . . . T◦, M◦{N} . . . M◦, M(t), e(t), k(t), B, A1 . . . Am, B1 . . . Bn] = 0,

(39)

where g1 and g2 are isotropic tensor-valued functions of M + N + m + n + 3 tenso-
rial arguments, and ◦{k} stands for kth objective derivative.

The constitutive equation (21) include various forms of micropolar viscoelastic
behaviour under finite deformations. Here we present few examples of constitutive
equations of differential type. The constitutive equations of the form

T = ΦΦΦ1(e, k, εεε,κκκ), M = ΦΦΦ2(e, k, εεε,κκκ), (40)

τ1T◦ + T = ΨΨΨ 1(εεε,κκκ), τ2M◦ + M = ΨΨΨ 2(εεε,κκκ), (41)

τ1T◦ + T = ΩΩΩ1(e, k, εεε,κκκ), τ2M◦ + M = ΩΩΩ2(e, k, εεε,κκκ) (42)

play a role ofKelvin–Voigt,Maxwell and standardmodels inmicropolar viscoelastic-
ity, respectively. Here ◦ denotes an objective time derivative, τ1 and τ2 are relaxation
time parameters and ΦΦΦ1, ΦΦΦ2, ΨΨΨ 1, ΨΨΨ 2, ΩΩΩ1 and ΩΩΩ2 are constitutive tensor-valued
functions. Using higher order objective time derivatives and tensors Ak , Bk one can
present constitutive equations of differential type of any order.

7 Conclusions and Discussion

Following Altenbach and Eremeyev (2014) we presented a family of non-symmetric
strain rate tensors for micropolar materials and discussed constitutive equations of
inelastic micropolar materials. Using basics principles of continuum mechanics that
is the principle of equipresence and the material frame indifference we discussed
the constraints for the constitutive equations. In particular, considering the fact that
part of strain rates are not true tensors but pseudotensors we obtain some constitutive
restrictions following from the material frame indifference principle.

Considering difference betweenmodels of classic continua and Cosserat continua
let us note that some classic methods of constitutive modelling used in the Cauchy
mechanics can be straightforward extended for the micropolar continuum. Among
them are the theory of local material symmetry group, invariance properties applied
for the micropolar elasticity (Eringen 1999; Ramezani et al. 2009; Pietraszkiewicz
and Eremeyev 2009a; Eremeyev and Pietraszkiewicz 2012, 2016), micropolar hypo-
elasticity (Ramezani and Naghdabadi 2010), and mechanics of viscous micropolar
fluids (Aero et al. 1965; Eringen 1966, 2001). Several generalizations of yield cri-
terium for elasto-plastic materials and other models for micropolar elastoplasticity
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are given by (Lippmann 1969; de Borst 1993; Steinmann 1994; Grammenoudis and
Tsakmakis 2007, 2009). But in some case such straightforward extensions are impos-
sible, let us mention the logarithmic Hencky’s strain measure and related logarithmic
strain rate (Xiao et al. 1997a, b; Bruhns 2014). Introduction of similar strain tensors
based on logarithmic objective derivative in micropolar mechanics is more difficult
or impossible, in general.

Similar to introduced above non-symmetric strain measures and strain rates are
also used for description of two-level deformations of inelastic materials consider-
ing independent spin (Trusov et al. 2015) for derivation of generalized models of
elasticity (Lurie et al. 2005).
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On the Modelling of Carbon Nano Tubes
as Generalized Continua

Hossein Aminpour and Nicola Rizzi

Abstract A 1D continuum endowed with internal structure, previously introduced
by the authors in order to describe some nonlinear behaviours of Carbon Nano Tubes
(CNTs), is extended and generalised by giving a procedure for constructing the con-
stitutive functions. Starting from the reference configuration of a Carbon Nano Sheet
(CNS), a Representative Elementary Volume (REV) is chosen. The deformation mea-
sures of the REV are identified with the change of the length of the Carbon-Carbon
(C-C) bonds and the angle variation between each pair of adjacent bonds. The strain
energy density of the REV is given as a standard function of the microscopic strain
measures. A relationship between the micro and the continuum strain measures is
then put down, this leading to an expression of the strain energy density of the REV
in terms of the latter strains. Making the derivative of this energy with respect to
its argument the constitutive functions for the 1D continuum are obtained. The geo-
metric and mechanical properties of a graphene nano sheet are used to construct its
equivalent continuum and some numerical comparisons are discussed. Although the
procedure is set up for a CNS, its extension to Carbon Nano Tubes (CNTs) involves
only simple geometric computations.

Keywords Nonlinear elasticity · Bifurcation analysis · Generalized continua ·
Carbon nano sheets

1 Introduction

CNTs have been given a large attention due to the fact that they show very peculiar
mechanical properties (Shima and Sato 2013). In addition, as they can undergo very
large deformations without losing the elastic behaviour, nonlinear models must be
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constructed in order to have a fair description of a number of very relevant phenom-
ena. Even though the molecular dynamic approach has been and is still largely used
as a simulation tool, it has been recognized as cumbersome in many circumstances.
For this reason, the attention of many researchers has been focused on the continuum
modelling making recourse to both 3D and shell theories.

Following this line the authors (Aminpour et al. 2014; Aminpour and Rizzi 2015),
in accordance with the approach in Antman (2005) and Podio-Guidugli (1982),
proposed to use a 1D continuum endowed with a suitable microstructure for the
modelling of the mechanical behaviour of CNTs. With respect to a Cosserat beam
(Pietraszkiewicz et al. 2007; Bîrsan et al. 2012; Altenbach et al. 2012), that model
has one more scalar field which is introduced with the aim of accounting for the de-
formation of the cross-sections in their own plane. It has been shown that by adopting
very simple constitutive relationships—that were polynomial functions up to grade
two in the components of the deformation measures—the model is able to capture
the relevant phenomena of necking and kinking that appear when a CNT is loaded
by two axial forces or two bending moments, at its ends (see Shima and Sato 2013).

The aim of this work is to extend the theory in Aminpour et al. (2014); Aminpour
and Rizzi (2015) by proposing a procedure that leads to identify the constitutive
relationships of an equivalent 1D continuum, starting from the analysis of the mi-
croscopic behaviour of a carbon nanomaterial (see e.g. dell’Isola et al. 2012). In
view of the results obtained previously, these relationships are given an approximate
polynomial expansion of grade two. The analysis is performed for a CNS and, even
though it is not presented here, its generalization to CNTs is only matter of simple
geometry.

Given a reference configuration of the sheet, a REV including two atoms con-
nected with five C-C bonds connecting themselves and their first neighbours, is
considered. By assuming a generic displacement of the six atoms, the change of the
lengths of the C-C bonds, together with the angle variation between the adjacent
bonds, are assumed as deformation measures of the microscopic model. The strain
energy density of the REV is then given in terms of those deformation measures. By
assuming a suitable map between the kinematic of the microscopic model and that
of the 1D model, the deformation measures of the former are given as functions of
the deformation measures of the latter. This allows to write the strain energy den-
sity of the REV as a function of the deformation measures of the 1D model. This
energy is then assumed as the strain energy density of the 1D continuum equivalent
to the CNS. Successively, this energy is given a power expansion with respect to
the deformation measures, up to the third order. The derivative of the strain energy
density with respect to its arguments gives the constitutive relationships of the 1D
stress measures.

As a numerical example, the analysis of the mechanical behaviour of a graphene
sheet studied in Pei et al. (2010) is performed by means of the geometric model
introduced here for two cases of atoms arrangements, namely the so called armchair
and zigzag. A trivial nonlinear equilibrium solution is found and the Young’s modu-
lus tangent in the origin determined for both the atoms arrangement. The results are
found to be in agreement with the values reported in the literature (Xiao et al. 2005;
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Lee et al. 2008; WenXing et al. 2004). In addition, a bifurcation analysis has been
performed and the bifurcation point on the trivial equilibrium paths for both the arm-
chair and zigzag cases, determined. It is shown that the branched solutions describe a
necking phenomenon. Finally we want to stress that only interactions between each
atom and its first neighbours have been considered and that to account also for long
range interactions would lead to a strain energy density for the equivalent continuum
containing gradients of the deformation measures (Alibert et al. 2003).

2 One-Dimensional Beam Model

A beam is thought as a one dimensional continuous body, whose kinematics is de-
scribed through the placement of the points of a line that we call the beam axis, and
the placement of a couple of orthogonal vectors attached to each point of it. They
are allowed to change their length in order to describe the cross section deformation.
We will consider here a reference configuration ϕ0 in which the axis is straight and
the sections are orthogonal to it. The axis is described by the function

qqq(s) s ∈ [0, 1], (1)

where s is its arc length parameter. The unit vector field tangent to the axis of the
beam is

qqq ′(s), (2)

where the prime denotes differentiation with respect to s. Let ϕt be the configuration
assumed by the beam during a motion at time t . Such a configuration is described by

• the function ppp(s, t), providing the present position of qqq(s);
• a proper orthogonal tensor field RRR(s, t), providing the rotation of the cross-sections

when passing from ϕ0 to ϕt ;
• a scalar field δ(s, t), providing a coarse description of the cross-sections deforma-

tion superimposed to the rotation RRR(s, t).

The tangent vector to the axis of the beam in the present configuration is given by

ppp′(s, t), (3)

and the velocity fields are

www = ṗpp, WWW = ṘRRRRRT, ω = δ̇, (4)

where WWW is a skew tensor and the dot denotes differentiation with respect to t . A
change of placement is rigid when

RRR′ = 0, ppp′ = RRRqqq ′, δ = 0, (5)
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so that in a rigid motion
ṗpp′ = ṘRRqqq ′, δ̇ = 0, ∀t (6)

2.1 Strain Measures

Deformation is defined as the difference between the given transplacement and a
rigid one. A suitable choice of strain measures with respect to ϕ0 is

eee = RRRT ppp′ − qqq ′, EEE = RRRTRRR′, δ, δ′, (7)

where EEE is a skew tensor.
We limit ourselves to the case of a beam whose motion can be described in a 2D

subspace of a 3D Euclidean space. Given a fixed orthonormal basis

DDD1, DDD2, DDD3 = DDD1 × DDD2

we assume that qqq ′(s) = DDD1 so that

eee = εDDD1 + γ DDD2, EEE = κDDD2 ∧ DDD1, (8)

where ε is the axial strain and γ is the shearing strain, κ denotes the bending curvature.
It is useful to write the strain measures in terms of the displacement field uuu defined

as

uuu = ppp − qqq = uDDD1 + vDDD2 (9)

Thus, in view of the definitions (8), (9), the components of the deformation measures
(7), read

ε = (1 + u′) cos ϑ + v′ sin ϑ − 1,

γ = v′ cos ϑ − (1 + u′) sin ϑ,

κ = ϑ ′,
δ, δ′,

(10)

where ϑ is the angle of rotation about DDD3.

2.2 Balance

The interaction of the beam with the surrounding environment is defined as a linear
functional of the velocities (6) and of their first-order derivatives with respect to s,
and the external power can be expressed as
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Pe =
l∫

0

(bbb · www + BBB · WWW + βδ̇ )ds + [
ttt · www + TTT · WWW + Ωδ̇

]l

0 (11)

bbb, BBB, β and ttt,TTT ,Ω being bulk and contact actions, respectively.
The power expended by the contact actions is a linear functional of the velocity

fields and of their first derivatives with respect to X1, that is

Pi =
l∫

0

(ccc0 · www + CCC0 · WWW + Δδ̇ + ccc1 · www′ + CCC1 · WWW ′ + ϑδ̇′)ds (12)

Following Germain (1973a, b); di Carlo (1996), we require that Pi = 0 for any rigid
motion, that is true if and only if

Pi =
l∫

0

(ccc1 · www′ − (ppp′ ∧ ccc1) · WWW + CCC1 · WWW ′ + Δδ̇ + ϑδ̇′)ds (13)

Besides, by requiring that
Pe = Pi ∀t (14)

the expressions (11), (13) and (14) give ccc1 = ttt,CCC1 = TTT and ϑ = Ω and

ttt ′ + bbb = 000,

TTT ′ + ppp′ ∧ ttt + BBB = 000, (15)

Ω ′ − Δ + β = 0

Equation (15) can be conveniently rewritten in the form

sss ′ + EEEsss + aaa = 0,

SSS′ + EEESSS − SSSEEE + (qqq ′ + eee) ∧ sss + AAA = 000, (16)

Ω ′ − Δ + β = 0,

where sss = RRRTttt, SSS = RRRTTTT RRR,aaa = RRRTbbb, AAA = RRRTBBBRRR, whose components in the fixed
basis are

sss = N DDD1 + QDDD2,

SSS = MDDD2 ∧ DDD1,

aaa = a1DDD1 + a2DDD2,

AAA = ADDD2 ∧ DDD1

(17)
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Fig. 1 Axial end
displacement s

u(1)

D3l=1

D2

D1

2.3 Beam Subjected to an Axial End Displacement

In the following we will consider the case of the strut shown in Fig. 1 and look for
solutions in which ϑ ≡ v ≡ 0 so that expressions (10) reduce to

ε = u′,
δ, δ′ (18)

In addition, we will assume that the continuum is hyperelastic and its strain energy
density written as

π(ε, δ, δ′), (19)

which means that the only stress measures different from zero will be

N (ε, δ, δ′) = ∂π

∂ε
, Δ(ε, δ, δ′) = ∂π

∂δ
, Ω(ε, δ, δ′) = ∂π

∂δ′ , (20)

while Q ≡ M ≡ 0 and the definitions (17) if the body actions vanish, becomes

N ′ = 0,

Ω ′ − Δ = 0
(21)

By assuming the boundary conditions

Ω(0) = Ω(1) = 0,

u(0) = 0, u(1) = assigned
(22)

the Eqs. (18), (20), (21) and (22) constitute a nonlinear boundary value problem
(see Aminpour et al. 2014; Aminpour and Rizzi 2015; Antman 2005) that will be
discussed in the following.

3 Graphene

Graphite is a layered 3D material which is made up of a successive series of par-
allel two-dimensional sheets, called graphene sheets. A graphene sheet is a single
layer of graphite which has only one atom in the thickness. Each graphene sheet is
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composed of a regular hexagonal network of strongly bonded carbon atoms. Within
each graphene sheet the distance between two adjacent carbon atoms is (Saito et al.
1998)

ac−c = 0.142 × 10−9 m = 1.42 Å, (23)

while its thickness is assumed to be

t = 3.4 Å (24)

A two-dimensional graphene sheet can be described as a lattice of regular
hexagons, whose vertices show the position of the atoms and the edges describe
the bonds (see Fig. 2). In the same figure, the parallelogram drawn in shadow is the
unit cell (or REV) of the sheet and the vectors aaa1 and aaa2 are the basis vectors of
the unit cell. The whole lattice can be generated by translations of the unit cell by
the vectors

CCCh = naaa1 + maaa2, (25)

where n, m are integers. The vector CCCh is called the chiral vector of the sheet.
Two atoms whose positions (say BBB1 and BBB2) can be expressed by means of a chiral

vector—which means that there are two integers n, m such that

BBB2 − BBB1 = CCCh

are called equivalent. It is clear that the two atoms in the unit cell are not equivalent
as

Fig. 2 Graphene sheet and
its unit cell (or REV)

a1

Armchair

Zigzag

B1

B2

e2

a2

e1

A B
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BBB − AAA = aaa1 + aaa2

3
(26)

In view of the following applications, it is useful to introduce an orthonormal
basis (eee1,eee2) whose two vectors are directed along the so called armchair and zigzag
directions, respectively (see Fig. 2). Through the new basis, the basis vectors of the
cell can be written as

aaa1 = a

(√
3

2
eee1 + 1

2
eee2

)
,

aaa2 = a

(√
3

2
eee1 − 1

2
eee2

)
,

(27)

which give
aaa1 · aaa1 = aaa2 · aaa2 = a2,

aaa1 · aaa2 = a2/2,
(28)

where a is the lattice constant which is related to the carbon-carbon bond length ac−c

by the relationship
a = √

3ac−c = 0.246 × 10−9 m (29)

4 Energy

The total potential energy of the nanostructure may be given by the sum of energies
due to the interatomic interactions (Rappe et al. 1992)

U = Ur + Uθ + Uτ + Uω + UvdW + Ues, (30)

where Ur is the bond stretching energy, Uθ is the bond angle bending energy, Uτ is
the bond torsion (or dihedral angle variation) energy, Uω is the bond inversion (or
out of plane angle variation) energy, UvdW is van der Waals interaction energy, and
Ues is the electrostatic interaction energy.

Following Leamy (2007) for the terms Ur + Uθ in Eq. (30) we will assume the
Modified Morse interatomic potential, that is

Ur = De

{(
1 − e−βe(r−r0)

)2 − 1
}

,

Uθ = 1

2
kθ (θ − θ0)

2
{
1 + ksextic(θ − θ0)

4
}
,

(31)

in which De, βe, kθ , ksextic are constitutive constants, r is the length of a bond and θ

is the angle between two adjacent bonds in the present configuration, while r0 and
θ0 are the corresponding values in the reference configuration. The terms Uτ , Uω,
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UvdW and Ues, on the contrary, will be neglected according to Xiao et al. (2005). This
means that the expression (30) reduces to

U = Ur + Uθ (32)

5 Atomic Model

Figure 3 shows the reference configuration of the unit cells directed along the arm-
chair and zigzag directions, respectively. The REV has been enlarged in order to
consider the first neighbours of the two atoms in it. Let us assume that the sheet
is stretched in the direction of the y axis in each one of the cases in Fig. 3 that are
referred to as armchair and zigzag, respectively.

The displacement of an atom which occupies the reference position E , is described
by the vector (see Fig. 4)

ddd E = vEeee1 + uEeee2 (33)

The reference configuration of the enlarged REV is obtained by specifying the co-
ordinates of each one of the six points in which are located the atoms. By assuming
a local Cartesian coordinate system with origin at the middle point of the segment
AB and basis (eee1,eee2), the coordinates of a point E , will be denoted E ≡ (xE , yE ).

The reference configuration of the REV can also be completely specified when
we fix the position of an atom and give the five bond lengths and the six angles
between adjacent bonds. Note that the six angles are not independent because the
sum of the three angles formed by the bonds that meet at the positions A and B, must
be 2 π . In the deformed configuration the new position occupied by the atom that in
the reference configuration was in E , will be denoted by e ≡ (xe, ye), where

A B

P

Q

R

S

A

B

P Q

R S

h

l/2

h

l/2

x

y

e

e

2

1
x

y

e

e

2

1

l

l

(a) (b)

Fig. 3 The armchair (a) and zigzag (b) REVs
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Fig. 4 Reference and
present configuration of two
adjacent bonds E

e

F

f

G

g

lef

lEF

nef

nfg

dE

efg

EFG

xe = xE + vE ,

ye = yE + uE
(34)

In this way, the new length of a bond, say E F , results to be

�e f = | f − e| =
√

(x f − xe)2 + (y f − ye)2

=
√

[(xF − xE ) + (vF − vE )]2 + [(yF − yE ) + (uF − uE )]2, (35)

while the angle between two adjacent bonds, say e f and f g is obtained from the
relationship (see Fig. 4)

cos ϑe f g = nnnef · nnn f g, (36)

where

nnnef = e − f

�e f
,

nnn f g = g − f

� f g

(37)

are the unit vectors along the bonds e f , and f g in the present configuration, respec-
tively.

In view of the Eqs. (35)–(37), we define as deformation measures, the bonds’
stretching and the angles’ variation

ΔrE F = �e f − �E F ,

ΔϑE FG = ϑe f g − ϑE FG (38)
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Now, if we put

ΔvE F = vF − vE ,

ΔuE F = uF − uE (39)

we can write

�e f =
√

[(xF − xE ) + ΔvE F ]2 + [(yF − yE ) + ΔuE F ]2,

cos ϑe f g = 1

�e f � f g
[(xF − xE + ΔvE F )(xG − xF + ΔvG F )

+ (yF − yE + ΔuE F )(yG − yF + ΔuG F )] (40)

and expressions (38) can be rewritten in terms of the components of the relative
displacements.

6 1D Continuum Equivalent to the Atomic Model

The kinematic of the REV described in Sect. 5 and that of the continuum described
in Sect. 2, are related by postulating the following relationships

uE = yEε(s),

vE = [δ(s) + yEδ′(s)]xE , (41)

where E stands for the position of a generic atom in the reference configuration of
the REV and the abscissa of the 1D continuum has been chosen to coincide with the
y axis on the REV, that is s = y.

Using the relationships (41), the components of the relative displacements of two
atoms which form a C-C bond and in the reference configuration are in the positions
E, F , will be

ΔuE F = (yF − yE ) ε,

ΔvE F = (xF − xE )δ + (xF yF − xE yE )δ′ (42)

Now, in view of the relationships (42), (40) and (38), the energy (31) is given in
terms of the deformation measures of the continuum model

UE F (ε, δ, δ′) = De

{(
1 − e−βe(�e f −�E F )

)2 − 1
}

,

UE FG(ε, δ, δ′) = 1

2
kϑ

(
ϑe f g − ϑE FG

)2 {
1 + ksextic( ϑe f g − ϑE FG)4

} (43)
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Summing up the contribution of all the bonds of the enlarged REV, one obtains

π̂(ε, δ, δ′) = UAB + 1

2
UB P + 1

2
UB Q + 1

2
UAR + 1

2
UAS

+ UR AB + UAB P + US AB + UAB Q + UP B Q + UR AS

(44)

By giving a power expansion up to the third order of π̂(ε, δ, δ′) with respect to its
arguments, we denote by π̆(ε, δ, δ′) the approximation obtained.

If we denote by V the volume of the REV, the strain energy density of the 1D
continuum equivalent to the nanomaterial is assumed to be

π(ε, δ, δ′) = 1

V
π̆(ε, δ, δ′) (45)

Making the derivatives of the strain energy density with respect to the components
of the deformation measures, one obtains the components of the stress measures.

They result to have the following expressions for both the armchair and zigzag
cases

N = 1

V

(
Aδ + 1

2
Bδ2 + 1

2
Cδ′2 + Fε + Eεδ + 1

2
Gε2

)
,

Δ = 1

V

(
Pδ + 1

2
Rδ2 + 1

2
Sδ′2 + Aε + Bεδ + 1

2
Eε2

)
,

Ω = 1

V
(Hδ′ + Sδδ′ + Cεδ′)

(46)

The explicit expressions for the constitutive coefficients have been evaluated for
the following four cases using the MATHEMATICA software (Wolfram 2015)

• case a1 armchair REV considering the sole stretching energy;
• case a2 armchair REV considering stretching and angle variation energy;
• case b1 zigzag REV considering the sole stretching energy;
• case b2 zigzag REV considering stretching and angle variation energy.

As the resulting expressions are very cumbersome, in the following we give only the
constitutive functions for the case a1, that are

N = ∂π

∂ε
= 1

V

[
2

h4β2
e Deε

�2
+ 1

2
h2β2

e Deδ

+
(

3

4

h4β2
e De

�2
− 3

h6β3
e De

�3

)
ε2

+
(

−1

8
h2β2

e De + 1

4

h4β2
e De

�2
− 3

16
h2β3

e De�

)
δ2 (47)

+
(

1

8
h2β2

e De − h4β2
e De

�2
− 3

2

h4β3
e De

�

)
εδ
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+
(

−1

2
h2β2

e De + h4β2
e De

�2
− 3

4
h2β3

e De�

)
δ′2

]
,

Δ = ∂π

∂δ
= 1

V

[
1

2
h2β2

e Deε

+
(

1

8
β2

e De�
2 + 1

4
β2

e De�
2 + h2β2

e De

)
δ

+
(

1

16
h2β2

e De − 1

2

h4β2
e De

�2
− 3

4

h4β3
e De

�

)
ε2

+
(

3

16
h2β2

e De − 3

64
β3

e De�
3 − 3

2
β3

e De�
3

)
δ2

−
(

1

4
h2β2

e De�
4 + 1

2

h4β2
e De

�2
− 3

8
h2β3

e De�

)
εδ

+
(

3

4
h2β2

e De − 3

16
β3

e De�
3

)
δ′2

]
,

(48)

Ω = ∂π

∂δ′ = 1

V

[
1

2
β2

e Deδ
′ +

(
3

2
h2β2

e De − 3

8
β3

e De�
3

)
δδ′

−
(

h2β2
e De + 2

h4β2
e De

�2
− 3

2
h2β3

e De�

)
εδ′

]
,

(49)

where h and � are shown in Fig. 3.

7 Beam with End Displacement: Trivial Solution

Let us consider now the case of a beam described in Sect. 2.3 and let u� = u(�) be the
axial displacement assigned to the end section. The boundary value problem (18),
(21), (22), (46), admits the following trivial solution

Ωo ≡ 0, Δo ≡ 0, δ′
o ≡ 0, ε′

o ≡ 0,

εo = u�/� = u� (as � = 1),

δo = δ(u�),

No = N (ε(u�), δ(u�))

(50)

By using the chain rule it can be seen that

dNo

du�

= dNo

dεo
= (

∂ N

∂ε
)o + (

∂ N

∂δ
)o(

∂δ

∂ε
)o,

dΔo

du�

= dΔo

dεo
= (

∂Δ

∂ε
)o + (

∂Δ

∂δ
)o(

∂δ

∂ε
)o, (51)

where ( )o means that the expression is evaluated along the solution (50).
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As on the trivial path,

Δo = 0 ⇒ dΔo

dεo
= 0 (52)

Equation (51)2 gives

(
∂δ

∂ε
)o = −

(
∂Δ

∂ε
)o

(
∂Δ

∂δ
)o

(53)

and by substituting (53) in the equation (51)1 one obtains

dNo

dεo
=

(
∂ N

∂ε
)o(

∂Δ

∂δ
)o − (

∂ N

∂δ
)o(

∂Δ

∂ε
)o

(
∂Δ

∂δ
)o

(54)

8 Perturbation Method

We are interested in looking for another solution branching off from the given
(fundamental) one. Besides, we assume that the branching solution can be expressed
in terms of a suitable parameter η, in the form

Ξ b(s, η) = Ξo(s, p(η)) + Ξ(s, η) (55)

where Ξ stands for a generic field and p is the parameter chosen to describe the
trivial solution that, in general, is different from η.

We admit that the functions can be represented by the following power expansions
near the bifurcation point that corresponds to η = 0

Ξ b(s, η) = Ξc(s) + Ξ b
1 (s) η + 1

2
Ξ b

2 (s) η2 + o(η2),

Ξo(s, η) = Ξc(s) + Ξo1(s) η + 1

2
Ξo2(s) η2 + o(η2),

(56)

p(η) = pc + p1 η + 1

2
p2 η2 + o(η2), (57)

in which the subscript c denotes the value of a function at the bifurcation point
(η = 0) while the other subscripts denote differentiation with respect to η evaluated
at η = 0, as well.
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Using the expansion (56) for both Ξ b(s, η), and Ξo(s, p(η)), Eq. (55) gives

Ξ(s, η) = Ξ1(s) η + 1

2
Ξ2(s) η2 + o(η2) (58)

The aim of the analysis is to obtain the coefficients of the series expansion in terms of
η, of the sliding variables ε, δ, N ,Δ,Ω and of the parameter p, up to a given order.
To do that we use a perturbation technique so that, making use of the expansions
(56) and (58), the nonlinear BVP stated in Sect. 2.2 is transformed in a sequence of
linear BVPs, one for each power of η.

9 Beam with End Displacement: Bifurcation Analysis

The first order (linear) counterpart of the nonlinear BVP results to be

ε1 = u′
1, (59)

N ′
1 = 0,

Ω ′
1 − Δ1 = 0, (60)

N1 = Aδ1 + Bδcδ1 + Fε1 + Eδcε1 + Eεcδ1 + Gεcε1,

Δ1 = Pδ1 + Rδcδ1 + Aε1 + Bδcε1 + Bεcδ1 + Eεcε1, (61)

Ω1 = Hδ′
1 + Sδcδ

′
1 + Cεcδ

′
1,

Ω1(0) = Ω1(1) = 0,

u1(0) = u1(1) = 0 (62)

Now by substituting (62) into Eq. (60) one obtains

Aδ′
1 + Bδcδ

′
1 + Fε′

1 + Eδcε
′
1 + Eεcδ

′
1 + Gεcε

′
1 = 0,

Hδ′′
1 + Sδcδ

′′
1 + Cεcδ

′′
1 − (Pδ1 + Rδcδ1 + Aε1 + Bδcε1 + Bεcδ1 + Eεcε1) = 0

(63)
Equation (63)1, then gives

ε′
1 = − A + Bδc + Eεc

F + Eδc + Gεc
δ′

1 (64)

and, by taking the first derivative of Eq. (63)2 with respect to s, making use of
Eqs. (62)3 and (64), one obtains

Ω ′′
1 + q(u�)Ω1 = 0, (65)
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where

q(u�) = − (F + Eδc + Gεc)(P + Rδc + Bεc) − (A + Bδc + Eεc)
2

(H + Sδc + Cεc)(F + Eδc + Gεc)
, (66)

which results to be

q(u�) = −
(
∂ N

∂ε
)o(

∂Δ

∂δ
)o − (

∂ N

∂δ
)o(

∂Δ

∂ε
)o

(
∂ N

∂ε
)o(

∂Ω

∂δ′ )o

(67)

Note that Eq. (65) is the one reported by Antman (2005). It admits a non trivial
solution for any positive integer n such that

−
(
∂ N

∂ε
)o(

∂Δ

∂δ
)o − (

∂ N

∂δ
)o(

∂Δ

∂ε
)o

(
∂ N

∂ε
)o(

∂Ω

∂δ′ )o

= n2π2 (68)

Equation (68) determines the values u�c corresponding to the bifurcation points. The
eigenmode associated to the first eigenvalue, is

Ω1 = C1 sin πs (69)

Then we can integrate the expressions (62)3 to obtain

δ1 = −C1

π

cos πs

H + Sδc + Cεc
+ C2 (70)

In addition, from Eq. (60)2

Δ1 = Ω ′
1 = C1π cos πs (71)

and, from the expression (62)2

ε1 = C1π cos πs

A + Bδc + Eεc
+ P + Rδc + Bεc

A + Bδc + Eεc

(
C1 cos πs

π(H + Sδc + Cεc)
− C2

)
(72)

and Eq. (59) gives then the displacement in the form

u1 = C1 sin πs

A + Bδc + Eεc
+ P + Rδc + Bεc

A + Bδc + Eεc

(
C1 sin πs

π2(H + Sδc + Cεc)
− C2s

)
+ C3

(73)
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Finally, the boundary condition (62)3 gives

C3 = 0 (74)

and, the boundary condition (62)4 gives C2. The constant C1 is the amplitude of the
eigenmode and can be assigned a value by choosing a normalization condition.

10 Beam with End Displacement: Numerical Results

We consider the REV in Fig. 3a and assume that the atoms, in the reference config-
uration, have the following coordinates

xA = −�/2 yA = 0 xB = �/2 yB = 0

xR = −� yR = h xP = � yP = h

xS = −� yS = −h xQ = � yQ = −h

(75)

Similarly, the coordinates of the atoms in the REV in Fig. 3b are

xA = 0 yA = −�/2 xB = 0 yB = �/2

xR = −h yR = −� xP = −h yP = �

xS = h yS = −� xQ = h yQ = �

(76)

Following Belytschko et al. (2002) the geometric and constitutive constants in the
energy expressions (43) are given the following values

� = 0.142 nm h = 0.123 nm θ0 = 2.094 rad

De = 0.603105 nN×nm kθ = 0.9 nN×nm × rad−2

βe = 26.25 nm−1 ksextic = 0.754 rad−4

(77)
From the coordinates (76) its is evident that the REV has width w = 3� and height

2h. Denoting by t its thickness, the volume appearing in (49) is V = 3�ht and, for
t = 0.34 nm, V = 0.0178 nm3. Using the preceding data the numerical values for
the constitutive coefficients in (62) have been evaluated for the four cases considered
and are given in Table 1. In addition, the normal force as a function of u� in the trivial
solution has been determined and is plotted in Fig. 5 only for the cases a2 and b2.

Table 1 Constitutive coefficients

A B C E F P G R S H

case a1 6.28 −15.99 −0.96 −60.58 18.86 18.85 −144.1 −188.54 −0.06 0.12

case a2 4.26 −17 −0.94 −55.52 20.88 20.87 −153.2 −191.58 −0.17 0.16

case b1 6.04 −32.65 −0.65 −0.81 19.41 17.16 −181.92 −111.92 −2.25 0.34

case b2 4.88 −29.71 −0.59 −1.7 20.69 18.42 −183.74 −116.28 −2.34 0.37
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Fig. 5 Trivial path
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Table 2 Values of the
apparent Young’s modulus

Young’s modulus (TPa)

case a1, case b1 0.94

case a2, case b2 1.12

Finally the values of the apparent Young’s modulus—which is defined as the
slope at the origin of the trivial path—that is

E =
(

∂ No

∂ε

)
ε=0

,

have been calculated. The values obtained for all the four cases are reported in Table 2.
In Table 3 the results obtained by some other authors are reported for the sake of
comparison. It can be seen that they are very close to those given in Table 2.

The bifurcation points along the trivial path can be obtained from Eq. (68) and the
smaller values for u� are obtained by putting n = 1. In Fig. 6 the curve q(u�) − π2

for the case a2, is plotted. Bifurcation occurs when the curve crosses the u� axis, that
is when u� = 0.136. Now, as the maximum value of the normal force is reached for
u� = 0.133 (see Fig. 5) the bifurcation occurs just a little bit after the limit point.

Table 3 Comparison of Young’s modulus

Reference Modeling method Young’s modulus (TPa)

Lee et al. (2008) Experimental 1 ± 0.1

van Lier et al. (2000) Density functional theory 1.11

WenXing et al. (2004) Molecular dynamic 1.02

Xiao et al. (2005) Nano scale- Continuum 1.13

Wu et al. (2006) Nano scale- Continuum 1.06
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We want to stress that the asymptotes in Fig. 6 correspond to the values of u� at
which

(
∂ N

∂ε
)o

and (
∂Ω

∂δ′

)
o

do vanish, respectively. This means that the constitutive functions obtained for the
equivalent beam are not strongly elliptic and this is due, in turn, to the fact that the
Modified Morse potential is not convex. In Fig. 7 the curve q(u�) − π2 for the case
b2, is plotted. In this case bifurcation occurs when u� = 0.106.
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The maximum value of the normal force, instead, is reached for u� = 0.101 (see
Fig. 5) so that, as before, bifurcation occurs after the limit point. In this case only
one asymptote is present. It is located at the value of u� at which

(
∂ N

∂ε
)o = 0

We want to stress that, looking at the values of the end displacement reported before,
one can conclude that in both examined cases the bifurcation point practically coin-
cides with the limit point of the curve N (u�). Looking at the shape of the component
δ1 of the buckling mode, given by the expressions (74), it is clear that such a solution
describes a necking phenomenon.

11 Conclusions

A procedure that leads to the identification of constitutive functions for a hyperelastic
1D continuum endowed with a suitable internal structure able to describe the me-
chanics behaviour of carbon nano structures, has been introduced. A graphene sheet
with armchair and zigzag structures have been considered and a representative ele-
mentary volume identified. An equilibrium configuration is assumed as a reference
configuration for the REV. When the atoms are displaced in a generic configuration,
the variation of the energy of the REV is evaluated by using the Modified Morse
interatomic potential. A displacement field of the 1D model is put in relation with
displacement of the atoms in the REV. By using this map, the energy variation of the
REV is written on terms of the deformation measures of the 1D model. This expres-
sion, divided by the volume of the REV is assumed as the strain energy density of the
continuum. The stress measures and their constitutive functions are then obtained by
differentiating the strain energy density with respect to the 1D deformation measures.
As an example, the Young’s modulus of a carbon nano sheet has been evaluated and
compared with the values reported it the literature. The two cases of a sheet stretched
in the armchair or zigzag direction, respectively, have been studied and a bifurcation
which describes a necking phenomenon, detected.
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Isogeometric Analysis of Gradient-Elastic
1D and 2D Problems

Viacheslav Balobanov, Sergei Khakalo and Jarkko Niiranen

Abstract In the present contribution, isogeometric methods are used to analyze the
statics and dynamics of rods as well as plane strain and plane stress problems based
on a simplified version of the form II of Mindlin’s strain gradient elasticity theory.
The adopted strain gradient elasticity models, in particular, include only two length
scale parameters enriching the classical energy expressions and resulting in fourth
order partial differential equations instead of the corresponding second order ones
based on the classical elasticity. The problems are discretized by an isogeometric
non-uniform rational B-splines (NURBS) based C p−1 continuous Galerkin method.
Computational results for benchmark problems demonstrate the applicability of the
method and verify the implementation.

Keywords Gradient elasticity · Bar · Plane strain/stress · Isogeometric analysis

1 Introduction. Basic Formulae of the Mindlin’s Gradient
Elasticity Theory

Classical linear theory of elasticity is not capable to describe multi-scale phenom-
ena as effects of meso-scale, micro-scale or nano-scale in primarily macro-scale
problems because it leaves out of account that materials have microstructure. A lot
of improvements of classical elasticity theory have been done in order to explain
such effects. One of the first significant contributions was done by Mindlin (1964).
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His first strain gradient theory of linear elasticity implies the existence of an
additional term in the definition of the potential energy W :

W =
∫
B

[
1

2
τ : ε + 1

2
μ

... κ

]
dV, (1)

where ε stands for the classical strain tensor, τ is the Cauchy stress tensor, μ is
the double stress tensor and κ is the micro-deformation gradient tensor. The nabla-
operator is denoted by ∇ and can be defined in Cartesian coordinate system as
∇ = ei

∂
∂xi

,
∫

B dV designates integration over the volume of a body B.
Form II Mindlin’s strain gradient elasticity theory proposes to define tensor κ as

the gradient of the macroscopic strain:

κ = ∇ε. (2)

The simplest variant of this theory widely used in the literature, with roots in Aifantis
(1992), Altan and Aifanis (1997), defines the double stress tensor as follows

μ = l2s ∇τ , (3)

where ls denotes gradient elasticity parameter which has dimension of length.
In the framework of considering gradient theory, the well known expressions for

classical stress and strain tensors are valid:

ε = 1

2
(∇u + (∇u)T ), (4)

τ = C : ε. (5)

Here u stands for the displacement vector and C is the fourth-order tensor of elastic
moduli.

By substitution (2) and (3) into (1), one can obtain the expression for the potential
energy by using only the classical stress and strain tensors:

W =
∫
B

[
1

2
τ : ε + 1

2
l2s ∇τ

... ∇ε

]
dV . (6)

The kinetic energy has an additional term as well:

T =
∫
B

[
1

2
ρu̇ · u̇ + 1

2
ρl2d∇u̇ : ∇u̇

]
dV, (7)
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where ρ stands for the mass density, upper dots indicate the differentiation with
respect to time and ld is the second gradient coefficient calledmicro inertia coefficient
with the dimension of length.

The work done by external forces alongside with two classical terms has two
additional ones:

Wext =
∫
B

F · udV +
∫

∂ BP

P · udS +
∫

∂ BR

R · (n · ∇u)dS +
∮

∂∂ BE

E · udl, (8)

where F stands for the body force per unit volume, P is the traction force, R is
the double traction force,

∫
∂ B dS denotes integration over the surface of the body,

n is the unit vector normal to the surface, E is the force distributed on the wedges
∂∂ BE of the body surface,

∮
∂∂ BE

dl denotes integration over these wedges. For
simplicity, external loadings at possible corners of the wedges (see, for instance,
Polizzotto 2012) have been excluded in the formulation above.

By substitution of (6)–(8) into Hamilton’s principle for independent variation δu
between fixed limits of u at times t0 and t1

δ

t1∫
t0

(T − W )dt +
t1∫

t0

δWextdt = 0, (9)

one can obtain the equation of motion of elastic continuum with micro-structure:

∇ · τ − l2s ∇ · Δτ + F = ρü − ρl2dΔü in B (10)

and expressions for the external forces (Mindlin 1964; Polizzotto 2012):

P = n · (τ − l2s Δτ ) − l2s ∇s · (n · ∇τ ) + l2s (∇s · n)n ⊗ n : ∇τ + ρl2d n · ∇ ü on ∂ BP ,

(11a)

R = l2s n ⊗ n : ∇τ on ∂ BR, (11b)

E = l2s s · L : [n ⊗ n · ∇τ ] on ∂∂ BE , (11c)

where Δ = ∇2 stands for the Laplacian, ∇s being the surface part of the nabla-
operator: ∇s = ∇ − n ⊗ n · ∇, s being the unit vector tangent to C and L is the third
order Levi-Civita tensor. The bold face brackets in (11c) indicate that the enclosed
quantity is the difference of its values, at ∂∂ B on the two portions of ∂ B that intersect
at ∂∂ B.
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2 Weak Form

Vector equation of motion (10) within a framework of the gradient elasticity theory is
partial differential equation with high order derivatives. It can be solved analytically
only in the simplest cases. The most common way of solving continuum mechanics
problems numerically is to use the family of Finite Element Methods. In order to get
the numerical solution, it is necessary to begin with definition of the weak form of
the equation:

Definition 3.1 For a given loading F ∈ [L2(B)]3 find the deformation vector u ∈ U
such that

a(u, w) = l(w) ∀ w ∈ W ⊂ [H 2(B)]3, (12)

where the bilinear form a : U × W → R
3 and the load functional l : W → R

3,
respectively, are defined as

a(u, w) =
∫
B

[τ (ε(u)) : ε(w) + l2s ∇τ (ε(u))
... ∇ε(w) + ρü · w + ρl2d∇ü : ∇w]dV,

(13)

l(w) =
∫
B

F · wdV +
∫

∂ BP

P · wdS +
∫

∂ BR

R · (n · ∇w)dS +
∮

∂∂ BE

E · wdl. (14)

HereU is a subspace of Sobolev space [H 2(B)]3 and each function from this subspace
satisfies the Dirichlet boundary conditions:

U = {u ∈ [H 2(B)]3 | u|∂ Bu = u0, u|Cu = uc, n · ∇u|∂ BD = d} ⊂ [H 2(B)]3. (15)

Functions from W satisfy the homogeneous Dirichlet boundary conditions:

W = {w ∈ [H 2(B)]3 | w|∂ Bu = 0, w|Cu = 0, n · ∇w|∂ BD = 0} ⊂ [H 2(B)]3. (16)

Galerkin’s method suggests to represent an approximate solution (trial function)
and test function by using a finite number of basis functions

uh =
n∑

i=1

uiϕi , wh =
n∑

i=1

wiϕi , (17)

at that uh ∈ Uh and wh ∈ Wh , where Uh and Wh are finite-dimensional approxima-
tions of U and W:

Uh ⊂ U, Wh ⊂ W. (18)
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An important fact arises from (18) for a conforming method: the solution space
must be a subspace of Sobolev space [H 2(B)]3. It means that basis functions ϕi must
provide at least C1 continuity from element to element. Classical Lagrange basis
functions can provide only C0 continuity and consequently they are not suitable for
solving the gradient elasticity problems. There are a lot of different modifications of
Galerkin’smethods but probably themost universal and advancedone is Isogeometric
Analysis introduced by Hughes et al. (2005).

3 Isogeometric Analysis

Isogeometric Analysis (IGA) can be considered as the “next generation” of the finite-
element methods family. It has been under development at a quick rate during last
10years. Themain idea of IGA is to use the non-uniform rational B-splines (NURBS)
as basis functions ϕi . This peculiarity causes a lot of advantages of IGA methods
such as the exact representation of the problem geometry. Interested readers advised
to reach for the book devoted to Isogeometric Analysis (Cottrell et al. 2009).

In the context of the gradient elasticity theory the most important property of IGA
is the C p−1 continuity provided across the elements boundaries in each parametric
direction. Here p is an order of the NURBS basis functions in one of the directions.
The NURBS basis is constructed by using 1D B-spline basis functions which can be
defined by using Cox-de Boor recursion formula:

Ni,p(ξ) = ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) for p = 1, 2, 3, . . .

Ni,0(ξ) =
{
1 if ξi ≤ ξ ≤ ξi+1;
0 otherwise.

(19)

Definition of 3D NURBS basis functions is presented below:

R p,q,r
i, j,k (ξ, η, ζ ) = Ni,p(ξ)N j,q(η)Nk,r (ζ )wi, j,k

n∑
î=1

m∑
ĵ=1

l∑
k̂=1

Nî,p(ξ)N ĵ,q(η)Nk̂,r (ζ )wî, ĵ,k̂

, (20)

where wi, j,k are weight coefficients.
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4 Numerical Results

This section is devoted to results of numerical solutions of some benchmark problems
which were obtained from (10)–(11) by dimension reduction. For more results the
interested reader can look at Niiranen et al. (2015a, b).

4.1 Static Rod in Tension

Consider a straight prismatic rod of constant cross section area A and length L .
The displacement along the longitudinal axis x are denoted by u. Material of the
rod is isotropic with Young’s modulus E and gradient coefficient ls . According to
Papargyri-Beskou et al. (2010), the governing equilibrium equation of this rod in
terms of displacements can be written as follows (body force is set to be zero):

AE(u′′ − l2s u′′′′) = 0 in [0, L]. (21)

Boundary conditions for the gradient rod under tension are assumed to be:

u|x=0 = 0, P|x=L ≡ AE(u′ − l2s u′′′)|x=L = P0,

u′|x=L = 0, R|x=0 ≡ AEl2s u′′|x=0 = 0. (22)

Solution for the problem (21)–(22) can be found analytically. It means that this
problem can be used for the examination of the IGA applicability for solving of 1D
problems of the gradient elasticity theory.

Convergence curves for different orders p of theNURBSbasis functions presented
on Fig. 1 seem to follow the next formula:

||u − uh ||m ≤ chβ ||u||p+1, (23)

where || · ||m denotes the norm corresponding to the Sobolev space H m(L), uh is
the approximate solution, c is an unknown constant and h is the element size. Con-
vergence rate is denoted by β and expression for it depends on the degree of the
Sobolev norm m of the solution error. In context of the gradient elasticity H 2 norm is
the energy norm and its convergence rate equals to β = p − 1. For L2 norm (or H 0

norm) the convergence rate equals to β = min{p + 1, 2(p − 1)} and for H 1 norm
it is equal to β = p. These results are in agreement with the theoretical analysis in
Niiranen et al. (2015b) and Cottrell et al. (2009).
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Fig. 1 L2, H1 and H2 norms of error of the stretched rod displacements for different order of the
NURBS basis functions

Fig. 2 Dimensionless axial strains of the stretched rod for different values of the gradient elasticity
parameter

Figure2 represents the dimensionless strain of stretched rod along axis x for the
different values of the gradient parameter ls :

ε̂ = εgr

εc(x/L = 1)
. (24)

In distinction from the classical theory for which strain εc is uniform along the rod
axis, the gradient theory gives strain εgr which is not uniform. It means that 1D
gradient elasticity can explain the local elongation and further fracture in the middle



44 V. Balobanov et al.

Table 1 Eigenfrequencies of a 2D square domain

Frequency number Frequency value, Hz Gradient/Classical
frequencies ratio

Classical elasticity Gradient elasticity

1 1.60E+5 1.66E+5 1.03

3 2.27E+5 2.40E+5 1.06

10 4.81E+5 5.98E+5 1.24

of a tension specimen: primarily plastic deformations will most likely occur in a zone
of the maximum elastic strain.

4.2 2D Dynamic Problem

Consider a square domain Ω with the side length L = 10 mm. Material properties
are defined by Lame parameters λ and μ, mass density ρ (they are assumed to be
equal to the parameters of standard steel), and gradient coefficients ls = 1 mm and
ld = 0.5 mm. The governing equation of motion of 2D domain in plane strain/stress
state can be written as follows (body force is set to be zero):

(1 − l2s Δ)(μΔu + (λ + μ)∇∇ · u) = ρü − ρl2dΔü in Ω. (25)

Boundary conditions are assumed to be

u · s|∂Ω = 0; P · n|∂Ω = 0; R|∂Ω = 0. (26)

Numerical solution for the spectral problem (25) and (26) is presented in Table1. As
one can see, gradient elasticity theory changes the body eigen frequencies and differ-
ence between results of classical and gradient elastic theories rises with increasing
of the frequency number.
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A Fast Fourier Transform-Based Approach
for Generalized Disclination Mechanics
Within a Couple Stress Theory

Stéphane Berbenni, Vincent Taupin, Claude Fressengeas
and Laurent Capolungo

Abstract Recently, a small-distortion theory of coupled plasticity and phase
transformation accounting for the kinematics and thermodynamics of generalized
defects called generalized disclinations (abbreviated g-disclinations) has been pro-
posed by Acharya and Fressengeas (2012, 2015). Then, a first numerical spectral
approach has been developed to solve the elasto-static equations of field dislocation
and g-disclination mechanics set out in this theory for periodic media and for linear
elastic media using the classic Hooke’s law within a Cauchy stress theory (Berbenni
et al. 2014). Here, given a spatial distribution of generalized disclination density ten-
sors in a homogenous linear higher order elastic media, a couple stress theory with
elastic incompatibilities of first and second orders is developed. The incompatible
and compatible elastic second and first distortions are obtained from the solution of
Poisson and Navier-type equations in the Fourier space. The efficient Fast Fourier
Transform (FFT) algorithm is used based on intrinsic Discrete Fourier Transforms
(DFT) that are well adapted to the discrete grid to compute higher order partial
derivatives in the Fourier space. Therefore, stress and couple stress fields can be cal-
culated using the inverse FFT. The numerical examples are given for straight wedge
disclinations and associated wedge disclination dipoles which are of importance to
geometrically describe tilt grain boundaries at fine scales in polycrystalline solids.
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1 Introduction

In crystalline media, the internal stresses and couple stresses result from an incom-
patible process where crystal defects - dislocations, disclinations or “generalized
disclinations” (abbreviated “g-disclinations”)—induce the discontinuity of (elastic,
i.e. lattice) displacement or distortion across surfaces in the body. Dislocations and
disclinationsweremathematically introduced byVolterra (1907). In the sole presence
of dislocations, incompatibility fields were smoothly described in the continuum the-
ory of dislocations initiated by Kröner (1958, 1981) and many others (Bilby et al.
1955; Mura 1963; Willis 1967; Kosevich 1979) by using Nye’s dislocation density
tensor (Nye 1953). The continuum theory of dislocations was recently revisited by
Acharya (2001), Roy and Acharya (2005), Acharya and Roy (2006). One of the
key features of the revisited continuum dislocation theory resides in the Stokes-
Helmholtz decomposition of the elastic distortion and the associated side conditions
yielding a unique solution for the incompatible part associated with a prescribed
dislocation density field, while the compatible part is unambiguously determined
from the satisfaction of the balance of linear momentum together with boundary
conditions. When disclinations are present in the body in addition to dislocations,
the displacement and rotation vectors are both multi-valued functions. Such a situa-
tion typically occurs in solids exhibiting kink bands, grain and subgrain boundaries
and triple junctions. In this case, the elastic curvature tensor has an incompatible part
complementing the compatible gradient component (deWit 1970; Fressengeas et al.
2011). Beyond Volterra’s construct, the entire distortion tensor including the strain
tensor in addition to the rotation tensor may be multivalued along some surface.
Such situations are commonplace in materials science. They include terminating
twinning and phase boundaries, terminating shear bands, sharp corners of inclusions
in a matrix of dissimilar media, in addition to grain boundaries and triple junctions.
As recently discussed by Acharya and Fressengeas (2012), the discontinuity of the
distortion field is reflected by the incompatibility of the elastic 2-distortion, (i.e. the
second gradient of displacement in strain gradient elasticity theory) in the presence
of a non-vanishing g-disclination density tensor field. A Weingarten theorem and a
finite strain framework were developed in Acharya and Fressengeas (2015).

An increasingly attractive alternative to the finite-element method is a com-
putationally efficient scheme based on the Fast Fourier Transform (FFT) for the
solution of periodic boundary-value problems in continuum mechanics. Pioneer-
ing works in this field can be found in Moulinec and Suquet (1994, 1998), Müller
(1996), Dreyer et al. (1999), Eyre and Milton (1999), Lebensohn (2001), Michel
et al. (2001), Neumann et al. (2002), Vinogradov and Milton (2008). This numer-
ical approach solves the Lippmann-Schwinger integral equation of the periodic
boundary-value problems by means of the Green’s function of a chosen reference
medium. It has been applied so far to elastic and elasto-plastic composites and
polycrystals in the absence of crystal defects. The main interest of the FFT approach
relies on its computational efficiency (Moulinec and Suquet 1998; Prakash and
Lebensohn 2012). Its main drawbacks are the need for a periodic representative
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volume element and the possible occurrence of spurious Gibbs oscillations arising
from the presence of strong spatial gradients. The elasto-static equations of FDM,
which provide the long-range internal elastic fields associated with a prescribed dis-
tribution of dislocation densities in a body, were recently solved within the FFT
framework (Brenner et al. 2014). In the latter, the equations for the incompatible
elastic distortions and the balance of momentum are solved in the Fourier space,
while the resulting elastic fields are obtained in the real space by using the inverse
Fourier transforms. Independently, an extension of this spectral approach to field
dislocation and generalized-disclination mechanics (FDGDM) was first proposed in
Berbenni et al. (2014) using classic Cauchy stress theory, with additional features
including a different discretization treatment of FFT-induced Gibbs oscillations in
comparison with Brenner et al. (2014). Extensive 2D simulations showed that the
numerical spectral approach is as accurate as optimized finite element approxima-
tions, but computationally much more efficient (Berbenni et al. 2014).

Motivated by the accuracy and the speed of such spectral approaches for the
solution of classic elasto-static problems, we extend in the present contribution the
theory developed in Berbenni et al. (2014) to account for the second order couple
stress tensor (which is related to the skew-symmetric part of the third order hyper-
stress tensor) and the second order elastic curvature (which is related to the third
order elastic 2-distortion tensor). Among various higher order theories, the Cosserat,
couple-stress, micromorphic, strain-gradient theories are mostly documented, see
e.g. Kröner (1968), Nowacki (1986), Eringen (2002), Forest (2006). The couple-
stress theory originally developed by Mindlin and Tiersten (1962), Koiter (1964)
contains the least material parameters in the constitutive equations compared with
other non-conventional theories involving multiple materials length scale dependent
elastic constants which may be difficult to identify at fine scales. Analytical elastic
fields of straight dislocations and disclinations were obtained in a couple stress the-
ory by Kröner (1963), Lubarda (2003), Anthony (1970), Gourgiotis and Georgiadis
(2008). Furthermore, in a different context dedicated to homogenization and com-
posites, the Green’s function technique for isotropic centrosymmetric couple stress
materials was derived in Smyshlyaev and Fleck (1994), Zheng and Zhao (2004) and
a DFT-based approach was proposed for both Cosserat and couple stress linear elas-
tic materials in Kassbohm (2006), Kassbohm et al. (2006). Recently, a general free
energy density functional for crystalline materials with third order hyperstress tensor
undergoing incompatible fields due to dislocations, disclinations and g-disclinations
was proposed in Upadhyay et al. (2013), Upadhyay (2014). Here, the constitutive
model will be built up starting from this general free energy density functional but
will be simplified to only consider the second order deviatoric elastic curvaturewithin
a couple stress theory with incompatibilities.

The paper is organized as follows:
In Sect. 2, the notations are introduced. The kinematics for generalized disclination
(abbreviated g-disclination in the sequel) mechanics is reviewed in Sect. 3 and the
solutions for incompatible fields are given in the same section. Then, the generalized
constitutive and equilibrium equations within a couple stress theory are introduced
in Sect. 4. General three-dimensional solutions for incompatible elastic fields of g-
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disclinations are derived in Sect. 5 to compute their stress and couple stress fields
in the Fourier space. In Sect. 6, the DFT method is introduced in the case of two-
dimensional (2D) problems, and the FFT algorithm (Frigo and Johnson 2005) will
be used to solve the Poisson and Navier-type equations with microstructural length
scale in the case of infinite straight g-disclinations. In Sect. 7, g-disclination densities
are distributed on 2D FFT pixelized grids for different configurations: single wedge
disclination and wedge disclination dipole. The incompatible and compatible elastic
fields are obtained in the discrete Fourier space and then used to derive the stresses
and couple stresses by using the inverse FFT for an isotropic centrosymmetric elas-
tic solid. The present numerical method is validated by comparisons with existing
analytical expressions (deWit 1973;Anthony 1970; Romanov andVladimirov 1992).

2 Notations

Abold symbol denotes a tensor or a vector. The symmetric part of tensorA is denoted
Asym. Its skew-symmetric part is Askew and its transpose is denoted by At . The tensor
A · B, with rectangular Cartesian components AikBkj, results from the dot product
of tensors A and B, and A ⊗ B is their tensorial product, with components AijBkl.
The vector A · V, with rectangular Cartesian components AijVj, results from the dot
product of tensor A and vector V. A “:” represents the trace inner product of the two
second order tensors

A : B = AijBij,

in rectangular Cartesian components, or the product of a higher order tensor with a

second order tensor, e.g., A : B = AijklBkl. A “
...” represents the trace inner product

of the two third order tensors A
...B = AijkBijk , in rectangular Cartesian components,

or, it denotes the product of a higher order tensor with a third order tensor, e.g.,

A
...B = AijklmBklm.

The cross product of a second-order tensor A and a vector V, the div and curl
operations for second/third-order tensors are defined row by row, in analogy with the
vectorial case. For any base vector ei of the reference frame:

(A × V)t · ei = (At · ei) × V, (1)

(div A)t · ei = div(At · ei), (2)

(curl A)t · ei = curl(At · ei). (3)

In rectangular Cartesian components:
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(A × V)ij = ejklAikVl, (4)

(A × V)ijk = eklmAijlVm, (5)

(divA)i = Aij,j, (6)

(divA)ij = Aijk,k, (7)

(curl A)ij = ejklAil,k = −(grad A : X)ij, (8)

(curlA)ijk = eklmAijm,l, (9)

where ejkl is a component of the third-order alternating Levi-Civita tensor X and the
spatial derivative with respect to a Cartesian coordinate is indicated by a comma
followed by the component index.

3 Kinematics of Generalized Crystal Defects
and Incompatibilities

3.1 Linear Theory

The analysis is developed in the small distortion framework (linear theory). The
body V , with boundary ∂V , is assumed to be a continuum, with smooth displacement
and rotation vector fields (u, �ω = 1/2 curl u). The total 1-distortion (first distortion)
tensor field U = grad u, the curvature tensor field, κ = grad �ω, and the 2-distortion
(second distortion) tensor field, G = grad U, are therefore assumed to be integrable
(compatible, or curl free). Under such assumptions, the possibility of developing
cracks in the body is discarded. The total 1-distortion writes as the sum of the elastic
distortion, Ue, and plastic distortion, Up:

U = Ue + Up. (10)

Similarly, the 2-distortion tensor can be decomposed into elastic and plastic 2-
distortion tensors:

G = Ge + Gp. (11)

In a compatible body in the absence of polarized crystal defect density, the elas-
tic/plastic distortions and 2-distortions are curl-free gradient tensors. However, they
will contain incompatible, non-gradient parts, in the presence of a polarized crys-
tal defect density, while total 1 and 2-distortions remain compatible. Such general
incompatibilities are now discussed in terms of crystal defects.
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3.2 Volterra’s Crystal Translation and Rotation Line Defects

Volterra (1907) introduced six types of crystal line defects. Three of them, known as
dislocations, are translational defects, and the other three, referred to as disclinations,
are rotational defects. Like disclinations, dislocations have a smooth elastic distortion
field Ue in a non-simply-connected domain excluding their core. However, their
(elastic) displacement field features a discontinuity denoted [[ue]] across a (non-
unique) smooth surface in this domain. The geometry of any such surface is arbitrary
except that, in a discretemodeling framework, it terminates along the dislocation line.
A line integral of the elastic distortion field along any curve encircling the dislocation
line, i.e. a Burgers circuit, is constant and is equal to the discontinuity of the elastic
displacement. This constant b = [[ue]] is referred to as the Burgers vector of the
dislocation. It represents the strength of the dislocation. In contrast with Volterra’s
discrete representation of crystal defects, we presently choose a continuous setting,
in order to regularize this classical description.We consider smooth elastic distortion
fields in simply connected domains, in which they are point-wise irrotational outside
the core region,whereas their non-vanishing curl defines a smooth dislocation density
tensor field inside the core (of non-zero volume):

α = curl Ue. (12)

The Burgers vector is then obtained by integrating the dislocation density tensor
field, referred to as Nye’s tensor field, along appropriate surface patches S with unit
normal n:

b =
∫
S

α.ndS. (13)

Similarly, disclinations result from a discontinuity denoted [[�ωe]] in the rotation field
over a surface terminating on the disclination line in a discrete setting, even though a
smooth elastic curvature field κe exists in this region. The strength of disclinations is
characterized by their Frank vectorΩ , which represents the magnitude and direction
of the rotational discontinuity Ω = [[�ωe]] over a closed circuit encircling the discli-
nation line. In deWit’s continuous setting (deWit 1970), also adopted in the present
paper, the smooth elastic curvature field is irrotational outside the disclination core
region, and the disclination density tensor is defined as the curl of this field inside
the core, of non-zero volume:

θ = curl κe. (14)

The Frank vector is then obtained by integrating the disclination density tensor field
along appropriate surface patches S:

Ω =
∫
S

θ .ndS. (15)
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3.3 Generalized Disclination (G-Disclination) Kinematics

Acharya and Fressengeas (2012) adopted a similar approach in introducing gener-
alized disclinations , as shown in Fig. 1. The g-disclination concept goes beyond
the Volterra construct, in the sense that the distortion field now has a discontinu-
ity denoted [[Ue]] along a surface terminating at the g-disclination line (Fig. 1),
whereas the elastic 2-distortion tensor field Ge is still smooth in the non-simply con-
nected region excluding the g-disclination line. As already mentioned, this surface
of discontinuity is referred to as a phase or grain boundary. The strength Π of the
g-disclination is defined as the jump in the elastic distortion tensor field across the
interphase:Π = [[Ue]]. In a continuous setting, the elastic 2-distortion field is point-
wise irrotational in the defect free volume of the body. Its curl in the defected part
provides for the definition of the third order g-disclination density tensor field π :

π = curl Ge, (16)

and the integration of the latter over an appropriate surface patch yields the jump of
the elastic distortion tensor field:

Π =
∫
S

π .ndS. (17)

Fig. 1 Cross sectional view of two different types of straight line defects: dislocation a seen
as the terminating curve of the surface of displacement discontinuity (the arrows with reverse
directions along the displacement discontinuity surface describe different displacement directions),
g-disclination b seen as the terminating curve of the surface of curvature/strain discontinuity (the
differently inclined parallel lines in the vicinity of the distortion discontinuity surface describe
different strains like different shears for example)
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When, as a special case, strain continuity, while a rotation discontinuity [[�ωe]] is
persisting, the g-disclinations reduce to standard disclinations. In the context of g-
disclinations, the dislocation density tensor α needs to be redefined by alternating of
the elastic 2-distortion tensor (Acharya and Fressengeas 2012):

α = −Ge : X (18)

instead of Eq. (12).

3.4 Incompatible Field Equations

Invoking the Stokes-Helmholtz orthogonal decomposition of the square-integrable
elastic 2-distortion tensor field Ge (see for example (Jiang 1998)), there exist unique
tensor fields χ and Z such that Ge writes as the sum:

Ge = G⊥
e + G‖

e = curl χ + grad Z (19)

with the orthogonality condition
∫
V

curl χ : grad Z dv = 0. Thus, taking the curl of

Ge in Eq. (19) extracts curl χ and discards grad Z, whereas taking its divergence
extracts grad Z and eliminates curl χ . Therefore, Eq. (16) involves only curl χ ,
which we will identify below as the incompatible part G⊥

e of Ge:

curl G⊥
e = curl curl χ = π . (20)

Similarly, grad Z will be the compatible part G‖
e of the elastic 2-distortion Ge, and

Z will be the elastic distortion Ue, up to a constant. To ensure correctness of this
identification, G⊥

e must vanish identically throughout the body when π = 0. In this
aim, following Jiang (1998), Eq. (20) is augmented with the side conditions:

div G⊥
e = 0 in V , (21)

G⊥
e .n = 0 on ∂V (22)

with unit normaln on ∂V . Then taking the curl of Eq. (16) and using the side condition
(21), it follows that:

curl curl G⊥
e = grad div G⊥

e − div grad G⊥
e = −div grad G⊥

e = curl π (23)

Hence, G⊥
e satisfies a first Poisson-type equation

div grad G⊥
e = −curl π in V , (24)

G⊥
e .n = 0 on ∂V . (25)
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In component form, Eq. (24) reads

Ge,⊥
ijk,ll = −eklmπijm,l (26)

As a consequence, the field of incompatible elastic 2-distortionG⊥
e is uniquely deter-

mined once the g-disclination density field π is prescribed. In particular, it vanishes
uniformly when π = 0. Using Eqs. (8) and (18), the dislocation density tensor can
therefore be written as:

α = −G⊥
e : X − grad Ue : X = curl Ue − G⊥

e : X. (27)

In turn, the Stokes-Helmholtz decomposition of the elastic distortion Ue can be used
to separate its compatible part, U‖

e , from its incompatible part, U⊥
e :

Ue = U⊥
e + U‖

e = curl ψ + grad w, (28)

and to ensure uniqueness of the latter through the solution of a Poisson-type equation.
In the decomposition (28), U‖

e = grad w again belongs to the null-space of the curl
operator since curl grad w = 0, while U⊥

e = curl ψ must additionally satisfy the
side conditions:

divU⊥
e = 0 in V , (29)

U⊥
e .n = 0 on ∂V . (30)

Invoking the identity curl curl U⊥
e = grad div U⊥

e − div grad U⊥
e , taking the curl

of Eq. (27) and using Eq. (29) then leads to a second Poisson-type equation:

div grad U⊥
e = −curl (α + G⊥

e : X) in V , (31)

U⊥
e .n = 0 on ∂V . (32)

In component form, Eq. (31) reads

Ue,⊥
ij,kk = −ejklαil,k − (Ge,⊥

ijk − Ge,⊥
ikj ),k . (33)

Hence, U⊥
e is uniquely determined once the dislocation and g-disclination density

fields (α,π) are prescribed. In particular, it vanishes uniformly in V when α = 0 and
π = 0. Eqs. (31) and (33) will be transformed in the Fourier space in what follows
(Sect. 5) and solved using the discrete Fourier transform (DFT) method (Sect. 6).
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4 Constitutive and Equilibrium Equations

4.1 Constitutive Relationships

Recently, a general free energy density functionalΨ (εe, Ge) for crystallinematerials
undergoing incompatible fields due to dislocations, disclinations and g-disclinations
was reported in Upadhyay et al. (2013). Here, in order to reduce this general form
to a couple stress theory with incompatible fields, Ψ is supposed to only depend on
the elastic strain εe (i.e. the symmetric part of Ue) and the skew-symmetric part of
the elastic 2-distortion tensor Ge denoted Gskew

e as follows:

Ψ = 1

2
εe : C : εe + εe : B

...Gskew
e + Gskew

e

...D : εe + 1

2
Gskew

e

...E
...Gskew

e , (34)

where C is the fourth order tensor of linear elastic moduli with the classic symmetry
properties

Cijkl = Cjikl = Cijlk = Cklij,

B is a fifth order tensor with

Bijklm = Bjiklm = −Bijlkm = −Bjilkm,

D is a fifth order tensor with

Dijklm = −Djiklm = Dijkml = −Djikml,

and E is a sixth order tensor with

Eijklmn = −Ejiklmn = −Eijkmln = Ejikmln = Elmnijk .

The constitutive relationships are obtained by taking the partial derivatives of Ψ

with respect to εe and to Gskew
e in order to find the symmetric second order stress

tensor Tsym (i.e. Tsym
ij = Tsym

ji ) and the skew-symmetric third order hyperstress tensor
denoted Mskew (i.e. Mskew

ijk = −Mskew
jik ), respectively:

Tsym = C : εe + B
...Gskew

e + Gskew
e

...D, (35)

Mskew = εe : B + D : εe + E
...Gskew

e . (36)

For isotropic and centrosymmetric materials as considered here, the free energy
density functional Ψ further reduces to the one of a couple stress material (Mindlin
and Tiersten 1962; Koiter 1964) with elastic incompatibilities under the quadratic
form:
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Ψ = 1

2
εe : C : εe + 1

2
κD

e : A : κD
e , (37)

where κD
e is the second order deviatoric elastic curvature tensor, and, C, A read:

Cijkl = λδijδkl + μ
(
δikδjl + δjkδil

)
, (38)

Aijkl = A1δikδjl − A2δjkδil (39)

where μ and λ are respectively the classic shear modulus and Lamé constant of the
material andA1,A2 are couple stress elastic constants that are length scale dependent.
Let us note that the second order elastic curvature tensor κe is related to the skew-
symmetric part of the third order elastic 2-distortion tensor Gskew

e as follows:

κe = −1

2
X : Gskew

e , (40)

Gskew
e = −X · κe. (41)

Taking now the thermodynamic conjugate of κD
e as the second order deviatoric couple

stress tensor mD, we obtain from Eq. (37) together with Eq. (38) the constitutive
relationships for homogeneous isotropic centro-symmetric materials:

T sym
ij = Cijklε

e
kl = λεe

kkδij + 2μεe
ij, (42)

mD
ij = Aijklκ

eD
kl = A1κ

eD
ij − A2κ

eD
ji (43)

Let us note that only the deviatoric parts of second order elastic curvature and couple
stress tensors are constitutively determined like in the so-called “undeterminate”
couple stress theory originally derived by Mindlin and Tiersten (1962). The second
order couple stress tensor m is related to the skew-symmetric part of the third order
hyperstress tensor Mskew by the following operations:

m = −X : Mskew, (44)

Mskew = −1

2
X · m (45)

This initial couple stress theory is still very controversial, see for instance Neff et al.
(2009), who proposed from homogenization theory with micro-randomness a couple
stress theory with symmetric couple stress tensor. In the present study, the material
constant A1 is defined as function of a microstructural length sale (or characteristic
size) l such that A1 = 4μl2 (Mindlin and Tiersten 1962). The constant A2 is bounded
in the Mindlin-Tiersten theory (Mindlin and Tiersten 1962).
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4.2 Equilibrium Equations

In a couple stress theory, the linear and angular momentum balance equations for
the elasto-static problem without body force and body couple force densities take
the forms:

div T = 0 in V , (46)

div mD − X : T = 0 in V (47)

where T is the force-stress tensor which splits into symmetric Tsym and skew-
symmetric Tskew parts: T = Tsym + Tskew and where the second order tensor mD is
the deviatoric couple-stress tensor as defined earlier.

The equilibrium equations (46) and (47) are appended with force-stress vector
field td and couple-stress vector md applied to a part of the boundary ∂Vt as detailed
in (Mindlin and Tiersten 1962) (see also Koiter 1964) and the other part ∂Vu is
subjected to the prescribed displacements ud .

From T = Tsym + Tskew with Tij
skew = 1

2eijkemnkTmn and using Eqs. (46) and (47),
a single equilibrium equation involving Tskew and mD can be written as follows:

div Tsym + 1

2
curl

(
div mD

) = 0 in V . (48)

Using the Stokes-Helmholtz decomposition (Eqs. (19) and (28)), the equilibrium
equation (48) together with the constitutive relationships can be rewritten in the
form of a partial differential equation of Navier-type in V :

div C : ε‖
e + 1

2
curl

(
div

(
A : κD‖

e

)) + f⊥ = 0, (49)

where ε‖
e , κ

D‖
e are respectively given by:

ε
e,‖
ij = 1

2

(
wi,j + wj,i

)
, (50)

κ
eD,‖
ij = 1

2
eiklwl,kj, (51)

and where the incompatible fictive body force density arising from the generalized
defects is given by:

f⊥ = div C : ε⊥
e + 1

2
curl

(
div

(
A : κD,⊥

e

))
(52)

with ε
e,⊥
ij = 1

2

(
Ue,⊥

ij + Ue,⊥
ji

)
and with κ

e,⊥
ij = − 1

2emniG
e,skew,⊥
mnj . Equations (49) to

(52) together with adequate boundary conditions on displacements, force and couple
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traction vectors (Mindlin and Tiersten 1962; Koiter 1964) set a couple stress elastic-
ity problem for the unknown fields w, ε‖

e and κD,‖
e which can therefore be determined

uniquely. The incompatible volume fictive body force f⊥ is first determined by solv-
ing the Poisson-type Eq. (24) and (31) for G⊥

e , U⊥
e to give κD,⊥

e and ε⊥
e after defect

density fields (α,π) have been initially prescribed.
Assuming a homogeneous reference medium with uniform elastic moduli and

couple stress moduli C0
ijkl and A0

ijkl, such that Cijkl = C0
ijkl and Aijkl = A0

ijkl, no “polar-
ization tensor” fields are accounted for (i.e. no iterative scheme is needed). Therefore,
Eqs. (49)–(52) yield, in component form:

C0
ijklwk,lj + 1

4
eikleprsA

0
lmpqws,rqmk + C0

ijklε
e,⊥
kl,j + 1

2
eiklA

0
lmpqκ

eD,⊥
pq,mk = 0. (53)

Using Eqs. (42) and (43) in Eq. (53) yields:

μwi,kk + (λ + μ) wk,ki + μl2
(
wk,ikmm − wi,kkmm

)
+ λε

e,⊥
kk,i + 2με

e,⊥
ik,k + 2μl2eiklκ

eD,⊥
lm,mk − A2

2
eiklκ

eD,⊥
ml,mk = 0.

(54)

It is noteworthy that the classic size-independent theory with incompatibilities
described in Berbenni et al. (2014) for instance is found with l = 0 and A2 = 0.
In this case, the term containing the incompatible elastic curvature fields due to
g-disclinations as well as that with compatible elastic curvatures vanish and the clas-
sic Navier-type operator including only second order partial spatial derivatives with
classic isotropic linear elasticity is retrieved.

5 Fourier Method

5.1 Solution of Poisson-Type Equations in Fourier Space

The previous Poisson and Navier-type equations can be solved using the Fourier
Transform method. Indeed, the unknown vector field w(x) can be obtained by using
the spectral method based on Fourier transforms to derive later on the stresses, elastic
rotations etc. in the Fourier space. Then, the elastic fields are estimated in the real
space using the inverse Fourier Transform. The FFT algorithm is well suited for
periodic media. This one will be developed in Sect. 6 to estimate the discrete Fourier
transforms on FFT grids.

In the Fourier space, let ξ be the Fourier vector of magnitude ξ = √
ξ · ξ and

components ξi in a cartesian coordinate system in a general three-dimensional setting.
The complex imaginary number is denoted i and defined as i = √−1.

Let α̃(ξ), Ũ⊥
e (ξ), ε̃⊥

e (ξ), π̃(ξ), G̃⊥
e (ξ) and κ̃D,⊥

e (ξ) be the continuous Fourier
transforms of α(x), U⊥

e (x), ε⊥
e (x), π(x),G⊥

e (x) and κD,⊥
e (x). Then, the Poisson-type
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equations (Eqs. (24) and (31)) are solved using the differentiation theorem in Fourier
space. Using component notations, Eq. (26) writes in the Fourier space

G̃e,⊥
ijk (ξ) = i

ξ 2 ξleklmπ̃ijm(ξ) ∀ξ �= 0,

G̃e,⊥
ijk (0) = 0,

(55)

and Eq. (33) yields in the Fourier space

Ũe,⊥
ij (ξ) = i

ξ 2 ξk

(
ejklα̃il(ξ) + G̃e,⊥

ijk (ξ) − G̃e,⊥
ikj (ξ)

)
∀ξ �= 0,

Ũe,⊥
ij (0) = 0.

(56)

Therefore, ε̃⊥
e (ξ) is derived from the symmetric part of Ũ⊥

e (ξ) and κ̃D,⊥
e (ξ) is obtained

from the skew-symmetric part of G̃⊥
e (ξ) (see Eq. (40)).

5.2 Solution of Navier-Type Equation in Fourier Space

Let w̃(ξ), ε̃‖
e(ξ) and κ̃D,‖

e (ξ) be the continous Fourier transform of w(x), ε‖
e(x) and

κD,‖
e (x). Then, the Fourier transform of the Navier-type equation (53) yields

C0
ijklξlξjw̃k(ξ) −1

4
eikleprsA

0
lmpqξrξqξmξkw̃s(ξ)

= iC0
ijklξj̃ε

e,⊥
kl (ξ) + 1

2
eiklA

0
lmpqξmξk κ̃

eD,⊥
pq (ξ).

(57)

The solution w̃(ξ) can be obtained with the introduction of the Green tensor G̃ik(ξ)

in the Fourier space:
w̃i(ξ) = G̃ik(ξ )̃f ⊥

k (ξ), (58)

where:

G̃ik(ξ) =
(

C0
ijklξlξj − 1

4
eijlA

0
lmpqeprkξrξqξmξj

)−1

(59)

and:

f̃ ⊥
i (ξ) = iC0

ijklξj̃ε
e,⊥
kl (ξ) + 1

2
eiklA

0
lmpqξmξk κ̃

eD,⊥
pq (ξ). (60)

It is noteworthy that Eqs. (58)–(60) can be applied to any centrosymmetric anisotropic
couple stress materials.

For isotropic centrosymmetric couple stress materials, C0
ijkl and A0

ijkl are defined
by Eqs. (38) and (39). In this case, the expression of the non local Green tensor can be
found in Smyshlyaev and Fleck (1994), Zheng and Zhao (2004). Thus, the expression
of G̃ik(ξ) is given by:
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G̃ik(ξ) = 1

μξ 2

[
1

1 + l2ξ 2

(
δik − ξiξk

ξ 2

)
+ μ

λ + 2μ

ξiξk

ξ 2

]
∀ξ �= 0,

G̃ik(0) = 0.

(61)

The compatible elastic strain ε̃‖
e(ξ) is obtained in the Fourier space from the differ-

entiation rule:

ε̃
e,‖
ij (ξ) = 1

2
i
(
ξjw̃i(ξ) + ξiw̃j(ξ)

)
,

κ̃
eD,‖
ij (ξ) = −1

2
eiklξjξkw̃l(ξ).

(62)

5.3 Stress and Couple Stress Fields

Knowing Ũ⊥
e (ξ) and Ũ‖

e(ξ), the (total) elastic distortion in the Fourier space yields

Ũe
ij = Ũe,⊥

ij + Ũe,‖
ij . (63)

The stress T̃(ξ) in Fourier space is obtained in component form as:

T̃ij(ξ) = C0
ijkl̃ε

e
kl(ξ) ∀ξ �= 0,

T̃ij(0) = 0,
(64)

where ε̃e
ij = 1

2

(
Ũe

ij + Ũe
ji

)
and where the far-field (overall) stress which is the spatial

average of Tij over the periodic unit cell is set to zero. Here, only the internal stress
field will be computed in Sect. 7.

The couple stress m̃D(ξ) in Fourier space is obtained in component form as:

m̃D
ij (ξ) = A0

ijklκ̃
eD
kl (ξ) ∀ξ �= 0,

m̃D
ij (0) = 0,

(65)

where the far-field (overall) deviatoric couple stress which is taken as the spatial
average of mD

ij over the periodic unit cell is set to zero. Here only the internal couple
stress field due to generalized defects will be computed in Sect. 7.

The elastic stress and couple stress moduli C0
ijkl and A0

ijkl in Eqs. (64) and (65)

are defined by Eqs. (38) and (39). Then, the inverse Fourier transforms of T̃(ξ) and
m̃D(ξ) are numerically computed using the FFT algorithm and inverse FFT allows
finding T and mD on the discretized periodic unit cell.
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6 Fast Fourier Transform Numerical Implementation

6.1 Discrete and Fast Fourier Transforms

The field equations derived in the Fourier space are now solved by 2Ddiscrete Fourier
transforms with the Fast Fourier Transform (FFT) algorithm. Here, periodicity is
assumed for the distribution of g-disclination densities (i.e. π ), with spatial periods
T1 and T2 in the x1 and x2 directions, respectively. The periodic representative volume
element (RVE) or unit cell is discretized by a regular rectangular grid with N1 × N2

pixels with position vector x = ((i − 1)δ1, (j − 1)δ2), where i = 1 → N1, j = 1 →
N2 and δ1, δ2 are the pixel sizes in the x1 and x2 directions with δ1 = δ2 = δ. The total
number of FFT grid points is Ntot = N1 × N2. Here, the FFTW package of Matlab is
used to compute discrete Fourier transforms (Frigo and Johnson 2005). The discrete
FFT of a given spatial function f is f̂ = FFT (f ). Its inverse Fourier transform is
f = FFT−1

(
f̂

)
. They write with the Matlab FFT convention:

f̂ (k, l) =
N1∑
i=1

N2∑
j=1

f (i, j) exp

(
−2π i

(
(i − 1)(k − 1)

N1
+ (j − 1)(l − 1)

N2

))
(66)

and

f (i, j) = 1

Ntot

N1∑
k=1

N2∑
l=1

f̂ (k, l) exp

(
+2π i

(
(i − 1)(k − 1)

N1
+ (j − 1)(l − 1)

N2

))

(67)
It should be pointed out that Eqs. (66) and (67) are finite sums which can be

determined exactly by FFT for periodic unit cells.

6.2 Discrete Fourier Transform Differentiation Rules Based
on Centered Finite Difference Approximation

Here, the following differentiation rules are used for first-, second- and fourth- order
partial derivatives calculated on the discrete grid based on a 9-pixel centered finite
difference approximation (Press et al. 2002):

∂f (i, j)

∂x1
= f (i + 1, j) − f (i − 1, j)

2δ1
,

∂f (i, j)

∂x2
= f (i, j + 1) − f (i, j − 1)

2δ2
, (68)

∂2f (i, j)

∂x21
= f (i + 1, j) − 2f (i, j) + f (i − 1, j)

δ21

,
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∂2f (i, j)

∂x22
= f (i, j + 1) − 2f (i, j) + f (i, j − 1)

δ22

,

∂2f (i, j)

∂x1∂x2
= f (i + 1, j + 1) + f (i − 1, j − 1)

4δ1δ2
,

− f (i + 1, j − 1) + f (i − 1, j + 1)

4δ1δ2
,

∂4f (i, j)

∂x41
= f (i − 2, j) − 4f (i − 1, j) + 6f (i, j) − 4f (i + 1, j) + f (i + 2, j)

δ41

,

∂4f (i, j)

∂x42
= f (i, j − 2) − 4f (i, j − 1) + 6f (i, j) − 4f (i, j + 1) + f (i, j + 2)

δ42

,

∂4f (i, j)

∂x21∂x22
= 4f (i, j)

δ21δ22

− 2
f (i − 1, j) + f (i + 1, j) + f (i, j − 1) + f (i, j + 1)

δ21δ22

+ f (i + 1, j − 1) + f (i − 1, j − 1)

δ21δ22

+ f (i + 1, j + 1) + f (i − 1, j + 1)

δ21δ22

, (69)

∂4f (i, j)

∂x2∂x31
= f (i + 2, j + 1) + 2f (i − 1, j + 1)

4δ31δ2

− f (i − 2, j + 1) + 2f (i + 1, j + 1)

4δ31δ2

+ f (i − 2, j − 1) + 2f (i + 1, j − 1)

4δ31δ2

− f (i + 2, j − 1) + 2f (i − 1, j − 1)

4δ31δ2
,

∂4f (i, j)

∂x1∂x32
= f (i + 1, j + 2) + 2f (i + 1, j − 1)

4δ1δ
3
2

− f (i − 1, j + 2) + 2f (i + 1, j + 1)

4δ1δ
3
2

+ f (i − 1, j − 2) + 2f (i − 1, j + 1)

4δ1δ
3
2

− f (i − 1, j + 2) + 2f (i − 1, j − 1)

4δ1δ
3
2

.

UsingEqs. (66)–(69), the substitutions due to correspondence between continuous
and discrete Fourier transform derivatives are the following:
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iξ1 ↔ i

δ1
sin

(
2π(k − 1)

N1

)
, (70)

iξ2 ↔ i

δ2
sin

(
2π(l − 1)

N2

)
, (71)

− ξ 2
1 ↔ 2

δ21

(
cos

(
2π(k − 1)

N1

)
− 1

)
, (72)

− ξ 2
2 ↔ 2

δ22

(
cos

(
2π(l − 1)

N2

)
− 1

)
, (73)

− ξ1ξ2 ↔ 1

2δ1δ2
cos

(
2π

(
(k − 1)

N1
+ (l − 1)

N2

))

− 1

2δ1δ2
cos

(
2π

(
(k − 1)

N1
− (l − 1)

N2

))
,

(74)

ξ 4
1 ↔ 4

δ41

(
cos

(
2π(k − 1)

N1

)
− 1

)2

, (75)

ξ 4
2 ↔ 4

δ42

(
cos

(
2π(l − 1)

N2

)
− 1

)2

, (76)

ξ 2
1 ξ 2

2 ↔ 4

δ21δ
2
2

(
cos

(
2π(k − 1)

N1

)
− 1

) (
cos

(
2π(l − 1)

N2

)
− 1

)
, (77)

ξ 3
1 ξ2 ↔ 2

δ31δ2
sin

(
2π

(
(k − 1)

N1

))
sin

(
2π

(
(l − 1)

N2

))

×
(
1 − cos

(
2π(k − 1)

N1

))
,

(78)

ξ1ξ
3
2 ↔ 2

δ1δ
3
2

sin

(
2π

(
(k − 1)

N1

))
sin

(
2π

(
(l − 1)

N2

))

×
(
1 − cos

(
2π(l − 1)

N2

))
.

(79)

In Sect. 7 of the present paper, the 9-pixel approximation is sufficient to give accu-
rate enough results for strong gradients of stress/couple stress fields of g-disclinations
in comparison with existing analytical solutions . Higher order pixel approximations
may also be developed (Neumann et al. 2002) to further refine the FFT analysis. In
Berbenni et al. (2014), it was shown that the present FFT method with centered-
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difference based-DFT avoids spurious Gibbs oscillations occurring with classic FFT
techniques, especially when defect densities are prescribed to a single pixel.

7 Application to Infinite Straight Wedge Disclinations

7.1 Materials and Numerical Data

In the forthcoming applications, the g-disclination densities are prescribed using
a regular Gaussian function. 2D FFT N × N square grids with δ1 = δ2 = δ, N =
N1 = N2 and Ntot = N2 are considered. In this section, the FFT grid will be set
to 1024 × 1024 pixels with pixel size: δ = 0.1b where b is the magnitude of the
Burgers vector. Here, a face-centered cubic metal like Copper is studied, for which
the lattice parameter is a0 = 0.36151 nm. The isotropic elastic constants of Copper
(Cu) will be used for the simulations: μ = 47800 MPa, ν = 0.34. The magnitude of
the Burgers vector of Cu is b = √

2a0/2, i.e. b = 0.25563 nm. Following Lubarda
(2003) for dislocations, Upadhyay et al. (2011), Taupin et al. (2013), Fressengeas
et al. (2014) for disclinations the length scale l is set to b/2 to make A1 ≈ μb2. For
wedge disclinations, it will be seen that the term containing A2 in Eq. (54) vanishes.

In Berbenni et al. (2014), the stresses for both pure screw and edge dislocations
were already computed to assess the present numerical spectralmethod by comparing
the FFT solutions to analytical expressions (Hirth and Lothe 1982; Acharya 2001)
and finite element results. Here, numerical FFT results for disclinations, disclination
dipole and walls will be compared to analytical results reported by Anthony (1970),
deWit (1973), Romanov and Vladimirov (1992).

7.2 Two-Dimensional Equations for G-Disclinations

In the following applications, we consider straight g-disclinations such that the defect
line lies along the e3 axis. Thus, the elastic fields are invariant with respect to x3.
Here, the defect is based on elastic distortion discontinuities described by non zero
[[Ue

12]] and [[Ue
21]]. Thus, in this case, Eqs. (16) and (17) simplify into

∫
S

π123dS =
∫
S

(
Ge,⊥

122,1 − Ge,⊥
121,2

)
dS = [[Ue

12]], (80)

∫
S

π213dS =
∫
S

(
Ge,⊥

212,1 − Ge,⊥
211,2

)
dS = [[Ue

21]]. (81)

Consequently, given π123(x) and π213(x), the incompatible elastic 2-distortions are
solutions of the four following Poisson-type equations (see Eq. (26))
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Ge,⊥
122,11 + Ge,⊥

122,22 = π123,1, (82)

Ge,⊥
121,11 + Ge,⊥

121,22 = −π123,2, (83)

Ge,⊥
212,11 + Ge,⊥

212,22 = π213,1, (84)

Ge,⊥
211,11 + Ge,⊥

211,22 = −π213,2. (85)

Once Ge,⊥
122, Ge,⊥

121, Ge,⊥
212 and Ge,⊥

211 are obtained, four other Poisson-type equations are
needed to find in turn the incompatible elastic 1-distortions Ue,⊥

11 , Ue,⊥
22 , Ue,⊥

12 and
Ue,⊥

21 using Eq. (33) (without dislocation densities)

Ue,⊥
12,11 + Ue,⊥

12,22 = −Ge,⊥
121,1, (86)

Ue,⊥
11,11 + Ue,⊥

11,22 = Ge,⊥
121,2, (87)

Ue,⊥
21,11 + Ue,⊥

21,22 = −Ge,⊥
212,2, (88)

Ue,⊥
22,11 + Ue,⊥

22,22 = Ge,⊥
212,1. (89)

All the previous equations is solved successively in the Fourier space for the partic-
ular cases of straight wedge disclination and wedge disclination dipole. Then, the
generalized Navier-type equation is solved in the Fourier space for the compatible
1- and 2-elastic distortions (compatible elastic strain and elastic curvature tensors).

7.3 Single Straight Wedge Disclination

First, the case of a pure straight wedge disclination is considered. This corresponds
to an elastic distortion discontinuity in the negative half-plane (x1 = 0, x2 ≤ 0).
The only non zero discontinuities are [[Ue

12]] = [[ωe
12]] = −[[Ωe

3]] and [[Ue
21]] =

[[ωe
21]] = +[[Ωe

3]], where [[Ωe
3]] = Ωe

3+ − Ωe
3− is the elastic rotation discontinuity

along the e3 axis (the domains (+) and (-) respectively correspond to x1 > 0 and
x1 < 0). This g-disclination is equivalent to a pure disclination with the positive
Frank vector component along the e3 axis (Romanov and Vladimirov 1992) with
[[Ωe

3]] = ω. Thus, the discontinuity in the elastic distortion is such that

[[Ωe
3]] = ω =

∫
S

π213dS, (90)

where π213 = −π123. Thus, only two Poisson equations containing π213 are consid-
ered and solved in the Fourier space. For the simulations, the g-disclination density
follows a Gaussian distribution:
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π213 (x) = ω

2πσ 2
exp

(
− r2

2σ 2

)
if r ≤ r0,

π213 (x) = 0 if r > r0

(91)

with r = √
x12 + x22 and σ = 0.1r0.

Then, the non zero incompatible elastic curvature components (equivalent to
incompatible elastic 2-distortions) are obtained as

κ
e,⊥
31 = −Ge,⊥

121, (92)

κ
e,⊥
32 = −Ge,⊥

122 . (93)

By solving the non zero incompatible and compatible elastic curvatures, the elastic
curvatures κe

32 = κ
e,⊥
32 + κ

e,‖
32 and κe

31 = κ
e,⊥
31 + κ

e,‖
31 are computed by inverse FFT on

a 2D grid with r0 = 0.5b and ω = 5/6 rad. Therefore, the A2 term in Eq.54 vanishes
because of invariance of incompatible elastic curvature along x3 together with only
non zero κ

e,⊥
32 and κ

e,⊥
31 for this particular 2D case. The numerical results are reported

in Fig. 2. The results show that the respective variations of κe
32 and κe

31 along x1 and
x2 match exactly the analytical solutions of (deWit 1973) or (Anthony 1970):

κe
31 = −[[Ωe

3]]
2π

x2
r2

, (94)

κe
32 = [[Ωe

3]]
2π

x1
r2

. (95)
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Fig. 2 Elastic curvatures for a single straight wedge disclination: a κe
32, (b) κe

31 normalized by
ω = [[Ωe

3]]. Comparisons with the solutions given by Anthony (1970), deWit (1973) (dashed lines)
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Fig. 3 Couple stresses for a single straight wedge disclination: mD
32 (a), mD

31 b non zero couple
stress components normalized by μω. Comparisons with the solutions given by Anthony (1970)
(dashed lines)

Fig. 4 FFT simulations of
couple stresses for a single
straight wedge disclination:
mD
31 (top), mD

32 (bottom) non
zero couple stress
components normalized by
ω = [[Ωe

3]]

Once the elastic curvatures are calculated, the non zero couple stress components
mD

31 and mD
32 are obtained using the constitutive relationship (Eq. (43)), see Fig. 3.

The results are consistent with the analytical solutions obtained with a couple stress
theory with disclinations (Anthony 1970). Couple stress contours for mD

31 and mD
32

are also reported in Fig. 4.
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Fig. 5 Spatial distribution of
G-disclination density in
rad.m−2 for a straight wedge
disclination dipole with
associated positive and
negative rotation jumps:
+[[Ωe

3]] and −[[Ωe
3]]

7.4 Straight Wedge Disclination Dipole

A second application is the case of a wedge disclination dipole as described in Fig. 5
which is commonly used to describe tilt grain boundaries as originally proposed by
Li (1972) and later improved by Gertsman et al. (1989), Nazarov et al. (2000). In this
representation, the grain boundary is represented in the form of a complex arrange-
ment of periodic disclination dipole walls associated with the minority structural
units (see Fig. 6). For a pure wedge disclination dipole, the positive (resp. negative)
pole is distributed by using the same Gaussian distribution as in Eq. (91) at location
(x1 = 0, x2 = +a) (resp. (x1 = 0, x2 = −a)) with disclination strength [[Ωe

3]] (resp.−[[Ωe
3]]).

In order to get stress fields similar to that of an equivalent straight edge dislo-
cation, the semi-length of the dipole is set to a = b/(2[[Ωe

3]]) (see e.g. Romanov
and Vladimirov 1992) with [[Ωe

3]] = 5/6 rad. For the FFT simulations, the stress
components are obtained by inverse FFT on the 2D grid after successively computing

Fig. 6 Example of a disclination Structural Unit Model (DSUM) representation of the [001]
�149 (10 7 0) θ = 20.02◦ symmetric tilt grain boundary. Its structural decomposition is
|AABABAB.AABABAB|, with B being the minority structural unit. The elastic fields of this grain
boundary can be constructed as the superposition of three offsetted periodic walls of disclination
dipoles B
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Fig. 7 Profiles of stress components: a T11, (b) T12, for a straight wedge disclination dipole (see
Fig. 5) obtained by FFT and normalized by Dω where D = μ/(2π(1 − ν)) (solid lines). Compar-
isons with the solutions given by Anthony (1970), deWit (1973) (dashed lines)
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Fig. 8 Profiles of couple stress components: a mD
32, (b) mD

31, for a straight wedge disclination dipole
(see Fig. 5) obtained by FFT and normalized by μω (solid lines). Comparisons with the solutions
given by Anthony (1970), deWit (1973) (dashed lines)
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Fig. 9 Stress contours for
T11 (top) and T12 (bottom)
for a straight wedge
disclination dipole (see
Fig. 5) obtained by FFT and
normalized by Dω where
ω = [[Ωe

3]] and
D = μ/(2π(1 − ν))

in the discrete Fourier space the incompatible elastic curvatures, the incompatible
elastic 1-distortions, the compatible elastic distortions and the stresses and couple
stresses using the constitutive relationships.

Figure7 displays the stress components T11, T12 obtained by FFT and normalized
by Dω where ω = [[Ωe

3]] and D = μ/(2π(1 − ν)). Figure8 describes the couple
stress components mD

31 and mD
32 obtained by FFT and normalized by μω. Excellent

agreement is found with the analytical stress components given by deWit (1973),
Romanov and Vladimirov (1992), Anthony (1970) for wedge disclination dipoles.
Normal and shear stresses contour plots normalized byDω (D = μ/(2π(1 − ν))) are
reported in Fig. 9 and couple stress plots normalized by ω are reported in Fig. 10. It is
shown that the present FFT results confirm that the stress contour reported in Fig. 9
respectively, are similar to that of an edge dislocation (see for instance Romanov and
Vladimirov 1992; Upadhyay et al. 2011).

8 Concluding Remarks

A spectral approach for periodic media was developed to solve the elasto-static field
equations of g-disclination mechanics (Acharya and Fressengeas 2012, 2015) in
the framework of a couple stress theory as an extension of the work described in
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Fig. 10 Couple stress
contours for mD

31 (top) and
mD
32 (bottom) for a straight

wedge disclination dipole
(see Fig. 5) obtained by FFT
and normalized by ω where
ω = [[Ωe

3]]

Berbenni et al. (2014), which was only dedicated to a Cauchy stress theory. Various
results are obtained such as the solutions of Poisson-type equations in the Fourier
space for a medium containing both dislocation and g-disclination densities. These
solutions capture the incompatible part of elastic fields induced by g-disclinations
in the Fourier space. The compatible elastic fields needed to retrieve the stress and
couple stress fields are also solved with a non local character due to a characteristic
internal length scale l involved in the equilibrium equations and associated with cou-
ple stresses. The latter is chosen to be related to the Burgers vector (l = 0.5b) of the
material to give realistic and physical elastic fields near the defect core. The present
discrete Fourier transform method uses the FFT algorithm and has been adapted to
2D periodic unit cells containing straight wedge disclinations in isotropic elastic-
ity where defect line is parallel to the third dimension (i.e. x3 axis). The discrete
Fourier transform method is based on differentiation rules up to fourth-order partial
derivatives allowing accurate calculations of stress and couple stress fields in com-
parison with analytical solutions for single disclinations or associated dipoles. The
present theory and FFT implementation may be useful to derive the internal stress
and couple stress fields of grain boundaries seen as DSUM (Disclination Struc-
tural Unit Model) (Gertsman et al. 1989) or more generalized defects, which may
include a combination of stretching and rotation-discontinuities at the nanoscale.
Furthermore, the numerical framework can be easily adapted to elastic anisotropy
(see Eqs. (58) to (60)).
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Some Cases of Unrecognized Transmission
of Scientific Knowledge: From Antiquity
to Gabrio Piola’s Peridynamics and
Generalized Continuum Theories
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“Pluralitas non est ponenda sine necessitate”
Plurality is not to be posited without necessity

(Duns Scotus)

Abstract The aim of this paper is to show some typical mechanisms in the
transmission of scientific knowledge through the study of some examples. We will
start by considering some ancient examples concerning Democritus, Heron, Galileo
and the history of the theory of tides. Then we will mainly focus on the works of
the Italian scientist Gabrio Piola (1794–1850). In particular: 1. we show clear sim-
ilarities between Noll’s postulation of mechanics and the ‘ancient’ presentation by
Piola of the ideas needed to found Analytical Continuum Mechanics; 2. we prove
that non-local and higher gradient continuummechanics were conceived (and clearly
formulated) already in Piola’s works; 3. we explain the reasons of the unfortunate
circumstances which caused the (temporary) erasure of the memory of many among
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Piola’s contributions to mechanical sciences. Moreover, we discuss how the theory
which has recently been called peridynamics, i.e. amechanical theorywhich assumes
that the force applied on a material particle of a continuum depends on the deforma-
tion state of a neighbourhood of the particle, was first formulated in Piola’s works.
In this way we argue that in the passage from one a cultural tradition to another the
content of scientific texts may often be lost, and it is possible to find more recent
sources which are scientifically more primitive than some more ancient ones.

Keywords Transmission of scientific knowledge · Principle of virtual work ·
Generalized continua · Peridynamics

1 Introduction

Recently the role of the ancient Hellenistic koiné (cultural and linguistic community
speaking a lingua franca derived by Greek dialects) in the process leading to the
modern illuminists scientific description of nature and consequent technology devel-
opment has been re-examined in Russo (2004). The thesis presented in that work has
sometimes been considered controversial. Indeed, it is there shown that Hellenistic
science, and in particular Hellenistic mechanics, was muchmore developed, general,
rigorous and technology-oriented than what is often believed. The opponents of this
vision base their criticism on a series of (often unconscious) prejudices, such as:

1. every text or theory or body of doctrines which is more recent than another one
is necessarily also more sophisticated and advanced;

2. when a modern scholar discovers in an ancient text some theories and mathe-
matical theorems which are more advanced than those found in subsequent texts,
then this scholar is ‘forcing’ a non-existing-in-reality intelligence into primitive
sources, so distorting their meaning with his ‘modernistic’ lenses;

3. scientific and in particular mathematical knowledge cannot be lost, and increases
in quality and scope as time is passing.

This vision does not take into account many phenomena that actually do occur in
the transmission of scientific knowledge. In particular, it does not account for (re-)
elaboration, (mis)understanding, biased selection and (in)voluntary neglect of sci-
entific sources. Indeed:

• Scientific knowledge is difficult to transmit and to learn: only after years of study a
young apprenticemay start to understand the true content ofmore andmore sophis-
ticated theories. It sometimes happens that the elaboration and re-elaboration of
precedent texts by subsequent scholars produces texts whose quality is worse than
that of their sources simply because for any reason (decadence of scientific tradi-
tion, massive emigration of scholars, or lower interest by leading classes in funding
scientific research) the successors are not able to understand their predecessors.
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• When a scientific tradition is interrupted, the capability of understanding scientific
treatises becomes impaired because of the nature itself of themathematical reason-
ing, which is based on linguistic conventionalism and on themastering of technical
capabilities. As a consequence, sometimes in few generations very complicated
and sophisticated theories are transformed into very naive or incomprehensible
ones. The informative content of scientific theories can be in this way lost, or at
least can become blurred.

• When successors cannot understand what written by their predecessors, they gen-
erally start to operate a biased selection and involuntary or voluntary neglect
of the sources which they use.

The effects of these phenomena on the progress of knowledge cannot be underesti-
mated. Indeed, many results seem to be rediscovered periodically and to be lost with
the same periodicity, and very often the quality of re-discoveries is worse than that of
the primary sources. It is very often impossible to determine the true scientific context
where one novel method, theory and technique was first elaborated and very often
the ‘epic’ vision of advancement of science prevails: indeed it is often believed that
single discoverers were able to invent enormous bodies of doctrine, while they were
simply elaborating results they were reading in their sources. Finally, the role of edu-
cation institutions in forming creative scientists by transmitting the most advanced
knowledge in a given field becomes more difficult when primary sources become
blurred because of the described mechanisms.

2 Some Ancient Examples of Not Recognized Transmission
of Knowledge

2.1 Galileo and Heron

After the development of rigorous philological methods in the middle of the XIX
century, and the subsequent flourishing of critical editions, the study of the trans-
mission of written knowledge has been based on solid evidence provided by a wide
documentary basis. While this certainly entails great advantages in terms of sound-
ness and consistence of produced results, it may lead to an excessive sternness in
the interpretation of cases of logically and historically plausible cultural inheritance.
In this way, indeed, one may be led to give up any investigation which lacks direct
material evidence in the available sources. One case of this kind is the problem of the
diffusion of Heron’s Mechanics in the Modern Era. Heron’s Mechanics (Reference
editions are Heron 1988, 1899, 1900; de Vaux 1893) is generally believed to have
been written in the first century (AD), even though there is no absolute agreement
about the dating of the activity period of its author. Up to the end of the 19th century,
the only parts of the Mechanics whose transmission is directly documented in the
sources are:
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• A discussion about the duplication of the cube reported in the book III of the
Collection of Pappus (around 300 AD) and in the comment by Eutocius to the
second book of Archimedes’ On the Sphere and Cylinder (4th century AD).

• Some excerpts and summaries provided by Pappus (possibly interpolations, see
Heron 1899, 1900, pp. 224–226) in the book VIII of the Collection about various
mechanical arguments, among which there are simple machines, gears and centers
of gravity (all Greek fragments are reported in Heron 1899, 1900, pp. 255–300).

Among Latin authors, other passages related to the content of Heron’s Mechanics
are generally thought to be found in Pliny, Cato and Vitruvius (see Heron 1899,
1900, pp. 374–393). The passages by Pappus were published in 1588 and were
surely read, among others, by Galileo (see Galilei 1890–1909, reprinted 1964–1966,
vol. II, p. 181). Only in 1893, Carra de Vaux published (and translated into French)
an Arabic code of the Mechanics which he found in Leyda (de Vaux 1893), and in
1900 another edition appeared, based on the previous one and three newArabic codes
(Heron 1899, 1900). Summarizing, we have no direct evidence of the fact that Galileo
knew parts of the Mechanics different from the ones he read in Pappus. However,
following a remark proposed in Russo (2004) and some arguments provided in Voicu
(1999), we propose here an analysis of two passages from which strong arguments
can be made in favor of this conjecture. The passages are taken from Galileo’s work
Le mecaniche, which was published in 1629, but was most probably written several
years before (see Carugo andCrombie 1983; Drake 2003, for a discussion), and treats
several mechanical topics, from the balance and the simple machines to motion. In
the following, we give in bold the translation of Galileo’s words, while the original
text is given in the footnotes.

1. Concerning the equilibrium configuration of a balance, Galileo exposes the need
to measure the distances horizontally (Galilei 1890–1909, reprinted 1964–1966,
vol. II, pp. 164–165, the English translation from the Italian text are by the
authors):
Another thing, before going ahead, should be considered; and it is about
distances at which weights should be suspended: because it is very important
to know how to figure out whether the distances are equal or not, and thus in
which way one has to measure them. […] And finally one has to take care to
measure the distances with lines which are perpendicular to the ones along
which the weights hang down and would move if they were free to descend.1

About the same subject, Heron wrote (Galilei 1890–1909, reprinted 1964–1966,
pp. 109–110, the English translation from the French text are by the authors):
[…] and Archimedes has proven that, also in this case, the ratio between
the two weights equals the inverse ratio of the respective distances. What
those distances are in case of irregular and sloped beam, one can imagine

1Un’altra cosa, prima che più oltre si proceda, bisogna che sia considerata; e questa è intorno alle
distanze, nelle quali i gravi vengono appesi: per ciò che molto importa il sapere come s’intendano
distanze eguali e diseguali, ed in somma in qual maniera devono misurarsi. […] E finalmente si
deve aver avvertenza di misurare le distanze con linee, che ad angoli retti caschino sopra quelle
nelle quali i gravi stanno pendenti, e si moveriano quando liberamente scendessero.
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considering a chord descending from the point G towards the point Z. Let us
consider a line originating from the point Z which is the line HZQ; it should
then be chosen in such a way to intersect the chord forming right angles.
It is worth noting, besides the fact that the two scientists treat the same question,
the similarity in the way the question is posed, as both Heron and Galileo, rather
than directly formulate the law corresponding to the general case, prefer to mod-
ify the notion of distance so as to obtain the law ‘even’ in case of an oblique
balance. Moreover, they both use the result in the subsequent reasoning made
to reduce other machines to the balance (in particular, Galileo exploits it when
considering balances with mobile arms centered on a fixed point). An example
of the previously mentioned sternness among the scholars can be observed, in
our opinion, by Clagett, who about this passage by Galileo conjectured (Clagett
1959) that he could have been influenced by the tradition headed by the Liber
de ratione ponderis, which was published by Tartaglia in 1565, denying the pos-
sibility of an influence by Heron because of the lack of direct evidence. In the
authors’ opinion the probability that such a complex problem could be solved
independently in exactly the same way is totally negligible.

2. Galileo states on various occasions that it is equivalent to balance a weight and
to lift it, because the additional force needed in the second case can be as small
as one wants. For example, he writes (Galilei 1890–1909, reprinted 1964–1966,
vol. II, p. 164):
To move down the weight B, any minimal increased graveness is sufficient,
and therefore, ignoring this imperceptible difference, we will not consider
different for a weight to be able to balance another one or to move it.2

Heron uses the same concept (Galilei 1890–1909, reprinted 1964–1966, vol. II):
When we want to lift a weight, we need a force which equals it. […] Thus
when the weight receives an increasing however small, the other weight is
led upward.
Moreover, concerning a body in motion over an inclined plane, Galileo writes
(Galilei 1890–1909, reprinted 1964–1966, vol. II, p. 183):
It is sufficient that the force which has to move the weight imperceptibly
exceeds the one which sustains it.3

On the same subject, Heron wrote (Galilei 1890–1909, reprinted 1964–1966,
p. 92):
One thus needs a power to balance a weight and, when one adds to this power
the smallest excess, it will prevail over the weight.

Both Heron and Galileo use arguments based on inclined planes with decreasing
slopes to study the motion of a particle over a horizontal plane. In their reasoning,
both authors pay attention to the practical problems caused by friction, and both
use the example of descending water, which is set in motion by any slope (however

2Per fare descendere il peso B, ogni minima gravità accresciutagli è bastante, però, non tenendo noi
conto di questo insensibile, non faremo differenza dal potere un peso sostenere un altro al poterlo
movere.
3La forza per muover il peso basta che insensibilmente superi quella che lo sostiene.
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slight), to argue that the reason for which the same conclusion does not hold for
solid bodies is connected to (sliding) friction. Moreover, they both conclude stating
a germinal form of what will be called the first law of dynamics. Galileo indeed
writes (Galilei 1890–1909, reprinted 1964–1966, vol II, p. 180):
From this we can assume, as an undoubted axiom, this conclusion: that heavy
bodies, once removed all the external and occasional obstacles, can be set in
motion over a horizontal plane by a force which is however small.4

On the other hand, Heron writes (Galilei 1890–1909, reprinted 1964–1966, p. 89):
Thus the weight [on a horizontal plan] is moved by any force, however small it is.

Let us now summarize our findings. The similarities between the two texts in this
second example concern the following features:

1. the key conclusions;
2. the approximating method to reach them;
3. the way in which the statements are formulated (especially noticeable because of

the distance between the languages in which the works were originally written),
and in particular the frequent reference to a quantity that is ‘however small’;

4. the problems connectedwith the applicability to reality of themathematicalmodel
considered by the authors.

5. The example chosen to persuade the reader of the ‘occasional’ character of the
observable exceptions to the last quoted statements.

As said before, all these features strongly support the idea that Galileo knew parts
of Heron’s Mechanics whose transmission at his age is not directly documented by
philological facts.

Of note, a few historically sensible considerations are possible about the plausibil-
ity of this conclusion. A conjecture, proposed in Russo (2004) (p. 353, footnote 84),
concerns the content of the mechanics courses thought by Cristoph Clavius at the
Collegio Romano in 1579 (or 1580). In the notes by Clavius (probably concerning
his lectures in mechanics) indeed, one can find ‘mechanical questions of Heron, Pap-
pus and Aristotle’ (see Baldini 1992, p.175). Since Pappus is explicitly mentioned,
one can conjecture that the reference to Heron did not mean the passages of Heron
included in Pappus. Carra de Vaux (Galilei 1890–1909, reprinted 1964–1966, pp.
25–27) found that in the catalogs of several libraries (in particular located in Rome)
a few manuscripts are mentioned which contained Heron’s Mechanics. While the
codex in Venice simply resulted a copy of Heron’s Pneumatica with the wrong title,
no further progress has ever been made about the identification of the other cited
codices, whose tracks have been lost.

Let us briefly return to the opinion expressed by Clagett about the passage on
inclined balances previously cited. His way of proceeding, which could seem just
sensibly guided by prudence, implies the very strong and unjustified assumption
that all the manuscripts which were available in Galileo’s times are still accessible

4Dal che possiamo prendere, come per assioma indubitato, questa conclusione: che i corpi gravi,
rimossi tutti l’impedimenti esterni ed adventizii, possono esser mossi nel piano dell’orizonte da
qualunque minima forza.
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today. This assumption is based on the understandable but rather shortsighted and
exclusive preference towards ‘material’ proofs over arguments based on chains of
logical connections. This procedure has the paradoxical consequence that in partic-
ular cases (i.e. when indeed strong arguments based on the content and on historical
considerations are possible) one may be led to consider what is the most unlikely
possibility as the ‘sounder’ one. In our opinion, a change of paradigm in this kind of
questions is by now simply unavoidable.

2.2 Galileo and Democritus

The tendency to disregard the importance of the transmission of scientific knowledge
over the centuries is observable evenwhen the transmission itself is fully documented.
To staywithin the universe of Galileo, let us consider now the following passage from
The Assayer (Chap.48):
To excite in us tastes, odors, and sounds I believe that nothing is required in exter-
nal bodies except magnitudes, shapes, quantities, and slow or rapid movements.
I think that if ears, tongues, and noses were removed, shapes and quantities and
motions would remain, but not odors or tastes or sounds. The latter, I believe,
are nothing more than names when separated from living beings.5

Because of passages like this last, many scholars attributed to Galileo the distinc-
tion among primary and secondary qualities which will be very important for the
subsequent history of science and philosophy, while others recognized that the ori-
gin of this idea was much more ancient, dating back to Democritus, who is actually
often presented as a ‘precursor’. Both the strict dependence of Galileo’s ideas from
the sources about Democritus and the way in which the transmission took place are
generally ignored.

About the first point, we can observe that even if in many ancient sources (poste-
rior to Democritus) there is the idea that warmth is caused by the velocity of atomic
motion (an ideawhichwill be recovered, among others, byBoyle in the 17th century),
Galileo in this context was stuck to the old Democritus’ idea of ‘atoms of fire’, which
he calls ignicoli. As for the second point, we may recall that Galileo started his aca-
demic studies in the faculty of Medicine at the University of Pisa, where among the
textbooks at use there was Galenus’ treatise De elementis secundum Hippocratem,
in which in one of the first pages one could read:
“Conventional is color, conventional is what is sweet or bitter, while true are the
atoms and the void”, states Democritus, considering all the sensitive appear-
ances which we can perceive as originating from the encounter between the
atoms, since all of these qualities are imagined by us, while he does not believe

5Ma che ne’ corpi esterni, per eccitare in noi i sapori, gli odori e i suoni, si richiegga altro che
grandezze, figure, moltitudini e movimenti tardi o veloci, io non lo credo; e stimo che, tolti via gli
orecchi le lingue e i nasi, restino bene le figure, i numeri e i moti, ma non già gli odori né i sapori
né i suoni, li quali fuor dell’animal vivente non credo che sieno altro che nomi.
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that, in nature, white or black or yellow or red or bitter or sweet exist.6 The
transmission of ideas between Democritus and Galileo was not, thus, vague or indi-
rect as one may think reading S. Drake, who in Drake (2003) refers to Lucretius as
a possible intermediary between Democritus and Galileo. It was based, instead, on
a direct use of easily accessible sources.

2.3 The Transmission of the Scientific Explanation of Tides

An extremely important case of unrecognized transmission of scientific knowledge
is provided (as proven in Russo 2003) by the theory of tides. It is generally believed
that Newton was the first one to scientifically explain tides in his Philosophiae Nat-
uralis Principia Mathematica (1687). The theory by Newton is indeed a successful
synthesis of three ideas:

1. the tide’s cycles (daily, monthly and annual) can be explained by combining the
actions of the sun and the moon, each one of which entails a lift of the water
towards the luminary and in the opposite direction;

2. the lifting of the water can be explained as the combined effect of gravity and
centrifugal force;

3. the application of 2. for the explanation of the tides.

Concerning 1., it is extremely probable that Newton took the idea from the work
Euripus, sive de fluxu et refluxu maris sententiae (1624) by the Archbishop Marcan-
tonioDeDominis, where the aforementioned explanation for tides is clearly exposed.
Indeed, De Dominis taught in Cambridge, and Newton, in his Opticks, in quoting his
theory about the rainbow, cites him as “the famous Archbishop De Dominis”.

De Dominis’ theory of tides, in turn, was not new at all. We can indeed follow
backwards its footsteps, in a series of works by authors related to the University
of Padua (the main of them being Jacopo Dondi and Federico Chrisogono), up to
the beginning of the 14th Century. The theory was actually much more ancient,
being exposed by Posidonius (1st century BC) in his lost work on tides, as we
can reconstruct through the testimonies by Strabo, Pliny the Elder and mainly the
Byzantine author Priscianus Lidius (6th Century AD). Most probably, therefore,
the idea was transmitted from Constantinople to the Venetian State, which used to
monopolize the relationship between the Byzantine Empire and the Western world.

As for 2., the idea of the equilibrium between gravity and centrifugal force is
clearly explained by Plutarch in his De facie quae in orbe Lunae apparet referring

6
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to the motion of the moon around the Earth. It is also mentioned by Seneca (in the
seventh book of his Naturales Quaestiones) in connection with the motion of the
planets around the sun, and was recovered in modern times by Giovanni Alfonso
Borelli in his work Theoricae mediceorum planetarum ex causis physicis deductae
(1666).

Finally, concerning 3., the idea of using the equilibrium between gravity and
centrifugal force to explain the lunar tides had become natural after the Essay about
tides by JohnWallis (1666), inwhich the idea of amonthlymotion of the Earth around
the barycenter of the system Earth-moon was introduced. Wallis, in turn, elaborated
his theory modifying previous ideas of Paolo Sarpi, Galileo Galilei and Giovanni
Battista Baliani, who tried to explain the tides as a consequence of the motion of the
Earth. Wallis, indeed, in his Essay directly cites both Galileo and Baliani. As in the
previous case 1., in Russo (2003), the origin of this last idea is recognized to be a
very ancient one, dating back to the work of Seleucus of Babylon (2nd Century BC),
who was probably among the sources of the aforementioned work by Posidonius.

It is important to notice that the transmission we are considering was mostly an
unconscious one. When Galileo and De Dominis were disputing, they had no idea
of the depth of the roots they were following, but still contributed to their recovery
in modern science. The fact that the theory of tides is generally attributed to Newton
alone (even if all the mentioned sources have always been available!) is certainly
linked to this unconscious character of the transmission, and provides an example of a
general tendency in the history of science: that of attributing to few “geniuses” results
which were actually obtained thanks to the efforts of many scientists from different
ages. This feature links this example to the previous ones and to the following.

3 Pristine Formulations of the Principle of Virtual Powers
(or Work) as a Basic Postulate for Mechanics

The Principle of Virtual Work (PVW) is one of the most important conceptual tools
in mechanics and, generally, in physics. The fact that its correct formulation for
continuum mechanics has been erased from the awareness of the majority of schol-
ars (and only subsequently rediscovered) deserves to be considered carefully. In
this work we do not want to establish the detailed and historically correct discov-
ery process which led to the formulation of the PVW. What we try here is rather
to fix a ‘stronghold’: actually we want to determine a precise moment and some
well-determined authors since when a ‘complete’ formulation of the PVW has to be
consideredwell-established as the fundamental postulate of (Continuum)Mechanics.
We will refrain from delving into complex scholarly studies about absolute histor-
ical priority, as we do not aim to find the first certain occurrence—in mechanics
textbooks—of an exact and sufficiently complete version of the PVW. To cite sim-
ply one among the most careful studies, already in the work of Vailati (1987) it is
attempted a first modern reconstruction of some mechanics text authored by Greek
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scientists (amongwhich the pseudo-Aristotle, Archimedes andHeron of Alexandria)
which are dealing with several problems involving the use of the PVW. The thesis of
Vailati is in line with what is claimed in Russo (2003, 2004). In the text Mechanical
Problems belonging to the Aristotelian corpus and attributed by Winter (2007) to
Archytas of Tarentum, one can find a first formulation7 of the PVW. Moreover in
some text of Heron of Alexandria this principle is extensively used. It is still debated
if Archimedes studied the equilibrium of the lever having in mind a form of the
PVW (see e.g. Paipetis and Ceccarelli 2010). As said, however, we do not want here
to be distracted by controversial issues. It is sufficient for our aims to establish that
already in the celebrated textbooks by D’Alembert (Traité de Dynamique 1758) and
by Lagrange (Méchanique Analytique, 1788) this principle is systematically used
in order to deduce all other laws of Mechanics. In particular, we will focus on the
version of this principle applied by Lagrange in fluid dynamics.

3.1 The Traité de Dynamique by D’Alembert

Let us start by reading a fragment of the Traité de Dynamique (1758) by D’Alembert
which we translate in English (in bold) nearly word by word. The passage could
indeed be very useful to provide a sort ofmethodological introduction to the technical
content of the Mechanics in the view of D’Alembert. The Principle which is in the
mind of the author, as clearly stated in the rest of the text (as it is also recognized by
Lagrange 1788) is the Principle of Virtual Velocities (the name given to the PVW by
D’Alembert and Lagrange).

The certainty of mathematics is an advantage which these sciences owe to
the simplicity of their object. [...] the most abstract notions, those which the
layman regards as the most inaccessible, are often those which carry with them
the greatest light: [...] in order to treat following the best possible method [...]
any Science whatsoever it is necessary [...] to imagine, in the most abstract and
simple way possible,the particular object of this Science, (it is necessary) to
suppose and admit in this subject anything else, than the properties which this
same Science treats and supposes. From this standing two advantages result: the
principles receive all clarity to which they are susceptible: (and these principles)
are finally reduced to the smallest number possible [...] as the object of a Science
is necessarily determined, the principles will be more fecunds if they will be less
numerous [...].8

7See Aristotle’s Mechanics 3, 850 a-b as translated on p. 431 by Thomas (1939).
8La certitude des Mathématiques est un avantage que ces Sciences doivent principalement à la
simplicité de leur objet. [...] les notions les plus abstraites, cellesque le commun des hommesregarde
comme les plus inaccessibles, sontsouventcelles qui portent avec elles une plus grande lumiere:
[...] pour traiter suivant la meilleure Méthode possible [...] quelque Science que cepuisse être il est
nécessaire [...] d’envisager, de la maniere la plus abstraite et la plus simple qu’il se puisse, l’objet
particulier de cette Science; de ne rien supposer, ne rien admettre dans cet objet, que les propriétés
que la Science même qu’on traite y suppose. Delà résultent deux avantages: les principes reçoivent
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In the following, D’Alembert refers more specifically to Mechanics, claiming its
special need, among all exact sciences, for a clear and solid foundation:
Mechanics, above all, seems to be (the Science) which has been more neglected
from this point of view: also the great majority of his principles either obscure
by them-selves, or enunciated and demonstrated in an obscure way have given
place to several spiny problems [...] I proposed to my-self to move back the limits
of Mechanics and to make its approach easier, (I proposed to my-self) not only
to deduce the principles of Mechanics from the most clear notions, but also to
apply them to new uses, to make it clear at the same time both the inutility of the
many and various principles which have been used up to now in Mechanics and
the advantage which can be drawn by the combination of others (principles) in
order to have the progress of this Science in one word (I want to make clear
which is the advantage) of extending the principles by reducing them.9

We will not try here to choose some excerptions from the work of D’Alembert to
present his vision about the rangeof applicability of thePrinciple ofVirtualVelocities,
as he uses there notations and a language which could lead to some controversies
about their interpretation. Instead we will present in great detail the point of view
of Lagrange, who openly and frequently credits D’Alembert for his fundamental
contributions in the correct and more comprehensive formulation of the Principle of
Virtual Velocities.

Here we simply want to recall that at the beginning of the Traité de Dynamique
we find the following (very impressive) statements:

1. I have proscribed completely the forces relative to the bodies in motion,
entities obscure and metaphysical, which are capable only to throw darkness
on a Science which is clear by itself.

2. I must warn [the reader] that in order to avoid circumlocutions, I have used
often the obscure term ‘force’, & some other terms which are used commonly
when treating the motion of bodies; but I never wanted to attach to this term
any other idea different from those which are resulting from the Principles

(Footnote 8 continued)
toute la clarté dont ils sont susceptibles: ils se trouvent d’ailleurs réduits au plus petit nombre
possible [...] puisque l’objet d’une Science étant nécessairement déterminé, les principes en sont
d’autant plus féconds, qu’ils sont en plus petit nombre.
9LaMéchanique surtout, est celle qu’il paroit qu’on a négligée le plus à cet égard: aussi la plûpart de
ses principes, ou obscurs par eux-mêmes, ou énoncés et démontrés d’une maniere obscure, ont-ils
donné lieu à plusieurs questions épineuses. [...] Je me suisproposé [...] de reculer les limites de la
Méchanique et d’en applanir l’abord [...] non seulement de déduire les principes de la Méchanique
des notions les plus claires, mais de les appliquer aussi à de nouveaux usages; de faire voir tout à
la fois, et l’inutilité de plusieurs principes qu’on avoit employés jusqu’ici dans la Méchanique et
l’avantage qu’on peut tirer de la combinaison des autres pour le progrès de cette Science; en un
mot, d’étendre les principes en les réduisant.
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which I have established both in the Preface and in the first part of this
treatise.10

3.2 The Treatise Méchanique Analytique by Lagrange

For our aims it is sufficient to read just some well-chosen parts of Lagrange’s
Méchanique Analytique (1788) (Lagrange 1788). Lagrange presentation is very ele-
gant, precise and rigorous: every scholar interested inmechanicswill read itwith great
pleasure, as even nowadays it is an exciting and fruitful experience. As Lagrange’s
textbook is easily available, because of its recent reprinting, we often present in
what follows, only our English translations of some chosen excerptions, indicating
the pages from Lagrange textbook from which they are taken. Words in bold are
the translation of Lagrange’s original French text. Our comments are in italic, while
some relevant excerpts from the original text are in the footnotes.

From p. 1:
One uses in general the word ‘force’ or ‘power’ [puissance] for denoting the

cause, whatever it will be, which is impressing or tends to impress motion to the
bodies to which it is assumed to be applied.

The reader is warned: Lagrange uses the word force as a synonym of the word
power. This circumstance, carefully discussed by Lagrange and based on a choice of
nomenclature intended to parallel the nomenclature previously introducedbyGalileo,
has been misleading for many scholars who seem to believe that Lagrange was not
able to distinguish between the concept of force and our concept of power. Actu-
ally Lagrange uses the word ‘moment’ for meaning (using modern nomenclature)

10The complete original passage reads indeed:

PREFACE

A l’égard des démonstrations de ces Principes en eux-mêmes, le plan que j’ai suivi pour leur donner
toute la clarté & la simplicité dont elles m’ont paru susceptibles, a été de les déduire toujours de la
considération seule du Mouvement, envisagé de la maniére la plus simple & la plus claire. Tout ce
que nous voyons bien distinctement dans le Mouvement d’un Corps, c’est qu’il parcourt un certain
espace, & qu’il employe un certain tems à le parcourir. C’est donc de cette feule idée qu’on doit
tirer tous les Principes de la Méchanique, quand on veut les démonstrer d’une maniére nette &
précise ; ainsi on ne fera point surpris qu’en conséquence de cette réfléxion, j’ai, pour ainsi dire,
détourné la vûe de dessus les causes motrices, pour n’envisager uniquement que le Mouvement
qu’elles produisent; que j’aie entiérement proscrit les forces inhérentes au Corps en Mouvement,
être obscurs & Métaphysiques, qui ne font capables que de répandre les ténèbres sur une Science
claire par elle-même. [...]
Au reste, comme cette feconde Partie est destinée principalement à ceux, qui déja instruits du calcul
différentiel & intégral, le seront rendus familiers les Principes établis dans la premiére, ou seront
déja exercés à la solution des Problêmes connus & ordinaires de la Méchanique; je dois avertir que
pour éviter les circonlocutions, je me suis souvent servi du terme obscur de force, & de quelques
autres qu’on employe communément quand on traite du Mouvement des Corps; mais je n’ai jamais
prétendu attacher à ces termes d’autres idées que celles qui résultent des Principes que j’ai établis,
soit dans cette Préface, soit dans la premiére Partie de ce Traité.
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‘power’. It is asthonishing that some modern mathematicians -who were educated
to the most formal nominalism ever developed in the history of science- could not
follow Lagrange in his use of his own nominalistic choice. Indeed:

From p. 8:
Galileo uses the word ‘moment’ of a weight or a power applied to a machine

the effort, the action, the energy, the ‘impetus’ of this power for moving this
machine [...] and he proves that the moment is always proportional to the power
times the virtual velocity, depending on the way in which the power acts.

From p. 9:
Nowadays one uses more commonly the word ‘moment’ for the product of a

power times the distance along its direction to a point or a line, that is the lever
arm by which it acts [...], but it seems to me that the notion of moment given
by Galileo and Wallis is much more natural and general, and I do not see why
it was abandoned for replacing it by another which expresses only the value of
the moment in certain cases.11

From pp. 10–11:
The Principle of virtual velocities can be formulated in a very general way,

as follows:
If a system whatsoever constituted by bodies or points each of which is pulled by
powers whatsoever is in equilibrium and if one impresses to this system a small
motion whatsoever, in virtue of which every point will cover an infinitesimally
small distance which will express its virtual velocity, then it will be equal to
zero the sum of the powers each multiplied times the distance covered by the
points where it is applied along the line of application of this same power, when
considering as positive the small distances covered in the same direction as the
power and as negative the distances covered in the opposite direction.

One cannot see in this statement any limit for its applicability: the mechanical
system is assumed to be constituted by points and bodies and the powers applied
are whatsoever. This Principle is applied by Lagrange also to the equilibrium of
continuous systems, as undoubtedly among them there are all incompressible and
compressible fuids.

From p. 11:
And in general I believe to be able to state that all general Principles which

will be possibly discovered in the science of equilibrium will reduce themselves
to a form, differently conceived, of the Principle of Virtual Velocities, from which
they will differ simply because of their expression. Moreover this Principle not
only is by itself very simple and general, it has also the really precious and
unique advantage of being able to be formulated by means of a general formula
which includes all problems which can be proposed about the equilibrium of
bodies.

It is astonishing how deeply founded this conjecture appears more than two cen-
turies after it was formulated, nothwithstanding the efforts made by some ‘modern’

11It is interesting that Germain (see e.g. Germain 1973b) seems to share the same position as
Lagrange in a very similar nominalistic issue.
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mechanicians to findmore general Principles. Actually the only successful effort was
that of changing the name of the Principle (which is nowadays called the Principle of
Virtual Work or Virtual Powers). Someone tried to formulate a nonstandard form for
this principle: but actually this ‘nonstandard’ form12 was actually very standard, as
it was applied by Lagrange himself some centuries before (see infra the excerption
from p. 195).

From pp. 15–16:
One finally obtains in general for the equilibrium of a number whatsoever

of powers P, Q, R etc., directed following the lines p, q, r, & c, and applied to
a system whatsoever of bodies or points disposed one respect the others in a
generic manner, an equation having this form

Pdp + Qdq + Rdr + · · · = 0.

This is the general formula of the equilibrium of a whatsoever system of powers.
We will call each term of this formula, as for instance Pdp, the moment of the
force P, taking for the word moment the meaning which Galileo gives to it, that
is, the product of the force times its virtual velocity. In this way the general
formula of equilibrium will consist into the equality to zero of the sum of the
moments of all forces.13

From p. 16:
In order to use this formula (i.e. the formula appearing before) the difficulty will

be reduced to determine, following the nature of considered system, the values
of the differentials dp, dq, dr, etc. One will consider therefore the system in two
different positions, and infinitesimally close, and he will look for the most general
expressions for the differences which are to be considered, by introducing in the
expressions as many determined quantities as many arbitrary elements one
can distinguish in the variation of the position of the system. One will replace
then these expressions of dp, dq, dr, etc. in the proposed equation and it will
be required that this equation be varied, independently of all the indetermined
variables, so that the equilibrium of the system may in general subsist and in
all directions.

In the following, Lagrange observes that the problem one gets in the way above
described is always a well-posed one:

12‘Nonstandard’ is actually the word used by Gurtin himself for this form of the Principle.
13On a donc en général pour l’équilibre d’un nombre quelconque de puissances P, Q, R, & c,
dirigées suivant les lignes p, q, r, & c & appliquées à un systême quelconque de corps ou points
disposés entr’eux d’une maniere quelconque, une équation de cette forme,

Pdp + Qdq + Rdr + &c = 0.

C’est la formule générale de l’équilibre d’un systême quelconque de puissances.
Nous nommerons chaque terme de cette formule, tel que Pdp, le moment de la force P, en

prenant le mot de moment dans le sens que Galilée lui a donné, c’est-à-dire, pour le produit de la
force par la vitesse virtuelle. De sorte que la formule générale de l’équilibre consistera dans l’égalité
à zero, de la somme des moments de toutes les forces.
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One will then equate to zero the sum of the terms influenced by each and
the same of the indetermined quantities and he will get, in this way, as many
particular equations as many are these indetermined quantities. Now it is not
difficult to be persuaded that their number must always be equal to the number
of the unknown quantities determining the position of the system; therefore one
will have, by means of this method, as many equations as many are necessary
for determining the equilibrium state of the system.14

Lagrange states now that the Principle of Virtual Velocity includes as a particular
case the Principle of Stationary Energy.

From pp. 36–37:
We will now consider the maxima and minima which can occur at equilib-

rium; and to this aim we recall the general formula

Pdp + Qdq + Rdr + · · · = 0,

stating the equilibrium among the forces P, Q, R, etc., applied along the lines
p, q, r, etc. One can assume that these forces could be in such a way that the
quantity Pdp + Qdq + Rdr + . . . , be an exact differential of a function of p, q, r,
etc., function which will be denoted Φ, in such a way that one have

dΦ = Pdq + Qdq + Rdr + ....

Then one will have as equilibrium condition dΦ = 0, which shows that the
system must be placed in such a way that the function Φ be generally speak-
ing a maximum or a minimum. I say generally speaking, as it is known that
the equality of a differential to zero is not always indicating a maximum or a
minimum, as one knows from the theory of curves. The previous hypothesis is
verified when the forces P, Q, R, etc., attract really either to some fixed points
or to some bodies of the same system and are proportional to some functions
of the mutual distance, which is actually the case of nature. Therefore in this
hypothesis about the forces, the system will be at equilibrium when the function

14From p. 16:
3. Pour faire usage de cette formule, la difficulté se réduira à déterminer, conformément à la

nature du systême donné, les valeurs des différentielles dp, dq, dr, & c. On considérera donc le
systême dans deux positions différentes, & infiniment voisines, & on cherchera les expressions les
plus générales dont il s’agit, en introduisant dans ces expressions autant de quantités déterminées,
qu’il y aura d’élémens arbitraires dans la variation de position du systême. On substituera en suite
ces expressions de dp, dq, dr, & c., dans l’équation proposée, & il faudra que cette équation ait lieu,
indépendamment de toutes les indéterminées, afin que l’équilibre du systême subsiste en général &
dans tous les sens. On égalera donc séparément à 0, la somme des termes affectés de chacune des
mêmes indéterminées; & l’on aura, par ce moyen, autant d’équations particulieres, qu’il y aura
de ces indéterminées; or il n’est pas difficile de se convaincre que leur nombre doit toujours être
égal à celui des quantités inconnues dans la position du systême; donc on aura par cette méthode,
autant d’équations qu’il en faudra pour déterminer l’état d’équilibre du systême.
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Φ will be a maximum or a minimum; this is in what consists the Principle which
M. de Maupertuis has proposed under the name of law of rest.15

In the following passage, Lagrange clearly states that continuous mechanical
systems (in the sense used in modern literature) can be studied by means of the
method he is presenting.

From p. 52:
I remark now that instead of considering the given mass as an assembly of an

infinity of contiguous points it will be needed, following the spirit of infinitesimal
calculus, to consider it rather as composed by infinitesimally small elements,
which will have the same dimensions of the whole mass; [it will be needed]
similarly that in order to have forces impressing motion to each of these elements,
one must multiply times this same elements the forces P, Q, R, etc. (here Lagrange
introduces the density of force per mass unity) which are assumed to be applied
to each point of these elements, and which will be regarded as analog to those
which are due to the action of the gravity.

If therefore one calls m the total mass, and dm one of its generic elements
(it is difficult here to deny that Lagrange considers the generic sub-body of the
considered body) one will have Pdm, Qdm, Rdm, etc., for the forces which pull
the element dm, along the directions of the lines p, q, r, etc. Therefore mul-
tiplying these forces times the variations δp, δq, δr, etc., one will get their
moments whose sum for every element dm will be represented by the formula
(Pδp + Qδq + Rδr + ...) dm; and for having the sum of the moments of all forces
of the system, one will need simply to calculate the integral of this formula with
respect to all given mass. We will denote these total integrals, that is relative to

15Nous allons considérer maintenant les maxima & minima qui peuvent avoir lieu dans l’équilibre;
& pour cela nous reprendrons la formule générale.

Pdq + Qdq + Rdr + &c,= 0,

de l’équilibre entre les forces P, Q, R, & c, dirigées suivant les lignes p, q, r, & c. (Sect.2, art. 2).
On peut supposer que ces forces soient exprimées de maniere que la quantité Pdq + Qdq +

Rdr+ & c, soit une différentielle exacte d’une fonction de p, q, r, & c, la quelle soit représentée
par φ, ensorte que l’on ait

dφ = Pdq + Qdq + Rdr + &c.

Alors on aura pour l’équilibre cette équation dφ = 0, laquelle fait voir que le systême doit être
disposé de maniere que la fonction φ y soit généralement parlant un maximum ou un minimum.

Je dis généralement parlant; car on fait que l’égalité d’une différentielle à zéro, n’indique pas
toujours un maximum ou un minimum, comme on le voit par la théorie des courbes.

La supposition précédente a lieu en général lorsque les forces P, Q, R,&c, tendent réellement
ou à des points fixes ou à des corps du même systême, & sont proportionnelles à des fonctions
quelconques des distances (Sect.2, art. 4); ce qui est proprement le cas de la nature.

Ainsi dans cette hypothèse de forces le systême sera en équilibre lorsque la fonction φ sera un
maximum ou un minimum; c’est en quoi consiste le principe que M. de Maupertuis avoit proposé
sous le nom de loi de repos.
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the extension of all [considered] mass, by the distinctive symbol S , and we will
reserve the usual distinctive

∫
to designate the definite or indefinite integrals.16

In the following, Lagrange teaches us how to perform the integration for con-
tinuous systems, integrating by parts (eventually in presence of integrals in which
higher gradients of virtual displacements appear). Lagrange includes also a general
expression for boundary conditions which can be deduced from the Principle of
Virtual Velocities. Actually on p. 89 Lagrange starts to deal with the study of the
equilibrium of wires; on p. 122 he studies the equilibrium of fluids and on p. 156
he considers, together with the moment of external forces, also the first variation of
internal deformation energy (the moment of internal forces).17

16From p. 52: 11. Je remarque ensuite qu’au lieu de considérer la masse donnée comme un assem-
blage d’une infinité de points contigus, il faudra, suivant l’esprit du calcul infinitésimal, la consid-
érer plutôt comme composée d’élémens infiniment petits, qui soient du même ordre de dimension
que la masse entiere; qu’ainsi pour avoir les forces qui animent chacun de ces élémens, il faudra
multiplier par ces mêmes élémens, les forces P, Q, R, & c., qu’on regardera comme analogues à
celles qui proviennent de l’action de la gravité. 12. Si donc on nomme m la masse totale, et dm
un de ces élémens quelconque, on aura Pdm, Qdm, Rdm, & c., pour les forces qui tirent l’élément
dm, suivant les directions des lignes p, q, r, & c. Donc multipliant respectivement ces forces par
les variations δp, δq, δr, & c., on aura leurs momens, dont la somme pour chaque élément dm, sera
représentée par la formule (Pδp + Qδq + Rδr+ & c.)dm; & pour avoir la somme des momens de
toutes les forces du systême, il n’y aura qu’à prendre l’intégrale de cette formule par rapport à
toute la masse donnée. Nous dénoterons ces intégrales totales, c’est-à-dire, relatives à l’étendue
de toute la masse, par la caractéristique majuscule S, en conservant la caractéristique ordinaire

∫
pour désigner les intégrales partielles ou indéfinies.
17From pp. 55–57:

Or les différentielle dδx, dδy, dδz, d2δx, & c, qui se trouvent sous le signe S, peuvent être
éliminées par l’opération connue des intégrations par parties. Car en général∫

Ωdδx = Ωδx − ∫
δxdΩ,

∫
Ωd2δx = Ωdδx − dΩδx + ∫

δxd2Ω, & ainsi des autres, ou il
faut observer que les quantités hors du signe � se rapportent naturellement aux derniers points des
intégrales, mais que pour rendre ces intégrales complettes, il faut nécessairement en retrancher les
valeurs des même quantité hors du signe, lesquelles répondent aux premiers points des intégrales,
afin que tout s’évanouisse dans ce point; ce qui est évident par la théorie des intégrations.

Ainsi en marquant par un trait les quantités qui se rapportent au commencement des intégrales
totales désignées par �, & par deux traits celles qui se rapportent à la fin de ces intégrales, on aura
les réductions suivantes,

�Ωdδx = Ω
′′
δx

′′ − Ω
′
δx

′−�δxdΩ,

�Ωd2δx = Ω
′′
dδx

′′ − dΩ
′′
δx

′′ − Ω
′
dδx

′ + dΩ
′
δx

′+�δxd2Ω,

&c.

lesquelles serviront à faire disparoître toutes les différentielles des variations qui pourront se trouver
sous le signe �. Ces réductions constituent le second principe fondamental du calcul des variations.

De cette maniere donc l’équation générale de l’équilibre se réduira à la forme suivant,

� (Πδx + Σδy + Ψ δz) + Δ = 0,

dans laquelle Π,Σ,Ψ seront des fonctions de x, y, z, & de leurs différentielles, & Δ contiendra
les termes affectés des variations δx

′
, δy

′
, δz

′
, δx

′′
, δy

′′
, & c, & de leurs différentielles.

Donc pour que cette équation ait lieu, indépendamment des variations des différentes cordon-
nées, il faudra que l’on ait, I°. Π,Σ,Ψ, nuls dans toute l’étendue de l’intégrale �, c’est-à-dire,
dans chaque point de la masse, 2°. chaque terme de Δ aussi égal à zéro].
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On p. 158, starts the Lagrangian study of Dynamics. Our apologia of the work by
Lagrange must be suspended: it is clear that Lagrange believes that Greek scientists
had not obtained any result in dynamics, which is in our opinion false (see Russo
2004).

HoweverLagrange cannot be blamed toomuch as he credits all the results obtained
byhis predecessorswhoseworks are known to him: and he needsmore than 20printed
pages for accounting his bibliographical researches!

The Dynamics is the Science of accelerating forces and of the varied motions
which forces can produce. This Science is entirely due to the Moderns and
Galileo is the one who has laid its first foundations.18

On p. 179, in particular, Lagrange credits D’Alembert, as being the first to have
found a Principle being able to generally found Dynamics.

The treatise of Dynamics by M. D’Alembert, printed in 1743, finally ended
all these challenges, by offering a direct and general method able to solve, or
at least to supply the set of equations [needed to solve], all the problems in
Dynamics which one can imagine. This method reduces all laws governing the
motion of bodies to the equations governing their equilibrium and therefore
reduces dynamics to statics.19

On p. 195, Lagrange perfectly formulated the Principle of Virtual Works in its
most ‘modern’ and complete scope (calling it the Principle of Virtual Velocities,
circumstance for which he cannot be blamed: he could not comply to the preferences
of his future readers), as the reader will be easily persuaded by carefully considering
the passage:
Now the general formula of equilibrium consists in this exact statement: that the
sum of the moments of all forces of the system must be vanishing [...] Therefore
we will get the searched formula by equating to zero the sum of all quantities

m

(
d2x

dt2
δx + d2y

dt2
δy + d2z

dt2
δz

)
+ m (Pδp + Qδq + Rδr + &c) ,

relative to each body of the proposed system. Therefore if one denotes this
formula by means of the integral sign �, which must include all bodies of the
system, we will get

�

(
d2x

dt2
δx + d2y

dt2
δy + d2z

dt2
δz + Pδp + Qδq + Rδr + &c.

)
m = 0,

18From p. 158:
La Dynamique est la Science des forces accélératrices ou retardatrices, & des mouvemens variés

qu’elles peuvent produire. Cette Science est due entiérement aux Modernes, & Galilée est celui qui
en a jetté les primiers fondemens.
19From p. 179:

Le traité de Dynamique de M. d’Alembert qui parut en 1743, mit fin à ces especes de défis,
en offrant une méthode directe & générale pour résoudre, ou du moins pour mettre en équations
tous les problêmes de Dynamique que l’on peut imaginer. Cette méthode réduit toutes les loix du
mouvement des corps à celles de leur équilibre, et ramene ainsi la Dynamique à la Statique.
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for the general formula of the motion of a whatsoever system of bodies, regarded
as points and subjected to accelerating forces whatsoever P, Q, R, & c.20

The reader will remember—when we will discuss the works by Noll—that
Lagrange ALREADY treats inertial forces exactly on the same ground as the other
externally applied forces. Remark that Lagrange uses a different signs convention
for the virtual displacements when considering inertial forces or externally applied
forces (see p. 193), as he seems to like formulas without the minus sign, in which an
equality appears and one term of the equality is zero.

3.3 Attested Lagrange’s Version of the Principle
of Virtual Work

The careful reading of some relevant parts of the Méchanique Analytique have
allowed us to establish that—in easily accessible bibliographical sources—it is
attested a version of the Principle of Virtual Velocities dating back to the 18th cen-
tury which is equivalent to the most modern and general versions of the PVW.
Summarizing what found in the previous pages, one can state that in theMéchanique
Analytique:

1. The Principle is formulated for a generic continuous system, and the sum of
moments (powers in modern language) is postulated to be zero for every body.

2. ThePrinciple is first formulated for characterizing the equilibriumand then simply
generalized (introducing inertia) to dynamics.

3. It is clearly stated that an integration by parts of the expression of virtual moments
is needed in order to consider the differential conditions characterizing motion,
which include also boundary conditions.

4. Lagrange explicitly considers the possibility of integrating by parts expressions
for the moments of forces calculated on virtual displacements in which second
and higher gradients of these displacements appear.

20Or la formule générale de l’équilibre consiste en ce que la somme des momens de toutes les forces
du systême doit être nulle (Part. I, Sect.2, art. 2); donc on aura la formule cherchée en égalant à
zéro la somme de toutes les quantités

m

(
d2x

dt2
δx + d2y

dt2
δy + d2z

dt2
δz

)
+ m (Pδp + Qδq + Rδr + &c) ,

relatives à chacun des corps du systême proposé.
7. Donc si on dénote cette somme par la ligne intégral �, qui doit embrasser tous les corps du

systême, on aura

�

(
d2x

dt2
δx + d2y

dt2
δy + d2z

dt2
δz + Pδp + Qδq + Rδr + &c.

)
m = 0,

pour la formule générale du mouvement d’un systême quelconque de corps, regardés comme des
points, & animés par des forces accélératrices quelconques P, Q, R, & c.
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5. Lagrange presents several examples of the application of the Principle to infinite-
dimensional systems corresponding to important continuous systems: e.g. wires
and compressible or incompressible fluids.

6. Lagrange is aware of the more general scope of the Principle of Virtual Velocities
when compared to the the Principle of Stationary Action: indeed, calculating
the first variation of the Action, by identifying the variations of motions with
D’Alembert virtual displacements one gets a version of the Principle of Virtual
Velocities.

Although the treatise is written in French, it can be easily read nowadays, as it is
clear, rigorous (a notion which of course has to be intended in a historical sense)
and precise. The only limit it shows is shared by many textbooks which were written
more recently: it is not using Levi-Civita absolute calculus, for the very obvious
reason that Levi-Civita developed it about one hundred and fifty years later.21 The
agreement about the listed points seems widely spread (see e.g. Fraser 1983) and
Truesdell himself seems in some of his works to be ready to credit to Lagrange the
first formulation of the PVW for continua (Truesdell 1968).

3.4 Gabrio Piola: An Italian Follower of Lagrange, One
of the Founders of Modern Continuum Mechanics

Gabrio Piola was the author of relatively few works (we have a list of 13 works
complexively, see Piola 1825, 1833, 1835, 1845–1846, 1856). Five of them can be
regarded as a unique work, aiming to give a Lagrangian basis to ContinuumMechan-
ics (i.e. the mechanics ‘di corpi qualsivogliono considerati secondo la naturale loro
forma e costituzione’, of whatsoever bodies, considered following their own natural
shape and constitution). The first (Piola 1825) was assuring to the author a prize
given by the R. Istituto di Scienze di Milano, the last (Piola 1856, in dell’Isola et al.
2015) was published posthumous under the supervision of Prof. Francesco Brioschi,
the founder of the Politecnico di Milano. The other works by Piola deal either with
the mathematical tools which he uses and develops for his investigations in Mechan-
ics, or with applications of his theoretical results to particular mechanical systems.
Remark that in Piola (1845–1846) (in dell’Isola et al. 2015) continua whose defor-
mation energy depends on nth gradients of displacement field are introduced: one
can find there already the bulk equations governing their motion (without, however,
the associated boundary conditions).

Piola’s works—written in a very elegant Italian—were recognized in their full
scientific value in Truesdell and Toupin’s Classical Field Theories (Truesdell and
Toupin 1960), where it was named after him (and Kirchhoff) the Lagrangian dual of
the velocity gradient in the expression of internal work for first order continua. The
rediscovery of the value of Gabrio Piola continued more recently with the works by

21In the opinion of the authors, Lebedev et al. (2010) is a very good technical reference on the
subject for the inexperienced reader.
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Capecchi and Ruta (2007, 2015). Piola decided to write his works in Italian even if,
presumably, he could have written them in French, a choice which, in our opinion,
would have given a greater audience to them (this was the choice made by Lagrange,
even when Lagrange was still working and living in Turin). This linguistic choice
was related to the political situation in which Piola operated: Italian Risorgimento
(Resurgence) ideology required a re-affirmation of national identity, also through the
choice of using Italian language for scientific writings. Therefore, in recent times,
very few specialists can appreciate directly the content of his works.

3.5 “Quel Principio Uno, di Dove Emanano Tutte le
Equazioni Che Comprendono Innumerabili Verità”

Piola is persuaded that the PVW can be used as a basic Principle also in Continuum
Mechanics.He claims that if Lagrangewere still alive hewould easily have completed
his works by extending hismethods to continuum deformable bodies. In Piola (1845–
1846) (dell’Isola et al. 2015, pp. 100–111) one can read:

I will invite the reader to consider that fundamental principle from which are
emanating all those equations which include innumerable truths (this is our
translation of Piola’s words in the subsection title). Such a principle consists in the
simultaneous reference of a system whatsoever to two triples of orthogonal axes: it
can be used in two manners and in both of them it produces grandiose effects. It can
be used in a first manner to make clearer what was already said about the minimizing
motions compatible with the equations of conditions in order to demonstrate the
Principle of Virtual Velocities together with the other ones i.e. the Conservation
Principles of the motion of the centre of mass and of the areas. In this first manner,
instead of conceiving the variations δx, δy, δz, of the different points of the system
as virtual velocities or very small infinitesimal displacements covered during that
fictitious motion (which was called after Carnot also a geometric motion) it is much
more natural, and there is noting of mysterious in doing so, to regard them as the
variations which are imposed to the coordinates of the aforementioned points when
the system is referred to three other orthogonal axes very close to the first reference
axes, as if these last were undergoing a very small displacement.

In the previous excerption one has to read the expression ‘equations of condi-
tions’ as equivalent to its modern countepart ‘constitutive equation’. The concept
of ‘equation of a constraint’ as conceived by Lagrange is generalized by Piola to
include the concept of ‘constitutive equation’, i.e. that equation which allows for the
representation -in terms of the kinematical descriptors- of the dual in power of their
time variations. In the following, Piola justifies his last statement, and then proceeds
with the exposition of his method. Piola follows:
Everybody knows that we perceive the idea of motion when observing the relation-
ships among distances: the said coordinates may vary either because of a motion of
the system, remaining the axes fixed, or because of a motion of the axes, remaining
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fixed the system. When the relationship among distances is intended in this last
second way, one can avoid the consideration of so-called geometric motions, and
then it is possible to understand clearly as the variations of the coordinates take place
without any alteration of reciprocal actions of one part of the system on the others.
This way of reasoning is induced, without any effort, when one considers that it is
arbitrary in the space the position of the axes to which one refers a system, which
may be at rest or in motion: [I claim that] it was right to consider the consequences of
such arbitrariness, which once transformed into calculations had necessarily to lead
to some results which are different from those obtained when said arbitrariness is not
considered. Because of such motion of the reference axes the variations δx, δy, δz
of the different points assume the values given by the equations no. 42 which are
those particular values which satisfy all the equations of conditions which express
the effects of internal forces as we have seen in the no. 48. The simultaneous refer-
ence of the system to two triples of orthogonal axes can be also exploited in another
manner, as there are actually two methods with which one can treat the equations
of conditions, exactly as shown in the no. 17. Cap. II. Here we refer to that method
which leaves to the variations δx, δy, δz all their generality, and treats the equations of
conditions by introducing some indeterminate multipliers. In such case the consider-
ation of the two triples of axes is very useful to establish the nature of said equations
of conditions, which otherwise could not be assigned in general: in them -through the
indication of partial derivatives- do appear those variables p; q; r; which, when the
operations are concluded, will disappear from the calculations. Such point of view
-in my opinion- seems to have been neglected by Lagrange and by other Geometers:
to this point of view it has to be referred when one wants to underline which part of
this Memoir deserves more attention. Finally I refer to the to the general considera-
tions developed in the Prologue for clarifying how the aforementioned six equations
of conditions can describe the effects of internal forces.

Remark 5.1 The statements which follow the sentence ‘The simultaneous reference
of the system to two triples of orthogonal axes can be also exploited in another
manner’ refer to the objectivity requirement which Piola imposes, and that in mod-
ern terms is called ‘the invariance under change of observer’ of the equations of
conditions.

3.6 Truesdell and Toupin in Their Classical Field Theories
cite Piola’s Works

It has to be recognized that, notwithstanding his irreducible contrariety to Lagrangian
Postulation, Truesdell gave (together with Toupin, in Truesdell and Toupin 1960,
p. 597 and following) a comprehensive description of Piola’s point of view. The
elegance of Piola’s writing style (we can say that Piola was a true man of letters)
may have contributed to induce in Truesdell a form of respect for such a famous
member of the Accademia dei Lincei. Due, probably, to Toupin’s predilection for the
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Principle of Least Action, Trusdell actually managed, for once, to partially balance
his aversion towards the PVW, aversion which he has always shown in all his other
works. Here we start quoting Truesdell and Toupin footnote 3 at p. 596 in Truesdell
and Toupin (1960).

The pioneer work of PIOLA [1833, 3]22 [1848, 2, 34.38, 46.50] is somewhat
involved. First, Piola used the material variables, and his condition of rigidity is
∂CMK = 0 or ∂C−1

MK = 0 [...] Second, he seemed loth to confess that his principle
employed rigid virtual displacements; instead, he claimed to establish it first
for rigid bodies only. In the former work, he promised to remove the restriction
in a later memoir; in the latter, he claimed to do so by use of an intermediate
reference state. He was also the first to derive the stress boundary conditions
from a variational principle [1848, 2, Par. 52], and he formulated an analogous-
variational principle for one-dimensional and two-dimensional systems [1848,
2, Chap. VIII].

We reported this quote for two reasons:

1. Truesdell’s authority agrees, at least this time, with our opinion, for what concerns
the content of Par. 52 of Piola (1845–1846) (in dell’Isola et al. 2015). It should be
noted, by the way, that for some reasons Truesdell, increasing the possibility of
misunderstanding, calls it “Piola (1845–1846)” though in Truesdell’s references
it is clearly written that the work was printed in 1845.

2. It proves that Truesdell actually misunderstood one part of Piola’s argument:
Truesdell does not understand that Piola is using the intermediate reference state
to impose what later Noll will call ‘frame indifference’. From the careful reading
of the previous passages we can conclude that:
in Piola (1845–1846) (dell’Isola et al. 2015) Par. 52, theCauchy formulas express-
ing contact actions are intended as valid at the boundary of every continuous
sub-body.

First we need to confute the opinion by Truesdell when he tries to prove that Piola
limits his analysis to rigid bodies. Indeed, let us consider what can be read at the
beginning of Par. 43, where the reasoning culminating in the following Par. 53 is
started.

Del moto e dell’equilibrio di un corpo qualunque.

Dico qualunque quel corpo che può mutare di forma, cangiandosi per effetto
di moti intestini le posizioni relative delle sue molecole. Lagrange trattò nella
sua M. A. varie questioni che si riferivano a sistemi variabili di simil natura:
trattò dell’ equilibrio di fili e di superficie estensibili e contrattili, trattò dell’
equilibrio e del moto de’ liquidi e de’ fluidi elastici.

22See Piola (1833).
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In English the previous sentences read as follows:

On the motion and equilibrium of a body whatsoever

I call whatsoever that body which can change its shape, this changing being caused
by the internal motions of the relative positions of its molecules. Lagrange treated
in his analytical mechanics various questions which were referred to systems which
were undergoing similar changes: he treated the equilibrium of wires and surfaces,
extensible and contractible, treated the motion and the equilibrium of liquids and
elastic liquids (see our previous sections).

We are now ready to discuss the content of Par. 53. Our aim is the following:
To assess that Piola intended that the PVW (he names the statement ‘Virtual
Work equal zero’ with the expression ‘formula generalissima’, (i.e. the most
general formula) to be valid for every sub-body of a given continuous body.

To prove the previous statement we can use an argument based on plain logics.
Indeed Piola assumes his ‘formula generalissima’ for every deformable body. Then, a
sub-bodyS of a given bodyB is itself a body, whose external world is composed by
the external world ofB union the complement ofS with respect toB. So externally
applied forces to S include the forces exerted by this complement onto S .

Perhaps some reader may argue that Piola was not aware of the set-theoretic
arguments by Noll on universes of bodies and will accuse us to ‘assume a modern
maturity and depth of knowledge’ to ancient ‘primitive scientists’. However, the
previous argument does not require actually any technicality of the set theory, is
based on a very ancient idea23 and was clearly stated by Piola himself as can be seen
in the following.

From pp. 94–96 of Piola (1845–1846) (in dell’Isola et al. 2015):
Prima di lasciare queste considerazioni sulle quantità ai limiti, dirò che da esse può
facilmente cavarsi tutta quella dottrina che diede argomento a varie Memorie del Sig.
Cauchy inserite ne’ suoi primi Esercizj di Matematica. Ci è lecito in fatti immaginare
per entro alla massa del corpo e per la durata di un solo istante di tempo (quando
trattasi di moto) un parallelepipedo rettangolo grande o piccolo come più piace, e
restringerci a riguardare il moto o l’equilibrio di esso solo, astraendolo col pensiero
dall’ equilibrio o dal moto di tutto il resto del corpo, e intendendo supplito l’ effetto
di tutta la materia circostante col mezzo di pressioni esercitate sulle sei facce di quel
parallelepipedo. Allora in virtù delle tre equazioni che sul fine del num.° precedente
insegnammo a dedurre e che in tale particolare supposizione diventano assai più
semplici, troveremo tre equazioni fra le componenti λ,μ, ν, parallele agli assi, della
pressione per un punto qualunque di una faccia, e le sei quantità Λ,Ξ,Π,Σ,Φ,Ψ

nelle quali le variabili x, y, z abbiano assunti i valori proprj delle coordinate di quel
punto.

Our English translation of aforementioned exceptions (we insert some comments
in italic):

23Let us recall that Archimedes, in the treatise On Floating Bodies (in which, among other things,
he demonstrates the spherical shape of the ocean and determines the conditions for the stability of
the equilibrium for a floating segment of a paraboloid of revolution), bases his hydrostatics on a
postulate concerning the interactions between any given contiguous portions of fluid.
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Before leaving the reasonings about the boundary quantities, I will say that from
them it is easy to draw all that doctrine which was object of several Memoirs by
Mr. Cauchy, inserted in his first Mathematical Exercises. Indeed we are allowed
to imagine INSIDE the mass of the body and for the duration of only a time
instant (when dealing with bodies in motion) a rectangular parallelepiped big or
small as we prefer better, and to restrict ourselves to consider the motion or the
equilibrium of it alone, by abstracting it -with our mind- from the equilibrium
or the motion of all the rest of the body (it is difficult here to state that Piola was
not considering sub-bodies of a given body, however the critical reader could state
that Piola is simply considering here sub-bodies with the shape of parallelepiped:
to this objection we can answer referring him to the works in which Piola deals
with the theory of integration, where he proves to be able to reconstruct, via limits,
integral over generic regions as sums of integrals over unions of parallelepipeds) and
considering that the effect of all surrounding matter can be replaced by means
of pressures exerted on the six facets of that parallelepiped. Then, by means of
the three equations which at the end of the previous number we have taught to
deduce (here clearly Piola shows that he intends to deduce from his ‘generalissima
formula’ the correct boundary conditions at the boundary of every sub-body of the
given body) [equations] which in such a particular case become much simpler,
we will find three equations relating the three components λ,μ, ν (which are
the three components of ‘externally applied contact forces’, in this case the contact
forces applied by the remaining part of the body on the parallelepiped which our
mind abstracted from the whole considered body: remark that Piola is considering
only dead loads in the commented work) parallels to the three axes of the pressure
at a generic point of the facet, and the six quantities Λ,Ξ,Π,Σ,Φ,Ψ (which
are obtained by means of several transformations from the duals of deformation
gradients of the body and which correspond to six independent the components of
the Cauchy stress tensor) in which the coordinates x, y, z have assumed the values
relatives to the coordinates of the considered point.

We consider that the previous words by Piola prove without any doubt that he
intended to apply the PVW for every virtual displacement of every sub-body of a
considered deformable body.Maybe the only reason forwhich Piolawas nearly never
cited until Truesdell and Toupin’s Classical Field Theories has to be determined in
his choice of writing in Italian language his works. We believe nevertheless that his
influence in the works of the subsequent writers in Continuum Mechanics has been
enormous. Indeed, as observed in the introduction of the present work, not being
cited does not mean not being known, even via secondary sources.

Let us consider, now, the following passages from Truesdell (1977) (Vol. I, pp.
62–63).

NOLL’S Axiom For every assignment of forces to bodies, theworking of a system
of forces acting on each body is frame-indifferent, no matter what be the motion.

Formally, in the notations (I.8-7) and (I.11-1),
Axiom A3.

W ∗ = W ∀B,∈ Ω̄, ∀χ.
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On the assumption that A2 is satisfied, we can demonstrate that (3) expresses a
necessary and sufficient condition for the resultant force and torque on each body β

to vanish. Indeed, by applying (I.9–13) to the definition (I.8-7) we see that, for given
B and χ ,

W ∗ − W =
∫
B

[
(χ̇∗) · df ∗

Be − χ̇ · dfBe

]

=
∫
B

[
(χ̇∗

0 ) + Q̇ (χ − χ0) + Qχ̇
] · QdfBe −

∫
B

χ̇ · dfBe

= QT (χ̇∗
0 ) ·

∫
B

dfBe − QT Q̇ ·
∫
B

(χ − χ0) � dfBe

= QT (χ̇∗
0 ) · f (B,Be) − 1

2
QT Q̇ · F (B;Be)x0 .

By axiom A3 the right-hand side of this equation must vanish for all choices of the
functionsQ andχ∗

0 .We consider a particular time t and chooseQ such that Q̇ (t) = 0.
Since Q (t)T (χ̇∗

0 ) (t) may be any vector whatever, Axiom A3 requires that

f (B,Be) = 0.

This being so, Axiom A3 again applied to (4) shows that in the space of skew
tensors F (B,Be)x0 must be perpendicular to every tensor of the form Q (t)T Q̇ (t),
the values of Q (t)T being orthogonal tensors. If W is a constant skew tensor, and if
Q (t) := e(t−t0)W , then Q (t0) = 1 and Q̇ (t0) = W , and so Q (t0)

T Q̇ (t0) = W . Thus
the skew tensor F (B,Be)x0 must be perpendicular to every skew tensor. Therefore

F (B,Be)x0 = 0.

Theorem 5.1 (NOLL) The working of a system of forces is frame-indifferent if and
only if that system and its associated in system of torques are both balanced.

We will show in the following that the previous attribution to Noll was not correct,
and will try to reconstruct the missing links between Piola and Truesdell.

4 The Reconstruction of the Transmission Line of Piola’s
Ideas and Results

It is very likely that the ideas of Piola reached—in a way or another- the Cosserat
Brothers, as we have seen in a previous section. It does not absolutely mean that
Cosserat Brothers are to be considered to be a sort of plagiarists of Piola works:
instead they were influenced by Piola’s ideas and stream of cultural tradition via
Melittas (see the section dedicated to them) or via a series of passages in written
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form in which some of the transmitters wanted to erase the original source. In our
opinion, as observed, the same process occurredmany times in the history of science.
Indeed very often some very specific examples, theorems, mathematical procedures,
formulas or arguments have reappeared inwritten form after a long period of ‘karstic’
flow in underground riverbeds (i.e. after a period in which the transmission occurred
in a not-written form). And even more often the majority of scholars do believe that
there was no transmission at all, as we illustrated before discussing the resurfacing of
the content of the works of Heron of Alexandria and Democritus in those by Galileo
Galilei.

The works of Piola are cited by Hellinger (1913) who, however, clearly underes-
timated the main part of their content. The information transmitted by Hellinger is
already corrupted, although the corruption does not consist in a wrong statement but
in a drastic reduction of the original content of the message. The source of Hellinger
seems to be Müller et al. (1907) which is cited often in Hellinger’s work. Indeed at
the beginning of p. 20 of Hellinger (1913) we read24:

In close connection with these facts there is a different point of view in the for-
mulation of the principle of virtual work (displacements),25 which includes in its
formulation only the internal forces, the forces per unit mass X; Y; Z and the surface
forces X , Y , Z , considered as given; here it is (with slight modifications) the state-
ment found in the formulation of G. Piola:
For the balance it is necessary that the virtual work of the forces mentioned above

∫ ∫ ∫
(V )

(Xδx + Yδy + Zδz) dV +
∫ ∫

(S)

(
X̄δx + Ȳδy + Z̄δz

)
dS

vanishes for all pure virtual translational displacements of the considered region V .
The reader will remark that Hellinger cites a small part of the original statement by

Piola (1845–1846) (dell’Isola et al. 2015, p. 86): indeedPiola states that the balance of
forces and torques can be deduced26 from the Principle of Virtual Velocities for every
body (rigid, elastic, solid and fluid). Moreover Piola adds the proof of the validity
of the ‘conservation of the areas’ which is a nomenclature clearly reminiscent of
Kepler’s law on the motion of planets. However the formula (16) on p. 86 (Piola
(1845–1846), in dell’Isola et al. 2015) cannot be misunderstood: it is the global
balance of angular momentum. Hellinger ignores this result from Piola.

ThenHellinger continues, loosing the contact with the real statements which actu-
ally can be found in Piola (1845–1846) (dell’Isola et al. 2015):

24The authors thank here Prof. Victor Eremeyev for his help in translating and interpreting the
German text.
25Remark that Hellinger still considers a Lagrangian version of the name for the Principle: The
Principle of Virtual Displacements, which is closer to the Lagrangian name, i.e. Principle of Virtual
Velocities.
26The deduction presented in Piola (1845–1846) (see dell’Isola et al. 2015, Chap.1 p. 86, in par-
ticular Eqs. (14), (15) and (16)) is clearly the proof of an equivalence.
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Expressing this constraint for the displacements, namely the 9 partial differential
equations:

∂δx

δx
= 0,

∂δx

δy
= 0, .......,

∂δx

δz
= 0,

and using the known calculus of variations one can introduce 9 associated Lagrangian
factors −Xx,−Yx, . . . ,−Zz and then one gets exactly the Eq.(4) of the old principle,
in which, therefore, the components of the stress dyad as Lagrangian factors are to
be determined from to constraint conditions, those of rigidity. These of course will
not be determined by this variational principle, rather they are playing exactly the
same role as the internal stresses in statically indeterminate problems of rigid body
mechanics.

Here Hellinger ignores that in Piola (1845–1846), in dell’Isola et al. (2015) the
reader is slowly accompanied to more and more general formulations, passing grad-
ually through simpler ones. Indeed Hellinger describes the content of Capo IV, com-
pletely ignoring the content of CAPO VI, starting from p. 146 (Piola 1845–1846, in
dell’Isola et al. 2015) where the general case of deformable bodies (with even non-
local deformation energies) is carefully treated. The observations of Hellinger are
correct, when referred to the Piola’s approach in Capo IV based on the application
of rigid body constraint. However Piola proposes a much more general family of
continuum models in the subsequent Capo VI. Then Hellinger adds:
If one imposes the same requirements for all rigid motions of V l (rather than just
for the translations), he obtains exactly the IV in 23, p. 23 (in Müller’s and Gimpe’s
paper) which reproduces Piola’s approach, in which appear only six constraints and
therefore only 6 Lagrangian multipliers and thus provide a symmetric stress tensor.

Hellinger forgot that the global invariance under rotations does not neglect to talk
about the consequence of such invariance property on stress tensor. As discussed
again in Capo VI by Piola (1845–1846) (dell’Isola et al. 2015) the nonlocal defor-
mation energy densities may be approximated by expanding in series the placement
field: after replacing these series and after integrations in which a nonlocal kernel
weights the placement gradients, Piola gets local deformation energies depending on
its nth order gradients (eventually truncating the series). To our knowledge Piola is
the first author in which such a general setting for continuum mechanics is proposed
and used. Also in Piola (1845–1846) (dell’Isola et al. 2015) are treated bodies hav-
ing bidimensional or onedimensional extension. This results is echoed in Hellinger
(1913), although the reference to Piola is lost. Indeed on p. 622 (end) and p. 623
(beginning) we read:

4. Extensions of the Principle of virtual work.
4a. Higher-order derivatives of displacements.
One can also add to those formulated in No. 3, some statements of the principle of

virtual work containing a number of enhancements which enable at first to include
all laws occurring in the mechanics of continua. The next generalization considers in
the density of virtual work per volume a linear form of the 18 second derivatives of the
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virtual displacements ∂2δx
∂x2 . In fact, one has the problem in which the energy function

depends also on the second derivatives of placement functions which leads to such
expression. Primarily this comes into consideration for the one- and two-dimensional
continua (wires and plates).

As we discuss in the section dedicated to the interpretation of Piola’s works given
by Truesdell, it is clear that this last author accepts Hellinger’s misinterpretation
of Piola’s ideas and results. Reading the previous excerptions from Hellinger this is
not surprising. It is also likely that Noll, who studied in German Universities (see
Walter Noll’s web page), had to study the work by Hellinger or some textbooks based
on it: in any case Noll co-authors with Truesdell many works discussing Variational
Principles in Mechanics (see e.g. Truesdell and Noll 2004) and cites Piola.27

When considering also the fact that Piola’s Italian writing style is rather complex,
and very elegant, so that many Italians today can find very difficult to read it, it
becomes reasonable to conjecture that Truesdell was judging Piola’s scientific quality
without fully possessing the required linguistic capability. On the other hand the huge
publishing activity which can be attributed to Truesdell (Including more than 500
reviews for Mathrev28) implies, for a simple consideration of the time spent on every
written page, that his judgements were obtained devoting to them, in average, very
little time. Of course it is not absolutely impossible to keep a very high scientific level
also in this case, but many examples can supply evidence in the opposite direction,
suggesting that in average there is an inverse correlation between production pace
and quality. We can for instance recall that among ancient philologists one of the
less interesting (using a polite expression) was Didymus Chalcenterus (which means
“bronze-guts”), who according to Seneca authored about 4000 books, and since
antiquity he was taken as amodel case of empty and useless erudition. Indeed, he was
also named Bibliolatas (book-forgetter) because he used to contradict in successive
works what he himself had written before.

27We take the opportunity to recall the enormous importance of Variational Methods for today
science in general (muchbeyondpurelymechanical universe), first of all for rich andmultidirectional
theoretical developments (among those closer to the research lines of the authors, the reader can
see e.g. Courant (1943), Schröder et al. (2005), Milton et al. (2009), dell’Isola and Seppecher
(1997), Placidi (2015), Piccardo et al. (2014), Steigmann and Ogden (1999, 1997)), and also (a
point which is sometimes missed by theoreticians and historians) for the birth of the most powerful
tools for computation today available in continuum mechanics, which are based on the application
of Finite Element Method (FEM); these method, indeed, could only see the light as a consequence
of the development of rigorous variational theories. Powerful variants of FEM are now available to
attack a large class of problems (see e.g. Cuomo et al. 2014; Hughes 2012, for some recent results
which we found very interesting), and they are considered by now simply indispensable in practical
computation. See below for further considerations on this point.
28See the data at: http://www.lib.utexas.edu/taro/utcah/00308/cah-00308.html.

http://www.lib.utexas.edu/taro/utcah/00308/cah-00308.html
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5 Non-local Continuum Theories in Piola’s Works

The homogenized theory which is deduced in Piola (1845–1846) on the basis of the
identification of powers in the discrete micro-model and in the continuous macro-
model is (in the languageusedbyEringen1999;Eringen andEdelen1972) a non-local
theory. In dell’Isola et al. (2015) the parts of Piola’s work which are most relevant
in the present context are translated. Here we transform into modern symbols the
formulas which the interested reader can find there in their original form.

It is our opinion that some of Piola’s arguments can compete in depth and gen-
erality, even nowadays, with the most advanced modern presentations. We describe
here the continuum model that he deduces from the Principle of Virtual Velocities
for a discrete mechanical system constituted by a finite set of molecules, which he
considers to be the most fundamental Principle in his Postulation process.29

In Piola (1845–1846) (Capo I, p. 8) the reference configuration of the considered
deformable body is introduced by labeling eachmaterial particlewith the threeCarte-
sian coordinates (it is suggestive to remark that the same notation is used in Hellinger
1913, see e.g., p. 605). We denote by the symbol X the position occupied by each
of the considered material particles in the reference configuration. The placement of
the body is then described by the set of three scalar functions (Capo I, p. 8 and then
pp. 11–14)

x (a, b, c) , y (a, b, c) , z (a, b, c)

which, by using a compact notation, we will denote with the symbol χ mapping any
point in the reference configuration into its position in the actual one.

5.1 Piola’s Non-local Internal Interactions

In Capo VI, on p. 149 of Piola (1845–1846) Piola introduces:
“The quantity ρ Eqs. (3), (5) and (6) has the value given by the equation

ρ2 = [
x (a + f , b + g, c + k) − x (a, b, c)

]2
+ [

y (a + f , b + g, c + k) − y (a, b, c)
]2

(1)

+ [
z (a + f , b + g, c + k) − z (a, b, c)

]2
.”

So by denoting with the symbol X̄ the particle labeled by Piola with the coordinates
(a + f , b + g, c + k) we have, in modern notation, that

29We also remark that this kind of approach, starting from a discrete system with a very large
number of degrees of freedom and then proceeding by means of heuristic homogenization, is today
so vital that entire chapters in modern theoretical and computational mechanics closely follow it,
as for instance molecular dynamics and granular mechanics (see e.g. Misra and Chang 1993; Misra
and Singh 2013; Misra and Yang 2010).
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ρ2(X, X̄) = ∥∥χ(X̄) − χ(X)
∥∥2

. (2)

In Capo VI on p. 150 we read the following expression for the internal work, relative
to a virtual displacement δχ, followed by a very clear remark:

∫
da

∫
db

∫
dc

∫
df

∫
dg

∫
dk · 1

2
Kδρ (3)

“[...] In it the integration limits for the variables f , g, k will depend on the surfaces
which bound the body in the antecedent configuration, and also on the position of
the molecule m, which is kept constant, that is by the variables a, b, c which after
the first three will also vary in the same domain”.

Here the scalar quantity K is introduced as “the mass intensity of the force”
exerted by the particle X̄ on the particle X and the factor 1

2 is present as the action
reaction principle holds. The quantity K is assumed to depend on X̄, X and ρ and
manifestly it is measured in Nm−6 kg−1 (SI Units).30 In the number 72 starting on p.
150 of Piola (1845–1846) it is discussed the physical meaning of this scalar quantity
and consequently some restrictions on the constitutive equations which have to be
assigned to it.

Indeed he refrains from any effort to obtain for it an expression in terms of micro-
scopic quantities and limits himself to require its objectivity by assuming its depen-
dence on ρ, an assumption which will produce in the sequel some important conse-
quences. Moreover he argues that if one wants to deal with continua more general
than fluids (for a discussion of this point one can have a look on the recent paper
Auffray et al. 2015) then it may depend (in a symmetric way) also on the Lagrangian
coordinates of both X̄ and X : therefore

K(X̄, X, ρ) = K(X, X̄, ρ).

On pp. 151–152 in Piola (1845–1846) we then read some statements which cannot
be rendered clearer:
“As a consequence of what was were said up to now we can, by adding up the two
integrals (1), (10), and by replacing the obtained sum in the first two parts of the
general Eq. (1) n. 16., formulate the equation which includes the whole molecular
mechanics. Before doing so we will remark that it is convenient to introduce the
following definition

Λ̄ = 1

4

K

ρ
(4)

30We remark that, in the originalwork,when passing from the discrete to the continuous formulation,
Piola replaces the elementary mass of the molecules with elementary volumes. In so doing he
changes implicitly the dimension of K . In dell’Isola et al. (2015) this point was left unmentioned,
while here we will introduce some new symbol (specifically Λ̄) in order to better highlight it and
to use a form which the modern reader is more familiar with.
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by means of which it will be possible to introduce the quantity Λ̄δρ2 instead of the
quantity 1

2Kδρ in the sextuple integral (1); and that inside this sextuple integral it
is suitable to isolate the part relative to the triple integral relative to the variables
f , g, k, placing it under the same sign of triple integral with respect to the variables
a, b, c which includes the first part of the equation: which is manifestly allowed. In
this way the aforementioned general equation becomes

∫
da

∫
db

∫
dc ·

{(
X − d2x

dt2

)
δx +

(
Y − d2y

dt2

)
δy +

(
Z − d2z

dt2

)
δz

+
∫

df
∫

dg
∫

dk · Λδρ2

}
+ Ω = 0, (5)

where it is intended that (as mentioned at the beginning of the n. 71.) it is included
in the Ω the whole part which may be introduced because of the forces applied to
surfaces, lines or well-determined points and also because of particular conditions
which may oblige some points to belong to some given curve or surface.”

Piola is aware of the technical difficulty to calculate the first variation of a square
root: as he knows that these difficulties have no physical counterparts, instead of
K he introduces another constitutive quantity Λ which is the dual in work of the
variation δρ2.

Remark 5.2 (Boundedness and attenuation assumptions on K and Λ̄) Note that
Piola explicitly assumes the summability of the function Λ̄δρ2 = 1

4
K
ρ
δρ2 = 1

2Kδρ

and the boundedness of the function K . As a consequence, when ρ is increasing then
Λ decreases.

Remark 5.3 (Objectivity of Virtual Work) Note that δρ2 and Λ̄(X, X̄, ρ) are invariant
(see Steigmann 2003) under any change of observer and as Piola had repeatedly
remarked (see e.g. Capo IV, n. 48, pp. 86–87) the expression for virtual work has
to verify this condition. We remark also that, as the work is a scalar, in this point
Piola’s reasoning is made difficult by his ignorance of Levi-Civita’s tensor calculus
(Ricci-Curbastro and Levi-Civita 1900; Levi-Civita 1927). In another formalism the
previous formula can be written as follows

∫
B

⎡
⎣(bm(X)−a(X)) δχ(X)+

⎛
⎝∫
B

Λ(X, X̄, ρ)δρ2μ(X̄)dX̄

⎞
⎠

⎤
⎦ μ(X)dX+δW (∂B)=0,

(6)

where B is the considered body, ∂B its boundary,

Λ(X, X̄, ρ) := Λ̄(X, X̄, ρ)(μ(X)μ(X̄))−1

(μ(X) being the volume mass density), bm(X) is the (volumic) mass specific exter-
nally applied density of force, a(X) the acceleration ofmaterial pointX, and δW (∂B)



Some Cases of Unrecognized Transmission of Scientific Knowledge … 109

the work expended on the virtual displacement by actions on the boundary ∂B and
eventually the first variations of the equations expressing the applied constraints on
that boundary times the corresponding Lagrange multipliers.

In Eringen and Edelen (1972), Eringen (1999, 2002), the non-local continuum
mechanics is founded on a Postulation based on Principles of balance of mass, linear
and angular momenta, energy and entropy. However in Eringen (2002) a chapter on
variational principles is presented.

One can easily recognize by comparing, for example, the presentation in Eringen
(2002) with (6) that in the works by Piola the functional

⎛
⎝∫
B

Λ(X, X̄, ρ)δρ2μ(X̄)dX̄

⎞
⎠ (7)

is assumed to satisfy a slightly generalized version of what in Eringen (2002) p. 34
is called the

Smooth Neighborhood Hypothesis,

which reads (in Eringen’s work the symbol V is used with the same meaning as our
symbolB, X ′ instead of X̄, x instead of χ , t′ denotes a time instant, the symbol () ,Ki

denotes the partial derivatives with respect to Kith coordinate of X, and is assumed
the convention of sums over repeated indices) as follows:

“Suppose that in a region V0 ⊂ V, appropriate to each material body, the inde-
pendent variables admit Taylor series expansions in X ′ − X in V0 [...] terminating
with gradients of order P, Q, etc.,

x(X ′, t′) = x(t′) + (
X ′

K1
− XK1

)
x,K1 (t′)

+ · · · + 1

P!
(
X ′

K1
− XK1

)
....

(
X ′

KP
− XKP

)
x,K1...KP (t′),

and [...]. If the response functionals are sufficiently smooth so that they can be
approximated by the functionals in the field of real functions

x(t′), x,K1 (t′), . . . ., x,K1...KP (t′), (8)

[...]

we say that the material at X [...] satisfies a smooth neighborhood hypothesis. Mate-
rials of this type, for P > 1, Q > 1 are called nonsimple materials of gradient type.”

Actually Piola is not truncating the series and keeps calculating the integrals on
the whole body B. Although no explicit mention can be found in the text of Piola,
because of the arguments presented in Remark5.2, it is clear that he uses a weaker
form of the Attenuating Neighborhood Hypotheses stated on p. 34 of Eringen (2002).

The idea of an internal interaction which does not fall in the framework of Cauchy
continuum mechanics is nowadays attracting the attention of many researchers.
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Following Piola’s original ideas, modern peridynamics31 assumes that the force
applied on a material particle of a continuum actually depends on the deformation
state of a whole neighborhood of the particle. We will see more on this later on.

5.2 An Explicit Calculation of the Strong Form
of the Variational Principle (6)

In this section we compute explicitly the Euler-Lagrange equation corresponding to
the Variational Principle (6). To this end we need to treat algebraically the expression

∫
B

⎛
⎝∫

B

Λ(X, X̄, ρ)δρ2μ(X̄)dX̄

⎞
⎠ μ(X)dX (9)

by calculating explicitly

δρ2 = δ

(
3∑

i=1

(
χi(X̄) − χi(X)

) (
χi(X̄) − χi(X)

))
.

With simple calculations we obtain that (Einstein convention is applied from
now on)

δρ2 = (
2

(
χ i(X̄) − χ i(X)

) (
δχi(X̄) − δχi(X)

))
,

which once placed in (9) produces

∫
B

∫
B

(
2Λ(X, X̄, ρ)μ(X̄)μ(X)

(
χ i(X̄) − χ i(X)

)) (
δχi(X̄) − δχi(X)

)
dX̄dX

= 1

2

⎛
⎝∫

B

f i(X̄)δχi(X̄)dX̄ +
∫
B

f i(X)δχi(X)dX,

⎞
⎠

where we have introduced the internal interaction force (recall that Piola assumes
that Λ(X, X̄, ρ) = Λ(X̄, X, ρ)) by means of the definition

f i(X̄) :=
∫
B

(
4Λ(X, X̄, ρ)μ(X̄)μ(X)

(
χ i(X̄) − χ i(X)

))
dX

31We remark that (luckily!) the habit of inventing new names (although sometimes the related
concepts are not so novel) is not lost in modern science (see Russo 2004, for a discussion of the
importance of this attitude in science) and that the tradition of using Greek roots for inventing new
names is still alive.
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By a standard localization argument one easily gets that (6) implies

ai(X) = bi
m(X) + f i(X) (10)

This is exactly the starting point of modern peridynamics.

5.3 Modern Perydinamics: A New/Old Model for Deformable
Bodies

Many non-local continuum theories were formulated since the first formulation by
Piola seen before. We cite here, for instance, Eringen (1999, 2002), Eringen and
Edelen (1972), Soubestre and Boutin (2012). Remarkable also are the following
more modern papers: dell’Isola et al. (1995, 2000), dell’Isola and Seppecher (1995),
Demmie and Silling (2007), Du et al. (2013), Emmrich et al. (2013), Lehoucq
and Silling (2008), Seleson et al. (2013), Silling et al. (2007), Steinmann (2008),
Steinmann et al. (2007), Sunyk and Steinmann (2003). The non-local interaction
described by the integral operators introduced in the present subsections are not to
be considered exclusively as interactions of a mechanical nature: indeed recently a
model of biologically driven tissue growth has been introduced (see e.g. Andreaus
et al. 2014a, b; Madeo et al. 2011) where such a non-local operator is conceived to
model the biological stimulus to growth.

Starting from a balance law of the form (10) for instance in Di Paola et al.
(2010a, b), Silling (2000) (but many other similar treatments are available in the
literature) one finds a formulation of Continuum Mechanics which relaxes the stan-
dard one and seems suitable (see the few comments below) to describe many and
interesting phenomena e.g. in crack formation and growth.

However even those scientists whose native language is Italian actually seem
unaware of the contribution due to Gabrio Piola in this field: this loss of memory
and this lack of credit to the major sources of our knowledge, even in those cases in
which their value is still topical, is very dangerous, as proven in detail by the analysis
developed in Russo (2013, 2004).

In Silling (2000) the analysis started by Piola is continued, seemingly as if the
author, Silling, were one of his closer pupils: the arguments are very similar and
also a variational formulation of the presented theories is found and discussed. In
Lehoucq and Silling (2008), Silling and Lehoucq (2008) it is stated in the Abstract
that:

“The peridynamic model is a framework for continuum mechanics based on the
idea that pairs of particles exert forces on each other across a finite distance. The
equation of motion in the peridynamic model is an integro- differential equation. In
this paper, a notion of a peridynamic stress tensor derived from nonlocal interactions
is defined.”
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“The peridynamic model of solid mechanics is a nonlocal theory containing a
length scale. It is based on direct interactions between points in a continuumseparated
from each other by a finite distance. The maximum interaction distance provides a
length scale for the material model. This paper addresses the question of whether
the peridynamic model for an elastic material reproduces the classical local model
as this length scale goes to zero. We show that if the motion, constitutive model, and
any nonhomogeneities are sufficiently smooth, then the peridynamic stress tensor
converges in this limit to a Piola-Kirchhoff stress tensor that is a function only of
the local deformation gradient tensor, as in the classical theory. This limiting Piola-
Kirchhoff stress tensor field is differentiable, and its divergence represents the force
density due to internal forces.”

The reader is invited to compare these statements with those which can be found
in the original works by Piola.

It is very interesting to see how fruitful can be the ideas formulated more than
150years ago by Piola. It is also useful to read the abstract of Askari et al. (2008):
“The paper presents an overview of peridynamics, a continuum theory that employs
a nonlocal model of force interaction. Specifically, the stress/strain relationship of
classical elasticity is replaced by an integral operator that sums internal forces sepa-
rated by a finite distance. This integral operator is not a function of the deformation
gradient, allowing for a more general notion of deformation than in classical elas-
ticity that is well aligned with the kinematic assumptions of molecular dynamics.
Peridynamics’ effectiveness has been demonstrated in several applications, includ-
ing fracture and failure of composites, nanofiber networks, and polycrystal fracture.
These suggest that peridynamics is a viable multiscale material model for length
scales ranging from molecular dynamics to those of classical elasticity.”

Or also the abstract of the paper by Parks et al. (2008):
“Peridynamics (PD) is a continuum theory that employs a nonlocal model to describe
material properties. In this context, nonlocal means that continuum points separated
by a finite distance may exert force upon each other. Ameshless method results when
PD is discretized with material behavior approximated as a collection of interacting
particles. This paper describes how PD can be implemented within a molecular
dynamics (MD) framework, and provides details of an efficient implementation. This
adds a computational mechanics capability to an MD code enabling simulations at
mesoscopic or even macroscopic length and time scales”.

It is remarkable how strictly related are non-local continuum theories with the
discrete theories of particles bound to the nodes of a lattice. How deep was the
insight of Piola can be understood by looking at the literature about the subject
which includes, for instance, Demmie and Silling (2007), Di Paola et al. (2010a, b),
Du et al. (2013), Emmrich et al. (2013), Lehoucq and Silling (2008), Seleson et al.
(2013), Silling (2000), Silling et al. (2007), Silling and Lehoucq (2008).
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5.4 Piola’s Higher Gradient Continua

The state of deformation of a continuum in the neighborhood of one of its material
points can be approximated bymeans of the Green deformationmeasure and of all its
derivatives with respect to Lagrangian referential coordinates. Piola never considers
the particular case of linearized deformation measures (which is physically rather
unnatural): his spirit has been recovered in many modern works, among which we
cite Silling and Lehoucq (2008), Steigmann (2002).

Indeed in Capo VI, on p. 152, Piola develops in Taylor series δρ2 (also by using
his regularity assumptions about the functionΛ(X, X̄, ρ) and the definition (11)) and
replaces the obtained development in (7).

In a more modern notation (see dell’Isola et al. 2015, for the word by word
translation) starting from

χi(X̄) − χi(X) =
∞∑

N=1

1

N !
(

∂Nχi(X)

∂Xi1 ....∂XiN

(X̄i1 − Xi1)....(X̄iN − XiN )

)

Piola gets an expression for the Taylor expansion with respect to the variable X̄ of
center X for the function,

ρ2(X̄, X) = (
χ i(X̄) − χ i(X)

) (
χi(X̄) − χi(X)

)
.

He estimates and explicitly writes first, second and third derivatives of ρ2 with
respect to the variable X̄. This is what wewill do in the sequel, repeating his algebraic
procedurewith the only difference consisting in the use ofLevi-Civita tensor notation.

We start with the first derivative

1

2

∂ρ2(X̄, X)

∂X̄α

= (
χ i(X̄) − χ i(X)

) ∂χi(X̄)

∂X̄α

. (11)

We remark that when X̄ = X this derivative vanishes. Therefore the first term of
Taylor series for ρ2 vanishes. We now proceed by calculating the second and third
order derivatives:

1

2

∂2ρ2(X̄, X)

∂X̄α∂X̄β

= ∂χ i(X̄)

∂X̄β

∂χi(X̄)

∂X̄α

+ (
χ i(X̄) − χ i(X)

) ∂2χi(X̄)

∂X̄α∂X̄β

=: Cαβ(X̄) + (
χ i(X̄) − χ i(X)

) ∂2χi(X̄)

∂X̄α∂X̄β

;



114 F. dell’Isola et al.

1

2

∂3ρ2(X̄, X)

∂X̄α∂X̄β∂X̄γ

= ∂Cαβ(X̄)

∂X̄γ

+ ∂χi(X̄)

∂X̄γ

∂2χ i(X̄)

∂X̄α∂X̄β

+ (
χ i(X̄) − χ i(X)

) ∂3χi(X̄)

∂X̄α∂X̄β∂X̄γ

.

(12)

The quantities of this last equation are exactly those described in Piola (1845–1846)
on p. 157 concerning the quantities appearing in formulas (14) on p. 153.

We now introduce a fundamental analytical identity found by Piola and reformu-
lated in Appendix D of dell’Isola et al. (2016) as follows

Fiγ
∂2χ i

∂Xα∂Xβ
= 1

2

(
∂Cαγ

∂Xβ
+ ∂Cβγ

∂Xα
− ∂Cβα

∂Xγ

)
.

By replacing in (12) we get

1

2

∂3ρ2(X̄, X)

∂X̄α∂X̄β∂X̄γ

= 1

2

(
∂Cαγ

∂Xβ
+ ∂Cβγ

∂Xα
+ ∂Cβα

∂Xγ

)

+ (
χ i(X̄) − χ i(X)

) ∂3χi(X̄)

∂X̄α∂X̄β∂X̄γ

,

(13)

so that when X̄ = X we get that the third order derivatives of ρ2 can be expressed
in terms of the first derivatives of Cγβ .

Now we go back to read in Capo VI n.73 pp. 152–153:
“73. What remains to be done in order to deduce useful consequences from the
Eq. (12) is simply a calculation process. Once recalled the Eq. (8), it is seen, trans-
forming into series the functions in the brackets, so that one has

ρ2 =
(

f
dx

da
+ g

dx

db
+ k

dx

dc
+ f 2

2

d2x

da2
+ ec.

)2

+
(

f
dy

da
+ g

dy

db
+ k

dy

dc
+ f 2

2

d2y

da2
+ ec.

)2

+
(

f
dz

da
+ g

dz

db
+ k

dz

dc
+ f 2

2

d2z

da2
+ ec.

)2

;

and by calculating the squares and gathering the terms which have equal coefficients:

ρ2 = f 2t1 + g2t2 + k2t3 + 2fgt4 + 2fkt5 + 2gkt6

+ f 3T1 + 2f 2gT2 + 2f 2kT3 + fg2T4 + etc., (14)

inwhich expression the quantities t1, t2, t3, t4, t5, t6 represent the six trimonialswhich
are alreay familiar to us, as we have adopted such denominations since the Eq. (6) in
the num◦.34.; and the quantities T1, T2, T3, T4, ec. where the index goes to infinity,
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represent trinomials of the same nature in which derivatives of higher and higher
order appear.”

Then the presentation of Piola continues with the study of the algebraic structure
of the trinomial constituting the quantities T1, T2, T3, as shown by the formulas
appearing in Capo VI, n. 73 on pp. 153–160. The reader will painfully recognize
that these huge component-wise formulas actually have the same structure which
becomes easily evident in formula (13) and in all formulas deduced, with Levi-Civita
Tensor Calculus, in Appendices D and E.

What Piola manages to recognize (also with a courageous conjecture, see Appen-
dices D and E) is that in the expression of Virtual Work all the quantities which
undergo infinitesimal variation (which are naturally to be chosen as measures of
deformation) are indeed either components of the deformation measure C or com-
ponents of one of its gradients.

Indeed in the n.74 p. 156 one reads:
“74. A new proposition, which the reader should pay much attention to, is that all
the trinomials T1, T2, T3, etc. where the index goes to infinity, which appear in the
previous Eq. (17), can be expresses by means of the only first six t1, t2, t3, t4, t5, t6,
and of their derivatives with respect to the variables a, b, c of all orders. I started
to suspect this analytical truth because of the necessary correspondence which must
hold between the results which are obtained with the way considered in this Capo
and those results obtained with the way considered in the Capos III and IV.”

In order to transform the integral expression (7)

⎛
⎝∫
B

Λ(X, X̄, ρ)δρ2(X, X̄)μ(X̄)dX̄

⎞
⎠

Piola remarks that (pp. 155–156):
“When using the Eq. (13) to deduce the value of the variation δρ2, it is clear that the
characteristic δ will need to be applied only to the trinomials we have discussed up
to now, so that we will have:

δρ2 = f 2δt1 + g2δt2 + k 2δt3 + 2fg δt4 + 2fk δt5 + 2gk δt6

+ f 3δT1 + 2f 2gδT2 + 2f 2kδT3 + f g2δT4 + etc. (15)

Indeed the coefficients f 2, g 2, k 2, 2fg, etc. are always of the same form as the
functions giving the variables x, y, z in terms of the variables a, b, c, and there-
fore cannot be affected by that operation whose aim is simply to change the form
of these functions. Vice versa, by multiplying the previous Eq. (16) times Λ and
then integrating with respect to the variables f , g, k in order to deduce from such
calculation the value to be given to the forth term under the triple integral of the
Eq. (12), such an operation is affecting only the quantities Λf 2,Λg 2, etc. and
the variations δt1, δt2, δt3....δT1, δT2, ec. cannot be affected by it, as the trinomi-
als t1, t2, t3....T1, T2, ec. (one has to consider carefully which is their origin) do not
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contain the variables f , g, k: therefore such variations result to be constant factors,
times which are to bemultiplied the integrals to be calculated in the subsequent terms
of the series.”

Using a modern notation we have that

ρ2(X̄, X) =
∞∑

N=1

1

N !
∂Nρ2(X̄, X)

∂X̄i1 ....∂X̄iN

∣∣∣∣
X=X̄

(X̄i1 − Xi1)....(X̄iN − XiN ),

and therefore that

δρ2(X̄, X) =
∞∑

N=1

1

N !

(
δ

∂Nρ2(X̄, X)

∂X̄i1 ....∂X̄iN

∣∣∣∣
X=X̄

)
(X̄i1 − Xi1)....(X̄iN − XiN ).

As a consequence

∫
B

Λ(X, X̄, ρ)δρ2(X̄, X)μ(X̄)dX̄ =
∞∑

N=1

1

N !
(

δ
∂Nρ2(X̄, X)

∂X̄i1 ....∂X̄iN

∣∣∣∣
X=X̄

)

×
⎛
⎝∫

B

Λ(X, X̄, ρ)
(
(X̄i1 − Xi1)....(X̄iN − XiN )

)
μ(X̄)dX̄

⎞
⎠ .

If we introduce the tensors

Ti1...iN
. (X) :=

⎛
⎝∫

B

Λ(X, X̄, ρ)
(
(X̄i1 − Xi1)....(X̄iN − XiN )

)
μ(X̄)dX̄

⎞
⎠ .

we get:

∫
B

Λ(X, X̄, ρ)δρ2(X̄, X)μ(X̄)dX̄

=
∞∑

N=1

1

N !
(
δLα1....αn

(
C(X), ..,∇n−2C(X)

))
Ti1...iN

. (X).

Piola states that:
“After these considerations it is manifest the truth of the equation:
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∫
df

∫
dg

∫
dk · Λδρ2 = (1) δt1 + (2) δt2 + (3) δt3 + (4) δt4 + (5) δt5

+ (6) δt6 + (7) δT1 + (8) δT2 + (9) δT3 + (10) δT4

+ etc., (16)

where the coefficients (1), (2), etc. indicated by means of numbers in between brack-
ets, must be regarded to be each a function of the variables a, b, c as obtained after
having performed the said definite integrals.”

In order to establish the correct identification between Piola’s notation and the
more modern notation which we have introduced, the reader may simply consider
the following table (i = 1, 2, . . . .n, . . . .)

Ti1...iN
. � (1), (2), etc. δLα1....αn

(
C, . . . ,∇n−2C

)
� δTi .

After having accepted Piola’s assumptions the identity (6) becomes

∫
B

(
(bm(X) − a(X)) δχ(X) +

∞∑
N=1

1

N !
(
δLα1....αn

(
C(X), ..,∇n−2C(X)

))
Ti1...iN

. (X)

)
μ(X)dX

+ δW (∂B) = 0.

By a simple re-arrangement and by introducing a suitable notation the last formula
becomes

∫
B

(
(bm(X) − a(X)) δχ(X) +

∞∑
N=1

〈∇NδC(X)|S.(X)
〉)

μ(X)dX

+ δW (∂B) = 0, (17)

where S is a N th order contravariant totally symmetric tensor32 and the symbol 〈|〉
denotes the total saturation (inner product) of a pair of totally symmetric contravariant
and covariant tensors.

Indeed on pp. 159–160 of Piola (1845–1846) we read:
“75. Once the proposition of the previous num. has been admitted, it is manifest that
the Eq. (17) can assume the following other form

32The constitutive equations for such tensors must verify the condition of frame invariance. When
these tensors are defined in terms of a deformation energy (that is when the Principle of VirtualWork
is obtained as the first variation of a Least Action Principle) the objectivity becomes a restriction on
such an energy. The generalization of the results in Steigmann (2003) to the N th gradient continua
still needs to be found.
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∫
df

∫
dg

∫
dk · Λδρ2 = (α) δt1 + (β) δt2 + (γ ) δt3 + · · · + (ε)

δdt1
da

+ (ζ )
δdt1
db

+ (η)
δdt1
dc

+ (ϑ)
δdt2
da

+ · · · + (λ)
δd2t1
da2

+ (μ)
δd2t1
dadb

+ · · · + (ξ)
δd2t2
da2

+ (o)
δd2t2
dadb

+ etc., (18)

in which the coefficients (α) , (β) .... (ε) .... (λ) ....ec. are suitable quantities given
in terms of the coefficients (1), (2)....(7), (8).... of the Eq. (17): they depend on the
quantities t1, t2....t6, and on all order derivatives of these trinomials with respect to
the variables a, b, c. Then the variations δt1, δt2.... (with the index varying up to
infinity) and the variations of all their derivatives of all orders

δdt1
da ,

δdt1
db , etc. appear

in the (18) only linearly.”
Nowadays, higher order continua are commonlymet in the literature as the homog-

enized limit of various types ofmechanical systems, amongwhich a noticeable exam-
ple is constituted by reticular structures (see e.g. Atai and Steigmann 1997; Boutin
et al. 2011; Boutin and Hans 2003; Chesnais et al. 2012; Haseganu and Steigmann
1996; Nadler et al. 2006; Rinaldi and Lai 2007; Rinaldi et al. 2008; Steigmann 1992,
1996). The development of new technical possibility of controlling and manufactur-
ing objects at the micro- and nano-scale makes this research line one of the most
vital in today’s mechanics.

6 Weak and Strong Evolution Equations for Piola Continua

We shortly comment here about the relative role of Weak and Strong formulations,
framing it in a historical perspective.

Since at least the pioneering works by Lagrange the Postulation process for
Mechanical Theories was based on the Least Action Principle or on the Principle of
Virtual Work.

One can call Variational both these Principles as the Stationarity Condition for
Least Action requires that for all admissible variations of motion the first variation of
Action must vanish, a statement which, as already recognized by Lagrange himself,
implies a form of the Principle of Virtual Work.

However in order to compute the motion relative to given initial data the initiators
of Physical Theories needed to integrate by parts the Stationarity Condition which
they had to handle.

In this way they derived some PDEs with some boundary conditions which some-
times were solved by using analytical or semi-analytical methods.

From the mathematical point of view this procedure is applicable when the
searched solution have a stronger regularity than the one strictly needed to formulate
the basic variational principle.

It is a rather ironic circumstance that very often nowadays those mathemati-
cians who want to prove well-posedness theorems for PDEs (which originally were
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obtained by means of an integration by part procedure) start their reasonings by
applying in the reverse direction the same integration by parts process: indeed very
often the originating variational principle of all PDEs is forgotten. Some examples
of mathematical results which exploit in an efficient way the power of variational
methods are those presented for instance by Neff (2007, 2002, 2006c).

Actually, even if one refuses to accept the idea of basing all physical theories on
variational principles, he is indeed obliged, in order to find the correct mathematical
frame for his models, to prove the validity of a weak form applicable to his painfully
formulated balance laws. In reality (see dell’Isola and Placidi 2011) his model will
not be acceptable until he has been able to reformulate it in a weak form. This seems
what occurred sometimes in Continuum Mechanics: the Euler-Lagrange equations,
obtained by means of a process of integration by parts, were originally written, start-
ing from a variational principle, to supply a calculation tool to applied scientists.
They soon became (for simplifying) the bulk of the theories and often the originating
variational principles were forgotten (or despised as too mathematical). For a period
balance equations were (with some difficulties which are discussed e.g. in dell’Isola
and Placidi 2011) postulated on physical grounds. The vitality of variational meth-
ods is nowadays shown by many relevant result, most of which cannot be obtained
without the generality and the rigorousness provided by the variational framework.
Among the general works on variational methods, we have to cite Germain (1973a),
Daher and Maugin (1986), Maugin (2011), Polizzotto (2001), Berdichevsky (2009),
Epstein and Segev (1980), Steigmann and Faulkner (1993), Eremeyev and Lebedev
(2013), Germain (1973b). Moreover, well established results show that even non-
conservative systems can be described by means of suitable variational formulations
(see e.g. the systems considered in Carcaterra and Akay 2007, 2011; Carcaterra et al.
2006; Carcaterra 2005.

When the need of proving rigorous existence and uniqueness theorems met the
need of developing suitable numerical methods, and when many failures of the finite
difference schemes became evident, the variational principles were re-discovered
starting from the balance equations. Moreover, they then have been recovered as
a computational tool, via finite element analysis or other numerical optimization
methods (see, for instance, Contrafatto and Cuomo 2002, 2005, 2006; Cuomo and
Contrafatto 2000; Cuomo and Ventura 1998; Cazzani et al. 2014a, b).

One question needs to be answered: why in the modern paper (dell’Isola et al.
2012) a strong formulation was searched for the evolution equation for N th gradient
continua? The answer is simple: because of the need of finding for those theories the
most suitable boundary conditions.

This point is discussed also in Piola (1845–1846) as remarked already in Auffray
et al. (2015).

Piola (1845–1846) on pp. 160–161 claims indeed that:
“Now it is a fundamental principle of the calculus of variations (and we used it also in
thisMemoir in the num.◦ 36. and elsewhere) that one series as the previous one,where
the variations of some quantities and the variations of their derivatives with respect
to the fundamental variables a, b, c appear linearly can be always be transformed
into one expression which contains the first quantities without any sign of derivation,
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with the addition of other terms which are exact derivatives with respect to one of
the three simple independent variables. As a consequence of such a principle, the
expression which follows to the Eq. (18) can be given

∫
df

∫
dg

∫
dk · Λδρ2 = Aδt1 + B δt2 + C δt3 + Dδt4 + Eδt5 + F δt6

+ dΔ

da
+ dΘ

db
+ dΥ

dc
. (19)

The values of the six coefficients A, B, C, D, E, F are series constructed with the
coefficients

(α) , (β) , (γ ) .... (ε) , (ζ ) .... (λ) , ec.

of the Eq. (18) which appear linearly, with alternating signs and affected by deriva-
tions of increasingly higher order when we move ahead in the terms of said series:
the quantities Δ,Θ,Υ are series of the same form of the terms which are trans-
formed, in which the coefficients of the variations have a composition similar to the
one which we have described for the six coefficients A, B, C, D, E, F.

Once -instead of the quantity under the integral sign in the left hand side of the
Eq. (12)-one introduces the quantity which is on the right hand side of the Eq. (19),
it is clear to everybody that an integration is possible for each of the last three
addends appearing in it and that as a consequence these terms only give quantities
which supply boundary conditions. What remains under the triple integral is the only
sestinomial which is absolutely similar to the sestinomial already used in the Eq. (10)
num.◦ 35. for rigid systems. Therefore after having remarked the aforementioned
similarity the analytical procedure to be used here will result perfectly equal to
the one used in the num.◦ 35, procedure which led to the Eqs. (26) and (29) in the
num.◦ 38 and it will become possible the demonstration of the extension of the said
equations to every kind of bodies which do not respect the constraint of rigidity, as it
was mentioned at the end of the num.◦ 38. It will also be visible the coincidence of
the obtained results with those which are expressed in the Eq. (23) of the num.◦50.
which hold for every kind of systems and which were shown in the Capo IV by
means of those intermediate coordinates p, q, r, whose consideration, when using
the approach used in this Capo, will not be needed.”

Theworks (nowadays considered fundamental) byMindlin (1964, 1965),Mindlin
and Eshel (1968), Sedov (1972, 1968), and Toupin (1962, 1964) have developed a
more complete study of Piola Continua, at least up to those whose deformation
energy depends on the Third Gradient, completely characterizing the nature of con-
tact actions in these cases, or for continua having a kinematics richer than that consid-
ered by Piola, including micro-deformations and micro-rotations. Moreover, a deep
understanding of the geometric features involved in the mathematical formulation of
generalized continuum theories has also proven fundamental (see e.g. Epstein and
Segev 1980; Segev 1986, 2000).

Many important results has been obtained for higher gradient materials, as shown
by the theoretical investigations performed in Alibert et al. (2003), dell’Isola et al.
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(2000, 2009), Gatignol and Seppecher (1986), Seppecher (1987, 1989, 1996a,
2001), Eremeyev and Altenbach (2014), and the applications described for instance
in Madeo and Gavrilyuk (2010), Madeo et al. (2012), Seppecher (2002, 1988, 1993,
1996b), Yang et al. (2011), Yang and Misra (2010), Placidi et al. (2014), Forest et al.
(2011), Forest (2009), Steeb and Diebels (2004), McBride et al. (2011, 2012).

A further generalization of higher gradient continua is represented by thosemodels
in which additional independent kinematical descriptors are considered, i.e. micro-
morphic continua. This line was ideally started in the works of the already cited
(Cosserat and Cosserat 1909), and developed later by Green and Rivlin (1964a, b, c,
1965), Eringen (1999). This research field, as well, is receiving increasing attention
because of the links it has with the newly arisen (especially computer-aided) manu-
facturing possibilities (for recent interesting results in the subject see e.g. Neff 2004,
2006a, b, c, 2007; Neff and Chelmiński 2007; Neff and Jeong 2009; Scerrato et al.
2014; Yeremeyev and Zubov 1999; Steigmann 2009).

7 A Half-Facetious Conclusion: Melittas or the Role
of ‘Ideas Spreader’ in the Erasure of Authors
and in the Diffusion of Ideas

There is a phenomenon which has a great influence in the process of diffusion of
knowledge and progress of science, and which has been underestimated. We want
here to attract the attention of the reader to it and to its consequences. We are talking
about the existence of ‘melittas’.33 We define a scientific melitta a savant who hates
writing works, textbooks or memoirs, but likes studying, understanding, discussing.
When they are asked to write a work in which they expose their results they have
frequent attacks of a disease which is characterized by the three Ps: Perfectionism,
Procrastination, Paralysis.

Of note, they can be very deep thinkers: they, for instance, can find problems in
other savants’ reasoning and solve them with clever suggestions. They spend more
time in thinking about other people’s research than developing their own. They prefer
to be victims of plagiarism than being obliged to sign a paperwhich they did not digest
for weeks or months per page. They feel more or less like raped if their contribution
in a research is recognized by the addition of their name in the list of the authors of a
paper, they feel happy if their idea is published with somebody else’s name, as they
feel relieved by the duty of writing the paper, duty which costs them painfully (and
generally useless) hours of impossible search for perfection. Melittas love mental
activity and hate reordering ideas in written form, because what is written cannot

33Melitta is a word from Greek that indicates both the bee which is capable to produce honey and
the mythological figure (nymph) who taught the bees to produce honey.
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be changed, is crystallized in an immutable form. For a melitta the work of Piola
is impossible: Piola wrote hundred pages of deep ideas, published them and then
started again in rewriting them for answering to the objections or to his own (often
very demanding) new requests of rigor and elegance. Melittas, moreover, use to talk
with everybody about their deepest ideas, and often also about the ideas of those
who believe that they are able to write a common paper and naively share with them
their results, thus actually encouraging free appropriation of someone’s ideas (i.e.,
plagiarism). The typical melitta can be personified in Paul Ehrenfest. Indeed (see
Klein 1981).

‘It is not by discoveries only, and the registration of them by learned soci-
eties, that science is advanced. The true seat of science is not in the volume of
Transactions, but in the living mind, and the advancement of science consists in
the direction of men’s minds into a scientific channel; whether this is done by
the announcement of a discovery, the assertion of a paradox, the invention of a
scientific phrase, or the exposition of a system of doctrine’.

The words are James Clerk Maxwell’s, and they are particularly appropriate in
talking about Paul Ehrenfest, who was born a century ago. Ehrenfest did advance
science in all the ways that Maxwell mentions. The activity of the true scientific
‘melitta’ personifies the metaphor of Bacon’s bee. Melittas render the work of the
historian of science the true hell which it is. Why Cosserat Brothers wrote something
very similar to Piola’s works without citing him?Why some authors write an amount
of works which any human being could never formulate and write alone? It is clear
that there is a hidden way for transmitting the information which is different from the
one based on the written texts. And melittas do this job: propagate the ideas without
leaving any detectable trace; plagiarians, not surprisingly, usually like melittas very
much. However the enormous work in favor of the advancement of science made by
melittas must be recognized.

Melittas erase authors but keep ideas and theories alive.
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Abstract The mechanical behaviour of finite element based computational repre-
sentations of heterogeneous materials with regular or periodic cellular microstruc-
ture is compared to existing closed form analytical predictions of their constitutive
behaviour available within the open literature. During the computational investiga-
tion, slender, geometrically similar rectangular beams of different sizes which are
comprised of regular, repeating arrangements of square cellular microstructures were
represented using the finite element analysis (FEA) software ANSYS. Flexural load-
ing of the virtual samples reveals that the materials exhibit the theoretically forecast
size effect from which the relevant material constitutive properties, notably the flex-
ural modulus and characteristic length can be identified. Initial findings suggest that
while there is agreement between the numerically determined and theoretically pre-
dicted moduli the characteristic lengths in bending, lb, calculated from the numerical
data appear to differ from the theoretical forecasts. Moreover, the computational rep-
resentations indicate that finite sized material samples are capable of exhibiting size
effects not predicted by the more general higher order constitutive theories. Results
indicate that the nature of the size effect appears to depend on the prescription of the
sample surfaces with respect to the specified microstructure of the material. While
these unanticipated size effects show qualitative agreement with that forecast for a
simple laminate material comprised of alternating stiff and compliant layers the con-
sequences may be profound for experimental mechanical testing of such materials.
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1 Introduction

This body of work investigates the use of Finite Element Analysis, FEA, to determine
the underlying material constitutive properties of idealised heterogeneous materials
comprised of a regular array of repeating elements that form a lattice like microstruc-
ture. All of the materials being considered in this investigation are of a two dimen-
sional compositionwhereby thematerial is uniformly extruded in the third dimension.

The mechanical properties of heterogeneous materials have been the focus of a
considerable amount of research in recent years due to the naturally lower density
such materials offer in comparison to the volume they occupy. Cellular materials are
one such type of heterogeneous structure which is of great interest to the engineer-
ing community (Gibson and Ashby 1999). Materials which consist of a geometri-
cally repeating microstructure are of particular interest due to the fact that it would
allow for optimised structures to be generated which have predictable, deterministic
mechanical properties.

Improvements in the capabilities of additive manufacturing, 3D printing and tech-
nologies such as selective laser melting and digital light processing have allowed for
the creation of materials with geometrically exact and regular microstructures to be
produced (Luxner et al 2005). This allows for the creation of materials which have
mechanical or thermal properties which are tailored to the specific application in
mind.

With this ever increasing demand for lightweight materials, there is a need to be
able to better define the underlyingmechanical properties of suchmaterials. Oneway
of characterisingheterogeneousmaterials is through theuseof generalised continuum
theories. Higher order theories such as couple stress, micropolar and micromorphic
elasticity have been developed to do this. Generalised continuum theories of this kind
were first introduced in the early twentieth century by the Cosserat brothers (Cosserat
and Cosserat 1909). However, further research in this area remained relatively dor-
mant until the middle of the twentieth century when Eringen (1966), Eringen and
Suhubi (1964) among others popularized micropolar and related elasticity theories.

It has been shown that in heterogeneous materials exhibiting generalized contin-
uum behaviour there exists an inherent size effect in geometrically similar material
samples of differing scales (Gauthier and Jahsman 1975).While this behaviour can be
categorised well with theoretical solutions, it has proved troublesome to effectively
show this behaviour through experimental means.

Gauthier and Jahsman (1975) attempted to create an idealisedmicropolar material
using cylinders which had aluminium shot evenly dispersed throughout the material.
Yang and Lakes (1981) also investigated the size effects displayed in testing cortical
bone. More recently researchers like Beveridge (2010), Frame (2013) investigated
the size effects that were displayed in idealised structureswith regular arrays of voids.
It was shown that the underlying micropolar material properties of these materials
could be found by either experimental testing of real materials or computational
analysis of their virtual counterparts.
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While this more recent research shows that it is possible to model materials
whereby the cell size is comparable to the overall macrostructure of the
material, there is still a practical limit in the ability to both accurately model and
test materials in which the cell walls are very thin in comparison to the cell size.
Such limitations include the variation in deformation modes and sensitivity to load-
ing effects that can potentially mask behaviour and thereby corrupt the identification
of the underlying material properties.

It is the aim of this paper to highlight the potential difficulties that are exhibited
by investigating computational models of very low mass density cellular materials
in order to provide a better understanding of how such materials might behave when
examined in practice.

2 Objective of Numerical Modelling

The aim of this work is to provide a direct comparison between the theoretically
predicted behaviour for a material comprised of a repetitive planar lattice and its
computationally predicted behaviour as identified through virtual experiment. The
micropolar constitutive properties are derived using the homogenisationmethod seen
in dos Reis and Ganghoffer (2011).

The relevant material constitutive parameters were derived by virtually or com-
putationally testing the materials using the finite element analysis (FEA) software
ANSYS and applying the size effect method in Eringen (1999).

3 Micropolar Elasticity

Micropolar or Cosserat elasticity is a higher order theory that incorporates an addi-
tional degree of freedom, a micro rotation, to describe deformation within the
microstructure of the material. It is a more general theory which converges to either
classical elasticity or couple stress theory (Eringen 1966) in the appropriate limit.
In order to differentiate between classical, couple stress or genuinely micropolar
behaviour, a series of experimental or virtual tests can be performed on the material
to determine the constitutive properties.

Six elasticmoduli are required to fully define 3-dimensionalCosserat elastic solids
(Eringen 1966). These are λ,μ, α, β, γ and κ . These constants can be compared to
their classical counterparts (Lakes 1995). In the two-dimensional case the six con-
stants can be expressed in terms of just four parameters relevant to this investigation
as summarised below.

Young’s Modulus, Em = (2μ + κ)(3λ + 2μ + κ)

(2λ + 2μ + κ)
(1)
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Shear Modulus, Gm = (2μ + κ)

2
(2)

Poisson’s Ratio, νm = λ

(2λ + 2μ + κ)
(3)

Characteristic Length for Bending, lb =
√

γ

2(2μ + κ)
(4)

This paper concentrates on the constants which can be derived from uniaxial and
flexural tests; the micropolar Young’s Modulus, Em and the characteristic length in
bending, lb.

3.1 Micropolar Elasticity and Flexure

The formulation for the generalised theory of a micropolar beam in 3 point bending
has been derived in Beveridge (2010). Similar approaches have also been employed
by dos Reis and Ganghoffer (2012). The maximum displacement for such a beam
subjected to this loading is,

vmax = WL3

48(EmI + γ A)
(5)

where W (N) is the applied load, L (mm) is the length of the beam, Em (Nmm−2)
is the micropolar Young’s Modulus, I (mm4) is the second moment of area, γ (N)
is a length scale dependent micropolar couple modulus relating the couple stresses
to the curvatures and A (mm2) is the cross sectional area of the beam. This equation
can be rearranged in terms of the beam stiffness, K (Nmm−2) as a function of the
beam depth, d (mm).

For a rectangular cross section the second moment of area, I and area, A are given
as,

I = bd3

12
(6)

A = bd (7)

where b and d are the beam breadth and depth respectively.
The stiffness, K of the beam is then given as,

K = 4Emb

(
d

L

)3
[
1 +

(
lc
d

)2
]

(8)
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where lc (mm) is the characteristic length for a rectangular cross section given by:

lc =
√
12γ

Em
(9)

Note this characteristic length measure differs from that of Eq. (4) by a factor of√
24. Thus two different characteristic lengths have been defined in this paper; the

characteristic length in bending, lb, as conventionally defined for a micropolar mate-
rial according to Eq. (4) and the characteristic length of a beam with a rectangular
cross section, lc, appearing in Eq. (8). The first parameter, lb denotes the length scale
dependent size effect that is observed in a heterogeneous material that is subjected
to a bending load.

It should be noted that when lc is equal to zero Eq. (8) reduces to the stiffness of
a classically elastic beam subjected to 3 point loading,

K = 4Emb

(
d

L

)3

(10)

Thus it can be seen that in a classically elastic beam no size effect is expected to be
observed between beams of different sizes but which have the same breadth, b, and
the same length to depth aspect ratio, (L/d).

The stiffness, K of the beam in bending has been derived in terms of the linearly
varying direct stresses, τxx, and uniform couple stresses, mxz, acting on the beam
cross section. It can be seen from Eq. (8) that the stiffness of the beam varies with
the reciprocal of the square of the overall depth. When plotted on a graph, the char-
acteristic length of the beam, l2c can thus be calculated from the slope or gradient of
the stiffness variation which is expected to vary linearly with the size measure 1/d2.
Although Eq. (8) is derived in terms of a beam subjected to 3 point bending, similar
derivations can be obtained for beams loaded in 4 point or pure bending.

3.2 Constitutive Properties of a Regular Square Lattice

The microstructure of the test material comprised of a regular array of square voids
as seen in Fig. 1. Each unit cell has a width and height, a and a thickness, t. Where
two cells join the wall thickness is thus 2t.

The stiffnessmatrix for amaterialwith this squaremicrostructure has been derived
by dos Reis and Ganghoffer (2011) and is given as follows;
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Fig. 1 Beam microstructure
with closed and open outer
surfaces

[K] =

⎡
⎢⎢⎢⎢⎢⎢⎣

Esη 0 0 0 0 0
0 Esη 0 0 0 0
0 0 Esη

3 0 0 0
0 0 0 Esη

3 0 0

0 0 0 0 a2Esη
3

12 0

0 0 0 0 0 a2Esη
3

12

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)

where Es is the modulus of the underlying material that makes up the matrix, a is the
cell size and η is the internal cell wall aspect ratio, 2t/a.

The characteristic length of a micropolar beam relates to the matrix as follows
(dos Reis and Ganghoffer 2011),

l2c = 12γ

Em
= 12K55

(K33 + K34)
= a2Esη

3

(Esη3 + 0)
= a2 (12)

K33, K34 and K55 are the relevant stiffness elements in the 6 × 6 stiffness matrix,
Eq. (11). They have been derived in dos Reis and Ganghoffer (2011) in terms of the
micropolar constants. K33 is the bending stiffness, K34 is the micropolar Poisson’s
ratio, μm and K55 is the micropolar constant γ which is the couple modulus or
microbending stiffness.

The characteristic length in bending for a square lattice can therefore be shown to
be a function of the cell size and independent of the cell wall thickness. Substituting
Eq. (12) into Eq. (4) yields:

l2b = a

24
(13)

It can be seen that the characteristic length of a material with a square microstructure
is therefore independent of the cell wall thickness and is only dependent on the cell
size.

4 Computational Representation of Cellular Material

Computational models were generated in the FEA software ANSYS using Beam189
elements. Beam189 elements are 3 node Timoshenko beam elements which have
six degrees of freedom, three displacements and three rotations at each node. The
models were tested under static loading conditions.
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The models comprised of geometrically similar rectangular beams which had
between 1 and 10 rows of cellular microstructure through the depth. The microstruc-
ture of the material consists of an array of square unit cells that forms a regular grid
structure (Fig. 1). Each cell has a length, depth and breadth of 1mm. The thickness,
t of each cell wall is defined for each analysis. The cell centres have a horizontal and
vertical pitch of 1mm from their neighbours. Where two neighbouring cells join, the
resulting wall thickness, tw = 2t. Symmetry conditions were also employed at half
the length in order to reduce the model size. An example of a typical beam loaded
in 3 point bending is shown in Fig. 2. As half symmetry was evoked in this case, the
loading was simulated with a cantilever load. The beam was constrained vertically
at the nodes on the left side of the beam. Additionally, a horizontal constraint was
applied to the centre node of this face to prevent any horizontal movement of the
beam at this face. The applied load, W at the opposite face is half that required for a
full model to keep continuity in the analysis.

In each model the matrix material was assigned a Young’s Modulus, E of
70KNmm−2 and a Poisson’s ratio, ν of 0. The breadth, b was assigned a unit
value, 1mm for all models. Beams with a variety of depths and a common aspect
ratio were then virtually loaded as illustrated. Two different wall thicknesses,
t = 0.1 and 0.01mm were considered in the analysis to assess what effect this has
on the behaviour of the beams in bending.

The stiffness of each beam was computed from the applied load and resulting
deflection data was plotted in the graphical form of Eq. (8) as stiffness against the
reciprocal of the depth squared.

Two different unit cells are defined in this analysis; an ‘open’ and ‘closed’ square
cell (Fig. 3).When assembled, the underlyingmicrostructure of the beams is identical
for each case. The key difference being that in the case of the ‘closed’ unit cell, the
top and bottom surfaces of the beammacrostructure do not intersect the square voids
constituting the microstructure. In the case of the ‘open’ cell however; the top and
bottom surfaces of the beam bisect the microstructure at half the cell depth thus
opening or exposing those cells lying adjacent to the surfaces.

Fig. 2 Half symmetry
model of a beam in 3-point
bending

Fig. 3 Closed and open unit
cell
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Fig. 4 Examples of beams
created from closed and open
unit cells with varying rows
of microstructure

(a) (b)

The prescription of the microstructure with regards to the surfaces of the
macrostructure is significant as the second moment of area through the cross section
of a beam with the same number of voids will vary. The idealised second moment
of area is the same for each beam with the same number of cells through the depth
of the beam. Figure4 shows the difference in the model surface topology for beams
with varying rows of voids through the depth.

In the ‘open’ cell case, the surfaceof thebeam intersects the underlyingmicrostruc-
ture half way through a cell. The cells were divided by two in the ‘open’ case in order
to keep an evenmass distribution through the depth of the samples. All beam samples
with the same aspect ratio and depth have the same mass density regardless of the
microstructure surface topology.

The simulations carried out were as follows:

• Uniaxial tests of beams with open and closed cell microstructures.
• 3 Point, 4 Point and constant moment bend tests at various aspect ratios for beams
with closed cell microstructure.

• Constant moment or pure bending tests of beams with an open unit cell on the top
and bottom surfaces.

By comparing the different bending modes, it is the aim to highlight the difficulties
in loading low density structures such as these by standard mechanical tests, with
aims to make recommendations as to what might be the best procedure for testing
samples by physical experiment.

5 Results

5.1 Uniaxial Tests

Initially uniaxial tests were conducted to determine the micropolar modulus, Em of
the samples. The samples were subjected to a uniaxial load, W of 1 × 10−6 N and
the beam extension recorded. The uniaxial relationship of stress, σ to strain, ε was
used to find the overall modulus of the beam so that the modulus could be derived
from:

Em = σ

ε
= WL

AΔL
(14)
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Table 1 Calculated modulus of beams with open and closed cell microstructure from uniaxial tests

Cell wall thickness, t (mm) Em, Simulation (KNmm−2) Em, Theory (KNmm−2)

0.1 13.999 14

0.01 1.399 1.4

Tests were conducted using various numbers of rows of voids to check for any size
dependency. The results are summarised in Table1 and compared to the theoretical
value; this being given by dos Reis and Ganghoffer (2011), Wang and McDowell
(2004),

Em = Estw
a

(15)

where tw is the thickness of two adjoining cells and a is the cell width.
It can be seen that the uniaxial tests accurately predict the micropolar modulus of

the beams being tested. As anticipated, no variation in modulus was observed for a
given cell wall thickness when the number of cell rows was altered. As there is no
size effect displayed in uniaxial testing, a Cauchy continuum is sufficient to describe
the material behaviour in this mode of loading.

5.2 Flexural Testing

Beams with a varying number of cells through the depth were tested in various
flexural modes including three point, four point and pure bending. The resulting
stiffness was then calculated for each case and plotted against the reciprocal of the
depth squared in accordance with Eq. (8). It should be noted that from the resulting
plots no indication of material stiffness can be derived for a sample smaller than a
single unit cell (1/depth2 = 1) as this would imply an infinite increase in stiffness
with decreasing depth which would be unphysical.

Figure5 shows the normalised results for beamswith a closed cell micro-structure
loaded in 3 point bending obtained by FEA. The tests were undertaken using centre
symmetry and an applied transverse load of 1 × 10−6 N. It was found that the width
of the unit cells and the aspect ratio of the beams had a significant effect on the overall
stiffness of the beam. For the beams which had a cell wall thickness of t = 0.01mm
a ‘negative’ size effect is observed whereby the beam is seen to get stiffer as the
number of cells through the depth is increased. The variation in stiffness was also
seen to be non-linear. This effect is independent of the overall beam aspect ratio
that was used in the test. Both the non-linear stiffness variation and the negative size
effect are contradictory to Eq. (8) which predicts a linear decrease in stiffness with
an increasing number of rows of material microstructure.

However, when the cell wall thickness was increased to t=0.1mm a ‘positive’ size
effect was observed whereby the stiffness of the beams decreased with an increasing
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Fig. 5 3 Point bending analysis of beam with 1–10 rows of voids at various aspect ratios and
internal wall thicknesses

number of voids through the depth. A linear variation in stiffness corresponding to
Eq. (8) was not observed at an aspect ratio of 20 but becomes apparent when this is
increased to 40. The resulting characteristic length derived from this linear variation
using Eq. (8) has been summarised in Table2.

Virtual 4 Point bend tests were then carried out on the beams. The beams were
tested at a higher aspect ratio than previously in order to keep the aspect ratio of
the section between the two inner loading points similar to the previous tests. Care
was also taken to ensure that load and reaction points were located at joints in the
microstructure. The vertical deflection in the analysis was calculated by taking the
difference between the deflection at the centre of the beam, y2 and a point inward of
the load application point, y1 as demonstrated in Fig. 6. The deflection of the beam
was not recorded from the position of the applied load, W , as it was found in initial
testing to give a nonlinear size effect. This was especially evident at lower aspect
ratios and when there were only a few rows of microstructure through the depth of
the beam. Two beam aspect ratios were considered in the analysis; an aspect ratio
of 50 and one of 24. This correlated to an internal aspect ratio between the loading

Table 2 Calculated characteristic length derived from beams with a closed cell surface structure

Calculated characteristic length (mm2) Theoretical characteristic length (mm2)

l2c l2b l2c l2b
3 Point
bending

1.4685 0.08119 1 0.04167

4 Point
bending

2.006 0.0836 1 0.04167

Constant
moment

2.021 0.0842 1 0.04167
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Fig. 6 4 Point beam loading
configuration

points of 40 and 16 respectively. This aspect ratio was reduced by 1 in each case in
order to avoid the loading effects that were described above.

From Fig. 7 it can be seen that a size effect approaching linearity is seen in all
cases. At the lower aspect ratio the size effect is over estimated when compared to
that which is seen in the beams with an aspect ratio of 50. It can also be seen that the
size effect starts to become significantly nonlinear at the lower aspect ratio when the
sample size increases above 4 rows of cells.

At the higher aspect ratio, the variation in the observed size effect is minimal
between differing cell wall thicknesses. There is however a slight deviation from
linearity in the material which had a cell wall thickness of t = 0.01mm. While this
deviation is minimal, it accounts for a 4% increase in the calculated characteristic
length. This again highlights the sensitivity of thin walled materials to the loading
mode. The calculated characteristic length under 4 point loading was found to be
l2c = 2.006mm2.

Figure8 shows the normalised variation in beam stiffness for the beams that were
subjected to pure bending or a constant moment. It can be seen that in this mode of
flexure there is less sensitivity in the stiffness variation to the aspect ratio of the beam
or the cell wall thickness. It is noted however that a slight non linearity is observed at
an aspect ratio of 20 for the cell wall thickness of 0.01mm. The characteristic length
calculated from the size effect exhibited by the beams is very similar to that of the 4
point loading tests as noted in Table2.

Fig. 7 Observed size effect in beams subjected to 4 point bending
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Fig. 8 Constant moment loading of beams with a closed cell microstructure

Fig. 9 Comparison between the size effects observed in beamswhich have different surface topolo-
gies from constant moment load tests in ANSYS

It is also useful to compare the characteristic length in bending, lc and the char-
acteristic length, lb with the unit cell size of the microstructure. For the results seen
in Table2 a value of lc = 1.41mm and lb = 0.29mm were recorded for a unit cell
size of 1mm. The theoretical value of lb being 0.20mm. It can be observed that the
value of the characteristic length is of similar order to the microstructure of the beam
which highlights that higher order effects need to be considered when modelling
such structures.

The size effect observed in the material was also considered for when the cell
microstructure consisted of open unit cells on the top and bottom surfaces of the
beam. From Fig. 4b it can be seen that in this case the beam is comprised of rows of
microstructure which is offset with regards to the beam surface by half a cell. The
number of cells per beam is the same as the previous case, but the surface topology
has been altered to assess the effect this has. The beams being tested had an aspect
ratio of 40 and were subjected to a pure moment load of 2 × 10−5 N per row of
voids. The modulus of the beam can be derived by substituting the y-intercept value
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Fig. 10 Normalised comparison of the size effect observed in pure bending tests carried out in
ANSYS between lattices with different wall thicknesses

found in Fig. 9 into Eq. (8). It was calculated that the modulus of the open cell beam
was 1399.2N/mm2 and the closed cell, 1365.6N/mm2. This compares favourably to
the theoretical modulus of a square lattice beam with an internal wall thickness t of
0.01mm (1.4KN/mm2).

It can be seen from Fig. 9 that there is a negative size effect when the surface of
the beam has an open cell structure at the surface. The variation in stiffness is linear
and tends to a finite value as the sample depth increases.

While the negative size effect does not accord with the stiffness variation forecast
by Eq. (8) it is nevertheless interesting to infer a characteristic length value from the
gradient of the variation depicted in Fig. 8. The characteristic length extracted for
the open cell microstructure beam was thus found to be l2c = 1mm2. This gives a
characteristic length in bending for the square microstructure as l2b = 0.04165mm2.
Although this size effect is negative, the value is approximately the same as the
predicted characteristic length of a square lattice of the same cell size using Eq. (13)
(dos Reis and Ganghoffer 2011) (0.04167mm2).

Figure10 is a normalised comparison between the stiffness in beams of differing
cell wall thickness. The samples are normalised by the stiffness of the largest sample
for each given set of data. It can be seen that the normalized size effect is now
independent of the cell wall thickness and only dependent on the surface topology.

6 Discussion

The uniaxial tests performed on the samples showed good correlation to the theoret-
ical prediction. No size effect was observed when varying sample sizes were tested.
This is in line with the theoretical predictions for a micropolar material.

The tests that were undertaken using 3 point bend loading were, in general, not
in agreement with the predictions of this generalized continuum theory. A nonlinear
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size effect was observed in most tests and a negative effect was observed when
the aspect ratio was reduced to 20:1. It has been concluded from this that shear
deformation effects may well begin to dominate under these conditions. Three point
bend tests may therefore be unsuitable for testing very low density materials with a
lattice structure.

As the results of Fig. 7 indicate, 4 point bending provided a better means for
testing the materials. The section of the beam which is located between the two
loading points is subjected to a constant moment and is therefore free from any shear
effects. The point at which the beam deflection was measured from was found to
be significant. A substantial underestimate of the stiffness was observed when the
displacement measurements were taken from the point of loading and the resulting
size effect was nonlinear. It was especially evident in the cells with the smallest wall
thickness. This is most likely due to the fact that the shear effects present in the
outer section of the beam located between load points and adjacent support have
a significant influence on the local beam deformation in the vicinity of the load
point, thereby corrupting the resulting stiffness estimates. It is recommended that the
measured beam deflection should be taken some way in towards the centre from the
point of loading in order to minimise this local effect.

The calculated size effect for beams subjected to 4 point bending conformed
well to the constant moment loading case. The beams subjected to the constant
moment demonstrated the most consistent in this analysis. Although pure bending
of a specimen is difficult to reproduce in a physical test, computationally it provides
a good benchmark for the investigation as no shear deformation is induced in the
beam sample.

From the tests that have been performed it has been established that the charac-
teristic length for a square lattice derived from a rectangular beam is quantitatively
different from the theoretical characteristic length. It was observed that l2b calculated
from the beams with the solid surface beams was twice as large as the theoretical
prediction for the characteristic length for a square microstructure. The size effect in
this case is positive which follows the theoretical predictions.

Interestingly, when the outer surface of the beam consists of open voids it was
found that the characteristic length inferred from the magnitude of the size effect
was in line with that of the theoretical predictions. However, a negative size effect
is observed in this case whereby the beams are observed to get stiffer as the number
of voids through depth increases. Since such an effect is not theoretically forecast,
inferring a characteristic length value from it is certainly not rigorous and needs to be
rated with caution. However, the modulus of the beams is in line with the theoretical
predictions in both open and closed cell cases.

7 Conclusion

A size effect has been shown to exist for materials with an idealisedmicrostructure. It
can be seen from the results that this size effect is linear when external loading effects
are removed. The magnitude and nature of the size effect observed was also shown
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to depend on the prescription of the surface topology. The resulting characteristic
length that is obtained from testing these structures using FEA simulations is found
to vary from the theoretically predicted value by a factor of

√
2. The characteristic

length inferred when the microstructure is intersected by the surface of the beam
is seen to match that of the predicted characteristic length in bending. This result
suggests that it is necessary to consider the surface topology of actual structures in
order to fully categorise the material properties of a heterogeneous material.

While this variation in predicted size effect is unexpected, it highlights the need for
a better understanding of the relationship between themicrostructure andmacrostruc-
ture of physical materials in order to provide accurate predictions to the underlying
material properties.

The work in this investigation only covers materials whose microstructure is
2 dimensional in nature. Further, 3 dimensional computational investigations are
required to fully categorise the micropolar properties of these structures.
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Inelastic Interaction and Splitting of Strain
Solitons Propagating in a One-Dimensional
Granular Medium with Internal Stress
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Abstract A one-dimensional model of a granular medium with internal stress is
considered that represents a chain consisting of elastically interacting ellipsoidal-
shaped particles, which possesses translational and rotational degrees of freedom.
Bymeans of a long-wavelength approximation, nonlinear differential equations have
been derived that describe the propagation of longitudinal, transverse and rotational
waves in such a medium. Analytical dependencies of the velocities of elastic waves
and the nonlinearity coefficients on the sizes of particles and the parameters of inter-
actions between them have been found. If longitudinal waves are not excited in the
medium and in the field of low frequencies, when the rotational degree of freedom of
particles can be neglected, the obtained three-mode system reduces to one equation
for the transverse mode. On the base of this equation containing cubic nonlinear-
ity, numerical investigations of counter and passing interactions of strongly nonlin-
ear soliton-like subsonic and supersonic waves have been performed. In particular,
effects of splitting of supersonic solitary waves are demonstrated.
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1 Introduction

Mathematical models describing propagation and interaction of nonlinear waves
in distributed systems are usually divided into integrable by the inverse scattering
problem and non-integrable by this method (Dodd et al. 1982). Such models are
called, in the slang of experts, “integrable systems” and “non-integrable systems.”

In many works (see, for example, Dodd et al. 1982; Scott et al. 1973), it is ana-
lytically and numerically shown that in the integrable systems the localized waves
(solitons) behave like particles: they conserve their individuality under collision and
receive a phase shift (“elastic” interaction). This fact was confirmed by experiments
with nonlinear waves in plasma, in a liquid with gas bubbles, as well as with elec-
tromagnetic waves (Ostrovsky et al. 1972; Lonngren 1978).

Another scenario of interaction of localized waves, besides the “elastic” one, is
also possible in non-integrable systems. If an overtaking (passing) interaction of
soliton-like waves takes place, then they radiate a part of their energy in the form of
quasi-linear wave packets (“inelastic” interaction) (Abdullow et al. 1976).

Both effects of inelastic interactions and effects of splitting of strongly nonlinear
waves, when additional soliton-like waves are extracted from a wave packet after
interaction, have been experimentally observed in Potapov and Vesnitsky (1994).
Splitting effects have been obtained for the opposite interaction of strongly nonlinear
waves propagating along a rubber band.

A set of nonlinear partial differential equations describing wave processes in a
granular medium has been derived in this paper by the structural modeling method
(Berglund 1982; Chunyu and Tsu-Wei 2003; Pavlov and Potapov 2008). Features of
interaction of localized shear waves have been investigated in the framework of these
equations. The obtained mathematical model belongs to the class of non-integrable
systems.

Currently, there are no regular methods of obtaining analytical solutions describ-
ing both overtaking and contradirectional interaction of soliton-like waves, therefore
only the results of numerical modeling are presented in this paper. Processes of
interaction under head-on collision, strictly speaking, cannot be described by evo-
lution equations of the single-wave approximation (Engelbrecht et al. 1988) and it
is necessary to employ the complete equations of nonlinear dynamics, which take
into account the waves moving in both directions. As a rule, such equations are non-
integrable and their solutions describe solitary waves that are not solitons in the strict
mathematical sense (Dodd et al. 1982), but for simplicity we will also refer to them
as solitons.
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2 A Mathematical Model of a One-Dimensional Granular
Medium

We consider a chain consisting of homogeneous particles (grains or granules) with
the mass M having the shape of an ellipse with the axes d1 and d2. In the initial state,
they are concentrated in the lattice edges and the distance between the centers of
gravity of the neighboring granules along the x axis is a (Fig. 1). When moving in the
plane, each particle has three degrees of freedom: the displacement of the center of
gravity of the particle with the number N = N(i) along the axes x and y (translational
degrees of freedom ui and wi) and the rotation with respect to the center of gravity
(rotational degree of freedom ϕi) (Fig. 2). The kinetic energy of the particle with the
number N(i) is described by the formula

Ti = M

2

(
u̇2

i + ẇ2
i

) + J

2
ϕ̇2

i , (1)

where J = M(d2
1 + d2

2)/16 is the inertia of the particlewith respect to the axis passing
through the center of gravity. It is assumed that the particle N interacts only with the
two nearest neighbors in the chain, the centers of gravity of which are located at the
distance a along the axis x from the particle N (Fig. 2). The central and non-central
interactions of the neighboring granules are simulated by elastic springs of three
types: central (with rigidity K0), non-central (with rigidity K1), and diagonal (K2)
(Lisina et al. 2001; Pavlov 2010; Erofeev and Pavlov 2016). The points of junctions of
the springs with the particles are in the apexes of the rectangle of the maximum area,
ABCE, inscribed in the ellipse (Fig. 2). Each rectangle has the size h1 × h2, where
h1 = d1/

√
2, h2 = d2/

√
2. The elongations of the central springs are determined by

the changes of the distances between the geometrical centers of the rectangles ABCE
(Fig. 2), and the tensions of other springs are characterized by the variations of the
distances between the apexes of these rectangles.

It is supposed that in the initial state all the springs with rigidity K0, K1 and K2

have been already deformed (stretched or compressed), accordingly, at quantities

Fig. 1 Chain of
ellipse-shaped particles

Fig. 2 Scheme of force
interactions between the
particles and kinematics



148 V.I. Erofeev et al.

δ0 � a, δ1 � a, and δ2 � a (Nikitina and Pavlov 2013). The preliminary deforma-
tions of the springs simulate internal stresses in the medium.

The displacements of the grains are supposed to be small in comparison with the
period a of the considered one-dimensional lattice. The potential energy of a one
particle is provided by the interaction of the particle N with two nearest neighbors
in the chain and is described by the formula

UN = 1

2

(
2∑

n=1

K0

2
D2

0n +
4∑

n=1

K1

2
D2

1n +
4∑

n=1

K2

2
D2

2n

)
, (2)

where Dln are the elongations of the springs (l = 0, 1, 2 is the type of the spring,
respectively, K0, K1, or K2; n = i ± 1), which connect the central particle N with
two nearest neighbors in the chain. This formula (2) contains an additional factor
1/2, since the potential energy of each spring is equally divided between two particles
connected by this spring.

In the approximation of smallness of the quantities

Δui = (ui − ui−1) ∼ aε0,

Δwi = (wi − wi−1) ∼ aϕi ∼ aε
3/4
0 ,

Δϕi = (ϕi − ϕi−1) ∼ ε
5/4
0 ,

(3)

where ε0 is a deformation measure of the cell, and taking into account that

�i = (ϕi−1,j + ϕi,j)/2 = ϕi,j − (ϕi,j − ϕi−1,j)/2 = ϕi,j − Δϕi/2

expressions for Dln with accuracy up to quadratic terms take the form:

D0(i−1) = δ0 + Δui + (Δwi)
2

2a
∼ D0(i+1),

DCB,EB
1(i−1) = δ1 + Δui ± h2

2
Δϕi + (Δwi + h1�i)

2

2(a − h1)
∼ DBC,AE

1(i+1) , (4)

DCA,EB
2(i−1) = δ2 + 1

r
[(a − h1)Δui ± h2Δwi ± ah2�i]

+ 1

2r3
[h2(Δui ± h2�i) ∓ (a − h1)(Δwi + h1�1)]2 ∼ DAC,BE

2(i+1) .

Here r =
√

(a + δ1 − h1)2 + h2
2 is the distance in the initial state between the neigh-

boring particles (i.e. the initial length of the spring K2) located along the axis x. In
expressions (4) the elongations of all the springs, excepting the central ones with
rigidity K0, contain a third (upper) index. This index comprises apexes of rectangles
ABCE, which are connected by the spring (Fig. 2). The apex of the central rectangle
is given first. For the elongations of the springs with rigidity K2 in formulas (4) there
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are signs ± and ∓; therefore, the third index of these formulas consists of two parts:
first, the apexes of the rectangles connected by the first spring (the upper signs of the
± and ∓ symbols are taken for the elongations of such springs) are indicated and
after the comma those of the second spring (in this case the bottom signs of such
symbols are taken). The tensions of springs denoted by the equivalence signs have
been obtained by the substitution of subscripts i by i + 1. However, it is necessary to
take into account that�i+1 = (ϕi+1 + ϕi)/2 = ϕi + (ϕi+1 − ϕi)/2 = ϕi + Δϕi+1/2.

By substituting the expressions (4) into Eq. (2) it is possible first to obtain a
potential energy of the considered chain and then, taking into account (1), to make
up the Lagrange function L = Ti − Ui for the ith particle with accuracy up to the
terms of ε30-order (see estimates (3)). In this case in the continuum approximation the
Lagrange function L of the considered medium consisting of anisotropic particles
takes on the form:

L = M

2

(
u2

t + w2
t + R2ϕ2

t

) − M

2

[
c21u2

x + c22w2
x + R2c23ϕ

2
x + 2β1wxϕ + 2β2ϕ

2

+ α1u
3
x + α2uxw2

x + α3uxϕ
2 + α4uxwxϕ + α5w4

x + α6w3
xϕ + α7w2

xϕ
2

+α8wxϕ
3 + α9ϕ

4
]
. (5)

A set of differential equations describing the nonlinear dynamic processes in the
anisotropic crystalline medium is derived from the Lagrange function (5) in agree-
ment with Hamilton’s variational principle:

utt − c21uxx = 1

2

∂

∂x

(
3α1u2

x + α2w2
x + α3ϕ

2 + α4wxϕ
)
,

wtt − c22wxx − β1ϕ = 1

2

∂

∂x

(
2α2uxwx + α4uxϕ + 4α5w3

x + 3α6w2
xϕ

+ 2α7wxϕ
2 + α8ϕ

3
)
,

R2
(
ϕtt − c23ϕxx

) + β1wx + 2β2ϕ = − α3uxϕ − α4

2
uxwx − α6

2
w3

x − α7w2
xϕ

− 3

2
α8wxϕ

2 − 2α9ϕ
3. (6)

It should be noted that these equations are in analogy to the equations for the non-
linear one-dimensional Cosserat continuum (Erofeyev 2003). Here, the following
notations are introduced: ci(1 = 1, 2, 3) are the propagation velocities, respectively,
of the longitudinal, transverse and rotational waves, β1 and β2 are the dispersion

parameters, αi(i = 1, . . . , 4) are the nonlinearity coefficients, R =
√

d2
1 + d2

2/4 is
the inertia radius of the particle. Dependencies of the coefficients of equations (6)
on the microstructure parameters (the force constants K0, K1, K2, the lattice period
a and the grain sizes h1 = d1/

√
2 and h2 = d2/

√
2) have the following form:
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ρc21 = a

[
K0 + 2K1 +

(
2(a − h1)2

r2
+ 2δ2h2

2

r3

)
K2

]
,

ρc22 = a

[
δ0

a
K0 + 2δ1

a − h1
K1 + 2

r2

(
h2
2 + 2δ2(a − h1)2

r

)
K2

]
,

ρc23 = a

2R2

[
h2
2K1 + a2h2

2K2

r2
+ δ1h2

1

a − h1
K1

+ δ2

r3
K2

(
h4
2 + (a − h1)

2h2
1 − 2h1h2

2(a − h1)
)

K2

]
,

(7a)

ρβ1 = 2

[
ah2

2

r2
K2 + δ1h1

a − h1
K1 + δ2(a − h1)(ah1 − h2

1 − h2
2)

r3
K2

]
,

ρβ2 = ah2
2

r2
K2 + δ1h2

1

a(a − h1)
K1 + δ2(h4

2+(a−h1)2h2
1−2h1h2

2(a−h1))

ar3
K2,

(7b)

ρα1 = K2

r4
a2(a − h1)h

2
2,

ρα2 = k0a + K1
a2

a − h1
+ K2

r4
a2(a − h1)[(a − h1)

2 − 2h2
2],

ρα3 = K1
h2
1

a − h1
+ K2

r4
(h2

1 + h2
2 − ah1)[2ah2

2 + (a − h1)(h
2
1 + h2

2 − ah1)],

ρα4 = K1
2ah1

a − h1
+ 2a

r4
K2[(h2

1 + h2
2 − ah1)(h

2
2 − (a − h1)

2) − ah2
2(a − h1)],

(7c)

ρα5 = a

4

[
K0 + K1

a2

(a − h1)2
+ K2

r6
a2(a − h1)

4

]
,

ρα6 = a

[
K1

ah1
(a − h1)2

− K2

r6
ah2

2(a − h1)
4

]
,

ρα7 = a

[
K1

3h1
2(a − h1)2

+ K2
3h2

2(a − h1)2

2r6
(h2

2 − 2h1a + 2h2
1)

]
,

ρα8 = K1
h3
1

(a − h1)2
+ K2

h2
2(a − h1)

r6
[3h1h2

2(a − h1) − h4
2 − 3h2

1(a − h1)
2],

ρα9 = K1
h4
1

4a(a − h1)2
+ K2

4r6
[h8

2 − 4h1h6
2(a − h1)

+ h4
1(a − h1)4 + 6h2

1h4
2(a − h1)2 − 4h3

1h2
2(a − h1)3],

(7d)

where ρ = M/a is the density of the one-dimensional medium per unit length. From
(7b) the relationship β1 = 2β2 follows, if there are no preliminary deformations
of the springs. It should be noted that in expressions (7a) there are no preliminary
deformations of the springs, since they are not significant for the further investigations
(Erofeev and Pavlov 2016).
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3 The Low-Frequency Approximation

It is obvious that in Eq. (6) the transverse and rotational modes are interconnected
even in the linear approximation, whereas the longitudinal mode is independent in
the linear approximation. Therefore, further investigations will be performed for the
case, that longitudinal waves do not propagate in the lattice, i.e. u = 0. In this case
the set (6) degenerates into a two-mode system:

wtt − c22wxx − β1ϕ = 1

2

∂

∂x
(4α5w3

x + 3α6w2
xϕ + 2α7wxϕ

2 + α8ϕ
3),

R2(ϕtt − c23ϕxx) + β1wx + 2β2ϕ = −α6

2
w3

x − α7w
2
xϕ − 3

2
α8wxϕ

2 − 2α9ϕ
3. (8)

In the low-frequency approximation, when no rotational waves propagate (Potapov
et al. 2009, 2010; Erofeev et al. 2013), a relation between the microrotations ϕ and
displacements w can be found from the linear part of the second Eq. (8) by a step-
by-step approach. Since in this equation the term β1wx + 2β2ϕ plays the main role
(according to estimates (3), it has ε

3/4
0 -order of smallness), and the second term of

the linear part of the equation, R2(ϕtt − c23ϕxx), has the next order of smallness—ε
7/4
0 ,

then in the first approximation

ϕ(x, t) ≈ − β1

2β2
wx, (9)

and in the second approximation the variable ϕ can be expressed in terms of w and
its derivatives by the following way:

ϕ(x, t) ≈ − β1

2β2

∂w

∂x
+ R2β1

4β2
2

(
∂3w

∂x∂t2
− c23

∂3w

∂x3

)
.

Taking into account of relation (9) leads to “freezing” of the rotational degrees of
freedom and, therefore, excluding ϕ from the system (8). As a result, in the first
approximation the Lagrange function (5) degenerates into the following expression:

L = M

2

(
w2

t + R2β2
1

4β2
2

w2
xt

)
− M

2

(
(c22 − β2

1

2β2
)w2

x + R2β2
1

4β2
2

c23w2
xx + γ w3

x

)
, (10)

where

γ = α5 − α6β1

2β2
+ α7β

2
1

4β2
2

− α8β
3
1

8β3
2

+ α9β
4
1

16β4
2

.

This parameter depends on microstructure parameters according to (7b) and (7d).
An analysis shows that γ can be positive, particularly, when K1 � K0 and K2 � K0.
From Lagrange function (10) one can obtain the following equation containing terms
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of fourth-order derivatives:

wtt − c̃22wxx − R2β2
1

4β2
2

∂

∂x

[
∂2wx

∂t2
− c23

∂2wx

∂x2

]
= ∂(γ w3

x)

∂x
, (11)

where c̃22 = c22 − (β2
1/2β2). It should be noted that, taking into account (7a) and (7b),

c̃22 ≈ δ0

ρ
K0, (12)

whereas β1 = 2β2 and c̃22 = 0 for δ0 = δ1 = δ2 = 0. Thus, all further analysis is pos-
sible only for a medium with internal stress, which are simulated by the preliminary
deformations of the springs.

4 Soliton Solutions

In order to write Eq. (11) in the dimensionless form, we introduce dimensionless
displacement, coordinate and time: w̃ = w/w0, x̃ = x/X, t̃ = t/T . Then the following
equation yields:

w̃t̃t̃ − c̃22
T 2

X2
w̃x̃x̃ − R2T 2β2

1

4X2β2
2

∂

∂ x̃

[
1

T 2
w̃t̃t̃ − c23

1

X2
w̃x̃x̃

]
= γ T 2w2

0

X4

∂w̃3
x̃

∂ x̃
. (13)

If to suppose X2/T 2 = c̃22 and X2 = R2β2
1/4β

2
2 , then Eq. (13) can be rewritten in the

form:

w̃t̃t̃ − w̃x̃x̃ − ∂2

∂ x̃2

(
w̃t̃t̃ − c23

c̃22
w̃x̃x̃

)
= 12γ

c̃22

w2
0β

2
2

R2β2
1

[w̃2
x̃ w̃x̃x̃]. (14)

Let 12γ w2
0β

2
2/c̃22R2β2

1 = 1 (this equality is possible as γ can be positive—it was
mentioned in item 3 below Eq. (10)), then w2

0 = c̃22R2β2
1/12γβ2

2 and Eq. (14) takes
on form:

w̃t̃t̃ − (1 + w̃2
x̃)w̃x̃x̃ − ∂2

∂ x̃2
(
w̃t̃t̃ − c2w̃x̃x̃

) = 0, (15)

where c = c23/c̃22. From (12) and (7a) it follows that

c2 ≈ ah2
2

2δ0R2

(
K1

K0
+ a2

r2
K2

K0

)
.
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If, for instance, δ0/a = 0.05, then

c2 ≈ 10h2
2

R2

(
K1

K0
+ a2

r2
K2

K0

)
≈ 80h2

2

h2
1 + h2

2

(
K1

K0
+ a2

r2
K2

K0

)
.

It means that in a wide enough wide range of values of the microstructure parame-
ters c2 > 1. Particularly, at h1 < 2h2 and K0 < 16K1 this inequality is valid for any
positive K2.

The following notations are further introduced:

w̃ = W , t̃ = t, x̃ = x.

Equation (15) allows for solutions describing solitons of displacements:

W(t, x) =
√
24|v2 − c2| arctan

(
exp

(
x − vt

Δ

))
, (16)

where Δ = (c2 − v2)/(1 − v2) is the width of a soliton and v is its velocity.
The energy density of the displacement soliton has the form

E = 1

2

(
W2

t + W2
x − 1

6
W4

x + W2
tx + c2W2

xx

)
, (17)

and the complete energy is calculated by simply integrating

+∞∫
−∞

Ed(x − vt)

Its dependence on the velocity is described by the formula:

+∞∫
−∞

Ed(x − vt) = −(6v4 − 5v2c2 + v2 − c2 − 1)
√

v2 − 1√
v2 − 1

. (18)

From the solution for displacements by ordinary differentiating equation (16), it is
possible to obtain a strain soliton:

U(t, x) = ∂W(t, x)

∂x
= A

cosh
(

x−vt
Δ

) , (19)

where A = √
6|v2 − 1| is the soliton amplitude. To the purpose of convenience of

the graphical visualization and further interpretation of results, strain solitons are
more preferable, since w(t, x) → 0 at x ± vt → ±∞. An equation for solitons of
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displacements can also be obtained from Eq. (14) by ordinary differentiating:

∂2U

∂t2
− ∂2

∂x2

(
U + α

U3

3

)
− ∂2

∂x2

(
∂2U

∂t2
− c2

∂2U

∂x2

)
. (20)

Solutions of Eq. (15) coincide completely with solutions of Eq. (20) with account
of (19).

5 Subsonic Solitons

In the system there can be solitons corresponding to the solution (16) or (19) and
propagating with the velocity v, which is smaller than the sound velocity. In this case
the amplitude is calculated as follows: A = √

6|1 − v2|. The dependence of energy
of subsonic solitons, satisfying (18), on their velocity v is plotted in Fig. 3 for various
values of the parameter c2. From Fig. 3 it is clear that the energy is maximum at
v = v∗ = 0.78. The formal solution (16) or (19) implies the existence of subsonic
solitons with any, even infinitesimal, velocities, however, the numerical experiments
show that solitons with velocities less than v∗ are unstable. The graph of v∗ versus
c2, having the horizontal asymptote v∗ = 0.78, is plotted in Fig. 4.

Equation (15) and, accordingly, (20), unlike, for example, Korteweg–de Vries
equation, have no infinite number of polynomial laws of conservation. Such systems
are called not completely integrated and interaction (collision) of solitons is not
elastic in them. It means that, as a result of collision, parameters of secondary solitons

Fig. 3 Dependence of
energy of subsonic solitons
on their velocity
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Fig. 4 Dependence of the
maximal value of the soliton
velocity v on c2

change: they loose some energy, which can be realized in a quasiharmonic radiation
and, if there is enough energy, in other solitons. So, it is interesting to investigate
interactions of unipolar and bipolar solitons. But primarily it should be noted that, as
the area of soliton interaction is restricted, for numerical modeling of these processes
we assume that the boundary of the medium is at infinity and boundary conditions
are natural: at infinity the function W(t, x) is identical to zero together with all its
derivatives.

Numerical experiments show that interaction of unipolar solitons with velocities,
which are smaller than 0.77, is unstable. And if the velocity exceeds 0.77, solitons
behave like linear waves: they are unified, their total amplitude grows by about 15–
20%, then the amplitude falls and the solitons move in opposite directions, being
slightly deformed. The last fact means that their interaction is inelastic. “Classical”
solitons, such as Korteweg–de Vries, Schrödinger and other solitons, are not unified,
they approach to each other at a short distance, exchange by pulses and move in the
opposite directions with a time delay (or acceleration), which is called a phase shift.
But as a result, the “classical” solitons are not changed. In our case, the solitons
also receive a time delay, however it is incorrect to call it a phase shift, since the
interacting solitons change their shape—quasi-harmonic waves moving with the
velocity close to 1 are added to them. But it is impossible to determine the exact time
of interaction, it can only be concluded that this time is directly proportional to the
width of interacting solitons.

Collision of bipolar solitons occurs according to another scheme: their joint ampli-
tude reduces to zero, but the interaction is stable even from velocities v∗ (see Fig. 4).
As the amplitude of interacting solitons falls, their velocity increases, therefore time
of interaction decreases. Assuming that the solitons located at a distance of 10Δ
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do not interact, we offer the following formula for evaluation of “the factor of time
distortion”:

KT = Tex − Tth

T0
. (21)

Here Tex is the experimentally measured time of interaction, Tth is the theoretical
time during which the soliton passes distance of 10Δwithout interactions, T0 is time
within which the soliton passes its width Δ.

Figure5 shows the dependence of the factor KT (see (21)) on the velocity of
interacting solitons for different values of c2. From Fig. 5 it is clear that for the
velocities close to 1 “the factor of time distortion” tends to 0, i.e. solitons degenerate
into linearwaves. The collision of bipolar solitons is shown inFig. 6. First, the solitons
are located at a distance of 10Δ and do not interact (Fig. 6a). After the collision, they
again move away at a distance of 10Δ. As it is to be seen that the solitons are
almost completely recovered after the collision, apart from a small deformation,
which is a packet of quasi-harmonic waves moving with the velocity of sound. After
a certain time, the soliton becomes “pure”—it remains behind the wave packet and
moves in accordance with its own characteristics that are slightly changed after
interaction. The wave packet evolution is further shown in an enlarged scale (in
Fig. 6 the packet is allocated with an oval). Figure6a has been performed for c2 = 1,
when no dispersion occurs in the linear approximation, but it to be seen that the low-
frequency perturbation has a higher velocity than the high-frequency one. This fact
indicates the presence of a nonlinear dispersion in the system. If after “purification”
of the soliton to “switch off” the nonlinearity, then the wave packet will move with
a constant shape for a very long time. Therefore, it can be concluded that, due to

Fig. 5 Dependence of “the
factor of time distortion” KT
on the velocity of interacting
solitons for different values
of c2
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Fig. 6 Collision of bipolar solitons: a c2 = 1, b c2 > 1

discreteness of the calculation scheme, the dispersion is, at least, one order less than
the nonlinearity.

Figure6b shows the same process of collision of bipolar solitons at c2 > 1, when
dispersion of linear waves occurs. The process is actually identical to the previous
one, except for the evolution of the quasi-linear packet—now the high-frequency
components more with higher velocity than the low-frequency ones, and propagation
of quasi-harmonic waves occurs like in a mirror image.

6 Supersonic Solitons

Supersonic solitons propagating with velocity v > c2 are described by the same for-
mulas (16) or (19) containing the amplitude A = √

6|1 − v2|. In this case, the energy
is a monotonically increasing function of the velocity and the solitons are stable for
all the velocities, so here it is possible to consider various types of interactions (pass-
ing or counter) of unipolar and bipolar solitons. For convenience of the graphical
representation of the results, it is advisable to investigate the passing interaction of the
unipolar solitons. Qualitatively different scenarios of passing interaction depend not
only on the energy of the interacting solitons but on the relative velocity of collision.

If the relative velocity is small, the collision is similar to the scenario of the
exchange interaction of the classical solitons. First, the soliton with the greater veloc-
ity overtakes the slower soliton, they approach to each other at a certain distance, but
they are not unified. Then, the slow soliton amplitude increases, whereas the quick
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Fig. 7 Passing interaction of supersonic solitons with the collision velocities a vc ≤ 1, b 1 ≤ vc ≤
1.5 and c 1.5 < vc ≤ 2

soliton amplitude falls. In fact, the energy exchange occurs, after the solitons have
moved away moving in accordance with their velocities as shown in Fig. 7a. It seems



Inelastic Interaction and Splitting of Strain Solitons … 159

that the solitons interact elastically, as after the collision the soliton characteristics
have not been changed.

When the velocity of interaction is higher, the solitons pass through each other
as transparent, and the amplitude of the total perturbation does not increase. Due to
collision, the solitons lose a relatively small amount of energy, which is implemented
in the packet of quasi-harmonic waves as shown in Fig. 7b. It is interesting to note that
the wave packet propagates in the opposite direction, i.e. if the interacting solitons
move from left to the right, then the packet moves from right to the left.

Further increase of the interaction velocity leads to the formation of two packets of
quasi-harmonic waves. One of which, like in Fig. 7b, moves in the opposite direction,
whereas the other one moves in the same direction as the interacting solitons do
(Fig. 7c). The packet of quasiharmonic waves is shown in an enlarged scale in Fig. 8a,
its further evolution is similar to that shown in Fig. 6b. The passing packet is presented
in Fig. 8b.

Figure7a–c show the soliton interactions obtained for relative collision velocities
equal to 0.8, 1.2, and 1.8, respectively. Rather high velocities of soliton collision,
which lead to a splitting, are more convenient to explore if the solitons move in
opposite directions (head-on, or counter interaction). For reasons of symmetry, the
interacting solitons should be of the same type.

The most impressive is the process of splitting of bipolar solitons under head-on
collision (see Fig. 9a). Splitting is considered as such an effect, if two interacting
solitons with initial amplitude A0 generate after the interaction a large number of
secondary solitons with amplitudes Ai(i ≥ 1). Figure9 shows the formation of two
secondary solitons and, naturally, a non-stationary wave process. The amplitudes
of the secondary solitons are distributed with respect to the initial amplitude A0

by the following way: A1 = 0.96A0, A2 = 0.27A0 (a relative measurement accuracy
is equal to 1.2%). It is interesting to note that such a distribution of amplitudes
of the secondary solitons does not depend on the value of the parameter c2 in the
range 1 < c2 ≤ 5 and on the relative velocity of interaction in the range 5 ≤ vc ≤ 16.
Unfortunately, it is impossible to demonstrate splitting under passing collision in one
scale, as the velocities of the secondary solitons differ almost by 10 times and their
amplitudes differ almost by 100 times. Therefore only some fragments of interaction
are shown in Fig. 9b, where c2 = 64/25, the great soliton velocity equals v = 20,

Fig. 8 Enlarged scale of the packet of quasi-harmonic waves (a) and the passing packet (b)
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Fig. 9 Splitting of bipolar solitons under head-on collision (a) and of unipolar solitons in the
passing interaction (b)

and the small soliton velocity is equal to v = 5; and some of these fragments are
demonstrated in the enlarged scale. After the faster soliton overtakes the slower
one and both solitons become “pure”, the place of interaction is occupied by a
nonstationary wave packet, from which two bipolar secondary solitons are extracted
(see the upper oval and the solitons in an enlarged scale). After selecting of the last
secondary solitons, the quasi-harmonic wave packet remains (in the second oval and
below this packet is shown in an enlarged scale).

7 Conclusions

In this paper a nonlinear mathematical model of a one-dimensional granular medium
with internal stress that consists of ellipsoidal-shaped particles with two translational
and one rotational degrees of freedom has been introduced. The analytical depen-
dencies of the elastic wave velocities and the nonlinearity coefficients of the particle
size and the parameters of the interactions between them have been found. In the
low-frequency range, when the rotational wave does not propagate, and if the longitu-
dinal wave is not excited in the medium, the obtained equations in partial derivatives
are reduced to one Eq. (11) for the transverse mode, which contains a cubic nonlin-
earity and is non-integrable. In the framework of this equation, numerical research



Inelastic Interaction and Splitting of Strain Solitons … 161

of counter and passing interactions of strongly nonlinear soliton-like strain waves
in a one-dimensional granular medium has been performed. It is shown that both
subsonic and supersonic soliton-like waves can be realized in the medium.

The subsonic soliton-like waves steadily propagate in such a medium with some
value of the velocity. Subsonic solitons interact inelastically and with mutual accel-
eration, i.e. a negative shift of phases is observed. The supersonic soliton-like waves
interact inelastically, too, but the scheme of interaction depends on the relative veloc-
ity of collision. If this velocity is small, there is an exchange interaction. At passing
collision with the supersonic velocity, one or two packets of quasiharmonic waves
propagating in opposite directions can be formed. If the collision velocity is several
times greater than the sound velocity, then splitting of the soliton into secondary soli-
tons with generation of packets of quasiharmonic waves is observed both at counter
and passing interactions.
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The Eigenmodes in Isotropic Strain
Gradient Elasticity

Rainer Glüge, Jan Kalisch and Albrecht Bertram

Abstract We present the spectral decomposition of the isotropic stiffness hexadic
that appears in Mindlin’s strain gradient elasticity, where the kinematic variable is
the second gradient of the displacement field. It turns out that four distinct eigen-
modes appear, two of which are universal for all isotropic strain gradient materials,
and two depend on an additional material parameter. With the aid of the harmonic
decomposition, general interpretations of the eigenmodes can be given. Further, the
material parameters are related to commonly employed special cases, namely the
cases tabulated in Neff et al. (Int J Solids Struct 46(25–26):4261–4276, 2009) and
isotropic gradient elasticity of Helmholtz type.

Keywords Strain gradient plasticity · Spectral decomposition · Stiffness hexadic

1 Introduction

It is well known that classical elasticity cannot account for size effects that are
observed in very small structures (Liebold and Müller 2013). Mostly, the specific
stiffness of fine structures is increased. It is also well known that one can overcome
this shortcoming by including a strain gradient dependence in the elastic energy. The
isotropic extension of linear elasticity has been given by Mindlin (1964). It involves
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a sixth-order stiffness tensor with five independent parameters, which relates the
strain gradient to the hyperstress tensor. The aim of the present work is to give a
spectral decomposition of this hexadic. The eigenmodes of this hexadic may be inter-
preted geometrically, similar to the eigenmodes of the well-known Hooke-tetradic of
classical isotropic linear elasticity, which are volume- and shape changing deforma-
tions. The eigenmodes can be interpreted in terms of displacement fields, curvature,
volume- and shape changing deformations, local rotations, and so on. By this, the
eigenvalues and hence the 5 independent parameters of the hexadic become inter-
pretable. For convenience, we have included a conversion of some special cases from
the literature to the five independent parameters in Mindlin’s strain gradient elastic-
ity. A more general account to strain gradient theories on this topic can be found in
Bertram (2015).

The present article builds on isotropic strain gradient elasticity (Mindlin and Eshel
1968) and decomposition and representation theorems for isotropic tensors of arbi-
trary order, as found in Golubitsky et al. (1988), Zheng and Zou (2000), Olive and
Auffray (2014), Auffray et al. (2013).

Notation

We prefer a direct notation, but make use of Einstein’s summation convention
(implicit summation over pairs of indices) whenever necessary. Scalars, vectors,
second- and higher-order tensors are denoted by italic letters (like a or A), bold
minuscules (like a), bold majuscules (like A), and blackboard bold majuscules (like
A), respectively.Moreover, {ei} denotes an orthonormal basis. The single contraction
and the dyadic product are denoted by · and ⊗, respectively. Multiple contractions
act in the same sense on either tensor, e. g., (a ⊗ b ⊗ c) · ·(d ⊗ e) = (b · d) (c · e) a.

For groups and vector spaces, we use calligraphic letters, such asH for the space
of right subsymmetric third-order tensors H, for which H · ·A = H · ·AT holds. In
particular, we denote harmonic tensor spaces of order i by Hi. I, IS , I and ε� denote
the identities on vectors, symmetric second-order tensors, subsymmetric third-order
tensors and the third-order permutation tensor.

2 Isotropic Stiffness Hexadic

In general, the elastic energy of a strain gradient material is written in terms of the
symmetric second-order strain tensor E = sym(u ⊗ ∇) = sym(H) and a third-order
tensor with one subsymmetry as the strain gradient variable H. The latter may be
the gradient of the strain E ⊗ ∇, or the second gradient of the displacement u(x0, t).
Mindlin (1964) refers to these two choices as strain gradient elasticity of form 1
and form 2. In any case, the third-order tensor H has one subsymmetry (left or
right), and therefore only 18 independent components. It is interesting to note that
these symmetries have different origins. In one case, the subsymmetry is a purely
mathematical consequence (Schwartz’ theorem), in the other case it comes from
purging the rotations from the first gradient deformation measure.
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Here, we will use the second gradient of the displacement u as the strain gradient
variable, i.e., we take

H = u ⊗ ∇ ⊗ ∇. (1)

Approaching the elastic energy density as a quadratic form, we get

w = 1

2
CijklEijEkl + CijklmEijHklm + 1

2
CijklmnHijkHlmn (2)

w.r.t. an ONB. Here appear the fourth-, fifth- and sixth-order stiffness tensors
〈4〉
C,

〈5〉
C

and
〈6〉
C, all of which are determined only up to some subsymmetric part that is due

to the symmetries of the involved variables E and H. Further,
〈4〉
C and

〈6〉
C have the

principle symmetry, since they are multiplied twice with the same variable,

Cijkl = Cklij = Cjikl = Cijlk, (3)

Cijklm = Cjiklm = Cijkml, (4)

Cijklmn = Clmnijk = Cikjlmn = Cijklnm. (5)

Presuming these index symmetries alone,
〈4〉
C ,

〈5〉
C and

〈6〉
C have 21, 108, and 171 indepen-

dent components, respectively. However, these numbers can be drastically reduced
when material symmetries are taken into account. A particular case is isotropy. The
components of any isotropic tensor can be given in terms of Kronecker- and Levi–

Civita symbols w.r.t. an ONB. Due to the index symmetries of
〈4〉
C,

〈5〉
C and

〈6〉
C and

the anti-symmetry of the Levi–Civita symbol, only Kronecker-deltas appear, which

means that
〈5〉
C = O in case of centrosymmetric isotropy. For

〈4〉
C and

〈6〉
C, we have

the well-known representations (see, e.g., Mindlin 1964, 1965; Lazar and Maugin
2005; dell’Isola et al. 2009; Bertram and Forest 2014). In Mindlin’s notation with
ηijk := uk,ij, the strain gradient energy density is

w = 2c2ηkiiηkjj + c4ηijkηijk + 2c3ηijkηjki + c5
2

ηjjiηkki + 2c1ηiikηkjj. (6)

This can be written as a quadratic form ui,jkCijklmnul,mn/2 with a stiffness hexadic

〈6〉
C =[

c1(δjkδimδnl + δjkδinδml + δjiδklδmn + δjlδikδmn) (7)

+ c2(δjiδkmδnl + δjmδkiδnl + δjiδknδml + δjnδikδml) (8)

+ c3(δjmδklδin + δjlδinδkm + δjnδimδkl + δjlδimδnk) (9)

+ c4(δjnδilδkm + δjmδknδil) (10)

+ c5δjkδilδmn
]
ei ⊗ ej ⊗ ek ⊗ el ⊗ em ⊗ en. (11)



166 R. Glüge et al.

We summarize the different combinations of Kronecker symbols that belong to each
parameter ci with the basis {ei ⊗ ej ⊗ ek ⊗ el ⊗ em ⊗ en} to five base hexadics {Bi},
such that

〈6〉
C =

5∑
i=1

ciBi. (12)

The metric of the basis {Bi} is

Bi · · · · · · Bj =

⎡
⎢⎢⎢⎢⎣

168 96 96 24 36
96 192 72 48 12
96 72 192 48 12
24 48 48 72 18
36 12 12 18 27

⎤
⎥⎥⎥⎥⎦ . (13)

We observe that 1
2B4 maps every subsymmetric triadic onto itself, that 1

3B5 maps
every tensor of the form v ⊗ I onto itself, and that 1

8B2 maps every tensor of the form
I ⊗ v into its right subsymmetric part.

2.1 An Orthogonal Basis

Before turning to the spectral decomposition, a more suitable basis is introduced

B̃1 := − 1

15
(B1 + B2 + B5) + 1

6
(B3 + B4), (14)

B̃2 := 1

12
(2B1 − B2 − 2B3 + 4B4 − 4B5), (15)

B̃3 := 1

60
(6B1 − 9B2 + 16B5), (16)

B̃4 := 1

6
√
5

(3B1 − 4B5), (17)

B̃5 := 1

20
(−2B1 + 3B2 + 8B5). (18)

The metric of this basis is diagonal with B̃i · · · · · ·B̃i = (7, 5, 6, 6, 6). The compo-

nents of
〈6〉
C with respect to this basis are

c̃1 := 2 (c4 − c3), (19)

c̃2 := 4 c3 + 2 c4, (20)

c̃3 := 1

6
(12 c1 − 16 c2 + 2 c3 + 9 c5), (21)
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c̃4 := 2
√
5

3
(3 c1 + 2 c2 + 2 c3) , (22)

c̃5 := 1

2
(4 c1 + 8 c2 + 2 c3 + 4 c4 + 3 c5). (23)

2.2 Eigenvalues and Projectors

In terms of the latter basis {B̃i} and components c̃i, the spectral decomposition of
〈6〉
C

is given by

〈6〉
C =

4∑
i=1

λiPi (24)

with the eigenvalues

λ1 = c̃1, (25)

λ2 = c̃2, (26)

λ3 = c̃5 + cr, (27)

λ4 = c̃5 − cr (28)

with

cr =
√

c̃23 + c̃24 (29)

and the eigenprojectors

P1 = B̃1, (30)

P2 = B̃2, (31)

P3(κ) = 1

2

(
B̃5 + c̃3

cr
B̃3 + c̃4

c̃r
B̃4

)
, (32)

P4(κ) = 1

2

(
B̃5 − c̃3

cr
B̃3 − c̃4

c̃r
B̃4

)
(33)

with

cos κ = c̃3
cr

⇔ sin κ = c̃4
cr

. (34)
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For the spectral decomposition, the representation of
〈6〉
C with the dimensionless

parameter κ and the four eigenvalues is more convenient than with the parameters
{c1, c2, c3, c4, c5} or {c̃1, c̃2, c̃3, c̃4, cr}. One can check that

P3(κ) = P4(κ + π), (35)

λ3(κ) = λ4(κ + π) (36)

holds, i.e., it is reasonable to restrict κ to the interval [0, π). The metric of the
projectors is diagonal with Pi · · · · · ·Pi = (7, 5, 3, 3), thus the multiplicities of the
eigenvalues are 7, 5, 3 and 3. Further, we have the projector properties

Pi · · · Pj =
{

Pi if i = j,

O if i �= j,
(37)

4∑
i=1

Pi = I, (38)

where I is the sixth-order identity tensor on triads with the right subsymmetry. These
equations resemble those of the spectral decomposition of a transversely isotropic
stiffness tetradic (see Appendix A of Kalisch and Glüge 2015), which also has in
general five independent components and four distinct eigenvalues.

The above formulae are convenient when one knows the parameters c1,2,3,4,5, and
seeks the eigenvalues and the third and fourth eigenprojector. The other way around,
the coefficients c1,2,3,4,5 are given by

c1 = (10λ1 − 4λ2 − 3(λ3 + λ4) + 3(λ3 − λ4)(cos(κ) + √
5 sin(κ)))/60, (39)

c2 = (−10λ1 − 8λ2 + 9(λ3 + λ4) + 9(−λ3 + λ4) cos(κ))/120, (40)

c3 = (−λ1 + λ2)/6, (41)

c4 = (2λ1 + λ2)/6, (42)

c5 = (−5λ1 − λ2 + 3(λ3 + λ4) + (λ3 − λ4)(2 cos(κ) − √
5 sin(κ)))/15 (43)

in terms of {λ1,2,3,4, κ}.

3 The Eigenmodes and the Harmonic Decomposition

The latter result becomes clearer from the point of view of the harmonic decomposi-
tion of a third-order tensor with one subsymmetry (Golubitsky et al. 1988; Zheng and
Zou 2000; Olive and Auffray 2014). The third and fourth projector—more precisely:
the parameter κ—distinguish a specific decomposition of the first-order harmonic
contribution, which is discussed next.
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The space of all second gradients H = u ⊗ ∇ ⊗ ∇ is subsequently denoted by
H . By virtue of the harmonic decomposition a tensor is decomposed into a sum of
mutually orthogonal tensors,

H =
N∑

i=1

Hi, (44)

0 = Hi · · · Hj, i �= j. (45)

These correspond to the eigentensors of
〈6〉
C, where N is the number of different

eigenvalues. Each Hi is related to a harmonic tensor
〈n〉
Hi by virtue of an isotropic

linear mapping Li

Hi =
〈3+n〉
L i · · ·︸︷︷︸

n dots

〈n〉
Hi. (46)

The order n of the harmonic tensors does not exceed that of the decomposed tensor.
The harmonic tensor spaces are denoted by Hi. Their dimensions are

dim(Hi) = 2i + 1, (47)

which is due to the fact that all elements fromHi are completely symmetric, and all
possible index contractions (like Hijj) are zero.

On the whole, the tensor space H is decomposed into the direct sum (⊕) of
mutually orthogonal subspaces. These subspaces are closed under the action of the
Rayleigh product with an orthogonal tensor Q, which can be considered as a rotation
of H by Q. The Rayleigh product is defined as

Q ∗ (Hijkei ⊗ ej ⊗ ek) = Hijk(Q · ei) ⊗ (Q · ej) ⊗ (Q · ek), (48)

whereas the closedness under its action is

Q ∗ H ∈ Hi ⇔ H ∈ Hi (49)

for all proper orthogonal tensors Q. A further decomposition without loss of this
property is not possible, which is why this decomposition is sometimes referred to
as irreducible.

The harmonic decomposition can be thought of as the diagonalization of a matrix.
The matrix originates from the action of the group of all proper orthogonal tensors
on the tensor space (rotation of tensors by means of the Rayleigh product). Sub-
spaces for harmonic spaces of equal order form block matrices on the main diagonal,
the dimension of which corresponds to the number of subspaces of equal order. If
we define additional orthogonal decompositions, we can diagonalize these block
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matrices as well. It is shown below that the angle κ parametrizes such an additional
decomposition in the present case.

For sufficiently smooth fields u, the respective tensor H can be represented by a
linear combination of products of the form

H =
∑

i=1...3;j=1...6

Cij ei ⊗ Ej, (50)

where {ei} and {Ej} are orthonormal bases in the three-dimensional Euclidean space
and the space of symmetric second-order tensors, respectively. The harmonic decom-
position of these spaces is given by H1 and H0 ⊕ H2, respectively. The three-
dimensional space cannot be decomposed into harmonic subspaces, hence it is repre-
sented by the three-dimensional spaceH1. The six-dimensional space of symmetric
second-order tensors is decomposed into the well known spherical and deviatoric
symmetric parts, the first is one-dimensional and corresponds toH0, and the second
is five-dimensional and corresponds to H2.

Similar to the decomposition (50), the spaceH can be constructed as the dyadic
product of the form

H = H1 ⊗ (H0 ⊕ H2). (51)

With the Clebsch–Gordan rule (Golubitsky et al. 1988)

Hm ⊗ Hn =
m+n⊕

k=|m−n|
Hk (52)

we obtain

H ∼=H1 ⊗ (H0 ⊕ H2) (53)

= (H1 ⊗ H0) ⊕ (H1 ⊗ H2) (54)

=H1 ⊕ H1 ⊕ H2 ⊕ H3 (55)

=H3 ⊕ H2 ⊕ H ⊕ 2
1 . (56)

Thus, we get two three-dimensional, one five-dimensional and one seven-dimen-
sional subspace, altogether forming the 18-dimensional space of third-order tensors
with one symmetry.

The harmonic decomposition is unique regarding the number and the dimensio-
nality of the subspaces. However, when two equally-dimensioned subspaces appear,

there is an arbitrariness in the isomorphisms that connect Hi and
〈n〉
Hi. In our repre-

sentation, this arbitrariness corresponds to the angle κ that determines the direction
of the two eigenprojectors P3 and P4 of the eigenvalues λ3 and λ4, each having the
multiplicity 3. The specifications of Eq. (46) are
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H1 = H1, (57)

H2 = ε� · H2, (58)

H3 = h3 · (cos(κ/2)P4/1 + sin(κ/2)P4/2/
√
5), (59)

H4 = h4 · (− sin(κ/2)P4/1 + cos(κ/2)P4/2/
√
5). (60)

On both sides of these equations, the index indicates the ordering of the eigenspaces.
The Hi on the left side represent second displacement gradients that are eigentensors

in the indexed eigenspaces. TheH1,H2,h3 andh4 (denotedmore general as
〈n〉
Hi) on the

right side are harmonic (fully symmetric and traceless) tensors of order 3, 2, 1 and 1,
hence having 7, 5, 3 and 3 independent components. The number of these independent
components corresponds to the dimension of the eigenspaces. Further, P4/1,2 are the
isotropic projectors from the spectral decomposition of isotropic stiffness tetradics
with the compression modulus K and the shear modulus G,

〈4〉
C = 3K

1

3
I ⊗ I︸ ︷︷ ︸
P4/1

+2G (IS − 1

3
I ⊗ I)︸ ︷︷ ︸

P4/2

. (61)

IS = 1
2 (δikδjl + δilδjk)ei ⊗ ej ⊗ ek ⊗ el is the identity on symmetric second-order ten-

sors. With this symbolic representation of the eigenmodes, we can examine their
properties by virtue of the traceless and symmetric properties of their corresponding
harmonic tensors.

3.1 The 7-Dimensional Eigenspace H3

With H1 being harmonic, we find the traces and index symmetries

ui,jj = 0, (62)

ui,ik = 0, (63)

ui,jk = uj,ik . (64)

Thus, u is a harmonic function, and the volumetric strain must be homogeneous.
After Helmholtz’ representation theorem (Helmholtz 1858), there exist a scalar field
φ and a divergence free (solenoidal) vector field a (Coulomb’s gauge) such that

u = ∇φ + ∇ × a, a · ∇ = 0. (65)

Using ui,i = u · ∇ = Δφ, we find with Eq. (64)

∇ (Δφ) = o. (66)
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Equation (64) can be rewritten as

(u × ∇) ⊗ ∇ = O, (67)

i.e., the rotational part of u is homogeneous. Then, the Helmholtz representation and
Coulomb’s gauge imply

(Δ a) ⊗ ∇ = O. (68)

Given sufficiently smooth fields, Laplacian and gradient commute. Thus, Δφ =
ui,i and Δa are homogeneous (Eqs. 66 and 68) and ∇ φ and a ⊗ ∇ are harmonic
functions.

In conclusion, the displacement fields that generate eigenstrain-gradients in H3

• are free from volumetric strain gradients,
• have zero mean curvature of the displacement components, and
• the gradient of the axial vector u × ∇ vanishes everywhere, i.e., the rotational part
of the displacement field is homogeneous.

3.2 The 5-Dimensional Eigenspace H2

For convenience, we drop the index atH2 in this paragraph. In index notation w.r.t. an
ONB we get

ui,jk = 1

2
(εijlHlk + εiklHlj), (69)

where ui is a displacement field that produces only strain gradients in the 5-
dimensional eigenspace that is isomorphic to H2.

We cannot directly transfer the traceless and symmetric properties of H to the
displacement gradient, since a summation index is involved in H but not in ui,jk .
Taking the two independent traces of ui,jk gives

ui,jj = 1

2
(εijlHlj + εijlHlj) = εijlHlj = 0 ⇔ axi(skw(H)) = o, (70)

uj,jk = 1

2
(εjjlHlk + εjklHlj) = 1

2
εijlHlj = 0 ⇔ 1

2
axi(skw(H)) = o, (71)

i.e., they give the same information. The skew part of H (and hence the axial vector
w = axi(skw(H)) implicitly defined by w × x = skw(H) · x) is zero by definition.
Thus, we find that the eigenstrain gradients of the 5-dimensional eigenspace belong
to harmonic displacement fields without volumetric strain gradient, as in the case
before. Now we consider
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(εnij ui,j),k = εnij ui,jk (72)

= εnij (ui,jk − uj,ik)/2 (73)

= εnij (2εijm Hmk + εikm Hmj − εjkm Hmi)/4 (74)

= (2εijnεijmHmk + εijnεikmHmj − εjniεjkmHmi)/4 (75)

= δnmHmk + [(δjk δnm − δjm δnk) Hmj (76)

− (δnk δim − δnm δik] Hmi)/4 (77)

= Hnk + (Hnk − δnk Hmm − δnk Hmm + Hnk)/4 (78)

= 3Hnk/2. (79)

In symbolic notation we thus have

H ∝(u × ∇) ⊗ ∇ (80)

=(−Δ a) ⊗ ∇ (81)

= − Δ(a ⊗ ∇). (82)

H is symmetric and deviatoric. The latter property is in accordance with Coulomb’s
condition on a. The symmetry of H implies another constraint on a.

Δ(a ⊗ ∇) = Δ(∇ ⊗ a), (83)

⇔ O = Δ(a ⊗ ∇ − ∇ ⊗ a) (84)

O = Δε · (a × ∇) (85)

= ε · (Δ (a × ∇)), (86)

⇔ o = Δ(a × ∇) (87)

= (Δ a) × ∇ (88)

The divergence of Eq. (84) provides—by means of Coulomb’s gauge

o = (Δ (a ⊗ ∇ − ∇ ⊗ a)) · ∇ (89)

= Δ [(a ⊗ ∇) · ∇ − (∇ ⊗ a) · ∇] (90)

= Δ(Δ a − ∇ (a · ∇)) (91)

= ΔΔ a. (92)

Thus, a must be a biharmonic function. In conclusion, the displacement fields that
generate eigenstrain-gradients inH2

• are free from volumetric strain gradients,
• have zero mean curvature of the displacement components, and
• the divergence of the gradient of the axial vector u × ∇ vanishes everywhere.

These restrictions are weaker (third bullet point) than in case of eigenstrain-gradients
of H1. This is not surprising, as we have less constraints to exploit, namely only one
zero trace and one index symmetry, due to H2 being a second order tensor.
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3.3 The 3-Dimensional Eigenspaces

Unfortunately h3,4 have no symmetry or zero trace which could be exploited. The
third and fourth eigenmode depend on the angle κ , which depends on the coefficients
c1,2,3,5 through Eq. (34). Thus, we can determine canonical angles κ by taking one
of the ci as infinite, or consider more general directional limits with fixed ratios
between the ci. In doing so, two special cases emerge, namely when c2 or c5 are
taken to infinity. In both cases, the third eigenvalue λ3 becomes infinite, and its
eigenprojector P3 becomes 1

8B2 or 1
3B5, respectively. The angles κ that belong to

these materials can be inferred from Eq. (34), and one finds

c2 → ∞ : cos κ → −2

3
, P3 = 1

8
B2, λ3 → ∞, (93)

c5 → ∞ : cos κ → 1, P3 = 1

3
B5, λ3 → ∞. (94)

However, we can also adjust κ and the eigenvalues λ1,2,3,4 independently.

3.3.1 The Case cos κ = −2/3

The eigentensors of the third and fourth eigenvalue are related to the harmonic tensors
h3 and h4 through

H3 = h3 · IS = sym23I ⊗ h3, (95)

H4 = h4 · (IS − 6P4/1)/
√
5. (96)

This case is closest to the usual strain decomposition into dilatoric and deviatoric
parts. The eigenmodes to the third eigenvalue are gradients of the volumetric strain.
The fourth eigenmode does not correspond to a gradient of a deviatoric strain. By
considering

cos κ = c̃3
cr

= −2

3
, (97)

sin κ = c̃4
cr

=
√
5

3
, (98)

(remember that κ ∈ [0, π)), eliminating cr and summarizing, one finds that this case
corresponds to

4c1 + 2c3 + c5 = 0. (99)
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3.3.2 The Case cos κ = 1

The eigentensors of the third and fourth eigenvalue are related to the harmonic tensors
h3 and h4 through

H3 = h3 · P4/1, (100)

H4 = h4 · P4/2. (101)

A calculation similar to the symbolic examination of the 5- and 7-dimensional
eigenspaces shows that both eigenstrain gradients H3 and H4 result from displace-
ment fields with a biharmonic field φ in their Helmholtz representations. In terms of
ci, this case corresponds to

3c1 + 2c2 + 2c3 = 0. (102)

4 Relation to Other Forms of Strain Gradient Elasticity

For convenience, we summarize the conversion of parameters between the two forms
of strain gradient elasticity and for special cases of the first form of strain gradient
elasticity (Mindlin and Eshel 1968). We follow the list given in Neff et al. (2009)
(Eq.2.10) and Lazar’s proposal of gradient elasticity of Helmholtz type (Po et al.
2014).

4.1 Mindlin’s Second Form of Strain Gradient Elastictiy

The two forms of strain gradient elasticity (Mindlin and Eshel 1968) are

w1 = 1

2
u ⊗ ∇ ⊗ ∇ · · · C · · · u ⊗ ∇ ⊗ ∇, (103)

w2 = 1

2
∇ ⊗ sym(u ⊗ ∇) · · · Ĉ · · · ∇ ⊗ sym(u ⊗ ∇), (104)

where we use the very same base tensors B1,2,3,4,5, but with the parameters ĉ1,2,3,4,5.
The conversion between the two variants is

c1 = ĉ1/2 + ĉ2/2, (105)

c2 = ĉ1/2 + ĉ2/4 + ĉ5/4, (106)

c3 = 3ĉ3/4 + ĉ4/4, (107)

c4 = ĉ3/2 + ĉ4/2, (108)

c5 = ĉ2. (109)
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Our conversion differs from the one given in Mindlin and Eshel (1968) (Eq.2.6),
since here we considered the components of the stiffness hexadic w.r.t. the base
tensors Bi, whereas Mindlin considered the coefficients in the strain gradient energy.
The differences are due to symmetrizations, see Eq. (6). Apart from that, the ordering
is different.

4.2 Common Strain Gradient Extensions

We translate directly the forms in Table2.10 from Neff et al. (2009) (Table1).

4.3 Gradient Elasticity of Helmholtz Type

In order to reduce the number of elasticity constants, Lazar et al. (2006) recommend
to use

Cijklmn = l2Cjkmnδil, (110)

in the second form (Eq.104),with the fourth-order stiffness tetradic and the additional
material parameter l. In case of anisotropic elasticity, the second-order tensor that
extends the stiffness tetradic is invariant under the action of the material symmetry
group. In case of isotropy and cubic elasticity, this is a multiple of the identity tensor,

Table 1 Special cases of strain gradient elasticity translated into the parameter set c1,2,3,4,5, where
the left column contains the strain energy density, the center column the corresponding parameters
ci and the right column the eigenvalues λi and the angle κ

El. energy w c1,2,3,4,5 λ1,2,3,4, κ

‖u ⊗ ∇ ⊗ ∇‖2 0, 0, 0, 1, 0 2, 2, 2, 2, arbitrary

‖Δu‖2 0, 0, 0, 0, 2 0, 0, 6, 0, 0

‖sym(u ⊗ ∇) ⊗ ∇‖2 0, 0, 1/4, 1/2, 0 2, 1/2, 2, 1/2, arccos(1/9)

‖devsym(u ⊗ ∇) ⊗ ∇‖2 0, −1/6, 1/4, 1/2, 0 2, 1/2, 7/6, 0, arccos(19/21)

‖skw((u × ∇) ⊗ ∇)‖2 −1/2, 1/4, 0, 0, 1 0, 0, 3, 0, arccos(−1/9)

‖(u × ∇) × ∇‖2 −1, 1/2, 0, 0, 2 0, 0, 6, 0, arccos(−1/9)

‖(u · ∇)∇‖2 0, 1/2, 0, 0, 0 0, 0, 4, 0, arccos(−2/3)

‖(u × ∇) ⊗ ∇‖2 0, 0, −1/2, 1, 0 0, 3, 3, 0, arccos(−1/9)

‖dev((u × ∇) ⊗ ∇)‖2 0, 0, −1/2, 1, 0 0, 3, 3, 0, arccos(−1/9)

‖sym((u × ∇) ⊗ ∇)‖2 1/2, −1/4, −1/2, 1, −1 0, 3, 0, 0, arbitrary

‖devsym((u × ∇) ⊗ ∇)‖2 1/2, −1/4, −1/2, 1, −1 0, 3, 0, 0, arbitrary

‖sym(sym(u ⊗ ∇) × ∇)‖2 1/8, −1/16, −1/8, 1/4, −1/4 0, 3/4, 0, 0, arbitrary
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with the parameter l2. The conversion to c1,2,3,4,5 is

c1 = 0, (111)

c2 = l2(K/4 − G/6), (112)

c3 = l2G/4, (113)

c4 = l2G/2, (114)

c5 = 0. (115)

Thus, the third and fourth eigenmode depend via κ on the internal length parameter
l and the compression and shear moduli K and G. In terms of Mindlin’s second form
of strain gradient elasticity (see Sect. 4.1), we have only two nonzero parameters,
namely

ĉ1 = 0, (116)

ĉ2 = 0, (117)

ĉ3 = 0, (118)

ĉ4 = Gl2 = μl2, (119)

ĉ5 = Kl2 − 2Gl2/3 = λl2, (120)

where the inheritance from the classical isotropic stiffness tetradic with Lamé’s
constants λ and μ is more obvious.
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Limit Analysis of Lattices Based
on the Asymptotic Homogenization
Method and Prediction of Size Effects
in Bone Plastic Collapse

Ibrahim Goda, Francisco Dos Reis and Jean-François Ganghoffer

Abstract Lattice structures possess a huge potential for energy absorbing
applications, thus it is important to develop predictive tools for their mechanical
response up to collapse. Yielding is generally premonitory of structural collapse
for lattice structures, so a comprehensive and quantitative understanding of lattice
yielding behavior is indispensable in engineering applications. In the present work,
the overall plastic yield and brittle failure behaviors of three-dimensional lattices is
investigated by a microstructural modeling approach based on the homogenization
of the initially discrete microstructure. The multiaxial yield behavior of the lattice
is analyzed to formulate a multiaxial plastic yield criterion. Furthermore, the brittle
fracture of the lattice is modeled under triaxial stress states to construct the failure
surfaces, defined in the tension–tension quadrant. In plastic yielding, the analyses
are performed assuming an elastic perfectly plastic lattice, and a micromechanical
model based on an homogenization scheme is applied to a representative unit cell to
determine the macroscopic plastic yield surfaces in stress space. This general frame-
work is applied to evaluate the yield and failure properties of trabecular bone, which
are of key interest in understanding and predicting the fracture of bones and bone
implant systems. The effective strength of trabecular bone is evaluated in the two
situations of fully brittle (fracture with no tissue ductility) and fully ductile failure
(yield with no tissue fracture) of the trabecular tissue. At high bone volume frac-
tion, the real strut-level ductility is sufficiently high to effectively be fully ductile
but at very low bone volume fraction, the real behavior of bone may fail in a brittle
mode. An adaptation and extension of the discrete homogenization method towards
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a micropolar effective medium is introduced in order to construct the plastic yield
surfaces for which the material point of the effective continuum supports couple
stresses in addition to Cauchy-type stresses. The size effects in the ductile fracture
mode are addressed by considering a micropolar behavior, reflecting the influence of
additional degrees of freedom and internal bending length effects on the initiation of
plasticity. It is observed that when the characteristic size of the microscale structure
is comparable to the bending length, a significant difference is shown between the
results based on the non-classical theory and those obtained by the classical theory.

Keywords Plastic yield · Elastoplasticity · Brittle failure · Discrete homogeniza-
tion · Micropolar theory · Size effects

1 Introduction

Nowadays, cellular solids and network materials such as foams, lattice truss mate-
rials and grid materials are widely used in a variety of commercial and military
applications such as automotive industry, aerospace, or marine engineering, due to
their many advantages, including high mechanical properties and strength, energy
absorption capacities, thermal and acoustic insulation properties, lightweight struc-
tural components.

Cellular lattice structures endowed with a specific mechanical behavior due to the
presence of an inherent microstructure are encountered in many applications such as
light-weight industrial components, trabecular bone and bone scaffolds. Such struc-
tures are a complex of cells made of an interconnected network of edges. They are
usually categorized as 2D and 3D cellular solids, and coined honeycombs and foams
respectively. Many man-made and biological structures present a discrete topology,
such as fibrous materials (textiles, collagen fiber networks, biological membranes),
with amore or less complex organization of the fibrousmicrostructure; themembrane
of biological cells canbeviewed as an assemblyoffilamentswhich are linked together
as part of a network. Since those structures consist of many repetitive elements, a
need arose to develop mechanical models for the prediction of their deformation
behavior.

Among their notable mechanical properties, cellular lattice structures are of more
importance, since the microstructure of the lattice can be adjusted so that desired
mechanical properties can be achieved at the mesoscopic or macroscopic level. In
view of exploiting the full potential of cellular solids, their constitutive mechanical
response has to be entirely understood andmodeled. Recently, researchersworldwide
have widely used additive manufacturing methods to fabricate lattice structures.
Although these fabrication methods are capable of producing lattice structures with
tunable porosity and pore sizes and with high repeatability, they are costly and time
consuming even for fabricating small sizes parts. Accordingly, developing numerical
predictionmodels having the capability to predict themechanical properties of lattice
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structures can reduce the required experimental measurements in addition to the
manufacturing cost.

The material strength of architectured materials has been the topic of several
studies related to either their elastic strength, or to their non-linear elastoplastic
behavior. The choice of method of analysis of such lattices in the plastic range is
especially guided by the nature and type of lattice under consideration. Several clas-
sification methods exist in the literature: Deshpande proposed to classify lattices in
either stretching dominated or bending dominated lattices (Deshpande et al. 2001a),
considering that beams are working either in tension-compression, also known as
“direct actionmechanism”, or in bending (Christensen 2000;Mohr 2005). The elastic
strength of beam lattices has been considered by various authors: Gibson and Ashby
(1999) analyzed foams (bending dominated) with the relative density as the dominant
criterion, Demiray et al. (2007), Sullivan et al. (2008), Kim and Al-Hassani (2002)
with a more numerical or analytical approach, Florence and Sab (2006) with an
energy homogenization method, Deshpande et al. (2001b), Wang and McDowell
(2005) with various stretching dominated lattices, and Doyoyo and Hu (2006) ana-
lyzing the octet lattice. The stretching dominated lattices are proved to be much
stronger than bending governed lattices, Deshpande et al. (2001a); this raises the
interest of this material as a substitute for metallic foams in lightweight structures.
More recently, the initial yield surface for 2D truss-lattice materials under biaxial
loading was investigated by Alkhader and Vural (2009), based on FE analyses and
analytical techniques relying on an energy criterion for orthotropic materials. The
extended finite element method is used in Zhang et al. (2010) for the elastoplastic
analysis of periodic truss materials in the small strain regime. Multiscale base func-
tions are constructed to capture the small scale heterogeneities of the unit cells; this
local information is then brought to the upper macroscopic scale to perform struc-
tural calculations. The mechanical properties of micro-lattice structures subjected
to normal stresses are evaluated in Ushijima et al. (2013), based on an analytical
method relying on classical beam theory. The yield surface is determined under an
external biaxial loading state.

The investigation of the stress-strain relationships of beam lattices in the plastic
range is more involved. The classical criteria of continuum mechanics do indeed
not allow describing the nonlinearities in the plastic range (Fan et al. 2009). The
effective behavior of three different lattice materials endowed with cubic symmetry
has been studiedbymeansof analytical andnumerical techniques inPark et al. (2010).
A multiscale finite element method has been developed by Zhang et al. (2010) to
analyze the elastoplastic small strain behavior of 2D periodic lattices. A continuum
mechanismbasedmulti-surface plasticitymodel has been introduced byMohr (2005)
to simulate the mechanical behavior of 2D or 3D stretching dominated lattices. This
method has been extended later by Fan et al. (2009); this model however relies on
an underlying hypothesis of uniform deformation of the cells. This hypothesis is not
necessary true in the case of lattice with internal nodes (in the unit cell), even if the
lattice is stretching dominated.

Those lattices are endowed with a specific mechanical behavior because of the
presence of an inherent microstructure. The prediction of the effective mechanical
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behavior of such lattices in relation to the geometrical and mechanical parameters
at the micro level is an especially significant issue. The setting up of such predic-
tive models allows to fully understand the microstructural origin of the mechanical
behavior, and the lattice architecture required to achieve optimized properties at the
structural level. The suitable size of the structural elements, the lattice topology and
mechanical properties can be chosen relying on a quantitative understanding of the
macroscopic impact of the microstructural parameters.

An essential category of such latticematerials consists of lattices such as trabecular
bone having a discrete kinematics and topology, showing size effects at amacroscopic
scale of description. Such size effects have been proven to be important when the
sample dimensions are comparable with the size of the cell (Lakes 1986). In other
words, the effective mechanical properties show a size-dependence if the dimension
of a specimen or a structure is in a close order to the unit cell size. This behavior
called “size effects” (Onck et al. 2001; Tekoglu and Onck 2008) designates the
effect of the macroscopic sample size, relative to the unit cell size, on the mechanical
behavior. However, these effects are not easily accessible from a direct analysis at the
macroscopic structure scale. Consequently, the motivation of such micromechanical
inspired constitutive models is to increase the understanding of the yielding behavior
of those structures in different loading situations.

A key issue in bone biomechanics is the influence of the microarchitecture strut
ductility on the overall strength of trabecular bone. With aging and disease, the
individual trabeculae become more brittle, so the question arises as to how does
this influence the strength of apparent trabecular bone? In the present work, we
analyze the structural behavior of trabecular bone failure by investigating twoextreme
behaviors, known as fully ductile and fully brittle. For both strut level behaviors, we
investigate the failed tissue amount and reactive strength evaluated at the trabecular
bone scale at yield or ultimate point, respectively for ductile or brittle tissue level
material behavior. The yield point corresponds to the stress at which a material
begins to deform plastically, and the ultimate point corresponds to the highest point
of the stress-strain curve. For the entirely ductile case, we consider tissue level
failure by plastic yielding, whereas in the brittle case the yielding is not allowed
(break without significant deformation or failed by fracture). Furthermore, when
determining the plastic yield strength of trabecular bone structure, bone struts are
assumed to be made of elastic perfectly plastic material (Gibson 1985; Keaveny et al.
1994; McDonald et al. 2010). Basically, once the ultimate yielding (plastic collapse)
occurs, the structure cannot bear extra loads any more.

The objective of this work is then to develop an adequate three-dimensional
model for describing themultiaxial yield and failure behavior of lattice-like structure,
and to set up criteria for the brittle and ductile collapse based on micromechanical
approaches. The discrete homogenization technique is presently developed as a con-
venient micromechanical approach to construct the plastic yield surfaces of 2D and
3D periodic lattices of articulated beams. The initial lattice is replaced by an effec-
tive Cauchy continuous medium at an intermediate scale, endowed with effective
properties representative of an identified representative unit cell within the structure.
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The effective elastoplastic response of general beam lattices is additionally
obtained thanks to an adaptation and extension of the discrete asymptotic homog-
enization method. The stress-strain response accounting for ongoing hardening is
then constructed. We determine the effective elastoplastic response for the case of
stretching dominated lattices without considering bending effects. This methodology
has been implemented in algorithmic format in a dedicated code as a user oriented
subroutine in finite element calculations, allowing the analysis of a large variety of
new 2D lattices. The proposed algorithm is applied to two lattices exhibiting a non
uniform deformation: the asymmetric lattice and the square-star lattice. The obtained
homogenized elastoplastic responses are validated by comparisonwith finite element
simulations performed over entire lattices.

The 3D homogenization model is further applied to evaluate the yield and failure
properties of trabecular bone, which are of key interest in understanding and pre-
dicting the fracture of bones and bone implant systems. The effective strength of
trabecular bone is evaluated in the two situations of fully brittle (fracture with no
tissue ductility) and fully ductile failure (yield with no tissue fracture) of the trabec-
ular tissue. A size-dependent non-classical plastic yield criterion is finally developed
relying on the Cosserat theory to capture the size-dependency of trabecular bone
structures. Accounting for the moments will allow the homogenization towards the
more complete micropolar framework, incorporating a microrotation in addition to
the displacement as kinematic descriptors at the continuum level. Such extension
and adaptation towards a micropolar effective medium leads to construct the plastic
yield surfaces for which the material point supports couple stresses in addition to
Cauchy-type stresses. As a consequence, the plastic yield surfaces of trabecular bone
will be determined under the external applied couple stresses.

This work is organized as follows: in Sect. 2, we briefly recall the background
behind discrete homogenization, and its adaptation in view of the construction of
the plastic yield domain and brittle failure surfaces in 3D context. Issues related to
the determination of plastic yield surfaces and brittle failures of the vertebral bone
modeled as cellular solid model are additionally addressed in Sect. 2. The numeri-
cal results provide the plastic yield surface of the vertebral model under multi-axial
loading, which is constructed together with the brittle fracture surface in stress space
under tri-axial loading conditions. In Sect. 3 we expose the set of basic equations for
the update of the plastic variables in presence of hardening of extensional lattices. The
proposed algorithm is applied to two different 2D lattices exhibiting a non-uniform
deformation: the asymmetric lattice and the square-star lattice. The obtained homog-
enized elastoplastic responses are validated by comparison with finite element sim-
ulations performed over entire lattices. In Sect. 4, on the basis of micropolar theory,
the discrete homogenization method is extended to the plastic collapse of trabecular
bone under the action of combined couple andCauchy stresses in amicropolar frame-
work. In addition, a non-classical size-dependent plastic yield criterion is developed
relying on the non-classical continuum theory in order to capture the size dependency
observed in the bone structures. Finally, a summary of the main achievements and
perspectives are exposed in Sect. 5.
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2 Lattice Homogenization Towards 3D Cauchy Continuum

2.1 Description of the Lattice Geometry

The lattice-like materials under consideration are described as a quasi 3D periodic
lattice of beams and are fully defined by the positions of the nodes and their connec-
tivity: we symbolize NR and BR , respectively as the set of nodes and beamswithin the
reference unit cell. The cells are numbered by the triplet of integers vi = (v1, v2, v3).
Within the reference cell, one can select the origin node O(b) of a beam b so that it
belongs to the reference cell. Nevertheless, the end node E(b) does not necessarily
belong to the reference cell, but is necessarily included in an adjacent cell numbered
globally with the set of integers λi = (v1 + δ1b, v2 + δ2b, v3 + δ3b). We pass from an
elementary cell to the adjacent cells by a translation, parameterized by the integers
δib ∈ {−1, 0, 1} as described in Fig. 1. Note that due to the assumption of periodicity,
the infinite structure is built from the repetition of a reference cell by translation in
3D. As a consequence, we consider a family of lattices parameterized by a small
parameter, defined as the ratio of a characteristic length of the basic cell to a charac-
teristic length of the lattice; and occupying a fixed reference volume, versus which
all static and kinematic variables will be expanded. By letting the small parameter
tends to zero, we simulate a continuous increase of the number of cells within the
fixed reference volume; as a result, a continuous medium is obtained in the limit.
Accordingly, the topology of the lattice is completely described by the identification
of the reference unit cell and its topology (in terms of its nodes and beams), and
the three periodicity vectors in the case of 3D periodic lattices. The discrete sums
over all lattice nodes (equilibrium of efforts) are finally converted in the limit of a
continuous density of beams into Riemann integrals over the reference unit volume,
thereby highlighting the effective continuum medium.

Fig. 1 Curvilinear
coordinates λi of the lattice
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2.2 3D Elementary Unit Cell

Results fromGoda et al. (2014) provide the force equilibrium equations of any lattice
written in virtual power format as

∑
b∈BR

FFFb · vvvE(b) − FFFb · vvvO(b) =
∑
b∈BR

FFFb · (vvvE(b) − vvvO(b)
) = 0 (1)

with vvvn the virtual velocity field chosen nil on the edges of the considered domain,
and FFFb the force applied on each node of the beams. Since each beam within the
unit cell is equilibrated, the force applied to the extremity FFFb is equal and opposite
to the force applied to the origin, vector −FFFb.

We write in addition to previous equilibrium of forces the discrete equilibrium of
moments—useful for the resolution of the kinematic unknowns—expressed as the
following sum over all unit cell nodes

∑
b∈BR

(
MMM O(b) · wwwO(b) − MMM E(b) · wwwE(b)

) = 0 (2)

with wwwn is the virtual rotational velocity of node n.
The beam resultant FFFb in Eq. (1) is the sum of the extensional force Fb

x and
transversal forces, Fb

y and Fb
z , expressing successively as

Fb
x = Eb

s Ab

Lb

(
eeex · (ΔUUU b

1

)) = Eb
s Ab

Lb

(
eeex ·

(
uuuE(b) − uuuO(b) + ∂uuu

∂λi
δib

))
, (3)

Fb
y = 12Eb

s I b
z

(Lb)3(1 + Φy)

(
eeey · (ΔUUU b

1

) − Lb

2

(
eeez · (ΦO(b) + ΦE(b)

)))

= 12Eb
s I b

z

(Lb)3(1 + Φy)

(
eeey ·

(
uuuE(b)−uuuO(b)+ ∂uuu

∂λi
δib

)
− Lb

2

(
eeez ·

(
ΦO(b)+ΦE(b)

)))
,

(4)

Fb
z = 12Eb

s I b
y

(Lb)3(1 + Φz)

(
eeez · (ΔUUU b

1

) − Lb

2

(
eeey · (ΦO(b) + ΦE(b)

)))

= 12Eb
s I b

y

(Lb)3(1 + Φz)

(
eeez ·

(
uuuE(b)−uuuO(b)+ ∂uuu

∂λi
δib

)
− Lb

2

(
eeey ·

(
ΦO(b)+ΦE(b)

)))
,

(5)
where eeex ,eeey , and eeez are the direction cosines, describing the transformation between
the local and global coordinate system in 3D. The coefficients Φy = Φz = 12Eb

s I b
z /

Gb
s Abks(Lb)2 for a circular cross section of vertebrae therein vanish when transverse

shear can be neglected, Eb
s and Gb

s are the tensile and shear modulus of the vertebrae
material, and ks is theTimoshenko shear correction coefficient.Note that the displace-
ment difference ΔUUU b

1 between the extremity and origin node of each beam is writ-
ten as the first order expansion ΔUUU b1 = uuuE(b) − uuuO(b) + ∂uuu

∂λi δ
ib, and the asymptotic
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expansion of the rotation is accordingly limited to the zeroth order. Additionally, the
displacements and rotations unknowns, the variables uuun = [un

x , un
y, un

z ] and φφφn =
[φn

x , φn
y , φ

n
z ] respectively, are determined for all nodes by solving the equilibrium

equations in translation and rotation, (1) and (2), over the base unit cell.
The bending moments at both extremities MMM O(b) and MMM E(b) of the beam intro-

duced in Eq. (2) can be expressed as MMM O(b) = M O(b)
y eeey + M O(b)

z eeez and MMM E(b) =
M E(b)

y eeey + M E(b)
z eeez , with the components given by

M O(b)
y = 6Eb

s I b
y

(Lb)2(1 + Φz)

(
eeez ·

(
uuuE(b) − uuuO(b) + ∂uuu

∂λi
δib

))

+ Eb
s I b

y

Lb(1 + Φz)

(
eeey · ((4 + Φz)φφφ

O(b) + (2 − Φz)φφφ
E(b)

))
,

M E(b)
y = 6Eb

s I b
y

(Lb)2(1 + Φz)

(
eeez ·

(
uuuE(b) − uuuO(b) + ∂uuu

∂λi
δib

))

+ Eb
s I b

y

Lb(1 + Φz)

(
eeey · ((2 − Φz)φφφ

O(b) + (4 + Φz)φφφ
E(b)

))
, (6)

M O(b)
z = 6Eb

s I b
z

(Lb)2(1 + Φy)

(
−eeey ·

(
uuuE(b) − uuuO(b) + ∂uuu

∂λi
δib

))

+ Eb
s I b

z

Lb(1 + Φy)

(
eeez · ((4 + Φy

)
φφφO(b) + (

2 − Φy
)
φφφE(b)

))
,

M E(b)
z = 6Eb

s I b
z

(Lb)2(1 + Φy)

(
−eeey ·

(
uuuE(b) − uuuO(b) + ∂uuu

∂λi
δib

))

+ Eb
s I b

z

Lb(1 + Φy)

(
eeez · ((2 − Φy

)
φφφO(b) + (

4 + Φy
)
φφφE(b)

))
.

The homogenization of the discrete equilibrium of efforts (1) leads to the following
continuous self-equilibrium in virtual power form

∫
Ω

SSSi · ∂vvv

∂λi
dλ = 0 (7)

with the force vectors SSSi expressed as the following sumover all struts of the reference
unit cell

SSSi =
∑
b∈BR

FFFbδib (8)

The equilibrium equation of the equivalent Cauchy continuum is then written in
virtual power form, in order to highlight the stress tensor as the dyadic product of
the force vector SSSi with the gradient of the position vector RRR with respect to the
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curvilinear coordinates. The transformation from the Cartesian to the curvilinear
coordinates λi is expressed as

∂vvv

∂λi
= ∇∇∇xvvv · ∂RRR

∂λi
. (9)

This leads to the following expression of the equilibrium equation of the equivalent
Cauchy continuum

∫
Ω

SSSi · ∂vvv

∂λi
dλ=

∫
Ω

SSSi ·
(
∇∇∇xvvv · ∂RRR

∂λi

)
=
∫
Ω

(
SSSi ⊗ ∂RRR

∂λi

)
: 1

g
(∇∇∇xvvv) dx =

∫
Ω

(ΣΣΣ · ∇∇∇x ) · vvvdx =0.

(10)
From the comparison of the homogenized equilibrium to the equilibrium of a postu-
lated continuum Cauchy medium, it is natural to set the following definition of the
macroscopic (apparent) Cauchy stress

ΣΣΣ = 1

g
SSSi ⊗ ∂RRR

∂λi
(11)

with g the Jacobian associated with the function transformation from Cartesian to
curvilinear coordinates. Note that the scalar quantities λi are curvilinear Lagrangian
coordinates suitable for a general parametrization of any material point.

It should be noticed that the terms ∂uuu
∂λi appearing inEqs. (3)–(6) are strain functions,

and all displacements and rotations unknowns are also functions of the strain tensor
[EEE], which are determined by solving the equilibrium equations in translation and
rotation. Accordingly, the constitutive equation for the equivalent continuum writes
in 3D matrix format as

{Σx ,Σy,Σz,Σxy,Σyz,Σxz} = [K ]
{

∂ux

∂x
,
∂uy

∂y
,
∂uz

∂z
,
∂uy

∂x
,
∂uz

∂y
,
∂uz

∂x

}
(12)

with [K ] the equivalent rigidly matrix; the corresponding compliance matrix can be
evaluated as

[S] = [K ]−1. (13)

2.3 Determination of the Plastic Yield and Brittle Fracture
Surfaces in Stress Space

We have two different types of analyses to be performed in the so-called ductile
and brittle modes in order to assess the effects of strut level material behavior on
the apparent network behavior. For this purpose, we expose a sequence of equations
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written in stress space based on homogenization method in order to determine the
onset of plastic yielding of lattice structure and the fracture surface under multiaxial
loading conditions, relying on a micromechanical analysis.

2.3.1 Microscopic Stresses Versus the Macroscopic Deformation Tensor

In this subsection, the homogenization method previously described is used to ana-
lytically determine the matrix relating the microscopic stress tensor to the apparent
(effective) stress tensor. We first construct a vector of forces that gather all resultants
(axial and transverse) and moments acting on each beam b of the reference unit cell.

Let (Fb
x , Fb

y,z, M O(b)
y,z , M E(b)

y,z ) denote the microscopic stress components of beam
b, with b = 1, 2, 3, . . .. Recall that Fb

x is the axial force, Fb
y,z the shearing forces and

M O(b)
y,z , M E(b)

y,z the bending moments with respect to y and z at both beam extremities.
Therefore, the vector of the forces is written lengthily as

[F] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1
x

F1
y

F1
z

M O(1)
y

M E(1)
y

M O(1)
z

M E(1)
z
F2

x
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

Previous expressions of the resultants and moments still involve the unknown
displacements uuun and rotations φφφn , which are determined for all nodes by solving
the equilibrium of efforts and moments Eqs. (1) and (2). As a consequence, these
expressions are functions of themacroscopic strain tensor [EEE]; one can then construct
a matrix [Qe] relating the force vector on the unit cell to the homogenized strain, so
that

[F] = [Qe][EEE]. (15)

Additionally, we can relate the effective homogenized strain and stress tensors by the
following relation [EEE] = [S][ΣΣΣ], leading in turn to a relation between the stresses at
the micro (forces and moments) and macro levels,

[F] = [Qe][S][ΣΣΣ]. (16)

The previous expression of the microscopic stress is next involved in defining the
criteria of onset of plastic yielding and fracture surface for 3D lattices under triaxial
and shear loadings.
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2.3.2 Plastic Collapse and Yield Surface

Yielding in the struts of such cellular materials type is concentrated in small zones.
When a section becomes completely plastic, it is usually referred to as formation
of plastic hinges. The initial yield strength is based on the first cell strut(s) to reach
the fully plastic limit moment of the cell struts, representing complete loss to carry
additional load.

We here consider a uniform strut thickness of the unit cell; hence, the plastic
hinge occurs at a cross-section of maximum bending moment. Based on the plastic
hinge concept, lattice collapses plastically when the bending moment exerted by
the loads on the individual struts reaches the fully plastic moment, creating plastic
hinges at the corners. The fully plastic moment for a perfectly plastic beam under
combined bending moment and extensional stress receives the expression (Stronge
and Yu 1993)

|Mb| = σys Zλb

(
1 −

(
σ b

a

σys

)2
)

(17)

with Mb the bending moment at the beam extremity nodes with respect to y or z
axis, σys the initial yield strength of the individual struts (bulk material), Zλb the
plastic section modulus at the plastic hinge section of the struts, which is adopted as
Zλb = D3

b/6 assuming a circular cross sectional area of the struts with the diameter
Db. We here consider a 3D geometry of the circular struts, hence the extensional
stress acting on them is elaborated as σ b

a = Fb
x /Ab. Therefore, the criterion that

defines the failure surface for plastic yield is described from (17) as

6|Mb|
σys D3

b

+
(

Fb
x

Abσys

)2

= 1 (18)

with Mb the bending moments and Fb
x the axial forces within struts, arising from the

external applied normal (Σx ,Σy,Σz) and shear stresses (Σxy,Σyz,Σxz) acting on
the unit cell.

Introducing the homogenized stress components of [ΣΣΣ] after normalization by
the initial yield strength of the bulk material σys into Eq. (16) leads to the following
relation

[
F

σys

]
= [F N ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1
x

F1
y

F1
z

M O(1)
y

M E(1)
y

M O(1)
z

M E(1)
z
F2

x
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [Qe][S]
[

ΣΣΣ

σys

]
= [Qe][S]

⎡
⎢⎢⎢⎢⎢⎢⎣

Σx/σys

Σy/σys

Σz/σys

Σxy/σys

Σyz/σys

Σxz/σys

⎤
⎥⎥⎥⎥⎥⎥⎦

. (19)
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As a final step, the system of previous equations in (18) then rewrites for the set
of struts b that belong to the reference unit cell by which the whole structure is
generated as

6|MbN |
D3

b

+
(

FbN
x

Ab

)2

= 1 (20)

The plastic collapse strength domain of the structure is then the surface delimited by
previous equality in the normalized stress space. As a consequence, the criteria of
plastic collapse are derived in three dimensional stress states, thereby addressing the
criteria for in-plane and out-of-plane yielding: in-plane stressesΣx andΣy combined
with out-of-plane normal stressΣz in addition to in-planeΣxy andout-of-plane shears
Σyz , Σxz are considered in the analysis. Note that the normalized axial forces and
moments, quantities FbN

x and MbN , are extracted from [F N ] in Eq. (19).

2.3.3 Brittle Failure and Fracture Surfaces

Brittle failure occurs when the maximum stress in a cell strut of lattice subjected to
both bending and axial loads exceeds themodulus of rupture σ f s of the cell materials.
This criterion has been used by Gibson and Ashby (1999). The moment that causes
the maximum stress writes

σmax = Mb/Sb
E (21)

with Sb
E the elastic section modulus adopted as Sb

E = π D3
b/32 for circular struts.

Therefore, failure occurs when the previous stress cumulated to the axial stress
exceeds σ f s , given by

σ f s = σ b
a + Mb/Sb

E , (22)

where σ b
a is the axial stress in the cell strut adopted as σ b

a = Fb
x /Ab, Mb the bending

moment at the strut ends either with respect to y or z axis. The brittle failure condition
now becomes

Fb
x

σ f s Ab
+ Mb

σ f s Sb
E

= 1. (23)

Inserting the macroscopic stress components [ΣΣΣ] normalized by the modulus of
rupture of cell strut into Eq. (16) yields the following relation
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[
F

σ f s

]
= [F N ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1
x

F1
y

F1
z

M O(1)
y

M E(1)
y

M O(1)
z

M E(1)
z
F2

x
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [Qe][S]
[

ΣΣΣ

σ f s

]
= [Qe][S]

⎡
⎢⎢⎢⎢⎢⎢⎣

Σx/σ f s

Σy/σ f s

Σz/σ f s

Σxy/σ f s

Σyz/σ f s

Σxz/σ f s

⎤
⎥⎥⎥⎥⎥⎥⎦

. (24)

It is obvious that the combination of applied normal and shear stresses required to
cause tensile failure in the cell strut is found from the applied moments and the axial
stresses acting on the cell struts.

Finally, based on the system of previous Eq. (23), the failure surface of lattices
under multiaxial stress conditions accounting for anisotropy is described by a brittle
failure criterion condition rewritten for the set of struts b that belong to the reference
unit cell as

FbN
x

Ab
+ 32MbN

π D3
b

= 1. (25)

A dedicated code has been constructed from the previous developments for the cal-
culation of the plastic yield and brittle fracture surfaces of 3D porous open-celled
structure in the homogenized stress space. The code uses an input file including
the topology and mechanical properties within a selected unit cell, and delivers the
plastic collapse and brittle fracture stresses.

Although the developed models have the ability to describe the plastic and brittle
failure within the microstructure of cellular materials in a broad sense subjected to
multiaxial loadings, we are focusing in this contribution on vertebral trabecular bone.

2.4 3D Plastic Collapse and Brittle Fracture Surface
of Trabecular Bone

Trabeculae form a 3D porous lattice in cancelous bone, whose micro-architecture
determines its mechanical performance including the macroscopic strength. There-
fore, a 3D geometric model of a hexagonal structure is considered as an idealized
representation of vertebral trabecular bone, for which the yield domain and fracture
surface at the macroscopic level are identified from a micromechanical analysis. The
whole structure is generated from the repetition of this unit cell using the three peri-
odicity vectors defined in a Cartesian basis as shown in Fig. 2a. This work examines
the plastic collapse and brittle failure of a hexagonal model of rod-like columnar
structure considered as a prototype topology of vertebral trabecular bone. The model
is comprised of struts of length Lv with diameter Dh for the horizontal ones and
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Fig. 2 Representative model
of vertebral trabecular bone
and its parameters.
a Reference unit cell and its
periodicity vectors Y1, Y2
and Y3, b 3D hexagonal unit
cell with thick vertical
trabeculae and thinner
horizontal ones rendering of
human vertebral bone, and
c 2D hexagonal lattice

Table 1 Micro-structural
parameters for vertebral bone
based on morphology-age
relationships by Mosekilde
(1988), age is measured in
years

Parameter Relation

Horizontal trabeculae
thickness (μm)

Dh = −1.03× Age + 189

Vertical trabeculae thickness
(μm)

Dv = 0.14× Age + 208

Distance between horizontal
trabeculae (μm)

Lh = 13.74× Age + 288

Distance between vertical
trabeculae (μm)

Lv = −6.75× Age + 456

length Lh with diameter Dv for the vertical struts (see Table1). The architecture of
the model is based on studies of samples taken from the central part of vertebral
bodies from normal Individuals aged from 30 to 90 years (Mosekilde 1988, 1989).

Two different types of analysis have to be performed in the so-called ductile and
brittle failure modes in order to assess effects of the tissue level material behavior on
the apparent trabecular bone behavior. In the case of ductile response, tissue failure
occurs by yielding, while in the brittle case, tissue failure occurs via brittle fracture.

The overall collapse surface in the macroscopic stress space consists of inter-
secting collapse surfaces which are associated with particular collapse modes. The
initial yield strength of periodic trabecular structure is based on the first cell wall(s)
reaching the fully plastic limit moment of the cell walls in either tension or compres-
sion. The plastic yield surface is the inner envelope of the intersecting surfaces for
the plastic collapse mechanism. We define the onset of plastic yielding under a mul-
tiaxial state of stress for vertebral trabecular bones relying on the homogenization
model established in Sect. 2.3 with the plasticity criterion defined by Eq. (20). The
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Fig. 3 Plastic yield surfaces in the stress spaces of a Σx − Σy , b Σx − Σz , c Σy − Σz , d Σxy −
Σxz , e Σxy − Σyz , and f Σxz − Σyz , all the stresses are normalizedwith respect to the yield strength
of the bulk material. Age is 40 years with relative density ρ∗/ρs = 0.12

micro-architecture parameters of the trabeculae are selected for a person at the age
of 40, with an inclination angle of the oblique trabeculae θ = 600, corresponding to
a relative density of about 12%. The combination of the applied normal and shear
stresses which causes plastic collapse, plotted on the stress axes Σi j (i = x, y, z), is
a closed surface called the yield surface for vertebral trabecular bone, as illustrated
on Fig. 3. The yield surfaces are plotted according to Eq. (20) in various stress sub-
spaces, normalized by the trabecula yield strength σys (the yield strength is 136MPa,
based on the value reported in Gibson (2005)).

From the results illustrated in Fig. 3, some key features can be noticed: the plastic
yield domains are closed, anisotropic, and consist of several convex curved surfaces,
with some planar facets. All the plastic failure envelopes are symmetricalwith respect
to tensile and compressive loadings. Thismay derive from the fact that the initial yield
is based on the first cell strut to collapse in bending or reaching yield by extension. If
we would consider the post-buckling behavior past initial yield, the behavior would
exhibit a tension-compression asymmetry (in this study, we assume that the first
compressive buckling load is greater than the initial yield limit of any strut within
the lattice, so that no buckling is likely to arise).

At very low bone volume fraction (high slenderness ratios of trabeculae), tra-
becular bone may fail in a brittle mode. Additionally, at low slenderness ratios dry
individual trabeculae can also fracture in a brittle way (fracture with no tissue duc-
tility); the stress reaches the ultimate point very quickly (only a small amount of
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Fig. 4 Brittle fracture surfaces in the stress spaces of a Σx − Σy , b Σx − Σz , c Σy − Σz , for
a person aged 85 years with bone relative density ρ∗/ρs = 0.05. The tension–tension quadrant is
colored

plastic strain can be sustained, and consequently only a very small amount of load
is enough to break the whole specimen). We consider trabecular architectures cor-
responding to a typical lattice for a person aged 85 years. Such an (old) trabecular
lattice is selected since it has a low relative density of about 5% and at very low
bone relative density, trabecular bone is likely to fail in a brittle manner. Relying on
the brittle failure criterion Eq. (25), we evaluate in Fig. 4 the brittle failure response
of this lattice under a multiaxial loading by determining the brittle fracture surfaces
(the complete failure envelope).

From the evaluated brittle fracture surfaces (Fig. 4), some key points should be
noticed: from the in-plane stress state (Fig. 4a), it can be seen that the fracture surface
is elongated in the direction of tension and it is truncated in the biaxial tension zone
because of the brittle fracture of in-plane vertical trabeculae under the axial stress
Σy . Moreover, the fracture surfaces in stress spaces Σx − Σz , and Σy − Σz are
composed of several planar facets; they exhibit anisotropic properties and are closed
in the tension–tension zone.

3 Evolution of the Yield Surface with Ongoing Hardening
for 2D Extensional Lattices

As one can infer from the expression of the yield domain (Eq. (18)), the yield criterion
accounts for the extensional and flexural energies stored within the lattice. We are
further entitled to define a simpler although less complete criterion for 2D lattices
subjected to pure tensile/compressive loadings, as

Fb
x

t
< σys . (26)

Based on this criterionwe elaborate stress-strain relationwhen strain hardening takes
place. We assume that the first compressive buckling load is greater than the initial
yield limit of any beam within the lattice, so that no buckling will occur.
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3.1 Homogenized Macroscopic Cauchy Stress
and Micro-Stress Relationship

Assuming a negligible tangential force, a realistic assumption for tension dominated
lattices, the expression of the resultant reduces to

FFFb = Est

Lb

(
eeex ·

(
uuuE(b) − uuuO(b) + ∂uuu

∂λi

))
eeex = σbteeex . (27)

Thus, stress vector writes

SSSi =
∑

FFFbδib =
n∑

b=1

eeexσ
btδib (28)

with n the number of beamswithin the unit cell. Continuing further, the homogenized
stress tensor writes

[ΣΣΣ] = 1

g
SSSi ⊗ eeeλ

i = 1

g

(
n∑

b=1

eeexσ
btδib

)
⊗ eeeλ

i ≡ [Q p][σ ]. (29)

We have thereby obtained a matrix [Q p] linking the microscopic stress vector of the
beams [σσσ ] to the macroscopic homogenized [Σ] stress tensor.

3.2 Macroscopic Strain Related to Microscopic Stress

The one-dimensional equation for the beam strain in the case of elastoplastic lattices
submitted to pure traction writes

σ b = Es(e
b
e − eb

p) = Es

Lb

(
eeex ·

(
uuuE(b) − uuuO(b) + ∂uuu

∂λi
δib

)
− Lbeb

p

)
, (30)

where eb
e is the elastic strain and eb

p is the plastic slip associated with any beam b.
After determining the unknown kinematic variables from the equilibrium Eqs (1)

and (2), previous Eq. (30) delivers

[σ ] = [Ke][EEE] − [K p][ep] (31)

with [Ke] and [K p] the elastic and plastic rigidity matrices, respectively.
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3.3 Constitutive Equations at Microscale

We set up from the constitutive equations of a beam an incremental formulation using
an explicit integration scheme: this means the computation at each time step of the
tangent stiffness matrix [Kt ]n , such that

[dΣΣΣ]n = [Kt ]n[dEEE]n. (32)

The yield condition for any beam b writes

f b = |σ b| − sb = 0 (33)

denoting therein sb the deformation resistance, with initial condition: sb(t = 0) =
σys ; the response is purely elastic if f b < 0, otherwise the lattice may deform plas-
tically. The flow rule, defining the beam flow rate α̇b in relation to the plastic strain
rate for the same beam, variable ėb

p, writes

ėb
p = α̇bsign(σ b). (34)

We assume the following linear hardening law: ṡb = H bα̇b, with H b the hardening
modulus of the beam material. The Kuhn-Tucker complementary conditions must
be satisfied for plasticity to take place in a given beam:

α̇b ≥ 0, f b ≤ 0, α̇b f b = 0. (35)

3.4 Incremental Formulation and Integration Scheme

We use an explicit integration scheme of the constitutive equations, based on the
variable γ b, resulting from the time integration of the plastic flux α̇b over the time
interval dt , as

γ b = α̇bdt. (36)

We summarize the solution algorithm in the global flow chart shown in Fig. 5. The
imposedvariables in the considered strain drivenprocess are the strain tensor [EEE]n and
the strain increment [dEEE]n at a generic time step n. The internal variables [ep]n and
[s]n result from calculations done at the previous time step n − 1. The strain driven
structure of the algorithm is designed for the purpose to be easily implemented into
a FE code as a user material.

The algorithm involves two main steps: firstly, the calculation of the plastic flow
rate vector [γ ], and secondly, the evaluation of the tangent matrix [Kt ], which are
next detailed.
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Fig. 5 Strain driven
resolution scheme for an
elastoplastic homogenized
lattice

First step: calculation of the plastic flow rate [γ ]n+1

At time tn , the lattice is equilibrated, hence Eq. (31) reads

[σ ]n = [Ke][E]n − [K p][ep]n. (37)

At subsequent time tn+1 = tn + dt , the lattice is also equilibrated, thus it holds

[σ ]n+1 = [Ke][E]n+1 − [K p][ep]n+1

≡ [Ke]([E]n + [dE]n) − [K p]([ep]n + [sign(σ )]n+1[γ ]n)

= [σ ]trialn+1 − [K p]([sign(σ )]n+1[γ ]n). (38)

We further introduce the trial stress function representing a predicted stress based on
a purely elastic behavior

[σ ]trialn+1 = [σ ]n + [Ke][dE]. (39)

From Eq. (38), one can write

[sign(σ )]n+1([|σ |]n+1 + [K p][γ ]n) = [signσ ]trialn+1[|σ |]trialn+1. (40)

Assuming that each term in vector [K p][γ ]n is positive, we observe that the compo-
nents of vector [|σ |]n+1 + [K p][γ ]n are all positive. Therefore, we require that

[sign(σ )]n+1 = [sign(σ )]trialn+1 (41)

along with the condition

[|σ |]n+1 + [K p][γ ]n = [|σ |]trialn+1 (42)

and finally

[|σ |]trialn+1 − [|σ |]n+1 = [K p][γ ]n. (43)



198 I. Goda et al.

The yield function then writes

[ f ]n+1 = [|σ |]n+1 − [s]n+1 (44)

with [s]n+1 = [s]n + [H ][γ ]n and [H ] the diagonal matrix of plastic stiffness; this
allows rewriting the yield function as

[ f ]n+1 = [|σ |]n+1 − ([s]n + [H ][γ ]n). (45)

From (43), one can further write the yield function

[ f ]n+1 = [|σ |]trialn+1 − [K p][γ ] − ([s]n + [H ][γ ]n) (46)

and next

[ f ]n+1 = [ f ]trialn+1 − ([K p] + [H ])[γ ]n (47)

with the new tangent stiffness matrix

[Kγ ] = [K p] + [H ] (48)

and

[ f ]trialn+1 = [|σ |]trialn+1 − [s]n. (49)

From the Kuhn-Tucker condition

[ f ]n+1[γ ]n+1 = [0] (50)

we may consider the following subsystem of the set of Eq. (47)

[Kγ ]r [γ ]r,n+1 = [ f ]trialn+1,r . (51)

with [Kγ ]r a square matrix containing the rows and columns for which γ b is non-nil,
or equivalently f b

n+1 > 0, hence from previous equalities

[γ ]r,n+1 = [Kγ ]−1
r [ f ]trialn+1,r . (52)

Second step: determination of the tangent matrix
The stress increment [dσ ] can be expressed as the difference between two vectors in
the space of the micro-stress of the beams

[dσ ] = [Ke][dE] − [sign(σ )]trialn+1([K p][γ ]n) = [dσe] − [dσγ ]. (53)
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We introduce [ξ ] the matrix consisting of the diagonal terms ξi i = dσγi /dσei , such
that

[dσγ ] = [ξ ][dσe]. (54)

Introducing the new matrix [Kr ] as [Kr ] = [ξ ][Ke], Eq. (38) can then be reshaped
as

[σ ]n+1 = [σ ]n + ([Ke] − [Kr ])[dE]. (55)

Thus we get the new tangent stiffness matrix at n + 1

[Kt ] = [Q p]([Ke] − [Kr ]) (56)

All previous calculations are coded in FORTRAN as a user material subroutine in a
standard finite element code.

3.5 Applications Accounting for Ongoing Hardening

In order to validate the algorithm in the presence of strain hardening, we treat two
different lattices presenting a non-uniform deformation, each with a specific loading:
the square-star lattice is subjected to an imposed uniaxial displacement, while the
asymmetrical lattice is submitted to a biaxial loading.

3.5.1 Square-Star Lattice

The square-star lattice which topology is pictured in Fig. 6 is stretching dominated,
and it has internal nodes; it is a relevant application in the presence of strain hardening.

Fig. 6 Topology of the
square-star lattice
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Fig. 7 FE simulation of a beam submitted to displacement on the right edge for a a microstructured
beam, and b a continuous (homogenized) beam

In view of the numerical applications, we choose a relative density of this lattice to
be 0.15. Selecting a beam length L = 1/16mm, the corresponding width is then
calculated as t = 0.0012mm.

We perform a numerical tensile test over a macroscale beam of dimension
3mm × 0.5mm; the boundary conditions are represented on Fig. 7.Wewill compare
the results of two simulations: (a) A classical FE simulation with a microstructured
beam; (b) A continuous homogenized beam with a user material incorporating the
homogenized behavior determined from the previous algorithm.

We use the following mechanical data for the constitutive material of the beams:
an initial yield strength σY = 20MPa, an elastic modulus Es = 69,000MPa and a
plastic modulus H = 3000MPa. We simulate a two steps loading, consisting of an
imposed monotonous displacement up to a maximum ΔL = 0.003mm, followed
by unloading back to ΔL = 0mm. We use an explicit scheme with an adaptive
time step. In order to compute the stress-strain relationship, the strain is calculated
from ε11 = ΔL/L and the uniaxial stress σ11 is defined from the applied force.
The comparison of the two simulation results is given in Fig. 8, showing that the
homogenized response well agrees with the microstructural lattice response.

3.5.2 Asymmetrical Lattice

The asymmetrical lattice is given in Fig. 9. Here we consider a relative density of
0.15, the corresponding width is then calculated as t = 0.0565L . We use a lattice of
14 × 16 cells that constitutes a good approximation of a square (edge effects can be
neglected).

The lattice is loaded with an imposed biaxial stress increasing up to a maximum
value 1.2MPa for the continuum model, and an equivalent force for the discrete
model is applied to the intersection nodes of each cell at the lattice edge; the nodes
of the corners of the edge have been loaded with half the applied force.
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Fig. 8 Simulation of the traction-unloading for a microstructured beam and a homogenized con-
tinuous beam

Fig. 9 Topology of the
asymmetrical lattice

The comparison of the homogenized response with the discrete simulation results
in Fig. 10 shows an overall plastic flow triggered for the same stress loading, close
to 1.1MPa in both simulations. We can nevertheless note a small difference between
the discrete and continuous responses, presumably due to the fact that the transverse
force is neglected in the calculation of the continuous medium.

4 Plastic Yield Surface Based on Cosserat Theory—Size
Dependent Plastic Yield Criterion

Several works from the literature show the importance of consideringmicrostructure-
related scale effects on the macroscopic properties of bone (Goda et al. 2012, 2014).
This motivates to extend previous analyses of collapse mechanisms to micropolar
behaviors focusing on the plastic yield behavior in a 2D situation.
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Fig. 10 Stress-strain response due to the biaxial loading-unloading sequence of the asymmetrical
lattice

Accounting for the moments would allow the homogenization towards more gen-
eral effective media, such as micropolar continua, a more complete equivalent con-
tinuum incorporating a microrotation in addition to the displacement as kinematic
descriptors at the continuum level. This entails that the material can transmit couple
stresses in addition to tractions (classical stresses); those couple stresses develop
internal work in the variation of microcurvatures, defined as the spatial gradients of
the microrotation. As a consequence, the second order development of the displace-
ment is taken into account in this specific theory to capture the micropolar effect
and hence the asymptotic expansion of the rotation is limited to the first order. The
moments are then expressed at both ends as:

M O(b) = 6Eb
s I b

z

(Lb)2(1 + Φ)

(−eeey · (ΔUUU b
1 + ΔUUU b

2

))

+ Eb
s I b

z

Lb(1 + Φ)

(
(4 + Φ)φ

O(b)
0 + (2 − Φ)φ

E(b)
0

+
(

(4 + Φ)φ
O(b)
1 + (2 − Φ)φ

E(b)
1 + (2 − Φ)

∂φ0

∂λi
δib

))
, (57)

M E(b) = 6Eb
s I b

z

(Lb)2(1 + Φ)

(−eeey · (ΔUUU b
1 + ΔUUU b

2

))

+ Eb
s I b

z

Lb(1 + Φ)

(
(2 − Φ)φ

O(b)
0 + (4 + Φ)φ

E(b)
0

+
(

(2 − Φ)φ
O(b)
1 + (4 + Φ)φ

E(b)
1 + (4 + Φ)

∂φ0

∂λi
δib

))

with ΔUUU b
2 the second order displacement difference between the ends of each beam,

defined as ΔUUU b
2 = uuuE(b)

2 − uuuO(b)
2 . The unknown displacements un

1, un
2 and rotations

φn
0 , φ

n
1 , are determined for all nodes by solving the equilibrium Eqs. (1) and (2). The

solutions lead toun
1 andφn

0 expressed versus the displacement gradient or deformation
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tensor, while φn
1 and un

2 express versus the gradient of micro-rotation or the micro-
curvature tensor.

The homogenization of the discrete equilibrium of forces leads to the construc-
tion of the stress vectors therein FFFb = FFFb

x + FFFb
y in the 2D case; this in turn leads

to the homogenized Cauchy stress tensor. In order to get the couple stress compo-
nents, the local equilibrium of each individual strut is considered for the purpose of
homogenization, written at the center of each strut. After some developments and
simplifications, the moment equilibrium equation after homogenization takes the
following virtual power form

∫
Ω

μμμi · ∂www

∂λi
dλ =

∫
Ω

μμμi ·
(
∇∇∇xwww · ∂RRR

∂λi

)
dλ

=
∫
Ω

(
μμμi ⊗ ∂RRR

∂λi

)
: 1

g
(∇∇∇xwww)dx =

∫
Ω

(mmm · ∇∇∇x ) · wwwdx = 0 (58)

withmmm the macroscopic (effective) couple stress andwww the virtual rotational velocity.
The identification of the couple stress vectors μμμi leads in turn to the expression of
the homogenized couple stress according to

mmm = 1

g
μμμi ⊗ ∂RRR

∂λi
(59)

withμμμi therein expressed as the following sum overt all struts forming the lattice

μμμi =
∑
b∈BR

1

2
(M E(b)

2 − M O(b)
2 )δib. (60)

After solving for all unknowns displacements and rotations, we obtain the effective
constitutive equations, written in a 2D context in matrix format

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σx

σy

σxy

mxz

myz

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

︸ ︷︷ ︸
[ΣΣΣ]

= [K ]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εx

εy

εxy

χxz

χyz

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

︸ ︷︷ ︸
[EEE]

(61)

where [K ] is the effective (homogenized) stiffness matrix, σi j the symmetric part of
Cauchy stress tensor and mi j the couple stress tensor.

We consider here the reduced Cosserat theory, where the rotation is related to the
displacement gradients φz = (∂uy/∂x − ∂ux/∂y)/2. As a result, the strain tensor
εi j is symmetrical, with components defined as εxy = εxy = (∂uy/∂x + ∂ux/∂y)/2.
The couple stress tensor (or moment per unit area) has two components mxz, myz
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and the corresponding micro-curvatures express versus the micro-rotations as χxz =
∂φz/∂x, χyz = ∂φz/∂y.

We can next construct the matrix relating the microscopic stress tensor to the
macroscopic stress tensor; one first elaborates the force vector gathering all resultants
and moments for all struts of the reference unit cell

[F] = [F1
x F1

y M O(1) M E(1) F2
x . . .]T . (62)

After solving for all kinematic unknowns, we obtain the individual expressions for
all forces and moments. Theses expressions involve the macroscopic deformation
tensor [E], allowing to build the following relation between the microscopic stress
and the macroscopic deformation

[F] = [Qe][E]. (63)

This in turn entails the following relation between the microscopic stress and the
macroscopic stress

[F] = [Qe][K ]−1[Σ]. (64)

On the basis of the previous calculation of the microscopic stress, we can use the
criterion of plasticity initiation inEq. (17) to define the boundary of the elastic domain
of the micropolar continuum medium.

By inserting the macroscopic Cauchy and couple stresses Σ N normalized by the
initial yield strength of strut material into Eq. (64), the following relation is obtained

[F N ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

F1
x

F1
y

M O(1)

M E(1)

F2
x

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

N

= [Qe][K ]−1[Σ N ] = [Qe][K ]−1

⎡
⎢⎢⎢⎢⎣

σx/σys

σy/σys

σxy/σys

mxz/σys

myz/σys

⎤
⎥⎥⎥⎥⎦ . (65)

The plastic yield surface domain of the trabecular lattice is then the surface delimited
by the yield criterion; the system of previous equations rewrites for the set of struts
that belong to the reference unit cell forming the lattice as

((
FbN

x

)2 + 4|MbN |
)

/t2 = 1. (66)

We next plot the plastic yield surfaces of the trabecular bone lattice adopting the
following micro-architecture parameters of the 2D trabecular bone cell (see Fig. 2c):
the trabecular separation and trabecular thickness are respectively 0.726 and
0.148mm. To evaluate the overall plastic yield strength relying on micropolar the-
ory, we plot the plastic yield surfaces under the shear stress combined with the
couple stress in x–z plane and the couple stress state in both x–z and y–z planes as
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Fig. 11 Plastic yield surfaces under combined shear a σxy and b couple stresses states mxz, myz

well (Fig. 11). The plastic yield surface consists of the intersection of the collapse
surfaces of the vertical and inclined struts.

As a matter of fact, the classical yield criterion does not describe the yield size
dependency that has been observed in microstructured structures, and thus it may
underestimate the yield loads of structures. So, we suggest a specific size-dependent
plastic yield criterion relying on micromechanical model on the basis of the microp-
olar theory. In order to develop the micropolar yield criterion, the deviatoric part
of the strain energy density of the microscale structure including both classical and
non-classical parts is calculated based on this theory and equated to the deviatoric
strain energy of a macro-sample subjected to its yielding tensile load.

The strain energy density consists of one part due to dilation (volume changes)
and a second one accounting for distortion (change of shape); the former is called
the dilatational strain energy (hydrostatic part) and the latter the distortional energy
(deviatoric part). From this decomposition, the hydrostatic and deviatoric energy
densities based on micropolar theory take the forms

U = 1

2
(σi jεi j + mi jχi j )

∣∣∣∣
H

+ 1

2
(σi jεi j + mi jχi j )

∣∣∣∣
D

. (67)

The hydrostatic stress tensor writes as follows σi j

∣∣
H

= 1
3δi jσkk and the correspond-

ing hydrostatic strain will be εi j

∣∣
H

= 1
3δi jεkk = 1−2ν

3E δi jσkk . Here, the hydrostatic
components of the couple stress and curvature tensors will vanish; however, they
will appear later on in the distortional part. Accordingly, the dilatational part of the
strain energy can be obtained as

UH = 1 − 2ν

6E
(σkk)

2. (68)
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The deviatoric stress tensor can be obtained by subtracting the hydrostatic stress from
the total stress tensor as σi j

∣∣
D = σi j − 1

3δi jσkk . In the same manner, the deviatoric
strain is obtained as

εi j

∣∣
D = εi j − 1

3
δi jεkk = 1

E
((1 + ν)σi j − νδi jσkk) − 1 − 2ν

3E
δi jσkk

= 1 + ν

E

(
σi j − 1

3
δi jσkk

)
︸ ︷︷ ︸

σi j

∣∣
D

.

The non-classical part of the strain energy due to the couple stress and curvature
tensors will have a deviatoric nature as will be shown next; therefore, the distortional
part of the strain energy can be evaluated by subtracting the dilatational term from
the total strain density as follows

UD = 1

2
(σi jεi j + mi jχi j ) − 1 − 2ν

6E
(σkk)

2

= 1

2

(σi j

E
((1 + ν)σi j − νδi jσkk) + mi jχi j

)
− 1 − 2ν

6E
(σkk)

2. (69)

According to vonMises’s yield theory, a ductile solid will yield when the distortional
energy density reaches a critical value for that material; this critical value of the
distortional energy can be estimated from a uniaxial tensile test. At the instance of
yielding, σxx = σY (yield stress), and all other normal and shear stresses will vanish;
therefore, the distortion energy density associated with yielding is

UD

∣∣
Y = 1 + ν

3E
σ 2

Y . (70)

We then equate the distortional strain energy density of the micro-level structure
which incorporates both the classical and non-classical terms to the distortional
strain energy stored in a macro-level sample at the yield point during a tensile test,
as follows

(
σi jσi j − (σkk)

2

3

)
+ E

1 + ν︸ ︷︷ ︸
2G

mi jχi j = 2

3
σ 2

Y . (71)

Consequently, yielding will occur when the stresses and couple stresses produced
by loadings satisfy the previous equation. We can also define an equivalent stress
σeq based on the previous relation to express the failure condition under which yield
occurs, σeq ≥ σY as

σeq =
√
1

2

(
3σi jσi j − (σkk)2

) + 3Gmi jχi j . (72)
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Fig. 12 Schematic diagram of a micro-structured cantilever beam with rectangular cross section
exposed to a concentrated force at its free end

It is obvious that when the non-classical term in Eq. (72) vanishes, the classical von
Mises yield criterion is recovered.

Consistent with the basic assumptions of Bernoulli-Euler beam and the one-
dimensional beam theory (Fig. 12), the nonzero components of the static and kine-
matic variables write

σxx = E∗
x y

∂2v(x, t)

∂x2
, χxz = ∂φz(x, t)

∂x
= ∂2v(x, t)

∂x2
, and mxz = γxz

∂2v(x, t)

∂x2
,

(73)

where v represents the lateral deflection of the beam in y-direction, x and y refer
respectively to the longitudinal and lateral coordinates, E∗

x stands for the effective
homogenized elastic Young’s modulus of the macroscopic equivalent beam, and γxz

is the homogenizedmicropolar bending constant. The rotation angle of the centroidal
axis of the beam is related to the deflection as:

φz(x, t) = ∂v(x, t)

∂x
.

Upon substitution of non-zero components of stress, couple stress, and curvature
in Eq. (73) into Eq. (72), the equivalent or yield stress of the microstructured beam
writes

σ ∗
Y =

√(
E∗

x y
∂2v(x, t)

∂x2

)2

+ 3Gxyγxz
∂4v(x, t)

∂x4
. (74)

The external bending moment acting on a beam based on the micropolar theory can
be written as

M =
∫
A

(
E∗

x y2
∂2v(x, t)

∂x2
+ γxz

∂2v(x, t)

∂x2

)
dA = (E∗

x I ∗
z + γxz A)

∂2v(x, t)

∂x2
(75)

I ∗
z refers to the second moment of cross-sectional area is defined by

I ∗
z =

∫
A

y2dA,
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with A the cross-sectional area of the macroscopic beam and y the perpendicular
distance to the neutral axis.

Substituting the second displacement gradient fromEq. (75) into Eq. (74), one can
obtain after simplification a relation for the yielding load in the following form

(σ ∗
Y )2 = M2

(
(E∗

x y)2 + 3Gxyγxz
)

(
E∗

x I ∗
z + γxz A

)2 . (76)

The size-dependent yielding behavior of the micro-structured beams is analyzed
by considering a micro-structured cantilever with uniform rectangular cross section
with height H and width W , subjected to a concentrated force F acting on its free
end as shown on Fig. 12. For this beam, the maximum bending moment happens at
the clamped end based on the relation Mmax = F L , and the maximum distance on
the beam section from the neutral axis is ymax = H/2. Hence, the yield moment is
determined as Mmax = F L .

The yieldingmoment of the beamcan bewrittenwith the characteristicmicropolar
bending length lb using the relation

lb = √
(γxz)/2(2μ∗ + k),

as

MY = σ ∗
Y (E∗

x I ∗
z + 4l2b Gxy A)√(

E∗
x y
)2 + 12G2

xyl2b

. (77)

We here focus on the fully plastic moment of a yielded section of a beam, wherein the
plastic moment MP is always greater than the yielding moment. Rewriting Eq. (77)
leads to the fully homogenized plastic moment of a beam with rectangular cross-
section as

MP = 3

2

(
E∗

x H 3

12 + 4l2b Gxy H
)

√(
E∗

x H
2

)2 + 12G2
xyl2b

σ ∗
Y . (78)

We note that when the length scale bending parameter lb is negligible, the plastic
yield load of a classical cantilever beam can be obtained from Eq. (78) as

F L

H 2
= MP

H 2
= 1

4
σ ∗

Y .

It should be noted that σ ∗
Y refers to the effective homogenized initial yield strength

of the beam material; it is determined based on the micromechanical model using
the maximum elastic bending moment criteria.
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Fig. 13 Effect of bone
specimen size on the plastic
yield moment of the beam
tested in Fig. 12, lb = 12mm

In order to assess the size-dependent plastic yield of micro-structured beams, we
consider themicrobeams to bemade of human trabecular bone; the geometrical para-
meters of the 2D trabecular lattice are selected as follows: the trabecular separation
and trabecular thickness are respectively 0.726 and 0.148mm, and the inclined angle
of the hexagonal trabecular cell is 300.

The plastic moment MP/H 2 normalized by the initial yield stress of bulk material
σys is evaluated on the basis of the developed size dependent plastic yield criterion
and compared to the classical plastic moment (Fig. 13). We observe that contrary to
the classical plastic yield criterion, the present non-classical yield criterion is able
to capture the size dependency. It is indicated that when the characteristic size of
the microscale structure is comparable to the length scale of the structure material,
there will be a considerable gap between the results of the classical criterion and the
results of the micropolar based criterion. It is also worth noticing that, when the size
of the beam samples increases, one recovers the plastic yielding moment predicted
by the classical criterion.

5 Conclusions

In the present work, 3D models have been constructed based on micromechani-
cal approaches for describing the multiaxial yield and failure behavior of lattice-
like structures. The discrete homogenization technique is developed as a convenient
micromechanical approach to construct the plastic yield surfaces of 2D and 3D peri-
odic lattices of articulated beams at a continuum level. The initial lattice is replaced
by an effective Cauchy continuous medium at an intermediate scale, endowed with
effective properties representative of an identified representative unit cell within the
structure. The proposed methodology is quite general, as the representative unit cell
includes internal nodes and no assumption of uniform deformation is needed.
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The characterization of trabecular bone tissue material and the determination of
its failure characteristics and role in the trabecular bone mechanical behavior are of
significant clinical importance. In this regard,wehave established a complete strength
criterion under multiaxial loads for human trabecular bone based on relationships
between the morphology and multiaxial failure properties of bone.

The effective elastoplastic response of general 2D beam lattices has been fur-
ther obtained thanks to an adaptation and extension of the discrete homogenization
method. The stress-strain response accounting for ongoing hardening has been con-
structed. The proposed method has been implemented as a material user subroutine
within a standard FE code. We have shown that the method can treat indifferently
all stretching dominated lattices that exhibit a non-uniform response in terms of
the local deformation pattern; as an illustration, the response of two original lat-
tices, called “square-star” and “asymmetric” has been constructed. The comparison
between classical FE simulations and the response of the effective (homogenized)
continuum shows a good agreement for a cycle consisting of monotonous tension
followed by unloading.

Accounting for the moments allows the homogenization towards the more com-
pletemicropolar framework, incorporating amicrorotation in addition to the displace-
ment as kinematic descriptors at the continuum level. Such extension and adaptation
towards a micropolar effective medium led to construct the plastic yield surfaces for
which thematerial point supports couple stresses in addition to Cauchy-type stresses.
As a consequence, the plastic yield surfaces of trabecular bone modeled as open cell
structures are determined under the external applied couple stresses. Additionally,
a non-classical size-dependent plastic yield criterion has been developed relying on
the non-classical continuum theory in order to capture the size dependency observed
in the bone structures. It has been observed that when the characteristic size of the
bone sample is comparable to the bending length, a considerable difference is shown
between the results based on the non-classical and classical theories.

The analysis of the local mesoscopic response of 2D extensional dominated lat-
tices in the plastic regime when strain hardening takes place will be extended to
explore the multiaxial response of bending dominated lattices using a more refined
yield criterion. The overall modeling of the plastic and brittle collapse behaviors
of porous solid materials incorporating size effects shall be considered in future
investigations.
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An Improved Constitutive Model for Short
Fibre Reinforced Cementitious Composites
(SFRC) Based on the Orientation Tensor

Heiko Herrmann

Abstract Short fibre composites are becoming increasingly popular in many
applications. This is also true for civil engineering, where short fibre cementitious
composites are used more often. For the use in load bearing structures, a constitutive
mapping is necessary to calculate the design load and to predict cracking behaviour.
Here a constitutive mapping based on the use of isotropic tensor functions of the
strain tensor and the orientation tensor is proposed. The model solves some issues of
other approaches. A comparison with other constitutive mappings based on tensors
is provided.

Keywords Constitutive model · Short fibres · Cementitiuos composites ·
Orientation tensor · Orientation distribution function

1 Introduction

The properties of steel fibre reinforced concrete (SFRC) (Fig. 1) have been investi-
gated for a long time already (Swamy 1975; Bentur and Mindess 1990; Tejchman
and Kozicki 2010; Ju et al. 2007), yet the search for a constitutive function which can
take into account any fibre orientation distributions continues. The anisotropic nature
of SFRC has been emphasized e.g. by Bentur and Mindess (1990), Barragán et al.
(2003) and properties of SFRC in connection with fibre orientation have been topic
of several Ph.D. theses (Grünewald 2004; Lappa 2007; Laranjeira de Oliveira 2010;
Trüb 2011; Baby 2012; Svec 2013; Eik 2014), which came up with novel ideas how
to deal with the fibre orientations. Still the problem is unsolved. Consisting dimen-
sioning rules (standards) or even finite element (FEM) software, that can calculate
(predict) the strength of a structural element are missing. This situation is common
to all kinds of cementitious matrix composites reinforced with short metal fibres,
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Fig. 1 A cut through SFRC,
the white parts are filled
pores, the silvery-bright
spots are cut fibres

e.g. ordinary concrete (SFRC) and self-compacting concrete (SCSFRC, SFR-SCC)
as well. The importance to develop a constitutive function, which can be used for
example in FEM software to calculate and predict the strength of a structural ele-
ment, has been discussed by several authors (Tejchman and Kozicki 2010; Eik and
Puttonen 2011; Herrmann and Eik 2011; Herrmann et al. 2014). This constitutive
function should take into account the anisotropy and be able to handle any fibre
orientation distribution.

Common approaches start from experiments and try to estimate the properties
of SFRC. This approach has to cope with fluctuations during the production of the
samples, which makes is difficult to differentiate between experimental uncertainties
and effects of the theory to be developed. As has been demonstrated in Herrmann
et al. (2014) there would need to be about 130,000 experiments made with the same
matrix-properties to tackle the problem. This number is the result of assuming that a
change of ΔS = 0.1 or ΔbS = 0.1 in the order parameter or biaxiality (see Sect. 2.1
and Maier and Saupe 1959, 1960; Pardowitz and Hess 1980; Eppenga and Frenke
1984; Herrmann and Eik 2011; Suuronen et al. 2013) or a change of 10◦ in orientation
of the orientation distribution function will produce a notable change in the material
properties. Fluctuations in the production process of the samples will increase the
number of necessary experiments even more.

In this paperwewill start from the theoretical side, placing assumptions aboutwhat
parameters will influence material properties and how to describe fibre orientations.
Starting from the theory-level may initially increase the complexity of the developed
theory, but has the advantage that much less experiments will be needed to confirm
or reject the approach. If necessary, an attempt to decrease the complexity of the
theory for practical application can be made later.

The aim is to formulate a constitutive model for a homogeneous anisotropic mate-
rial, although concrete is heterogeneous at a small scale, the description can be
homogenized at larger scales (dimensions of structural elements). This approach is
suitable and typical for a FEM implementation.
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Although concrete in general exhibits a non-linear visco-plastic behaviour at large
deformations or at long times (creep), in this article an anisotropic linear elasticmodel
will be developed as a first step. There aremany applications,where the dimensions of
structural elements are determined by other constraints, e.g. acoustics or the ability
to fit a tube into the element. This is quite common for floor slabs in office or
apartment buildings, which are from a capacity point-of-view over-dimensioned and
will not be loaded to the design limit, so cracks will never appear. Nevertheless
usually a “minimum re-inforcement” is added. Due to the still brittle nature of SFRC
a restriction to small deformations seems also necessary, despite the failure becoming
more gradual due to the effect of the fibres. However, using a similar method to the
one presented here, non-linear and visco-plastic models can be formulated as future
developments. The main concept is to use an additive superposition of an isotropic
material with an anisotropic one.

A summary of the used notation and symbols can be found in Table1.

Table 1 Summary of used
notation and symbols

General notation:

v Vector (bold small)

⊗ Outer (tensorial) product

B (second order) tensor (bold capital)

BT Transposed second-order tensor
[4]C Fourth-order tensor
[l]C l-order tensor

AB Scalar product

A Symmetric irreducible (traceless) tensor

n ⊗ · · · ⊗ n︸ ︷︷ ︸
l−times

l-order Symmetric traceless tensor product

Special symbols:

A Orientation tensor

A Second-order alignment tensor
The tracefree part of the orientation tensor

L Structural tensor

E Lagrange strain tensor

(Green–Lagrange strain tensor)

C Green strain tensor

(right Cauchy–Green tensor)

S Second Piola–Kirchhoff stress tensor
[4]C Elasticity tensor

W Strain-energy function of concrete (WC),
fibres (W F) and composite (W SFRC)

n, n(i) Orientation (of a single fibre), unit vector



216 H. Herrmann

2 Phenomenological and Theoretical Considerations

In this section some methods and considerations will be discussed, such as how to
describe fibre orientation distributions analytically and how to include these into
constitutive mappings. Further, assumptions about the applicable range of the con-
stitutive mapping will be made.

2.1 Description of the Fibre Orientation Distribution

As has been discussed in Herrmann and Eik (2011), Herrmann et al. (2014) the ori-
entation distribution of fibres can be described by a spherical orientation distribution
function (ODF), analogue to the orientation distribution of liquid crystals (Muschik
et al. 1996, 2000). The ODF can be expanded into a series using tensor coefficients
aμ1...μl , these correspond to spherical harmonical functions. The expansion is given
in the following way:

f (n) = 1

4π

(
1 +

∞∑
l=1

(2l + 1)!!
l! aμ1...μl nμ1 · · · nμl

)
(1)

aμ1...μl =
∮

S2
f (n) nμ1 · · · nμl d2n. (2)

where nμ1 · · · nμl is the symmetric traceless part of the l-fold tensor product ofnwith
itself. Vice versa it is possible to approximate the analytical ODF frommeasurements
by calculating several low order tensors of the series expansion from measured data
and cutting the series at the desired accuracy. The procedure, criteria and desired
accuracy will be discussed elsewhere. Here the accuracy is restricted to the use of
the second order tensor. This tensor can be easily calculated from fibre orientation
data, which has been obtained e.g. by CT measurements (Suuronen et al. 2013) or
DC-conductivity testing (Eik et al. 2013), in the following way:

aμν = 1

N

N∑
i=1

n(i)
μ n(i)

ν (3)

= 1

N

N∑
i=1

(
n(i)

μ n(i)
ν − 1

3
δμν

)
. (4)

It is important to note, that the orientation distribution of the fibres varies with
respect to the position in a structural element. This happens because the fibres tend
to orient according to the flow of the fresh concrete mass, the wall effect (formwork)
and due to workers moving the concrete mass with shovels etc. Therefore, there is no
representative volume element (RVE) whose ODF is valid for the whole structural
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element, there are only statistical volume elements or meso-volume elements, that
are large enough to allow a homogenization, but small enough to have a constant
ODF in them. These are representative either only for themselves or for a small area
around them.

2.2 Phenomenological: Hyperelastic Material

In the present approach no history dependence (aging) should be taken into account,
therefore a hyperelastic material model is suitable. The constitutive function (stress–
strain relation) will be based on a strain-energy function, whose derivative results in
the desired stress–strain relation. The constitutive function of an anisotropic medium
can be obtained by help of representation theorems for isotropic tensor functions
(Truesdell and Noll 1965; Itskov 2009; Liefeith and Kolling 2007). One should
note, that an isotropic tensor function does not lead to an isotropic medium. The
anisotropy is taken into account by structural tensors. In the case of short fibre
reinforced materials, the anisotropy is caused by the fibre orientation distribution
function (ODF) and the structural tensor is related to the second-order alignment-
tensor (Herrmann and Eik 2011).

This motivates two approaches

1. the use of the eigenvectors of the alignment tensor to define structural tensors and
to formulate relations analog to an orthotropic material

2. the use of the alignment-tensor directly

The first approach is discussed in Herrmann et al. (2014), the second approach
will be discussed in detail in the following. Both approaches will be compared in
Sect. 4.

It should be noted, that the second-order alignment tensor is not idempotent, which
is a quality that is usually desired for a structural tensor.

2.3 Material Symmetry, Structural Tensors and Alignment
Tensor

Material symmetry is usually described by the group of transformations under which
the material properties are invariant. In this context structural tensors, describing the
main symmetry axes (Fig. 2), are introduced. A structural tensor is defined by

L(i) = l(i) ⊗ l(i), (5)

where l(i) is a unit vector pointing in the direction of the i th symmetry axis. Usu-
ally structural tensors are idempotent (L2 = L) and form a partition of unity
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Fig. 2 ODF and symmetry
planes defined by the
eigenvectors of the second
order alignment tensor

(
∑

i L(i) = I). In the case of an orthotropic material the structural tensors are also
orthogonal to each other. Here the structure and symmetry of the material (not of
the structural element) are described by the second order orientation tensor A. Note
that the orientation tensors are build in a similar way as the structural tensors (sum
of outer products of a unit vector with itself). The second order orientation tensor,
however, is not idempotent.

3 Constitutive Relations for SFRC in the Elastic Range

Now the decision needs to bemade if the elastic constitutivemapping should be linear
or non-linear. If linear is chosen, then the elasticity tensor Ci jkl does not depend on
E. This means, that the ansatz for the strain-energy function W needs to be quadratic
in E, higher order terms are not allowed and lower order terms will disappear due to
the second derivative with respect to E.

Several factors influence the properties of SFRC, one possibility to characterize
them is as follows:

• matrix strength (influenced by concrete recipe, porosity),
• fibre-matrix bond (influenced by porosity, concrete recipe, fibre surface),
• local fibre amount (influenced by rheology/flow/vibration),
• local fibre orientations (influenced by rheology/flow/vibration) and
• fibre strength (fibre material and shape).

All factors together determine the strength of the composite and can be independent
of each other. It is clear that the fibre orientation distribution is only one of several
factors, however, it is the main cause for anisotropy and needs a tensorial treat-
ment. Here, the focus is on how to include the fibre orientations into the constitutive
function, the other factors are taken into account by scalar coefficients.
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In the following an ansatz for the strain-energy function as an isotropic tensor
functionwill be given and the stress–strain relationwill be derived from this function.
An isotropic tensor function can be represented as a function of the invariants of its
tensor arguments (Truesdell and Noll 1965) (citing theorem by Spencer and Rivlin
1959 and proof by Smith 1960 and Spencer 1961).

In the following an ansatz for a strain-energy function for SFRC is proposed as
a superposition of an isotropic strain-energy function for the concrete matrix and an
anisotropic strain-energy function taking into account the fibre distribution:

W SFRC(E, A) = νmWC(E) + νfW
F(E, A), (6)

where WC(E) is the strain-energy function for the matrix, W F is the strain-energy
function for the fibres, νm is the volume fraction of matrix and νf is the volume
fraction of fibres, resp. νm + νf = 1.

3.1 The Isotropic Matrix

As stated before, a linear stress–strain relation is desired, this means that a quadratic
ansatz for the strain-energydensityW is used, this is the standard isotropicSt.Venant–
Kirchhoff model

WC(E) = λ

2
tr 2(E) + μ tr(E2). (7)

Taking the derivative with respect to E gives the stress tensor

SC(E) = ∂WC

∂E
= λ tr(E)I + 2μE. (8)

3.2 Anisotropic Fibres: Enrichment by the Orientation
Tensor

One of the possibilities mentioned in Sect. 2.2 is the enrichment of the St. Venant–
Kirchhoff model by use of the alignment tensors, thus an anisotropic strain-energy
function to model the fibres is proposed:

W F(E, A) = κfg

(α

2
tr(EA)2) + β tr(E2A)

)
. (9)
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Inserting this into Eq. (6), the strain-energy function for SFRC results in

W SFRC(E, A) = νm

(
λ

2
tr 2(E) + μ tr(E2)

)
(10)

+νfκfg

(α

2
tr(EA)2) + β tr(E2A)

)
,

where A = a + 1
3 I and a is the second-order alignment-tensor (Hess and Köhler

1980; Muschik et al. 1996; Hess 2015) and νm is the volume fraction of matrix and
νf is the volume fraction of fibres, resp. νm+νf = 1, κfg is a factor taking into account
the fibre geometry and the imperfect bond between fibres and matrix (κfg ≤ 1).

Again, the stress-tensor is derived by taking the derivative with respect to E

SSFRC(E, A) = νm (λ tr(E)I + 2μE) (11)

+νfκfg
(
α tr(EA)AT + β

(
(AE)T + (EA)T

))
,

and the elasticity tensor follows as

[4]C = ∂S
∂E

, (12)

Ci jkl = ∂Si j

∂ Ekl
, (13)

which results in

CSFRC
i jkl (A) = νm

(
λδi jδkl + 2μδikδ jl + 2μδilδ jk

)
(14)

+νfκfg
(
αAi j Akl + β

(
2Aikδ jl + 2Ailδ jk

))
.

The constitutive model presented above bears similarity to the model proposed in
Altenbach et al. (2003) for short fibre reinforced plastics, a comparison is discussed
in the next section.

4 Comparison with Other Models for Short Fibre
Reinforced Materials

Previously an orthotropic model where the symmetry planes were derived from the
ODF has been proposed in Eik et al. (2015a, b). This approach also starts from a
hyperelastic material, proposing a strain-energy density, which contains structural
tensors to account for the orthotropy:
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W (E(c)) = V (m)

(
1

2
γ (tr(E(c)) tr(E(c))) + G tr((E(c))2)

)
︸ ︷︷ ︸

concrete, isotropic

+ V ( f )

⎛
⎝1

2

3∑
i, j=1

γ i j tr(E(c)Li ) tr(E(c)L j ) +
3∑

i, j �= i

Gi j tr(E(c)Li E(c)L j )

⎞
⎠

︸ ︷︷ ︸
fibres, orthotropic

.

(15)

One obtains the constitutive relation for the second Piola–Kirchhoff pseudo-stress
tensor S:

S(c) = ∂

∂E(c)
W (E(c))

= V (m)
(
γ I tr(E(c)) + 2GE(c)

)
︸ ︷︷ ︸

concrete, isotropic

+ V ( f )

⎛
⎝ 3∑

i, j=1

γ i j tr(E(c)L j )Li + 2
3∑

i, j �= i

Gi j Li E(c)L j

⎞
⎠

︸ ︷︷ ︸
concrete, isotropic

.

(16)

Further differentiation of Eq. (16) will give the 4th-order elasticity tensor

[4]C(c) = V (m)
(
γ I ⊗ I + 2G [4]IS

)
︸ ︷︷ ︸

concrete, isotropic

+ V ( f )

⎛
⎝ 3∑

i, j

γ i j Li ⊗ L j +
3∑

i, j �= i

2Gi j (Li ⊗̃ L j )S

⎞
⎠

︸ ︷︷ ︸
concrete, isotropic

.
(17)

The material constants γ i j and Gi j can be obtained from the orientation averaged
single-fibre elasticity tensor:

C ( fl)
i jkl =

∮
S2

Qim(n)Q jn(n)Qko(n)Qlp(n)C ( fid)
mnop f (n)d2n.

In Herrmann et al. (2014), Eik et al. (2015b) only the second order alignment tensor
is used to approximate the ODF.

Although developed for a different matrix and fibre material, i.e. short fibre plas-
tics, the model proposed by Altenbach et al. (2003) would be applicable as well, with
the correct choice of the coefficients. The motivation of this model uses an orienta-
tion averaging of a stress tensor of a transversely isotropic material, i.e. matrix with
aligned fibres. This approach can also be used in connection with Eshelby (1957)
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or Mori and Tanaka (1973) models for the single-fibre-matrix system. By starting
with the postulation of the transversely isotropic stress tensor, this model does not
follow the hyperelastic strain-energy approach. Although, it could be possible to find
a strain-energy density to reproduce the stress tensor.

S̃(m) = λ tr(E)I + 2μT E + αE · ·N ⊗ I + α tr(E)N

+βE · ·N ⊗ N + 2(μL − μT )[N · E + E · N], (18)

N = m ⊗ m, (19)

S =
∫

S
f (m)S̃(m)dS (20)

= λ∗ tr(E)I + 2μ∗E · ·(B ⊗ I + I ⊗ B) (21)

+2ξ∗(B ⊗ E + E ⊗ B) + η∗E · ·B ⊗ B,

λ∗ = λ + 2

3
α + 1

105

(
13 − 4

3
ψ

)
, (22)

μ∗ = 1

3
(μT + 2μL) + 13

105
β(1 − ψ), (23)

β∗ = α + 1

7
β

(
1 + 4

3
ψ

)
, (24)

ξ∗ = μL − μT + β
1 − ψ

7
, (25)

η∗ = ψβ, (26)

ψ = 1 − 27(A), (27)

B = A − 1

3
I, (28)

tr A = 1, (29)

a · A = A · a. (30)

Thismodel offers an advanced precision, but considering the practice on construction
sites, the question arises which precision is actually achievable in practical applica-
tions.

The new model proposed in Sect. 3.2 maintains the simplicity of the model in
Herrmann et al. (2014), Eik et al. (2015b) while solving the problem with negative
matrix entries, that have been present in the orthotropic model, due to the approxi-
mation of the ODF, as can be seen in the next section.

5 Example Distributions and Resulting Elasticity Tensors

Below the orientation weighted fourth-order elasticity tensors in material symmetry
axes ofμCTmeasured cylinder samples are presented. The tensors are given utilizing
the Kelvin–Mandel variant of the Voigt notation (Bertram 2005), see Eq. (31), only
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the fibre-part is presented

CK−M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

C1111 C1122 C1133

√
2C1123

√
2C1131

√
2C1112

C1122 C2222 C2233

√
C2223

√
2C2231

√
2C2212

C1133 C2233 C3333

√
C3323

√
C3331

√
C3312√

2C1123

√
2C2223

√
2C3323 2C2323 2C2331 2C2312√

2C1131

√
2C2231

√
2C3331 2C2331 2C3131 2C3112√

2C1112

√
2C2212

√
2C3312 2C2312 2C3112 2C1212

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (31)

The fibre contribution in sample 3a-middle from Suuronen et al. (2013) with the
constitutive function from Eik et al. (2015b):

C ( f )K−M =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.50 Y 0.07Y 0.109128Y 0 0 0
0.07Y −0.051Y 0.017Y 0 0 0
0.11Y 0.017Y 0.16Y 0 0 0

0 0 0 0.03Y 0 0
0 0 0 0 0.22 Y 0
0 0 0 0 0 0.15Y

⎞
⎟⎟⎟⎟⎟⎟⎠

(32)

the same sample with the new constitutive function:

C( f )K−M =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.46α + 2.72 β 0.02 α 0.19α 0 0 0
0.02 α 0.001α + 0.14β 0.01α 0 0 0
0.19α 0.01α 0.08α + 1.14β 0 0 0

0 0 0 0.14 β 0 0
0 0 0 0 1.14 β 0
0 0 0 0 0 2.72 β

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(33)

As one can see, the new constitutive function offers more flexibility, as there are two
parameters for the fibres, and most importantly solves the problem with the negative
entries in the elasticity matrix.

An artificial example with perfectly aligned fibres in x-direction, with the old
constitutive function

C ( f )K−M =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.77Y 0.114 Y 0.114 Y 0 0 0
0.114 Y −0.09Y −0.03Y 0 0 0
0.114 Y −0.03Y −0.09Y 0 0 0

0 0 0 −0.06Y 0 0
0 0 0 0 0.23Y 0
0 0 0 0 0 0.23Y

⎞
⎟⎟⎟⎟⎟⎟⎠

. (34)
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and with the new one

C ( f )K−M =

⎛
⎜⎜⎜⎜⎜⎜⎝

1α + 4β 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 4β

⎞
⎟⎟⎟⎟⎟⎟⎠

. (35)

This example demonstrates, that the old constitutive function underestimates the
contribution of perfectly aligned fibres. More generally, the old constitutive function
has difficultieswith fibre orientation distributions that have sharpmaxima. To be fully
correct, the limitation in the constitutive function published in Eik et al. (2015b) is,
that some coefficients are determined by rotation averaging with the ODF, where the
ODF is only known approximately, i.e. up to the second order alignment tensor. The
same accuracy as the new constitutive function could probably be achieved by using
higher order tensors, at the expense of having to calculate these.

6 Outlook: Constitutive Relations for Cracked SFRC

When cracks are developing, in the vicinity of the cracks only the fibres can carry
the tensile load and stress (beginning of “range 2” in Fig. 3). A stress redistribution
from matrix-plus-fibres to fibres should take place. If there are enough fibres and the
anchorage is strong enough, this should work. The chemical bond between fibre and

Fig. 3 Sketch of
stress–strain measurements
and ranges of the constitutive
mappings
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matrix is lost in this area, hence the fibres will act along their main axis only and
their job is to bridge the cracks.

In the parts of a structural element, respectively in meso-volumes, that contain
cracks, the constitutivemappingwill become strain and strain-history dependent. The
first approach to extend the constitutive mapping into the inelastic deformations, can
be the following:

SSFRC(E, A, h) = νfκfg
(
α tr(EA)AT + β

(
(AE)T + (EA)T

))
. (36)

In this case, the matrix contribution has simply been removed from Eq. (11), i.e. by
setting λ = μ = 0. This can also be done for the constitutive mapping proposed in
Herrmann et al. (2014), Eik et al. (2015b) Eq. (16), i.e. setting γ = G = 0:

S(c) = V ( f )

⎛
⎝ 3∑

i, j=1

γ i j tr(E(c)L j )Li + 2
3∑

i, j �= i

Gi j Li E(c)L j

⎞
⎠

︸ ︷︷ ︸
fibres, orthotropic

. (37)

This is also possible for the constitutive mapping proposed in Altenbach et al. (2003)
(Eq. (21)) by setting λ = μτ = 0 in Eq. (18), however, this is more difficult to see in
Eq. (21), as μτ enters μ∗ and ξ∗, see Eqs. (23) and (25).

With increasing strain, more and more fibres will be pulled out of the matrix,
depending on the anchorage length and their inclination angle. In case of shape-
anchorage, as in hooked-end fibres or undulating fibres, the coefficients will more
depend on the pull-out force, than on the elastic modulus of the fibres itself. In case of
fibres with anchors, like balls, at the end, this may be different. While the mappings
in Eqs. (36) and (37) look like linear elastic constitutive mappings, the material will
not be going back to smaller strains if the load is reduced. Therefore, the coefficients
are strain-history and load-velocity dependent, or at least different for increasing and
decreasing load.

7 Conclusion

A constitutive mapping for the elastic state of SFCR was presented in this paper, that
uses the second order alignment tensor directly, its accuracy in taking into account the
ODF of the fibres is in-between the orthotropic model based on structural tensors and
the exact orientation averaging of a transversely isotropic material. The new model
based on the second order alignment tensor can be implemented in FEA software,
just like the model based on the structural tensors. By using different alignment
tensors for the FE cells depending on the position in the structural element, realistic
fibre orientation distributions including the variation in the element can be taken into
account in simulations.
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Further, an outlook into models for the cracked state of SFRC has been given. Also
these models can be used in FE software, by switching from the elastic constitutive
mapping to the mapping for the cracked state, depending on the maximum strain in
that element.
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Isogeometric Static Analysis
of Gradient-Elastic Plane Strain/Stress
Problems

Sergei Khakalo, Viacheslav Balobanov and Jarkko Niiranen

Abstract In the present contribution, isogeometric methods are used to analyze
the statics of the plane strain and plane stress problems based on the theory of strain
gradient elasticity. The adopted strain gradient elasticitymodels, in particular, include
only one length scale parameter enriching the classical strain energy expression and
resulting in fourth order partial differential equations instead of the corresponding
second order ones based on the classical elasticity. The problems are discretized by an
isogeometric NURBS based C1 continuous Galerkin method which is implemented
as a user subroutine into a commercial software Abaqus. Computational results for
benchmark problems, a square plate in tension and a Lamé problem, demonstrate
the applicability of the method and verify the implementation.

Keywords Strain gradient elasticity · Plane stress/strain problem · Lamé problem ·
Isogeometric method

1 Equation of Motion of the Generalized Continua

In this contribution, the static gradient-elastic plane strain/stress problems (Fischer
et al. 2011) are studied by applying isogeometric analysis (Hughes et al. 2005; Niira-
nen et al. 2015) which, in particular, provides a C1 continuous discretization in a
natural way. Namely, the adopted strain gradient elasticity models result in fourth
order partial differential equations with corresponding variational formulations of
H 2 regularity which, in turn, require C1 continuity for ensuring the conformity of
the discrete method. A brief description of isogeometric analysis and the weak for-
mulations of gradient-elastic problems (omitted in this contribution) can be found in
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another contribution “Isogeometric analysis of gradient-elastic 1D and 2Dproblems”
of the current collection.

Within the first strain gradient elasticity theory the stress-equation of motion of
the generalized continua can be written as follows (Mindlin 1964)

∇ · τ − l2s ∇ · �τ + F = ρ(ü − l2d�ü) in Ω, (1)

where τ is the Cauchy stress tensor, u stands for the displacement vector, F denotes
the density of the body forces, ρ is the material volume density, ls and ld denote the
micro-structural and the micro-inertia parameters, respectively. For the linear elastic
isotropic material Cauchy stress tensor τ can be written as

τ = 2με + λtr(ε)I, (2)

where the strain tensor ε is taken as ε = 1
2 (∇u + (∇u)T ), λ and μ are the Lamé

parameters. The traction forces (Mindlin 1964; Polizzotto 2012) on smooth body
surface can be written in the following form

P = n · σ − ∇s · (n · μ) + (∇s · n)nn : μ + ρ|2d n · ∇ ü on ∂Ω, (3)

R = nn : μ on ∂Ω, (4)

where ∇s = ∇ − n ∂
∂n denotes the surface gradient and n is the unit vector normal

to the boundary. Here we neglect the wedge loads (Mindlin 1964; Polizzotto 2012)
and possible double body forces (Bleustein 1967). Double stress tensor μ and total
stress tensor (Aifantis 1992) σ are introduced as follows

μ = l2s ∇τ , (5)

σ = τ − l2s �τ . (6)

The displacement-equation of motion takes the following form (Mindlin 1964;
Papargyri-Beskou et al. 2009)

(1 − l2s �)[μ�u + (λ + μ)∇∇ · u] + F = ρ(ü − l2d�ü) in Ω. (7)

2 Numerical Results

In this section, a numerical analysis of two problems within the theory of strain
gradient elasticity are considered. The first problem is a square domain in the field
of body forces. Convergence results in the H 2(Ω)-norm of displacements are pre-
sented demonstrating the reliability of the isogeometric method. The second problem
is a hollow thick cylinder under external tension or the Lamé problem. The total
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and Cauchy stresses are compared and analyzed for different choices of the micro-
structural parameter ls . Numerical results are supported by corresponding analytical
solutions.

Numerical analysis has been accomplished in Abaqus by using Users Subroutines
(Dassault Systemes Simulia 2015). This tool allows us to modify the finite element
implementation for the isogeometric method and use the Abaqus as a solver and a
post-processor.

2.1 Square Domain in the Field of Body Forces

Let us consider a square domain Ω = (0, L) × (0, L) ⊂ R
2 in the field of the body

forces F = Fx ex + Fy ey , where

Fx (x, y) = 4
π2

L2 sin
(
2π

x

L

)[
(2μ + λ)

(
1 + 4π2 l2s

L2

)
− 2μ cos

(
2π

y

L

)(
1 + 8π2 l2s

L2

)]
, (8)

Fy(x, y) = 4
π2

L2 sin
(
2π

y

L

)[
2μ cos

(
2π

x

L

)(
1 + 8π2 l2s

L2

)
− (2μ + λ)

(
1 + 4π2 l2s

L2

)]
. (9)

The boundary conditions are taken as follows

u = 0, nn : ∇τ = 0 on ∂Ω. (10)

The analytical solution of the static gradient-elastic displacement-equation of equi-
librium with boundary conditions above is the vector function u = ux ex + uy ey ,
where

ux (x, y) = sin
(
2π

x

L

) (
1 − cos

(
2π

y

L

))
, (11)

uy(x, y) = sin
(
2π

y

L

) (
−1 + cos

(
2π

x

L

))
. (12)

For numerical analysis, the square domain is divided into N = 4, 16, 64, 256, 1024,
4096 and 16384 elements corresponding to mesh sizes h = 5, 2.5, 1.25, 0.625,
0.3125, 0.15625 and 0.078125 mm, respectively. NURBS basis functions of 2nd,
3rd, 4th and 5th order are taken with C p−1 continuity across the element boundaries,
where p is the NURBS order. Distributions of the ux and uy displacement fields for
N = 64 are shown in Fig. 1.

Next, we consider the convergence results in the H 2(Ω)-norm of displacements
shown in Fig. 2. As can be seen, the convergence rates of displacements for quadratic,
cubic, quartic and quintic NURBS are approximately 1, 2, 3 and 4 in the H 2-norm
with respect to the mesh size h.



232 S. Khakalo et al.

Fig. 1 Distribution of the displacement fields. a Distribution of the ux displacement field. b Dis-
tribution of the uy displacement field

Fig. 2 Error measured in the H2-norm of displacements

2.2 Lamé Problem

As the next example, the classical Lamé problem of an annulus is considered. Due
to the symmetry of the problem, one quarter is modelled. Geometry and boundary
conditions are shown in Fig. 3a. The symmetry conditions are utilized on the left and
bottom edges and written as

u · n = 0 and
∂(u · s)

∂n
= 0, (13)

where n and s, respectively, denote the unit vectors normal and tangential to the
boundary. The ratio of the inner radius a to the outer radius b is set to a/b = 0.1,
where a = 1 mm and b = 10 mm. The inner hole surface is free of loading. Tension
p = 100MPa is applied to the outer surface. The classical elasticmaterial parameters
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Fig. 3 Lamé problem. a Geometry and boundary conditions. b Isogeometric finite element mesh

are taken to be E = 210 GPa and ν = 0.3. The ratio of themicro structural parameter
ls to the inner radius a is varied from0 to 1 (0 ≤ ls/a ≤ 1).Within the gradient theory,
the partial differential equation written in polar coordinates has the following form

u′′ + u′

r
− u

r2
− l2s

(
u′′′′ + 2

u′′′

r
− 3

u′′

r2
+ 3

u′

r3
− 3

u

r4

)
= 0, (14)

whereas the boundary conditions are given as follows

r = a :
{

n · (τ − l2s �τ ) − l2s s · ∂
∂s (n · ∇τ ) + l2s

(
s · ∂n

∂s

)
nn : ∇τ = 0,

l2s nn : ∇τ = 0,
(15)

r = b :
{

n · (τ − l2s �τ ) − l2s s · ∂
∂s (n · ∇τ ) + l2s

(
s · ∂n

∂s

)
nn : ∇τ = pn,

l2s nn : ∇τ = 0.
(16)

The analytical solution of the problem can be found in the following form (Gao and
Park 2007; Zervos et al. 2009)

u(r) = A

r
+ Br + CI1

(
r

ls

)
+ DK1

(
r

ls

)
, (17)

where I1 and K1 denote the first order modified Bessel functions of the first and
second kind, respectively.

For numerical calculations, the domain is divided into 1024 elements presented in
Fig. 3b. NURBS of 5th order with C4-continuity across the element boundaries are
taken as basis functions. The distributions of the hoop Cauchy and total stress fields
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Fig. 4 Results for Lamé problem. a Hoop stress distribution. b Hoop stresses along the radial
coordinate line

Fig. 5 Normalized hoop stresses at r = a

for the cases ls/a = 0 and ls/a = 0.5 obtained by using Abaqus are shown in Fig. 4a.
The plots of hoop stresses τϕϕ and σϕϕ along the radial coordinate line for the cases
ls/a = 0 and ls/a = 0.5 are shown in Fig. 4b. For the classical case ls/a = 0, the
normalized stress maximum is 2.02 while for the gradient case ls/a = 0.5 the total
and Cauchy stress maximum is 1.69 and 1.72, respectively. For particular choice of
ls/a = 0.5, the total and Cauchy stresses are indistinguishable from each other. The
normalization is performed with respect to the absolute value of the applied loading
p.

The variation of the normalized total and Cauchy stresses at r = a with respect
to ls/a is presented in Fig. 5. It can be seen, that the numerical and analytical results
coincide exactly. For 0 < ls/a < 0.2, themaximal level of the Cauchy stresses (black
line and red dots) exceeds the classical one, while the total stresses (green line and
blue dots) constantly monotonically decrease. For 0 < ls/a < 0.6, the total stress
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level is less than the Cauchy stress level and for ls/a > 0.6 this relation changes.
Also, it should be mentioned that the total and Cauchy stress maximum is always
achieved at the periphery of the hole (results are not included in this contribution).

3 Conclusion

The applicability of isogeometric Galerkin methods for solving plane stress/strain
problems within strain gradient elasticity has been studied by two model problems.
With the first problem, the convergence properties of the method, in an energy equiv-
alent norm, are shown to be optimal with respect to the NURBS order of the method,
as predicted by theoretical results. For the second problem, the analytical solution
is captured by the numerical one with a reasonable mesh size. These results serve
as a confirmation for the applicability, reliability and efficiency of the numerical
approach and verify the implementation accomplished as a user subroutine into a
commercial finite element software.
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Applications of Higher-Order Continua
to Size Effects in Bending: Theory
and Recent Experimental Results

Christian Liebold and Wolfgang H. Müller

Abstract In the context of static elasticity theory for isotropic materials under
small deformations, different approaches of higher-order continuum mechanics are
described. Considering generalized continua, the strain gradient-, micropolar- and
surface elasticity theory are explained. Analytical solutions, such as the bending line,
are derived for each extended theory, using the Euler–Bernoulli beammodel. Atomic
Force Microscopy investigations of the materials epoxy and the polymer SU-8, as
well as flexural vibration analysis of aluminum foams were performed, to determine
several additional material parameters. As a result, positive as well as negative size
effects in dependency of the thickness and length are observed for micro-cantilevers.

Keywords Strain gradient elasticity · Second gradient continuum · Size effect ·
Micropolar theory

1 Introduction

With the ever growing applications of simulation technologies, driven by minia-
turization and saving of materials, the whole process from design phase up to the
valuation of reliability grows in importance. For a more accurate evaluation of engi-
neering materials, a qualitative but also quantitative understanding of size effects
needs to be included, either in a physically reasonable manner, or as an alterna-
tive technique of homogenization regarding to materials with intrinsic micro- or
macro-structure. Size effects are, for example, reflected in a stiffer or softer elastic
response to external forces when the size of a body is reduced. Such relations have
been recognized in several experiments on metals and polymers, as there are, for
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example, copper (Fleck et al. 1994), silver (Ma and Clarke 1995), zinc oxide (Stan
et al. 2007), lead (Cuenot et al. 2004), carbon nanotubes (Salvetat et al. 1999a, b),
epoxy (Chong 2002) and polypropylene (McFarland and Colton 2005), cf. Table1.
Actually, physical reasoning for size-dependent material behavior can be manifold,
such as non-negligible interactions of molecular chains in polymers (Nikolov et al.
2007), rearrangement of atoms or molecules near the surface, influence of grain-size
in polycrystals (Smyshlyaev and Fleck 1996) or even long-ranging force distrib-
utions from dislocations, voids or some inner micro- or nanostructure, and it is
poorly understood especially in context of their complex combinations. For the rea-
son that conventional continuum theory is unable to predict size effects, different
non-conventional continua are proposed in literature, like non-local theories (Ped-
dieson et al. 1996; Eringen 2010), strain-gradient theories (Toupin 1962; Mindlin
and Eshel 1968), micropolar theories (Eringen 1966; Nowacki 1970), theories of
material surfaces (Gurtin and Murdoch 1975) or fractional continuum mechanics
(Carpinteri 1994; Klimek 2001). In this work, attention will be paid to just a few
higher-order continuum theories in the scope of elastic material behavior.

In Sect. 2 micropolar theory, strain gradient theory, couple stress theory, as well
as theories of material surfaces will be presented in order to analyze the problem
of simple beam bending. Current experimental investigations of size effects of the
materials SU-8, epoxy, aluminum foams and aluminum with artificial heterogeneities
are carried out in Sect. 3 using an Atomic Force Microscope (AFM) to record force
as well as deflection data of micro-beams, and a vibration analysis system tomeasure
flexural eigenfrequencies of specimens of macroscopic size.

2 Selected Higher-Order Continuum Mechanical Theories

Generalized continua are driven by the question:

Is it possible to construct continuum theories that can predict physical phenomena on the
atomic, molecular, or nano scales?

(quote fromA.C. Eringen 2009, in the preface toMaugin andMetrikine 2010). Many
publications about the origin of generalized continua cite the work of Cosserat and
Cosserat (1909), describing for the first time a polar character of material points. Half
a century later, this idea has been recapitulated e.g. in the works of Günther (1958),
Schaefer (1967). Among others, the linearized Cosserat theory was essentially influ-
enced by Eringen (1966), Eringen (1976), Eringen (1999), Eringen (2010), Toupin
(1962), Koiter (1964), Mindlin and Tiersten (1962), Mindlin (1964), Mindlin and
Eshel (1968), Nowacki (1970). A more detailed history of generalized continua is
included in Altenbach et al. (2010), Maugin andMetrikine (2010). Basically, today’s
concept allows to separate between micromorphic and strain gradient theories as an
extension to the conventional Cauchy continuum. With the help of specific restric-
tions, the micromorphic continuum can be simplified to the micropolar continuum
and to the Couple Stress model (CS), cf. Fig. 1. The same applies to the Strain
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Fig. 1 Overview of selected
continuum mechanical
theories of higher-order
including models of material
surfaces
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Gradient (SG) theory, which can beModified (MSG) and transferred into the Couple
Stress (CS) theory as well.

Additionally, some theories of material surfaces can be taken into account as good
candidates to describe size dependent material behavior (cf. Fig. 1). These are based
on the idea that the elastic behavior of the surface of a solid could be separated from
its volume. Therefore, a core-surface model with respect to the theory of Surface
Elasticity (SE) and a core-shell model of an elastic Surface Layer (SL) will be
used in Sect. 2.3. Table1 summarizes some of the additional material constants that
are already given in literature, like surface elastic moduli or material length scale
parameters for certain materials.

2.1 Strain Gradient Theories

First works on the development of so-called couple stress theories by, e.g., Toupin
(1962), Mindlin and Tiersten (1962), Koiter (1964), Mindlin and Eshel (1968) con-
tain second order derivatives of displacements to describe quantities of curvature or
rotation. The introduction of second order derivatives in terms of constitutive rela-
tions and energy considerations was generalized by Eringen (2010), who claimed

nonsimple materials of gradient type

and derived respective higher-order material dependencies. In the following, the
Einstein summation convention on repeated indices is used and spatial partial deriv-
atives in the Cartesian coordinate system are denoted by comma-separated indices:

i, j, k, l, m, n, A ∈ {1, 2, 3} , (·),j = ∂ (·)
∂xj

, (·),A = ∂ (·)
∂XA

, (1)

where xi belongs to the actual configuration of the body and Xi to the reference
configuration. Considering a cascade of principles of analyticalmechanics and taking
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Table 1 Some literature values for the size effect in elasticity

Additional
parameters

Material Theory Testing method Reference

� = 9.4µm Epoxy CS Bending of
cantilevers

Chong (2002)a, Lam
et al. (2003)a

� = 3.0µm Copper MSG Torsion of wires Yang et al. (2002)

� = 7.0nm Zinc oxide MSG Torsion Stan et al. (2007)

� = 57.0nm Polypyrrole
nanotubes

MSG Bending Cuenot et al. (2000)

EB = 169GPa
ES = −12.14N/m

sc-siliconb SE Bending Miller and Shenoy
(2000), Sadeghian
et al. (2009)a

ES = 5.8N/m Silver SE Bending Jing et al. (2006)a

� = 3.2nm sw-CNTb SG Bending Jing et al. (2006),
Sadeghian et al.
(2009)

� = 5.7nm mw-CNTb SG Bending Jing et al. (2006),
Sadeghian et al.
(2009)

� = 9.3nm mw-CNTb SG Bending Jing et al. (2006),
Poncharal et al.
(1999)

E = 15.0GPa
� = 17.7nm

Lead CS Bending Cuenot et al. (2004)a

aThe raw experimental data that are included in the given reference have been used to extract the
respective additional parameter.
bsc = single-crystalline, sw = single-walled, mw = multi-walled, CNT = Carbon Nanotube

nonsimple materials of gradient type into account (cf. Liebold and Müller 2015), the
internal energy density u of a body reads:

u = û
(
Fij, Fij,A

)
, (2)

where the fundamental variables are identified as the deformation gradient Fij (the
material gradient of the motion χi) and its gradient:

Fij = ∂χi

∂Xj
and Fij,A = ∂χi

∂Xj∂XA
. (3)

By utilizing objective strain measures, like Green’s strain tensor EG
ij and a higher-

order strain tensor Kijk (cf. Bertram 2015):

EG
ij = 1

2

(
FikFkj − δij

)
and Kijk = F−1

il

∂Flj

∂Xk
, (4)
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where δij represents the components of the identity tensor, so-called reduced forms
are developed:

u = ũ
(
EG

ij , Kijk
)
. (5)

With the assumption of the existence of a specific elastic energy (cf. Bertram 2015)
of the form:

p := 1

ρ0

[
1

2
T 2PK

ij ĖG
ij + SijkK̇ijk

]
, (6)

the respective work-conjugated stress measures T 2PK
ij (second Piola–Kirchhoff stress

tensor) and Sijk (higher-order material stress tensor) can be defined as:

T 2PK
ij = ∂ ũ

∂EG
ij

and Sijk = ∂ ũ

∂Kijk
. (7)

2.1.1 Mindlin’s Forms of Strain Energy Density

Following the restriction to small deformations by means of:

∂ (·)
∂Xi

≈ ∂ (·)
∂xi

, (8)

the reduced forms of the higher-order strain energy density in Eq. (5) yield in at least
three forms, postulated by Mindlin and Tiersten (1962):

uSG = u1ST
(
εij, ηijk

) = u2ND
(
εij, η̃ijk

) = u3RD
(
εij, η̄ij, ¯̄ηijk

)
. (9)

Proposing linear elastic material behavior, the respective work-conjugated stress
measures of the first form are obtained as:

σij = ∂u1ST

∂εij
and μijk = ∂u1ST

∂ηijk
, (10)

where σij and μijk are the Cauchy stress tensor and the hyper- (or double-) stress
tensor, respectively. For isotropic nonsimple materials of gradient type a linear strain
energy density results in (Mindlin and Eshel 1968):

2u1ST = α1εijεij + α2εkkεmm + β1ηijkηijk + β2ηiikηjjk

+ β3ηiikηkjj + β4ηijjηikk + β5ηijkηkji, (11)
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Table 2 Kinematic variables of small deformations in linear elastic higher-gradient continuum,
acc. Mindlin and Eshel (1968)

Symbol Meaning

εij = u(i, j) = 1
2

(
ui, j + uj, i

)
Small strain tensor
(symmetric part of the gradient of
displacement)

ηijk = uk, ij Second gradient of displacement
¯̄ηijk = 1

3

(
uk, ij + ui, jk + uj,ki

)
Symmetric part of the second gradient of
displacement

η̃ijk = 1
2

(
uk, ij + uj,ki

) = εkj, i Gradient of strain

ϕi = 1
2 εijkuk, j Macroscopic rotation vector

η̄ij = 1
2 εilkuk, lj Gradient of rotation

εijk Alternating tensor (Levi–Civita symbol)

where α1 and α2 can be identified as Lamé’s constants, whereas β1,...,5 are five
unknown additional material parameters. The number of additional material para-
meters is going to be reduced in the next section.

2.1.2 Modified Strain Gradient Theory

A decomposition of the second gradient of displacement in combination with utiliz-
ing the macroscopic rotation vector yields in a reduction of independent additional
material parameters from five to three. Independent metrics of ηijk are first introduced
by Fleck andHutchinson (1997), who decomposed the second order deformation gra-
dient into its symmetric part ¯̄ηijk and anti-symmetric part ηA

ijk (see Fig. 2, cf. Table3).
The symmetric part of ηijk is further decomposed into its spherical and deviatoric
part η

(0)
ijk and η

(1)
ijk . Now, caused by the definition of the macroscopic rotation vector

ϕi and its gradient η̄ij, two important relations will appear: (i) The spherical part of
¯̄ηijk can be decomposed into εmm,i and χA

ij by using the relations:

η
(0)
ijk = 1

5

(
δij ¯̄ηmmk + δjk ¯̄ηmmi + δki ¯̄ηmmj

)
and ¯̄ηmmi = εmm,i + 2

3εilnχ
A
ln , (12)

Fig. 2 Scheme of splitting
the second gradient of
displacement in the MSG
theory
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Table 3 Modified kinematic variables of small deformations in linear elastic strain-gradient con-
tinuum, acc. Lam et al. (2003)

Symbol Meaning

χS
ij = 1

4

(
εilkuk, lj + εjlkuk, li

)
Symmetric part of the gradient of rotation

χA
ij = 1

4

(
εilkuk, lj − εjlkuk, li

)
Anti-symmetric part of the gradient of rotation

¯̄ηijk = 1
3

(
uk, ij + ui, jk + uj,ki

)
Symmetric part of the second gradient of
displacement

ηAijk = 2
3

(
εikl η̄lj + εjkl η̄li

)
Anti-symmetric part of the second gradient of
displacement

η
(0)
ijk = 1

5

(
δij ¯̄ηmmk + δjk ¯̄ηmmi + δki ¯̄ηmmj

)
Spherical part of ¯̄ηijk

η
(1)
ijk = ¯̄ηijk − η

(0)
ijk Deviatoric part of ¯̄ηijk

εmm, i = um,mi Dilatation gradient

and (ii) it can be shown that the anti-symmetric part of ηijk will completely reduce to
the gradient of rotation η̄ij, cf. Table34. The latter is decomposed itself into the sym-
metric and anti-symmetric part χS

ij and χA
ij . The anti-symmetric part of the gradient

of rotation is crossed out, by assuming the symmetry of the couple stress tensor μij

(the work-conjugate of the gradient of rotation) as proposed by Yang et al. (2002).
Taking all remaining kinematic variables of the modified strain-gradient model into
account (see underlined entries in Fig. 2), a linear strain energy density for nonsimple
materials of modified gradient type reads:

uMSG = û
(
εij, εmm,i, η

(1)
ijk , χS

ij

)

= 1
2σijεij + 1

2piεmm,i + 1
2μ

(1)
ijk η

(1)
ijk + 1

2μijχ
S
ij

= 1
2λεiiεkk + μεijεij + μ�20εmm,iεnn,i + μ�21η

(1)
ijk η

(1)
ijk + μ�22χ

S
ij χ

S
ij ,

(13)

where the respective work-conjugated stress measures are:

σij = ∂uMSG

∂εij
= λεkkδij + 2μεij, pi = ∂uMSG

∂εnn,i
= 2μ�20εmm,i,

μ
(1)
ijk = ∂uMSG

∂η
(1)
ijk

= 2μ�21η
(1)
ijk , μij = ∂uMSG

∂χS
ij

= 2μ�22χ
S
ij .

(14)

Application of the Euler–Bernoulli Beam Model

To derive an analytical formula for simple beam bending, the displacement field:

ux = −z
dw(x)

dx
, uy = 0, uz = w(x), (15)
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x
y

z

F

L W

T

Fig. 3 Orientation of the coordinate system for the beam bending problem. L, W , T are the length,
width and thickness, respectively

is used according to the Euler–Bernoulli beam assumptions, following the relations
described in Tables2 and 3.w(x) represents the bending line in the coordinate system
given in Fig. 3.

The principle of virtual displacements is applied by using the variation of the
function w(x) and integration by parts to derive the differential equation of the prob-
lem in the following manner. The variation of the strain energy of the body is given
by:

UMSG =
∫∫∫
x y z

uMSGdzdydx,

δUMSG =
x=L∫

x=0

(
S
d4w

dx4
− K

d6w

dx6

)
δwdx + K

d5w

dx5
δw

∣∣∣∣
L

0

− S
d3w

dx3
δw

∣∣∣∣
L

0

+ S
d2w

dx2
d(δw)

dx

∣∣∣∣
L

0

− K
d4w

dx4
d(δw)

dx

∣∣∣∣
L

0

+ K
d3w

dx3
d2(δw)

dx2

∣∣∣∣
L

0

,

(16)

where the abbreviations S = EI
(
1 + 4308

225
�2

T 2

)
and K = 7

5EI�2 are given, if a rectan-

gular cross-section and �0 = �1 = �2 = � is assumed without further reasoning. E
denotes Young’s modulus and I the secondmoment of inertia. By comparing Eq. (16)
to the variation of the work WMSG done by the external forces q(x) and V , moments
M and higher moments Mh (cf. Kong et al. 2009):

δWMSG =
x=L∫

x=0

q(x)δwdx + Vδw

∣∣∣∣
L

0

+ M
d(δw)

dx

∣∣∣∣
L

0

+ Mh d
2(δw)

dx2

∣∣∣∣
L

0

, (17)

the differential equation of the problem is identified as:

S
d4w

dx4
− K

d6w

dx6
= q(x), ∀ x ∈ [0, L] . (18)

For a solution of the homogeneous differential equation Eq. (18) of the form:

w(x) = C1x3 + C2x2 + C3x + C4 + C5e
√

S/Kx + C6e
−√

S/Kx, (19)
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two sets of boundary conditions can be applied to determine the constants C1,...,6.
The five boundary conditions V(L) = F, M(L) = 0, Mh(L) = 0, w(0) = 0 and
dw
dx |x 0 = 0 may be extended by either:

BC1: K
d3w

dx3

∣∣∣∣
x 0

= Mh(0) = 0, or

BC2: EI
d2w

dx2

∣∣∣∣
x 0

= Mclass(0) = 0 (20)

where Mclass represents the description of a moment from classical beam theory.
The difference in evaluation of deflections for all values of 0 < � < L is below 4%.
With adjusted constants C1,...,6, the deflection line of an Euler–Bernoulli beam in the
modified strain gradient model (Eq. 19) is evaluated numerically. To fit the material
length scale parameter � to experiments, the least square method is used to find the
minimum error between experimental data (Sect. 3) and the present model.

2.2 Micromorphic Continuum

To quote Eringen (cf. pp.33 Eringen 1976),

a micromorphic continuum may be thought of as a classical continuum to each point of
which is associated another continuum.

The sub-continuum is restricted to homogeneous deformations1 only and may be
described as a continuous distribution of deformable point particles. The description
of the intrinsic deformation of the point particles succeeds via so-called directors,
who are attached to each material point and map the orientation and the particle’s
deformation.

2.2.1 Micropolar Theory

The micropolar continuum theory can be classified into the micromorphic one,
whereas in the micropolar case the directors are proper orthogonal and do not change
their length with respect to each other. Thus, only rotational degrees of freedom are
assigned to the particles, making them “rigid”. Considering a cascade of principles
of analytical mechanics taking simple materials and additional degrees of freedom
into account (cf. Liebold and Müller 2015), the internal energy density u of a body
reads:

u = ǔ
(
Fij, Qij, Qij,A

)
, (21)

1The displacement gradient is constant over the body.
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where the fundamental variables are identified as the deformation gradient Fij, the
orientation tensor of the particles Qij (a proper orthogonal tensor) and its gradient
Qij,A. Only by utilizing special strain measures, like (cf. Eremeyev et al. 2013):

EQ
ij = QikFkj − δij,

Γij = − 1
2εirm(QmAQrj,A),

(22)

the relative stretch tensor EQ
ij and the relative wryness tensor Γij, reduced forms can

be developed for the non-symmetricmaterial stress tensor T
2PK
ij (similar to the second

Piola–Kirchhoff stress tensor) and the material couple stress tensor Mij:

T
2PK
ij (xn, t) = k(EQ

ij , Γij),

Mij(xn, t) = K(EQ
ij , Γij).

(23)

With the assumption of small deformations, the constitutive equations for the non-
symmetric Cauchy stress tensor σ ij �= σ ji and the couple stress tensor μij read (cf.
Lakes 1995):

σ ij = λεkkδij + (2μ + κ)εij + κεijk(ϕk − φk),

μij = γ1φr,rδij + γ2φi,j + γ3φj,i.
(24)

γ1, γ2, γ3, and κ denote the additional material coefficients, called Cosserat elastic
constants. The micro-rotation vector φk is kinematically distinct from the macro-
rotation ϕk here.

2.2.2 Couple Stress Theory

The next level of simplification is to equalize the microscopic and macroscopic
rotation vector in the geometrically linearizedmicropolar theory. The intrinsic degree
of freedom of rotation is completely assigned to the macroscopic deformation and
this is called pseudo- or indeterminate Cosserat theory. Considering the total kinetic
and internal energy of a micropolar body, claiming that φk = ϕk , it can be shown,
that the stress tensor turns out to be symmetric (cf. Liebold and Müller 2015) and
the constitutive equations (24) reduce to:

σij = λεkkδij + 2μεij,

μij = 2μ�2χS
ij .

(25)

Application of the Euler–Bernoulli Beam Model

To derive an analytical formula for simple beam bending, the displacement field
according to the Euler–Bernoulli beam assumptions is used, following Eq. (15). To
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identify the differential equation of the problem by a comparison of the virtual work
done by external forces and the couple stress strain energy:

UCS =
∫
V

(σijεij + μijχ
S
ij )dV , (26)

the principle of virtual displacements is applied by using the variation of the func-
tion w(x) and integration by parts. In analogy to the derivation of Eq. (18), the
Euler–Bernoulli differential equation in the case of couple stress theory yields in:

(EI + μA�2)
d4w

dx4
= q(x), ∀x ∈ [0, L], (27)

where A denotes the cross-sectional area of the beam. The solution of the homo-
geneous differential equation Eq. (27) is given to be a polynomial of fourth-order,
whose four constants are obtained by using the classical boundary conditions for a
cantilever beam, as described in Sect. 2.1.2. Consequently, the deflection line results
in:

wCS(x) = F

(EI + μA�2)

[
Lx2

2
− x3

6

]
, (28)

where a comparison of the rigidity to bending from present to classical theory yields
in a formulation of a general elastic modulus ECS of the form:

ECSI = (EI + μA�2), ECS = E

(
1 + 6

�2

T 2

)
, (29)

where μ = E/2 is used, regarding to the assumptions stated at the beginning. Equa-
tion (29)2 serves as a target function in a least square method, to find E and � from
experimental data from force and deflection measurements.

2.3 Theories of Material Surfaces

The surface of a solid typically exhibits characteristics, that may vary from the prop-
erties of its volume. These differences are caused for example by surface oxidation,
aging, coating, atomic and molecular rearrangement (see Fig. 4) or even surface
roughness. To capture these issues, different continuum-mechanical theories have
been developed. From a first point of view they may be divided into (i) a core-
surface model, called Surface Elasticity (SE), in which a surface layer is introduced
with a thickness of zero, and (ii) a core-shell model with a non-zero thickness of a
Surface Layer (SL).
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Fig. 4 An example of the
origin of deviating surface
characteristics: Molecular
rearrangements, caused by
the completion of the
molecular bonds close to the
surface, and resultant
intermolecular forces in a
relatively thin boundary
layer

surface

core

surface

2.3.1 Core-Surface Model (Surface Elasticity)

Most works on surface elasticity, starting from the works of Shuttleworth (1950),
Orowan (1970), have been worked out following the Gibbsian thermodynamics. The
applied continuum mechanical description of a surface stress tensor stated here is
based on Gurtin and Murdoch (1975), and has been picked up in various recent
works, such as Miller and Shenoy (2000), Javili et al. (2013), Wang et al. (2010),
Ru (2010). Starting from the most general case of an arbitrarily curved and smooth
surface, that is parameterized with the surface coordinates z1 and z2, the concept
of co- and contravariant components of tensor representation will be used. In gen-
eral, the kinematics and tensorial arithmetic operations used here, are known from
differential geometry. Important surface coefficients are indicated by “S,” whereas
tensorial quantities of the surface are indicated by α, β, γ, δ ∈ {1, 2}, due to the
two-dimensionality. Corresponding unnormalized tangential vectors and the surface
identity δα·

·β read:

sα = ∂xi

∂zα
ei, sα = ∂zα

∂xi
ei and δα·

·β = sα · sβ. (30)

Indices that are separated by a semicolon denote spatial derivatives of tensorial
symbols, that incorporate additional derivatives of transformations between surface
(sα)- and Cartesian (ei) coordinate system (known as Christoffel symbols Γ i

jk). A
Cauchy-like surface stress tensor τα·

·β can be described, using the concept of the Gibbs
free surface energy (cf. Vermaak et al. 1968):

τα·
·β = σδα·

·β + ∂σ(εδ··γ )

∂ε
·β
α·

, (31)

where σ is the surface energy density and εαβ the small strain tensor of the surface
(cf. Flügge 1972):
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εα·
·β = 1

2

(
uα

;β + uβ

;α
)

. (32)

If elastically isotropic material behavior is assumed, the surface stress tensor is rep-
resented as:

τα·
·β = γ0δ

α·
·β + λSεγ ·

·γ δα·
·β + 2μSεα·

·β , (33)

where λS and μS are the Lamé’s constants of the surface, and γ0 the component of
a possible spherical residual stress. A surface strain energy density uSE for linear
elastic material surfaces is then given by:

uSE = û(γ0, εαβ) = 1

2
ταβεαβ = 1

2

(
γ0 + λSεγ ·

·γ
)
εδ·
·δ + μSεαβεαβ. (34)

Application of the Euler–Bernoulli Beam Model

In the following, a beam with rectangular cross-section, flat surfaces, no surface
Poisson’s ratio and without residual stresses is assumed, in order to derive an
advanced formula for beam bending. As a result of these assumptions, the tangential
vectors of the surface are always orthogonal, co- and contravariant notation corre-
spond to each other and the surface strain energy density of the body reduces to:

uSE = μSεαβεαβ. (35)

The non-zero components of the surface strain tensor per surface area are:

ε11(x, y,−T

2
) = T

2

d2w

dx2
, ε11(x, y,

T

2
) = −T

2

d2w

dx2
,

ε11(x,
W

2
, z) = −z

d2w

dx2
, ε11(x,−W

2
, z) = −z

d2w

dx2
.

(36)

The total strain energy U of this beam model consists of the superposition of US and
UVol (the classical strain energy of simple beam theory):

U = US + UVol =
∮
∂V

1

2
ESε11ε11dA +

∫
V

1

2
EBε11ε11dV , (37)

where ES = 2μS and EB denote the surface and bulk Young’s moduli, respectively.
The integration and variation of Eq. (37) with respect to the function w(x) yields in:

δU =
[

ES

(
WT 2

2
+ T 3

6

)
+ EB WT 3

12

] x=L∫
x=0

δ

(
d2w

dx2

)2

dx. (38)
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In analogy to the derivation of Eq. (18), the Euler–Bernoulli differential equation in
the case of surface elasticity yields in:

[
ES

(
WT 2

2
+ T 3

6

)
+ EB WT 3

12

]
d4w

dx4
= q(x), ∀ x ∈ [0, L] , (39)

where a comparison of the rigidity to bending from present to classical theory yields
in a formulation of a general elastic modulus ESE:

ESEI =
[

ES

(
WT 2

2
+ T 3

6

)
+ EB WT 3

12

]
,

ESE = EB + ES

(
6

T
+ 2

W

)
.

(40)

Equation (40)2 is identical to the result of Miller and Shenoy (2000) and serves as a
target function in a least square method, to find EB and ES > 0 from experimental
data from force and deflection measurements for the materials SU-8 and epoxy.

2.3.2 Core-Shell (Surface Layer) Model

The core-shell model implies a Surface Layer (SL)with non-zero thickness. In classi-
cal core-shell models, this layer is treated like a laminate like structure, incorporating
a jump of mechanical properties at the interface to the bulk (cf. Yao et al. 2012). For
that reason, the model works well, if a softening of the overall material behavior is
concerned. The most simple case of the SL model is, if the elastic modulus of the
surface layer of the constant thickness r (see Fig. 5) is assumed to be equal to zero,
E* = 0.

Concerning rectangular cantilever beams, the general elastic modulus ESL:

ESL = E
(L − 2r)3

(W − 2r)(T − 2r)3
WT 3

L3
, (41)

shell r

W

T

L

E* E

core

(a) (b)

Fig. 5 a Application of the core-shell model to aluminum foams with open surface. b Illustration
of the symbols for a cantilever beam
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is derived, based on geometric considerations and serves as a target function in a
least square method, to find r and E from experimental data for aluminum foams. In
contrast to the higher-order theories stated above, the SL-model as defined here, is
able to characterize negative size effects in dependency of the thickness, width and
length of the beams.

3 Experimental Analysis

In the linear theory of elasticity of isotropic materials, the elastic modulus is a central
property of thematerial behavior that can be quantified by standardizedmeasurement
methods such as the uniaxial tensile test, simple bending or flexural vibration analy-
sis. Higher-order continuum theories are beneficial, if in measurements of the elastic
modulus based on a conventional continuum theory, results are dependent on the
external dimensions of the body. For this reason, the following experimental analy-
sis focus on the determination of Young’s modulus using conventional approaches.
External dimensions as the thickness of a beam are successively reduced to obtain
results of different sizes. This procedure has been described by Lakes (1995) as an
experimental method of size effect, which makes it possible to determine some of the
material parameters of extended theories.

3.1 Atomic Force Microscopy

Tomeasure the elastic modulus of structures with the outer dimensions in the order of
a few micrometers, simple static bending tests are performed on freestanding beam
structures. The load is applied using the off-axis laser-reflectiveAtomic ForceMicro-
scope (AFM)MultiView-1000 from Nanonics Imaging Ltd.2 The system consists of
a flat scanner, including a fine thread that is driven by piezo-elements using high-
voltage power supply. The detection device works with four Photo-Sensitive Diods
(PSD) which are interconnected as aWheatstone bridge to monitor deflections of the
laser beam path. The laser reflects in an obtuse angle from a fixed AFM-cantilever,
such that the system directly monitors its deflections wc, when it is deformed by the
piezo uplift (referred to as separation z). The raw PSD-signal obtained in [mV] was
able to be converted into forces F = kcwc in [µN] by the knowledge of the well cal-
ibrated spring constant of the AFM-cantilever of kc = 31.4 N m−1. The calibration
process is detailed in Varenberg et al. (2005) and was performed, using a precise
silicon normal that was provided by the PTB.3 In micro-beam bending tests it can
be assumed, that the raw AFM-data consist of a combined signal of the deflection
of the AFM-cantilever and the micro-beam’s deflection w in the following manner:

2www.nanonics.co.il, Jerusalem, Israel.
3Physikalisch-Technische Bundesanstalt – Braunschweig, Germany.

www.nanonics.co.il
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Fig. 6 Identification of the
deflection data w of a
micro-beam: Deflection
curves, shifted to the zero
point and converted into
micro-Newton are
substracted in a comparison
approach
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w = z − wc (see Fig. 6). Presuming rectangular cross-sections of the specimens, the
following classical relation between the ratio F/w and the elastic modulus E is used:

E = 4L3

WT 3

F

w
. (42)

Length and width of the samples have been measured in an optical microscope with a
magnification of 500 times, whereas the value for the thickness consists of the mean
value from two different optical determination systems together with the value of a
Scanning Electron Microscope (SEM).

3.1.1 AFM Experiments on Epoxy

The commercially available resin HT 2 from Poxy Systems, consisting of the basic
ingredients bisphenol-F-diglycidylether and 4,4’methylendiphenyldiglycidylether
was mixed with the appropriate hardener in the ratio 100:48 and put between two
preparation glasses within a 45-minute processing time. Different spacers between
the preparation glasses assured an adjustable film thickness of 17–170µm. By the
help of a parallel cutting tool, which allows to realize widths of 100–400µm, the
cured epoxy film was cut into stripes (see Fig. 7). The single stripes were glued
over the edges of cover glasses, such that about two-thirds of a strip overlap. The
effective bending length was determined between the edge of the glass support and
the force application point and varied between 180–4400µm. The influence of the
slightly viscous material behavior of epoxy was tested by applying different loading
rates between 0.1–20µms−1, and only a one percent scatter of the measured values
was verified. The mean-values of the measured elastic moduli and the corresponding
standard deviations are given in Fig. 8.
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Fig. 7 Left Measurement of thewidth of an exemplarymicro-beamof epoxy by opticalmicroscopy.
Right Exemplary measurement of the thickness of the epoxy film

Fig. 8 Averaged results of
the measurements of the
elastic modulus of epoxy and
evaluated fit functions of the
CS, MSG and SE theory
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3.1.2 AFM Experiments on SU-8 Polymer

SU-8 is known as the photo-resist NanoTM-SU-8, used in the micro-system technol-
ogy (cf. Lorenz et al. 1997) and produced by the company MicroChem. Structuring
of the samples was carried out in the following steps:

• A 4-inch silicon wafer was coated with a thin metal film as a barrier layer.
• A conventional spin-coating machine was applied to disperse the fluid resist on the
metal-coated siliconwafer. The rotational speed of the coatingmachine determined
the thickness of the homogeneous layer (between 8–40µm).

• The solvent evaporated in the rotary process in large part and in a subsequent drying
process the remaining part evaporated at temperatures of 60–95 ◦C, whereby the
material finally received its rigidity.

• Structuring has been achieved by using a Laser Direct Imaging (LDI). After expo-
sure to light, an additional heat treatment was carried out at 60–95 ◦C to assist the
chemical reaction of the illumination process.

• By using a proper developer, the regions of exposed SU-8 were dissolved from
unexposed regions.
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Fig. 9 Left Exemplary measurement of the outer dimensions by scanning electron microscopy
(SEM) of a micro-beam made of the polymer SU-8. Right Averaged results of the measurements of
the elastic modulus of the SU-8 polymer and evaluated fit functions of the CS, MSG and SE theory

• By a chemical etch process, that does not attack the SU-8 material, the thin metal
film on the silicon wafer was dissolved and the micro-beam structures were finally
peeled off and glued on a glass support.

Widths and lengths of the samples, realized in this way, ranged from 80–124 and
82–920µm, respectively. The mean-values of the measured elastic moduli and the
corresponding standard deviations are given in Fig. 9, on the right hand side.

3.2 Flexural Vibration Analysis

A simple method for evaluating the elastic modulus of a certain material is given
by a measurement of the flexural resonance frequency of a structure. The frequency
detecting systemusedhere is aGrindoSonic-device fromLemmens,N.V.. Themacro-
scopic samples that consist of rectangular bars, lie on two soft supports in a three
point bending mode and are excited manually by an impact tool. The acoustic signal
of the flexural modes are analyzed by a Fast-Fourier-Transformation (FFT) in order
to detect the first eigenfrequency f1. Assuming small amplitudes, linear material
behavior and slender beam structures, the solution of the dynamic Euler–Bernoulli
differential equation in the case of a free-free boundary condition gives:

E = 0.946
ρL4

T 2
f 21 , (43)

where ρ is the mass density of the material.
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Fig. 10 Left The constant arrangement of the artificial heterogeneities of the aluminum samples.
Right Results of the frequency measurements of the elastic modulus and the evaluation of the fit
functions of the CS, MSG and SE theory

3.2.1 Vibration Analysis of Aluminum with Artificial Heterogeneities

Out of the total of three bars of different sizes, that were provided with drilled holes
as artificial heterogeneities in a constant arrangement (see Fig. 10, left), the flexural
eigenfrequencies were measured. The thicknesses and the widths of the rectangular
samples were about 3.5, 6.6 and 9.6mm, and the ratio of lengths to thicknesses were
constant at L/T ≈ 13.

3.2.2 Vibration Analysis of Aluminum Foams

The aluminum foams used here are ultralight materials with very high porosity. The
mean size of the closed-pores is about three millimeters. Two different foams, having
two different densities due to different production methods, have been investigated.
Distinction ismade between powdermetallurgical production (foam-I) and gas injec-
tion method (foam-II). Samples have been cut in different thicknesses of 6.6, 15 and
40mm (foam-I), and 7, 14 and 44mm (foam-II), whereas the ratio of the length to
thickness was L/T ≈ 20. The results of the frequency analysis reveal a negative size
effect and show an additional influence of the width (see Fig. 11). A fit of the results
for the aluminum foam samples succeeded only with the model of a surface layer as
described in Sect. 2.3.2 (core-shell model). The arrows point to two results, which
show that themeasurement results and the results of themodel respond to differences
in single widths in good accordance. A least square fit using the SL-model reveals
an elastic modulus of E = 3.98GPa and r = 1.0mm for foam-I and E = 1.06GPa
and r = 0.41mm for foam-II.
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Fig. 11 Results of the flexural vibration analysis of aluminum foam-I and -II: The axis of ordinates
on the left hand side belongs to the values of foam-I, whereas the axis of ordinates on the right hand
side belongs to foam-II. The arrows indicate the results of those samples that differ from the ratio
of the length to width of L/W ≈ 10. The solid and dotted lines represent inversely proportional
functions that were built with the assumption of constant ratios

4 Results

Bending rigidities F/w from static bending tests, and flexural vibration frequencies
f1 have been measured for four different types of materials. As results of the exper-
imental work, the additional parameters of higher-order continuum theories were
determined with a least square method, using the derived target functions of the CS,
MSG, SE and SL theories.

A multi-scale graph of normalized Young’s moduli for all different thicknesses
of all materials used in this work, is presented in Fig. 12. The normalization that is

Thickness in mm

suludo
m

citsale
dezila

mron
E
/E

0

1

Fig. 12 A multi-scale graph of normalized Young’s moduli for all different thicknesses of all
materials used in this work
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Table 4 Results of the evaluation of the measured data

Material Theory Parameter I Parameter II

Epoxy Couple stress theory E = 3.93GPa � = 7.75µm

Mod. strain gradient
theory

E = 3.93GPa � = 4.35µm

Surface elasticity
theory

EB = 3.22GPa ES = 14.1 kN m−1

SU-8 Couple stress theory E = 4.13GPa � = 2.5µm

Mod. strain gradient
theory

E = 4.14GPa � = 1.39µm

Surface elasticity
theory

EB = 3.36GPa ES = 3.95 kN m−1

Drilled aluminum Couple stress theory E = 39.8GPa � = 0.92mm

Mod. strain gradient
theory

E = 39.8GPa � = 0.51mm

Surface elasticity
theory

EB = 34.1GPa ES = 9.15GN m−1

Al foam-I Surface layer model E = 3.98GPa r = 1.0mm

Al foam-II Surface layer model E = 1.06GPa r = 0.41mm

used in the multi-scale graph refers to the specific elastic modulus (parameter I from
Table4), called E0.

A more detailed analysis of the data of the materials epoxy and SU-8 shows an
additional and clear relationship of measured elastic moduli with the length of the
beams, see Fig. 13. The solid and dotted lines in Fig. 13 are inversely proportional
functions, that are optimized separately to assure aminimumerror to the experimental
data.
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Fig. 13 Detailed graphs of the measurement values versus the lengths of the micro-beams. Left
epoxy. Right SU-8
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5 Conclusions

While the sizes of structures that were made of epoxy, SU-8, drilled aluminum
and aluminum foams were reduced, positive as well as negative size effects have
occurred. A positive size effect reflects in a stiffer elastic response to external forces,
whereas a negative effect is reflected in a softer elastic response when outer dimen-
sions of a body are reduced. Selected higher-order continuum mechanical theories
have been explained, as for example strain gradient theories, micropolar theory and
theories of material surfaces. For any of these theories, an analytical solution of the
Euler–Bernoulli beam model has been derived and presented. The assumption of a
variable elastic modulus allowed an adjustment of the higher-order coefficients �,
r and ES. With the example of the macroscopic samples of the drilled aluminum
it could be shown, in comparison to the micro-beams of epoxy, for example, that
the value of the parameter � is in the order of the physical dimension of the inter-
nal structure (e.g. the diameter and distance of the drillings, cf. Fig. 10, left). The
value of the material length scale parameter for epoxy that has been measured in the
present work, can be compared with the literature value from Table1, where there is
a deviation of 17%, that may be attributed to different manufacturing processes or
other base materials for the epoxy. As reported for epoxy, there is no size effect in
tensile testing with specimens of the same thicknesses that were tested here, cf. Lam
et al. (2003). None of the present approaches alone is able to include the pronounced
dependence of the elastic modulus from both, lengths and thicknesses of a beam
made of epoxy or SU-8 (see Fig. 13).
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Classification of Gradient Adhesion Theories
Across Length Scale

Sergey Lurie, Petr Belov and Holm Altenbach

Abstract The sequence of continuum theories of adhesion is discussed. We give a
brief analysis of the existing theories of adhesion and present a continuum theory of
adhesion as a natural generalization of appropriate options for the theory of elasticity
and gradient theories of elasticity. We offer a sequence of variational formulations
of theories of adhesion and constitutive equations. In addition, the analysis of the
structures of the tensors of adhesive elastic modules is presented. As a result, we
propose a classification of theories of adhesion and gradient theories of elasticity
in terms accounting for scale effects. The classification is based on the qualitative
analysis of scale effects of different orders depending on the physical properties of
the continuum.

1 Introduction

Currently, there is a large number of publications devoted to the history of the
theory of surface and interface interactions, starting with the pioneering contribu-
tions of Young, Laplace, Poisson, and Gauß discussing the effects of surface ten-
sion, of surface properties on the basis of perceptions of intermolecular interactions
and of surface stresses in solids (which was initiated byGibbs). Recent investigations
of adhesive properties of surfaces and interfaces in deformable solids, in the mechan-
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ics of heterogeneous structures and in the mechanics of composites are developed in
various publications and analyzed in detail (see, for example Steigmann and Ogden
1997a, 1999a; Ostoja-Starzewski 2002; Duan et al. 2005, 2008; Zhu et al. 2009;
Altenbach et al. 2011; Povstenko 2008; Huang and Wang 2013; Eremeyev 2016).
The first adhesion continuum theories were developed in the framework of the classi-
cal theory of elasticity (Gurtin and Murdoch 1975a, b; Steigmann and Ogden 1997a,
1999a; Eremeyev et al. 2009; Javili and Steinmann 2010; Kim et al. 2011; Javili et al.
2012, among others). A generalization of the adhesionmodel ofMurdoch-Gurtinwas
suggested in Belov and Lurie (2007). In addition to the adhesive analogues of the
Lamé’s coefficients, two additional physical parameters were introduced in this gen-
eralized model. They were based on the analysis of the structure of the adhesive
elastic moduli. The first parameter can be identified by the Laplace constant for
capillary pressure. The second one is related to the possible non-symmetry of the
adhesive stresses in the adhesive interaction of surfaces. Usually, the second one is
set to zero for reasons of material indifference of model.

With the development of models for continua with fields of defects and nonlocal
theories that allow to take into account the scale effects, the models of mechanics
of continua which take into account the scale effects in the volume, concentrated in
the vicinity of the boundary of interfaces, and at the same time the adhesive effects
became interesting (Mindlin 1965; Lurie and Belov 2008; Lurie and Tuchkova 2009;
Lurie et al. 2009, 2010; Belov and Lurie 2009, 2014). In Belov and Lurie (2009,
2014), a model was formulated in which the adhesive properties were attributed to
the newly formed surface connected with a field of defects. A variational model
that takes into account the adhesive interactions of perfect (not damaged) surfaces,
surfaces damaged by defects, and their interaction was presented. In Lurie et al.
(2010), it was shown that the inclusion of scale effects due to the adhesive properties
of the surface of the body in gradient theories can be of great importance (scale effects
of the first order) in comparison with the scale effects in nonlocal theory (second
order effects). A gradient theory of second order, which can be considered as a
generalization of the theory of Steigmann and Ogden (1997a, 1999a), is described
in Belov and Lurie (2014).

The purpose of this paper is the sequential analysis of variational formulations
of the theories of adhesive interactions, the classification of adhesion models by
the degree of accuracy of accounted scale effects. We present the theorems that
allow to lift the restrictions associated with the requirements of the material frame
indifference.

2 Theory of Perfect Adhesion of Surface in Classical
Elasticity

Let us consider a linear elastic body which occupies the volume V . We assume that
the body is limited by an adhesively active surface F . We write the Lagrangian,
which allows to simulate the adhesive properties of an ideal (defect-free) classic
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media surfaces as follows:

L = AP −
∫∫∫

V

UV dV −
∫∫
F

UF dF, (1)

where

AP =
∫∫∫

V

PV
i Ri dV +

∫∫
F

P F
i Ri dF

is the work of external body forces PV
i , distributed in the volume of the elastic

body V , and of surface forces P F
i , defined on the surface of the body F on the

displacements Ri , UV is the density of the potential energy, UF is the surface density
of the potential energy of adhesively active surface F .

Note that in the case of contacting bodies, interfacial interactions are determined
by the difference of the potential energy of the surface of contacting bodies at each
contact point. Indeed, consider the interfacial interaction between two bodies in
contact with the volumes Vi , i = 1, 2 and bounded by surfaces Fi , (i = 1, 2), cor-
respondingly, the contact between the bodies occurs through the common contact
surface C : Fi = F̄i ∪ C (i = 1, 2), F̄i are the body surfaces that are free of contact.
The Lagrangian for the composed body is obviously determined by the following
equation:

L = L(1) + L(2) = A(1)
P −

∫∫∫
V1

U (1)
V d −

∫∫
F1

U (1)
F dF

+ A(2)
P −

∫∫∫
V2

U (2)
V dV −

∫∫
F2

U (2)
F dF

= A(1)
P + A(2)

P −
∫∫∫

V2

U (2)
V dV −

∫∫∫
V2

U (2)
V dV −

∫∫

F̄1

U (1)
F dF −

∫∫

F̄2

U (2)
F dF

−
∫∫
C

(U (1)
F − U (2)

F ) dF. (2)

Here

Ak
P =

∫∫∫
Vk

P (Vk )
i R(1)

i dV +
∫∫

F̄k

P (F̄k )
i R(1)

i dF; U (k)
V , U (k)

F (k = 1, 2)

is the density of the potential strain energy in the volume, and U (k)
F (k = 1, 2) are the

energy densities of the adhesively active surface of each of the contacting bodies.
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The last expression in Eq. (2) proves given assertion. It determines the interfacial
interactions at the contact boundary. Consequently, the classification of adhesion
theories can be realized by relying on the expression of the surface density of potential
energy, inherent in insulated body with adhesively active surface.

Let us further assume that the density of the potential energy of the surface UF as
well as the density of strain energy in the volume depend on the first derivatives of
the displacement vectors. We will not involve any hypothesis regarding the structure
of the surface density of the potential energy UF . Only the quadratic form of surface
density of potential energy is postulated, which corresponds to the physical linearity
of the theory:

2UF = Ai jmn Ri, j Rm,n .

In this case, the adhesion stresses are determined by Green’s formulas

ai j = ∂UF

∂ Ri, j
= Ai jmn Rm,n . (3)

Note that considering Eq. (2), we can write the following expression for the strain
energy of the contact surface of the two contacting bodies

∫∫
C

(U (1)
F − U (2)

F ) dF =
∫∫
C

(A(1)
i jnm − A(2)

i jnm) di j dnm dF, di j = ∂ Ri /∂x j , A(1)
i jnm , A(2)

i jnm .

A(l)
i jnm are the elastic moduli of the interfacial interactions of contact surface for each

of the bodies.
We have the following statement regarding the general structure of the adhesion

elastic moduli for the classical linearly elastic body (Belov and Lurie 2007; Lurie
and Belov 2008; Lurie and Tuchkova 2009; Lurie et al. 2009).

Theorem 13.1 Let us consider a linearly elastic body with adhesively active surface.
Then

1. The elastic moduli of the interfacial interactions are as follows:

Ai jmn = λF δ∗
i j δ

∗
mn + μF (δ∗

imδ∗
jn + δ∗

inδ∗
jm) + χ F (δ∗

imδ∗
jn − δ∗

inδ∗
jm) + δF ni nmδ∗

jn,

(4)

where δ∗
i j = (δi j − ni n j ), δi j is Kronecker’s delta λF , μF are the elastic constants

similar to Lamé’s coefficients (bulk properties) in Hooke’s law that determine the
interfacial interactions in the model of Gurtin and Murdoch (1975a,b), χ F is
the adhesive elastic modulus characterizing the rigidity of the surface at the
asymmetric deformation of the surface, δF is the modulus of elasticity that defines
the surface resistance in bending.

2. In the case of a surface having isotropic properties with a symmetric tensor of
adhesion stresses ai j ei jknk = 0 (ei jk is the permutation symbol), the adhesive
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elastic moduli have the structure

Ai jmn = λFδ∗
i jδ

∗
mn + μF (δ∗

imδ∗
jn + δ∗

inδ
∗
jm) + δF ni nmδ∗

jn.

The proof of (4) can be found in Belov and Lurie (2007), Lurie and Tuchkova
(2009). It is based on the representation of the tensors of adhesive moduli Ai jmn
as an expansion in the system of basic fourth-rank tensors. These tensors are built
as products of planar Kronecker tensors δ∗

i j = (δi j − ni n j ) and tensors of the type
(ni n j ) with all possible permutations of the indices.

In general, they are supplemented by the tensors of the form ni n j nmnn and are
conditionally divided into three groups. The first group includes only those tensors
that contain the planar Kronecker tensors as factors, the second one includes those
which contain planar Kronecker tensor and tensor (ni n j ) as factors, the third one
includes those that contain two tensors of (ni n j ) type. As a result, it is established
a common form of the tensor Ai jmn . The most common structure of the fourth-rank
transversely isotropic tensor contains eight adhesive moduli and has the form:

Ai jmn = λFδ∗
i jδ

∗
mn + (μF + χ F )δ∗

imδ∗
jn + (μF − χ F )δ∗

inδ
∗
jm

+ δF ni nmδ∗
jn + (αF + ηF )ni nnδ

∗
jm + (αF − ηF )nmn jδ

∗
in

+ (βF + ξ F )ni n jδ
∗
mn + (βF − ξ F )nmnnδ

∗
i j + B Fδ∗

imn j nn

+ AF ni n j nmnn. (5)

The condition of the existence of the potential energy of adhesion Ai jmn = Amni j

leads to the requirement of vanishing coefficients ηF = 0 and ξ F = 0 in Eq. (5).
Finally, we must fulfill the conditions for which the boundary value problems for
a classic elastic body contain in each regular point of the surface three boundary
conditions. To satisfy this requirement of the consistency of the adhesion model with
the general formulation of boundary value problems of classical theory of elasticity,
the following should be inserted in Eq. (5)

αF = βF = B F = AF = 0.

Indeed, these conditions correspond to the conditions ai j n j = Ai jmnn j Rm,n ≡ 0.
Obviously, in this case the adhesive elastic moduli of the classical elastic body satisfy
the following conditions Ai jmnn j ≡ 0:

Ai jmnn j = αF nmδ∗
in + βF niδ

∗
mn + B Fδ∗

imnn + AF ni nmnn = 0.

In otherwords, the density of the potential energy of surface in the case of the classical
elastic body has the form:

2UF = Ai jmn(Ri,kδ
∗
k j ) (Rm,pδ

∗
pj ).
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A special case of Eqs. (2)–(4) for λF �= 0, μF �= 0, χ F = δF = 0 is the “theory
of elasticity of the surface” of Gurtin and Murdoch (1975a, b). The question of
the material frame indifference of the Murdoch-Gurtin adhesion theory defined by
(4) with condition δF = 0 can be raised here. We will show in Sect. 6 that for the
generalized theory of adhesion the material frame indifference is always satisfied.

We give an analysis of the potential energy of elastic body with the adhesive prop-
erties of the free surface in termsof scale effects. Let us pay attention to the fact that the
adhesive moduli Ai jmn differ from the components of the tensor of the classical mod-
uli Ci jmn on the scale of length. We can define the scale parameter l, associated with
the interfacial interactions, as the ratio of the norms of the tensor components Ai jmn

and Ci jmn , for example, A = √
Ai jmn Ai jmn and C = √

Ci jmnCi jmn . Then, l = A/C ,
Āi jmn = Ai jmnC/A, and the tensor can be represented as Ai jmn = Āi jmnl, where ten-
sor Āi jmn has the same dimension as the tensor of classical moduli. The Lagrangian
(1) can be written now as a linear expansion of the parameter l:

L =
(

AP − 1

2

∫∫∫
Ci jmn Ri, j Rm,n dV

)
+

(
−1

2
Āi jmn Ri, j Rm,n dF

)
l = L0l0 + L1l1

(6)
with

L0 = AP − 1

2

∫∫∫
Ci jmn Ri, j Rm,n dV

and

L1 = −1

2
Āi jmn Ri, j Rm,n d F.

Thus, any kind of continuum theory of adhesion of a type (2)–(4) determines the
scale effects of first order.

3 Theory of Adhesion Interactions in Gradient Elasticity

Let us consider nonlocal Mindlin and Eshel (1968) theory. We assume that there are
no defects in a deformed elastic body and on its surface. In this case, the Lagrangian
that allows us to formulate a gradient continuum theory with adhesive interactions,
i.e. to introduce the constitutive equations and to provide a complete mathematical
formulation of the boundary value problem, can be represented as follows:
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L = AP − UV (Ri, j , Ri, jk) − UF (Ri, j ),

UV (Ri, j , Ri, jk) = 1

2

∫∫∫
V

(Ci jmn Ri, j Rm,n + Ci jkmnl Ri, jk Rm,nl) dV,

UF (Ri, j ) = 1

2

∫∫
F

Ai jmn Ri, j Rm,n dF,

AP =
∫∫∫

V

PV
i RidV +

∫∫
F

[P F
i Ri + qi Ri, j n j ] dF,

(7)

where AP is the work done by external body force PV
i and Cauchy traction P F

i ,
qi , Ri, j and Ri, jk are the components of the double stress traction vector and the
distortion tensor, gradient of the distortion (or second gradient of displacement)
tensor, respectively, the coefficientsCi jmn are the components of the forth rank tensor
of elastic parameters, which we assume to be homogeneous throughout the body, the
coefficients Ci jkmnl are the components of the sixth rank tensor of distortion gradient
elastic parameters.

The following theorem is valid.

Theorem 13.2 1. For a linearly elastic body bounded by a smooth surface, the
Lagrange principle

δL = δAP − δUV (Ri, j , Ri, jk) − δUF (Ri, j ) = 0 (8)

with the functional (7) completely determines the mathematical formulation of
gradient theory of elasticity of a body with the volume V , limited with adhesively
active surface F.

2. Generalized equations of Hooke’s law are defined by Green’s formulas. In the
volume of the body, the constitutive equations have the structure:

σi j = ∂UV (Ri, j , Ri, jk )

∂ Ri, j
= Ci jmn Rm,n , μi jk = ∂UV (Ri, j , Ri, jk)

∂ Ri, jk
= Ci jkmnl Rm,nl ,

(9)
whereσi j are the components of the Cauchy stress tensor,μi jk are the components
of the double stress tensor.

3. On the adhesively active surface of the body F for the adhesion stresses,
Green’s formulas give the following defining relations for the tensor of adhesive
stresses ai j :

ai j = ∂UF (Ri, j )

∂ Ri, j
= Ai jmn Rm,n, (10)

where Ai jmn are the components of the forth rank tensor of adhesion elastic
parameters. Tensor Ai jmn has the most common structure and includes eight
physical parameters:
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Ai jmn = λFδ∗
i jδ

∗
mn + μF (δ∗

imδ∗
jn + δ∗

inδ
∗
jm) + χ F (δ∗

imδ∗
jn − δ∗

inδ
∗
jm) + δF ni nmδ∗

jn

+ αF (ni nnδ
∗
jm + nmn jδ

∗
in) + βF (ni n jδ

∗
mn + nmnnδ

∗
i j )

+ B Fδ∗
imn j nn + AF ni n j nmnn. (11)

4. The variational equation (8) with use of the procedure of integration by parts,
yields the following equilibrium equations in V

σi j, j − μi jk,k j + PV
i = 0 (12)

and both natural, von Neumann-like, and essential, Dirichlet-like, boundary
conditions on F;

σi j n j − μi jk,kn j − (μi jknk), j + (μi jknknl),ln j = P F
i , μi jkn j nk = qi

and
Ri = R̄i , Ri, j n j = ∂ Ri/∂n,

where the overbar stands for prescribed functions.

The proof of the theorem is obvious. It is based on the consistent use of the procedure
of integration by parts and on the analysis of the structure of tensor of adhesive elastic
moduli (see Sect. 2) and Lurie and Belov (2008), Lurie and Tuchkova (2009), Lurie
et al. (2009). The above theorem completely defines a generalized gradient theory
of elasticity and the theory of adhesion of gradient defect-free media. The question
of the material frame indifference of the presented generalized gradient theory of
elasticity and the theory of adhesion is completely solved on the basis of theorem
given in the Sect. 6.

In Eq. (11), the moduli λF , μF , χ F , δF can be related to the adhesive properties of
the surface of the classical body, andmoduli AF , B F canbe attributed to the properties
of the gradient medium surface. Adhesion moduli αF , βF can be interpreted as
the moduli of adhesive interactions between the surfaces of classical and gradient
medium.

We give the analysis of the Lagrange functional of an elastic body with adhesion
properties of the free surface (6) in terms of scale effects. To this end, in a similar way
as has been done previously, we normalize both the tensor of the adhesion elastic
moduli Āi jmn = Ai jmnC/A and the tensor of gradient moduli of the elasticity of the
sixth grade C̄i jkmnl = Ci jkmnl(C/A)2, l = A/C . As a result, the Lagrangian of adhe-
sive generalization of Toupin’s theory takes the form of the square decomposition in
the scale parameter l:
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L =
(

AP − 1

2

∫∫∫
Ci jmn Ri, j Rm,n dV

)

+
(

−1

2

∮
Āi jmn Ri, j Rm,n d F

)
l +

(
−1

2

∫∫∫
C̄i jkmnl Ri, jk Rm,nl dV

)
l2

= L0l
0 + L1l

1 + L2l
2. (13)

Thus, any continuum theory of elasticity, modified by accounting adhesive interac-
tions on the surface of gradient media of the form (13), determines the scale effects
of both first and second order. The gradient theories are modified by introducing the
potential energy in the Lagrangian additionally

UF (Ri, j ) = 1

2

∫∫
F

Ai jmn Ri, j Rm,n dF,

defined at the adhesively active part of the surface (see Eqs. (6), (8)–(10)), and may
relate to any of the gradient theory as a general theory of Mindlin and Eshel (1968)
or to applied gradient theories (Lurie et al. 2009, 2010; Gao and Park 2007; Altan
and Aifantis 1992; Gusev and Lurie 2015).

4 Theory of Gradient Adhesion in Gradient Elasticity

Note that the Lagrangian (7) is formally asymmetric with respect to the structures of
the volume and surface potential energy densities. Indeed, both the density of energy
in the volume and the density of energy on the surface contain quadratic forms of the
first derivatives of the displacements Ci jmn Ri, j Rm,n and Ai jmn Ri, j Rm,n . However,
only the density of strain energy in the volume includes a quadratic form of the
second derivatives of the displacements Ci jkmnl Ri, jk Rm,nl . Let us extend formally
the list of arguments for the density of the potential energy on the surface so that
the lists of arguments of potential energy densities in the volume and on the surface
match. This generalization is provided by addition of a quadratic form of second
derivatives of the displacements Ai jkmnl Ri, jk Rm,nl to the expression of the potential
energy density on the surface. As a result, the Lagrangian of the gradient theory of
adhesion has the form (Belov and Lurie 2014):

L = AP − 1

2

∫∫∫
(Ci jmn Ri, j Rm,n + Ci jkmnl Ri, jk Rm,nl) dV

− 1

2

∫∫
(Ai jmn Ri, j Rm,n + Ai jkmnl Ri, jk Rm,nl) dF. (14)

The coefficients Ai jkmnl are the components of the sixth rank tensor of moduli of the
gradient elastic adhesion theory.

The formal approach used above allows us to consider the theory of adhesion
determined by the use of the Lagrangian (14) as a natural generalization of the theory
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of adhesion formulated for the classical theory of elasticity (10)–(12). The proposed
gradient adhesion theory is completely determined by the variational equation that
results from the principle of Lagrange with the Lagrangian (14). The following
statements are valid:

1. The equilibrium equations in the volume represent Eq. (12).
2. The generalized equations of Hooke’s law in the volume of the body are deter-

mined by Eq. (9).
3. The generalized constitutive equations on the surface can be found with the help

of Green’s formulas and have the form:

ai j = ∂UF (Ri, j , Ri, jk)

∂ Ri, j
= Ai jmn Rm,n, bi jk = ∂UV (Ri, j , Ri, jk)

∂ Ri, jk
= Ai jkmnl Rm,nl ,

(15)
whereai j are the components of the adhesion stress tensor,bi jk are the components
of the adhesion double stress tensor.

4. The tensor of the fourth-rank adhesive moduli Ai jmn depending on eight elastic
constants has the form of (11), and the sixth rank tensor Ai jkmnl has the following
structure:

Ai jkmnl = A1

(
δ∗

i j δ
∗
kmδ∗

nl + δ∗
mnδ∗

li δ
∗
jk + δ∗

i j δ
∗
knδ∗

ml + δ∗
mnδ∗

l j δ
∗
ik + δ∗

i j δ
∗
klδ

∗
mn

+ δ∗
ikδ

∗
jmδ∗

nl + δ∗
mlδ

∗
ni δ

∗
jk + δ∗

inδ∗
kmδ∗

jl + δ∗
mj δ

∗
li δ

∗
nk + δ∗

inδ∗
lkδ

∗
jm

+δ∗
ikδ

∗
jnδ∗

ml + δ∗
ilδ

∗
kmδ∗

nj

)

+ A2(δ
∗
imδ∗

k j δ
∗
nl + δ∗

imδ∗
l j δ

∗
nk + δ∗

imδ∗
nj δ

∗
kl)

+ A3(ni n j δ
∗
kmδ∗

nl + nmnnδ∗
li δ

∗
jk + ni n j δ

∗
knδ∗

ml + nmnnδ∗
l j δ

∗
ik + ni n j δ

∗
klδ

∗
mn

+ nmnnδ∗
lkδ

∗
i j )

+ A4(ni nnδ∗
kmδ∗

jl + nmn j δ
∗
li δ

∗
nk + ni nnδ∗

mlδ
∗
jk + nmn j δ

∗
ikδ

∗
nl + ni nnδ∗

lkδ
∗
jm

+ nmn j δ
∗
klδ

∗
ni )

+ A5(ni nmδ∗
k j δ

∗
nl + ni nmδ∗

l j δ
∗
nk + ni nmδ∗

nj δ
∗
kl)

+ A6(n j nnδ∗
ikδ

∗
ml + n j nnδ∗

ilδ
∗
km)

+ A7n j nnδ∗
imδ∗

kl

+ A8δ
∗
kl ni n j nmnn . (16)

5. Both the natural, von Neumann-like, and the essential, Dirichlet-like, boundary
conditions on F are written as

P F
i − (σi j − μi jk,k)n j + (μi jknk + ai j − bi jk,k),pδ

∗
pj = 0, δ∗

pj = δpj − n pn j ,

(17)
(μi jknk + ai j − bi jk,k)ni = q j

and
Ri = R̄i , Ri, j n j = ∂ Ri/∂n.
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The dimension of the tensor of the sixth rank adhesive moduli is different
from the dimension of the tensor of the fourth-rank adhesive moduli on the
square of length dimension. Therefore, after applying the normalization pro-
cedure Āi jkmnl = Ai jkmnl/(A/C)3, the Lagrangian (14) can be represented as a
cubic polynomial in the parameter l (characteristic length of scale effects):

L =
(

AP − 1

2

∫∫∫
Ci jmn Ri, j Rm,n dV

)
+

(
−1

2

∫∫
Āi jmn Ri, j Rm,n dF

)
l

+
(

−1

2

∫∫∫
C̄i jkmnl Ri, jk Rm,nl dV

)
l2 +

(
−1

2

∫∫
Āi jkmnl Ri, jk Rm,nl dF

)
l3

= L0l0 + L1l1 + L2l2 + L3l3. (18)

Thus in general, the gradient theories of adhesion of gradient media allow to take
into account the scale effects up to the third order, see Eq. (18).

5 On the Unified Nature of Cohesive–Adhesive Interactions

Let us consider the density of potential energy of the Mindlin–Toupin gradient elas-
ticity (Mindlin and Eshel 1968) with the tensor of the sixth order elastic moduli
Ci jkmnl that are written with five physical constants for isotropic media (Gusev and
Lurie 2015). It can be proved (Belov and Lurie 2014) that the density of potential
energy of the gradient elasticity can be represented as a sum of positive definite
quadratic forms and a divergence term.

Ci jkmnl Ri, jk Rm,nl = (2μ + λ)l2θ Ri,ik R j, jk + μl2ω(ΔRk − Ri,ik)(ΔRk − R j, jk)

+ {
2C1Ri,i (ΔRk − R j, jk)

+ 2C2

[
Ri, j (Rk, j i + R j,ki ) − Rk, j (Ri,i j + ΔR j )

]
+ 2C3(Ri, j Ri, jk − Ri,kΔRi )

}
,k . (19)

Here l2θ , l2ω, C1, C2, C3 are five independent strain gradient coefficients which are
linear combinations of five components of the Mindlin–Toupin tensor for isotropic
media.

The divergence term is determined by the divergence of the vector (19). This term
can be interpreted on one hand as a part of the volume density of potential energy,
and on the other hand as part of the density of the surface potential energy (potential
energy of adhesion). For this, it is enough to use the Ostrogradskii–Gauß theorem.

It is important to note that the divergence term is of second order in the decom-
position of the scale parameter. However, in Eqs. (6), (13), (17) given above, there
are no terms corresponding to the decomposition of the second order with respect
to the scale parameter and associated with the density of potential energy of adhe-
sion. Indeed, the density of the potential energy of perfect adhesion gives the first
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order in the decomposition in the scale parameter, and the density of potential energy
of gradient adhesion gives, respectively, the third order. Therefore, it is natural in
gradient theories to take into account the adhesion potential energy defined by the
bilinear form of the first and second derivatives of the displacements Ai jmnl Ri, j Rm,nl ,
which also gives the second order in the decomposition in the scale parameter. The
Lagrangian of such generalized theory has the following structure:

L = AP − 1

2

∫∫∫
(Ci jmn Ri, j Rm,n + Ci jkmnl Ri, jk Rm,nl) dV

− 1

2

∫∫
(Ai jmn Ri, j Rm,n + 2Ai jmnl Ri, j Rm,nl + Ai jkmnl Ri, jk Rm,nl) dF. (20)

Through the proper procedure of normalization Āi jmnl = Ai jmnl/(A/C)2, the
Lagrangian of the theory (20) can also be represented as a finite decomposition
in the characteristic length of scale effects l:

L = (AP − 1

2

∫∫∫
Ci jmn Ri, j Rm,ndV ) + (−1

2

∫∫
Āi jmn Ri, j Rm,n dF)l

+
(

−1

2

∫∫∫
C̄i jkmnl Ri, jk Rm,nldV −

∫∫
Āi jmnl Ri, j Rm,nl dF

)
l2

+
(

−1

2

∫∫
Āi jkmnl Ri, jk Rm,nl dF

)
l3

= L0l
0 + L1l

1 + L2l
2 + L3l

3. (21)

In this version of the theory (21), the Lagrangian is a cubic polynomial of the char-
acteristic length of scale effects, the term with L2 contains not only the quadratic
form of the second derivatives in the volume

∫∫∫
C̄i jkmnl Ri, jk Rm,nl dV,

but also a bilinear form of first and second derivatives on the surface
∫∫

Āi jmnl Ri, j Rm,nldF.

Obviously, these terms are quite equivalent and the neglect of the adhesive effects of
the second one can not be considered as reasonable. On the other hand, this analysis
is the argumentation of generalization in the theory of adhesion which involves the
consideration of the deformation energy

∫∫
Āi jmnl Ri, j Rm,nl dF
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defined on the adhesive-active surface. We assume that if the potential energy of
gradient theory contains the term

l2
∫∫∫

C̄i jkmnl Ri, jk Rm,nl dV,

then there should be taken into account the equitable terms

l
∫∫

Āi jmn Ri, j Rm,n dF

and

l2
∫∫

Āi jmnl Ri, j Rm,nl dF.

It can be shown that the general structure of the tensor of the fifth rank adhesive
modules is as follows:

Ai jmnl = G1(niδ
∗
jmδ∗

nl − nmδ∗
jlδ

∗
in + niδ

∗
jnδ

∗
lm − nmδ∗

jnδ
∗
li + niδ

∗
jlδ

∗
mn − nmδ∗

j iδ
∗
nl)

+ G2(n jδ
∗
inδ

∗
lm − nnδ

∗
jmδ∗

il + n jδ
∗
ilδ

∗
mn − nnδ

∗
j iδ

∗
lm)

+ G3(n jδ
∗
imδ∗

nl − nnδ
∗
jlδ

∗
mi ) +

+ G4(δ
∗
iln j nmnn − δ∗

mlni n j nn)

+ G5(δ
∗
jlni nmnn − δ∗

nlni n j nm).

Note that for this generalized theory of adhesion, both the equilibrium equation and
the static boundary conditions retain the form (12), (17). However, the constitutive
equations change on the surface (Hooke’s law). They have a more general form:

ai j = Ai jmn Rm,n + Ai jmnl Rm,nl , bi jk = Amni jk Rm,n + Ai jkmnl Rm,nl . (22)

Therefore, taking into account the relations (12), (17), (22), the whole statement of
boundary value problems in displacements will be different.

Note that in this theory the Lagrangian is a cubic polynomial of the characteristic
length of scale effects. However, the term L2 contains not only the quadratic form of
the second derivatives in volume, but also a bilinear form of first and second deriva-
tives on the surface. Note also that formally we cannot neglect the adhesive effects
of third order. It can be easily seen that the significant adhesive corrections of the
second order can exist only in the presence of quadratic terms due to the requirement
of positive definiteness of the potential energy. Consequently, the adhesive effects
of third order should be taken into account when we consider gradient problems so
that it would be possible to describe the adhesion second order effects.
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6 Discussion and Conclusions

With formulations of non-classical theories we consider that the question of their
physical objectivity arises (Liu 2009; Murdoch 2000, 2003, 2005; Gurtin et al.
2010). The problem of the material frame indifference of the generalized Murdoch-
Gurtin theory of adhesion (see (4) with condition δF = 0) was mentioned earlier in
Sect. 2. The following theorem is valid:

Theorem 13.3 For generalized theories of adhesion, the material frame indifference
is always satisfied.

To prove this statement, note that the problem reduces to the analysis of invariance
of the Lagrangian with respect to translation and rotation of the body as a rigid body.

The invariance of any physically linear theory reduces to the invariance of the
quadratic distortion of the Lagrangian:

L = AP − 1

2

∫∫∫
Ci jmn Ri, j Rm,n dV − 1

2

∫∫
Ai jmn Ri, j Rm,n dF. (23)

All the terms of the Lagrangian that contain the second derivatives of the displace-
ments, are automatically invariant under translations and rotations of the body as a
rigid body.

Let us define a random field of body displacements in the form of the decompo-
sition:

Ri = R0
i − ω0

p(xq − x0
q )epqi + ui ,

Ri, j = −ω0
pepi j + ui, j , Rm,n = −ω0

qeqmn + um,n .
(24)

Substituting (24) into (23) we obtain:

L(Ri ) = P0
i R0

i + m0
kω

0
k − 1

2
Dpqω

0
pω

0
q + L(ui ), (25)

here: ∫∫∫
PV

i dV +
∫∫

P F
i dF = P0

i ,

∫∫∫
PV

i (xq − x0
q )epqi dV +

∫∫
[P F

i (xq − x0
q )epqi ] dF = M0

p,

∫∫∫
PV

i ui dV +
∫∫

P F
i ui dF − 1

2

∫∫∫
Ci jmnui, j um,n dV

− 1

2

∫∫
[Ai jmnui, j um,n] dF = L(ui ),

M0
k +

∫∫∫
[Ci jmnekmnui, j ] dV +

∫∫
[Ai jmnekmnui, j ] dF = m0

k,

Ci jmnepi j eqmn V +
∫∫

[Ai jmnepi j eqmn]dF = Dpq .

(26)
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The use of the Lagrange principle δL(Ri ) = 0 and Eq. (25) leads to the equations:

P0
i = 0, m0

p − Dpqω
0
q = 0, δL(ui ) = 0. (27)

Taking into account Eq. (27) we rewrite the Lagrangian (25) in the form of:

L(Ri ) = 1

2
D−1

i j m0
i m0

j + L(ui ), D−1
ik Dk j = δi j . (28)

Therefore, according to equation (28) the necessary and sufficient conditions of
invariance of the Lagrangian are to perform isoperimetric equations:

m0
k = M0

k +
∫∫∫

[Ci jmnekmnui, j ] dV +
∫∫

[Ai jmnekmnui, j ] dF = 0. (29)

The isoperimetric conditions (29) have a physical meaning of generalized global
equations of the equilibrium of moments. They may be satisfied as well before the
solutions constructing as after it. Before the solution constructing, they are met
by introducing them as isoperimetric conditions on the pseudo-vector of undefined
Lagrange multipliers according to the known procedure. It is important to note that
these conditions of orthogonality (isoperimetric relations) do not violate the algo-
rithm for the construction of the solutions of boundary value problems. Indeed, these
relationships can always be satisfied after the construction of the boundary value
problem solution Ri and substitution of the following relation to the isoperimetric
expressions:

R̄i = Ri − R0
i + ω0

m(xn − x0
n )emni .

As a result, after integration, we obtain a linear system of algebraic equations to
determine the values R0

i and ω0
m that provide the orthogonality of the space of kine-

matic states of an elastic body R̄i to the spaces of translations and rotations of the
body as a rigid body.

The article describes a sequence of the theories of adhesion of ideal (defect-free)
surfaces of bodies of varying degree of generality. We indicated the relation between
themodels of adhesion and gradient models of media and offered a new classification
of theories of adhesion. It was proved that the adhesive and cohesive (gradient) effects
should be considered together. The proposed classification shows that the presence
of the moduli of different dimensions determines the scale effects of different orders,
depending on what physical properties this medium is endowed with. The study
of the behavior of the body under gradient models should be carried out not only
considering the adhesion effects of first order, but also the adhesion effects of second
and even third order. Otherwise, taking into account the gradient effects can produce
a smaller contribution to the solution compared with the contribution of unrecorded
adhesion effects.
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Eigenvalue Problems of a Tensor
and a Tensor-Block Matrix (TMB)
of Any Even Rank with Some Applications
in Mechanics

Mikhail U. Nikabadze

Abstract In this work, the eigenvalue problems of the symmetric tensor-block
matrix of any even rank and sizesm × m,m ≥ 1 (sizes 2 × 2) is formulated (studied).
Some definitions and theorems are formulated concerning the tensor-block matrix.
Formulas expressing the classical invariants of the tensor-block matrix of any even
rank and sizes 2 × 2 through the first invariants of the powers of this tensor-block
matrix are given. We also obtain formulas which are inverse to the latter. A com-
plete orthonormal system of eigentensor columns for the tensor-block matrix of any
even rank and sizes 2 × 2 is constructed. We formulate the generalized eigenvalue
problems of the tensor-block matrix. As a special case, we consider the tensor-block
matrix of the elastic modulus tensors. The canonical representation of the tensor-
block matrix is given. Using this representation, we get the canonical forms of the
elastic strain energy and the constitutive relations. Besides, a classification of the
micropolar linear elastic anisotropic bodies that do not have a center of symmetry is
given.

Keywords Block matrix · Tensor-block matrix · Tensor column · Tensor row ·
Eigentensor · Eigenvalue problem · Generalized eigenvalue problem · Orthonormal
system · Complete orthonormal system · Eigentensor column · Eigentensor row ·
Symbol of anisotropy · Symbol of structure

1 Introduction

The eigenmoduli (eigenvalues) and eigenstates (eigentensors) for isotropic mate-
rials are known since Stokes (see in Love 2013). Under other names, these terms
were introduced by Kelvin (Rychlewski 1984; Todhunter and Pearson 1960) for
anisotropic materials in the mid-nineteenth century. However, these terms were for-
gotten for a long time; only about 30 years ago, researchers turned to this prob-
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lem again (Rychlewski 1983, 1984; Minkevich 1973; Tolokonnikov and Matchenko
1974; Alexandrov 1967; Lur’e 1979; Chanyshev 1984a, b; Revuzhenko et al. 1985;
Ostrosablin 1984, 1986b, a, 2000; Annin and Ostrosablin 2008), see also Chen
(1984), Mehrabadi and Cowin (1990, 1991), Theocaris (1989) Theocaris and Philip-
pidis (1989, 1990, 1991), Sutcliffe (1992). In Ostrosablin (1986a, 2000), a classi-
fication of anisotropic linear elastic classical materials is proposed. The eigenvalue
and eigentensor problem is considered in Nikabadze (2008, 2009a, b, 2015), Vekua
(1978) for a temperature of even rank. The concept of eigenstates is used to develop
the theory of plasticity (Pobedrya 1984, 1990) and the flow theory (Pobedrya 1986).
However, publications on this problem for micropolar materials, except Nikabadze
(2014, 2015), are not known to the author of this paper.

2 On Tensors of Module R2p(Ω)

Let us consider some questions related to the tensors of the module R2p(Ω). They
will help us in the future presentation of the material. Here, R2p(Ω) is a set of
real 2pth rank tensors, p is some non-negative integer, Ω is some domain of the
n-dimensional Riemannian space R

n. Therefore, R2p(Ω) and Rp(Ω) (a set of real
pth rank tensors) are the modules over the ring of scalars R0(Ω) (a set of real
zero-rank tensors), i.e. R2p(Ω) and Rp(Ω) are R0(Ω)-module (Nikabadze 2009a,
2015; Vekua 1978). Tensors of the module R2p(Ω) can be represented in different
multibases. For example, if 2pA is a tensor of the module R2p(Ω), then it may have
different representations:

2pA = A
i1i2···ip

j1j2···jp Ri1i2···ip Rj1j2···jp = Ai·
· jRiRj, (1)

Ri1···ip = ri1 . . . rip , Rj1···jp = rj1 · · · rjp , i1, . . . , ip, j1, . . . ., jp = 1, n, rs · rt = δt
s,

s, t = 1, n, i = No{i1, . . . , ip}, . . . , j = No{j1, . . . , jp},
Ri

p⊗ Rj = δ
j
i , i, j = 1, N, N = np.

Here δ
j
i is Kronecker delta;

p⊗ is the inner p-product (Nikabadze 2009a, 2015; Vekua
1978). Therefore, rs and rt , s, t = 1, n, are the biorthonormal systems of bases with

respect to the scalar product or inner 1-product
1⊗;Ri, Rj, i, j = 1, N , are the biortho-

normal systems ofmultibases or bases ofmoduleRp(Ω)with respect to the operation
of the inner p-product (p-times inner product), 1, m = 1, 2, . . . , m.

Note that for the tensors of module Rp(Ω), we apply the p-index or one-index
representations. So if pU ∈ Rp(Ω), then

pU = Ui1i2...ip Ri1i2···ip = Ui1i2...ip Ri1i2···ip = UiRi = UiRi,

i1, i2, . . . , ip = 1, n, i = 1, N .
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Note that Eq. (1) give (2p)-index and two-index representations of a tensor 2pA
of the module R2p(Ω). The rank of the tensor does not change under the two-index
representation.Wealso note that the numbering of the elements of the set of numerical
sequences {i1, . . . , ip}, i1, . . . , ip = 1, n, can be produced, for example, as follows: if
i = No{i1, . . . , ip} then i = i1 + ∑p

k=2 nk−1(ik − 1) or i = ip + ∑p−1
k=1 nk(ip−k − 1),

i1, . . . , ip = 1, n.
Let us introduce some definitions.

Definition 14.1 The tensor of the module R2p(Ω) denoted by 2pAT and defined by
formula

2pAT = (Ai ·
· jRiRj)T

= Ai ·
· jR

jRi = A· i
j ·RiRj = A

i1i2···ip
j1j2···jp Rj1j2···jp Ri1i2···ip , i, j = 1, N, (2)

N = np, i = No{i1, i2, . . . , ip}, j = No{j1, j2, . . . , jp} i1, i2, . . . , ip, j1, j2, . . . , jp = 1, n,

is called transposed tensor to 2pA ∈ R2p(Ω).

Definition 14.2 The tensor of the module R2p(Ω), which is equal to its transposed
tensor is called symmetric.

Definition 14.3 The tensor of the module R2p(Ω), which commutes with its trans-
posed tensor is called normal tensor.

Based on Definition of 14.3, we conclude that a symmetric tensor of module R2p(Ω)

is normal.
In the module R2p(Ω) besides operations of the addition of tensors and multi-

plication of a tensor by a scalar, the operations of the inner p-product and the inner
(2p)-product (scalar product) of two tensors can be introduced. Let us define these
operations. Let 2pA and 2pB be two tensors of the module R2p(Ω).

Definition 14.4 The inner p-product of tensors 2pA and 2pB of the moduleR2p(Ω) is

said to be a tensor denoted by 2pA
p⊗ 2pB, whose components are defined as follows:

(2pA
p⊗ 2pB)

i1i2···ip
j1j2···jp = A

i1i2···ip
k1k2···kp

B
k1k2···kp

j1j2···jp . (3)

With (3), we have

2pA
p⊗ 2pB = A

i1i2···ip
k1k2···kp

B
k1k2···kp

j1j2···jp Ri1i2···ip Rj1j2···jp .

From (3), it is seen that only tensors of rank not less than p can take part in the inner
p-product operation. The number p is called the multiplicity of the inner p-product.
If p = 0, i.e. if there is no reduction of the indices under the product of the tensors,

then the product is called the direct product. In this case, instead of the 2pA
0⊗ 2pB,
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we write 2pA ⊗ 2pB. If pA and pB are p-rank tensors of the module Rp(Ω), then under

inner p-product of these tensors we often omit a sign
p⊗ and simply write pApB or

(pA, pB). In this case, the inner p-product is called the inner or scalar product. It is,
of course, expressed by the formula

pApB = (pA, pB) = Ai1i2···ip Bi1i2···ip . (4)

Therefore, as in (4) we have

2pA2pB = (2pA, 2pB) = 2pA
2p⊗2pB = A

i1i2···ip
j1j2···jp B

j1j2···jp
i1i2···ip .

It should be noted that if the inner product mAmB becomes zero for any tensor mB,
then mA = 000. Here, mA and mB are tensors of the module Rm(Ω), where m is an
arbitrary non-negative integer.

Definition 14.5 Two tensors mA and mB of the module Rm(Ω), where m is an arbi-
trary non-negative integer, are called orthogonal if their inner product is zero, i.e.
(mA, mB) = 0.

Note that there is the unit tensor in the module R2p(Ω) with respect to the inner
p-product introduced above. Indeed, in the module R2p(Ω) the (2p)-rank unit tensor
is the following tensor

2pE = Ri1i2···ip Ri1i2···ip = ri1ri2 · · · rip ri1ri2 · · · rip = RiRi = gj
iR

iRj

= gj1
i1

gj2
i2

· · · g
jp
ip

ri1ri2 · · · rip rj1rj2 · · · rjp ,

i1, i2, . . . , ip, j1, j2, . . . , jp = 1, n, i, j = 1, N . (5)

It is easy to prove that for any tensor 2pA ∈ R2p(Ω) we have

2pA
p⊗ 2pE = 2pE

p⊗ 2pA = 2pA. (6)

Using 2pE, the first invariant of the tensor 2pA ∈ R2p(Ω) is expressed by

I1(
2pA) = 2pE

2p⊗ 2pA = 2pA
2p⊗ 2pE = (2pE, 2pA) = A

i1i2···ip
i1i2···ip . (7)

The determinant of a tensor is the determinant of the mixed components of this
tensor, i.e.

det(2pA) = det(A
i1···ip

j1···jp) = det(Aj ·
· i), i1, . . . , ip, j1, . . . , jp = 1, n, i, j = 1, N, N = np.

(8)

The determinant of a tensor is an invariant quantity. The expressions for the other
classical invariants of a tensor of the module R2p(Ω) can be easily obtained from the
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formulas for the invariants of a tensor-block matrix given below (Nikabadze 2015).
Therefore, for brevity, we will not dwell on this.

3 Eigenvalue Problem and Construction of a Complete
System of Eigentensor Columns of Symmetric
Tensor-Block Matrix

The eigenvalue problem is considered and a complete system of eigentensor columns
of symmetric tensor-block matrix (TBM) consisting of four tensors of the module
R2p(Ω) is constructed. We introduce a definition of the TBM.

Definition 14.6 A block matrix, whose blocks are composed of the various rank
tensors, is called the TBM.

TBM of sizes q × m can be written as

M =
⎛
⎝ A11 A12 · · · A1m

· · · · · · · · · · · ·
Aq1 Aq2 · · · Aqm

⎞
⎠ , (9)

where m and q are some natural numbers; Akl, k = 1, q, l = 1, m are the arbitrary
tensors, also called the subtensors of the matrix (9).

Definition 14.7 The matrix

M
T =

⎛
⎜⎝

AT
11 AT

21 · · · AT
q1

· · · · · · · · · · · ·
AT

1m A2m · · · AT
qm

⎞
⎟⎠ (10)

is called transposed matrix with the TBM (9).

Definition 14.8 A TBM, which coincides with its transposed matrix, is called sym-
metric.

Below it is to our interest to study the internal structure of a TBM (9) for which
q = m, and subtensors are tensors of the same even rank, say, of the module R2p(Ω).
Such matrices are often used in the application. One of them can be written as

M = M
j1j2···jp

i1i2···ip Ri1i2···ip Rj1j2···jp = M
j
iR

iRj =
⎛
⎝ A11 A12 · · · A1m

· · · · · · · · · · · ·
Am1 Am2 · · · Amm

⎞
⎠ , (11)

Akl = A
i1i2···ip
kl, j1j2···jp Ri1i2···ip Rj1j2···jp = A i ·

kl, · jRiRj, i1, . . . ip, j1, . . . jp = 1, n, i, j = 1, N .
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Note that the sequence of the subtensors A11, A22, . . . , Amm is called the main
diagonal of the TBM (11). Each tensor, which stands on the main diagonal, is called
the diagonal subtensor. Note also that the matrix (11) consists of square tensors,
therefore the matrix of its components is square.

Definition 14.9 The TBM, in which all subtensors besides the diagonal are zero
tensors, is called the tensor-block diagonal matrix.

By Definition14.9, it follows that the tensor-block diagonal matrix (TBDM) has the
form

M =
⎛
⎝ A11 0 · · · 0

· · · · · · · · · · · ·
0 0 · · · Amm

⎞
⎠ . (12)

Definition 14.10 The TBM is called the upper or right (lower or left) tensor-block-
triangular matrix if all tensors lying below (above) the main diagonal are zero.

The right (left) tensor-block-triangular matrix has the form

M =
⎛
⎝ A11 A12 · · · A1m

· · · · · · · · · · · ·
0 0 · · · Amm

⎞
⎠

⎛
⎝M =

⎛
⎝ A11 0 · · · 0

· · · · · · · · · · · ·
Am1 Am2 · · · Amm

⎞
⎠

⎞
⎠ . (13)

In (12) and (13), the symbol 0 means the zero tensor of the module R2p(Ω).
It is easy to see that the components of the matrices (11)–(13) will change the

same way as the components of a tensor of the module R2p(Ω) under a change of
coordinates. In addition, they are composed of m2 = m × m tensors. Therefore, we
shall call such matrix the (2p)-rank and m × m sizes TBM. It is easy to see that
the set of such tensor-block matrices forms a module over the ring of scalars. We
denote this module by R

m×m
2p (Ω). Then we can write M ∈R

m×m
2p (Ω). Of course, we

introduce designation R
q×m
2p (Ω) for a module consisting of the (2p)-rank and q × m

sizes tensor-block matrices. Note that the order of matrix of components of the TBM
(11) equal to mN , where N = np. Below we consider the TBM of the form (11)
and we will assume that it is symmetric, i.e. the equality M

T = M is true, which
obviously holds if and only if Aij = AT

ji .
We also introduce the concept of a tensor column (tensor row).

Definition 14.11 Column matrix (row matrix) whose elements are the tensors of
various rank, is called the tensor column (tensor row).

The tensor column U, whose elements are the p-rank tensors, is represented in the
form

U = (U1, . . . , Um)T = (
U1, i1i2···ip , . . . ,Um, i1i2···ip

)T
Ri1i2···ip . (14)

It is easy to see that the tensor columns of the form (14) generate the module, denoted
byR

m×1
p (Ω). Thenwe canwrite thatU ∈ R

m×1
p (Ω). Of course, the tensor rows of the

form V = (V1, V2, . . . , Vm) also form the module, which is denoted by R
1×m
p (Ω).
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The tensor row is the transposed tensor column, and the tensor column is the
transposed tensor row. Therefore below we will speak about the tensor column,
having in mind that everything, said about its, is equally true for the tensor row. We
also introduce the definitions, similar to the tensor of the module R2p(Ω) (see also
Vekua 1978; Nikabadze 2008, 2009a, b, 2014, 2015).

Definition 14.12 Let U and V be two tensor columns of the module R
m×1
p (Ω), see

(14). The value determined by the formula

(U, V) = U
T

p⊗ V =
m∑

k=1
Uk

p⊗ Vk =
m∑

k=1
Uk, i1i2···ip V

i1i2···ip
k, , (15)

where
p⊗ is the inner p-product, is called the scalar product of the tensor columns U

and V.

Definition 14.13 Two tensor columns U and V of the module R
m×1
p (Ω) are called

orthogonal if their scalar product is zero, i.e. (U, V) = U
T

p⊗ V = 0.

Definition 14.14 The norm of the tensor column U˜ of the module R
m×1
p (Ω) is

defined to be

||U|| = √
(U, U) =

√
UT

p⊗ U =
√√√√ m∑

k=1

Uk

p⊗ Uk =
√√√√ m∑

k=1

Uk, i1i2···ip U
i1i2···ip

k, . (16)

Now the eigenvalue problem of the TBM (11) can be formulated as follows.
Eigenvalue problem. It is required to find all tensor columns

U = (U1, . . . , Um)T
(
U

T = (U1, . . . , Um)
)
, (17)

satisfying the equation

M
p⊗U = λU, (18)

where λ is a scalar.
The relations (15), (16), and (18) contains the following two operations: thematrix

multiplication and the inner 2-product. Note that Eq. (18) always has the trivial solu-
tion U = O, where O is the zero tensor column, consisting of the m zero tensors of
pth rank. Moreover, it is clear that eigentensor column is determined up to a scalar
factor, so it can always be normalized. Therefore, we shall assume that the solution
of Eq. (18) satisfies the conditions

U �= O, ||U|| =
√

UT
p⊗U =

√√√√ m∑
k=1

Uk

p⊗Uk =
√√√√ m∑

k=1

Uk, i1i2···ip U
i1i2···ip

k, = 1.
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If the Eq. (18) has a non-trivial solution U for a scalar λ, then λ is called an
eigenvalue of the TBM M, and U is called the eigentensor column corresponding to

λ. Since M
T = M, it is easy to prove that U

T
p⊗M = λU

T , i.e. U
T is an eigentensor

row for M ∈R
m×m
2p (Ω) corresponding to λ.

Definition 14.15 A symmetric TBMM is said to be positive-definite if the quadratic

form U
T

p⊗M
p⊗U is positive for any non-zero tensor column U.

Based on Definition14.15, we conclude that the matrix of components of the
constituting tensors of positive-definite TBM is positive-definite, and hence, we have
the following theorem.

Theorem 14.1 The diagonal subtensors of positive-definite TBM are positive-defi-
nite.

Note that if we will study the internal structure of the TBM consisting of four
tensors of the module R2p(Ω), then, the results of research can be easily generalized
to the case of the matrix (11). Therefore, below we consider the TBM of the form

M =
(

A B
C D

)
, (19)

where A, B, C, and D are the tensors of the module R2p(Ω).
From the above it follows that (19) is a TBM of the module R

2×2
2p (Ω). Further

if the opposite is not specified, we shall mainly deal with the TBM of the module
R

2×2
2p (Ω), and M ∈ R

2×2
2p (Ω) means that M is the TBM consisting of four tensors

of the module R2p(Ω) or the TBM of the module R
2×2
2p (Ω).

Of course, the transposed TBM to (19) has the form (see also Eq. (10))

M
T =

(
AT CT

BT DT

)
. (20)

Here are given some definitions and theorems from Nikabadze (2014, 2015) for a
TBM of the module R

2×2
2p (Ω) (in Nikabadze 2014, 2015 this module is denoted also

by R
4
2p(Ω)).

Definition 14.16 The TBM is called the left or lower (right or upper) triangular
[unitriangular] TBM if the corresponding block-matrix of matrix of components of
the constituting tensors is the left or lower (right or upper) triangular [unitriangular]
matrix.

If A, 0, C, and D are tensors of the module R2p(Ω), then according to Defini-
tion14.16

M =
(

A 0
C D

)
, (21)

is the left triangular (unitriangular) matrix of the module R
2×2
2p (Ω), if the matrices

of components of tensors A and D are the left triangular (unitriangular) matrices.
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Similarly, if A, B, 0, and D are tensors of the module R2p(Ω), then

M =
(

A B
0 D

)
, (22)

is the right triangular (unitriangular) matrix of the module R
2×2
2p (Ω), if the matrices

of components of tensors A and D are right triangular (unitriangular) matrices.

Definition 14.17 The matrix of the form

M =
(

A 0
0 D

)
, (23)

is called the TBDM of the module R
2×2
2p (Ω), where A, 0, and D are tensors of the

module R2p(Ω).

Definition 14.18 The determinant of the TBM is the determinant of a block matrix
of mixed components of the constituting tensors.

Definition 14.19 The TBM is called non-singular if its determinant is non-zero.

Based on Definition14.16, we conclude that if in (21) A and D are left triangular
(unitriangular) tensors, and C is square tensor, then (21) is a left triangular (unitrian-
gular) TBM. Similarly, if in (22) A and D are right triangular (unitriangular) tensors,
and B is square tensor, then (22) is a right triangular (unitriangular) TBM.

In the future, it is also interesting to consider a tensor column, which consists of
the same rank tensors. For example, if the TBM has the form (19), then the tensor
column (tensor row) can be written as

W =
(

U
V

) (
W

T = (U, V)
)
, (24)

where U and V are tensors of the module Rp(Ω), i.e.

U = Ui1i2···ip Ri1i2···ip = UiRi, V = Vi1i2···ip Ri1i2···ip = ViRi,

i1, . . . ip = 1, n, i, j = 1, N .

Analogous to the TBM (19), we can say that the tensor column (tensor row) (24)
has pth rank and 2 × 1 (1 × 2) sizes. Moreover, it is easy to see that the set of tensor
columns such as (24) over the ring of scalars forms a module denoted by R

2×1
p (Ω)

(R1×2
p (Ω)). Then W ∈ R

2×1
p (Ω) means that W is the tensor column composed of

two tensors of the module Rp(Ω) or the tensor column of the module R
2×1
p (Ω). The

same thing is true for the tensor rows. In particular, the pth rank and 1 × 2 sizes
tensor row is an element of the module R

1×2
p (Ω).

Definition 14.20 The tensor column is called normalized if its norm is equal to one.
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Definition 14.21 A system of tensor columns W1, W2, . . . , Wm is said to be ortho-
normal if

(Wk, Wl) = W
T
k

p⊗ Wl = δkl, k, l = 1, m.

Definition 14.22 Two systems of tensor columns W1, W2, . . . , Wm and W
1,

W
2, . . . , W

m (1 ≤ m ≤ 2N) of the module R
2×1
p (Ω) are said to be biorthonormal if

(Wk, W
l) = W

T
k

p⊗ W
l = δl

k, k, l = 1, m, 1 ≤ m ≤ 2N .

Note that we can build the biorthonormal system for the linearly independent
system of tensor columns in the same way as for a linearly independent system of
tensors (Vekua 1978; Nikabadze 2009a, b, 2014, 2015). In particular, the following
theorem is valid.

Theorem 14.2 For any linearly independent system of tensor columns of the module
R

2×1
p (Ω), there exists the biorthonormal system.

This theorem is proved like the theorem for linearly independent system of tensors
(Vekua 1978; Nikabadze 2009a, 2015).

3.1 Eigenvalue Problem for M ∈ R
2×2
2p (Ω)

It is required for any M ∈ R
2×2
2p (Ω) to find the tensor columns W ∈ R

2×1
p (Ω) satis-

fying the following equation:

M
p⊗ W = λW, (25)

where λ is a scalar.
Equation (25) always has the trivial solution W = O where O ∈ R

2×1
p (Ω) is the

zero tensor column (O = (0, 0)T ). Later, speaking about the solution of Eq. (25), we
have in mind only the non-trivial solution W �= O. Moreover, since an eigentensor
column is defined up to a scalar factor, it can always be normalized. Therefore, talking
about the solution of Eq. (25) (see also (18)) we will have in mind only non-trivial
normalized solutions inmind. If Eq. (25) has a solutionW for some λ, then λ is called
an eigenvalue of TBM M ∈R

2×2
2p (Ω), and W ∈R

2×1
p (Ω) is an eigentensor column

corresponding to λ.
Naturally, we may consider the following problem: for any M ∈R

2×2
2p (Ω) it is

required to find the tensor rows W
′ = (U′, V′) of the module R

1×2
p (Ω)which satisfy

the following equation:

W
′ p⊗ M = μW

′, (26)

where μ is a scalar.
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If for someμ Eq. (26) has a non-trivial solutionW
′, thenμ is called an eigenvalue

of the TBM M (19), and W
′ is an eigentensor row corresponding to μ. Note that in

the general case λ = μ and W
′ �= W

T . But if M
T = M, then W

′ = W
T .

Let us formulate also some statements and theorems concerning eigentensor
columns of a TBM (Nikabadze 2014, 2015).

Statement 14.1 If λ and λ′ are two different eigenvalues of a TBM M, then the
corresponding two eigentensor columns W and W

′ are linearly independent.

Theorem 14.3 Eigentensor columns of TBM corresponding to the pairwise different
eigenvalues are linearly independent.

Theorem 14.4 If λ and λ′ are two different eigenvalues of the symmetric TBM M,
then the any two corresponding eigentensor columns W and W

′ are orthogonal.

Theorem 14.5 Eigentensor columns of symmetric TBM corresponding to the pair-
wise different eigenvalues are pairwise orthogonal.

Theorem 14.6 The eigenvalues of positive-definite symmetric TBM are positive.

It is not difficult to show that (25) can be rewritten as

(
A − λE B

C D − λE

)
p⊗

(
U
V

)
= O

(
(M − λE)

p⊗ W = O

)
, (27)

where E is the 2pth rank unit tensor (5), E is the following unit TBM:

E =
(

E 0
0 E

)
=

(
gj

iR
iRj 0

0 gi
jRiRj

)
=

(
gj

i 0
0 gj

i

)
RiRj, i, j = 1, N, (28)

and 0 is the 2pth rank zero tensor.
The homogeneous system (27) consists of 2N (N = np) equations with 2N

unknowns (the components of two asymmetric temperatures U and V). This sys-
tem should have a non-trivial solution. Hence, the determinant of its matrix should
be equal to zero:

det

(
A − λE B

C D − λE

)
= 0

(
det(M − λE) = 0

)
. (29)

The equality expressed by (29) is called the characteristic η of the TBM M ∈
R

2×2
2p (Ω). The power of this η is equal to 2N with respect to λ. If the symmetric

TBM M is positive-definite, then by Theorem14.6 the characteristic η (29) has 2N
positive roots (eigenvalues). Here we take the possible multiplicity of these roots
into account.

Belowwe formulate a number of definitions and theorems to discuss the properties
of TBM (Nikabadze 2015) (similar questions for matrices can be seen in Gantmacher
1959).
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Definition 14.23 A real TBM is said to be normal if this matrix is commutative with
its transposed matrix.

Based on this definition, we conclude, that the real symmetric TBM, the real skew-
symmetric and orthogonal tensor-block matrices, the unit TBM are normal.

Definition 14.24 The orthonormal system of eigentensor columns of the TBMM ∈
R

2×2
2p (Ω) consisting of 2N eigentensor columns is said to be a complete orthonormal

system of eigentensor columns.

Definition 14.25 M ∈ R
2×2
2p (Ω) is a TBM of simple structure if it has 2N linearly

independent eigentensor columns.

Statement 14.2 TBM has a simple structure if all roots of its characteristic equation
are distinct.

Note that the converse is not true. There are tensor-blockmatrices of simple structure,
characteristic equations ofwhich have themultiple roots. For example, the unit TBM.

Theorem 14.7 A real symmetric TBM always has a complete orthonormal system
of eigentensor columns.

Note that Theorem14.7 is true for any real symmetric TBM and normal complex
TBM. By Theorem14.7, a positive-definite symmetric TBM M ∈ R

2×2
2p (Ω) always

has a complete orthonormal system of eigentensor columns and by Theorem14.6 its
eigenvalues are positive.

We denote this system by Wk = (Uk, Vk)
T , k = 1, 2N . The kth eigentensor col-

umn of this system corresponds to the eigenvalue λk . Then, the matrixM ∈ R
2×2
2p (Ω)

can be represented in the canonical form

M =
2N∑

k=1
λkWkW

T
k =

2N∑
k=1

λk

(
Uk

Vk

)
⊗ (Uk, Vk) =

2N∑
k=1

λk

(
UkUk UkVk

VkUk VkVk

)
, (30)

where the following orthonormality condition is valid:

(Wk, Wl) = W
T
k

p⊗ Wl = Uk
p⊗ Ul + Vk

p⊗ Vl = δkl, k, l = 1, 2N . (31)

It should be noted that the dimensions of the modules R
2×1
p (Ω) and R

2×2
2p (Ω)

introduced above equal to 2N and 4N2, respectively, while the dimensions of the
modules Rp(Ω), R2p(Ω) are N and N2, respectively. Consequently, there are 2N
linearly independent tensor columns in the module R

2×1
p (Ω). They form the basis of

this module. There are 4N2 linearly independent tensor-block matrices in the module
R

2×2
2p (Ω) which constitute the basis of this module. Solving the system of Eq. (27),

say, for TBM of simple structure M ∈ R
2×2
2p (Ω) we get 2N linearly independent

eigentensor columns. They can be taken as a basis of the module R
2×1
p (Ω). If M ∈
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R
2×2
2p (Ω) is a symmetric TBM, then its complete system of orthonormal eigentensor

columns will be an orthonormal basis of the module R
2×1
p (Ω). Hence, any tensor

column of the module R
2×1
p (Ω) can be expanded in the above-mentioned bases.

Knowing the basis of the module R
2×1
p (Ω) (module of smaller dimension), we can

construct a basis of the module R
2×2
2p (Ω) (module of greater dimension) in the same

way as the basis of the module R2p(Ω) using the basis of the module Rp(Ω) (Vekua
1978; Nikabadze 2009a, 2015). In particular, if we consider a tensor product of a
tensor column of the module R

2×1
p (Ω) by a tensor row of the module R

1×2
p (Ω),

we obtain a TBM of the module R
2×2
2p (Ω). Therefore, for multiplying tensorially

each tensor column of some basis of the module R
2×1
p (Ω) by each of the tensor

rows, received by transposition of all tensor columns of considered basis, we get
4N2 tensor-block matrices. These matrices form a basis of the module R

2×2
2p (Ω). So,

if tensor columns Wk = (Uk, Vk)
T , k = 1, 2N , form, for example, an orthonormal

basis of the moduleR
2×1
p (Ω), whereWk = (Uk, Vk)

T , k = 1, 2N , can be considered
as a complete system of orthonormal eigentensor columns of a symmetric TBM
M ∈ R

2×2
2p (Ω), then tensor-block matrices WkW

T
l , k, l = 1, 2N , constitute the basis

of the module R
2×2
2p (Ω) and it is easy to verify that the unit TBM E ∈R

2×2
2p (Ω) can

be represented in the form

E =
2N∑

k=1

WkW
T
k =

2N∑
k=1

(
Uk

Vk

)
⊗ (Uk, Vk) =

2N∑
k=1

(
UkUk UkVk

VkUk VkVk

)
. (32)

If tensor columns Zk = (Xk, Yk)
T , k = 1, 2N, form a basis of the module R

2×1
p (Ω),

and the tensor columns Z
l = (Xl, Yl)T , l = 1, 2N, constitute a corresponding

biorthonormal basis, then tensor-block matrices ZkZ
lT
, k, l = 1, 2N, will be the

basis of the module R
2×2
2p (Ω). Then the unit TBM E ∈ R

2×2
2p (Ω) can be written as

E =
2N∑

k=1

ZkZ
kT =

2N∑
k=1

(
Xk

Yk

)
⊗ (Xk, Yk) =

2N∑
k=1

(
XkXk XkYk

YkXk YkYk

)
. (33)

Note that in the last relation we can raise or lower the corresponding indices.
Knowing the representation, see (28), (32), and (33), of the unit TBM E ∈

R
2×2
2p (Ω) it is not difficult to give a canonical representation of the TBM M ∈

R
2×2
2p (Ω) of a simple structure, aswell as its inversematrix.Note that ifM ∈R

2×2
2p (Ω)

is a non-singular TBM, then there is only one inverse TBM M
−1 to this matrix such

that we have the relation

M
p⊗ M

−1 = M
−1

p⊗ M = E (34)

and the theorem is valid.
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Theorem 14.8 If W (W′) is the eigentensor column (eigentensor row) of the module
R

2×1
p (Ω) (R1×2

p (Ω)) of a non-singular TBM M ∈ R
2×2
2p (Ω) corresponding to λ, then

it will also be an eigentensor column (eigentensor row) of TBM M
−1, which is inverse

to M, corresponding to λ−1.

Based on Theorem14.8, we can prove the following theorem.

Theorem 14.9 The eigenvalues of the inverse TBM M
−1 equal to the inverse values

of the eigenvalues of the initial non-singular TBM M and the eigentensor columns
and rows of the tensor-block matrices M

−1 and M are the same.

By Theorem14.9, the TBM M
−1, inverse to (30), will take the form

M
−1 =

2N∑
k=1

λ−1
k WkW

T
k =

2N∑
k=1

λ−1
k

(
Uk

Vk

)
⊗ (Uk, Vk) =

2N∑
k=1

λ−1
k

(
UkUk UkVk

VkUk VkVk

)
.

(35)
Now we can prove the following theorem for M ∈R

2×2
2p (Ω).

Theorem 14.10 If M ∈R
2×2
2p (Ω) is the TBM of a simple structure, it has a complete

system of eigentensor columns and eigentensor rows. In addition, if the complete sys-
tem of eigentensor columns (rows) is found and then a corresponding biorthonormal
system of tensor columns (rows) is constructed, then by transposing each tensor col-
umn (tensor row) in the constructed biorthonormal system of tensor columns (rows),
we obtain a complete system of eigentensor rows (columns).

In particular, the following theorem is valid.

Theorem 14.11 Let M ∈R
2×2
2p (Ω) be the simple structure TBM, Zk = (Xk, Yk)

T ,

k = 1, 2N, is a complete system of eigentensor columns corresponding to the system
of eigenvalues λk, k = 1, 2N, respectively, and Z

l = (Xl, Yl)T , l = 1, 2N, is the
biorthonormal for Zk, k = 1, 2N, system of tensor columns

(
(Zk, Z

l) = δl
k

)
. Then

the system Z
lT = (Xl, Yl), l = 1, 2N, will be a complete system of eigentensor rows,

and the TBM M ∈R
2×2
2p (Ω) has the representation

M =
2N∑

k=1

λkZkZ
kT =

2N∑
k=1

λk

(
Xk

Yk

)
⊗ (Xk, Yk) =

2N∑
k=1

λk

(
XkXk XkYk

YkXk YkYk

)
. (36)

Having the representation (36) forM ∈ R
2×2
2p (Ω), it is easy to prove that its power

for any integer α has the form

M
α =

α︷ ︸︸ ︷
M

p⊗ M
p⊗ · · · p⊗ M =

2N∑
k=1

λα
k ZkZ

kT
. (37)
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In particular, when α = −1 and α = 0, we have

M
−1 =

2N∑
k=1

λ−1
k ZkZ

kT
, E = M

0 =
2N∑

k=1

ZkZ
kT

. (38)

Now we write the characteristic equation (29) in expanded form

λ2N − I1(M)λ2N−1 + · · · + (−1)sIs(M)λ2N−s + · · · + (−1)2N I2N (M) = 0

(I2N (M) = detM). (39)

It is not difficult to prove the Hamilton–Cayley theorem.

Theorem 14.12 Any TBM satisfies its characteristic equation.

Thus, we have the relation

M
2N − I1(M)M2N−1 + · · · + (−1)sIs(M)M2N−s + · · · + (−1)2N I2N (M)E = 0.

This theorem is proved similarly to theorem given in Nikabadze (2015) (see also
Nikabadze 2009a).

Next it should be noted that the invariants of the TBM M ∈ R
2×2
2p (Ω) in (39) as

the invariants of a matrix (Gantmacher 1959; Faddeev and Sominckii 1999; Korn
and Korn 2000) or tensor A ∈ R2p(Ω) (Nikabadze 2015) are computed as follows
(Nikabadze 2014, 2015)

Sk = Ik(M) = 1

k !

∣∣∣∣∣∣∣∣∣∣

s1 1 0 · · · 0 0
s2 s1 2 · · · 0 0
· · · · · · · · · · · · · · · · · ·

sk−1 sk−2 sk−3 · · · s1 k − 1
sk sk−1 sk−2 · · · s2 s1

∣∣∣∣∣∣∣∣∣∣
, k = 1, 2N . (40)

Here sk = I1(Mk), k = 1, 2N , M
k =

k︷ ︸︸ ︷
M

p⊗M
p⊗ · · · p⊗M, and the first invariant for

M ∈ R
2×2
2p (Ω) is defined as follows:

I1(M) = E
2p⊗ M = I1

(
A B
C D

)
= I1(A + D) = I1(A) + I1(D). (41)

The inverse relations to (40) are represented in the form (Nikabadze 2014, 2015)

sk = I1(M
k) =

∣∣∣∣∣∣∣∣∣∣

S1 1 0 · · · 0 0
2S2 S1 1 · · · 0 0
· · · · · · · · · · · · · · · · · ·

(k − 1)Sk−1 Sk−2 Sk−3 · · · S1 1
kSk Sk−1 Sk−2 · · · S2 S1

∣∣∣∣∣∣∣∣∣∣
, k = 1, 2N .
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From (36) (see also (30)), it is easy to see that to give the TBM M ∈ R
2×2
2p (Ω)

we must give the 2N eigentensor columns Zk , k = 1, 2N , and 2N eigenvalues λk ,
k = 1, 2N . It should be noted that the complete system of eigentensor columns Zk ∈
R

2×1
p (Ω), k = 1, 2N , and biorthonormal system Z

l, l = 1, 2N , in the representation

M ∈ R
2×2
2p (Ω) (see (36)) satisfies the conditions of biorthonormality (see also (31))

(Zk, Z
l) = Z

T
k

p⊗ Z
l = Xk

p⊗ Xl + Yk
p⊗ Yl = δl

k, k, l = 1, 2N . (42)

Note also that if the complete system of eigentensor columns Zk ∈ R
2×1
p (Ω),

k = 1, 2N , of TBM M ∈ R
2×2
2p (Ω) of the simple structure is constructed, then by

Theorem14.2 it is always possible to construct the biorthonormal system Z
l,

l = 1, 2N (tensorsZ
l, l = 1, 2N , are defined by using tensorsZk , k = 1, 2N), and by

Theorem14.11, the matrix M ∈ R
2×2
2p (Ω) can be represented as (36). Therefore, we

may say that in the relations (42) the eigentensor columnsZk ∈ R
2×1
p (Ω), k = 1, 2N

are unknown. Since Zk = (Xk, Yk)
T , k = 1, 2N , then the complete system of eigen-

tensor columns Zk , k = 1, 2N , is given by 4N2 components of the temperatures
Xk and Yk , k = 1, 2N , of the module Rp(Ω). It is easy to see that the number of
relations in (42) equals to 4N2. However, only N(2N + 1) relations from them are
independent.

Now we consider a symmetric M ∈R
2×2
2p (Ω), which by Theorem14.7 always has

a complete orthonormal system of eigentensor columns and is represented in the form
(30), where not all λk , k = 1, 2N , are positive (by Theorem14.6 they are positive for
positive-definite TBM). Moreover, the conditions of orthonormality (31) are valid.
Our goal is to construct a complete orthonormal system of eigentensor columns in
explicit form for the symmetric M ∈ R

2×2
2p (Ω).

3.2 Construction of the Eigentensor Columns of a TBM

From (30), it can be seen that to give the symmetric (not necessarily the positive-
definite) TBM M ∈ R

2×2
2p (Ω) we must have 2N eigenvalues λk , k = 1, 2N , and 2N

eigentensor columns Wk , k = 1, 2N , which form a complete orthonormal system
and, therefore, satisfy the conditions of orthonormality (31). It is easy to see that
the number of independent relations in (31) equal to (2N + 1)N . These relations
correlate 4N2 components of the eigentensor columns Wk = (Uk, Vk), k = 1, 2N .
Hence, (2N − 1)N components remain independent and can be used to construct the
complete orthonormal system of tensor columns of the TBM M ∈R

2×2
2p (Ω). In this

connection, we consider the following tensors of the module R2p(Ω):

Q11 = e˜sUs = Uste˜se˜t, Q12 = e˜sVs = Vste˜se˜t,

Q21 = e˜sUN+s = UN+ste˜se˜t, Q22 = e˜sVN+s = VN+ste˜se˜t, s, t = 1, N,
(43)
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whereWk = (Uk, Vk)
T , k = 1, 2N ; e˜s, s = 1, N , is an orthonormal basis of the mod-

ule Rp(Ω), i.e. e˜s
p⊗ e˜t = δst , s, t = 1, N .

Further, by (43) we construct the following TBM of the module R
2×2
2p (Ω):

Q =
(

Q11 Q12

Q21 Q22

)
. (44)

If the tensor columns Wk = (Uk, Vk)
T , k = 1, 2N , satisfy the orthonormality con-

ditions (31), then taking into account (32), (43) and (44), it is easy to prove that the
TBM Q ∈ R

2×2
2p (Ω) (44) satisfies the conditions

Q
p⊗ Q

T = Q
T

p⊗ Q = E. (45)

By (45) we conclude that Q ∈ R
2×2
2p (Ω) is an orthogonal TBM.

It is easy to check that relations (31) are equivalent to the relation

Q
p⊗ Q

T = E. (46)

Thus, the orthogonal TBM (44) of the module R
2×2
2p (Ω) consists of 4N2 components

related by equality (46), which is equivalent to (2N + 1)N relations (31). Among the
4N2 components , we have (2N − 1)N independent components. These components
can be used to construct the complete orthonormal system of eigentensor columns
of the symmetric TBM M ∈ R

2×2
2p (Ω). To accomplish this, we apply the theorem

formulated in Nikabadze (2015) for the triangular decomposition of a square non-
singular tensor of even rank, which can be formulated for a square nonsingular TBM
as follows (Nikabadze 2014, 2015).

Theorem 14.13 In order for a square non-singular TBM M ∈R
2×2
2p (Ω) to be decom-

posed into the product of a left triangular (unitriangular) TBM and a right unitri-
angular (triangular) TBM, it is necessary and sufficient that the determinants of all
leading principal subtemperatures of this TBM (submatrices of component matrix)
are not equal to zero.

Note that there is a more general theorem obtained from Theorem14.13 if in its for-
mulation R

2×2
2p (Ω) is replaced to R

m×m
2p (Ω), where m is an arbitrary natural number.

By Theorem14.13, the TBM (44) can be represented in the form

Q = L
p⊗ R, (47)

where the left triangular TBM L and the right unitriangular TBM R have the form

L =
(

L11 0
L21 L22

)
, R =

(
R11 R12

0 R22

)
. (48)
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Let the matrices L, L11, L21, L22 and R, R11, R12, R22 correspond to the tensor
objects L, L11, L21, L22 and R, R11, L12, L22. Then, they can be represented as:

L =
(

L11 0
L21 L22

)
; R =

(
R11 R12

0 R22

)
; L11 = matr(lij), lij = 0, i < j, i, j = 1, N;

L21 = matr(lN+ij), i, j = 1, N; L22 = matr(lN+iN+j), lN+iN+j = 0, i < j, i, j = 1, N;
R11 = matr(rij), rii = 1, rij = 0, i > j, i, j = 1, N; R12 = matr(riN+j), i, j = 1, N;
R22 = matr(rN+iN+j), rN+iN+i = 1, rN+iN+j = 0, i > j, i, j = 1, N .

The left triangular tensor L11, the square tensor L21, the left triangular tensor L22,
the right unitriangular tensor R11, the square tensor R12, and the right unitriangular
tensor R22 can be represented as

L11 = e˜sls·, L21 = e˜sms·, L22 = e˜slN+s·,
R11 = e˜srs·, R12 = e˜sns·, R22 = e˜srN+s·, s = 1, N,

(49)

ls· =
s∑

t=1
lste˜t, ms· =

N∑
t=1

lN+ste˜t, lN+s· =
s∑

t=1
lN+sN+te˜t, s = 1, N,

rs· = e˜s +
N∑

t=s+1
rste˜t, s = 1, N − 1, rN · = e˜N ; ns· =

N∑
t=1

rsN+te˜t, s = 1, N,

rN+s· = e˜s +
N∑

t=s+1
rN+sN+te˜t, s = 1, N − 1, r2N · = e˜N .

(50)
Taking into account (44) and (48) from (47), we get

(
Q11 Q12

Q21 Q22

)
=

(
L11 0
L21 L22

)
p⊗
(

R11 R12

0 R22

)
=

(
L11

p⊗R11 L11
p⊗R12

L21
p⊗R11 L21

p⊗R12 + L22
p⊗R22

)
.

Hence, we find

Q11 = L11
p⊗R11, Q12 = L11

p⊗R12, Q21 = L21
p⊗R11, Q22 = L21

p⊗R12 + L22
p⊗R22.

(51)

By (43), (49), and (50) from (51), we have

Us =
s∑

t=1
lstrt·, UN+s =

N∑
t=1

lN+strt·, Vs =
s∑

t=1
lstnt·,

VN+s =
N∑

t=1
lN+stnt· +

s∑
t=1

lN+sN+trN+t·, s = 1, N .

(52)
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It should be noted that the systems of tensors

r1·, r2·, . . . , rN ·; rN+1·, rN+2·, . . . , r2N ·; U1·, U2·, . . . , UN ·

in (52) are linearly independent. Let us introduce the tensor columns

Ts = (rs·, ns·)T , s = 1, N, Tt = (0, rt·)T , t = N + 1, 2N, (53)

where 0 is the pth rank zero tensor; rs·,ns· and rN+s· are given by (50). It is not difficult
to prove that the system of the tensor columnsTs, s = 1, 2N , is linearly independent.
Hence, the subsystemsTs, s = 1, N , andTt , t = N + 1, 2N , are linearly independent.

It is easy to see that we have the following relations

Ws = (Us, Vs)
T =

s∑
t=1

lstTt, s = 1, 2N . (54)

From (54) we conclude that the orthonormal system of the tensor columns Ws =
(Us, Vs)

T , s = 1, 2N , can be obtained by applying the Gram–Schmidt orthogonal-
ization procedure (Gantmacher 1959; Vekua 1978; Nikabadze 2009a) to the linearly
independent system of tensor columns T˜p, p = 1, 18 (see (53)). Applying this pro-
cedure to the tensor columns Ts, s = 1, 2N , we obtain the following expressions
(Nikabadze 2014, 2015) for the coefficients lst , s = 1, 2N , t = 1, s:

l11 = d0
±√

d0d1,
lmt = S(m)

mt

±√
dm−1dm,

S(m)
mt = (−1)m+tS

(
1 2 · · · t − 1 t t + 1 · · · m − 1
1 2 · · · t − 1 t + 1 · · · m

)
,

m = 2, N, t = 1, m,

(55)

d0 = 1, dm = detSm =
∣∣∣∣∣∣

s11 s12 · · · s1m

· · · · · · · · · · · ·
sm1 sm2 · · · smm

∣∣∣∣∣∣ , smt = (Tm, Tt) = T
T
m

p⊗Tt, m, t = 1, 2N,

S(m)
mt =

∣∣∣∣∣∣∣∣

s11 s12 · · · s1t−1 0 s1t+1 · · · s1m

· · · · · · · · · · · · · · · · · · · · · · · ·
sm−11 sm−12 · · · sm−1t−1 0 sm−1t+1 · · · sm−1m

0 0 · · · 0 1 0 · · · 0

∣∣∣∣∣∣∣∣
, 〈m = 1, 2N〉, t = 1, m,

S

(
1 2 · · · t − 1 t t + 1 · · · m − 1
1 2 · · · t − 1 t + 1 · · · m

)
=

∣∣∣∣∣∣
s11 s12 · · · s1t−1 s1t+1 · · · s1m

· · · · · · · · · · · · · · · · · · · · ·
sm−11 sm−12 · · · sm−1t−1 sm−1t+1 · · · sm−1m

∣∣∣∣∣∣ ,

S(m)
mt is the cofactor of the element smt of the submatrix Sm = matr(skl), k, l = 1, m;

S

(
1 2 · · · t − 1 t t + 1 · · · m − 1
1 2 · · · t − 1 t + 1 · · · m

)
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is the (m − 1)th order minor obtained by deleting the mth row and the tth column of
the determinant detSm.

Taking into account (55), we can obtain from (54)

W1 = 1

±√
d0d1 T˜1,

Wm = 1

±√
dm−1dm

∣∣∣∣∣∣∣∣

s11 s12 · · · s1m−1 T1

s21 s22 · · · s2m−1 T2

· · · · · · · · · · · · · · ·
sm1 sm2 · · · smm−1 Tm

∣∣∣∣∣∣∣∣
, m = 2, 2N .

(56)

Using (56), the complete system of eigentensor columns Wm, m = 1, 2N , of the
symmetric TBM M ∈R

2×2
2p (Ω) can be determined with the aid of the (2N − 1)N

independent parameters being the elements of the unitriangular TBM R with respect
to an arbitrary coordinate system (an arbitrary orthonormal basis of n-dimensional
space). By choosing an appropriate coordinate system, we can decrease the number
of independent parameters. Below, this is discussed in more detail in the particular
case. Here, we shall not dwell on this.

In order to describe the inner structure of a symmetric TBM M ∈R
2×2
2p (Ω), thus,

it is sufficient to give the invariant characteristics of the TBM in some coordinate
system rather than the components of the tensors A, B = CT and D. In other words,
it is sufficient to give the eigenvalues λk , k = 1, 2N , and the corresponding eigenten-
sor columns Wm, m = 1, 2N , specified by (2N − 1)N independent parameters with
respect to an arbitrary coordinate system. The number of independent parameters can
be decreased in the case of a special coordinate system. These invariant characteris-
tics can be used to compare and classify symmetric TBM of the module R

2×2
2p (Ω).

Here it is advisable to introduce a definition.

Definition 14.26 The symbol {α1, α2, . . . , αk}, where k is the number of differ-
ent eigenvalues of the TBM and αi is the multiplicity of the eigenvalue λi (i =
1, 2, . . . , k), is called the symbol of the anisotropy (structure) of the TBM.

Below, we give a classification of the tensor-block matrices of the module R
2×2
4 (Ω),

fromwhich it is easy to see how to carry out a similar classification of the tensor-block
matrices of the module R

2×2
2p (Ω), as well as of the module R

m×m
2p (Ω), m ≥ 1.

Note that such research for the symmetric TBDM of the module R
2×2
2p (Ω), as

a special case of symmetric TBM of the module R
2×2
2p (Ω), does not require much

labor.

3.3 Eigenvalue Problem of a Tensor-Block Diagonal Matrix

Above, it was determined that the TBDM M ∈R
m×m
2p (Ω), m ≥ 1, has the form (12),

andM ∈R
2×2
2p (Ω), as a special case, is represented in the form (23). Thus, if we study

the internal structure of the TBDM of the module M ∈R
2×2
2p (Ω), then the results of
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its study can easily be extended to a similar matrix of the module M ∈R
m×m
2p (Ω).

Therefore,we consider thematrix (23). It is easy to see that the characteristic equation
of the TBDM (23) of the module M ∈R

2×2
2p (Ω) has the form

det(M − λE) = det(A − λE)det(D − λE) = 0. (57)

By (57), we conclude that λ is an eigenvalue of the TBDM (23), if and only if it is an
eigenvalue of tensor A, or of tensor D. If (23) is a positive-definite TBDM, then by
Theorem14.1 its subtensors A and D are also positive-definite, i.e. the eigenvalues
of the tensors A and D are positive. In general, we have the following theorem.

Theorem 14.14 A tensor-block-diagonal (tensor-block-triangular) matrix of the
module M ∈ R

m×m
2p (Ω) is a positive-definite matrix if and only if its subtensors

(diagonal subtensors) are positive-definite.

Here m is an arbitrary natural number. In this case m = 2.
Finding solutions of the characteristic equation (57) is equivalent to finding the

solutions of the equations

det(A − λE) = 0, det(D − λE) = 0. (58)

It can be seen that each of Eq. (58) is the equation of N th power with respect to λ. In
the case of symmetric (positive-definite) TBDM (23), each from the equations has
N real (positive) roots; here we take into account the possible multiplicity of these
roots.

We note that the theorems for a triangular matrix given in Watkins (2002) in this
case can be formulated as follows.

Theorem 14.15 If λk, 1 ≤ k ≤ N is an eigenvalue of the subtensor A, but it is
not an eigenvalue of D, then the eigentensor column Wk of the TBDM M (23)
corresponding to λk has the form Wk = (Uk, 0)T , where Uk is the eigentensor of
subtensor A corresponding to λk, and 0 is the zero pth rank tensor.

Theorem 14.16 If λm, N + 1 ≤ m ≤ 2N is an eigenvalue of subtensor D, but it
is not an eigenvalue of A, then the eigentensor column Wm of the TBDM M (23)
corresponding to λm has the form Wm = (0, Vm)T , where Vm is the eigentensor of
subtensor D corresponding to λm, and 0 is the zero pth rank tensor.

Theorem 14.17 If λk is a common eigenvalue of subtensors A and D, then the
eigentensor column Wk of the TBDM M (23) corresponding to λk has the form
Wk = (Uk, Vk)

T , where Uk and Vk are the eigentensors of subtensors A and D
respectively, corresponding to the eigenvalue λk.

If λ1, λ2, . . . , λN and U1, U2, . . . , UN are the eigenvalues and the correspond-
ing eigentensors of the subtensor A, and μ1, μ2, . . . , μN and V1, V2, . . . , VN

are the eigenvalues and the corresponding eigentensors of the subtensor D, and
{λ1, λ2, . . . , λN } ∩ {μ1, μ2, . . . , μN } = ∅, where ∅ is the empty set, then by
Theorems14.15 and 14.16 the TBDM M can be written as
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M =
N∑

k=1

λk

(
Uk

0

)
(Uk, 0) +

N∑
l=1

μl

(
0
Vl

)
(0, Vl) =

⎛
⎜⎜⎝

N∑
k=1

λkUkUk 0

0
N∑

l=1
μlVlVl

⎞
⎟⎟⎠ .

(59)
From (59) we have

A =
N∑

k=1

λkUkUk, D =
N∑

l=1

μlVlVl, (60)

as it is required. If λ1 = · · · = λN ≡ λ,μ1 = · · · = μN ≡ μ, then from (60) we have

A = λ

N∑
k=1

UkUk = λE, D = μ

N∑
l=1

VlVl = μE. (61)

Taking into account (61), in this case, the TBDM can be written as

M =
(

λE 0
0 μE

)
. (62)

If λ = μ, then from (62) we get

M = λ

(
E 0
0 E

)
= λE. (63)

Based on (62) and (63), is advisable to introduce a definition.

Definition 14.27 A TBDM, which has the form (62) and (63), is called isotropic
(ideal isotropic).

Nowassume that among the eigenvaluesλ1, . . . , λN andμ1, . . . , μN of the tensors
A and D, the first m eigenvalues are equal, i.e. λk = μk , k = 1, m. The eigentensors
of these tensors are denoted as above, by Uk and Vk , k = 1, N respectively. Then
by Theorem14.17, the first m eigentensor columns of the TBDM M ∈ R

2×2
2p (Ω)

corresponding to the eigenvalues λk = μk , k = 1, m, get the form Wk = (Uk, Vk)
T ,

k = 1, m, the tensors A and D are represented in the form

A =
N∑

k=1

λkUkUk =
m∑

k=1

λkUkUk +
N∑

k=m+1

λkUkUk, D =
m∑

l=1

λlVlVl +
N∑

l=m+1

μlVlVl,
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but the TBDM M ∈ R
2×2
2p (Ω) can be written as

M =
m∑

k=1

λk

(
Uk

Vk

)
(Uk, Vk) +

N∑
k=m+1

[
λk

(
Uk

0

)
(Uk, 0) + μk

(
0

Vk

)
(0, Vk)

]
.

Thus, from the above it follows that to study the internal structure of a TBDM
M ∈R

2×2
2p (Ω), it is sufficient to study the eigenvalue problem of a tensor of the

module R2p(Ω), which has been studied in some detail in Nikabadze (2015) (see
also Nikabadze 2009a). Therefore, we will not stop at this. Although, from the
above, the similar research for any even rank symmetric tensor can be obtained as
a special case. In fact, taking into account that if A ∈R2p(Ω) and W ∈Rp(Ω), then
A ∈R

1×1
2p (Ω) = R2p(Ω) and W ∈R

1×1
p (Ω) = Rp(Ω), it is sufficient to replace the

TBM of the module R
2×2
2p (Ω) and tensor column of the module R

2×1
p (Ω) with the

tensors of the modules R2p(Ω) = R
1×1
2p (Ω) and Rp(Ω) = R

1×1
p (Ω) in the above

relations, respectively. Obviously, in this case, the tensor row is replaced with the
tensor of the module Rp(Ω), i.e. there is no need to introduce the concept of the
tensor row.

The above material can be easily generalized to the eigenvalue problem for a
TBM of the module R

m×m
2p (Ω) (see (11)). In fact, it is sufficient to replace the TBM

of the module R
2×2
2p (Ω) and tensor column (tensor row) of the module R

2×1
p (Ω)

(R1×2
p (Ω)) with the TBM of the module R

m×m
2p (Ω) and tensor column (tensor row)

of the module R
m×1
p (Ω) (R1×m

p (Ω)) in the above relations, respectively. In addition,
the values of the indices have to be changed accordingly.

Note also that, if necessary, it is not difficult to carry out similar studies for a
generalized eigenvalue problem that can be formulated as follows. For some M ∈
R

m×m
2p (Ω) and N ∈ R

m×m
2p (Ω) find all tensor columns W ∈ R

m×1
p (Ω), which satisfy

the equation

M
p⊗W = λN

p⊗W,

where λ is a scalar; m is an arbitrary fixed natural number.

4 Some Applications to Mechanics

4.1 Representations of the Specific Strain Energy
and Constitutive Relations in the Linear Micropolar
Theory of Elasticity

In the linear micropolar theory of elasticity, the specific strain energy and constitutive
relations for the case of an anisotropic material with no symmetry center in the sense
of elastic properties (Eringen 1999; Kupradze et al. 1976) can be written in the
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following form (isothermic processes are considered)1:

Φ(γγγ˜,κκκ˜) = 1

2

(
Aijklγijγkl + 2Bijklγijκkl + Dijkl

κijκkl
)

= 1

2

(
γγγ˜

2⊗A˜̃
2⊗γγγ˜ + 2γγγ˜

2⊗B˜̃
2⊗κκκ˜ + κκκ˜

2⊗D˜̃
2⊗κκκ˜

)
, (64)

P˜ = ∂Φ

∂γγγ˜
= A˜̃

2⊗γγγ˜ + B˜̃
2⊗κκκ˜, μμμ˜ = ∂Φ

∂κκκ˜
= C˜̃

2⊗γγγ˜ + D˜̃
2⊗κκκ˜, (65)

where γγγ˜ = ∇u − C� · ϕϕϕ is the strain tensor; κκκ˜ = ∇ϕϕϕ is the bending-torsion tensor;

u is the displacement vector; ϕϕϕ is the internal rotation vector; C� is the third-rank

discriminant tensor; A˜̃T = A˜̃, D˜̃T = D˜̃, C˜̃T = B˜̃ are the fourth-rank material temper-
atures known as the elasticmotion tensors;P˜ is the stress tensor;μμμ˜ is the couple-stress

tensor;
2⊗ is the inner 2-product.

Now we introduce the temperature column of the strain tensor and the bending-
torsion tensor, the temperature column of the stress tensor and the couple-stress
tensor, as well as the tensor-block matrix of the elastic motion tensors:

X˜ =
(

γγγ

κ̃κκ˜
) (

X˜T = (
γγγ˜, κκκ˜

))
, Y˜ =

(
P
μ̃μμ˜

) (
Y˜T = (

P˜, μμμ˜
))

, (66)

M˜̃ =
(

A˜̃ B˜̃
C˜̃ D˜̃

) (
M˜̃T = M˜̃

)
. (67)

Hence, the specific strain energy and the constitutive relations can be rewritten as

2Φ(γγγ˜,κκκ˜) = X˜T 2⊗M˜̃
2⊗X˜ , Y˜ = M˜̃

2⊗X˜. (68)

If the material has the symmetry center in the sense of elastic properties, then B˜̃ = 0˜̃,where 0˜̃ is the fourth-rank zero tensor. As a result, the matrix expressed by (67) takes
the block-diagonal form (see (23)).

It should be noted that the tensor columns X˜ and Y˜ are elements of the module
R

2×1
2 (Ω), and the TBM M˜̃ is an element of the module R

2×2
4 (Ω). Therefore, all

of the above with respect to A ∈ R2p(Ω) and M ∈ R
2×2
2p (Ω) is equally true for

A˜̃ ∈ R4(Ω) andM˜̃ ∈ R
2×2
4 (Ω), respectively (hereΩ is any domain of n-dimensional

space in R2p(Ω) and R
2×2
2p (Ω), and Ω is any domain of three-dimensional space in

R4(Ω) and M˜̃ ∈ R
2×2
4 (Ω)). In this regard, we shall not dwell on the consideration

of some questions relating to A˜̃ ∈ R4(Ω) and M˜̃ ∈ R
2×2
4 (Ω). We will write the

1Further to indicate the second-rank, third-rank and fourth-rank tensors, we will use a wave, a wave
and a line and the two waves from below, respectively.
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necessary relations based on similar relations obtained above while we will refer to
the definitions and theorems formulated above.

Hereafter, the two-index and one-index representations are used for asymmet-
ric second-rank tensors, whereas the four-index and two-index representations are
used for fourth-rank tensors. For example, let P˜ be a second-rank tensor and A˜̃ be a
fourth-rank tensor. Then,

P˜ = Pijeiej =
9∑

m=1
Pme˜m = Pme˜m, ei · ej = δij,

A˜̃ = Aijkleiejekel =
9∑

m=1

9∑
n=1

Amne˜me˜n = Amne˜me˜n, i, j, k, l = 1, 2, 3, m, n = 1, 9,

where e˜m,m = 1, 9, are the temperatures of the orthonormalized basis for the second-
rank temperature with respect to the inner 2-product:

e˜1 = e1e1, e˜2 = e2e2, e˜3 = e3e3, e˜4 = 1√
2
(e1e2 + e1e2),

e˜5 = 1√
2
(e2e3 + e3e2), e˜6 = 1√

2
(e3e1 + e1e3), e˜7 = 1√

2
(e1e2 − e1e2),

e˜8 = 1√
2
(e2e3 − e3e2), e˜9 = 1√

2
(e3e1 − e1e3), e˜m

2⊗ e˜m = δmn, m, n = 1, 9.

Here, δpq is the Kronecker symbol.
Further, we note that due to the positive definiteness of the specific strain energy

(Eringen 1999; Kupradze et al. 1976) and Definition14.15, the TBM (67) of the
elastic modulus tensors is positive-definite, and based on Theorem14.1, the elastic
modulus tensors (subtensors) A˜̃, and D˜̃ are positive-definite. We also note that the
TBM (67) differs from (19). In this case A˜̃, B˜̃, C˜̃ and D˜̃ are the tensors of the module
R4(Ω), where Ω is a domain of the three-dimensional space, i.e. M ∈R

2×2
4 (Ω),

N = 9. Hence, the characteristic equation (39) for the positive-definite TBM (67)
will have 18th power and 18 positive roots (eigenvalues). Here, we take into account
the possible multiplicity of these roots. Let λ1, . . . , λ18 are the roots of the equation.
Numbering them in descending order, we have λ1 ≥ · · · ≥ λ18 > 0. In this case,
a complete orthonormal system of eigentensor columns of the TBM (67) consists
of 18 tensor columns. Let W˜ p = (u˜p, v˜p)

T , p = 1, 18, be the complete orthonormal
system of eigentensor columns of the TBM (67), corresponding to λp, p = 1, 18,
respectively. Then, the matrix (67) can be represented as follows:

M˜̃ =
18∑

p=1
λpW˜ p ⊗ W˜ T

p =
18∑

p=1
λp

(
u˜p

v˜p

)
⊗ (

u˜p v˜p
) =

18∑
p=1

λp

(
u˜p ⊗ u˜p u˜p ⊗ v˜p

v˜p ⊗ u˜p v˜p ⊗ v˜p

)
,

(69)
where the orthonormality conditions are valid

(W˜ p, W˜ q) = W˜ T
p

2⊗W˜ q = u˜p
2⊗u˜q + v˜p

2⊗v˜q = δpq, p, q = 1, 18. (70)
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Next, analogous to (37), the relation

M˜̃α =
18∑

p=1

λα
p W˜ pW˜ T

p =
18∑

p=1

λα
p

(
u˜pu˜p u˜pv˜p

v˜pu˜p v˜pv˜p

)
.

is true for any integer α. In particular, for α = −1 and α = 0 similar to (38), we have

M˜̃−1 =
18∑

p=1
λ−1

p W˜ pW˜ T
p =

18∑
p=1

λ−1
p

(
u˜pu˜p u˜pv˜p

v˜pu˜p v˜pv˜p

)
,

E˜̃ = M˜̃0 =
18∑

p=1
W˜ p ⊗ W˜ T

p =
18∑

p=1

(
u˜p

v˜p

)
⊗ (

u˜p v˜p
) =

18∑
p=1

(
u˜p ⊗ u˜p u˜p ⊗ v˜p

v˜p ⊗ u˜p v˜p ⊗ v˜p

)
.

(71)
Next, we assume that the above relations for the specific strain energy and constitutive
relations are written in dimensionless quantities since it can always be done.

4.2 Presentations of the Specific Strain Energy
and the Constitutive Relations Using Eigenvalues
and Eigentensor Columns

By virtue of (69), from (68) we get

2Φ(γγγ˜,κκκ˜) =
18∑

p=1

λpX˜T 2⊗W˜ pW˜ T
p

2⊗X˜, Y˜ =
18∑

p=1

λpW˜ pW˜ T
p

2⊗X˜. (72)

Multiplying scalarly the second relation of (72) by W˜ α and taking into account (70),
the constitutive relations can be rewritten as

(Y˜, W˜ α) = λα(X˜, W˜ α)
(
Y˜T 2⊗W˜ α = λαX˜T 2⊗W˜ α

)
, 〈α = 1, 18 〉. (73)

Note that by the formulas (73) the equivalent records of constitutive relations are
given.

Introducing the notations (〈α = 1, 18 〉 means that there is no summation
over α):

Xα = (X˜, W˜ α) = X˜T 2⊗W˜ α = W˜ T
α

2⊗X˜ = u˜α

2⊗γγγ˜ + v˜α

2⊗κκκ˜,

Yα = (Y˜, W˜ α) = Y˜T 2⊗W˜ α = W˜ T
α

2⊗Y˜ = u˜α

2⊗P˜+ v˜α

2⊗μμμ˜, 〈α = 1, 18 〉,
(74)

the specific strain energy (the first relation (72)) and the constitutive relations (73)
can be represented in the form
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2Φ(γγγ˜,κκκ˜) =
18∑

p=1

λpX
2
p, Yα = λαXα, 〈α = 1, 18 〉. (75)

Multiplying both sides of the equalities of (74) by W˜ α and summing the resulting
relations from 1 to 18, by virtue of second relation of (71), we obtain

X˜ =
18∑

α=1
XαW˜ α =

18∑
α=1

(u˜α

2⊗γγγ˜ + v˜α

2⊗κκκ˜)W˜ α,

Y˜ =
18∑

α=1
YαW˜ α =

18∑
α=1

(u˜α

2⊗γγγ˜ + v˜α

2⊗κκκ˜)W˜ α.

(76)

The formulas (76) are the decompositions of the temperature columns X˜ and Y˜ in
the orthonormal basis W˜ α , α = 1, 18, where Xα and Yα are the projections of X˜ and
Y˜ onto W˜ α .

Taking into account the first equality of (74), from the second relation of (72) we
come to the following representations for the stress temperature and the couple-stress
tensor:

P˜ =
18∑

p=1
λpXpu˜p =

18∑
p=1

λp(u˜p
2⊗γγγ˜ + v˜p

2⊗κκκ˜)u˜p,

μμμ˜ =
18∑

p=1
λpXpv˜p =

18∑
p=1

λp(u˜p
2⊗γγγ˜ + v˜p

2⊗κκκ˜)v˜p.

(77)

It is not difficult to obtain the inverse constitutive relations. Taking into account the
first relation of (71) and the second formula of (75), from the second equality of (68)
we get

X˜ = M˜̃−1 2⊗Y˜ =
18∑

p=1

λ−1
p W˜ pW˜ T

p

2⊗Y˜ =
18∑

p=1

λ−1
p YpW˜ p, Xα = λ−1

α Yα, 〈α = 1, 18 〉.

(78)

Taking into account the second equality of (74), from the first relation of (78) we
obtain

γγγ˜ =
18∑

p=1
λ−1

p Ypu˜p =
18∑

p=1
λ−1

p (u˜p
2⊗P˜ + v˜p

2⊗μμμ˜)u˜p,

κκκ˜ =
18∑

p=1
λ−1

p Ypv˜p =
18∑

p=1
λ−1

p (u˜p
2⊗P˜+ v˜p

2⊗μμμ˜)v˜p.
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4.3 Construction of the Eigentensor Columns of the TBM
of Elastic Modulus Tensor

In this case, the expressions for the eigentensor columns can be obtained from the
formula (56) for N = 9. Therefore, we will not dwell on this. However we note that
using (56) forN = 9 the eigentensor columnsW˜ p ∈ R

2×1
2 (Ω), p = 1, 18, of theTBM

M˜̃ ∈ R
2×2
4 (Ω) are determined using 153 independent parameters (components of the

unitriangular TBMR˜̃ ∈ R
2×2
4 (Ω)) with respect to an arbitrary coordinate system (an

arbitrary basis ep, p = 1, 2, 3). Obviously, the number of independent parameters
can be reduced by the choice of coordinate system (see, for example, Novozhilov
1961). It depends on the type of roots of the characteristic equation, for example, of
the tensor r˜1·. If all three roots of the tensor r˜1· are a simple real numbers, or among
them there are two complex-conjugate roots, or the characteristic equation has the
triple root, then the number of independent parameters becomes equal to 147.

Thus, to describe the mechanical properties of a micropolar material that does
not have a center of symmetry in the sense of the elastic properties, it is sufficient
instead of the components of elastic modulus tensors A˜̃, B˜̃ = C˜̃T and D˜̃ to give
invariant characteristics of the TBM M˜̃ (67) in some coordinate system, i.e. the
eigenvalues λk > 0, k = 1, 18 and the corresponding eigentensor columns W˜̃ p, p =
1, 18. They are defined by using 153 independent parameters with respect to an
arbitrary coordinate system or 147 independent parameters in the case of a special
coordinate system.

Note that these invariant characteristics can be used to compare and classify
micropolar linear elastic anisotropic materials without a symmetry center in the
sense of elastic properties. Hence, it is not difficult to conduct a similar study for a
micropolar material with a symmetry center as a particular case. For the classical
linear elasticmaterial, as noted above, similar researchwas carried out byOstrosablin
(1984, 1986a, b, 2000).

4.4 Micropolar Material with a Center of Symmetry

In this case,B˜̃ = C˜̃T = 0˜̃and the constitutive relations (65) and specific strain energy
(64) can be written as

P˜ = A˜̃
2⊗γγγ˜, μμμ˜ = D˜̃

2⊗κκκ˜, 2Φ(γγγ˜,κκκ˜) = X˜T 2⊗M˜̃
2⊗X˜ = γγγ˜

2⊗A˜̃
2⊗γγγ˜ + κκκ˜

2⊗D˜̃
2⊗κκκ˜.

Thematrix (66) will receive the form of the TBDM. Then, the characteristic equation
is equivalent to the following equations:

det(A˜̃ − λE˜̃) = 0, det(D˜̃ − λE˜̃) = 0. (79)
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It is seen that each ofEq. (79) is an equation of 9th powerwith respect toλ and has 9
positive roots. Here we take into account the possible multiplicity of these roots. The
set of roots of eachEq. (79) can be arranged in descending order. Letλ1, λ2, . . . , λ9 be
the roots of the first Eq. (79) and λ10, λ11, . . . , λ18 be the roots of the second equation.
Then, obviously, we have λ1 ≥ · · · ≥ λ9 > 0, λ10 ≥ · · · ≥ λ18 > 0. In the future, we
consider such materials, for which the condition {λ1, . . . , λ9} ∩ {λ10, . . . , λ18} = ∅
is satisfied, where ∅ denotes the empty set. In other words, Eq. (79) have no common
roots (in general, Eq. (79) may have common roots).

Let W˜ p, p = 1, 18 be the eigentensor columns of the TBDM M˜̃ corresponding to
λp, p = 1, 18. Then, we have

M˜̃ =
(

A˜̃ 0˜̃
0˜̃ D˜̃

)
=

18∑
p=1

λpW˜ pW˜ T
p .

All that was said in Sect. 3.3, remains valid in this case. In particular, from all
formulas of Sect. 3.3 we obtain the corresponding formulas if N is replaced by 9.
So we will not stop at this. Note only, that for a given anisotropy of material with
a center of symmetry, the tensors A˜̃ and D˜̃ have the same structure corresponding
to this anisotropy. For example, in the case of an isotropic material, both of these
tensors are isotropic, in the case of a transversely isotropic material, these tensors
are transversely isotropic, etc. If so, then to give a classification of the micropolar
anisotropic elastic materials having a center of symmetry, it is enough to consider,
for example, the tensor A˜̃ since for a given material anisotropy the tensor D˜̃ has the
same structure as the tensor A˜̃. Although, according to the author, tensors A˜̃ and D˜̃can have different structures.

Thus, from the above it follows that to study the internal structure of a TBDM
M ∈ R

2×2
4 (Ω) it is sufficient to consider the eigenvalue problem, say, of a tensor

A˜̃ ∈ R4(Ω).

5 Eigenvalue Problem and Construction of the Complete
System of Eigentensors for a Symmetric Fourth Rank
Tensor

All that has been said above for the tensor A ∈ R2p(Ω) remains valid for the tensor
A˜̃ ∈ R4(Ω). In particular, the relations for A˜̃ ∈ R4(Ω) are obtained from the corre-
sponding relations for A ∈ R2p(Ω) if we assume Ω is a three-dimensional domain
and we replace A, n, p, and N with A˜̃, 3, 2, and 9 respectively. Of course, a similar
study for the symmetric tensor A˜̃ ∈ R4(Ω) can be carried out as a special case. In
fact, for this it is sufficient to consider that if A ∈ R4(Ω) and W ∈ R2(Ω), then
A ∈ R

1×1
4 (Ω) = R4(Ω) and W ∈ R

1×1
2 (Ω) = R2(Ω). And then the TBM of the

module R
2×2
4 (Ω) and the tensor column of the module R

2×1
2 (Ω) is replaced with
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the tensors of the modules R4(Ω) = R
1×1
4 (Ω) and R2(Ω) = R

1×1
2 (Ω) in the above

relations, respectively. Obviously, in this case, the tensor row is replacedwith a tensor
of the module R2(Ω), i.e. there is no need to introduce the concept of the tensor row.

6 Classification of the Micropolar Linearly Elastic
Anisotropic Materials Without a Center of Symmetry

We introduce a definition of the symbol of anisotropy (structure) of micropolar
linear-elastic anisotropic materials without a center of symmetry.

Definition 14.28 The symbol {α1, α2, . . . , αk}, where k is the number of distinct
eigenvalues of the TBM of the elastic modulus tensors, and αi is the multiplicity of
the eigenvalue λi (i = 1, 2, . . . , k), is called the symbol of anisotropy (structure) of
micropolar linear-elastic materials without a center of symmetry.

In this case, we have

α1 + α2 + . . . + αk = 18, 1 ≤ αi ≤ 18 − (k − 1) = 19 − k, i = 1, k, 1 ≤ k ≤ 18.

There are 18 classes (groups). Each class contains several subclasses (subgroups).
All classes are listed below. For each class, a symbol of anisotropy is given. For some
materials, the representation of TBM is given. The number of materials in each class
is expressed by the corresponding binomial coefficient.

6.1 Symbol of Anisotropy Consisting of One Element

{α}, α = 18, λ ≡ λ1 = λ2 = · · · = λ18.

The total number of such materials is equal to C0
17 = 1. The TBM M˜̃ has the form

M˜̃ =
18∑

p=1
λpW˜ pW˜ T

p = λ
18∑

p=1
W˜ pW˜ T

p = λE˜̃.

6.2 Symbol of Anisotropy Consisting of Two Elements

{α1, α2}, α1 + α2 = 18, 1 ≤ αm ≤ 17, m = 1, 2,

{1, 17}, {2, 16}, {3, 15}, {4, 14}, {5, 13}, {6, 12}, {7, 11}, {8, 10},
{9, 9}, {10, 8}, {11, 7}, {12, 6}, {13, 5}, {14, 4}, {15, 3}, {16, 2}, {17, 1}.
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The total number of such materials is equal to C1
17 = 17. The TBMM˜̃ corresponding

to, say, the material {1, 17} has the representation

M˜̃ = λ1W˜ 1W˜ T
1 + λ2

18∑
p=2

W˜ pW˜ T
p = (λ1 − λ2)W˜ 1W˜ T

1 + λ2E˜̃.

6.3 Symbol of Anisotropy Consisting of Three Elements

{α1, α2, α3}, α1 + α2 + α3 = 18, 1 ≤ αm ≤ 16, m = 1, 2, 3,

{1, 1, 16}, {1, 2, 15}, {1, 3, 14}, {1, 4, 13}, {1, 5, 12}, {1, 6, 11}, {1, 7, 10},
{1, 8, 9}, {1, 9, 8}, {1, 10, 7}, {1, 11, 6}, {1, 12, 5}, {1, 13, 4}, {1, 14, 3},
{1, 15, 2}, {1, 16, 1}; {2, 1, 15}, {2, 2, 14}, {2, 3, 13}, {2, 4, 12}, {2, 5, 11},
{2, 6, 10}, {2, 7, 9} {2, 8, 8}, {2, 9, 7}, {2, 10, 6}, {2, 11, 5}, {2, 12, 4}, {2, 13, 3},
{2, 14, 2}, {2, 15, 1}; {3, 1, 14}, . . . , {3, 14, 1}; . . . , {15, 1, 2}, {15, 2, 1}; {16, 1, 1}.

The total number of such materials is equal to C2
17 = 136. The TBMM˜̃ , for example,

for the material {1, 1, 16} has the form

M˜̃ = λ1W˜ 1W˜ T
1 + λ2W˜ 2W˜ T

2 + λ3

18∑
p=3

W˜ pW˜ T
p

= (λ1 − λ3)W˜ 1W˜ T
1 + (λ2 − λ3)W˜ 2W˜ T

2 + λ3E˜̃.

Other classes of the anisotropy contain a larger number of materials and there is no
sense to write them. Therefore, below for the other classes, we indicate the symbol
of anisotropy and the corresponding number of materials.

6.4 Symbol of Anisotropy Consisting of Four Elements

{α1, α2, α3, α4}, α1 + α2 + α3 + α4 = 18, 1 ≤ αm ≤ 15, m = 1, 2, 3, 4,

{1, 1, 1, 15}, . . . , {15, 1, 1, 1}.

The total number of such materials is equal to C3
17 = 680.

6.5 Symbol of Anisotropy Consisting of Five Elements

{α1, α2, . . . , α5}, α1 + α2 + · · · + α5 = 18, 1 ≤ αm ≤ 14, m = 1, 5,

{1, 1, 1, 1, 14}, . . . , {14, 1, 1, 1, 1}.

The total number of such materials is equal to C4
17 = 2380.
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6.6 Symbol of Anisotropy Consisting of Six Elements

{α1, α2, . . . , α6}, α1 + α2 + · · · + α6 = 18, 1 ≤ αm ≤ 13, m = 1, 6,

{1, 1, 1, 1, 1, 13}, . . . , {13, 1, 1, 1, 1, 1}.

The total number of such materials is equal to C5
17 = 6188.

6.7 Symbol of Anisotropy Consisting of Seven Elements

{α1, α2, α3, . . . , α7}, α1 + α2 + α3 + · · · + α7 = 18, 1 ≤ αm ≤ 12, m = 1, 7,

{1, 1, 1, 1, 1, 1, 12}, . . . , {12, 1, 1, 1, 1, 1, 1}.

The total number of such materials is equal to C6
17 = 12376.

6.8 Symbol of Anisotropy Consisting of Eight Elements

{α1, α2, α3, . . . , α8}, α1 + α2 + α3 + · · · + α8 = 18, 1 ≤ αm ≤ 11, m = 1, 8,

{1, 1, 1, 1, 1, 1, 1, 11}, . . . , {11, 1, 1, 1, 1, 1, 1, 1}.

The total number of such materials is equal to C7
17 = 19448.

6.9 Symbol of Anisotropy Consisting of Nine Elements

{α1, α2, α3, . . . , α9}, α1 + α2 + α3 + · · · + α9 = 18, 1 ≤ αm ≤ 10, m = 1, 9,

{1, 1, 1, 1, 1, 1, 1, 1, 10}, . . . , {10, 1, 1, 1, 1, 1, 1, 1, 1}.

The total number of such materials is equal to C8
17 = 24310.

6.10 Symbol of Anisotropy Consisting of Ten Elements

{α1, α2, α3, . . . , α10}, α1 + α2 + α3 + · · · + α10 = 18, 1 ≤ αm ≤ 9, m = 1, 10,

{1, 1, 1, 1, 1, 1, 1, 1, 1, 9}, . . . , {9, 1, 1, 1, 1, 1, 1, 1, 1, 1}.

The total number of such materials is equal to C9
17 = 24310.
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6.11 Symbol of Anisotropy Consisting of Eleven Elements

{α1, α2, α3, . . . α11}, α1 + α2 + α3 + · · · + α11 = 18, 1 ≤ αm ≤ 8, m = 1, 11,

{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8}, . . . , {8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}.

The total number of such materials is equal to C10
17 = 19448.

6.12 Symbol of Anisotropy Consisting of Twelve Elements

{α1, α2, α3, . . . , α12}, α1 + α2 + α3 + · · · + α12 = 18, 1 ≤ αm ≤ 7, m = 1, 12,

{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7}, . . . , {7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}.

The total number of such materials is equal to C11
17 = 12376.

6.13 Symbol of Anisotropy Consisting of Thirteen Elements

{α1, α2, α3, . . . , α13}, α1 + α2 + α3 + · · · + α13 = 18, 1 ≤ αm ≤ 6, m = 1, 13,

{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6}, . . . , {6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}.

The total number of such materials is equal to C12
17 = 6188.

6.14 Symbol of Anisotropy Consisting of Fourteen Elements

{α1, α2, α3, . . . , α14}, α1 + α2 + α3 + · · · + α14 = 18, 1 ≤ αm ≤ 5, m = 1, 14,

{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5}, . . . , {5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}.

The total number of such materials is equal to C13
17 = 2380.

6.15 Symbol of Anisotropy Consisting of Fifteen Elements

{α1, α2, α3, . . . , α15}, α1 + α2 + α3 + · · · + α15 = 18, 1 ≤ αm ≤ 4, m = 1, 15,

{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4}, . . . , {4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}.

The total number of such materials is equal to C14
17 = 680.
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6.16 Symbol of Anisotropy Consisting of Sixteen Elements

{α1, α2, α3, . . . , α16}, α1 + α2 + α3 + · · · + α16 = 18, 1 ≤ αm ≤ 3, m = 1, 16,

{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3}, . . . , {3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}.

The total number of such materials is equal to C15
17 = 136.

6.17 Symbol of Anisotropy Consisting of Seventeen Elements

{α1, α2, α3, . . . , α17}, α1 + α2 + α3 + · · · + α17 = 18, 1 ≤ αm ≤ 2, m = 1, 17,

{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2}, . . . ,
{2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}.

The total number of such materials is equal to C16
17 = 17.

6.18 Symbol of Anisotropy Consisting of Eighteen Elements

{α1, α2, α3, . . . , α18}, α1 + α2 + α3 + · · · + α18 = 18, αm = 1, m = 1, 18,

{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}.

The total number of such materials is equal to C17
17 = 1.

Note that the total number of all micropolar linear elastic anisotropic materials
without a center of symmetry, is equal to

∑17
k=0 Ck

17 = 217 = 131072, the total number
of all anisotropic materials of Mindlin (1964) is equal to 240 = 1099511627776, and
the number of materials of Toupin (1962) is equal to 225 = 33554432.

7 Materials with Negative Poisson’s Ratio

Now we will calculate the Poisson’s ratio for the materials {1, 5, 3} and {5, 1, 3}.
To do this, we write the inverse Hooke’s law for materials with a center symmetry

γγγ˜ = A˜̃−1 2⊗P˜, κκκ˜ = D˜̃−1 2⊗μμμ˜. (80)

Let us write here the expressions for the tensor A˜̃−1 with structures {1, 5, 3} and {5,
1, 3}
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{1, 5, 3} : A˜̃−1 = (λ−1
1 − λ−1

2 )u˜1u˜1 + λ−1
2 C˜̃(2) + (λ−1

7 − λ−1
2 )(u˜7u˜7 + u˜8u˜8 + u˜9u˜9);

{5, 1, 3} : A˜̃−1 = λ−1
1 C˜̃(2) − (λ−1

1 − λ−1
6 )u˜6u˜6 − (λ−1

1 − λ−1
7 )(u˜7u˜7 + u˜8u˜8 + u˜9u˜9).

(81)

Suppose

u˜1 = u˜6 = ±
√
3

3
E˜, u˜m = e˜m, m = 7, 8, 9. (82)

Then with the help of
∑9

m=7 e˜me˜m = 1/2(C˜̃(2) − C˜̃(3)) and (82) from (81), we get

{1, 5, 3} : A˜̃−1 = 1

3
(λ−1

1 − λ−1
2 )C˜̃(1) + 1

2
(λ−1

2 + λ−1
7 )C˜̃(2) + 1

2
(λ−1

2 − λ−1
7 )C˜̃(3);

{5, 1, 3} : A˜̃−1 = −1

3
(λ−1

1 − λ−1
6 )C˜̃(1) + 1

2
(λ−1

1 + λ−1
7 )C˜̃(2) + 1

2
(λ−1

1 − λ−1
7 )C˜̃(3).

(83)
If we assume P˜ = P1e˜1, then using (83) and the first relation (80), we get

{1, 5, 3} : γγγ˜ = P1A˜̃−1 2⊗e˜1 = P1

[
1

3
(λ−1

1 − λ−1
2 )E˜ + λ−1

2 e˜1

]
,

γ1 = γγγ˜
2⊗e˜1 = (λ2 + 2λ1)P1

3λ1λ2
, γ2 = γ3 = γγγ˜

2⊗e˜2 = − (λ1 − λ2)P1

3λ1λ2
< 0,

ν = −γ2

γ1
= −γ3

γ1
= λ1 − λ2

λ2 + 2λ1
> 0, 0 < ν <

1

2
;

{5, 1, 3} : γγγ˜ = P1A˜̃−1 2⊗e˜1 = P1

[
−1

3
(λ−1

1 − λ−1
6 )E˜ + λ−1

1 e˜1

]
,

γ1 = γγγ˜
2⊗e˜1 = (λ1 + 2λ6)P1

3λ1λ6
, γ2 = γ3 = γγγ˜

2⊗e˜2 = (λ1 − λ6)P1

3λ1λ6
< 0,

ν = −γ2

γ1
= −γ3

γ1
= − λ1 − λ6

λ1 + 2λ6
< 0, −1 < ν < 0.

(84)

A similar result is obtained from the second relation (80) for ε

{1, 5, 3} : 0 < ε <
1

2
, {5, 1, 3} : −1 < ε < 0

(
ε = −κ2

κ1
= −κ3

κ1

)
.

8 Orthotropic Micropolar Material
with a Center of Symmetry

In this case, the matrix of components of the tensor A˜̃ has the form (the tensor D˜̃ has
the similar form)
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A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A11 A12 A13 0 0 0 0 0 0
A12 A22 A23 0 0 0 0 0 0
A13 A23 A33 0 0 0 0 0 0
0 0 0 A44 A45 0 0 0 0
0 0 0 A45 A55 0 0 0 0
0 0 0 0 0 A66 A67 0 0
0 0 0 0 0 A67 A77 0 0
0 0 0 0 0 0 0 A88 A89

0 0 0 0 0 0 0 A89 A99

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (85)

The number of independent components is 15 (see Nikabadze 2009c; Zheng and
Spencer 1993; Eremeyev and Pietraszkiewicz 2012).

The characteristic equation of the tensor A˜̃ using (85) will have the form

det(A˜̃ − E˜̃) =
∣∣∣∣∣∣
A11 − λ A12 A13

A12 A22 − λ A23

A13 A23 A33 − λ

∣∣∣∣∣∣
∣∣∣∣ A44 − λ A45

A45 A55 − λ

∣∣∣∣ ·

·
∣∣∣∣ A66 − λ A67

A67 A77 − λ

∣∣∣∣
∣∣∣∣ A88 − λ A89

A89 A99 − λ

∣∣∣∣ = 0.

(86)

From (86), it follows that at least one of the following equations is true:

∣∣∣∣∣∣
A11 − λ A12 A13

A12 A22 − λ A23

A13 A23 A33 − λ

∣∣∣∣∣∣ = 0,

∣∣∣∣ A44 − λ A45

A45 A55 − λ

∣∣∣∣ = 0,

∣∣∣∣ A66 − λ A67

A67 A77 − λ

∣∣∣∣ = 0,

∣∣∣∣ A88 − λ A89

A89 A99 − λ

∣∣∣∣ = 0.

(87)

The first equation of (87) is a cubic equation, which has three positive roots. Let us
denote these roots by λ1, λ2, λ3 and the eigentensors corresponding to these roots by
u˜1, u˜2 and u˜3.

The eigenvalues and the eigentensors of the tensor A˜̃ have form

λ1, λ2, λ3, u˜i = ui,1e˜1 + ui,2e˜2 + ui,3e˜3, i = 1, 2, 3,

λ4,5 = 1

2
(A44 + A55) ± 1

2
(A44 − A55)

1

cos 2α
, tg2α = 2A45

A44 − A55
,

u˜4 = − sin αe˜4 + cosαe˜5, u˜5 = cosαe˜4 + sin αe˜5;
λ6,7 = 1

2
(A66 + A77) ± 1

2
(A66 − A77)

1

cos 2β
, tg2β = 2A67

A66 − A77
,

u˜6 = − sin βe˜6 + cosβe˜7, u˜7 = cosβe˜6 + sin βe˜7;
λ8,9 = 1

2
(A88 + A99) ± 1

2
(A88 − A99)

1

cos 2γ
, tg2γ = 2A89

A88 − A99
,

u˜8 = − sin γ e˜8 + cos γ e˜9, u˜9 = cos γ e˜8 + sin γ e˜9.

(88)
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9 Conclusions

1. The eigenvalue problems of the symmetric TBM of any even rank and sizes
m × m, m ≥ 1 (sizes 2 × 2) are formulated (studied).

2. Some definitions and theorems concerning the TBM are formulated.
3. The formulas expressing the classical invariants of the TBM of any even rank

and sizes 2 × 2 through the first invariants of powers of this TBM are given. The
formulas which are inverse to the latter are obtained.

4. The complete orthonormal system of eigentensor columns for the TBM of any
even rank and sizes 2 × 2 are constructed. The generalized eigenvalue problem
of the TBM is formulated.

5. As a special case, the TBM of the elastic modulus tensors, the modulus tensor and
the micropolar material with a center of symmetry are considered. The canonical
representations of the TBM, the elastic strain energy, and the constitutive relations
are given.

6. The classification of micropolar linearly-elastic anisotropic materials without a
center of symmetry is given. The set of these anisotropic materials is divided into
18 classes, and the total number of anisotropic materials is equal to 131072.

7. The existence of a material with a negative Poisson’s ratio is proved.
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Analytical Solutions in the Theory
of Thin Bodies

Mikhail U. Nikabadze and Armine R. Ulukhanyan

Abstract Some questions about the parametrization of three-dimensional thin body
with one small size under an arbitrary base surface and the changing of transverse
coordinate from –1 to 1 are considered. The vector parametric equation of the thin
body domain is given. In particular, we have defined the various families of bases
and geometric characteristics generated by them. Expressions for the components of
the second rank isotropic tensor are obtained. The representations of some differen-
tial operators, the equations of motion, and the constitutive relations of micropolar
elasticity theory under the considered parametrization of the thin body domain are
given. The inverse tensor operators to a tensor operator of the equations of motion in
terms of displacements for an isotropic homogeneous material and to a stress oper-
ator are found. They allow decomposing equations and boundary conditions. The
inverse matrix differential tensor operator to the matrix differential tensor operator
of the equations of motion in displacements and rotations of the micropolar theory
of elasticity is constructed for isotropic homogeneous materials with a symmetry
center as well as for materials without a symmetry center. We obtain the equations
with respect to displacement vector and rotation vector individually. As a special
case, a reduced continuum is considered. Cases in which it is easy to invert the stress
and the couple stress operator are found out. From the decomposed equations of
classical (micropolar) theory of elasticity, the corresponding decomposed equations
of quasistatic problems of theory of prismatic bodies with constant thickness in dis-
placements (in displacements and rotations) are obtained. From these systems of
equations, we derive the equations in moments of unknown vector functions with
respect to any system of orthogonal polynomials. We obtain the systems of equa-
tions of various approximations (from zero to eighth order) in moments with respect
to the systems of Legendre and second kind Chebyshev polynomials. The system
splits and for each moment of unknown vector function we, obtain a high order
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elliptic type equation (the system order depends on the order of approximation), the
characteristic roots of which can be easily found. Using the method of Vekua, their
analytical solution is obtained. For micropolar theory of thin prismatic bodies with
two small sizes and a the rectangular cross-section, the decomposed equations in
moments of displacement and rotation vectors via an arbitrary system of polynomi-
als (Legendre, Chebyshev) are obtained. Similar equations are also deduced for the
reduced medium containing classical equation. The decomposed systems of equa-
tions of eight approximations for micropolar theory of multilayer prismatic bodies
of constant thickness in moments of displacement and rotation vectors are obtained.
Using Vekua method, we can find the analytical solutions for this system and for
equations for the reduced medium.

Keywords Micropolar theory · Thin body · Tensor operator · Couple stress ·
Legendre polynomials · Couple stress-tensor-operator · Reduced medium

1 Parametrization of Thin Domain with One Small Size
Under an Arbitrary Base Surface

Let V be a domain ff three-dimensional Euclidean space occupying of thin body.

Definition 15.1 A three-dimensional body (two-dimensional domain) is called thin
body (domain) if its one or two dimensions (one dimension) are significantly smaller
than the others.

Definition 15.2 Changing for some domain the coordinate system is called the para-
metrization of this domain.

Here, if the opposite will not be specified, we mainly consider a three-dimensional
body, one size of which is less than the other ones, i.e. a three-dimensional thin body
with one small size. Also, we will specify the concept of thin body.

The position vector of an arbitrary point of the domain of a thin body is represented
as follows (in Fig. 1 the normal section of the thin body is shown)

r̂(x ′, x3) = r(x ′) + [
h̄(x ′) + x3h(x ′)

]
n(x ′), −1 ≤ x3 ≤ 1, (1)

where r = r(x ′) is the vector parametric equation of base surface S (in Fig. 1 the
cross section of the base surface with a normal body section is shown), x ′ = (x1, x2)

is an arbitrary point on S, i.e. x1 and x2 are curvilinear coordinates on the base
surface S,

h̄(x ′) = [(+)

h (x ′) − (−)

h (x ′)
]
/2, h(x ′) = [(+)

h (x ′) + (−)

h (x ′)
]
/2,
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Fig. 1 Normal section of
thin body

n(x ′) is the unit normal vector to S at the point x ′,
(−)

h (x ′) is the distance from the

point x ′ to the corresponding point on the surface
(−)

S ,
(+)

h (x ′) is the distance from the

same point x ′ to the corresponding point on the surface
(+)

S (in Fig. 1 the intersections
of these surfaces with normal section of the body are shown),

2h(x ′) = (+)

h (x ′) + (−)

h (x ′)

is the thin body thickness at the point x ′. Note that the point O , in general, does not

belong to the plane of figure. It is easy to see that Eq. (1) determines the interior
(−)

S and

exterior
(+)

S surfaces of the thin body for ∀x ′, x3 = −1 and ∀x ′, x3 = 1, respectively.
The vector relationships are

(−)

r (x ′) = r̂(x ′, x3)

∣∣∣
x3=−1

= r(x ′) − (−)

h (x ′)n(x ′), ∀x ′, x3 = −1, (2)

(+)

r (x ′) = r̂(x ′, x3)

∣∣∣
x3=1

= r(x ′) + (+)

h (x ′)n(x ′), ∀x ′, x3 = 1. (3)

For ∀x ′, x3 = const , where x3 ∈ (−1, 1), Eq. (1) determines the equidistant surface
Ŝ from base surface S. Equation (1) for x ′ ∈ S, x3 ∈ [−1, 1] is a vector parametric
equation of a domain of a thin body.
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For the derivatives of r̂(x ′, x3) and
(∼)

r , ∼ ∈ {−,∅,+}, in x P let us introduce the

notations1 rP̂ = ∂P r̂ and rP̃ = ∂P
(∼)

r , ∼ ∈ {−,∅,+}, respectively. It is easy to see
that due to (1)–(3) we have

rP̂ = [
gQ

P − (h̄ + x3h)bQ
P

]
rQ + (∂P h̄ + x3∂P h)n,

r−
P

= (
gQ

P + (−)

h bQ
P

)
rQ − ∂P

(−)

h n, r+
P

= (
gQ

P + (+)

h bQ
P

)
rQ − ∂P

(+)

h n.
(4)

To write Eq. (4) we used Weingarten derivation equations

nP = ∂P n = −bQ
P rQ = −b˜ · rP ,

where b˜ is the second tensor of surface S.

The vector pair r∗
1
, r∗

2
, ∗ ∈ {−,∅,∧,+}, defined at the points

(∗)

M ∈ (∗)

S, ∗ ∈
{−,∅,∧,+}, gives us two-dimensional covariant surface bases. Using these bases,

we can construct the corresponding contravariant bases r
∗
1, r

∗
2, ∗ ∈ {−,∅,∧,+}.

Naturally, the covariant and contravariant bases generate their inherent geometric
characteristics. In particular, we can define the following matrices:

g
Ĩ J̆

= r
Ĩ
· r

J̆
, g J̆

Ĩ
= r

Ĩ
· r J̆ , gĨ J̆ = r Ĩ · r J̆ , ∼, � ∈ ∗ ∈ {−,∅,∧,+}. (5)

Differentiating (1) w.r.t. x3, we have

r
3̂

= ∂3r̂ = h(x ′)n(x ′), ∀x3 ∈ [−1, 1]. (6)

According to (6), we can assume that

r−
3

= r3 = r
3̂

= r+
3

= h(x ′)n(x ′), ∀x3 ∈ [−1, 1]. (7)

Relations (4) and (7) allow us to define the spatial covariant bases r ∗
p
, ∗ ∈ {−,∅,+},

at the points
(∗)

M ∈ (∗)

S, ∗ ∈ {−,∅,+}. Therefore, the third basis vector of the spatial

covariant bases at the points
(∗)

M ∈ (∗)

S, ∗ ∈ {−,∅,∧,+}, is the same vector r3 =
h(x ′)n(x ′).

Introducing the notation z(x ′, x3) = h̄(x ′) + x3h(x ′), due to (7) the first relation
(4) and (6) can be presented in the form

1In the following brief notes as
(∼)

M ∈ (∼)

S , ∼ ∈ {−,∅,∧,+} or r p̃ = gq̆
p̃rq̆ , ∼, �{−,∅,∧,+}, where

∅ is empty set, are applied. The first record means: if ∼ = − then
(−)

M ∈ (−)

S ; if ∼ = ∅ then M ∈ S; if

∼ = ∧ than M̂ ∈ Ŝ; if ∼ = + then
(+)

M ∈ (+)

S . The second record means that if, for example, ∼ = ∅,
� = − then rp = gq̄

prq̄ ; if ∼ = ∧, � = ∅ then r p̂ = gq
p̂rq and soon. Going through all the values,

we get all the relations.
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r p̂ = (
gq

p − zbq
p + h−1∂M zgM

p gq
3

)
rq . (8)

By analogy to Eq. (8) using the last two formulas of (4) and (7), we have

r−
p

= (
gq

p + (−)

h bq
p − h−1∂M

(−)

h gM
p gq

3

)
rq , r+

p
= (

gq
p − (+)

h bq
p + h−1∂M

(+)

h gM
p gq

3

)
rq .

(9)
In relations (8) and (9) bq

p = gM
p gq

N bN
M are the components of the extended sec-

ond tensor of surface S (Vekua 1978, 1985; Nikabadze 2015, 2007b). Obviously,
formulas (9) can be obtained from (8) when x3 = −1 and x3 = 1, respectively.

The triples of vectors r∗
1
, r∗

2
, r∗

3
, ∗ ∈ {−,∅,∧,+}, defined at the points

(∗)

M ∈ (∗)

S,
∗ ∈ {−,∅,∧,+}, give us three-dimensional covariant bases. Using these bases we

can construct the corresponding contravariant bases r
∗
1, r

∗
2, r

∗
3, ∗ ∈ {−,∅,∧,+}. In

fact, based on the definition of the contravariant bases (Vekua 1978; Lurie 1990;
Pobedrya 1986; Nikabadze 2015, 2007b) we have

rk̃ = 1

2
Ck̃ p̃q̃r p̃ × rq̃ , ∼ ∈ {−,∅,∧,+}, (10)

where Ck̃ p̃q̃ = (
rk̃ × r p̃

) · rq̃ , ∼ ∈ {−,∅,∧,+} are the contravariant components

of the discriminant tensors (Vekua 1978) at the points
(∗)

M ∈ (∗)

S, ∗ ∈ {−,∅,∧,+},
respectively.

Analogously to Eq. (5), we introduce the following matrices:

gp̃q̆ = r p̃ · rq̆ , gq̆
p̃ = r p̃ · rq̆ , g p̃q̆ = r p̃ · rq̆ , ∼, � ∈ {−,∅,∧,+}. (11)

Because of the first two relations of (11) and (8), we have

gp̂q = gpq − zbpq + h−1∂M zgM
p g3q , gq

p̂ = gq
p − zbq

p + h−1∂M zgM
p gq

3 . (12)

Similarly to (12) with the help of (9) and the first two relations of (11), we find

g−
pq

= gpq + (−)

h bpq − h−1∂M

(−)

h gM
p g3q , gq

−
p

= gq
p + (−)

h bq
p − h−1∂M

(−)

h gM
p gq

3 ,

g+
pq

= gpq − (+)

h bpq + h−1∂M

(+)

h gM
p g3q , gq

+
p

= gq
p − (+)

h bq
p + h−1∂M

(+)

h gM
p gq

3 .
(13)

It is easy to see that from (12) and (13) we obtain

gP̂3 = h
(
∂P h̄ + x3∂P h

)
, g3

P̂
= h−1

(
∂P h̄ + x3∂P h

)
, r3 = h−1(x ′)n(x ′), (14)

g−
P3

= −h∂P

(−)

h , g3
−
P

= −h−1∂P

(−)

h , g+
P3

= h∂P

(+)

h , g3
+
P

= h−1∂P

(+)

h . (15)
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It is seen that by the second formula (14) equalities (12) can be written as

gp̂q = gpq − (
h̄ + x3h

)
bpq + g3

M̂
gM

p g3q ,

gq
p̂ = gq

p − (
h̄ + x3h

)
bq

p + g3
M̂

gM
p gq

3 .
(16)

Next using a second and fourth formulas of (15) from (13) we have

g−
pq

= gpq + (−)

h bpq + g3
−
M

gM
p g3q , gq

−
p

= gq
p + (−)

h bq
p + g3

−
M

gM
p gq

3 ,

g+
pq

= gpq − (+)

h bpq + g3
+
M

gM
p g3q , gq

+
p

= gq
p − (+)

h bq
p + g3

+
M

gM
p gq

3 .
(17)

Note also that based on (15) the formulas (14) take the form

gP̂3 = 1

2

[
g+

P3
+ g−

P3
+ x3(g+

P3
− g−

P3
)
]
, g3

P̂
= 1

2

[
g3

+
P

+ g3
−
P

+ x3(g3
+
P

− g3
−
P
)
]
. (18)

It is seen that according to (11) the is following relationship between basis vectors
holds true

r p̃ = gq̆
p̃rq̆ , ∼, � ∈ {−,∅,∧,+}, (19)

which remains valid when the indices are raised or lowered. By (19), we can prove
the validity of relation

gq̆
p̃ = g

∗
n
p̃gq̆

∗
n
, ∼, �, ∗ ∈ {−,∅,∧,+}, (20)

which remains valid when the indices are raised or lowered.
It is not difficult to find an expression for gp̂q̂ . According to (12), from (20) we

have

gp̂q̂ = gn
p̂
gnq̂ = gpq − 2zbpq + z2bM

p bMq + g3
Ŝ
gS

pg3q + g3
T̂

gT
q g3q + g33g3

Ŝ
g3

T̂
gS

pgT
q .

(21)

We obtain an expression for
√

ĝ = (r1̂ × r2̂) · r3̂. Taking into account (19) when
∼ = ∧ and � ∈ {−,∅,+}, we get

√
ĝ =

√
(�)

g det
(
gK̆

Î

)
, det

(
gK̆

Î

) = 1

2
ε I J εK L gK̆

Î
gL̆

Ĵ
, � ∈ {−,∅,+}. (22)

Here ε I J , εK L are two-dimensional Levi–Civita symbols, and

√
(�)

g = (r1̆ × r2̆) · r3̆, � ∈ {−,∅,+}, (−)

g = ĝ|x3=−1, g = ĝ|x3=0,
(+)

g = ĝ|x3=1.

(23)
From (22), when � = ∅, we obtain
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ϑ̂ ≡
√

ĝg−1 = det
(
gK

Î

) = 1

2
ε I J εK L gK

Î
gL

Ĵ
. (24)

In the following, we assume that ϑ̂ �= 0, i.e. the thin body has such a shape that the
considered parametrization of domain is valid.

It should be noted that there is a more general relation than (22)

√
(∼)

g = 1

2

√
(�)

g ε I J εK L gK̆
Ĩ

gL̆
J̃

=
√

(�)

g det
(
gQ̆

P̃

)
, ∼, � ∈ {−,∅,∧,+}. (25)

From Eq. (25), we find

det
(
gQ̆

P̃

) =
√

(∼)

g
(�)

g −1 = 1

2
ε I J εK L gK̆

Ĩ
gL̆

J̃
, ∼, � ∈ {−,∅,∧,+}.

Now we can find the expression for rk̂ . According to (19) from (10), we have

rk̆ = 1

2

√
(�)
g −1(∼)

g εkpqε
lmn

gm̃
p̆ gñ

q̆ rl̃ = 1

2

√
(�)
g −1g εkpqε

lmn
gm

p̆ gn
q̆ rl , ∼, � ∈ {−, ∅, ∧, +}.

(26)
Hence, when � = ∧ we obtain

rk̂ = 1

2

√
ĝ−1(∼)

g εkpqεlmngm̃
p̂ gñ

q̂ rl̃ = 1

2
ϑ̂−1εkpqεlmngm

p̂ gn
q̂ rl , ∼ ∈ {−,∅,∧,+}.

(27)

Here εkpq , εlmn are the Levi–Civita symbols. It is easy to notice that due to (26) we
have

gk̆
l̃

= rk̆ · rl̃ = 1

2

√
(�)

g −1(∼)

g εkpqεlmngm̃
p̆ gñ

q̆ ,

gk̆l̃ = rk̆ · rl̃ = 1

2

√
(�)

g −1(∼)

g εkpqεsmngm̃
p̆ gñ

q̆ gs̃l̃, ∼, � ∈ {−,∅,∧,+}.

From here or using (27) we can find

gk̂
l = 1

2
ϑ̂−1εkpqεlmngm

p̂ gn
q̂ , gk̂l = 1

2
ϑ̂−1εkpqεsmngm

p̂ gn
q̂ gsl .

We also find the relationship for r P̂ and r3̂. Based on (27) after simple calculations
we have

r P̂ = gP̂
M rM = ϑ̂−1AP̂

M rM , gP̂
M = ϑ̂−1AP̂

M , AP̂
M = εP K εM L gL

K̂
. (28)

According to (19) we obtain

r3 = g3
p̂r p̂ = r3̂ + g3

P̂
r P̂ = r3̂ + g3

P̂
g P̂

M rM .
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Hence,
r3̂ = r3 − g3

P̂
g P̂

M rM , g3̂
M = −g3

P̂
g P̂

M . (29)

It is easy to see that from (29) we obtain

r
−
3 = r3̂|x3=−1 = r3 − g3

−
P

g
−
P
M rM , g

−
3
M = −g3

−
P

g
−
P
M ,

r
+
3 = r3̂|x3=1 = r3 − g3

+
P

g
+
P
M rM , g

+
3
M = −g3

+
P

g
+
P
M .

(30)

2 Representation of the Second Rank Isotropic Tensor
and Its Components

Proceeding from the usual expression of the second rank isotropic tensor (SRIT)
(Vekua 1978; Nikabadze 2015; Lurie 1990; Pobedrya 1986), according to (19) and
(20) we get the representation

E˜ = gn̆
m̃rm̃rn̆, ∼, � ∈ {−,∅,∧,+}, (31)

which remains valid when the indices are raised or lowered.2 As is seen from (31),
the elements of matrices (11), introduced above, are components of the SRIT.

Definition 15.3 The components gq̆
p̃, ∼, � ∈ {−,∅,∧,+}, ∼ �= �, and also their

images, obtained from them by raising or lowering indices, are called the transla-
tion components of the SRIT under the considered parametrization of the thin body
domain.

In what follows we will be interested in expressions of the translation compo-
nents gP̂

M , g3̂
M and components gP̂ Q̂ , gP̂ 3̂, g3̂3̂ of the SRIT in the form of a uniformly

convergent power series with respect to x3. Analogous representations of basis vec-
tors and components of the SRIT under the classical parametrization were given in
Vekua (1978) and under the new parametrization presented in the second chapter of
Nikabadze (2007b) (see also Nikabadze 2008a, 2014b, c, 2015).

Assuming that the considered body is thin, i.e. the norm ‖ zb˜ ‖< 1, where
z(x ′, x3) = h̄(x ′) + x3h(x ′), for r P̂ we obtain the representation

r P̂ = rP · (E˜ − zb˜)−1 = rP · (E˜ + zb˜+ z2b˜2 + · · · )
= (gP

M + z bP
M + z2 bP

N bN
M + · · · )rM .

(32)

Note that

2It means if one of the dummy indices is lowered, then the corresponding index rises and vice versa.
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(E˜ − zb˜)−1 =
∞∑

s=0

zsb˜s, (E˜ − zb˜)−2 =
∞∑

s=0

(1 + s)zsb˜s . (33)

By (32) we have

gP̂
M

= rP · [
E˜ − (h̄ + x3h)b˜

]−1 · rM =
∞∑

s=0
A
(s)

P
M

(h̄ + x3h)s, A
(0)

P
M

= gP
M

,

A
(1)

P
M

= bP
M

, A
(2)

P
M

= bP
N

bN
M

, . . . , A
(s)

P
M

= bP
N1

bN1
N2

. . . bNs−2
Ns−1

bNs−1
M .

(34)

Knowing (33) and (34), it is easy to find representations of the other components. In
fact, we have

g3̂
M = −g3

P̂
g P̂

M = −h−1∂P z
∞∑

s=0
A
(s)

P
M zs,

gP̂ Q̂ = gP̂
M gM Q̂ = rP · (E˜ − zb˜)−2 · rQ = gQM

∞∑
s=0

(1 + s) A
(s)

P
M zs,

gP̂ 3̂ = −g3
Q̂

g P̂
M gM Q̂ = −gQM g3

Q̂

∞∑
s=0

(1 + s) A
(s)

P
M

zs,

g3̂3̂ = g33 + gM N g3̂
M

g3̂
N = g33 + g3

P̂
g3

Q̂
g P̂ Q̂ = g33 + gQM g3

P̂
g3

Q̂

∞∑
s=0

(1 + s) A
(s)

P
M zs .

(35)
Taking into account the representation gP̂

M
(34) and using the rule of multiplication

of series in the form of Cauchy, we obtain

gP̂
M

gQ̂

N
=

∞∑
s=0

B
(s)

P Q
M N zs, B

(s)

P Q
M N =

s∑
r=0

A
(s−r)

P
M

A
(r)

Q

N
. (36)

Note that the components of the SRIT take part in representations of equations
and constitutive equations of mechanics of a deformable thin body under a given
parametrization. Therefore, the relations (34)–(36) play an important role in the
construction of different variants of mathematical theories of thin bodies with the
use of expansion with respect to orthogonal polynomials. The number of summands
retained in the right-hand sides (34)–(36), depends on the character of the solved
problem and the required accuracy of approximation. Note that all questions outlined
in the second chapter of Nikabadze (2007b) (see also Nikabadze 2008a, 2014b, c,
2015), concerning the new parametrization and not included in this paper, can be
easily transferred to the case of this parametrization.

It should be noted also that it is easy to obtain other types of parameterizations
from the considered above parametrization of the thin body domain as special cases.
For example,

(1) ifwe assume that
(−)

h = (+)

h ≡ h, x3h ≡ z, thenwe can get classical parametrization
where the base surface is considered the middle surface;
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(2) if we assume that
(−)

h = (+)

h ≡ h, then we will have a parametrization at which the
base is regarded as a middle surface, and transverse coordinate x3 ∈ [−1, 1];

(3) if we assume that
(−)

h = 0 and rename r̂(x ′, x3) = r(x ′, z), 1 + x3 = z, r(x ′) =
(−)

r (x ′), thenwe obtain a new parametrization (Nikabadze 2007b, 2014b, c, 2015)
(in this case, for convenience, it will be better to rename z through x3 where
x3 ∈ [0, 1]).

3 Representations of Gradient, Divergence, Repeated
Gradient and Laplacian

In this case with the help of (28) and (29) we have the next representation for the
gradient of a tensor field F̂(x ′, x3)

∇̂F = r p̂∂pF = NF + r3∇3F = r P̂ NPF + r3∇3F = rM gP̂
M NPF + r3∂3F, (37)

where we have used the differential operators

NP = ∂P − g3
P̂
∂3, N = r P̂ NP = r P̂(∂P − g3

P̂
∂3) = rM gP̂

M(∂P − g3
P̂
∂3).

Here the SRIT components g3
P̂
(14) characterize the change of thickness.

It is easy to see that the divergence, say, of the second rank tensor P˜ according to
(37) can be represented in the form

∇̂ · P˜ = ∇pP p̂ = gP̂
M NP PM + ∂3P3. (38)

By (37) the repeated gradient of a tensor field F̂(x ′, x3) under the considered para-
metrization can be represented as follows

∇̂∇̂F = rM rN gP̂
M NP

(
gQ̂

N NQF
) + rM r3gP̂

M NP∂3F + r3rN ∂3
(
gQ̂

N NQF
) + r3r3∂2

3F

= rM rN gP̂
M gQ̂

N NP NQF + rM r3gP̂
M NP∂3F + r3rN gQ̂

N ∇3NQF + r3r3∂2
3F.

(39)
Here

NP NQ = ∇P∇Q − (
g3

P̂
∇3∇Q + g3

Q̂
∇P∇3

) + g3
P̂

g3
Q̂
∇2

3 .

It is easy to notice that based on (39) we obtain representations for the Laplacian

Δ̂F = ∇̂ · ∇̂F = gM N gP̂
M NP

(
gQ̂

N NQF
) + g33∂2

3F

= gM N gP̂
M gQ̂

N NP NQF + g33∂2
3F.

(40)
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Next, we note that having the representations of the gradient (37) and repeated
gradient (39), it is easy to get representations of other differential operators (rotor,
repeated divergence, divergence gradient). For brevity, we do not consider this in
detail.

4 Equations of Motion and Constitutive Relations
in the Micropolar Theory of Thin Bodies

As is known (Eringen 1999), three-dimensional equations of motion of micropolar
deformable rigid bodies, related to the current configuration, are represented in the
form3

∇ · P˜+ ρF = ρ
·
v, ∇ · μμμ˜ + C�

2⊗ P˜+ ρm = ρ
·
k, (41)

and the equations of motion, related to the reference configuration, can be written as
follows

◦∇ · ◦
P˜+ ◦

ρF = ◦
ρ

·
v,

◦∇ · ◦
μμμ˜ + ◦

C�
2⊗ ◦

P˜+ ◦
ρm = ◦

ρd
◦
k/dt . (42)

Here, P˜ and μμμ˜ are tensors of stresses and couple stresses;
◦
P˜ =

√
g/

◦
g∇◦

rT · P˜ and
◦
μμμ˜ =

√
g/

◦
g∇◦

rT ·μμμ˜are the tensors of stresses and couple stresses, related to the current

configuration;
√

g = (r1×r2)·r3,
√

◦
g = (

◦
r1×

◦
r2)·

◦
r3,

◦∇ and∇ are theHamiltonians
in reference and current configurations, respectively; ρ is the material density; F is

the mass force density; m is the mass moment density; v = ·
u is the velocity vector;

u is the vector of displacement; ϕϕϕ is the vector of inner rotation; t is the time; the dot
above the quantities denotes the time derivative; k = I˜·ωωω is the angular momentum;

I˜ is the microinertia tensor per unit mass; ωωω is the angular velocity vector;
2⊗ is

the inner 2-product (Nikabadze 2008a, b; Nikabadze and Ulukhanyan 2008; Vekua
1978; Nikabadze et al. 2008; Nikabadze 2009a, b, 2014a, b, c); C� is the discriminant

third-rank tensor. It should be noted that the values marked with a circle on top, refer
to the reference configuration. Note also that the superscript T in the upper right
corner of the quantities denotes transposition.

It can be seen that the Eqs. (41) and (42) have the same form, so here we deal with
the equations of the current configuration (41). It is easy to see that the equations of

3Second-rank tensors we mark from the bottom with the wave (P˜), third-rank tensors we mark
from below with the wave and hyphen (C�) and fourth-rank tensors we mark from below with two

waves (A≈).
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motion of micropolar theory (41) according to (38) can be written in the form

gP̂
M NP PM + ∂3P3 + ρF = ρ

·
v, gP̂

M NPμμμM + ∂3μμμ
3 + C�

2⊗ P˜+ ρm = ρ
·
k. (43)

Equations (43) represent the system of equations of motion of micropolar mechanics
of deformable solids under the considered parametrization of the thin body domain.
Therefore, it is advisable to call it the system of equations of motion of micropolar
mechanics of thin deformable solids.

In linear micropolar theory of elasticity, the constitutive relations (CR) in the case
of isothermal processes (Kupradze et al 1976; Pobedrya 1995) can be written in the
form (next we consider linear theory for very small u and ϕϕϕ)

P˜ = A≈
2⊗ γγγ˜ + B≈

2⊗ κκκ˜, μμμ˜ = C≈
2⊗ γγγ˜ + D≈

2⊗ κκκ˜, (44)

where γγγ˜ = ∇u − C� ·ϕϕϕ is the strain tensor;κκκ˜ = ∇ϕϕϕ is the bending-torsion tensor in

micropolar theory of elasticity (Nowacki 1970; Kupradze et al 1976); A˜̃, C˜̃ = B˜̃T ,
D˜̃ are the material tensors of the fourth rank. Taking into account the expressions for
γγγ˜ and κκκ˜, the CR (44), we can write

P˜ = A˜̃
2⊗ ∇u + B˜̃

2⊗ ∇ϕϕϕ − A˜̃
2⊗ C� ·ϕϕϕ, μμμ˜ = C˜̃

2⊗ ∇u + D˜̃
2⊗ ∇ϕϕϕ − C˜̃

2⊗ C� ·ϕϕϕ. (45)

Now it is easy to find the desired representations of the CR under the considered
parametrization of the thin body domain. Indeed, from (45) because of operator (37)
we have

P˜ = gP̂
M

A�
M · · NP u + A�

3· · ∂3u + gP̂
M

B�
M · · NPϕϕϕ + B�

3· · ∂3ϕϕϕ − A˜̃
2⊗ C� · ϕϕϕ,

μμμ˜ = gP̂
M

C�
M · · NP u + C�

3· · ∂3u + gM
P̂

D�
M · · NPϕϕϕ + D�

3· · ∂3ϕϕϕ − C˜̃
2⊗ C� · ϕϕϕ.

(46)

where we have introduced the notation

C�
m· = Ci jmnri r j rn = C˜̃

2⊗ rmE˜, A�
m· = A˜̃

2⊗ rmE˜, D�
m· = D˜̃

2⊗ rmE˜, B�
m· = B˜̃

2⊗ rmE˜.

Hence, we can represent the relations (45) as follows

P˜ = A˜̃
2⊗ r P̂∂P u + A˜̃

2⊗ r3̂∂3u + B˜̃
2⊗ r P̂∂Pϕϕϕ + B˜̃

2⊗ r3̂∂3ϕϕϕ − A˜̃
2⊗ C� · ϕϕϕ,

μμμ˜ = C˜̃
2⊗ r P̂∂P u + C˜̃

2⊗ r3̂∂3u + D˜̃
2⊗ r P̂∂Pϕϕϕ + D˜̃

2⊗ r3̂∂3ϕϕϕ − C˜̃
2⊗ C� · ϕϕϕ.

(47)
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According to (32) and (34), it is seen that Eq. (43), the CR (46) and (47) contain
an infinite number of summands. Therefore, we have not to use them in this form.
Only the relationships that are represented by a finite number of summands will be
used in the application. In this context, we introduce a definition.

Definition 15.4 Relations (equations, CR and others), which are obtained from the
corresponding representations under the considered parametrization of the thin body
domain, if in the expansion gP̂

M (see (34)) the first r + 1 terms are preserved, are
called the relations (equations, CR and others) of the r th order approximation (r th
approximation).

It should be noted that the conservation of the first r + 1 summands in the expansion
gP̂

M is equal to saving the same number of first terms in the expansion r P̂ , see (32).
Introducing the notation

g
(r)

P̂
M =

r∑
s=0

A
(s)

P
M(h̄ + x3h)s, (48)

for example, from (43) and (46), and if we replace gP̂
M to g

(r)

P̂
M , then we obtain the

equations of motion and the CR of the micropolar theory of thin elastic bodies of the
r th approximation.

g
(r)

P̂
M NP PM

(r) + ∂3P3
(r) + ρF = ρ∂2t u, g

(r)

P̂
M NPμμμM

(r) + ∂3μμμ
3
(r) + C�

2⊗ P˜(r) + ρm = J˜ · ∂2t ϕϕϕ,

P˜(r) = g
(r)

P̂
M

A�
M · · N

P
u + A�

3· · ∂3u + g
(r)

P̂
M

B�
M · · N

P
ϕϕϕ + B�

3· · ∂3ϕ
ϕϕ − A˜̃

2⊗ C� · ϕϕϕ, J˜= ρI˜,

μμμ˜(r) = g
(r)

P̂
M

C�
M · · N

P
u + C�

3· · ∂3u + g
(r)

P̂
M

D�
M · · N

P
ϕϕϕ + D�

3· · ∂3ϕ
ϕϕ − C˜̃

2⊗ C� · ϕϕϕ,

∂2t = ∂2/∂t2. (49)

It is easy to see that from (49) for r = 0 we get the equations of motion and the CR
of the zeroth approximation, and for r = ∞ we assume that g

(∞)

P̂
M

= gP̂
M .

5 Classical Theory of Elasticity in Displacements

5.1 Equations of the Classical Theory of Elasticity
in Displacements

The equations of motion in displacements of the classical theory of elasticity in the
case of a linear homogeneous isotropic material can be written in the form

L˜ · u + ρF = 000, (50)
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where we introduce the following differential tensor-operator:

L˜ = E˜Q2 + a∇∇, Q2 = μΔ − ρ∂2
t , a = λ + μ. (51)

Here E˜ is the second-rank isotropic tensor.
Let us denote the tensor operator of cofactors for the tensor-operator L˜ with L˜∗.

Then, after elementary calculations for L˜∗, we obtain the expression

L˜∗ = Q2(E˜Q1 − a∇∇), Q1 = Q2 + aΔ = (λ + 2μ)Δ − ρ∂2
t . (52)

Having the expression for L˜ and L˜∗, it is easy to prove the following relation

L˜ · L˜∗ = L˜∗ · L˜ = E˜detL˜, (53)

where the determinant detL˜ of the differential tensor operator L˜ has the expression

L ≡ |L˜| ≡ detL˜ = Q1Q2
2. (54)

Now, we introduce the differential tensor operator

N˜ = E˜Q1 − a∇∇. (55)

Then, obviously, the operator L˜∗ can be written as

L˜∗ = Q2N˜. (56)

By virtue (51) and (55), it is not difficult to prove that

L˜ · N˜ = N˜ · L˜ = E˜Q1Q2. (57)

Applying the operator L˜∗, see (52) and (56), to (50) with a single multiplication and
taking into account (53) and (54), we get

Q2
(
Q1Q2u + G

) = 0, G = N˜ · (ρF). (58)

We now seek the vector u in the form (representation of Galerkin 1930, 1931;
Iacovache 1949)

u = N˜ · v = (E˜Q1 − a∇∇) · v, (59)

where v is an arbitrary vector field. Then substituting (59) in (50) and taking into
account (57), we have

Q1Q2v + ρF = 0. (60)

Finally, applying N˜ to (50) with a single multiplication, according to (57) we have
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Q1Q2u + G = 0. (61)

Thus, we got the decomposed systems of equations of elasticity theory for a
linear elastic homogeneous material in displacements in the form of (60) and (61).
Obviously, every equation of each of these systems is of fourth order, and each of
these systems is of 12th order. Different representations of the general solution of the
Lamé’s equations can be found, for example, in Nowacki (1970), Pobedrya (1995).
It can be seen that Eq. (61) compared with Eq. (60) has an advantage. The boundary
conditions for Eq. (61) are the boundary conditions of the original problem, while the
boundary conditions for Eq. (60) become more complicated due to the introduction
of an additional vector field v.

5.2 On Boundary Conditions in the Linear Theory
of Elasticity. Stress Tensor Operator

The stress boundary conditions for a linear elastic inhomogeneous anisotropic mate-
rial in an isothermal process can be represented as

T˜ · u = P, T˜ = r j rlni C
i jkl∇k = n · C˜̃

2⊗ rkE˜∇k = n · C˜̃ · ∇, (62)

where P is a vector function given on the boundary; T˜ is a stress tensor-operator.
In the case of an isotropic body with the piecewise-plane boundary, we obtain after
simple calculations

T˜ = λn∇ + μ[E˜n · ∇ + (n∇)T ] = [λC˜̃(2) + μ(C˜̃(1) + C˜̃(3))]
2⊗ n∇,

T˜∗ = μ{−(λ + μ)n∇ + 2[(λ + μ)E˜n · ∇ − λ(n∇)T ]}n · ∇
+ λμ[(nn − E˜)Δ + ∇∇]

=
{
μ

{ − (λ + μ)C˜̃(2) + 2[(λ + μ)C˜̃(1) − λC˜̃(3)]
} 2⊗ n∇

}
n · ∇

+ λμ[(nn − E˜)Δ + ∇∇],
detT˜ = |T˜| = μ2[2(λ + μ)nn

2⊗ ∇∇ − λΔ]n · ∇.

(63)

Here T˜∗ is a tensor operator of the cofactors for T˜; detT˜ = |T˜| is a determinant
of T˜; C˜̃(i), i = 1, 2, 3, are the linearly independent isotropic fourth-rank tensors.
Applying tensor operator T˜T

∗ from left (see the corresponding formula (63) with a
single multiplication to (62), in virtue of relation T˜T

∗ · T˜ = T˜ · T˜T
∗ = E˜|T˜| we obtain

|T˜|u = T˜T
∗ · P. (64)

Thus, we got a decomposed stress boundary condition in the form (64). From the
above it can be seen that the equations in displacements and the stress boundary
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conditions of the theory of elasticity of linear elastic homogeneous body with the
piecewise-plane boundary are split (below we will always assume that the body has
a piecewise-plane boundary when it comes to splitting of the boundary conditions).

It should be noted that taking into account the representations of the nabla oper-
ator and Laplacian under the different parameterizations of the thin body domain, it
is not difficult to obtain the corresponding decomposed equations and stress bound-
ary conditions for thin bodies from the above decomposed equations and the stress
boundary conditions. For brevity, we do not consider this in detail. Below we write
down the equations for prismatic bodies of constant thickness.

5.3 Quasi-Static Problems of the Classical Theory
of Elasticity in Displacements

In the static or quasi-static case based on (61) and (64) we have the following equa-
tions and boundary conditions:

Δ2u + G = 0, |T˜|u = T˜T
∗ · P. (65)

5.4 Quasi-Static Problems of the Theory of Prismatic Bodies

Let us consider a prismatic body of constant thickness 2h. We take the middle plane
as the base plane. In this case gP̂

M = δP
M , g3

P̂
= 0, g33 = h−2, the nabla operator

(37) and the Laplacian (40) are represented in the form (Nikabadze and Ulukhanyan
2008; Nikabadze 2008a, 2014b see also)

∇̂F = (rP∂P + r3∂3)F = (rP∂P + h−1n∂3)F, −1 ≤ x3 ≤ 1,
ΔF = ∇2

F = (gP Q∂P∂Q + g33∂2
3 )F = (Δ̄ + h−2∂2

3 )F, Δ̄ = gP Q∂P∂Q .
(66)

Taking into account the representation of the Laplacian, see the third relation (66),
the equation for the prismatic bodies, see the first equality (65), can be represented
as

(Δ̄2 + 2h−2Δ̄∂2
3 + h−4∂4

3 )u + G = 0. (67)

Now, applying the kth moment operator of any system of orthogonal polynomials
(Legendre, Chebyshev)4 to Eq. (67), we obtain the following equations in moments
of displacement vector

4The theory of moments with respect to the systems of orthogonal polynomials is presented in
Nikabadze (2007a, 2008a, b, 2014b, c), Nikabadze andUlukhanyan (2008),Nikabadze et al. (2008).
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Δ̄2(k)

u + 2h−2Δ̄
(k)

u′′ + h−4(k)

u I V + (k)

G = 0, k ∈ N0 (N0 = {0, 1, 2, . . .}). (68)

It should be noted that the stress boundary conditions for the systems of equations (68)
are obtained from the second relation (65) after applying the kth moment operator
to the corresponding polynomial system. In the general case, we shall not dwell on
the boundary conditions. However, below we consider some special cases. Note also
that the decomposed equations obtained above in the case of the quasi-static problem
in the absence of body forces do not depend on material properties.

Let us now consider the system of equations in moments (68) more carefully.
From this system changing k = 1, N and neglecting the moments, order of which
is more than N , we obtain a system of equation of N th approximation. Giving N
different values (starting from zero) we obtain the systems of equations of various
approximation for prismatic bodies of constant thickness. From each of the deduced
approximate systemwe can obtain setting into it moments of the displacement vector
the equations of elliptic type (high-order), separately. Using newmethods for solving
the elliptic equations (method of (Vekua 1948)), we can write an analytical solution
for each equation. Let us write down the first few approximations of Eq. (68) when
applying Legendre polynomials.

5.5 Equations of Quasi-Static Problems of the Theory
of Prismatic Bodies

To obtain the desired systems of equations, we need to find expressions for
(k)

u′′ and
(k)

u I V when −1 ≤ x3 ≤ 1. By the definition of the kth moment of some quantities for
(k)

u′′ with respect to Legendre polynomials, we obtain (Nikabadze 2008a, b, 2014b, c)

(k)

u′′ = (k)

M(∂2
3u) = 2k + 1

2

1∫
−1

∂2
3u(x ′, x3)Pk(x3)dx3

= (2k + 1)
∞∑

p=1

p(2k + 2p + 1)
(k+2p)

u

= 2k + 1

2
{[(∂3u)+ − (−1)k(∂3u)−]Pk(1) − [(+)

u + (−1)k (−)

u ]P ′
k(1)} + (k)

u′′, (69)

where (∂3u)+ = (∂3u)
∣∣
x3=1, (∂3u)− = (∂3u)

∣∣
x3=−1, and

(k)

u′′ = (2k + 1)
∑
s=1

C1
s (2k − 2s + 1)

(k−2s)
u . (70)

Analogously to (69) and (70) for
(k)

u I V and
(k)

u I V , we have
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(k)

u I V = (k)

M(∂4
3u) = 2k + 1

2

1∫
−1

∂4
3u(x ′, x3)Pk(x3)dx3

= (2k + 1)
∞∑

s=1
C3

s+2(2k + 2s + 1)(2k + 2s + 3)(2k + 2s + 5)
(k+2s+2)

u

= 2k + 1

2
{[(∂3

3u)+ − (−1)k(∂3
3u)−]Pk(1) − [(∂2

3u)+

− (−1)k−1(∂2
3u)−]P ′

k(1) + [(∂3u)+ − (−1)k−2(∂3u)−]P ′′
k (1)

− [(+)

u + (−1)k (−)

u ]P ′′′
k (1)} + (k)

u I V
,

(71)

(k)

u I V = (2k + 1)
∑
s=1

C3
s+2(2k − 2s + 1)(2k − 2s − 1)(2k − 2s − 3)

(k−2s−2)
u , (72)

where C3
s+2 are binomial coefficients;

(k)

M is the kth moment operator.

It is seen from (69) and (71) that
(k)

u′′ and
(k)

u I V are represented as an infinite sum
of moments of displacement vector, or as the final sum of moments of displacement
vector, or as the sum of values of displacement vector and their partial derivatives
in x3 on the face surface, i.e. when x3 = −1 and x3 = 1. Therefore, taking into
account (69) and (71), from (68) we get different representations of the systems of
equations for prismatic thin bodies of constant thickness inmoments of displacement
vector with respect to the system of Legendre polynomials. In particular, the system
of equations (68) is represented by the kinematic boundary conditions on the face
surface. Consequently, the system of equations (68) can be represented with the help
of the static boundary conditions on the face surface. In fact, it is easy to show that,
based on Hooke’s law or from the boundary conditions (62) for an isotropic medium,
we obtain

(∂3u J )
± = ±1

μ

(±)

P J − ∂J
(±)

u 3, (∂3u3)
± = 1

λ + 2μ
(±(±)

P3 − λ∂K
(±)
u K ),

and from here we will have

(∂3u J )
+ ± (−1)k(∂3u J )

− = 1

μ
[(+)

P J ± (−1)k+1
(−)

P J ] − ∂J [(+)

u 3 ± (−1)k (−)

u 3],

(∂3u3)
+ ± (−1)k(∂3u3)

− = 1

λ + 2μ
[(+)

P3 ± (−1)k+1
(−)

P3]

− λ

λ + 2μ
∂K [(+)

u K ± (−1)k (−)

u K ], (73)

where
(+)

Pk and
(−)

Pk are components of the given stresses
(+)

P and
(−)

P ;
(+)

u k and
(−)

u k are

components of the given displacement vectors
(+)

u and
(−)

u on the face surface
(+)

S and
(−)

S , respectively.
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Substituting (73) into (69) and (71), then by deriving relations from (68) we obtain
the desired system of equations with allowance for static and kinematic boundary
conditions, as well as the values of the partial derivatives of second and third order
of displacement vector in x3 on the face surface. For brevity, it is not be written out.
However, we note that the meanings of expressions for the partial derivatives of the
displacement vector with respect to x3 when x3 = −1 and x3 = 1 in (69) and (71)
can be represented in terms of moments of displacement vector in the form

(∂s
3u)+ ± (−1)k(∂s

3u)− =
∞∑

n=s
[1 ± (−1)k+n−s](n)

u P (s)
n (1), s = 0, 1, 2, 3, k ∈ N0

(74)

and when writing the system of equations of N th approximation, Eq. (74) can be
replaced by the approximate relations

(∂s
3u)+ ± (−1)k(∂s

3u)− ≈
N∑

n=s
[1 ± (−1)k+n−s](n)

u P (s)
n (1), s = 0, 1, 2, 3, k = 0, N .

(75)

In this case, if we want the boundary conditions on the face surface to be reflected
in the equations, it is necessary to use relations (73) and (75) simultaneously. In
particular, if the static boundary conditions are given on the face surfaces, you must
use (73) and (75), when s = 0, 2, 3. If the kinematic boundary conditions are known
on the face surfaces, you should use relations (75), when s = 1, 2, 3. Of course, we
can consider different variants of the static and kinematic boundary conditions on the
face surface. For brevity, we will not stop on these. Below, using a simplified method
for reducing the infinite system to a finite, we obtain the system of equations of the
first few approximations of the static problem of theory of prismatic bodies with
constant thickness in moments of displacement vector with respect to the system of
Legendre polynomials.

5.5.1 Equations of Nth Approximation of the Quasi-Static Problems
of the Theory of Prismatic Bodies in Moments with Respect
to the Legendre Polynomials Without Boundary Conditions
on the Face Surface

In this case from (69) and (71) we have the following approximate relations:

(k)
u ′′ ≈ (k)

u ′′
(N )

= 2k + 1

4

N∑
p=k+2

(p − k)(p + k + 1)[1 + (−1)k+p](p)
u , 0 ≤ k ≤ N − 2;
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(k)
u

I V ≈ (k)
u

I V
(N )

= 2k + 1

2

N∑
s=k+4

b[ s−k−2
2 ](k + s − 1)(k + s + 1)(k + s + 3)[1 + (−1)k+s ](s)u (76)

with

0 ≤ k ≤ N − 4, bn = C3
n+2 = 1

3!n(n + 1)(n + 2), n ∈ N (N = {1, 2, 3, . . .}).

Here, the index [(s − k + 2)/2] denotes the integer part of the number (s − k + 2)/2.
Taking into account (76) from (68) we obtain the desired system of equations in

the form

Δ̄2(k)

u + 2h−2Δ̄
(k)

u′′
(N ) + h−4(k)

u I V

(N ) + (k)

G = 0, k = 0, N . (77)

Hence, it is easy to obtain a system of equations of any order of approximation. Let
us derive, for example, a system of equations of the fifth approximation. The first
and second approximations are given in Ulukhanyan (2010, 2011).

The system of equations of fifth (N = 5) approximation. In this case k = 0, 5 and
with (77) we obtain

Δ̄2(0)
u + 2h−2Δ̄(3

(2)
u + 10

(4)
u) + 105h−4(4)

u + (0)

G = 0,

Δ̄2(1)
u + 2h−2Δ̄(15

(3)
u + 42

(5)
u) + 945h−4(5)

u + (1)

G = 0,

Δ̄2(2)
u + 70h−2Δ̄

(4)
u + (2)

G = 0, Δ̄2(3)
u + 126h−2Δ̄

(5)
u + (3)

G = 0,

Δ̄2(4)
u + (4)

G = 0, Δ̄2(5)
u + (5)

G = 0.

(78)

Displacement vector has the form

u ≈ (0)
u + (1)

u P1(x3) + (2)
u P2(x3) + (3)

u P3(x3) + (4)
u P4(x3) + (5)

u P5(x3).

Note that the system of equations (78) decomposes into two system of equations. The
first system consists of the first, third and fifth equations of system, and the second
system consists of the second, fourth and sixth equations. Let us write down these
systems separately. We have

Δ̄2(0)
u + 2h−2Δ̄(3

(2)
u + 10

(4)
u) + 105h−4(4)

u + (0)

G = 0,

Δ̄2(2)
u + 70h−2Δ̄

(4)
u + (2)

G = 0, Δ̄2(4)
u + (4)

G = 0;
Δ̄2(1)

u + 2h−2Δ̄(15
(3)
u + 42

(5)
u) + 945h−4(5)

u + (1)

G = 0,

Δ̄2(3)
u + 126h−2Δ̄

(5)
u + (3)

G = 0, Δ̄2(5)
u + (5)

G = 0.

(79)
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Introducing the notation

L =
⎛
⎝ Δ̄2 6h−2Δ̄ 20h−2Δ̄ + 105h−4

0 Δ̄2 70h−2Δ̄

0 0 Δ̄2

⎞
⎠ , U =

⎛
⎜⎝

(0)
u
(2)
u
(4)
u

⎞
⎟⎠ , G =

⎛
⎜⎜⎝

(0)

G
(2)

G
(4)

G

⎞
⎟⎟⎠ ,

the system of the first three equations (79) can be written as a matrix equation

LU + G = 0. (80)

It is easy to calculate that the matrix of the cofactors L∗ and the determinant |L| for
differential matrix L will have the form

L∗ =
⎛
⎝ Δ̄4 0 0

6h−2Δ̄3 Δ̄4 0
20h−2Δ̄3 + 315h−4Δ̄2 −70h−2Δ̄3 Δ̄4

⎞
⎠ , |L| = Δ̄6.

It is not difficult to see that L∗ can be written as

L∗ = Δ2N , N =
⎛
⎝ Δ̄2 0 0

6h−2Δ̄ Δ̄2 0
20h−2Δ̄ + 315h−4 −70h−2Δ̄ Δ̄2

⎞
⎠ .

Applying the differential operator N T to Eq. (80) from the left, in virtue of relation
N T L = EΔ̄4, where E is the third order identity matrix, we have

Δ̄4U + N T G = 0,

and from here, obviously, we find

Δ̄4(0)
u + Δ̄2

(0)

G − 6h−2Δ̄
(2)

G − (20h−2Δ̄ + 315h−4)
(4)

G = 0,

Δ̄3(2)
u + Δ̄

(2)

G − 70h−2
(4)

G = 0, Δ̄2(4)
u + (0)

G = 0.
(81)

From (81), it can be seen thatwehavegot an eighth-order inhomogeneous equation

with respect to
(0)
u and its general solution is expressed using four analytic functions.

We have the sixth and fourth order equations with respect to
(2)
u and

(4)
u, and its general

solutions are given bymeans of three and two analytic functions, respectively (Vekua
1948). For brevity, we will not write general solution of these equations. Important
is the fact that it is possible to obtain analytical solutions. Of course, analogously to
(80) we can consider a system, consisting of the second, fourth and sixth equations
of (79), and for them to obtain the analytical solutions. Note, that the analytical
solutions can be obtained for system of equations of a higher order approximation
(see below the micropolar theory case).



340 M.U. Nikabadze and A.R. Ulukhanyan

5.5.2 Equations of Nth Approximation of the Quasi-Static Problems
of Theory of Prismatic Bodies in Moments with Respect
to the Legendre Polynomials with the Static Boundary Conditions
on the Face Surface

To get this system of equations analogously to (76) due to (75), we will present
(k)

u′′
(N )

and
(k)

u I V

(N ) (see (69) and (71)) in the form of

(k)

u′′ ≈ (k)

u′′
(N )

= 2k + 1

2

{
[(∂3u)+ − (−1)k(∂3u)−] −

N∑
n=0

[1 + (−1)k+n](n)

u P ′
n(1)

}
+ (k)

u′′
(N ),

(k)

u I V ≈ (k)

u I V

(N )

= 2k + 1

2

{ N∑
n=3

[1 + (−1)k+n](n)

u P (3)
n (1) −

N∑
n=2

[1 + (−1)k+n](n)

u P (2)
n (1)P ′

k(1)

+[(∂3u)+ − (−1)k(∂3u)−]P ′′
k (1) −

N∑
n=0

[1 + (−1)k+n](n)

u P (3)
n (1)

}
+ (k)

u I V

(N ).

(82)
It is easy to see that based on (82) we get

2h−2Δ̄
(k)

u′′
(N ) + h−4(k)

u I V

(N ) = 2h−2Δ̄
(k)

u′′
(N ) + h−4(k)

u I V

(N )

−2k + 1

2

{ N∑
n=0

2h−2P ′
k(1)[1 + (−1)k+n]Δ̄(n)

u +
1∑

n=0

P ′′′
k (1)[1 + (−1)k+n](n)

u (83)

+ [P ′′
2 (1)P ′

k(1) + P ′′′
k (1)][1 + (−1)k](2)

u

+
N∑

n=3

[P ′′
n (1)P ′

k(1) − P ′′′
k (1) − P ′′′

n (1)][1 + (−1)k+n](n)

u
}

+ 2k + 1

2
[2h−2Δ̄ + h−4P ′′

k (1)][(∂3u)+ − (−1)k(∂3u)−].

From (73) using (75) when s = 0, we have

(∂3u)+ ± (−1)k(∂3u)−]
= 1

μ
[(+)

P J ± (−1)k+1
(−)

P J ]eJ + 1

λ + 2μ
[(+)

P3 ± (−1)k+1
(−)

P3]n

−
N∑

n=0
[1 ± (−1)k+n]∂J

(n)

u3eJ − λ

λ + 2μ

N∑
n=0

[1 ± (−1)k+n]∂L
(n)

uLn.

(84)

Taking into account (84) in (83), and then substituting the relation into (77), we
obtain the desired system of equations. For brevity, we will not reproduce it. From
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(83) and (84) it is seen that the system of equation with the boundary conditions on
the face surfaces is rather cumbersome. Generally speaking, to deal with the system
of equations with the boundary conditions is a much more difficult problem than the
system of equations without them. However, this problem can be a little simplified.

In fact, in this case due to (84) it is better to express the
(k)

u′′
(N ) (see the first formula

(82)) through the boundary conditions on the front surface, and for
(k)

u I V

(N ) to use the
second formula (76). Note that when applying the system of Chebyshev polynomials,
we obtain analogous to (78) and (79) equations under any parametrization of the
thin body domain. The difference is only in the coefficients (Nikabadze 2008a, b,
2014b, c).

6 Micropolar Theory of Elasticity in Displacements
and Rotations

6.1 Equations of Motion of 3D Micropolar Theory
of Elasticity in Displacements and Rotation Vectors

Let us consider the micropolar material with a center of symmetry. In this case
C˜̃T = B˜̃ = 0 and constitutive relations (44) will get the form

P˜ = A˜̃
2⊗ γγγ˜, μμμ˜ = D˜̃

2⊗ κκκ˜ (γγγ˜ = ∇u − C� · ϕϕϕ, κκκ˜ = ∇ϕϕϕ). (85)

Taking into account (85), from the Eq. (41) after simple transformations we obtain

A˜(1) · u + A˜(2) · ϕϕϕ + ρF = 0, A˜(3) · u + A˜(4) · ϕϕϕ + ρm = 0, (86)

where for differential tensor operators A˜(k), k = 1, 2, 3, 4, we have the following
expression:

A˜(1) = r j rl(Ai jkl∇i∇k + ∇i Ai jkl∇k) − E˜ρ∂2
t ,

A˜(2) = −r j rmCmkl(Akli j∇i + ∇i Akli j ),

A˜(3) = rmr j Cmkl Akli j∇i ,

A˜(4) = r j rl(Di jkl∇i∇k + ∇i Di jkl∇k) − C�
2⊗ A˜̃

2⊗ C� − J˜∂2
t .

If we introduce the matrix differential tensor operator and vector-columns

M˜ =
(

A˜(1) A˜(2)

A˜(3) A˜(4)

)
, U =

(
u
ϕϕϕ

)
, X =

(
ρF
ρm

)
, (87)
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then Eq. (86) can be shortly represented as follows:

M˜ · U + X = 000. (88)

In case of homogeneous isotropic material, the equations of motion in displace-
ment and rotation vectors have the form (Kupradze et al 1976;Nowacki 1970;Eringen
1999)

(μ + α)Δu + (λ + μ − α)graddivu + 2α rotϕϕϕ + ρF = ρ∂2
t u,

(δ + β)Δϕϕϕ + (γ + δ − β)graddivϕϕϕ + 2α rotu − 4αϕϕϕ + ρm = J˜ · ∂2
t ϕϕϕ,

(89)

and the differential tensor operators A˜(k), k = 1, 2, 3, 4, are represented as

A˜ ≡ A˜(1) = E˜Q2 + d∇∇,

B˜ ≡ A˜(2) = A˜(3) = −2αC� · ∇,

C˜ ≡ A˜(4) = E˜Q4 + m∇∇,

(90)

d = λ + μ − α, l = 4α, b = μ + α, g = δ + β, m = γ + δ − β,

J˜= JE˜, J = ρ I,

Q2 = b�2 = bΔ − ρ∂2
t , �2 = Δ − ρ

b
∂2

t ,

Q4 = g�4 = gΔ − l − J∂2
t , �4 = Δ − l

g
− J

g
∂2

t .

(91)

Note that besides the operators indicated in (91), operators

Q1 = Q2 + dΔ = (b + d)�1, Q3 = Q4 + mΔ = (g + m)�3,

�1 = Δ − ρ

b + d
∂2

t , �3 = Δ − l

g + m
− J

g + m
∂2

t .
(92)

are introduced in consideration. It is seen that for a homogeneous isotropic body the
system of equations (86) has a form

A˜ · u + B˜ · ϕϕϕ + ρF = 0, B˜ · u + C˜ · ϕϕϕ + ρm = 0, (93)

A˜ = E˜Q2 + d∇∇, B˜ = −2αC� · ∇, C˜ = E˜Q4 + m∇∇.

It is easy to prove that the operators A˜, B˜, C˜ commute in pairs with respect to a single
multiplication, i.e. A˜ · B˜ = B˜ · A˜, A˜ · C˜ = C˜ · A˜, B˜ · C˜ = C˜ · B˜.Starting from (93), we obtain the equations with respect to the vectors u and ϕϕϕ

separately. Therefore, we apply the operator B˜ to the first equation (93) with the
following single multiplication, and we apply the operator A˜ to the second equation.
As a result, we find
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(B˜ ·A˜) ·u + (B˜ ·B˜) ·ϕϕϕ +B˜ · (ρF) = 0, (A˜ ·B˜) ·u + (A˜ ·C˜) ·ϕϕϕ +A˜ · (ρm) = 0. (94)

Taking into account the commutativity of operators A˜ and B˜ and subtracting the
second equation from the first, we obtain

(A˜ · C˜ − B˜2) · ϕϕϕ + A˜ · (ρm) − B˜ · (ρF) = 0. (95)

Nowwe apply the operator C˜ to the first equation (93) with the single multiplication,
and we apply the operator B˜ to the second equation. Obviously, we have

(C˜ · A˜) · u + (C˜ · B˜) · ϕϕϕ + C˜ · (ρF) = 0,
(B˜ · B˜) · u + (B˜ · C˜) · ϕϕϕ + B˜ · (ρm) = 0.

(96)

Taking into account the communicative property of operators A˜ and C˜, as well as B˜and C˜, with respect to a single multiplication and subtracting the second equation
from the first, we obtain the equation

(A˜ · C˜ − B˜2) · u + C˜ · (ρF) − B˜ · (ρm) = 0. (97)

Introducing the notation D˜ = A˜ · C˜ − B˜2, Eqs. (95) and (97) can be written as

D˜ · u + C˜ · (ρF) − B˜ · (ρm) = 0, D˜ · ϕϕϕ + A˜ · (ρm) − B˜ · (ρF) = 0. (98)

Then after some simple calculations we find

A˜ · C˜ = E˜Q2Q4 + (m Q1 + d Q4)∇∇, B˜2 = −4α2(E˜Δ − ∇∇),

D˜ = E˜(Q2Q4 + 4α2Δ) + (m Q1 + d Q4 − 4α2)∇∇,

D˜∗ = (Q2Q4 + 4α2Δ)[E˜Q1Q3 − (m Q1 + d Q4 − 4α2)∇∇],
|D˜| = Q1Q3(Q2Q4 + 4α2Δ)2, D˜ · D˜∗ = D˜∗ · D˜ = E˜|D˜| (D˜T

∗ = D˜∗),

(99)

where D˜∗ is the differential tensor- operator of the cofactors to the operator D˜. Let
us introduce the differential tensor operator

N˜ = E˜Q1Q3 − (m Q1 + d Q4 − 4α2)∇∇. (100)

Then, with (99) and (100) we have

D˜∗ = (Q2Q4 + 4α2Δ)N˜,

D˜ · N˜ = N˜ · D˜ = E˜Q1Q3(Q2Q4 + 4α2Δ),

N˜ · B˜ = −B˜ · N˜ = −2αQ1Q3C� · ∇,

N˜ · C˜ = C˜ · N˜ = Q3[E˜Q1Q4 − (d Q4 − 4α2)∇∇],
N˜ · A˜ = A˜ · N˜ = Q1[E˜Q2Q3 − (m Q2 − 4α2)∇∇].

(101)
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If we look for the solution of the Eq. (98) as (analog to Galerkin)

u = N˜ · v, ϕϕϕ = N˜ · ψψψ, (102)

then taking into account the corresponding relations (99) and (101), due to (100)
from Eq. (98), we obtain the following equations with respect to v andψψψ separately:

Q1Q3(Q2Q4 + 4α2Δ)v + (E˜Q4 + m∇∇) · (ρF) + 2α(C� · ∇) · (ρm) = 0,
Q1Q3(Q2Q4 + 4α2Δ)ψψψ + (E˜Q2 + d∇∇) · (ρm) + 2α(C� · ∇) · (ρF) = 0.

(103)

Now applying the tensor operator N˜ to the Eq. (98) with the following single multi-
plication and taking into account (101) we obtain

Q3{Q1[(Q2Q4 + 4α2Δ)u + 2α(C� · ∇) · (ρm)]
+ [E˜Q1Q4 − (d Q4 − 4α2)∇∇] · (ρF)} = 0,

Q1{Q3[(Q2Q4 + 4α2Δ)ϕϕϕ + 2α(C� · ∇) · (ρF)]
+ [E˜Q2Q3 − (m Q2 − 4α2)∇∇] · (ρm)} = 0.

(104)

Consider now the equations of a micropolar homogeneous isotropic medium in
the form (88). Denote by

M˜∗ =
(

Â B̂(1)

B̂(2) Ĉ

)
(105)

the matrix differential tensor operator of the cofactors to the differential operator M˜of Eq. (88). After simple, but very cumbersome computations we get

Â = Q3(Q2Q4 + 4α2Δ)[E˜Q1Q4 − (d Q4 − 4α2)∇∇] (ÂT = Â),

B̂ = B̂(1) = B̂(2) = −2αQ1Q3(Q2Q4 + 4α2Δ)C� · ∇) (B̂T = −B̂),

Ĉ = Q1(Q2Q4 + 4α2Δ)[EQ2Q3 − (m Q2 − 4α2)∇∇] (ĈT = Ĉ).

(106)

Note that the expression for the cofactors of the elements of the determinant of the
matrix differential operator of the homogeneous equation of stationary oscillations of
micropolar theory of elasticity are given in Kupradze et al (1976), which are obtained
from the expressions for the differential tensor-operators components (106), if we
replace the second time derivative (∂2

t ) by the square of the oscillation frequency
(σ 2).

Let us introduce the matrix differential tensor operators (differential tensor block
matrices)

N˜(1) =
(

R˜ S˜(2)

S˜(1) T˜
)

, N˜(2) =
(

R˜ S˜(1)

S˜(2) T˜
)

, (107)

R˜ = E˜Q1Q4 − (d Q4 − 4α2)∇∇, S˜(1) = Q3B˜, S˜(2) = Q1B˜,

B˜ = −2αC� · ∇, T˜ = E˜Q2Q3 − (m Q2 − 4α2)∇∇.
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Then, obviously,

N˜(1)T =
(

R˜ −S˜(1)

−S˜(2) T˜
)

, N˜(2)T =
(

R˜ −S˜(2)

−S˜(1) T˜
)

. (108)

If we will search for the solution of the Eq. (88) as (analog of Galerkin)

U = N˜(1)T · V, U =
(

u
ϕϕϕ

)
, V =

(
v
ψψψ

)
, (109)

then we get the following equations:

Q1(Q2Q4 + 4α2Δ)v + ρF = 0, Q3(Q2Q4 + 4α2Δ)ψψψ + ρm = 0. (110)

If we apply the operator N˜(2)T from the left to Eq. (88) with the single multiplication
then we have equations

Q1[(Q2Q4 + 4α2Δ)u + 2α(C� · ∇) · (ρm)]
+ [E˜Q1Q4 − (d Q4 − 4α2)∇∇] · (ρF) = 0,
Q3[(Q2Q4 + 4α2Δ)ϕϕϕ + 2α(C� · ∇) · (ρF)]
+ [E˜Q2Q3 − (m Q2 − 4α2)∇∇] · (ρm) = 0.

(111)

We see that when α = 0, i.e. in the case of a reduced medium, from the first equation
(111) follows the classical equation (61), and the second equation has a similar view.
Furthermore, it is clear that if we have Eq. (111), then the Eq. (104) are also valid.

Note that similar equations were obtained in Sandru (1966). Similar equations
in another way were obtained by Nowacki (1970). Finally, Sandru and Nowacki
gave the same representations of the displacement and rotation vectors and they are
reduced to (109). Aero and Kuvshinskii (1964) deserve great attention because the
system of equilibrium equations for the isotropic elastic body without a center of
symmetry and in the absence of mass loads is decomposed into two independent
systems of equations.

Note that Eq. (111) have an advantage comparedwith Eq. (110), because the stress
boundary conditions for Eq. (111) are the boundary conditions of the initial-boundary
value problem. The boundary conditions for Eq. (110) have more complex expres-
sions with respect to the introduced vector fields v andψψψ . Note also that the equations
can be split if the material does not have a center of symmetry (Nikabadze 2008b,
2014b, c). For brevity, we do not consider this in detail.

6.2 On Stress Boundary Conditions. Tensor Operators
of Stress and Couple Stress

The boundary conditions for a linear elastic inhomogeneous anisotropic body with
no symmetry center in an isothermal process can be represented as
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T˜(1) · u + T˜(2) · ϕϕϕ = P(n), T˜(3) · u + T˜(4) · ϕϕϕ = μμμ(n), (112)

where we have introduced the following differential operators:

T˜(1) = r j rlni Ai jkl∇k, T˜(2) = r j rlni Bi jkl∇k − n · A˜̃
2⊗ C�,

T˜(3) = r j rlni Ci jkl∇k, T˜(4) = r j rlni Di jkl∇k − n · C˜̃
2⊗ C� .

(113)

Let us introduce the matrix differential tensor operator (tensor operator of stress and
couple stress) and the vector columns:

T˜ =
(

T˜(1) T˜(2)

T˜(3) T˜(4)

)
, U =

(
u
ϕϕϕ

)
, Q(n) =

(
P(n)

μμμ(n)

)
. (114)

Then, the boundary conditions can be represented in form

(
T˜(1) T˜(2)

T˜(3) T˜(4)

)
·
(

u
ϕϕϕ

)
=

(
P(n)

μμμ(n)

)
or shortly T˜ · U = Q(n). (115)

In case of isotropic material with no symmetry center, we have

T˜(1) = a2E˜n ·∇ + a1n∇ + a3(n∇)T ,

T˜(2) = b2E˜n ·∇ + b1n∇ + b3(n∇)T − (a2 − a3)n · C�,

T˜(3) = b2E˜n ·∇ + b1n∇ + b3(n∇)T ,

T˜(4) = d2E˜n ·∇ + d1n∇ + d3(n∇)T − (b2 − b3)n · C� .

(116)

Let us introduce also the differential tensor operator

T˜
′(4) = d2E˜n · ∇ + d1n∇ + d3(n∇)T . (117)

It is easy to see that

T˜(2) = T˜(3) − (a2 − a3)n · C�, T˜(4) = T˜
′(4) − (b2 − b3)n · C� . (118)

We assume that the body has a piecewise-plane boundary. Then, denoting by T˜(1)
∗ ,

|T˜(1)|, T˜(3)
∗ , |T˜(3)|, T˜

′(4)
∗ , |T˜

′(4)| the differential tensor-operators of cofactors and
the determinants of tensor operators T˜(1), T˜(3) and T˜

′(4) respectively, after some
calculations we get
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T˜(1)
∗ = [(a1 + a2)(a2 + a3)E˜n · ∇ − a3(a1 + a2)n∇

− a1(a2 + a3)(n∇)T ]n · ∇ + a1a3[∇∇ + (nn − E˜)Δ],
|T˜(1)| = a2[(a1 + a2)(a2 + a3)nnn

3⊗∇∇∇ − a1a3Δn · ∇]
= a2[(a1 + a2)(a2 + a3)nn

2⊗∇∇ − a1a3Δ]n · ∇,

T˜(3)
∗ = [(b1 + b2)(b2 + b3)E˜n · ∇ − b3(b1 + b2)n∇

− b1(b2 + b3)(n∇)T ]n · ∇ + b1b3[∇∇ + (nn − E˜)Δ],
|T˜(3)| = b2[(b1 + b2)(b2 + b3)nn

2⊗∇∇ − b1b3Δ]n · ∇,

T˜
′(4)
∗ = [(d1 + d2)(d2 + d3)E˜n · ∇ − d3(d1 + d2)n∇

− d1(d2 + d3)(n∇)T ]n · ∇ + d1d3[∇∇ + (nn − E˜)Δ],
|T˜

′(4)| = d2[(d1 + d2)(d2 + d3)nn
2⊗∇∇ − d1d3Δ]n · ∇.

(119)

Note that we want to decompose the boundary conditions, i.e. we want to get the
boundary conditions for u and ϕϕϕ separately. For brevity, we consider the case when
b2 = b3, a2 = a3. Then T˜(2) = T˜(3), T˜(4) = T˜

′(4) and the boundary conditions (115)
can be written as

T˜(1) · u + T˜(3) · ϕϕϕ = P(n), T˜(3) · u + T˜
′(4) · ϕϕϕ = μμμ(n). (120)

In this case it is easy to obtain the boundary conditions with respect to u and ϕϕϕ

separately. Indeed, applying the operator |T˜(3)|T˜(1)
∗ T to the first relation (120) with a

single multiplication, and the operator |T˜(1)|T˜(3)
∗ T to the second relation and taking

into account
T˜(1)

∗
T · T˜(1) = E˜|T˜(1)|, T˜(3)

∗
T · T˜(3) = E˜|T˜(3)|,

and then subtracting the second relation from the first obtained relation, we have

(|T˜(3)|T˜(1)
∗ T · T˜(3) − |T˜(1)|T˜(3)

∗ T · T˜′(4)) · ϕϕϕ = |T˜(3)|T˜(1)
∗ T · P(n) − |T˜(1)|T˜(3)

∗ T · μμμ(n).

(121)

Analogous to (121), applying the operator |T˜′(4)|T˜(3)
∗ T to Eq. (120)1 with a single

multiplication, and the operator |T˜(3)|T˜′(4)∗ T to the second relation and taking into
account

T˜(3)
∗ T · T˜(3) = E˜|T˜(3)|, T˜′(4)∗ T · T˜′(4) = E˜|T˜′(4)|,

and then subtracting the second relation from the first obtained relation, we have

(|T˜′(4)|T˜(3)
∗

T · T˜(1) − |T˜(3)|T˜′(4)
∗

T · T˜(3)
) · u = |T˜′(4)|T˜(3)

∗
T · P(n) − |T˜(3)|T˜′(4)

∗
T ·μμμ(n).

(122)
The relations (121) and (122) are the desired boundary conditions.

Note that the boundary conditions can be decomposed in a more general case. For
brevity, we will not stop on t. Next, we note only that the boundary conditions are
relatively easy to split in the following cases:
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(1) a2 = a3,
(2) b2 = b3,
(3) d2 = d3,

(4)
(
T˜(1) · T˜(3) = T˜(3) · T˜(1)

) ⇔
(

ξ = a1

a3
= b1

b3

)
,

(5)
(

T˜(1) · T˜
′(4) = T˜

′(4) · T˜(1)
)
⇔

(
η = a1

a3
= d1

d3

)
,

(6)
(

T˜(1) · T˜
′(4) = T˜

′(4) · T˜(1)
)
⇔

(
ζ = b1

b3
= d1

d3

)
,

(7)
(

T˜(1), T˜(3), T˜
′(4) commute in pairs

)
⇔

(
ξ = a1

a3
= b1

b3
= d1

d3

)
,

(8) for materials with a center of symmetry, including the reduced media. In this
case for unreduced media T˜(2) = (a3−a2)n ·C� , T˜(3) = 0 and the tensor operator
of stress and couple stress is a differential triangular tensor block matrix and it
is easy to dismember the boundary conditions.

For the reduced medium T˜(2) = 0 (a2 = a3), T˜(3) = 0 and the tensor operator of
stress and of couple stress is a differential tensor block diagonal matrix. This matrix
can be easily inverted. Therefore it is easy to dismember the boundary conditions.

Let the second, third and seventh conditions be fulfilled simultaneously, i.e.

a2 = a3, b2 = b3, d2 = d3, ξ = a1

a3
= b1

b3
= d1

d3
, (123)

Taking into account (123), operators (116) will take the form

T˜(1) = a2[E˜n · ∇ + ξn∇ + (n∇)T ],
T˜(2) = T˜(3) = b2[E˜n · ∇ + ξn∇ + (n∇)T ],
T˜(4) = d2[E˜n · ∇ + ξn∇ + (n∇)T ].

(124)

Introducing the notation

T˜ = (
C˜̃(1) + ξC˜̃(2) + C˜̃(3)

) 2⊗ n∇ = [E˜n · ∇ + ξn∇ + (n∇)T ], (125)

the differential tensor-operators (124) can be written as

T˜(1) = a2T˜, T˜(2) = T˜(3) = b2T˜, T˜(4) = d2T˜, (126)

and the boundary conditions (120) can be written as

a2T˜ · u + b2T˜ · ϕϕϕ = P(n), b2T˜ · u + d2T˜ · ϕϕϕ = μμμ(n). (127)
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It is easy to find an expression for T˜∗ and |T˜|. They have the form

T˜∗ = [2(1 + ξ)E˜n · ∇ − (1 + ξ)n∇ − 2ξ(n∇)T ]n · ∇ + ξ [∇∇ + (nn − E˜)Δ],
|T˜| = [2(1 + ξ)nn

2⊗∇∇ − ξΔ]n · ∇.

(128)

Assuming that a2d2 −b2
2 �= 0 and solving the system of equations (127) with respect

to T˜ · u and T˜ · ϕϕϕ, we obtain

T˜ · u = (a2d2 − b2
2)

−1(d2P(n) − b2μμμ(n)),

T˜ · ϕϕϕ = (a2d2 − b2
2)

−1(a2μμμ(n) − b2P(n)).
(129)

Multiplying each Eq. (129) from the left by T˜T
∗ (T˜T

∗ · T˜ = E˜|T˜|), we have

|T˜|u = (a2d2 − b2
2)

−1T˜T
∗ · (d2P(n) − b2μμμ(n)),

|T˜|ϕϕϕ = (a2d2 − b2
2)

−1T˜T
∗ · (a2μμμ(n) − b2P(n)).

6.3 Quasi-Static Problems of Micropolar Elasticity Theory
in Displacements and Rotations

For brevity, we consider the material with a center of symmetry. Then, in the case of
quasi-static, for example, from (111) we have the equations

Q∗
1(Q∗

2Q∗
4 + 4α2Δ)u + S∗ = 0, Q∗

3(Q∗
2Q∗

4 + 4α2Δ)ϕϕϕ + H∗ = 0, (130)

where we have introduced the following notations:

S∗ = 2αQ∗
1(C� · ∇) · (ρm) + [E˜Q∗

1Q∗
4 − (d Q∗

4 − 4α2)∇∇] · (ρF),

H∗ = 2αQ∗
3(C� · ∇) · (ρF) + [E˜Q∗

2Q∗
3 − (m Q∗

2 − 4α2)∇∇] · (ρm),

Q∗
1 = (b + d)Δ, Q∗

2 = bΔ, Q∗
3 = (g + m)Δ − l, Q∗

4 = gΔ − l,
d = λ + μ − α, l = 4α, b = μ + α, m = γ + δ − β, g = δ + β.

(131)
Next, by notations (131), the Eq. (130) can be written as

[(λ + 2μ)(μ + α)(δ + β)Δ3 − 4αμ(λ + 2μ)Δ2]u + S∗ = 0,{
(γ + 2δ)(μ + α)(δ + β)Δ3 − 4α[μ(γ + 2δ) + (μ + α)(δ + β)]Δ2

+16α2μΔ
}
ϕϕϕ + H∗ = 0.

(132)

It is easy to see that when α = 0, i.e. in the case of the reduced medium, from (130)
(or from (132)) we obtain the following equation:
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Δ2u + G = 0, Δ2ϕϕϕ + H = 0, (133)

where we have introduced the notations

G = 1

μ(λ + 2μ)
[E˜(λ + 2μ)Δ − (λ + μ)∇∇] · (ρF),

H = 1

(δ + β)(γ + 2δ)
[E˜(γ + 2δ)Δ − (γ + δ − β)∇∇] · (ρm).

(134)

Note that the first equation (133) is the classical equation and the second equation
has a similar form. The difference is only in the coefficients. So, since we can find an
analytical solution of the classical equation (see the above cases of prismatic bodies),
then we can also find the analytical solutions of the Eq. (133) for the reducedmedium
because in this case they are written out by analogy. However, we note that in case
of absence of volume loads the equations of reduced medium do not depend on the
properties of the material (although their dependence on the material constants in
the case of presence of volume loads, is not difficult). This fact suggests that these
equations can be used to identify the material constants of the reduced medium. To
solve this problem, most likely, it is sufficient to write the general solution of these
equations, and then consider suitable simple boundary value problems. Moreover,
it is possible to experiment on suitable samples made from any material, which is
convenient in terms of experimentation.

6.4 Prismatic Bodies with Constant Thickness
in Displacements and Rotations and in Moments
of Displacement and Rotation Vectors

Consider a prismatic body with constant thickness 2h. As a base plane, as above, we
take the median plane. Then, using the representation of Laplacian (see the second
formula (66)) for Δ2 and Δ3, we have the expression

Δ2 = Δ̄2 + 2h−2Δ̄∂2
3 + h−4∂4

3 , Δ̄ = gP Q∂P∂Q,

Δ3 = Δ̄3 + 3h−2Δ̄2∂2
3 + 3h−4Δ̄∂4

3 + h−6∂6
3 .

By virtue of the latest formulas and representation of Laplacian (see the second
formula (66)), Eq. (132) for the theory of prismatic bodies of constant thickness in
displacements and rotations can be written as

[Δ̄3 + AΔ̄2 + h−2(3Δ̄ + 2A)Δ̄∂23 + h−4(3Δ̄ + A)∂43 + h−6∂63 ]u + S∗∗ = 0,
[Δ̄3 + (BΔ̄ + A)Δ̄ + h−2[(3Δ̄ + 2B)Δ̄ + C]∂23 + h−4(3Δ̄ + B)∂43 + h−6∂63 ]ϕϕϕ

+H∗∗ = 0;
(135)
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S∗∗ = S∗

(λ + 2μ)(μ + α)(δ + β)
, H∗∗ = H∗

(γ + 2δ)(μ + α)(δ + β)
,

A = − 4αμ

(μ + α)(δ + β)
,

B = −4α[μ(γ + 2δ) + (μ + α)(δ + β)]
(γ + 2δ)(μ + α)(δ + β)

, C = 16α2μ

(γ + 2δ)(μ + α)(δ + β)
.

(136)
Applying the kth moment operator of any system of orthogonal polynomials

(Legendre, Chebyshev) to Eq. (135), we find the following equations in moments of
displacement and rotation vectors for the micropolar theory of prismatic bodies with
constant thickness:

[Δ̄3 + (BΔ̄ + A)Δ̄](k)

ϕϕϕ + h−2[(3Δ̄ + 2B)Δ̄ + C](k)

ϕϕϕ ′′ + h−4(3Δ̄ + B)
(k)

ϕϕϕ I V + h−6(k)

ϕϕϕV I

+ (k)

H∗∗ = 0,

[Δ̄3 + AΔ̄2](k)

u + h−2(3Δ̄ + 2A)Δ̄
(k)

u′′ + h−4(3Δ̄ + A)
(k)

u I V + h−6(k)

uV I + (k)

S∗∗ = 0,
k ∈N0.

(137)
Having Eq. (137), we can easily obtain the system of equations for various approx-

imations. From the structure of Eq. (137), it can be seen that the first equation can
be considered absolutely similar to the second. Therefore, for brevity we consider
only the second equation (137), from which we obtain a system of equations of the
eighth approximation. Then, from the obtained equations we derive equations for
each moment of the displacement vector separately (from the zeroth to the eighth
order).

Assuming that the moments in (137) are considered with respect to a system
of Legendre polynomials, by (69), (71) and the formula (see Nikabadze 2008a, b,
2014b, c)

(n)

uV I
(x ′) = (2n + 1)

∞∑
k=1

C5
k+4

5∏
s=1

(2n + 2k + 2s − 1)
(n+2k+4)

u , n ∈N0, (138)

say, from the second equation (137)we have a system of equations of eighth (N = 8)
approximation, splitting into two systems

L(α)U(α) + ΦΦΦ(α) = O(α), α = 1, 2. (139)

Here, we have introduced the following notation:
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U(1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

(0)
u
(2)
u
(4)
u
(6)
u
(8)
u

⎞
⎟⎟⎟⎟⎟⎟⎠

, U(2) =

⎛
⎜⎜⎜⎜⎝

(1)
u
(3)
u
(5)
u
(7)
u

⎞
⎟⎟⎟⎟⎠, ΦΦΦ(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(0)

S∗∗
(2)

S∗∗
(4)

S∗∗
(6)

S∗∗
(8)

S∗∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ΦΦΦ(2) =

⎛
⎜⎜⎜⎜⎜⎝

(1)

S∗∗
(3)

S∗∗
(5)

S∗∗
(7)

S∗∗

⎞
⎟⎟⎟⎟⎟⎠

,

O(1) =

⎛
⎜⎜⎜⎜⎝

0
0
0
0
0

⎞
⎟⎟⎟⎟⎠, O(2) =

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠,

L(1) =

⎛
⎜⎜⎜⎜⎜⎝

L(1)
11 L(1)

12 L(1)
13 L(1)

14 L(1)
15

0 L(1)
22 L(1)

23 L(1)
24 L(1)

25

0 0 L(1)
33 L(1)

34 L(1)
35

0 0 0 L(1)
44 L(1)

45

0 0 0 0 L(1)
55

⎞
⎟⎟⎟⎟⎟⎠

,

L(1)
11 = Δ̄3 + AΔ̄2, L(1)

12 = a03Δ̄
2 + a04Δ̄, L(1)

13 = a05Δ̄
2 + a06Δ̄ + a07,

L(1)
14 = a08Δ̄

2 + a09Δ̄ + a010, L(1)
15 = a011Δ̄

2 + a012Δ̄ + a013, L(1)
22 = Δ̄3 + AΔ̄2,

L(1)
23 = a26Δ̄

2 + a27Δ̄, L(1)
24 = a28Δ̄

2 + a29Δ̄ + a210,

L(1)
25 = a211Δ̄

2 + a212Δ̄ + a213, L(1)
33 = Δ̄3 + AΔ̄2, L(1)

34 = a49Δ̄
2 + a410Δ̄,

L(1)
35 = a411Δ̄

2 + a412Δ̄ + a413, L(1)
44 = Δ̄3 + AΔ̄2,

L(1)
45 = a612Δ̄

2 + a613Δ̄, L(1)
55 = Δ̄3 + AΔ̄2;

a03 = 9h−2, a04 = 6Ah−2, a05 = 30h−2, a06 = 20Ah−2 + 315h−4,

a07 = 105Ah−4, a08 = 63h−2, a09 = 42Ah−2 + 3780h−4,

a010 = 1260Ah−4 + 10395h−6, a011 = 108h−2,

a012 = 72Ah−2 + 20790h−4, a013 = 6930Ah−4 + 270270h−6, a26 = 105h−2,

a27 = 70Ah−2, a28 = 270h−2, a29 = 180Ah−2 + 10395h−4, a210 = 3465Ah−4,

a211 = 495h−2, a212 = 330Ah−2 + 77220h−4,

a213 = 25740Ah−4 + 675675h−6,

a49 = 297h−2, a410 = 198Ah−2, a411 = 702h−2,

a412 = 468Ah−2 + 57915h−4,

a413 = 19305Ah−4, a612 = 585h−2, a613 = 390Ah−2;

L(2) =

⎛
⎜⎜⎝
Δ̄3 + AΔ̄2 a13Δ̄

2 + a14Δ̄ a15Δ̄
2 + a16Δ̄ + a17 a18Δ̄

2 + a19Δ̄ + a110

0 Δ̄3 + AΔ̄2 a36Δ̄
2 + a37Δ̄ a38Δ̄

2 + a39Δ̄ + a310

0 0 Δ̄3 + AΔ̄2 a59Δ̄
2 + a510Δ̄

0 0 0 Δ̄3 + AΔ̄2

⎞
⎟⎟⎠ ,
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a13 = 45h−2, a14 = 30Ah−2, a15 = 126h−2, a16 = 84Ah−2 + 2835h−4,

a17 = 945Ah−4, a18 = 243h−2, a19 = 162Ah−2 + 24948h−4,

a110 = 8316Ah−4 + 135135h−6, a36 = 189h−2, a37 = 126Ah−2, a38 = 462h−2,

a39 = 308Ah−2 + 27027h−4, a310 = 9009Ah−4, a59 = 429h−2,

a510 = 286Ah−2;

0 is a three-component zero vector.
The displacement vector has the following expression

u ≈ (0)
u + (1)

u P1(x3) + (2)
u P2(x3) + (3)

u P3(x3) + (4)
u P4(x3) + (5)

u P5(x3) + (6)
u P6(x3)

+ (7)
u P7(x3) + (8)

u P8(x3).

It is seen that the matrices L(α), α = 1, 2, are the upper triangular differen-
tial matrix operators and their determinants |L(α)|, α = 1, 2, have the following
expressions

|L(1)| = Δ̄10(Δ̄ + A)5, |L(2)| = Δ̄8(Δ̄ + A)4. (140)

From (140) it is clear that |L(α)|, α = 1, 2, are different from zero. Therefore, we
can find their cofactors L(α)∗ , α = 1, 2. Indeed, by simple calculations we have

L(1)∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

L(1)
∗11 L(1)

∗12 L(1)
∗13 L(1)

∗14 L(1)
∗15

0 L(1)
∗22 L(1)

∗23 L(1)
∗24 L(1)

∗25
0 0 L(1)

∗33 L(1)
∗34 L(1)

∗35
0 0 0 L(1)

∗44 L(1)
∗45

0 0 0 0 L(1)
∗55

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

L(1)
∗11 = L(1)

∗22 = L(1)
∗33 = L(1)

∗44 = L(1)
∗55 = Δ12 + 4AΔ11 + 6A2Δ10 + 4A3Δ9 + A4Δ8,

L(1)
∗12 = −9/h2Δ11 − 33A/h2Δ10 − 45A2/h2Δ9 − 27A3/h2Δ8 − 6A4/h2Δ7,

L(1)
∗13 = −30/h2Δ11 + a1/h4Δ10 + a2A/h4Δ9 + a3A2/h4Δ8 + a4A3/h4Δ7

+ a5A4/h4Δ6,

L(1)
∗14 = −63/h2Δ11 + a6/h4Δ10 + a7/h6Δ9 + a8A/h6Δ8 + a9A2/h6Δ7

+ a10A3/h6Δ6 + a11A4/h6Δ5,

L(1)
∗15 = −108/h2Δ11 + a12/h4Δ10 + a13/h6Δ9 + a14/h8Δ8 + a15A/h8Δ7

+ a16A2/h8Δ6 + a17A3/h8Δ5 + a18A4/h8Δ4,

L(1)
∗23 = −105/h2Δ11 − 385A/h2Δ10 − 525A2/h2Δ9 − 315A3/h2Δ8 − 70A4/h2Δ7,
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L(1)
∗24 = −270/h2Δ11 + a19/h4Δ10 + a20A/h4Δ9 + a21/A2h4Δ8 + a22A3/h4Δ7

+ 10395A4/h4Δ6,

L(1)
∗25 = −495/h2Δ11 + a23/h4Δ10 + a24/h6Δ9 + a25A/h6Δ8 + a26A2/h6Δ7

+ a27A3/h6Δ6 − 2702700A4/h6Δ5,

L(1)
∗34 = −297/h2Δ11 − 1089A/h2Δ10 − 1485A2/h2Δ9 − 891A3/h2Δ8

− 198A4/h2Δ7,

L(1)
∗35 = −702/h2Δ11 + a28/h4Δ10 + a29A/h4Δ9 + a30A2/h4Δ8 + a31A3/h4Δ7

+ 57915A4/h4Δ6,

L(1)
∗45 = −585/h2Δ11 − 2145A/h2Δ10 − 2925A2/h2Δ9 − 1755A3/h2Δ8

− 390A4/h2Δ7,

a1 = 630 − 110Ah2, a2 = −(150A + 105)h2 + 2205,

a3 = −(90A + 315)h2 + 2940,

a4 = −(20A + 315)h2 + 1785, a5 = −105h2 + 420, a6 = 7560 − 231Ah2,

a7 = −315A2h4 + 25200Ah2 − 10395B − 93555,

a8 = −189A2h4 + (31500A + 31185)h2 − 31185B − 311850,

a9 = −42A2h4 + (17640A + 83160)h2 − 31185B − 415800,

a10 = (3780A + 72765)h2 − 10395B − 259875,

a11 = 20790h2 − 62370, a12 = 41580 − 396Ah2,

a13 = −540A2h4 + 138600Ah2 − 2702700,

a14 = −324A3h6 + (173250A2 + 73710A)h4 − 8181810Ah2 + 6081075B
+ 24324300,

a15 = −72A3h6 + (97020A2 + 196560A)h4 − (9656010A + 12162150)h2

+ 16216200B + 77026950,

a16 = (20790A2 + 171990A)h4 − (5307120A + 28378350)h2 + 14189175B
+ 105405300,

a17 = 49140Ah4 − (1130220A + 22297275)h2 + 4054050B + 66891825,

a18 = −6081075h2 + 16216200, a19 = 20790 − 990Ah2,

a20 = −1350Ah2 + 69300,

a21 = −810Ah2 + 86625, a22 = −180Ah2 + 48510,

a23 = 154440 − 1815Ah2, a24 = −2475A2h4 + 514800Ah2 − 6756750,

a25 = −1485A2h4 + 643500Ah2 − 20270250,

a26 = −330A2h4 + 360360Ah2 − 23648625, a27 = 77220Ah2 − 12837825,

a28 = 115830 − 2574Ah2, a29 = −3510Ah2 + 386100,

a30 = −2106Ah2 + 482625, a31 = −468Ah2 + 270270;

L(2)∗ =

⎛
⎜⎜⎜⎜⎜⎝

L(2)
∗11 L(2)

∗12 L(2)
∗13 L(2)

∗14
0 L(2)

∗22 L(2)
∗23 L(2)

∗24
0 0 L(2)

∗33 L(2)
∗34

0 0 0 L(2)
∗44

⎞
⎟⎟⎟⎟⎟⎠

,
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L(2)
∗11 = L(2)

∗22 = L(2)
∗33 = L(2)

∗44 = Δ9 + 3AΔ8 + 3A2Δ7 + A3Δ6,

L(2)
∗12 = −45/h2Δ8 − 120A/h2Δ7 − 105A2/h2Δ6 − 30A3/h2Δ5,

L(2)
∗13 = −126/h2Δ8 + b1/h4Δ7 + b2A/h4Δ6 + b3A2/h4Δ5 + 2835A3/h4Δ4,

L(2)
∗14 = −243/h2Δ8 + b4/h4Δ7 + b5/h6Δ6 + b6A/h6Δ5 + b7A2/h6Δ4

− 540540A3/h6Δ3,

L(2)
∗23 = −189/h2Δ8 − 504A/h2Δ7 − 441A2/h2Δ6 − 126A3/h2Δ5,

L(2)
∗24 = −462/h2Δ8 + b8/h4Δ7 + b9A/h4Δ6 + b10A2/h4Δ5 + 27027A3/h4Δ4,

L(2)
∗34 = −429/h2Δ8 − 1144A/h2Δ7 − 1001A2/h2Δ6 − 286A3/h2Δ5,

b1 = 5670 − 336Ah2, b2 = −294Ah2 + 13230, b3 = −84Ah2 + 10395,
b4 = 49896 − 648Ah2, b5 = −567A2h4 + 116424Ah2 − 1351350,
b6 = −162A2h4 + 91476Ah2 − 2702700, b7 = 24948Ah2 − 2027025,
b8 = 54054 − 1232Ah2, b9 = −1078Ah2 + 126126, b10 = −308Ah2 + 99099.

Then, obviously, we will have the relations

L(α)T∗ L(α) = L(α)L(α)T∗ = E(α)|L(α)|, α = 1, 2, (141)

where E(1) and E(2) are the identity matrices of the fifth and fourth order, respectively.

Applying the operator L(α)T∗ from the left to Eq. (139) and taking into account (141), we
have the following decomposed system of equations:

|L(α)|U(α) + L(α)T∗ ΦΦΦ(α) = O(α), α = 1, 2. (142)

From here for each of the moments
(k)
u , k = 0, 8, of displacement vectors separately analogous

to (81) we obtain the equation of elliptic type of high order (the equations with the differential
operators |L(1)| have the 30th order, and the equations with the differential operators |L(2)|
are 24th order). If the operators |L(α)| and L(α)∗ have a common factor, it is possible to reduce
the order of the equation. For each of Eq. (142), using the method of Vekua (1948), we can
write an analytical solution. But we will not dwell on this. If necessary, it is not hard to do so.

It should be noted that the appropriate corrective term must be added to the analytical
solution depending on the given boundary conditions in both the classical and the micropolar
cases. This corrective term provides the fulfillment of the boundary conditions on the face
surfaces. They are constructed in Nikabadze (2008a, b, 2014b, c), so we will not dwell on
them.

6.5 Multilayer Prismatic Bodies

Using the rule, set out in Nikabadze (2008a, b, 2014b, c), to obtain the desired relation of
the multilayer thin body from the corresponding relation of monolayer thin body under the
new parametrization, the system of equations of the micropolar theory of multilayer prismatic



356 M.U. Nikabadze and A.R. Ulukhanyan

bodies with constant thickness (each layer has a constant thickness) in displacements and
rotations, analogous to (135), can be written as

[Δ̄3 + (B
s
Δ̄ + A

s
)Δ̄ + h

s
−2[(3Δ̄ + 2B

s
)Δ̄ + C

s
]∂23 + h

s
−4(3Δ̄ + B

s
)∂43 + h

s
−6∂63 ]ϕϕϕ

s

+ H
s

∗∗ = 0,

[Δ̄3 + A
s
Δ̄2 + h

s
−2(3Δ̄ + 2A

s
)Δ̄∂23 + h

s
−4(3Δ̄ + A

s
)∂43 + h

s
−6∂63 ]u

s
+ S

s
∗∗ = 0,

s = 1, K , (143)

where h
s

= const is the sth layer thickness (s = 1, K ), Δ̄ = g
−
I
−
J ∂I ∂J . Herewehave introduced

the notations

S
s
∗∗ =

S
s
∗

(λ
s

+ 2μ
s
)(μ

s
+ α

s
)(δ

s
+ β

s
)
, H

s
∗∗ =

H
s

∗

(γ
s

+ 2δ
s
)(μ

s
+ α

s
)(δ

s
+ β

s
)
,

A
s

= −
4α

s
μ
s

(μ
s

+ α
s
)(δ

s
+ β

s
)
,

B
s

= −
4α

s
[μ

s
(γ

s
+ 2δ

s
) + (μ

s
+ α

s
)(δ

s
+ β

s
)]

(γ
s

+ 2δ
s
)(μ

s
+ α

s
)(δ

s
+ β

s
)

, C
s

=
16α

s
2μ

s

(γ
s

+ 2δ
s
)(μ

s
+ α

s
)(δ

s
+ β

s
)
,

s = 1, K .

Applying the kth moment operator of any system of orthogonal polynomials (Legendre,
Chebyshev) (or based on (137) to Eq. (143) and using the above rule), we obtain the follow-
ing equations in moments of displacement and rotation vectors for the micropolar theory of
prismatic bodies of constant thickness:

[Δ̄3 + (B
s
Δ̄ + A

s
)Δ̄](k)

ϕϕϕ
s

+ h
s
−2[(3Δ̄ + 2B

s
)Δ̄ + C

s
](k)
ϕϕϕ
s

′′ + h
s
−4(3Δ̄ + B

s
)
(k)
ϕϕϕ
s

I V + h
s
−6(k)

ϕϕϕ
s

V I

+ (k)

H
s

∗∗ = 0,

[Δ̄3 + A
s
Δ̄2](k)

u
s

+ h
s
−2(3Δ̄ + 2A

s
)Δ̄

(k)
u
s

′′ + h
s
−4(3Δ̄ + A

s
)
(k)
u
s

I V + h
s
−6(k)

u
s

V I + (k)

S
s

∗∗ = 0,

k ∈N0, s = 1, K .

(144)
Finally, by (142) from the second equation (144), we will have the following decomposed
system of equations:

|L
s
(k)|U

s
(k) + L

s
(k)T∗ ΦΦΦ

s
(k) = O

s
(k), k = 1, 2, s = 1, K . (145)



Analytical Solutions in the Theory of Thin Bodies 357

Note that a similar (145) system of equations is obtained from the first equation (144), which
we do not write here.

In the above relations s is an index of layers, K is a number of layers. It should be noted
that, as in the case of a single layer prismatic body, so in the case of multilayer prismatic body
for each of Eq. (144), using the method of Vekua (1948), we can write an analytical solution.
Consequently, for correct statement of problems the boundary conditions in moments and
the interlayer contact conditions must be added to the Eqs. (144) and (145), see Nikabadze
(2008a, b, 2014b, c). The problem of corrective term in this case is solved analogously to
the above. At the same time the analytical solution of each layer (except the first and last)
with the corrective terms can be written so that it satisfies the interlayer contact conditions.
For the first (last) layer can be represented the analytical solution by means of corrective
terms in such a way that it satisfies the boundary conditions on the inner (outer) surface and
the interlayer contact conditions on the outer (inner) surface. Therefore, we suppose that the
interlayer contact conditions would be taken into account better if the order of approximation
is higher. This is very important in the theory of multilayer structures.

6.6 Prismatic Bodies with Two Small Sizes

Let us consider the prismatic homogeneous body with two small sizes and a rectangular cross-
section with sides 2h1 and 2h2. In this case we use the parametrization under an arbitrary
baseline. As a baseline, we take a middle line (straight line). It is easy to notice that in this
case we have, see Nikabadze (2008b, 2014b, c)

hI = (−)

h I = (+)

h I = const, k1 = 0, k2 = 0, gI

3̂
= 0, g

3̂3
= g3

3̂
= ϑ̂ = 1,

g3̂
3

= ϑ̂−1 = 1, g11 = h−2
1 , g22 = h−2

2 , g12 = 0, g33 = 1, N3 = ∂3.

(146)

By (146) and ∇̂F = g3̂
3

r3N3F + rP∂
P

F (N3 = ∂3 − gP
3̂

∂
P
), see Nikabadze (2008b, 2014b),

operators Δ̂, Δ̂2 and Δ̂3 will have the expressions

Δ̂ = ∂2
3

+ Δ̃, Δ̃ = gP Q∇
P
∇

Q
= h−2

1 ∂21 + h−2
2 ∂22 ,

Δ̂2 = ∂43 + 2∂23 Δ̃ + Δ̃2, Δ̂3 = ∂63 + 3∂43 Δ̃ + 3∂23 Δ̃2 + Δ̃3.
(147)

Based on the second formula (147), operators Δ̃2 and Δ̃3 can be written as

Δ̃2 = h−4
1 ∂41 + 2h−2

1 h−2
2 ∂21 ∂22 + h−4

2 ∂42 ,

Δ̃3 = h−6
1 ∂61 + 3h−2

1 h−2
2 (h−2

1 ∂21 + h−2
2 ∂22 )∂21 ∂22 + h−6

2 ∂62 .
(148)

If h = h1 = h2 (the cross-section is a square), then from second relation (147) and (148) we
get

Δ̃ = h−2(∂21 + ∂22 ) = h−2Δ, Δ̃2 = h−4(∂41 + 2∂21 ∂22 + ∂42 ) = h−4Δ2,

Δ̃3 = h−6[∂61 + 3(∂21 + ∂22 )∂21 ∂22 + ∂62 ] = h−6Δ3, Δ = ∂21 + ∂22 .
(149)
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Now we write Eq. (132) for the considered prismatic body with two small sizes. For this
purpose, it is sufficient to replace Laplacian Δ and the nabla operator ∇, existing in Eq. (132),
on Δ̂ and ∇̂ = r3∂3 + rP∂

P
, respectively. After such changes, we will have

(Δ̂3 + AΔ̂2)u + Ŝ∗∗ = 0, (Δ̂3 + BΔ̂2 + CΔ̂)ϕϕϕ + Ĥ∗∗ = 0, (150)

where A, B,C , Ŝ∗∗ and Ĥ∗∗ are given by (136). The expressions for Ŝ∗∗ and Ĥ∗∗ are obtained
from S∗∗ and H∗∗ if in S∗ and H∗ (see (131)) we replace Δ and ∇ by Δ̂ and ∇̂, respectively.

Taking into account Eq. (147), (150) can be written as:

[∂63 + A∂43 + ∂23 (3∂23 + 2A)Δ̃ + (3∂23 + A)Δ̃2 + Δ̃3]u + Ŝ∗∗ = 0,
{∂63 + B∂43 + [∂23 (3∂23 + 2B) + C]Δ̃ + (3∂23 + B)Δ̃2 + Δ̃3}ϕϕϕ + Ĥ∗∗ = 0.

(151)

It is easy to notice that in this case we obtain the following equations for the reduced medium
(α = 0) based on (133):

(∂43 + 2∂23 Δ̃ + Δ̃2)u + Ĝ = 0, (∂43 + 2∂23 Δ̃ + Δ̃2)ϕϕϕ + Ĥ = 0, (152)

where expressions for Ĝ and Ĥ are obtained from the expressions for G and H (see (134)),
if the operators Δ and ∇ are replaced by Δ̂ and ∇̂, respectively. Note that the first equation
(152) is the equation of the classical theory of prismatic thin bodies with two small sizes and
with a rectangular cross-section. Note also that Eq. (152) can be obtained from (151) if α = 0.
Furthermore, it is seen that Eq. (152) do not depend on the material properties in the absence
of volume loads.

Next, before getting equations in moments of displacement and rotation vectors, we define
themoment of (m, n)th order ((m, n)thmoment) of any tensor field. If {uk}∞k=0 is an orthogonal

systemof polynomials on the segment [a, b], andF(x ′, x3) is any tensor field, then themoment
of (m, n)th order of the tensor fieldF(x ′, x3)with respect to the systemof polynomials {uk}∞k=0
is defined as follows.

Definition 15.5 The (m, n)th moment of the tensor field F(x ′, x3) with respect to the system

of polynomials {uk}∞k=0, denoted by
(m,n)

M (F), is defined to be the integral

(m,n)

M (F) = ||um ||−2||un ||−2
b∫

a

b∫
a

F(x1, x2, x3)um(x1)un(x2)h(x1)h(x2)dx1dx2. (153)

Here ||uk || is the norm of a polynomial uk , and h is the weighting function. Note that issues
related to the theory of thin bodies with two small sizes are desribed in Nikabadze et al. (2008),
Nikabadze (2008b, 2014b, c).

Now it is not difficult to obtain equations for the micropolar theory of prismatic thin bodies
with two small sizes, having a rectangle cross-section, inmoments of displacement and rotation
vectors with respect to any system of polynomials (Legendre, Chebyshev). Indeed, it is easy
to see that by (153), definition of “prime” operator (Nikabadze 2008a, b, 2014b, c), the second
formula (147) and (148) for any tensor field F(x ′, x3) we have the formulas (Nikabadze
2008a, b, 2014b, c)
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(m,n)

M (Δ̃F) = h−2
1

(m′′,n)

F + h−2
2

(m,n′′)
F ,

(m,n)

M (Δ̃2
F) = h−4

1

(m I V ,n)

F + 2h−2
1 h−2

2

(m′′,n′′)
F + h−4

2

(m,nI V )

F ,

(m,n)

M (Δ̃3
F) = h−6

1

(mV I ,n)

F + 3h−2
1 h−2

2

(
h−2
1

(m I V ,n′′)
F + h−2

2

(m′′,nI V )

F

)
+ h−6

2

(m,nV I )

F ,

m, n ∈ N0,

(154)

which are true for any system of polynomials (Legendre, Chebyshev).
Applying to (151) the (m, n)th moment operator of some systems of polynomials, due to

(154) we obtain the desired equations in the form

∂63
(m,n)

u + A∂43
(m,n)

u + ∂23 (3∂23 + 2A)
(

h−2
1

(m′′,n)
u + h−2

2
(m,n′′)

u
)

+ (3∂23 + A)
(

h−4
1

(m I V ,n)
u + 2h−2

1 h−2
2

(m′′,n′′)
u + h−4

2
(m,nI V )

u
)

+ h−6
1

(mV I ,n)
u + 3h−2

1 h−2
2

(
h−2
1

(m I V ,n′′)
u + h−2

2
(m′′,nI V )

u
)

+ h−6
2

(m,nV I )
u + (m,n)

M (Ŝ∗∗) = 0,

∂63
(m,n)
ϕϕϕ + B∂43

(m,n)
ϕϕϕ + [∂23 (3∂23 + 2B) + C]

(
h−2
1

(m′′,n)
ϕϕϕ + h−2

2
(m,n′′)
ϕϕϕ

)
(155)

+ (3∂23 + B)
(

h−4
1

(m I V ,n)
ϕϕϕ + 2h−2

1 h−2
2

(m′′,n′′)
ϕϕϕ + h−4

2
(m,nI V )

ϕϕϕ
)

+ h−6
1

(mV I ,n)
ϕϕϕ + 3h−2

1 h−2
2

(
h−2
1

(m I V ,n′′)
ϕϕϕ + h−2

2
(m′′,nI V )

ϕϕϕ
)

+ h−6
2

(m,nV I )
ϕϕϕ + (m,n)

M (Ĥ∗∗) = 0,

m, n ∈N0.

Analogous to (155) in the case of the reduced medium (α = 0) based on (152) we obtain
the following equation in displacement and rotation vectors with respect to any systems of
polynomials (Legendre, Chebyshev) for the theory of prismatic thin bodies with two small
sizes and with the rectangle cross-section:

∂43
(m,n)

u + 2∂23

(
h−2
1

(m′′,n)
u + h−2

2
(m,n′′)

u
)

+ h−4
1

(m I V ,n)
u + 2h−2

1 h−2
2

(m′′,n′′)
u + h−4

2
(m,nI V )

u

+(m,n)

M (Ĝ) = 0,

∂43
(m,n)
ϕϕϕ + 2∂23

(
h−2
1

(m′′,n)
ϕϕϕ + h−2

2
(m,n′′)
ϕϕϕ

)
+ h−4

1
(m I V ,n)

ϕϕϕ + 2h−2
1 h−2

2
(m′′,n′′)

ϕϕϕ + h−4
2

(m,nI V )
ϕϕϕ

+(m,n)

M (Ĥ) = 0, m, n ∈N0. (156)

Note that the first relation in (156) is the equation in moments of displacement vector with
respect to any systems of polynomials (Legendre, Chebyshev) for the classical theory of
prismatic thin bodies with two small sizes and with a rectangular cross-section.

In order to write the systems of equations (155) and (156) in moments with respect to

any system of orthogonal polynomials, it is enough to express the
(m′′,n)

F ,
(m,n′′)

F ,
(m I V ,n)

F ,
(m,nI V )

F ,
(m′′,n′′)

F ,
(mV I ,n)

F ,
(m,nV I )

F ,
(m I V ,n′′)

F and
(m′′,nI V )

F , where F = u or F = ϕϕϕ, to express in terms of
momentsFwith respect to the considered systemof polynomials (Nikabadze 2008b, 2014b, c).
Here, for brevity, we will not dwell on it. However, we note that all that has been said above
about the monolayer and multilayer thin bodies with one small size is true in this case.
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Method for Calculating the Characteristics
of Elastic State Media with Internal Degrees
of Freedom

Sergey N. Romashin, Victoria Yu. Presnetsova,
Larisa Yu. Frolenkova and Vladimir S. Shorkin

Abstract In practical use of non-traditional models of Cosserat, Leroux, Toupin,
Mindlin, Aero, the problem of determining the elastic constants arise. This work
is devoted to solving this problem. The solution is based on a comparison of the
governing relations of the non-traditional model with its counterpart. It is obtained
from the conversion of a specially constructed for this purpose variant of nonlocal
elastic medium in the local model.

Keywords Adhesion · Elastic material · Lennard–Jones potential · Morse poten-
tial · Stockmayer potential · Nonlocal surface and volume forces and moments ·
Cosserat · Leroux · Toupin · Mindlin · Aero

1 Introduction

When using non-traditional models of Cosserat, Leroux, Toupin, Mindlin, Aero
(Lurie et al. 2003a) for the calculation of mechanical processes with specific elastic
constructional materials, the problem of determining the elastic constants arises. It is
difficult or impossible to apply the methods of solid-state physics (Partenskii 1979;
Vakilov et al. 1997) for such materials. The mechanical processes in such materials
are conveniently described on the basis of the phenomenological approach, which
is based on continuum thermodynamics. Therefore, methods for calculating the
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characteristics of the elastic media with internal degrees of freedom should be based
on the phenomenological macroexperiment.

One of the phenomena, which is described by the models of Cosserat, Leroux,
Tupin, Mindlin, Aero, is the adhesion (Johnson 1997; Maugis 2000; Johnson and
Greenwood 1997; Johnson et al. 1971; Maugis 1991; Goryacheva andMakhovskaya
2001; Yu and Polycarpou 2004). The characteristics of adhesion are its energy and
adhesive force. In this paper, the elastic constants are determined numerically based
on a nonlocal theory for an elastic medium.

2 Theoretical Statements

The interaction of bodies B ≡ B(k) (k = 1, 2, . . .—number of bodies) is considered.
The bodies are bounded by smooth surfaces A ≡ A(k). The surfaces have outward
unit normals �n ≡ �n(k). The bodiesB ≡ B(k) are composed of homogeneous, isotropic,
linear elastic materials. Each of them is considered to be dedicated from the infinite
medium Ω ≡ Ω(k). The material Ω ≡ Ω(k) and B ≡ B(k) is the same. This assump-
tion excludes the influence of its boundary region on the material properties of the
body B ≡ B(k). The state B ≡ B(k) inside Ω ≡ Ω(k) is the reference. It corresponds
to time t = 0.

Every body B ≡ B(k) can be represented as a junction of non-intersecting parts
ΔBn ≡ ΔB(k)n (n = 1, 2, . . . , N): B ≡ B(k) = ⋃n=N

n=1 ΔBn. When the diameter of the
portion ΔB(k)n tends to zero and N → ∞ the following relations are valid:

ΔBn ≡ ΔB(k)n → dB ≡ dB(k), B ≡ B(k) =
∫

dB ≡
∫

dB(k)

The density of the materials are ρ ≡ ρ(k) and their temperatures T ≡ T(k) are distrib-
uted uniformly and do not change over time. Herewith: T(1) ≡ T(2).

Two cases are considered. In the first case, the proper rotations of the particles are
not taken into account. The particles are material points. In the second case, these
rotations are taken into account. The model of particles is a dumbbell. The first case
is considered in detail. The second case may be analyzed similarly to the first case.

In the reference configuration the arbitrary body B occupies the region V and the
centers of inertia of its particles dB have the radius vectors �r ∈ V . The position of
an arbitrary particle dB2 relative to another arbitrary particle dB1 ≡ dB is defined by
the relative radius vector �l12 = �r2 − �r1 with length l12 = |�l12| = |�r2 − �r1|.

Under the influence of external mechanical impacts, including the allocation of
B ≡ B(k) from Ω ≡ Ω(k), particles dB ≡ dB(k) acquire new locations, which are
characterized by the radius vectors �R ≡ �R(k) ∈ Vt(k) and the displacement vectors
�u(�r, t) = �R(�r, t) − �r. Area Vt(k) is the area occupied by the body B ≡ B(k) in the
current configuration. The position of a particle dB2 relative to particle dB1 ≡ dB
will change and will be determined by the radius vector
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�L12 = �R2 − �R1 = (�r2 − �r1) + (�u2 − �u1) = �l12 + Δ�u12
and the lengthL12 = |�L12| = |�R2 − �R1|. If bodyB ≡ B(k) is deformed, thenL12 �= l12.

It is assumed that the deformations are small: |L − l| /l � 1. Therefore, the mate-
rial density and volumes of elementary particles in the reference and current status
are equal.

Vectors Δ�u1j can be represented as series according to exterior powers �l1j

Δ�u1j =
∞∑

n=1

1

n!
(∇n

1j�u
) n times︷︸︸︷· . . . ·�l n

1j =
∞∑

n=1

(−1)n

n! (∇n�u)

n times︷︸︸︷· . . . ·
(�l1j

)n
, j = 2, 3, . . . , (1)

where∇ = d . . . /d�r is the differential del operator on a vector �r and∇1j = d . . . /d�l1j

on a vector �l1j.
It is believed that the vector �r(1) receives the increment d�r(1), then the vector

�l1j receives the increment d�l1j = −d�r. It means: ∇n
1j = (−1)n∇n. When changing

the relative positions of the particles dB1 ≡ dB and dB2, they are deformed and
rotated. For a particle dB1 ≡ dB, deformations and rotations are characterized by
strain deviator γij

(�ei�ej
)
, tensor of cubic strains θδij

(�ei�ej
)
and the rotation tensor

ωkεijk
(�ei�ej

)
. Here �ei (i = 1, 2, 3) is the orthonormal basis of the Cartesian coordinate

system xi (�eixi = �r); δij is the Kronecker delta; εijk is the Levi-Civita symbol.
These tensors form a distortion tensor dij�ei�ej. It is expressed by the first gradient

of the displacement vector ∇�u = ui,j �ei�ej.

∇�u = ui,j �ei�ej = dij�ei�ej = γij
(�ei�ej

) + θδij
(�ei�ej

) + ωkεijk
(�ei�ej

) = dij�ei�ej. (2)

Equality∇�u = ui,j �ei�ej = dij�ei�ej is the condition for the existence of the vector poten-
tial �u for distortion tensor dij�ei�ej (Lurie et al. 2003a). Equality

dij,k εijk = 0 (3)

is the condition for the existence of this potential. If (2) holds, then rounding any
closed circuit does not detect a gap field of displacement vector. Medium is defect-
free. If the condition (3) is not fulfilled, then

din,m εnmj =
[
γin + 1

3
θδin − ωkεink

]
,m εnmj = 
ij �= 0.

In this case, the displacement vector field will be discontinuous. There are disloca-
tions in the material (Lurie et al. 2003a, b; Lurie and Belov 2008).

The distortion tensor is the gradient of the curvature tensor. It is expressed by the
second gradient of the displacement vector

∇∇�u = ∇2�u = ui,jn �ei�ej�en = Dijn�ei�ej�en = dij,n �ei�ej�en. (4)
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If the second gradient of displacement is necessary to use to characterize the kine-
matics of the continuum, then it may appear dislocations.

In Frolenkova and Shorkin (2013) on the basis of Gibbs (1928) kinematic sign
of adhesion of the two bodies is formulated. Any material fiber, which intersects
the contact surface A(12), should preserve the smoothness of strain distribution there
along under deformation of the combined body B = B1 ∪ B2. In Frolenkova and
Shorkin (2013) it is suggested that this characteristic may be fulfilled by using the
curvature tensor for a description of deformations (4). This means that dislocation
fieldsmust arise during the adhesion of elasticmaterials. This characteristic is enough
for adhesion of two materials.

The occurrence of dislocations in the surface layer leads to a rotation of the
particles of the medium, which is independent of its rotation (Aero and Kuvshinskii
1960). When there is the adhesion of a dielectric and a metal, the dielectric enters
the electric field created by the electrical double layer of the metal. The similar
situation arises in the dielectric, which is the gasket of the capacitor. Due to this, the
surface layer of the dielectric is polarized. Its particles acquire a particular orientation.
Under external mechanical influences, they turn independently of the rotation of
the medium. We assume, that the polar dielectric is placed into a homogeneous

electrostatic field with strength �E = �eE, |�e| = 1. The polarization vector �P of the
volume unit of dielectric is proportional to the strength �E, which caused it: �P = ε0κe �E
(ε0 is an electric constant; κe is the polarizability of the volume unit).

It is believed, that all the particles dB are dipoles-dumbbells with opposite charges
at the ends. They have the same polarization vector �PdV = (ε0κeE)�edV = χ�edV .
The relative position of the interacting particles in new condition is characterized by
a vector �L12 instead �l12—the vector of their relative position in the reference state.

Rotation from �l12 to �L12 is characterized by a vector
1

2
(∇ × �u) = 1

2
rot�u. The rotary

reaction of particle dB1 to external influences is characterized by its rotation relative
to its initial position by an angle �ϕ = �ϕj. In the reference state, all particles have the
same orientation vector �e. This vector coincides with the direction of polarization.
In the current state, their orientation vectors are different. So, we can talk about the
function �ϕ = �ϕ(�r) and the notation

�ϕm = �ϕ +
∞∑

n=1

1

n! (∇
n �ϕ) · . . . · �l n

1m,

where m = 1, 2, . . . is number of dielectric particle. In the subsequent arguments,
we restrict ourselves to the notation:

�ϕm = �ϕ + (∇ �ϕ) · �l1m

If there is material adhesion, it is assumed (by analogy with Ruelle 1969), that the
total potential energy of the combined bodyB = B(1) ∪ B(2) is the sumof the potential
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energies of many-particle interactions inside each of the bodies B(1) and B(2), and
between them. The quantities

Φ
(2)
(kp)

(�R(k), �R(p)

)
dV(k)dV(p), Φ

(3)
(kpq)

(�R(k), �R(p), �R(q)

)
dV(k)dV(p)dV(q), . . .

are the potentials of pair, triple, etc. interactions of paired particles dB(k), dB(p),
dB(q) bodies B(k), B(p), B(q) (k, p, q = 1, 2). In this case, dV(k), dV(p), dV(q)—the
volumes of the interacting particles in the reference state. Functions (hereafter the

potentials) Φ
(2)
(kp)

(�R(k), �R(p)

)
, Φ

(3)
(kpq)

(�R(k), �R(p), �R(q)

)
for a homogeneous isotropic

material depend only on the distance between the interacting particles in the current
state.

The energy dW(1)

(�R(1)

)
= w(1)

(�R(1)

)
dV(1) of infinitesimal particle, e.g., dB(1)

with the volume dV(1) and center of inertia �R(1) is represented as

w(1) =
(�R(1)

)
dV(1) = (

w(11) + w(12)
)

dV(1)

=
⎡
⎢⎣
∫

V(1)

Φ
(2)
(11)dV(1) + 1

2!
∫

V(1)

∫
V(1)

Φ
(3)
(111)dV(1)dV(1) + . . .

⎤
⎥⎦ dV(1)

+
⎡
⎢⎣
∫

V(2)

Φ
(2)
(12)dV(2) + 1

2!
2∑

k=1

∫
V(2)

∫
V(k)

Φ
(3)
(12k)dV(2)dV(k) + . . .

⎤
⎥⎦ dV(1).

In this equality w(11) is the cubic density of the potential energy, which arises due to
the interaction of the particles of the body B(1) among themselves; w(12) is addition
to the quantity of w(11), which arises from the interaction of particles of the body
B(1) with the particles of the body B(2). Each particle dB(1) ⊂ B(1) is affected by the
forces from the other particles dB(1) of the same body B(1), particles dB(2) body B(2)

and the medium, which surrounds both bodies. The first forces are called forces of
cohesive interaction of parts of the body (Ashcroft and Mermin 1976). Their cubic
density is:

�f(11) = −∇w(11).

The second forces are adhesive forces (Johnson 1997). Their cubic density is:

�f(12) = −∇w(12) = −�f(21). (5)

During the deformation of the material interacting particles dB1(k) and dBj(p) experi-
enced relative displacementsΔ�u1j. Decomposition (1) is valid for the particles. At the
same time, it’s permissible to represent the potentials of pair, triple, etc. interactions
as second-order polynomials relatively Δ�u1j (Shorkin 2011). Absolute term of the
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polynomial and its coefficients are expressed through the potentials of many-particle
interactions in the reference state.

Changing the cubic densityΔw(11) of the potential energy of bodyB(1) is a function
of the sequence {∇n�u} of displacement gradients. If we differentiate dependence
Δw(11)

(∇�u,∇2�u, . . .
)
by the gradients ∇n�u, we obtain the expressions for the stress

tensors, which are developed in the material of body B(1).

P(n) = ∂Δw(11)

∂ (∇n�u)
= P0(n) +

∞∑
m=1

(∇m�u)

n times︷︸︸︷· . . . · C(m,n), (6)

where P0(n) are tensors of initial stress; C(m,n) are tensors, which characterize the
mechanical properties of the material. Taking into account only pair and triple inter-
actions, the defining relations have the form:

P0(m) = 1

2!
∫
V

1

m!
(
∇12Φ

(2)
(11)

)�l m
12dV2 + 1

3!
3∑

j=2

∫
V

⎡
⎣∫

V

1

m!
(
∇1jΦ

(3)
(111)

)�l m
1jdV2

⎤
⎦ dV3,

(7)

Cn,m = 1

2!
∫
V

1

m!n!
�l n
12

(
∇2

1Φ
(2)
(11)

)�l m
12dV2

+ 1

3!
3∑

p,q=2

∫
V

⎡
⎣∫

V

1

m!n!
�l n
1p

(
∇p∇qΦ

(3)
(111)

)�l m
1qdV2

⎤
⎦ dV3. (8)

Jump to a specific local model is the replacement of (1) for the sum of one, two, etc.
terms. Herewith, sequence {P(n)} stores a corresponding number of elements. The
equation of motion for interacting bodies B(1) and B(2) (Shorkin 2011) in stresses for
the local model has the form:

ρ(k)

∂2�u(k)

∂t2
= ∇ ·

(
P(1)

(k) − ∇ ·
(

P(2)
(k) − ∇ ·

(
P(3)

(k) − . . .
)))

+ �f(kp) + �ψ(k); k, p = 1, 2; k �= p; (9)

where P(m)

(k) , m = 1, 2, 3, . . . is the internal stress tensor.

The vector fields �ψ(k) = �ψ(k)

(�r(k)

)
are defined. The fields �f(kp) = �f(kp)

(�r(k), �r(p)

)
are defined by (5). The value w(12) is calculated through the interaction potentials of
particles in the assumption of the absence of deformations in them. The interaction
potentials must be known.

At time t = t0(k) we set the initial conditions of the displacements distribution and
velocities of the particles of the body B(k), which occupies an area V(k):
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�u(k)

(�r, t0(k)

) = �u0(k) (�r) ,
∂�u(k) (�r, t)

∂t

∣∣∣∣
t=t0(k)

= �v0(k) (�r) . (10)

At any time on a free from the contact surface portion A(k) of each of the bodies B(k)

(A(k) is the complete surface in the absence of contact) the boundary conditions are
set:

�n(k) ·
[
P(1)

(k) − ∇ ·
(

P(2)
(k) − . . .

)]
− ∇A ·

[
�n(k) ·

(
P(2)

(k) − . . .
)]

= Π
(0)
(k) ≡ �τ(k), (11)

or
�u(k) = �uA(k)

;

�n(k) ·
[
P(2)

(k) − ∇ ·
(

P(3)
(k) − . . .

)]
− ∇A ·

[
�n(k) ·

(
P(3)

(k) − . . .
)]

= Π
(1)
(k) , (12)

or
∇�n�u(k) = �A(k)

;

where Π
(0)
(k) ≡ �τ(k)—classical surface forces; Π

(m)

(k) , m = 1, 2, . . . are tensors, which
characterize non-classical surface interactions, that will be able to perform the work
on tensor characteristics∇�n�u(k) = �A(k)

, . . .unevenness of displacements distribution.

In the equations of motion vectors �f(kk) are defined by the equalities:

�f(kk) = ∇ ·
(

P(1)
(k) − ∇ ·

(
P(2)

(k) − ∇ ·
(

P(3)
(k) − . . .

)))
, k = 1, 2.

Therefore, the use of expressions (9)–(12) and (6)–(9) makes a conjugate problem of
the contact interaction of elastic bodies with regard to their adhesion. In the reference
state, the potentials of all the many-particle interactions should be known.

When the independent rotations are considered, the free energy consists of two
terms. The first term is the energy. The energy arises when there are translational
relative displacements. The second term arises because of relative rotation. It is con-
sidered further. The interaction of a real pair of dipoles is described by theStockmayer
potential (Hirschfelder et al. 1966):

φ(1,2) = 4ε

[(σ

r

)12 −
(σ

r

)6
]

− μ1μ2

r3
g(Θ1,Θ2, ϕ),

g(Θ1,Θ2, ϕ) = 2 cosΘ1 cosΘ2 − 2 sinΘ1 sinΘ2 cosϕ,

where ε, σ are parameters of the Lennard–Jones potential (Kittle 1966); μ1, μ2 are
the values of the dipolemoments of the interacting particles; r is the distance between
their centers of mass; ϕ = ϕ1 − ϕ2; Θ1, Θ2, ϕ1, ϕ2 are vector angles �μ1, �μ2 of the
dipole moments in a spherical coordinate system with the axis. This axis is oriented
from the first particle to second and passes through their centers of mass. For particle
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interaction of continuum, the Lennard–Jones potential is replaced by many-particle
interaction potential.

In the current state for the potential energy of relative rotation, expression can be
obtained:

F∗ = Φ(1,2)dV∗
1 dV∗

2 = (P∗
1dV∗

1 )(P∗
2dV∗

2 )

l ∗3
12

g(�e ∗
1, �e ∗

2, �e ∗
12),

g(�e ∗
1, �e ∗

2, �e ∗
12) = 3(�e ∗

1 · �e ∗
12)(�e ∗

2 · �e ∗
12) − (�e ∗

1 · �e ∗
2)

Next, we assume:
P∗

m = Pm = P, m = 1, 2.

In its turn:

�e ∗
p = �e p + Δ�ep = �ep + �ϕp × �ep p = 1, 2, 12, �e1 = �e2 = �e.

In order to know the rotational part of the cubic density of the elastic strain energy,
it is necessary to calculate the sum of paired rotational interactions of particles B1

and B2, which are located in the single volume. Integration gives the expression:

[
�ϕ − 1

2
(∇ × �u)

]
· β11 ·

[
�ϕ − 1

2
(∇ × �u)

]
+ (∇ �ϕ) · ·β22 · ·(∇ �ϕ).

The mechanical properties of the material, exhibited during independent rotation of
its particles, are characterized by tensors

β11 ≈ 1.1 × 10−1ε0
(
κ2

e /ε
)

E2
[(�i �i

)
+

(�j �j
)]

, (13)

β22 ≈ 1.3 × 10−3ε0
(
κ2

e /ε
)

E2
[(�j �i

)
−

(�i �j
)] [(�j �i

)
−

(�i �j
)]

(14)

where�i,�j are unit vectors of orthonormal basis (�i,�j, �k)ofCartesian coordinate system,
where the third vector �k coincideswith the vector �e.When there is adhesion, the vector
is perpendicular to the contact surface. Expressions (13) and (14) are obtained under
representation of the free energy of the elastic rotations as a quadratic form.

3 Numerical Results

Expressions (7), (8), (13) and (14) show, that the characteristics of the elastic state of
the material are calculated by the potentials of nonlocal interaction of its particles.
To account for the dielectric polarization, form of the potential is selected in the
Stockmayer form.The singularity ofmetals—pressure of the electrongas is taken into
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account in Shorkin et al. (2011). The potentials of nonlocal interaction of particles—
material points are requested to identify with a nonlinear dispersion law (Shorkin
2011; Kittle 1966)

ω2 = f0(kk)K
2 − f1(kk)K

4 + . . . ,

where ω is the oscillation frequency, K is the wave number and f0(kk), f1(kk) are
coefficients obtained in the experiment. The dispersion law is approximated by a
polynomial of degree n. The value of the degree n is determined by the condition of
current task. Geometrical condition of adhesion (Frolenkova and Shorkin 2013) is the
continuity and smoothness of field variations for those displacements of contacting
bodies, which they obtained by adhesion. To fulfill the conditions it is sufficient to
apply only the first two displacement gradients in the description of the deformations,
which occur under adhesion of the two bodies. It is enough to take n = 2.

In this case, dependencies of the potentials of pair and triple interactions are
approximated by functions

Φ
(2)
(kp) = Φ

(2)
0(kp)

(
e−2β(kp)l12(kp) − 2e−β(kp)l12(kp)

)
, (15)

Φ
(3)
(kpq) = Φ

(3)
0(kpq)

(
e−2β(kp)l12(kp) − 2e−β(kp)l12(kp)

) (
e−2β(kp)l13(kp) − 2e−β(kp)l13(kp)

)
, (16)

where β(kk), β(kp), Φ
(2)
0(kp), Φ

(3)
0(kpq) are parameters. These functions are equal to zero

at an infinite distance. These particles may belong to the body B(k) (k = p = q) or
another (k �= p ∨ k �= q).

In the first case (k = p = q), for the parametersΦ
(2)
0(kp),Φ

(3)
0(kpq),β(kp) the calculating

formulas are obtained

(
Φ

(2)
0(kk)

β3
(kk)

)
= 4μ(k) + 45λ(k)

294π
= E(k)

294π

2 + 41ν(k)

(1 + ν(k))(1 − 2ν(k))
, (17)

(
Φ

(3)
0(k)

β6
(kk)

)
= 27(λ(k) − μ(k))

1764π2
= 27E(k)

1764π2

4ν(k) − 1

2(1 + ν(k))(1 − 2ν(k))
, (18)

β(kk) = 1

2

√√√√√√
3π

(
f0(kk)

f1(kk)

) 15

(
Φ

(2)
0(kk)

β3
(kk)

)
+

(
1563π

4

)(
Φ

(3)
0(kk)

β6
(kk)

)

2μ(k) + λ(k)

, (19)

where λ,μ are Lamé’s parameters, E is the Young’s modulus and ν is the Poisson’s
ratio. Formulas (17) and (18) are the result of the comparison of Voigt notation
for tensor traditional characteristics of the elastic state of the material (Nowacki
1975) with the first term of the polynomial ω2 = f (K2). Equations (17) and (18) are
constructed with the help of Eqs. (7), (15) and (16):
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[
C(1,1)

]
Cl =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ + 2μ λ λ 0 0 0
λ λ + 2μ λ 0 0 0
λ λ λ + 2μ 0 0 0
0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The general presentation of the matrix of elastic parameters in the linear elasticity
theory is: ⎡

⎢⎢⎢⎢⎢⎢⎣

C1111 C1122 C1133 C1123 C1131 C1112

C2211 C2222 C2233 C2223 C2231 C2212

C3311 C3322 C3333 C3323 C3331 C3312

C3211 C3222 C3233 C3223 C3231 C3212

C1311 C1322 C1333 C1323 C1331 C1312

C2111 C2122 C2133 C2123 C2131 C2112

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The matrix of elastic parameters, which are expressed in terms of the interaction
potential pairs and triplets of particles has the form:

[
C(1,1)

]
ijkl =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

η + χ + ε
η + χ

3
+ ε

η + χ

3
+ ε 0 0 0

η + χ

3
+ ε η + χ + ε

η + χ

3
+ ε 0 0 0

η + χ

3
+ ε

η + χ

3
+ ε η + χ + ε 0 0 0

0 0 0
η + χ

3
0 0

0 0 0 0
η + χ

3
0

0 0 0 0 0
η + χ

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with

η = π

2 · 2!

⎡
⎣−

∞∫
0

l41
d2Φ(2)(l1)

dl21
dl1

⎤
⎦ · 4

5
, (20)

χ = 2
π

2 · 3! · 4π
⎡
⎣

∞∫
0

l22dl

∞∫
0

l21
∂2Φ(3)(l1, l2)

∂l21
dl1

⎤
⎦ · 4

5
, (21)

ε = 2
16π2

9 · 3!

⎡
⎣

∞∫
0

l22dl2

∞∫
0

l21
∂2Φ(3)(l1, l2)

∂l1∂l2
dl1

⎤
⎦ . (22)

The first and the third matrix are written for isotropic materials. They are equal.
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Equation (19) is obtained by comparing the first and second terms of submission
of the dispersion law ω2 = f (K2) for plane longitudinal waves in the form of a
polynomial of the second degree. In the second case k �= p ∨ k �= q, when the bodies
of different materials interact, for determining the parametersΦ

(2)
0(kp),Φ

(3)
0(kpq), β(kp) are

used dependencies of characteristics of elastic state of two-component solid solutions
on the concentration of their components. The element of volume d〈V〉 of the solid
solution is expressed through elements of volumes dV(1) of dV(2) and components of
its materials B(1) and B(2).

d〈V〉 = (1 − c)dV(1) + cdV(2),

where c and (1 − c)—the volume concentrations of the materials of bodies B(2) and
B(1). Each part d〈V〉 of each of the interacting particles interacts with each part of
the other interacting particles. Therefore, we have the equalities

〈Φ(2)〉 = (1 − c)2Φ(2)
(11) + 2c(1 − c)Φ(2)

(12) + c2Φ(2)
(22),

〈Φ(3)〉 = (1 − c)3Φ(3)
(111) + 3c(1 − c)2Φ(3)

(112) + 3c2(1 − c)Φ(3)
(122) + c3Φ(3)

(222).

Taking this into account we can get:

4〈μ〉 + 45〈λ〉
294π

= 〈E〉
294π

2 + 〈ν〉
(1 + 〈ν〉)(1 − 2〈ν〉) =

(
〈Φ(2)

0 〉
〈β〉3

)

= (1 − c)2
(

Φ
(2)
0(11)

β3
(11)

)
+ 2c(1 − c)

(
Φ

(2)
0(12)

β3
(12)

)
+ c2

(
Φ

(2)
0(22)

β3
(22)

)
,

27 (〈λ〉 − 〈μ〉)
1764π2

= 27〈E〉
1764π2

4〈ν〉 − 1

2(1 + 〈ν〉)(1 − 2〈ν〉) =
(

〈Φ(3)
0 〉

〈β〉6
)

= (1 − c)3
(

Φ
(3)
0(111)

β6
(11)

)
+ 3c(1 − c)2

(
Φ

(3)
0(112)

β3
(11)β

3
(22)

)

+ 3c2(1 − c)

(
Φ

(3)
0(122)

β3
(12)β

3
(22)

)
+ c3

(
Φ

(3)
0(222)

β6
(22)

)

with

〈β〉 = 1

2

√√√√√√
3π

( 〈f0〉
〈f1〉

) 15

(
〈Φ(2)

0 〉
〈β〉3

)
+

(
1563π

4

)(
〈Φ(3)

0 〉
〈β〉6

)

2〈μ〉 + 〈λ〉
In the calculations, we need to use two values c = c1 and c = c2. The validity of
the proposed methodology of calculating the characteristics of the elastic state has
indirect confirmation.
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Fig. 1 The dependence of the potential Ea and the force of attraction p from the distance η for
combinations Cu-Al—curves 1 and Al-Al—curves 2

Themethodology proposed in this paper, allows to calculate the interaction poten-
tial of semi-infinite bodies B(1) and B(2) (Fig. 1a), the force of attraction p (Fig. 1b),
which depends on the distance η between the units of area boundary planes A(1)

and A(1). The results of calculation (Fig. 1, dotted line) are compared with the works
(Vakilov et al. 1997) and (Johnson 1997) (Fig. 1, solid line). Conformity is satisfac-
tory. The values of adhesive forces, which are calculated at zero distance between
the boundaries of the semi-infinite bodies (Table1) are also compared.

Table 1 The comparison of the results of calculation of adhesive forces

Materials
B(1)–B(2)

σt, 104 MPa σt, 104 MPa
settlement

(E(1) − E(2)),

103 MPa3
ν(1) − ν(2)

3

Ag–Ag 3.181 3.14 83 − 83 0.37 − 0.37

Al–Al 3.271 2.21 75 − 75 0.34 − 0.34

Au–Au 3.221 4.07 78 − 78 0.40 − 0.40

Cu–Cu 4.761 4.85 120 − 120 0.38 − 0.38

V–V 6.941 5.94 170 − 170 0.36 − 0.36

W–W 7.341 7.64 350 − 350 0.30 − 0.30

Si–Si 3.161 2.84 160 − 160 0.27 − 0.27

Fe–Cr 7.402 7.12 210 − 300 0.31 − 0.31

Fe–Cu 6.002 5.33 210 − 120 0.31 − 0.38

Cu–Al 4.402 3.27 120 − 75 0.38 − 0.34
1Nevolin and Fazylov (2011)
2Vakilov et al. (1997)
3Babichev et al. (1991)
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4 Conclusion

In the paper we proposed a method of modeling the behavior of elastic media. This
method is based on obtaining the explicit form of the free energy dependence on the
characteristics of the thermodynamic state of the medium. This allows to calculate
the characteristics of the elastic state. As a result, the possibilities of a quantitative
description of the non-classical behavior of elasticmedia are expanded, the amount of
experimental studies to determine the parameters, which characterize the properties
of materials, is reduced.

The work of each of the bodies is considered to be continously. The particles, that
compose the body, complitly fill the volumes. When there is adhesion of the two
bodies, it turns a solid third body. Thus, there is no equilibrium distances between
the particle of bodies and the bodies themselves, and it is not necessary to define
them. Excluding the equilibrium distances between the particles and the bodies is
one of the purposes of the paper. If there are equilibrium distances, this contradicts
the hypothesis of the continuity of the material.

The interaction potentials of infinitely small particles do not coincide with the
potentials of the interaction of atoms and do not contain equilibrium distances. Their
parameters are calculated using the Lamé parameters. The formulas for these calcu-
lations were obtined by comparing the tensor of elastic deformations of the linear
elasticity theory with the same tensor, which components are expressed in terms of
the interaction potential of the particles.
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Abstract A comprehensive survey is presented on two-phase and multi-phase con-
tinuum poroelasticity theories whose governing equations at a macroscopic level are
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or on variants of Hamilton’s least Action principle. As a focal discussion, the ‘closure
problem’ is recalled, since it is widespread opinion in the multiphase poroelasticity
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ticity has to be regarded as a still-open problem of applied continuum mechanics.
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1 Introduction

Theoretical poroelasticity has a very wide range of applications. Besides the well
known applications to soil mechanics (Fillunger 1936; Terzaghi 1936; Biot 1956),
poroelastic models have been increasingly applied for the description of complex
biological phenomenology such as biological tissue mechanics and remodeling
processes (see e.g., Cowin 1999; Giorgio et al. 2014; Andreaus et al. 2014; Madeo
et al. 2011; Ateshian and Ricken 2010; Ehlers and Bluhm 2013; Mow et al. 1980).
However, most problems of geomechanics and biomechanics require a multiphase
continuum description for a proper understanding and prevision of several inter-
twined mechanical phenomena. As well-known in geomechanics, this is the case of
saturated and partially saturated soils (Schrefler 2002; Madeo et al. 2013). Similarly,
in biomechanics, cartilaginous tissues have been described as mixtures of a solid
phase made up of structural macromolecules plus an interstitial fluid phase consist-
ing of water and solutes (Lai et al. 1991; Gu et al. 1998; Huyghe and Janssen 1997;
Travascio et al. 2014).

However, the achievement of a general consistent theory for two-phase continuum
poroelasticity, capable of addressing systemswith any degree and range of compress-
ibility of the constituent phases, represents a long dated challenge of theoretical and
applied continuum mechanics.

The insightful historical retrospective survey by de Boer (1996) provides evi-
dence of the complexity of the construction of a standard continuum theory of this
type, undertaken over the last century. In particular, by the term standard we refer
to the formulation of a generally agreed minimal set of mathematically consistent
and physically plausible governing equations of two-phase poroelasticity, deducible
from the classical principles of physics with assessed predictive capabilities. The
review by de Boer covers a large part of the approaches extending from the early
Terzaghi–Fillunger dispute (Fillunger 1936; Terzaghi 1936), including the funda-
mental theoretical contributions by Biot (1956) and the fundamental experimental
evidences from geomechanics (Skempton 1954; Nur and Byerlee 1971), up to the
more recent group of theories frequently gathered under the term Theories of Immis-
cible Mixtures (TIM).

A comprehensive survey on TIMs proposed until 1983 has been provided by
Bedford and Drumheller (1983). Such a review includes mixture theories derived
from continuous models more general than classical Cauchy one which are based on
continuummechanics frameworks employing enhancedmicrostructural descriptions
for the solid phase: in particular the theory of linear elasticity with microstructure by
Mindlin (1964), Eringen’smicromorphic theory (Eringen 1968), as well as Goodman
and Cowin’s theories which employ an additional equation of motion in either postu-
lated form (Goodman and Cowin 1972) or developed proceeding from a postulated
variational principle (Cowin and Goodman 1976).

After the middle of the eighties, driven by the increase of applications in geome-
chanics, biomechanics, environmental engineering and material engineering, theo-
retical research efforts have been aimed at developing general and comprehensive
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multiphase flow theories. Nevertheless, investigators kept searching for a fundamen-
tal set of governing equations achieving general consensus. Research in this area has
accordingly experienced a proliferation of porous media frameworks which have
proceeded quite independently by stressing different arguments in order to achieve
the formulation of a standard macroscopic governing set of continuum equations.

To logically organize the research efforts driven by such a multiplication of
languages from the eighties until current times, classifications of the mainstream
approaches can be attempted, without any claim of completeness and of clean-cut
separation.

A first classification can be considered by identifying two approaches:

1. Purely Macroscale Theories (PMT) which are based on the introduction of kine-
matic descriptors or constitutive features expressly at the macroscale level;

2. Upscaling/Averaging Theories (AT) which proceed from considering a detailed
representation of the geometry and flow processes at the microscale.

A general agreement on the superiority of either PMT and AT has not been reached
yet (see e.g. the debates in Gray et al. 2013a, b; Baveye 2013). In any case, PMT are
exposed to the criticismof lacking a strong connectionwith the pore scale physics and
of performing implicit approximations, while AT can be criticized for introducing
assumptions justifiable only on a heuristic basis, and also for lacking a clear link
with the macroscopic measurement processes.

Among PM theories, a further classification can be performed according to the
setting employed for the definition of energy potentials of the constituent phases
(Gajo 2010). Two families can be identified: the first one includes PMT approaches
where a single macroscopic energy potential of the whole saturated mixture gives
rise to stresses for both solid and fluid phases (see, e.g., Coussy et al. 1998); the other
one includes approaches where the two phases can be treated as superposed continua,
each one endowed with a separate energy potential. As observed by several authors,
this second and more general approach requires, alongside of linear momentum and
mass balances, an additional governing equation (Svendsen andHutter 1995), usually
referred to as closure equation.

In this respect, several candidate closure equations have been proposed for the
identification of the additional equation (or of the set of additional equations), capa-
ble of providing the minimal set of governing balance equations necessary to achieve
a general consistent formulation of compressible poroelasticity. Within a wide fam-
ily of more general formulations (see for instance Bowen 1982; Hassanizadeh and
Gray 1990; Schrefler 2002) the closure of the poroelastic problem has been sought
by supplementing momentum and mass balance equations with the second law of
thermodynamics, in agreement with an early indication by Truesdell (quoted by Bed-
ford and Drumheller) according to which “the ‘missing principle’, surely, is a proper
generalization of the Clausius–Duhem inequality”.

Similar to Drumheller (1978), Bowen (1982) includes the evolutions equations
of volume fractions, as well as momentum of momentum balances, among the gov-
erning equations, tracing back to Cosserat’s theory (Cosserat and Cosserat 1909;
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Eringen and Kafadar 1976). A further closure of the biphasic problem has been pro-
posed by incorporating of the saturation constraint in the entropy inequality, using
an incompressibility hypothesis and a Lagrangian multiplier (Svendsen and Hutter
1995; de Boer 1996). Moment of momentum balance is also considered together
with a multiplicative decomposition of the strain tensor (Diebels 1999).

Alternatively, porosity was added as an additional independent state field by
Albers and Wilmański (2006) and by Wilmański (1998), who investigated several
additional balance equations in the form of porosity balance or integrability condition
for the deformation of the solid skeleton. A geometric saturation constraint has also
been employed, combined with a multiplicative decomposition of the deformation
gradient, as a closure equation of the formulation (de Boer 2005).

It is therefore evident that even the simpler two-phase purely-mechanical problem
of poroelasticity has to be regarded as a still-open problem of continuum mechanics.
This opinion is widely spread in the multiphase poroelasticity community. As stated
by de Boer: “the necessity to attack the problem of developing a consistent general
poroelasticity theory is still existent” (de Boer 2005), as well as by Lopatnikov and
Gillespie (2010) “... in spite of a tremendous number of publications in this field, the
discussion continues about physical background of the poroelastic theory. Even the
form of basic governing equations are sufficiently different [...] in frame of different
approaches that one can find in literature. It seems that there is no final agreement
about consistency of proposed different approaches.”

Turning to the objective of the present survey, attention is herein focused on the
subclass of two-phase continuum poroelasticity theories which can be classified to be
of variational type and ascribable to the PMT group. Thus, ruling out themajor effort
of an accurate updated review of the currently available porous media frameworks,
this contribution is aimed at providing an updated survey on the variational subclass
of poroelastic multiphase theories, since the authors share the convincement that
variational statements are privilegedmeans for the continuum description of physical
phenomena ensuring“a natural and rigorously correct way to think of [...] continuum
physics” (Oden and Reddy 2012).

A further, highly relevant feature of the variational approach is that the principle
of minimization is very convenient as a basis for numerical simulations. Indeed, it
is well-known that Finite Element (FE) methods are the natural discretization of
theories presented in weak formulation. More specifically, numerical investigation
of poroelastic continua has greatly benefited from the development of high-regularity
FE schemes such as isogeometric analysis (see Hughes et al. 2005, as one of the stem
works), a technique that is particularly suitable for generalized continuum theories
as recently shown in different contexts (Greco and Cuomo 2014, 2016; Cazzani et al.
2014; Cuomo et al. 2014).

For the purpose of the present contribution, we include under the term varia-
tional theories of poroelasticity all continuum theories of porousmultiphasematerials
(including single phase theories) which found the derivation of governing equations
upon the application of classical variational principles: Hamilton Least Action Prin-
ciple of mechanics (Landau and Lifshitz 1976; Moiseiwitsch 2013; Berdichevsky
2009), Principle of Virtual Powers (for functionals admitting first differentials), and
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Principle of Virtual Works (see also the retrospective by dell’Isola and Placidi 2012
on the application of variational principles to continuum mechanics).

Concerning the focus on PMT, it has to be added that the already mentioned
microstructured continua theory can be seen as a general framework in which one
can find higher gradient continuum theories as a particular case. Researches on
microstructured and higher gradient continua are experiencing a significant inten-
sification, especially in connection with the development of computer-aided manu-
facturing techniques (as high-precision and multi-material 3D-printing) which allow
the designing and the fabrication of micro- and even nanostructures characterized by
a high degree of complexity, whose effects at the macroscale cannot be captured by
standard continuum theories (dell’Isola et al. 2015).

2 Variational Theories of the 70’s and the 80’s

An important remark should be made concerning the notation adopted hereafter. As
always happens when a research field gradually produces a considerable amount of
literature, there is a general tendency towards a relative uniformity in the notation
and conventions which is agreed within the scientific community of specialists in the
topic. This fact has obvious advantages, allowing for the immediate understanding of
the equations in a paper without requiring a detailed reading of the discursive parts.
On the other hand, the literature usually converges only asymptotically towards
this status, and there are many cases (especially among pioneering works) in which
substantially different notations and conventions are used. Thus, it appeared illogical
to the authors not to exploit the advantages of a coherent and uniform notation even
though this has meant, in some cases, the modification of the original format of
some equations. Therefore, all equations and formulas in the present work have to
be intended as conceptually identical (but not philologically accurate) rendering of
the original ones in the cited papers.

The first use of some of the ideas of variational approaches in the derivation of
a theory of mixtures has been claimed by Truesdell and Toupin (1960) (p. 567) to
trace back to Duhem (1893).

It is also important to recall that the seminal and influential poroelastic theory
by Biot (1941, 1956, 1962), while originarily obtained on a somewhat intuitive
definition of stress measures and elastic relations based on concise mechanical con-
siderations (Bear and Corapcioglu 2012), was subsequently framed by Biot (1972)
into a variational theoretical framework in the context of quasi-static and isothermal
deformations. Therein, the equilibrium equations are obtained proceeding from the
statement of a principle of virtual work, and later extended to account for nonisother-
mal deformations and to include dynamical forces (Biot 1977).

In particular, variational concepts are applied by Biot (1972), proceeding from
the introduction of an ‘isothermal free energy density function’ which depends on
the finite strain of the solid and on a quantity m defined therein as the total mass of
fluid added in the pores of the sample during deformation. This particular choice for
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the descriptors, referred to open mechanical systems where mass can enter or leave,
has been criticized by more than one author. For instance, it has been observed that
it is not possible to construct a true variational principle as the Biot model contains
nonequilibrium variables, see, e.g., Wilmański (2006).

Further works in the seventies, containing some applications of variational con-
cepts to the derivation ofmultiphase porousmedia theories, are the papers byKenyon
(1976) where a variational postulate is proposed to justify the linear momentum bal-
ance equations introduced by Truesdell (1969) in postulated form. The kinematic
descriptors considered are the densities and the deformation gradients of each phase;
however, this theory makes no use of volume fractions. Also, an application of varia-
tional concepts to formulate a theory of two-phase mixtures is reported by Aizicovici
and Aron (1977), although this study proceeds from postulated equations of motion.

2.1 Cowin’s Theories Including Porosity

Theories of ideal multiphase mixtures which, in some respects, can be stated to
have a variational character are those by Nunziato and Walsh (1980) and Passman
(1977). These frameworks consist of extensions of the continuum theory for granular
materials (Goodman and Cowin 1972), and rely on the key idea to add the volume
fraction of the solid phase (φ) as an additional kinematic continuum scalar descriptor.
Moreover the frameworks by Nunziato and Walsh (1980) and Passman (1977) use
an additional balance scalar equation, proposed by Goodman and Cowin (1972)
and denominated therein equation of balance of equilibrated force. This additional
equation pairs the number of unknown fields, incremented by one as a result of the
introduction of φ among the kinematic descriptors, with the number of momentum
balance scalar PDEs.

Although the theory byGoodman and Cowin (1972) cannot be termed variational,
since it is based on thermodynamic arguments and ad-hoc modified forms of the
momentum and energy balances, the balance of equilibrated force is motivated by
a variational analysis. Later, Cowin and Goodman (1976) have shown that the so
called balance of equilibrated forces can be derived proceeding from a postulated
variational principle. In particular, such variational theory is derived by addressing
the dependence of a density of stored energy function upon the solid volume fraction,
the true density of the solid porous phase ρ, the solid volume fraction φ and its space
gradient φ∇.

It should be remarked that the variational theory by Cowin and Goodman (1976)
is not a standard variational theory in several respects. Actually, Eq. (13) therein
presents a postulated condition, directly expressed in the form of first-variations
containing two postulated quantities: a quantity H, stated to be a self-equilibrated
stress system, and a secondquantity l, stated to be a self-equilibrated body force. There
is a potential misunderstanding in this last choice. Indeed, talking about stress seems
to focus just on classical (Cauchy-type) external actions, while the proposed model
entails the presence of more general external actions. Thus, generalized stress would
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probably have been a more appropriate wording in this case. A further uncommon
feature of this theory is that the stress tensor of the solid phase is originally defined
as a quantity work-associated with the solid true density ρ, instead of being defined
as a quantity work-associated with the symmetric part of the displacement gradient
in a standard way.

2.2 Mindlin’s Variational Single-Phase Theory of Materials
with Microstructure

Although not directly applied to multiphase problems, the (single phase) continuum
theory of materials with microstructure by Mindlin (1964) has provided a useful
(and in some respects ‘canonical’) background for the subsequent development, on a
variational basis, of multiphase poroelastic continuum frameworks which, exploiting
ideas similar to those in Cowin and Goodman (1976), Passman (1977), Nunziato and
Walsh (1980), employ enhanced kinematics with additional descriptors such as the
porosity.

In Mindlin’s theory the equations of motion are derived by using Hamilton’s
principle which can be conveniently written as follows:

δ

t2∫
t1

(T − V)d t +
t2∫

t1

δWd t = 0, (1)

where t1 and t2 are two arbitrarily assigned time instants, T is the kinetic energy, V is
the internal potential energy while the term δW is the virtual work of external body
forces, external traction vectors, generalized body forces and generalized surface
forces (termed double forces by Mindlin).

A quite general framework is considered in which a macroscopic second-order
tensor field ψ is added as a further kinematic descriptor, termed microdeformation,
complementing the displacement field u.

As a consequence of such choice of kinematic descriptors, it is derived from (1)
a vector linear momentum balance, expressing the stationarity of (1) with respect to
u plus additional stationarity scalar conditions expressing stationarity with respect
to the independent components ψij.

The strainmeasures of this theory are the standard strain tensor ε = sym(∇u) plus
two additional strain measure fields related to ψ : the so-called relative deformation
field, defined as γ = ∇u − ψ , and a microdeformation gradient field κ = ∇ψ . On
this basis, the strain energy is a homogeneous quadratic function of ε, γ and κ .



384 R. Serpieri et al.

2.3 The Variational Theory of Immiscible and Structured
Mixtures by Bedford and Drumheller

A fundamental advancement in the derivation of variational theories of multiphase
porous media and structured mixtures has been provided by Bedford and Drumheller
(1978, 1979, 1983). These authors have extended the ideas laying the basis of
single-continuum framework of microstructured continua by Mindlin (1964) and
the approaches for the variational treatment of a single continuum in solid and fluid
mechanics (Lanczos 1970; Herivel 1955; Eckart 1960; Finlayson 2013; Leech 1977;
Oden and Reddy 2012) to derive the balance equations for porous multiphase prob-
lems by means of Hamilton’s principle. Accordingly, momentum balance equations
are derived from a stationarity condition representing a variant of Eq. (1).

A multiphase framework is considered with index of the generic phase ξ hereby
indicated by script (·)(ξ). From a constitutive point of view, denoting by φ(ξ) the
volume fraction of the generic ξ th phase and by ρ̂(ξ) its ‘true density’, related to the
relevant apparent density ρ̄(ξ) by the usual relation:

ρ̂(ξ) = ρ̄(ξ)

φ(ξ)
, (2)

it is assumed (Bedford and Drumheller 1979) that each phase ξ has a strain energy
density ψ which is only dependent on ρ̂(ξ) while in (Bedford and Drumheller 1978)
a dependence of upon ρ̂(ξ) and the (infinitesimal) strain tensor ε is considered.

The primary descriptors of such formulation are fields φ(ξ) and ρ̂(ξ), together with
the placement field χ (ξ) which operates the association x(ξ) = χ (ξ)

(
X(ξ)

)
between

the current position of phase ξ and its material position X(ξ). This choice of fields
amounts to a total of five fields per each phase. In agreement with Leech (1977), the
least-action condition is written integrating over a fixed reference volume domain
containing a fixed mass of mixture.

It is important to remark that, in the formulation stated byBedford andDrumheller,
the primary descriptors are not unconstrained fields. Actually, fields φ(ξ), ρ̂(ξ), and
χ (ξ) are constrained by the equations of mass balance:

J(ξ)ρ̄(ξ) = ρ̄
(ξ)
0 (3)

and by the volume fraction constraint stating that space is completely saturated by
the phases so that the sum of volume fractions equals unity, viz.:

N∑
ξ=1

φ(ξ) = 1, (4)
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where N is the number of phases. In order to respect (3) and (4), the variations δφ(ξ),
δρ̂(ξ) and δx(ξ) are also constrained each other. Such constraints are included by
Bedford and Drumheller through the addition of (3) and (4) into (1) with the aid of
Lagrange multipliers λ and μξ . The resulting equation has the format:

δ

t2∫
t1

(T − V)d t +
t2∫

t1

δWd t

+
t2∫

t1

⎡
⎣ N∑

ξ=1

∫
	

μξδ

(
J(ξ) − φ

(ξ)
0 ρ̂

(ξ)
0

φ(ξ)ρ̂(ξ)

)
dV0 −

∫
	

λδ

⎛
⎝ N∑

ξ=1

φ(ξ)

⎞
⎠

∣∣∣∣∣∣
x

dV0

⎤
⎦ d t = 0.

(5)

The physical interpretation of λ andμξ is also discussed by Bedford and Drumheller
(1978). Resorting to the standard notion of Lagrangemultipliers as generalized forces
ensuring the constraints to be satisfied, and to some considerations on pressure force
balances, the authors justify the interpretation of λ as an interface pressure between

constituents, and infer for μξ the relationship μξ = p(ξ)φ(ξ)

J(ξ)
, where p(ξ) indicates

the pressure of the ξ th constituent.
In this respect, it is important to remark that the mechanical consistency of the

choice of incorporating of the effect of constraints in a variational framework has
been subjected to debate and objections between researchers. In their valuable review,
Bedford andDrumheller (1983) recall a criticismbyTruesdell andToupin (1960) (pp.
594, 595) who have indeed observed that incorporating the effect of constraints in
variational principles “... is a somewhat dubious blessing”. Bedford and Drumheller
have rebutted that the volume fraction constraint does not entail ill-posedness issues
and have remarked that the admissibility and usefulness of the volume fraction con-
straint in multiphase theories can be standardly accepted as a continuum mechani-
cal analogue to the treatment of connections between rigid parts in the variational
description of the mechanics of rigid bodies.

3 Most Recent Theories

In more recent years, researches on multiphase theories on a variational macroscopic
basis have still continued to appear in the specialized literature. Referring the readers
to the original papers for further details, a brief account of these theories and of the
key ideas is given in this subsection, proceeding in chronological order.
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3.1 Variational Theories by Lopatnikov and Co-workers

The Least Action principle has been employed by Lopatnikov and coworkers to
obtain continuum governing equations for binary poroelastic mixtures (Lopatnikov
and Cheng 2004; Lopatnikov and Gillespie 2010). Important differences with the
framework by Bedford and Drumheller are the following:

• As a peculiar feature of this formulation, distinction is characteristically made
between a notion of internal strain tensor and a notion of external strain ten-
sor. For the definition of these quantities, the reader is referred to the original
papers where these concepts are introduced (Lopatnikov and Cheng 2002, 2004;
Lopatnikov and Gillespie 2010). Relationships between variations of external and
internal parameters of thematerial are introduced and referred to asmaterial struc-
tural equations. Such relations have a constitutive nature and, hence, appear to be
medium-dependent. Lopatnikov and Gillespie (2010) discuss several options for
their definition (see p. 482 therein).

• This theory is essentially formulated in infinitesimal displacements.
• The least Action condition is formulated without making explicit statement of
the recourse to Lagrange multipliers, even if the theory contains constraints for
the variation fields. Specifically, the system of governing equations contains mass
conservation equations. Most importantly, the authors infer from mass conserva-
tion relationships between variation of porosity δφ(f ) and δρ̂(f ) involving also the
gradient of porosity φ(f )∇.

Lopatnikov and Gillespie remark that the presence of a dependence upon φ(f )∇
in their mass conservation relation is an important difference with respect to other
previously proposed multiphase variational frameworks such as the one by Bedford
and Drumheller. Actually, they show that, in nonhomogenous media, an additional
volume force interaction between solid and fluid phases appears in the governing
equations. This force, which is proportional to φ(f )∇, is traced back by the authors to
an interaction force term deduced earlier by Nikolaevskiy (see Nikolaevskiy 2005),
based on phenomenological reasoning.

This theory is next deployed to analyze the equilibrium state of a fluid and elas-
tic penetrable material, encapsulated in a rigid volume (Lopatnikov and Gillespie
2011). In Lopatnikov and Gillespie (2012) the derivation of interfacial conditions,
compatible with the governing differential equations of the theory, is presented.

3.2 Variational Higher Gradient Theories
by dell’Isola and Co-workers

An investigation of porous media following a consistent variational approach is the
one pursued by Madeo et al. (2013), dell’Isola et al. (2009), Sciarra et al. (2007),
dell’Isola et al. (2005a, b, 1998).
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In dell’Isola et al. (1998), a micro–macro identification is indeed performed for
a compaction of grounds with fluid inclusions with the fluid being confined into the
pores. The work particularly focuses on the effect of a length-scale l characterizing
pore size. The model is a microstructured continuum of the type introduced by
Eringen, and the main result is the dependence of evolution equations on the length l.

In Sciarra et al. (2005), the behavior of a sponge under an increase of the outside
fluid pressure is studied by using the Principle ofVirtual Power,with second gradients
of the displacement included as a further deformationmeasure. In particular, a simple
idea is introduced: the boundary pressure is divided between the solid and fluid
pressures, pf = df pext , ps = dspext with df + ds = 1; quantity, pext is the external
pressure and df and ds are coefficients which depend on the constituent apparent
densities, regarded as state parameters, under the condition that the work performed
by these tractions vanishes in every cyclic process over the parameter space. This
condition restricts the permissible constitutive relations for the dividing coefficient,
which turns out to be characterized by a single material parameter. Moreover, a
stability analysis of the solutions is performed by Sciarra et al. (2005).

In dell’Isola et al. (2009), a (classical) solid fluid mixture is studied in the frame-
work of an extended Hamilton–Rayleigh principle. A general set of boundary con-
ditions at fluid-permeable interfaces between dissimilar fluid-filled porous matrices
is established, including jump conditions, friction and inertia effects. In particular,
solid and fluid domains Bs ⊂ �3 and Bf ⊂ �3 are introduced, as well as the maps

χ s : Bs × (0, T) → �3 χ f : Bf × (0, T) → �3, (6)

which represent the (time dependent) placement of the solid and fluid constituent;
the motion of the fluid inside the solid matrix is described by the function

χ sf : Bs × (0, T) → Bf . (7)

General motion equations relative to a representative elementary volume are then
derived through lengthy computations:

−
(
ρ̄(s)v̇s + ρ̄(f )v̇

s©
f

)
+ div

(
FT

s · ∂Ψ

∂E

)
− ∂Ψ

∂χ s
= −div
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s

)
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[
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(
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∂ρ̄(f )

)]
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s ·
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(
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s©
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s
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(8)

with the following boundary conditions:
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In the previous equations, the following definitions are used: Fi = ∇χ i, Gs = ∇χ sf ,

vi = ∂χ i
∂t , ui = ∂χ sf

∂t . Moreover, in the general case Ψ is the sum of a non homo-
geneous deformation energy potential Ψi(E, ρ̄(f ), Xs) and a potential accounting
for external body forces Ψg = (ρ̄(s) + ρ̄(f ))Ep(χ s, Xs). Finally, Js = detFs, E is the
Green-Lagrange strain tensor, ΠΠΠ is the Brinkman stress tensor, ΠΠΠ f is the fluid vis-
cous stress tensor and the acceleration fields v̇s, v̇f are the time derivatives of vs

and vf respectively, ρ̄(s) and ρ̄(f ) are apparent mass densities for the solid and the
fluid, and the symbol s© denotes the transport of a tensor field from the configuration
where it is defined to Bs; for the meaning of the remaining symbols κ , σ , Ep, for the
meaning of the (·) operations and for other details we refer the reader to the paper,
and especially to the technical Appendices in (dell’Isola et al. 2009).

3.3 The VMTPM Framework and the Extrinsic/Intrinsic
Treatment

Among more recent contributions, a two-phase poroelastic formulation, also based
on the least-action principle, has been proposed in (Serpieri and Rosati 2011) and
in (Serpieri 2011). Chronologically, such formulation is subsequent to the works
of Lopatnikov and co-workers, and dell’Isola and co-workers. This theory, hereby
abbreviated in VMTPM (Variational Macroscopic Theory of Porous Media), con-
sists of an application to poroelastic problems of a generalized continuum formula-
tion with additional kinematic descriptors, in the wake of the ideas of Mindlin and
Beford and Drumheller. However, in contrast to previous applications of generalized
continua theories to poroelastic problems, the kinematic of VMTPM is enriched
with a so-called scalar field of intrinsic volumetric strain Ĵ(s) in place of a porosity
field. More specifically, Ĵ(s) is an additional macroscopic scalar field, introduced
on a purely kinematic rationale, which essentially corresponds to the ratio ρ̂(s)/ρ̂

(s)
0

between ‘true’ densities before and after deformation. This field is independent from
the primary macroscopic volumetric strain measure J̄(s) = det(∇χ) which remains
instead ordinarily defined as the determinant of the macroscopic deformation gradi-
ent, and termed extrinsic volumetric strain in order to remark its difference with Ĵ(s).
It should be noted that Ĵ(s) has a direct relation with the porosity field. In a region
of a porous medium undergoing a macroscopically homogeneous deformation, the
value of Ĵ(s) can be macroscopically measured by the following relation which links
Ĵ(s) to the porosities before (φ

(f )
0 ) and after deformation (φ(f )):

Ĵ(s) = J̄(s)
(
1 − φ(f )

)
/
(
1 − φ

(f )
0

)
. (9)

Hence if the medium is saturated and with completely interconnected pores, the
measurement of Ĵ(s) can be translated into the measurement of the fluid leaving or
entering this region as a consequence of a loading-induced deformation.
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Based on this choice of extrinsic/intrinsic kinematic descriptors, the associated
stress measures consist of an extrinsic stress tensor, work-associated with the extrin-
sic strain (σ̌ (s)), and an scalar intrinsic pressure p̂(s) (Serpieri et al. 2013, 2015;
Serpieri and Travascio 2015; Travascio et al. 2015). In such works it is shown that,
in undrained conditions (i.e., when no relative solid-fluid motion takes place in a
region of a biphasic mixture), VMTPM predicts that the external stress, the fluid
pressure, and the stress tensor work-associated with the extrinsic strain of the solid
phase are partitioned according to a relation which is formally strictly compliant
with Terzaghi’s law, irrespective of the microstructural and constitutive features of
a given medium.

In (Serpieri and Travascio 2015) and (Travascio et al. 2015) the constitutive
response for isotropic media is found to be strongly determined by an additional
dimensionless parameter k̄r with bounds −1 ≤ k̄r ≤ 0, in a way similar to the role
played by the Poisson’s coefficient in characterizing the isotropic response of a single
continuum medium. In particular, k̄r appears in the expression for linear isotropic
media in undrained conditions (i.e., fast loading) of Skempton’s coefficientB, defined
as the ratio between the induced pressure p of the interstitial fluid and the applied
stress, t(ext)

x (Skempton 1954). Specifically:

B = p

t(ext)
x

= −
(
1 + k̄r

)
k̂sf[

2μ̄ + λ̄ + (
1 + k̄r

)2
k̂sf

] , (10)

where μ̄ and λ̄ are Lamémoduli and k̂sf is a coupling modulus of intrinsic stiffness in
series. The reader is again referred to Serpieri and Travascio (2015) for an exhaustive
definition of these parameters on a variational basis. Serpieri and Travascio (2015)
have found a peculiar mechanical behavior predicted by VMTMP which is discrim-
inated by k̄r : the extrinsic pressure can actually become tensile (negative) even in
presence of compressive external stresses under specific values of k̄r . Although such
behavior may appear counterintuitive at first sight (by drawing a straightforward
parallel with the traditional Cauchy stress tensor in single continuum mechanics), it
is shown in the referenced work that such condition entails no violation of positive
definiteness of strain energy, so that compressive external tractions always induce
compressive strains and the interstitial fluid pressures is always positive and com-
pressive.

Also, Travascio et al. (2015) have reported another unique feature characterizing
VMTPMmixtures and, once more, modulated by k̄r : during displacement-controlled
static compression, themixture can express either a stress-relaxing or a stress-tensing
behavior. The stress relaxation is a well-known phenomenon in poroelasticity, whose
description has been documented in several studies (Mow et al. 1980; Ehlers and
Bluhm 2013): the solid stress increases as the compression is applied; subsequently,
fluid redistribution within the mixture occurs, and the stress relaxes to an equilibrium
value which is held indefinitely, as long as the system is compressed. The behavior
of stress tensing mixtures is substantially different: during compression, the solid



390 R. Serpieri et al.

stress progressively tenses upon reaching, in its drained state, an equilibrium value
once again depending on applied deformation and stiffness of the solid phase. As
a further confirmation of the important role played by k̄r , Travascio et al. (2013)
showed in a numerical study simulating uniaxial stress relaxation tests on bovine
articular cartilage that the consolidation time of the tissue reduces three-fold when
k̄r varies from 0 to −0.25.

4 Conclusions

The present survey on variational macroscopic continuum approaches to multiphase
poroelasticity highlighted the existence of fundamental features shared by the theo-
ries reviewed in this paper. Also, several aspects have been pointed out, where agree-
ment between the surveyed theories is not found. As such, these aspects deserve
further investigation by the generalized continua community.

A fundamental feature which almost all the theories herein presented have in
common is the resort to kinematicswith additional descriptors (i.e., porosity, intrinsic
strain, etc.) for a proper formulation of the problem. In this respect, generalized
continua models appear to be the natural setting to properly address the multiphase
problem, even in absence of a specific focus onmicrostructural or multi-scale effects.

On theother hand, some important still-open issues canbe identified,where further
investigation is needed either to assess the higher degree of mechanical consistency
and of predictive capabilities of any of the existing frameworks over the others, or
to formulate more comprehensive theories. In particular, the following issues are
considered to be relevant:

• The role of constraints in relation to the variational treatment, with special refer-
ence to mass balance; in particular the well-posedness of the variational statement
of the problem in presence of mass balance constraints for the primary fields
appears to be a relevant research issue.

• In variational theories making use of Lagrange multipliers, an assessment of the
physical meaning of stress quantities in relation to boundary data and to themacro-
scopic measurement process could be a relevant research endeavor.

• Even if the set of Euler–Lagrange equations for multiphase problems appears to be
very broad (as very broad are the possibilities of conceiving enriched kinematics in
generalized continua frameworks) an important objective for the generalized con-
tinua community should be the agreement on a set ofminimalmedium-independent
equilibrium equations.Moreover, any new theory should be downward compatible
with such equations.

• The theory should be based on theminimumpossible number of parameters, which
should have a clear physical-mechanical meaning. In addition, their experimental
characterization should be possible.

• The identification of a generally agreed set of governing balance equations neces-
sary to achieve a consistent formulation of compressible poroelasticity in a vari-
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ational multiphase framework could benefit from contributions coming from all
disciplines (e.g., theoretical mechanics, geomechanics, biomechanics, etc.) with
the aim of identifying appropriate benchmark programs for validation of contin-
uum poroelasticity theories.
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Buckling of Sandwich Tube with Foam Core
Under Combined Loading
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Abstract In the framework of a general stability theory for three-dimensional bodies
the buckling analysis is carried out for the nonlinearly elastic three-layer cylindrical
tube subjected to axial compression under internal or external pressure. It is assumed
that the middle layer (core) of the tube is made of metal or polymer foam, and to
describe its behavior the model of micropolar continuum is used. Such approach
allows to study in detail the influence of foammicrostructure on the deformation sta-
bility, which is especially important when the macroscopic dimensions of the tube
are comparable with the average size of the foam cells. The inner and outer layers
(coatings) of the tube are assumed to be made of the classic non-polar materials.
Applying linearization the neutral equilibrium equations have been derived, which
describe the perturbed state of the cylindrical sandwich tube. By solving these equa-
tions numerically for some specific materials, the critical curves and corresponding
buckling modes have been found and the stability regions have been constructed in
the planes of loading parameters (relative axial compression and internal or external
pressure). Using the obtained results, the influence of coatings properties, as well as
the overall size of the tube, on the loss of stability has been analyzed.
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1 Introduction

Theproblemof equilibrium stability for the deformable bodies is ofmajor importance
both from theoretical and practical points of view, because the depletion of the
load-bearing capacity and collapse of engineering structures often occurs due to the
buckling under external loads. In the case of elastic medium, the stability theory
is extensively developed for the classic non-polar materials. However, due to the
increasing number of new construction materials, the problem of stability analysis
for bodies with amicrostructure becomes important. Examples of such newmaterials
are metal and polymer foams (Ashby et al. 2000; Banhart 2000; Banhart and Fleck
1999; Degischer andKriszt 2002; Gibson andAshby 1997), which are widely used in
themodern aerospace and automotive industries since they combine lowweight, high
specific strength and excellent possibilities to absorb energy. As a rule, constructions
made of foams have a sandwich structure (foam core covered by hard and stiff
shells). This is necessary for corrosion or thermal protection, and optimization of
mechanical properties in the process of loading. Due to the microstructure influence,
the behavior of foams cannot be adequately describedwithin the framework of classic
theory of elasticity. One approach to modeling them is to use the Cosserat continuum
(Altenbach et al. 2010; Cosserat and Cosserat 1909; Eringen 1999; Kafadar and
Eringen 1971; Maugin 1998; Toupin 1964), i.e. medium with couple stresses and
rotational degrees of freedom. This allows, in particular, to describe the size effects
observed experimentally for metal and polymer foams (Lakes 1995, 1986). Given
the above, in the present paper we have carried out the stability analysis for a common
construction element—a sandwich tube with foam core.

2 Initial Strain State of Sandwich Tube

We consider an elastic sandwich tube of length l, inner radius r− and outer radius r+
(see Fig. 1). The middle layer of the tube (core) of thickness h is made of metal
or polymer foam, and to described its behavior the micropolar continuum model
is used. The inner and outer layers (coatings) have thicknesses h− and h+, respec-
tively, and are assumed to be made of the classic non-polar materials. Here and
below, the indices “−” and “+” will denote quantities related to the inner and outer
coatings. The quantities without these indices will relate to the foam core of the
sandwich tube. In the case of axial compression of the tube under internal or external
hydrostatic pressure, the position of a medium particle in the strained state is given
by the radius vectors �R−, �R and �R+ (Lurie 1990; Sheydakov 2010; Zubov 1997)
(c− = r− + h−, c+ = r+ − h+):

R =
⎧⎨
⎩

f−(r), r− ≤ r ≤ c−,

f (r), c− ≤ r ≤ c+,

f+(r), c+ ≤ r ≤ r+,

Φ = ϕ, 0 ≤ ϕ ≤ 2π,

Z = αz, 0 ≤ z ≤ l,
(1)
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Fig. 1 Cross section of
undeformed sandwich tube

�R− = f− (r) �eR + αz �eZ , r− ≤ r ≤ c−,
�R = f (r) �eR + αz �eZ , c− ≤ r ≤ c+,
�R+ = f+ (r) �eR + αz �eZ , c+ ≤ r ≤ r+.

(2)

Here r, ϕ, z are the cylindrical coordinates in the reference configuration (Lagrangian
coordinates), R, Φ, Z are the Eulerian cylindrical coordinates,

{�er , �eϕ, �ez
}
and

{�eR, �eΦ, �eZ } are orthonormal vector bases of Lagrangian and Eulerian coordinates,
respectively, α is the given compression ratio along the axis of the tube, f (r) and
f±(r) are the unknown functions which characterize the radial deformation of the
sandwich tube.

A proper orthogonal tensor of microrotation H, which determines the rotation of
the medium particle, is given for the micropolar core (c− ≤ r ≤ c+):

H = �er ⊗ �eR + �eϕ ⊗ �eΦ + �ez ⊗ �eZ . (3)

According to the expressions (1) and (2), the deformation gradients C−, C and C+
are (hereinafter the ′ denotes the derivative with respect to r ):

C = Grad �R = f ′ �er ⊗ �eR + f

r
�eϕ ⊗ �eΦ + α�ez ⊗ �eZ ,

C± = Grad �R± = f ′
±�er ⊗ �eR + f±

r
�eϕ ⊗ �eΦ + α�ez ⊗ �eZ ,

(4)

where Grad is the gradient operator in the Lagrangian coordinates.
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It follows from relations (3) and (4) that for the micropolar core (c− ≤ r ≤ c+)

the wryness tensor L is equal to zero (Eremeyev and Pietraszkiewicz 2012; Nikitin
and Zubov 1998; Pietraszkiewicz and Eremeyev 2009a, b)

L × I = − (GradH) · HT = 0

and stretch tensor Y is expressed as follows

Y = C · HT = f ′ �er ⊗ �er + f

r
�eϕ ⊗ �eϕ + α�ez ⊗ �ez . (5)

Here I is the identity tensor.
According to Eq. (4), the expressions of stretch tensorsU−,U+ andmacrorotation

tensors A−, A+ for the inner (r− ≤ r ≤ c−) and outer (c+ ≤ r ≤ r+) non-polar
coatings have the form (Lurie 1990)

U± = (
C± · CT

±
) 1

2 = f ′±�er ⊗ �er + f±
r �eϕ ⊗ �eϕ + α�ez ⊗ �ez,

A± = U−1
± · C± = �er ⊗ �eR + �eϕ ⊗ �eΦ + �ez ⊗ �eZ .

(6)

We assume that the elastic properties of the sandwich tube are described by themodel
of physically linear material. In the case of micropolar core, the specific strain energy
is a quadratic form of tensors Y − I and L (Eremeyev and Zubov 1994; Lakes 1995):

W (Y, L) = 1

2
λtr2 (Y − I) + 1

2
[μ + κ] tr

[
(Y − I) · (Y − I)T

]

+ 1

2
μtr (Y − I)2 + 1

2
γ1tr

2L + 1

2
γ2tr

(
L · LT) + 1

2
γ3tr L2

, (7)

while in the case of non-polar coatings, it is a quadratic form of tensor U− − I or
U+ − I, respectively (Lurie 1990):

W± (U±) = 1

2
λ±tr2 (U± − I) + μ±tr (U± − I)2 . (8)

Here λ, μ and λ±, μ± are the Lame parameters for the foam core and coatings,
respectively, κ , γ1, γ2, γ3 are micropolar elastic parameters of the foam.

It follows from the expressions (3), (5) and (7) that for the micropolar core the
Piola-type couple stress tensor G is equal to zero at the considered deformation of
sandwich tube

G = ∂W

∂L
· H = [

γ1 (tr L) I + γ2L + γ3L
T] · H = 0

and Piola-type stress tensor D is
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D = ∂W

∂Y
· H = [

λtr (Y − I) I + μ
(
YT − I

) + (μ + κ) (Y − I)
] · H

= [
λs + χ

(
f ′ − 1

)] �er ⊗ �eR +
[
λs + χ

(
f

r
− 1

)]
�eϕ ⊗ �eΦ

+ [λs + χ (α − 1)] �ez ⊗ �eZ ; s = f ′ + f

r
+ α − 3, χ = 2μ + κ. (9)

According to the relations (6) and (8), the expressions of Piola stress tensors D− and
D+ for non-polar coatings have the form:

D± = ∂W±
∂U±

· A± = (λ±tr (U± − I) I + 2μ± (U± − I)) · A±

= (
λ±s± + 2μ±

(
f ′
± − 1

)) �er ⊗ �eR +
(

λ±s± + 2μ±
(

f±
r

− 1

))
�eϕ ⊗ �eΦ

+ (λ±s± + 2μ± (α − 1)) �ez ⊗ �eZ ; s± = f ′
± + f±

r
+ α − 3. (10)

The equilibrium equations for the sandwich tube in the absence of mass forces
and moments are written as follows (Eremeyev and Zubov 1994; Zubov 1997)

DivD− = �0, r− ≤ r ≤ c−,

DivD = �0, DivG + (
CT · D

)
× = �0, c− ≤ r ≤ c+,

DivD+ = �0, c+ ≤ r ≤ r+,

(11)

where Div is the divergence in the Lagrangian coordinates. The symbol × represents
the vector invariant of a second-order tensor.

By solving Eqs. (11) while taking into account the relations (9) and (10), we find
the form of unknown functions f− (r), f (r) and f+ (r):

f (r) = C1r + C2

r
, f± (r) = C±

1 r + C±
2

r
. (12)

The constants C−
1 , C−

2 , C1, C2, C+
1 , C+

2 are determined from boundary conditions

�er · D±|r=r± = −p± J±�er · C−T
± , J± = detC±,

�er · D±|r=c± = �er · D|r=c± , f± (c±) = f (c±) ,
(13)

which express the action of hydrostatic pressure p− and p+ (referred to the unit area
of the deformed configuration) on the inner (r = r−) and outer (r = r+) surfaces of
the sandwich tube, respectively, as well as a rigid coupling of the foam core with the
inner (r = c−) and outer (r = c+) coatings.

Using the relations (4), (9), (10) and (12), the boundary conditions (13) are written
as a system of six linear algebraic equations
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(2λ + χ) C1− χ

c2±
C2−2 (λ±+μ±) C±

1 + 2μ±
c2±

C±
2 = (α−3) (λ±−λ)−2μ±+χ,

(2λ± + 2μ± + αp±) C±
1 + αp± − 2μ±

r2±
C±
2 = 2μ± − λ± (α − 3) ,

c±C1 + 1

c±
C2 − c±C±

1 − 1

c±
C±
2 = 0

by solving which we find the unknown constants. In this paper, the obtained general
expressions for the constants C−

1 , C−
2 , C1, C2, C+

1 , C+
2 are not presented due to their

cumbersomeness.

3 Perturbed State of Sandwich Tube

We assume that in addition to the above-described state of equilibrium for the sand-
wich tube, there is an infinitely close equilibrium state under the same external loads,
which is determined by the radius vector �R+η�v andmicrorotation tensorH−ηH× �ω
for the micropolar core, and by the radius vectors �R− + η�v− and �R+ + η�v+ for non-
polar coatings. Here η is a small parameter, �v−, �v and �v+ are vectors of additional
displacements, �ω is a linear incremental rotation vector, which characterizes the small
rotation of the micropolar medium particles, measured from the initial strain state.

The perturbed state of equilibrium for the sandwich tube is described by the
equations (Eremeyev and Zubov 1994; Green and Adkins 1960; Ogden 1997):

DivD•
− = �0,

DivD• = �0, DivG• + [
Grad�vT · D + CT · D•]

× = �0,
DivD•

+ = �0,
(14)

where D• and G• are the linearized Piola-type stress and couple stress tensors for
the foam core, D•

− and D•
+ are the linearized Piola stress tensors for the coatings.

In the case of physically linear micropolar material (7), the following relations are
valid for the first two tensors (Eremeyev and Zubov 1994):

D• =
(

∂W

∂Y

)•
· H + ∂W

∂Y
· H• = (

λ
(
tr Y•) I + (μ + κ) Y• + μY•T) · H

− (
λtr (Y − I) I + μ

(
YT − I

) + (μ + κ) (Y − I)
) · H × �ω, (15)

G• =
(

∂W

∂L

)•
· H + ∂W

∂L
· H• = (

γ1
(
tr L•) I + γ2L

• + γ3L
•T) · H

− (
γ1 (tr L) I + γ2L + γ3L

T) · H × �ω, (16)
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Y• = (Grad�v + C × �ω) · HT
, L• = Grad �ω · HT

Here Y• is the linearized stretch tensor and L• is the linearized wryness tensor for
the micropolar core.

Representations of the linearized Piola stress tensorsD•
− andD•

+ for the physically
linear non-polar material (8) have the form (Sheydakov 2011):

D•
± =

(
∂W±
∂U±

)•
· A± + ∂W±

∂U±
· A•

± = (
λ±

(
trU•

±
)

I + 2μ±U•
±
) · A±

+ (λ±tr (U± − I) I + 2μ± (U± − I))·U−1
± ·(Grad �v±−U•

± · A±
)
. (17)

Here U•
− and U•

+ are the linearized stretch tensors for coatings, which can be
expressed in terms of the linearized Cauchy-Green deformation tensors G•

− and
G•

+:

G•
± = (U± · U±)

• = U•
± · U± + U± · U•

±,

G•
± = (

C± · CT
±
)• = Grad�v± · CT

± + C± · (Grad�v±)
T
.

The linearized boundary conditions on the inner (r = r−) and outer (r = r+)

surfaces of the tube, as well as on the interfaces between the coatings and the foam
core (r = c±) are written as follows (Sheydakov 2010, 2011):

�er · D•
±
∣∣
r=r±

= −p± J±�er · C−T
± · [

(div �v±)I − grad �vT±
]
,

�er · D•
±
∣∣
r=c±

= �er · D•∣∣
r=c±

�er · G•∣∣
r=c±

= �0, �v±|r=c± = �v|r=c± ,

(18)

where div and grad are the divergence and gradient in the Eulerian coordinates.
We assume that there is no friction at the ends of the sandwich tube (z = 0, l) and

constant normal displacements are given. This leads to the following linearized end
conditions:

• for the inner coating (r− ≤ r ≤ c−)

�ez · D•
− · �eR

∣∣
z=0,l = �ez · D•

− · �eΦ

∣∣
z=0,l = �ez · �v−|z=0,l = 0, (19)

• for the micropolar core (c− ≤ r ≤ c+)

�ez · D• · �eR

∣∣
z=0,l = �ez · D• · �eΦ

∣∣
z=0,l = �ez · �v|z=0,l = 0,

�ez · G• · �eZ

∣∣
z=0,l = �er · �ω|z=0,l = �eϕ · �ω|z=0,l = 0,

(20)

• for the outer coating (c+ ≤ r ≤ r+)

�ez · D•
+ · �eR

∣∣
z=0,l = �ez · D•

+ · �eΦ

∣∣
z=0,l = �ez · �v+|z=0,l = 0. (21)
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The vectors of additional displacements �v−, �v, �v+ and vector of incremental rotation
�ω in the basis of Eulerian cylindrical coordinates are written as:

�v = vR �eR + vΦ �eΦ + vZ �eZ ,

�v± = v±
R �eR + v±

Φ �eΦ + v±
Z �eZ , (22)

�ω = ω R �eR + ωΦ �eΦ + ω Z �eZ .

To solve the linearized boundary-value problem (14), (18)–(21) for a system of
twelve partial differential equations, we use the following substitutions

vR = VR (r) cos nϕ cosβz, v±
R = V ±

R (r) cos nϕ cosβz,

vΦ = VΦ (r) sin nϕ cosβz, v±
Φ = V ±

Φ (r) sin nϕ cosβz, (23)

vZ = VZ (r) cos nϕ sin βz, v±
Z = V ±

Z (r) cos nϕ sin βz,

ωR = ΩR (r) sin nϕ sin βz,

ωΦ = ΩΦ (r) cos nϕ sin βz, (24)

ωZ = ΩZ (r) sin nϕ cosβz,

β = πm/ l, m, n = 0, 1, 2, . . .

that lead to the separation of variables ϕ and z in this problem and allow to satisfy the
linearized end conditions (19)–(21). As a result, the stability analysis of the sandwich
tube with foam core is reduced to solving a linear homogeneous boundary-value
problem for a system of twelve ordinary differential equations. A detailed derivation
of this equations can be found in the Appendix.

4 Numerical Results

In the present paper, we have carried out the stability analysis for the sandwich tube
with identical inner and outer coatings (h− = h+, λ− = λ+, μ− = μ+). At that it
was assumed that the tube core is made of dense polyurethane foam. The micropolar
elastic parameters for this material have been previously identified by Lakes (for
details, see Lakes 1986, 1995):

λ = 797.3 MPa, μ = 99.67 MPa, κ = 8.67 MPa,

γ1 = −26.65 N, γ2 = 45.3 N, γ3 = 34.65 N.

Two coating materials were considered–a less stiff polycarbonate

λ± = 2.3 × 103 MPa, μ± = 0.8 × 103 MPa
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and a more stiff aluminum

λ± = 61.9 × 103 MPa, μ± = 26.2 × 103 MPa.

For convenience, the following dimensionless parameters were introduced:

• length-to-radius ratio l∗ = l/r+;
• thickness-to-radius ratio H∗ = (r+ − r−)/r+;
• relative axial compression δ = 1 − α;
• relative internal pressure p∗− = p−/μ;
• relative external pressure p∗+ = p+/μ;
• relative thickness of inner coating h∗− = h−/(r+ − r−) · 100%;
• relative thickness of outer coating h∗+ = h+/(r+ − r−) · 100%;
• relative radius r∗+ = r+/ lb.

Here, the characteristic length for bending lb is the engineering constant ofmicropolar
material (Eringen 1999; Lakes 1995). It is expressed through the elastic parameters
of physically linear model (7) as follows

lb =
√

γ2

2 (2μ + κ)

and for the dense polyurethane foam lb = 0.33 mm.
By numerical solution (Zubov and Sheidakov 2008) of the linearized boundary-

value problem described in Sect. 3 we have found the critical curves, corresponding
to the various buckling modes of the sandwich tube with micropolar core. Based on
the analysis of these curves, the stability regions were constructed in the planes of
loading parameters (relative axial compression δ and relative internal p∗− or external
p∗+ pressure) for tubes of various sizes. For all presented results, the length-to-radius
ratio of the undeformed tube is 40 (l∗ = 40), the wall thickness is 10% of the tube
radius (H∗ = 0.1).

To study the size effect on the equilibriumbifurcation of sandwich tubeswith foam
core, we have carried out the stability analysis for tubes having the same proportions
(i.e. thickness-to-radius ratio H∗, length-to-radius ratio l∗ and relative thicknesses
of inner h∗− and outer h∗+ coatings are the same), but different overall size. In classic
elasticity such tubes become unstable under the same strains. But, according to
the obtained results, for the sandwich tubes with micropolar core the situation is
different. In Figs. 2 and 3 the stability regions (boundaries of the stability regions)
are presented for the sandwich tubes with very thin

(
h∗± = 1%

)
polycarbonate and

aluminum coatings in the case of internal (p∗+ = 0) and external (p∗− = 0) pressure,
respectively. The relative radius r∗+ has been used as the size (scale) parameter of
the tubes at fixed aspect ratios H∗, l∗, h∗− and h∗+. It is evident from figures that
tubes become more stable with a decrease in size. This size effect is very significant
for small tubes

(
r∗+ < 5

)
, but negligible for large ones. For example, the stability

boundaries for r∗+ = 5 and r∗+ = 10 differ very little on graphs. Moreover, according
to the obtained results, the stability regions for the larger sandwich tubes

(
r∗+ ≥ 10

)
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Fig. 2 Size effect on stability of sandwich tubes with very thin coatings in case of internal pressure

Fig. 3 Size effect on stability of sandwich tubes with very thin coatings in case of external pressure

are virtually the same, and coincide with the stability region for the sandwich tube
with non-polar core,whose elastic properties are described by themodel of physically
linear material (8).

To analyze the influence of coatings on the loss of stability, we compared the
stability regions for sandwich tubes with coatings of different thickness. In Figs. 4
and 5 the stability boundaries are constructed for the tubes with polycarbonate and
aluminum coatings in the case of internal pressure (p∗+ = 0). The stability regions
for the same tubes in the case of external pressure (p∗− = 0) are shown in Figs. 6 and
7, respectively. The results are presented for two different tube sizes: r∗+ = 1 and
r∗+ = 5. Through the comparison, we have determined that the sandwich tubes with
thinner and less stiff coatings are more stable with respect to the axial compression,
while tubes with thicker and stiffer coatings are more stable with respect to the
internal and external pressure. This is more evident for small tubes (r∗+ < 5). For
large tubes under simple axial compression (p∗− = 0, p∗+ = 0) the influence of
coatings thickness on the stability becomes less significant. Due to this, for example,
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Fig. 4 Influence of polycarbonate coatings on sandwich tube stability in case of internal pressure

Fig. 5 Influence of aluminum coatings on sandwich tube stability in case of internal pressure

Fig. 6 Influence of polycarbonate coatings on sandwich tube stability in case of external pressure

the large sandwich tubes (r∗+ ≥ 5) with thicker coatings are generally more stable in
the case of internal pressure (see Figs. 4 and 5).
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Fig. 7 Influence of aluminum coatings on sandwich tube stability in case of external pressure

5 Conclusion

In the framework of bifurcation approach, we have studied the stability of a sandwich
tube with a micropolar core. For the model of physically linear material, a system
of linearized equilibrium equations was derived, which describes the behavior of a
sandwich tube in a perturbed state. In the case of a tube with polyurethane foam core
and polycarbonate or aluminum coatings the stability regions were constructed in the
planes of loading parameters. Based on these results, we have found that the sandwich
tubes with foam core become more stable with a decrease in size. Additionally, it
was determined that the tubes with thinner and less stiff coatings are more stable
with respect to the axial compression, while tubes with thicker and stiffer coatings
are more stable with respect to the internal and external pressure.

Acknowledgments This work was supported by the Russian Science Foundation (grant number
14-19-01676).

Appendix: Derivation of Neutral Equilibrium Equations

With respect to the representations (3), (4), (6) and (22), the expressions for the
linearized stretch tensors Y•, U•

− and U•
+, and wryness tensor L• have the form:
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Y• =
(

∂vΦ

∂r
− f ′ωZ

)
�er ⊗ �eϕ + 1

r

(
∂vR

∂ϕ
− vΦ + f ωZ

)
�eϕ ⊗ �er

+
(

∂vZ

∂r
+ f ′ωΦ

)
�er ⊗ �ez +

(
∂vR

∂z
− αωΦ

)
�ez ⊗ �er

+ 1

r

(
∂vZ

∂ϕ
− f ωR

)
�eϕ ⊗ �ez +

(
∂vΦ

∂z
+ αωR

)
�ez ⊗ �eϕ

+ ∂vR

∂r
�er ⊗ �er + 1

r

(
∂vΦ

∂ϕ
+ vR

)
�eϕ ⊗ �eϕ + ∂vZ

∂z
�ez ⊗ �ez, (25)

U•
± = ∂v±

R

∂r
�er ⊗ �er + 1

r

(
∂v±

Φ

∂ϕ
+ v±

R

)
�eϕ ⊗ �eϕ + ∂v±

Z

∂z
�ez ⊗ �ez

+ 1

r f ′± + f±

(
f ′
±

(
∂v±

R

∂ϕ
− v±

Φ

)
+ f±

∂v±
Φ

∂r

) (�er ⊗ �eϕ + �eϕ ⊗ �er
)

+ 1

f ′± + α

(
f ′
±

∂v±
R

∂z
+ α

∂v±
Z

∂r

)
(�er ⊗ �ez + �ez ⊗ �er )

+ 1

f± + αr

(
f±

∂v±
Φ

∂z
+ α

∂v±
Z

∂ϕ

) (�ez ⊗ �eϕ + �eϕ ⊗ �ez
)
, (26)

L• = ∂ωR

∂r
�er ⊗ �er + 1

r

(
∂ωΦ

∂ϕ
+ ωR

)
�eϕ ⊗ �eϕ + ∂ωZ

∂z
�ez ⊗ �ez

+ ∂ωΦ

∂r
�er ⊗ �eϕ + 1

r

(
∂ωR

∂ϕ
− ωΦ

)
�eϕ ⊗ �er + ∂ωZ

∂r
�er ⊗ �ez

+ ∂ωR

∂z
�ez ⊗ �er + 1

r

∂ωZ

∂ϕ
�eϕ ⊗ �ez + ∂ωΦ

∂z
�ez ⊗ �eϕ. (27)

According to the relations (3), (5), (6), (15)–(17), (22), (25)–(27), the linearized
Piola-type stress tensorD• and couple stress tensorG•, and the linearized Piola stress
tensors D•

− and D•
+ are written as follows:

D• =
[
(ζ + τ)

∂vR

∂r
+ λ

r

(
∂vΦ

∂ϕ
+ vR

)
+ λ

∂vZ

∂z

]
�er ⊗ �eR

+
[
τ

∂vΦ

∂r
+ μ

r

(
∂vR

∂ϕ
− vΦ

)
+ B3ωZ

]
�er ⊗ �eΦ

+
[
τ

∂vZ

∂r
+ μ

∂vR

∂z
− B2ωΦ

]
�er ⊗ �eZ +

[
τ

∂vR

∂z
+ μ

∂vZ

∂r
+ B2ωΦ

]
�ez ⊗ �eR

+
[
τ

r

(
∂vR

∂ϕ
− vΦ

)
+ μ

∂vΦ

∂r
− B3ωZ

]
�eϕ ⊗ �eR
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+
[
λ

∂vR

∂r
+ ζ + τ

r

(
∂vΦ

∂ϕ
+ vR

)
+ λ

∂vZ

∂z

]
�eϕ ⊗ �eΦ

+
[
τ

r

∂vZ

∂ϕ
+ μ

∂vΦ

∂z
+ B1ωR

]
�eϕ ⊗ �eZ +

[
τ

∂vΦ

∂z
+ μ

r

∂vZ

∂ϕ
− B1ωR

]
�ez ⊗ �eΦ

+
[
λ

∂vR

∂r
+ λ

r

(
∂vΦ

∂ϕ
+ vR

)
+ (ζ + τ)

∂vZ

∂z

]
�ez ⊗ �eZ , (28)

G• =
[
(γ + γ2)

∂ωR

∂r
+ γ1

r

(
∂ωΦ

∂ϕ
+ ωR

)
+ γ1

∂ωZ

∂z

]
�er ⊗ �eR

+
[
γ2

∂ωΦ

∂r
+ γ3

r

(
∂ωR

∂ϕ
− ωΦ

)]
�er ⊗ �eΦ

+
[
γ2

∂ωZ

∂r
+ γ3

∂ωR

∂z

]
�er ⊗ �eZ +

[
γ2

∂ωR

∂z
+ γ3

∂ωZ

∂r

]
�ez ⊗ �eR

+
[
γ2

r

(
∂ωR

∂ϕ
− ωΦ

)
+ γ3

∂ωΦ

∂r

]
�eϕ ⊗ �eR

+
[
γ1

∂ωR

∂r
+ γ + γ2

r

(
∂ωΦ

∂ϕ
+ ωR

)
+ γ1

∂ωZ

∂z

]
�eϕ ⊗ �eΦ

+
[
γ2

r

∂ωZ

∂ϕ
+ γ3

∂ωΦ

∂z

]
�eϕ ⊗ �eZ +

[
γ2

∂ωΦ

∂z
+ γ3

r

∂ωZ

∂ϕ

]
�ez ⊗ �eΦ

+
[
γ1

∂ωR

∂r
+ γ1

r

(
∂ωΦ

∂ϕ
+ ωR

)
+ (γ + γ2)

∂ωZ

∂z

]
�ez ⊗ �eZ , (29)

D•
± =

[
(ζ± + μ±)

∂v±
R

∂r
+ λ±

r

(
∂v±

Φ

∂ϕ
+ v±

R

)
+ λ±

∂v±
Z

∂z

]
�er ⊗ �eR

+
[(

μ± + B±
3

) ∂v±
Φ

∂r
+ μ± − B±

3

r

(
∂v±

R

∂ϕ
− v±

Φ

)]
�er ⊗ �eΦ

+
[(

μ± + B±
2

) ∂v±
Z

∂r
+ (

μ± − B±
2

) ∂v±
R

∂z

]
�er ⊗ �eZ

+
[
μ± + B±

3

r

(
∂v±

R

∂ϕ
− v±

Φ

)
+ (

μ± − B±
3

) ∂v±
Φ

∂r

]
�eϕ ⊗ �eR

+
[
λ±

∂v±
R

∂r
+ ζ± + μ±

r

(
∂v±

Φ

∂ϕ
+ v±

R

)
+ λ±

∂v±
Z

∂z

]
�eϕ ⊗ �eΦ

+
[
μ± + B±

1

r

∂v±
Z

∂ϕ
+ (

μ± − B±
1

) ∂v±
Φ

∂z

]
�eϕ ⊗ �eZ

+
[(

μ± + B±
2

) ∂v±
R

∂z
+ (

μ± − B±
2

) ∂v±
Z

∂r

]
�ez ⊗ �eR
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+
[(

μ± + B±
1

) ∂v±
Φ

∂z
+ μ± − B±

1

r

∂v±
Z

∂ϕ

]
�ez ⊗ �eΦ

+
[
λ±

∂v±
R

∂r
+ λ±

r

(
∂v±

Φ

∂ϕ
+ v±

R

)
+ (ζ± + μ±)

∂v±
Z

∂z

]
�ez ⊗ �eZ . (30)

Here the following notations are used:

ζ = λ + μ, ζ± = λ± + μ±, τ = μ + κ, γ = γ1 + γ3, ξ = n2 + r2β2 + 1,

B1 = μ

(
f

r
+ α

)
+ λs − χ, B±

1 = μ± + (λ±s± − 2μ±) r

f± + αr
,

B2 = μ
(

f ′ + α
) + λs − χ, B±

2 = μ± + λ±s± − 2μ±
f ′± + α

,

B3 = μ

(
f ′ + f

r

)
+ λs − χ, B±

3 = μ± + (λ±s± − 2μ±) r

r f ′± + f±
.

By taking into account the expressions (4), (9), (22)–(24), (28)–(30), we derive a
neutral equilibrium equations (14):

(ζ + τ) V ′′
R + ζ + τ

r
V ′

R − ζ + τξ

r2
VR + nζ

r
V ′

Φ − n (ζ + 2τ)

r2
VΦ

+ βζ V ′
Z + βB2ΩΦ − nB3

r
ΩZ = 0,

τ V ′′
Φ − nζ

r
V ′

R − n (ζ + 2τ)

r2
VR + τ

r
V ′

Φ − ζn2 + τξ

r2
VΦ − nβζ

r
VZ

− βB1ΩR + B ′
3ΩZ + B3Ω

′
Z = 0,

τ V ′′
Z − βζ V ′

R − βζ

r
VR − nβζ

r
VΦ + τ

r
V ′

Z −
(

ζβ2 + ξ − 1

r2
τ

)
VZ

+ nB1

r
ΩR − B2Ω

′
Φ −

(
B ′
2 + B2

r

)
ΩΦ = 0,

(γ + γ2)

(
Ω ′′

R + Ω ′
R

r

)
−

[
γ + γ2ξ

r2
−

(
f

r
+ α

)
B1

]
ΩR − βB1VΦ

+ nB1

r
VZ + n (γ + 2γ2)

r2
ΩΦ − nγ

r
Ω ′

Φ − βγΩ ′
Z = 0,

γ2Ω
′′
Φ + γ2

r
Ω ′

Φ −
[
γ n2 + γ2ξ

r2
− (

f ′ + α
)

B2

]
ΩΦ + B2V ′

Z + βB2VR

+ nγ

r
Ω ′

R + n (γ + 2γ2)

r2
ΩR − nβγ

r
ΩZ = 0, (31)
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γ2Ω
′′
Z −

[
γβ2 + ξ − 1

r2
γ2 − B3

(
f ′ + f

r

)]
ΩZ − B3

(
n

r
VR + V ′

Φ + VΦ

r

)

+ γ2

r
Ω ′

Z + βγ

(
Ω ′

R + ΩR

r
− n

r
ΩΦ

)
= 0,

(ζ± + μ±)

[(
V ±

R

)′′ +
(
V ±

R

)′

r

]
− 1

r2
(
ζ± + ξμ± + β2r2B±

2 + n2B±
3

)
V ±

R

+ n

r

(
ζ± − B±

3

) (
V ±

Φ

)′ − n

r2
(
ζ± + 2μ± + B±

3

)
V ±

Φ + β
(
ζ± − B±

2

) (
V ±

Z

)′ = 0,

(
μ± + B±

3

) [(
V ±

Φ

)′′ +
(
V ±

Φ

)′

r

]
− 1

r2
(
n2ζ± + ξμ± + B±

3 + β2r2B±
1

)
V ±

Φ

− n

r

(
ζ± − B±

3

) (
V ±

R

)′ − n

r2
(
ζ± + 2μ± + B±

3

)
V ±

R − nβ

r

(
ζ± − B±

1

)
V ±

Z = 0,

(
μ± + B±

2

) (
V ±

Z

)′′ +
(

μ±
r

+ 1

f ′± + α

[
B±
1

f± + αr

r2
− B±

2 f ′′
±

]) (
V ±

Z

)′

− β
(
ζ± − B±

2

) (
V ±

R

)′ − β

(
ζ±
r

− 1

f ′± + α

[
B±
1

f± + αr

r2
− B±

2 f ′′
±

])
V ±

R

− nβ

r

(
ζ± − B±

1

)
V ±

Φ −
([

ζ± + μ±
]
β2 + n2

r2
[
μ± + B±

1

])
V ±

Z = 0.

Given the substitutions (23) and (24), the expressions for the linearized boundary
conditions (18) take the form:

• on the inner and outer surfaces of the tube (r = r±)

(ζ±+μ±)
(
V ±

R

)′+ λ±+αp±
r±

(
V ±

R +nV ±
Φ

)+β

(
λ±+ f±

r±
p±

)
V ±

Z = 0,

αp± + B±
3 − μ±

r±

(
nV ±

R + V ±
Φ

) + (
μ± + B±

3

) (
V ±

Φ

)′ = 0, (32)

β

(
f±
r±

p± + B±
2 − μ±

)
V ±

R + (
μ± + B±

2

) (
V ±
Z

)′ = 0,

• on the interfaces between the coatings and the foam core (r = c±)

(ζ± + μ±)
(
V ±

R

)′ + λ±
c±

(
V ±

R + nV ±
Φ

) + βλ±V ±
Z − (ζ + τ) V ′

R

− λ

c±
(VR + nVΦ) − βλVZ = 0,

B±
3 − μ±

c±

(
nV ±

R + V ±
Φ

) + (
μ± + B±

3

) (
V ±

Φ

)′ − τ V ′
Φ

+ μ

c±
(nVR + VΦ) − B3ΩZ = 0, (33)
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β
(
B±
2 − μ±

)
V ±

R + (
μ± + B±

2

) (
V ±
Z

)′ + μβVR − τ V ′
Z + B2ΩΦ = 0,

(γ + γ2)Ω ′
R + γ1

c±
(ΩR − nΩΦ) − γ1βΩZ = 0,

γ3

c±
(nΩR − ΩΦ) + γ2Ω

′
Φ = 0, γ3βΩR + γ2Ω

′
Z = 0,

vR − v±
R = 0, vΦ − v±

Φ = 0, vZ − v±
Z = 0.
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Frequency-Dependent Attenuation
and Phase Velocity Dispersion
of an Acoustic Wave Propagating
in the Media with Damages

Anatoli Stulov and Vladimir I. Erofeev

Abstract In frame of the self-consistent mathematical model, which includes the
dynamics of a material and the state of its defects, the particular qualities of acoustic
wave propagation in the material with damage is considered. In this study a consti-
tutive equation of the damaged medium is derived and the similarity between the
models for damaged materials and the medium with memory is confirmed. The dis-
persion analysis of the model is carried out, and it is shown that the damage of the
material gives rise to frequency-dependent attenuation and anomalous dispersion of
phase velocity of acoustic wave propagating through that material. This makes it pos-
sible to estimate the damage of the material by means of a nondestructive acoustic
method.

Keywords Medium with damages · Acoustic wave propagation · Dispersion
analysis · Frequency-dependent attenuation · Anomalous dispersion

1 Introduction

Today, the mechanics of a damaged continuum is intensively developed by many
authors. The first works in this field were the fundamental studies by L.M. Kachanov,
which are summarized in his monograph (Kachanov 1986), and the detailed investi-
gations and analysis by Yu.N. Rabotnov that are generalized in Rabotnov (1969).
The significance of these pioneering works, which presently are recognized as
classical, consists in the possibility of using a unified approach for description of
the damage of elastic and elasto-plastic bodies.
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The damage is usually understood as a reduction of an elastic response of the
body due to decreasing of the effective area, through which the internal forces are
transmitting from one part of the body to another. This phenomenon is caused by the
appearance and spreading of the scattered field of microdefects (the microcracks in
the case of elasticity, the dislocations in the case of plasticity, the micropores in the
case of creep, and the surface microcracks in the case of fatigue, Maugin 1992).

The damage, i.e. the degradation of the mechanical properties of a solid material,
cannot be measured directly in the same manner as, for example, velocity, force, or
temperature. The damage can be detected indirectly only by analyzing the response
of the elastic structure on the various external impacts. According to experimental
knowledge, the presence of a damage field inside a solid material can be observed
also by changing of physical features of the structure. For example, it may be the
decreasing of velocity of ultrasonic signal propagation (Zuev et al. 1999; Hirao
et al. 2000; Wang et al. 1998), a decrease in the Young’s modulus (‘the modulus
defect’) (Klepko et al. 2007), a decrease inmaterial density (‘loosening’) (Volkov and
Mironov 2005), a hardness change (Collins 1993), a decrease in the stress amplitude
under the cyclic loading (Makhutov 1981; Romanov 1988), and an acceleration of
the tertiary creep (Berezina and Mints 1976).

The purpose of the present study is the modeling of the process of acoustic wave
propagation through the damaged material, and estimation of influence of damage
on the phase velocity and attenuation of that wave.

2 Self-Consistent Model for Damage Description

In accordance with conventional assumptions, the measure of damage under defor-
mation is taken to be a scalar damage parameter ψ(x, t) > 0 that characterizes the
relative density of microdefects uniformly dispersed in a unit volume. This parame-
ter is zero in the absence of damage and close to one at the instant of fracture. The
process of the damage gain in the structure under study is calculated numerically
step by step by solving the kinetic equation of damage at every stage of loading.
This procedure is continued until the damage parameter ψ(x, t) reaches an initially
prescribed limiting value, which is close to one.

Generally, in mechanics of deformed solids, the dynamic problems and the prob-
lem of defects accumulation are considered separately. In the development of such
approach, the usual practice is to postulate the relationship between the velocity of
elastic wave and the value of damage by some kind of dependence in advance, and
after that, it is assumed that the constant coefficients at this relation can be established
on the basis of experimental data.

Usually Uglov et al. (2009), the phase velocityVph(ω) of propagating wave and its
attenuation α(ω) are chosen in the power polynomial form as functions of frequency
ω, and as a linear functions of damage ψ as
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Vph(ω) = C0(1 − h1ω − h2ψω2), (1)

α(ω) = (h3 + h4ψ)ω4, (2)

where C0 = √
E/ρ is the velocity of the longitudinal elastic wave propagating in

the material in the absence of defects, E is the Young’s modulus, ρ is the density
of the material, and h1−4 are the constant coefficients, which must be determined
experimentally.

The evolution of damage is described by the kinetic equation derived in Volkov
and Korotkikh (2008) in the form

dψ

dt
= f (σ, ψ), (3)

whereσ is the stress due to the external impact. Inmost cases, the function f is approx-
imated by a linear function, or, in some cases, by a power polynomial dependence
(Volkov andKorotkikh 2008). Although this approach has undoubted advantage such
as simplicity, it has also some imperfections, which are typical for any approach that
is not based on the physical models of the processes and systems.

Another novel method of materials with damage examination is presented in
Erofeev and Nikitina (2010), Erofeev et al. (2010). In these papers the process of
propagation of a longitudinal acoustic wave along a rod is considered. It is also
assumed that the rod is subjected to the static or cyclic tests, and during the process
of loading the damage may accumulate in the rod’s material.

This work differs significantly from previous studies. In Erofeev and Nikitina
(2010), Erofeev et al. (2010), the authors propose the idea that the problem under
consideration is a self-consistent problem, and therefore, in addition to the damage
evolution Eq. (3), which can be presented in the form

∂ψ

∂t
+ 1

τ
ψ = β2E

∂u

∂x
, (4)

an additional equation describing the dynamics of the rod

∂2u

∂t2
− C2

0
∂2u

∂x2
+ β1

∂ψ

∂x
= 0, (5)

must be taken into account. Here we denote the particle displacement at the rod
midline by u(x, t), and the constants τ, β1 and β2 characterize the relations between
the cyclic process of the rod loading and the speed of the damage accumulation.

Equation (4) may be rewritten in an equivalent form as

ψ(x, t) = β2E

t∫
0

∂u

∂x
(x, ξ)e(ξ−t)/τdξ = β2E R(t) ∗ ∂u

∂x
(x, t), (6)
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where the sign ∗ denotes the convolution sign, and R(t) is the relaxation function
given by

R(t) = e−t/τ . (7)

Equation (6) describes the process of damage growth as a function of the strain
(ε = ∂u/∂x) history, and one can state that the constant τ > 0 is the relaxation time.
Here we assume that the history of the damage appearance starts at t = 0.

From Eq. (6), it follows that at the beginning of the process, if t � τ , there are
no defects (ψ = 0) in the rod material at all. In the opposite case, if t � τ , from Eq.
(6) one can obtain the dependence describing the process of damage growth for the
case of slow changing of strain in the form

ψ = τβ2E
∂u

∂x
. (8)

Now, using Eqs. (5), (6) we can write

ρ
∂2u

∂t2
= E

∂

∂x

(
∂u

∂x
− ρβ1β2R ∗ ∂u

∂x

)
. (9)

Taking into account the classical equation of motion given by

ρ
∂2u

∂t2
= ∂σ

∂x
, (10)

we can derive the constitutive equation of the media with damage in the form

σ = E(1 − ρβ1β2R∗)
∂u

∂x
= E

⎡
⎣∂u

∂x
− ρβ1β2

t∫
0

∂u

∂x
(x, ξ)e(ξ−t)/τdξ

⎤
⎦ . (11)

Materials described by this equation for which the exerted stress is determined by
the history of the deformation are “materials with memory”.

As indicated by Rabotnov (1969), a model of material with memory may be
obtained by means of replacing constant elastic parameters of solids by time-
dependent operators. So for the case of material with damage, the Young’s modulus
is now not a constant, but an operator

E0(t) = E(1 − ρβ1β2R∗), (12)

and thus the constitutive equation (11) of the media with damage one can rewrite in
compact form as

σ(ε) = E0(t)ε. (13)
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From Eq. (13), it follows that if t � τ , then we obtain the constitutive equation for
the fast loading in the form

σ = E
∂u

∂x
= Ed

∂u

∂x
. (14)

Here the constant Ed = E is the dynamic Young’s modulus.
In the opposite case, if t � τ , then we obtain the constitutive equation, which is

valid for the slow loading

σ = Ed(1 − τρβ1β2)
∂u

∂x
= δEd

∂u

∂x
= Es

∂u

∂x
, (15)

where the quantity Es = δEd is the static Young’s modulus of the material, and
parameter δ = 1 − τρβ1β2 characterizes the material damage.

Due to the evident inequality Ed > Es > 0, parameter 0 < δ ≤ 1. The value of
parameter δ = 1 denotes the absence of damage, and the value of this parameter δ is
close to zero at the instant of fracture.

We can notice that Eqs. (4) and (5) can be reduced to a single one by eliminating
the damage parameterψ(x, t). In terms of displacement u(x, t), it leads to an equation
in the following form

∂2u

∂t2
− δC2

0
∂2u

∂x2
+ τ

∂3u

∂t3
− τC2

0
∂3u

∂x2∂t
= 0. (16)

Dimensionless form of the Eq. (16) is obtained by using the non-dimensional
variables that are introduced by relations

U = u/τC0, X = √
δx/τC0, T = δt/τ. (17)

Thus Eq. (16) in terms of non-dimensional displacement variable U(X, T) takes the
following form (Kartofelev and Stulov 2014)

∂2U

∂T 2
− ∂2U

∂X2
+ δ

∂3U

∂T 3
− ∂3U

∂X2∂T
= 0, (18)

and describes acoustic wave propagation in the medium with damage.

3 Dispersion Relations

The fundamental solution of Eq. (18) has the form of traveling waves

U(X, T) = U0 e
iκX−iωT , (19)
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where i is the imaginary unit, κ is the wavenumber, ω is the angular frequency, and
U0 is the amplitude. The dispersion law Φ(κ, ω) = 0 for Eq. (18) is defined by
relation

iδω3 − ω2 − iκ2ω + κ2 = 0. (20)

In the case of boundary value problems the general solution of Eq. (18) has the
following form

U(X, T) = 1

2π

∞∫
−∞

Θ(ω)eiκ(ω)X−iωTdω, (21)

whereΘ(ω) is the Fourier-transform of the boundary value of disturbance prescribed
at X = 0

Θ(ω) =
∞∫

−∞
U(0, T)eiωTdT . (22)

In case of Cauchy problem the general solution of Eq. (18) has the following form

U(X, T) = 1

2π

∞∫
−∞

χ(κ)eiκX−iω(κ)Tdκ, (23)

where χ(κ) is the Fourier-transform of initial disturbance prescribed at T = 0

χ(κ) =
∞∫

−∞
U(X, 0)eiκXdX. (24)

In general case κ = κ(ω) and ω = ω(κ) are the complex quantities and can be
derived from dispersion relation (20). In order to provide the dispersion analysis in
context with a boundary value problem we rewrite wavenumber κ(ω) in the form

κ(ω) = k(ω) + iλ(ω), (25)

where k = �(κ) and λ = 	(κ). Using this notation, expression (19) can be rewritten
as follows

U(X, T) = U0e
i(k+iλ)X−iωT = e−λXU0e

ikX−iωT . (26)

It is clear that for positive values of λ we can observe the exponentially decaying
wave that propagates along the positive direction of the space axis. In other words the
spectral components k(ω) = �(κ) decay exponentially as x, t → ∞ for λ(ω) > 0.
On the other hand, if λ(ω) < 0, then the amplitudes of the spectral components grow
exponentially as they propagate further along the positive direction of the x-axis. In
the latter case the solution of Eq. (18) becomes unstable for T � 0.
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4 Dispersion Analysis

As discussed above, in order to study thewave propagation along the x-axis one needs
to solve the dispersion relation (20) against wavenumber κ . This solution takes the
form

κ(ω) = ω
√
1 − iδω√
1 − iω

. (27)

For real values of k and λ the dispersion relation (20) can be rewritten as follows

k2 + 2ikλ − λ2 − ik2ω + 2kλω + iλ2ω − ω2 + iδω3 = 0. (28)

In order to study real and imaginary parts separately, the system of equations in the
form {

k2 − λ2 + 2kλω − ω2 = 0,

2kλ − ω(k2 − λ2) + δω3 = 0
(29)

is solved and analyzed. Solutions with respect to k and λ are

k(ω) = LM
(√

1 + M2 − 1
)−1/2

, (30)

λ(ω) = L
(√

1 + M2 − 1
)1/2

, (31)

where

L = ω

√
1 + δω2

2(1 + ω2)
, M = (1 − δ)ω

1 + δω2
. (32)

The frequency dependencies k(ω) = �(κ) and λ(ω) = 	(κ) of dispersion rela-
tion (20) are displayed in Fig. 1 for the various values of the material parameter δ.
Parameter δ can have values on the interval δ = [0, 1].

Fig. 1 Dispersion relations k(ω) and λ(ω) for various values of parameter δ in range [0.0, 1.0]
with step 0.1
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If δ = 1, then from (30) and (31) one can find

k(ω) = ω, λ(ω) = 0. (33)

These relations correspond to the ideal elastic material without damage, and in which
the wave propagates without attenuation.

In case of ω → ∞ it is easy to see that k(ω) → ω
√

δ and that

lim
ω→∞ λ(ω) = 1 − δ

2
√

δ
. (34)

For large frequencies, the exponential decay constantλdepends only on the parameter
δ.

The phase velocity is defined as vph(ω) = ω/k, and it takes the following general
form

vph =
√
2(1 + ω2)(N − δω2 − 1)

(1 − δ)ω
, (35)

where
N =

√
(1 + ω2)(1 + δ2ω2). (36)

The frequency dependence vph(ω) for various values of parameter δ is shown in
Fig. 2.

In case of δ = 1, the phase velocity becomes vph(ω) = 1 (cf. relationship (33)).
For large frequencies, the phase velocity has a limit

lim
ω→∞ vph(ω) = 1√

δ
. (37)

The group velocity, which is defined as vgr(ω) = dω/dk = (dk/dω)−1 takes in
this case the following general form

Fig. 2 Phase velocity as a
function of frequency for
various values of the
parameter δ in range [0.0,
1.0] with step 0.1
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vgr = 2(1 + ω2)2
√
2(1 + δ2ω2)

(
N − δω2 − 1

)3/2
ω(1 − δ)[(1 + 3δ2)ω4 − (2N + 2δN − 3δ2 − 5)ω2 − 4(N − 1)] , (38)

where N is defined by relation (36). The frequency dependence vgr(ω) for various
values of the parameter δ is presented in Fig. 3.

In case of δ = 1, the group velocity vgr(ω) = 1 (cf. relationship (33)). For large
frequencies the group velocity has the same limit as the phase velocity did

lim
ω→∞ vgr(ω) = 1√

δ
. (39)

The essential difference between the behavior of phase and group velocities is that
the phase velocity is a monotonic function of frequency, while the group velocity
has a maximum. The maximum of different values of δ are located on the dashed
line shown in Fig. 4.

Comparison of phase and group velocities for a single value of δ is presented
in Fig. 4. In the material with damage the group velocity is always greater than the
phase velocity for any frequency. This fact means that the material with damage is a
medium with anomalous dispersion. This is true for any value of parameter δ < 1.
In case of δ = 1, then vgr = vph = 1, and we have the non-dispersive case.

Fig. 3 Group velocity as a
function of frequency for
various values of the
parameter δ in range [0.0,
1.0] with step 0.1. Maximum
of vgr for δ < 1 is shown by
dashed line

Fig. 4 Comparison of group
and phase velocities for
single value of the parameter
δ = 0.5. The dashed line
shows the limit for the large
frequencies
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5 Conclusions

Wehave presented results for simulation of acoustic wave propagation in themedium
with damage. Based on the self-consistent model for damage description, we have
been able to demonstrate the similarity between the models for damaged materials
and the medium with memory. We have derived the constitutive equation of the
material with damage and examine the influence of the parameters of damage on the
process of wave propagation in that medium.

The dispersion analysis of the model have been carried out, and the effect of the
material damage on attenuation and phase velocity of propagating acoustic wave
have also been estimated. It has been shown that the damage causes the anomalous
dispersion and the frequency-dependent attenuation of the wave propagating through
that material. The results obtainedmay be are useful for developing of nondestructive
acoustic detection technique of damage in solids and structural elements.

Acknowledgments This research was supported by the European Regional Development Fund
(Project TK124 (CENS)), by the Estonian Ministry of Education and Research (Project IUT33-24),
and by the Russian Science Foundation (Grant N 14-19-01637).

References

Berezina TG,Mints II (1976)Heat-strength and heat-resistant ofmetallicmaterials. Nauka,Moscow
(in Russ.)

Collins JA (1993) Failure of materials in mechanical design: analysis, prediction, prevention, 2nd
edn. Wiley, New York

Erofeev VI, Nikitina EA (2010) The self-consistent dynamic problem of estimating the damage of
a material by an acoustic method. Acoust Phys 56(4):584–587

Erofeev VI, Nikitina EA, Sharabanova AV (2010) Wave propagation in damaged materials using
a new generalized continuum. In: Maugin GA, Metrikine AV (eds) Mechanics of generalized
continua. One hundred years after the Cosserats. Advances in mechanics and mathematics, vol
21. Springer, Heidelberg, pp 143–148

Hirao M, Ogi H, Suzuki N, Ohtani T (2000) Ultrasonic attenuation peak during fatigue of poly-
crystalline copper. Acta Mater 48(2):517–524

Kachanov LM (1986) Introduction to continuum damage mechanics. Springer, New York
Kartofelev D, Stulov A (2014) Propagation of deformation waves in wool felt. Acta Mech
225(11):3103–3113

KlepkoVV, LebedevEV,KolupaevBB,KolupaevBS (2007) Energy dissipation andmodulus defect
in heterogeneous systems based on flexible-chain linear polymers. Polym Sci, Ser B 49(1–2):18–
21

Makhutov NA (1981) Deformation criteria of fracture and calculation of construction elements for
strength. Mashinostroenie, Moscow (in Russ.)

Maugin GA (1992) The thermomechanics of plasticity and fracture. Cambridge University Press,
Cambridge

Rabotnov YN (1969) Creep problems in structural members. North-Holland series in applied math-
ematics and mechanics. North-Holland Publishing Company, Amsterdam

Romanov AN (1988) Fracture under small-cycle loading. Nauka, Moscow (in Russ.)



Frequency-Dependent Attenuation and Phase Velocity Dispersion … 423

Uglov AL, Erofeev VI, Smirnov AN (2009) Acoustic control of equipment during its manufacture
and operation. Nauka, Moscow (in Russ.)

Volkov IA, Korotkikh YG (2008) Equations of state of viscoelastoplastic media with damages.
Fizmatlit, Moscow (in Russ.)

Volkov VM, Mironov AA (2005) United model of fatigue crack formation and growth in stress
concentrations. Probl Strength Plast 67:20–25

Wang J, Fang Q, Zhu Z (1998) Sensitivity of ultrasonic attenuation and velocity change to cyclic
deformation in pure aluminum. Phys Status Solidi (a) 169(1):43–48

Zuev LB, Murav’ev VV, Danilova YS (1999) Criterion for fatigue failure in steels. Tech Phys Lett
25(5):352–353



A Statistically-Based Homogenization
Approach for Particle Random Composites
as Micropolar Continua

Patrizia Trovalusci, Maria Laura De Bellis
and Martin Ostoja-Starzewski

Abstract This article is focused on the identification of the size of the represen-
tative volume element (RVE) and the estimation of the relevant effective elastic
moduli for particulate random composites modeled as micropolar continua. To this
aim, a statistically-based scale-dependent multiscale procedure is adopted, resorting
to a homogenization approach consistent with a generalized Hill’s type macrohomo-
geneity condition. At the fine level the material has two phases (inclusions/matrix).
Two different cases of inclusions, either stiffer or softer than the matrix, are con-
sidered. By increasing the scale factor, between the size of intermediate control
volume elements (Statistical Volume Elements, SVEs) and the inclusions size, series
of boundary value problems are numerically solved and hierarchies of macroscopic
elastic moduli are derived. The constitutive relations obtained are grossly isotropic
and are represented in terms of classical bulk, shear and micropolar bending moduli.
The “finite size scaling” of these relevant elastic moduli for the two different material
contrasts (ratio of inclusion to matrix moduli) is reported. It is shown that regard-
less the scaling behavior, which depends on the material phase contrast, the RVE
size is statistically detected. The results of the performed numerical simulations also
highlight the importance of taking into account the spatial randomness of inclusions
which intersect the SVEs boundary.
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1 Introduction

The mechanical behavior of many materials of growing interest in materials sci-
ence (such as composites, granular materials, alloys, liquid crystals and even rocks
and masonry) is often strongly influenced by an existing or emergent microstruc-
ture (such as microcracks, voids, defects, dislocations, grains/phases in polycrys-
talline/multiphase materials). The discontinuous nature of these materials detectable
at fine scales, smaller than the macroscopic scale, can be directly modeled
(grain boundaries, dislocations, disclinations, joints, etc.) or modeled by deriv-
ing continuum field descriptions via multiscale approaches (Trovalusci et al. 2009;
Sadowski and Trovalusci 2014; Trovalusci 2015), thus avoiding computationally
cumbersome problems. In order to circumvent physical inadequacies and well-
known theoretical/computational problems of microstructured material modelling
it is widely acknowledged that continuum theories, suitable to retain memory of the
microstructure taking into account the important role played by internal length scales,
must have non-local character, i.e. must exhibit length scale parameters and spatial
dispersion properties. Among these theories, from many years micropolar continua
have been distinguished as suitable models for representing a wide class of materials
with periodic structure, in particular for the possibility to take into account scale
effects and non symmetrical shear behavior (Trovalusci and Masiani 1999, 2005;
Bouyge et al. 2001; De Bellis and Addessi 2011; Eremeyev et al. 2012; Pau and
Trovalusci 2012; Altenbach and Eremeyev 2013; Trovalusci and Pau 2014).

Attention is here focused on composite materials which display random mor-
phologies, as particulate composites. These materials contain randomly distributed
particles embedded into a matrix, typically made of metals, polymers or ceramics.
Among numerous examples available, we cite tungsten carbide or titanium carbide
embedded cobalt or nickel used to make cutting tools; aluminium alloy castings con-
taining dispersed SiC particles widely used for automotive applications, including
pistons and brake applications. Moreover, in the field of civil engineering, the con-
crete, made of cement, as binding medium, finely dispersed particulates of gravel,
finer aggregates (sand) andwater. A particular case of our interest is Roman concrete,
made of hydraulic lime and pozzolan particles, widely diffused in constructions of
Mediterranean regions. These composites are designed to produce unusual combi-
nations of properties rather than to improve the strength of the plain matrix.

With the aim of investigating the gross mechanical response of this special class
of random composites, we adopt a statistically-based multi-scale procedure which
exploits the potentiality of a computational homogenization approach for evaluating
the effective constitutive coefficients. The materials are modeled as linear elastic
micropolar continua both at the fine heterogeneous level and at the gross homoge-
nized level. The choice of such continuum models enriched by rigid local structure
has advantages, with respect to the classical Cauchy continuum, related to the pres-
ence of length scale parameters and skew-symmetric strain and shear behaviour
(Trovalusci and Masiani 1999; Pau and Trovalusci 2012; Trovalusci and Pau 2014).
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A key issue in the case of materials with random microstructure is the circum-
stance that, differently from what happens in the case of periodic materials, it is
not possible to ‘a-priori’ define a Representative Volume Element (RVE), this being
an unknown of the problem. A possible way to solve this problem is to approach
the RVE using finite-size scaling of intermediate control volume elements, named
Statistical Volume Elements (SVEs), and solve the related Dirichlet and Neumann
boundary value problems consistent with a generalized macrohomogeneity Hill’s
condition. In this way hierarchies of constitutive bounds for the material constitutive
moduli can be defined, as proposed in the works (Ostoja-Starzewski 2006, 2008;
Khisaeva and Ostoja-Starzewski 2006; Ostoja-Starzewski et al. 2007). This statis-
tical approach developed for classical materials has been extended to micropolar
materials (Trovalusci et al. 2015) also pointing out the unavailability of the standard
periodic-type boundary conditions (Trovalusci et al. 2014).

At the fine level thematerial taken into account has twophases (inclusions/matrix).
Two different cases of inclusions, either stiffer or softer than the matrix, are consid-
ered. By increasing the scale factor, between the size of SVEs and the inclusions size,
series of boundary value problems are numerically solved. The constitutive relations
obtained at the macroscopic level are isotropic and have been represented in terms of
bulk, shear andmicropolar bendingmoduli. The “finite size scaling” of these relevant
elastic moduli has been represented for the two different material contrasts, paying
particular attention to the differences in the solution obtained in the presence or not
of inclusions that intersect the SVE’s boundary.

The work is organized as follows. In Sect. 2 the main features of the proposed
homogenization technique are addressed, with emphasis on the peculiar choice of
micropolar continua at both levels. In Sect. 3.1 the statistical procedure is briefly
described and attention is devoted to the numerical applications referred to two
representative examples of particulate composites characterized by inclusions either
stiffer or softer than thematrix (Sect. 3.2). In this context the results are interpreted by
introducing properly conceived scalingmeasures, inspired to the work (Ranganathan
and Ostoja-Starzewski 2008), and the convergence trend of these measures and of
the relevant elastic moduli is investigated for both the material contrasts. It is shown
that, regardless of the scaling behavior depending on the phase contrast in elastic
moduli (ratio of inclusion to matrix moduli), the RVE size is statistically found.
The importance of taking into account the spatial randomness accounting for non-
homogeneous boundaries of the representative regions is also highlighted. In Sect. 4
some final remarks and ideas for future developments are discussed.

2 Micropolar Homogenization

The particulate composite is described at two levels: a ‘fine’ scale level, where the
material is described as non homogeneous with particles of finite size (d) and given
elastic parameters embedded in a matrix with different material properties, and a
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‘gross’ scale level, in which the actual material is ideally replaced by an equivalent
homogeneous material (with characteristic dimension L).

The micropolar continuum model is adopted for the description at both the fine
and the gross level. At the gross level, namely the macroscopic or structural level,
the use of a micropolar continuum is relevant when the dimension d is not negligible
with respect to L. In this case, the principle of separation of scales does not hold
and a standard local continuum cannot be adopted. Considering the fine level, here
called mesolevel, we assume that each constituent is a microstructured material.
In other words, we envisage the existence of a third underling finer scale (Forest
et al. 1999, 2001; Onck 2002) where the microstructure is characterized by at least
a further characteristic length, lc, and can be effectively described either as a truss-
like or a beam-like network. The mesoscale is then perceived as the result of an
understood homogenization procedure from an underlying level, named microlevel,
that in the former case leads to a classical continuum and in the latter case to a
micropolar continuum. If lc for instance characterizes the bending stiffness, this
latter case is particularly suitablewhenmicroscopic bending deformationmechanism
is predominant, as in the case of fiber-beam networks, polycrystals or metal matrix
composites. In Fig. 1 a schematic of our basic assumptions is shown. In the following
the attentionwill be focused on the transition from themesoscopic to themacroscopic
level, as we assume that the homogenization procedure linking the mesoscopic and

Fig. 1 Conceptual scheme of the proposed micropolar homogenization approach
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the microscopic level is preparatory to this analysis and is beyond the scope of this
work. In any case if at the microlevel lc can be considered null for the constituent
materials, and if the skew-symmetric shear stiffness is null, the classical continuum
is recovered as model of the fine scale.

The idea is that a one to one correspondence between a macroscopic material
point and a portion of the actual heterogeenous material holds. Whenever we want to
estimate the homogenized constitutive response at the macroscopic level, we have to
solve a properly defined boundary value problem at the mesoscopic level (problem
that is driven by a macroscopic information).

The definition of the coupling conditions between levels depends on the so-called
localization phase, i.e. the transfer of macroscopic information to the mesoscale,
and the homogenization phase, when the local mesoscopic response is averaged and
passed back to the macroscopic scale. It is worth noting that when the fine scale is
represented by a continuum of the same kind of the gross scale continuum a gener-
alized macrohomogenity condition of Hill’s type can be adopted (Ostoja-Starzewski
2011; Li and Liu 2009), which ensures a one-to-one correspondence between the
two scales without requiring the introduction of kind of internal constraints for the
deformation mechanisms, as conversely occurs in the case of continua of different
type (Forest and Sab 1998; De Bellis and Addessi 2011; Addessi et al. 2015). In
the following these linking conditions, obtained via the solution of boundary value
problems derived from macrohomogenity conditions generalized to the micropolar
case, will be recalled in detail.

Let’s start considering themesoscopic level, where the heterogeneous actualmate-
rial is described in detail assuming that each constituent is described as a linear
elastic isotropic micropolar material. Within the framework of a linearized theory,
the kinematics of this continuum is governed by the compatibility equations:

γij = ui,j + ekijϕk, κij = ϕi,j, (1)

where (ui) and (ϕi) are the displacement and rotation vectors of each material point;
(γij) and (κij) are the strain and curvature tensors, respectively, and (eijk) is the Levi–
Civita tensor (i, j, k = 1, 3).

The balance equations in the absence of body forces and couples are:

τij,j = 0, μkj,j +ekjiτij = 0, (2)

where (τij) and (μij) are respectively the stress and couple stress tensors. Denoting
by (ti) and (mi) the tractions and surface couples on the boundary of a control volume
of outward normal (ni), we also have:

ti = τij nj, mi = μij nj. (3)

In order to separately investigate the classical and micropolar components, we divide
the strain and stress tensors into their symmetric and skew-symmetric part:
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γij = εij + αij, τij = σij + βij, (4)

where εij = 1
2 (ui,j +uj,i ), αij = 1

2 (ui,j −uj,i ) − ekijϕk are the symmetric and skew-
symmetric strain tensors, whileσij = 1

2 (τij + τji),βij = 1
2 (τij − τji) are the symmetric

and skew-symmetric stress tensors.
From now on we restrict our calculations to the two-dimensional case (2D). In

this framework the independent strain and stress components of the micropolar con-
tinuum can be ordered into the vectors:

{ε} = {ε11 ε22 ε12}T , {σ } = {σ11 σ22 σ12}T ,

{α} = {α12}, {β} = {β12},
{κ} = {κ31 κ32}T , {μ} = {μ31 μ32}T .

(5)

The stress–strain relations for the 2D linear elastic isotropic micropolar material can
then be written as:

⎡
⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ12

β12

μ31

μ32

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

λ + 2μ λ 0 0 0 0
λ λ + 2μ 0 0 0 0
0 0 2μ 0 0 0
0 0 0 −2μc 0 0
0 0 0 0 2μl2c 0
0 0 0 0 0 2μl2c

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
ε12
α12

κ31
κ32

⎤
⎥⎥⎥⎥⎥⎥⎦

, (6)

which involve four independent elastic constitutive parameters: the Lamé constants
λ and μ, the Cosserat shear modulus μc, and the so-called characteristic length lc,
which is responsible for the bending stiffness.

At the macroscopic level no ‘a-priori’ hypotheses on the material symmetries
are formulated and the homogenized elastic constitutive coefficients directly arise
from the homogenization process, consistent with the so-called generalized macro-
homogeneity conditionwhich establishes an energetic equivalence between a portion
of heterogenous material at the mesoscopic level and the material point at the macro-
scopic level. Let us now consider a portion of the heterogeneous material, i.e. a
mesoscale window Bδ of area Aδ (where δ = L/d is the scale factor, with d being
the averaged inclusion size and L the size of the control area element). The general-
izedmacrohomogeneity (Hill–Mandel’s type) condition, accounting for the presence
of classical and micropolar variables, here considered separately, can be expressed
as:

1

Aδ

∫
Bδ

(σijεij + βijαij + μijκij) = σ ijεij + β ijαij + μijκ ij, (7)

where overbars denote macroscopic quantities obtained as surface averaged quanti-
ties. By exploiting the energy equivalence condition (Eq.7) it is possible to derive the
coupling conditions, both localization and homogenization conditions. At the local-
ization step, Dirichlet-type andNeumann-type boundary conditions to enforce on the
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mesoscale are defined. The homogenization step is the evaluation of the homogenized
constitutive moduli at the macroscopic level.

By ordering the independent strain and stress components of the 2D micropolar
model into the following vectors:

{ε} = {ε11 ε22 ε12}T , {σ } = {σ11 σ22 σ12}T ,

{α} = {α12}, {β} = {β12},
{κ} = {κ31 κ32}T , {μ} = {μ31 μ32}T ,

(8)

the macroscopic stress–strain relations can be written as:

⎡
⎢⎢⎢⎢⎢⎢⎣

σ 11

σ 22

σ 12

β12
μ31
μ32

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

A1111 A1122 A1112 D1112 F1131 F1132

A2211 A2222 A2212 D2212 F2231 F2232

A1211 A1222 A1212 D1212 F1231 F1232

D1211 D1222 D1212 B1212 G1231 G1232

F3111 F3122 F3112 G3112 C3131 C3132

F3211 F3222 F3212 G3212 C3231 C3232

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
ε12
α12

κ31

κ32

⎤
⎥⎥⎥⎥⎥⎥⎦

. (9)

The homogenized model is generally anisotropic and the components of the con-
stitutive tensor of Eq. (9) are such that the major symmetries are preserved. If the
material is centrosymmetric (i.e. non-chiral) the componentsDijhk , Fijhk andGijhk are
null. In this case, Eq. (9) can be rewritten as:

{σ } = [A]{ε},
{β} = B1212{α},
{μ} = [C]{κ},

(10)

the stress and strain components being collected as in Eq. (8).
The boundary conditions derived from the macro-homogeneity condition (7) are

briefly recalled below.

• Dirichlet boundary conditions We consider a square-shaped mesoscale domain
Bδ whose center is fixed at the origin of the coordinate system. On account of the
above condition in Eq. (7), we set up the Dirichlet boundary conditions:

ui = εijxj, ϕ3 = 1

2
eij3αij + κ3ixi on ∂Bδ,

(i, j = 1, 2). The solution of the cell problemunder various combinations of bound-
ary conditions yields the homogenized stresses (i, j = 1, 2):

σ ij = 1

Aδ

∫
∂Bδ

(tixj + tjxi), β ij = 1

2Aδ

eij3

∫
∂Bδ

m3, μ3i = 1

Aδ

∫
Bδ

μ3i.
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• Neumann boundary conditions In the case of Neumann boundary conditions, on
account of Eq. (7), we impose:

ti = (σ ij + β ij)nj, m3 = mo
3 + μ3ini on ∂Bδ,

where

mo
3 = −

∫
∂B

eij3xiβ jknk

is the moment imposed to ensure the moment balance in the presence of skew–
symmetric shear (i, j, k = 1, 2). The resulting homogenized strains are (i, j =
1, 2):

εij = 1

Aδ

∫
Bδ

εij αij = 1

2Aδ

∫
Bδ

αij, κ3i = 1

Aδ

∫
Bδ

κ3i.

3 Statistical Homogenization Convergence

3.1 Computational Multiscale Procedure

We consider a simplified geometry of a two-dimensional particle composite material.
We assume that all the inclusions are disks of equal size randomly distributed in
the matrix phase. Some parameters are fixed: the inclusions density, defined as the
ratio between the area of the inclusions with respect to the total area of the body
ρ = Ai/Atot ; the diameter d of the inclusions and the material parameters of the two
phases. The number and the position of the inclusions instead randomly vary.

The constitutive response of a non-periodic heterogeneous material requires the
definition of the size of a Representative Volume Element (RVE), LRV E , larger than
the fine scale characteristic length, d, such that to nullify the influence of the boundary
conditions on the RVE. This prescription ensures a homogenization limit in the sense
of Hill which generically states that LRV E >> d (Ostoja-Starzewski 2006; Khisaeva
andOstoja-Starzewski 2006). According to the approach presented in the abovemen-
tioned papers, aswell as inOstoja-Starzewski et al. (2007),Ostoja-Starzewski (2008),
the present statistical procedure requires the definition of a number of realizations
of the microstructure, sampled in a Monte Carlo sense, allowing us to determine the
statistics of scale-dependent upper and lower bounds for the overall elastic moduli
and to specifically approach the RVE size for the micropolar continuum (Trovalusci
et al. 2015).

In particular, fixed a value for the scale parameter δ = L/d, we identify square test
windows of side L (finite size Statistical Volume Elements—SVEs) as portions of the
heterogenous material to homogenize. The realizations of the microstructureBδ(ω),
that is the number and position of inclusions within any test window (ω being an ele-
mentary event over a sample space), are generated by a hard-core Poisson’s point field
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(i.e. not allowing for disks’ overlaps), thus simulating a mesoscale window placed
anywhere in the random medium. For any Bδ(ω), we perform the homogenization
process by solving both classical and micropolar Dirichlet and Neumann BVPs. The
estimation of an effective modulus Xδ is obtained when its average value falls within
the interval corresponding at a confidence level set at 95% over a normal standard
distribution. By increasing δ, the convergence is finally achieved when the number
of realizations necessary to satisfy the above requirement is less than a proper fixed
value (Trovalusci et al. 2015). The effective moduli are then estimated as the mean
convergence values between the Dirichlet (upper) and Neumann (lower) bounds.

Note that the mesoscale window Bδ(ω) ideally corresponds to a portion of the
actual random medium in which inclusions are not prevented from intersecting the
window edges. Thus, the numerical simulations of Sect. 3.2 are performed by taking
into account non-homogeneous boundaries (crossing inclusions). We also consider
the less realistic case of homogeneous boundaries (non-crossing inclusions). The
comparison between the homogenized responses obtained by performing numeri-
cal simulations for the two cases, either applying Dirichlet or Neumann boundary
conditions, allows us to emphasize the influence of positions of the inclusions with
respect to the window’s boundary.

3.2 Finite Size Scaling of Elastic Moduli. Numerical
Simulations

The multiscale statistically based procedure recalled in Sect. 3.1 has been imple-
mented and the boundary problems have been numerically solved by usingCOMSOL
Multiphysics® software. We consider two cases of particulate composites, referred
as material (a) and material (b) (Fig. 2), characterized by different material contrasts
defined by the relations: Ei/Em (ratio between the Young modulus of inclusions
and the Young modulus of the matrix) and li

c/lm
c (ratio between the characteristic

lengths of inclusions and matrix, respectively). In the material (a) stiffer inclusions
are embedded into a softer matrix, while for the material (b) inclusions are softer
than the matrix. In Table1 we list the adopted material parameters in a dimension-
less form, expressing the ratio between corresponding quantities of inclusions and
matrix. Consistently with the above definitions, material (a) is characterized by an

Fig. 2 Sketch of high
contrast (a) and low contrast
(b) material
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Table 1 Ratios between material parameters of inclusions and matrix

Material Parameters

λi/λm μi/μm μci /μcm lci /lcm

(a) 46 4.93 4.93 101

(b) 0.021 0.202 0.202 10−1

higher contrast value than material (b). Both the materials have circular inclusions
and nominal nominal area fraction ρ = 40%.

We numerically solve the two dimensional BVPs described in Sect. 2 considering
increasingwindow sizes ranging from δ = 5 to δ = 25 (δ = L/d, with the inclusions’
diameter d fixed). In the Finite Element discretization, we adopt unstructuredmeshes
of quadratic Lagrangian triangular elements.

We noticed that the homogenized material behaves with a good approximation
like an isotropic linear elastic (micropolar) material, with the constitutive laws rep-
resented as in Eq. (6). Thus, by recognizing the spherical component of the stress,
σ sph = (σ11 + σ22)/2, and strain, εsph = (ε11 + ε22)/2, we can write:

σ sph = 1

2
(2A1122 + A1212)(ε11 + ε22) = K εsph, (11)

where K = (2A1122 + A1212) is the bulk modulus in planar stress and strain state.
The deviatoric part of the stress and strain are connected by the vectorial relation:

σ dev =
⎡
⎣σ 11 − σ sph

σ 22 − σ sph

σ 12

⎤
⎦ = A1212

2

⎡
⎣ ε11 − εsph

ε22 − εsph

ε12

⎤
⎦ = Gεdev, (12)

where G = A1212/2 is the classical shear modulus. Thus we focus on the moduli K
and G for investigating the convergence trend of the classical material response.

In the isotropic case the micropolar shear is a scalar term related to the relative
rotation by the constitutive component B1212, while the couple stress is related to the
curvature tensors by the modulus trC:

{β} = B1212{α}, (13)

{μ} = 1

2
trC{κ}. (14)

We consider the bending modulus lC =
√
trC/B1212, for representing the conver-

gence trend of the micropolar material response.

Let us now consider a mesoscale window Bδ and denote K
D
δ and K

N
δ the values

of the average of the bulk moduli obtained by solving the boundary value problems
on Bδ by adopting Dirichlet and Neumann-type boundary conditions, respectively.
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Analogously, we denote G
D
δ and G

N
δ the average of the shear moduli and lD

c δ and lD
c δ

the average of the bending moduli, always obtained by respectively solving Dirichlet
and Neumann BVPs.

For each window we evaluate the following constitutive scaling measures which,
in the spirit of the work (Ranganathan and Ostoja-Starzewski 2008), give qualitative
and quantitative information about the convergence trend of the classical solution:

f K
δ = K

D
δ

K
N
δ

− K
D
hom

K
N
hom

, f G
δ = G

D
δ

G
N
δ

− G
D
hom

G
N
hom

, (15)

where K
D
hom, K

N
hom (G

D
hom, G

N
hom) are the bulk moduli (shear moduli) obtained in the

case of equivalent homogeneous material. The superscripts ’D’ and ’N’ always stand
for Dirichlet and for Neumann-type boundary conditions, respectively. Similarly, we
define an additional quantity suitable for investigating the convergence trend of the
micropolar solution:

f C
δ = lc

D
δ

lc
N
δ

− lc
D
hom

lc
N
hom

. (16)

where lc
D
hom and lc

N
hom are the bending moduli obtained in the case of equivalent

homogeneous material. Note that, as for homogeneous materials it is:

K
D
hom

K
N
hom

= 1,
G

D
hom

G
N
hom

= 1,
lc

D
hom

lc
N
hom

= 1, (17)

the scaling measures f K , f G and f C provide an estimate of the convergence error.
The results reported in Figs. 3, 4 and 5 show the convergence trend of the classi-

cal bulk, shear and micropolar bending moduli depending on the material contrast,

Fig. 3 Convergence trend of the classical bulk modulus. Left side material (a), right side material
(b). Inclusions crossing (dash lines) and non-crossing (solid lines) the windows’ edges
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Fig. 4 Convergence trend of the classical shear modulus. Left side material (a), right side material
(b). Inclusions crossing (dash lines) and non-crossing (solid lines) the windows’ edges

Fig. 5 Convergence trend of the micropolar bending modulus. Left side material (a), right side
material (b). Inclusions crossing (dash lines) and non-crossing (solid lines) the windows’ edges

highlighting the influence of the boundary conditions on the gross material response
when accounting or not the intersections of the inclusions with the windows’ edges.
In particular, for the higher contrast material (a) f K quite vanishes in both the cases of
crossing and non crossing inclusions. In the lower contrast material (b) f K

δ does not
vanish, both in the case of crossing and more in the case of non crossing inclusions.
For δ = 25, in the material (a) the difference between the bulk moduli, evaluated
via Dirichlet and Neumann BCs, is of 1.0% while in the material (b) is of 6.0%
and 5.5%, in the presence or not of inclusions crossing the test windows’ bound-
ary, respectively. Analogous considerations can be made for the values of f G

δ . For
δ = 25, in the material (a) the difference between the shear moduli, evaluated via
Dirichlet and Neumann BCs, is of 1.5% (0.2%), in the presence (or not) of crossing
inclusions, while in the material (b) is of 2.0% (2.5%), in the presence (or not) of
crossing inclusions.

The different trend between the case of crossing and non crossing inclusions
is more evident for the micropolar value f C

δ . In the material (a), for δ ≥ 15, the
difference between the bending moduli evaluated via Dirichlet and Neumann BCs in
the presence of crossing inclusions is of 38%, while in the material (b), for δ ≥ 20, is
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of 42%. f C
δ vanishes for bothmaterials when inclusions do not intersect thewindow’s

boundary.
Regarding the classical moduli, these results show that the contrast in the compos-

itewith particles softer than thematrix has the effect of slowing down the convergence
to the RVE. More generally, it has been shown that simulations performed for com-
posites with soft particles in a stiffer matrix seemed to indicate the need of very large
scales for the RVE, thus compromising the possibility to homogenize the composite
through upper (Dirichlet-BC) and lower (Neumann-BC) bounds for the constitutive
moduli (Ostoja-Starzewski 2006; Ranganathan and Ostoja-Starzewski 2008). This
discrepancy, related to the position of the boundary value problems based on affine
displacements or uniform traction BC hypotheses, called for the need of different
definitions of the boundary value problems, for instance by resorting to periodic
boundary conditions (Terada et al. 2000).

We here accept the solution of upper/lower bound approach basing on the statisti-
cal criterion of convergence mentioned in Sect. 3, which does not require large scale
representative windows for performing the homogenization process. In particular,
we showed that the proposed statistical procedure converges when, by increasing the
scale ratio δ, the results in terms of average elastic moduli do not change within a
selected tolerance value. More precisely the number of realizations N , accounted for
a given scale parameter δ, corresponding to randomly moving the window within
the whole medium Bδ(ω) as mentioned above, is such that 1.96 σ/(Xδ

√
N) ≤ tol,

where: Xδ is the average of an elastic modulus to estimate; σ its standard deviation
and tol a given tolerance value depending on the dispersion of the data (Trovalusci
et al. 2015). The convergence values of an effective modulus is obtained at a value δ

for which N is less than a convenient small value. The effective moduli are then esti-
mated as the mean convergence values between the Dirichlet (upper) and Neumann
(lower) bounds. It is worth noting that in the case of inclusions that do not cross
the windows’ edges this value is comparable to the value achieved using periodic
boundary conditions (Trovalusci et al. 2014).

In Fig. 6 the average of the bulk modulus K versus the scale parameter δ is shown
for both materials (a) and (b). This value is normalized with respect to the corre-
sponding modulus obtained for the RVE, KRV E , i.e. taking into account the average
values of the coefficients evaluated at the convergence window in the case of crossing
inclusions. The convergence trend to the RVE depends onwhether inclusions cross or
do not cross the windows’ boundary. In particular, for the material (a) the RVE size,
δRV E , is equal to 20 in the case of crossing inclusions, while it is equal to 25 in the
case of non-crossing inclusions. The material (b) shows a slower convergence trend.
Accordingly, the RVE is attained for δRV E = 25 in the case of crossing inclusions,
while in the case of non-crossing inclusions δRV E > 25. It is worth noting that when
crossing inclusions stiffer than the matrix (a) are accounted for the bulk modulus
is higher with respect to the case of non crossing inclusions, while in the case of
crossing inclusions softer than the matrix (b) the bulk modulus is lower than in the
case of non crossing inclusions.
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Fig. 6 Average of effective bulk modulus K (normalized to the RVE modulus KRV E) versus scale
parameter δ, underDirichlet (D-BC) andNeumann (N-BC)BVPs solutions.Left side higher contrast
material (a).Right side lower contrastmaterial (b). Inclusions crossing (dash lines) and non-crossing
(solid lines) the windows’ edges

Fig. 7 Average of effective shear modulus G (normalized to the RVE modulus GRV E) versus
scale parameter δ, under Dirichlet (D-BC) and Neumann (N-BC) BVPs solutions. Left side higher
contrast material (a). Right side lower contrast material (b). Inclusions crossing (dash lines) and
non-crossing (solid lines) the windows’ edges

In Fig. 7 the average of the shearmodulusGδ versus the scale parameter δ is shown
for both materials (a) and (b). Also in this case the value is normalized with respect
to GRV E , i.e. the average value of the modulus evaluated for the RVE in the case of
crossing inclusions. The convergence trend and the RVE size is comparable to that
obtained for the bulk modulus. Also in this case material (a) is stiffer when crossing
inclusions are accounted for, while the material (b) is softer.

In Fig. 8 the average of the bending modulus lcδ versus the scale parameter δ,
normalized with respect to the RVE value lcRV E obtained in the case of crossing
inclusions, is shown for both materials (a) and (b). The RVE for the material (a) is
achieved for δRV E = 15 in the case of crossing inclusions, while δRV E = 20 in the
case of non-crossing inclusions.

Overall the results show that the influence of crossing inclusions is more appre-
ciable for the higher contrast material. The differences of the results obtained when
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Fig. 8 Average of effective bending modulus lc (normalized to the RVE modulus lcRV E) versus
scale parameter δ, under Dirichlet (D-BC) and Neumann (N-BC) BVPs solutions. Left side higher
contrast material (a). Right side lower contrast material (b). Inclusions crossing (dash lines) and
non-crossing (solid lines) the windows’ edges

crossing inclusions are accounted for, with respect to the case of non-crossing inclu-
sions, are more significant in themicropolar case than in the classical case, exhibiting
a stiffer behaviour for material (a) and a softer behaviour for material (b), respec-
tively. In all the cases analyzed the RVE size has been detected and the classical and
micropolar moduli have been estimated.

4 Final Remarks

A scale-dependent procedure, based on the derivation of hierarchies of upper and
lower bounds, has been proposed to estimate the constitutive moduli of particulate
random composite described as micropolar homogenized continua. The Represen-
tative Volume Element (RVE) size and the corresponding, classical and micropolar,
effective moduli have been statistically detected for materials with different contrasts
between elastic moduli (ratio of inclusion to matrix moduli). The convergence trend
has been represented for all the significant moduli of an effective isotropic material
in terms of scaling measures that quantify the error from the homogeneous solution.
It has been shown that, regardless of the scaling behaviour depending on the phase
contrast in elastic moduli, by virtue of the statistical approach, the RVE size and the
homogenized solution can be achieved and the effective constitutive moduli identi-
fied. Both in the classical and, even more so, in the micropolar case, the estimation
of the RVE size and the corresponding moduli strongly depends on the possibility
of taking into account the presence of inclusions that cross the windows, an aspect
inherent in spatial randomness of the material. We also found that the higher contrast
medium (a) is slightly more sensitive than the medium (b) to the presence of inclu-
sions which cross the windows’ edges. In particular, the medium (a) when the stiff
inclusions cross the boundary is stiffer than in the case in which inclusions are forced
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to not cross the boundary; conversely, the medium (b) with soft crossing inclusions is
softerwith respect to the case of non-crossing inclusions.Moreover, the differences in
terms of average effective moduli and RVE sizes achieved in the presence of crossing
or non crossing inclusions reduce but remain non-negligible when the window size
increases. Overall, the statistical simulations show that it is not correct, both in the
classical and the micropolar case, to neglect the presence of inclusions that intersect
the windows’ edges, even if the RVE size is large enough. To this regard, a subject
of forthcoming research is to develop a scale-dependent statistical homogenization
procedure resorting to the solution of scale-dependent periodic boundary conditions.
This can be done specifically conceived periodized boundaries, by enforcing the peri-
odicity of the material between corresponding edges of the windows, as for instance
proposed by Gitman et al. (2007), Sab and Nedjar (2005), without forsaking the real-
istic hypothesis of non-homogeneous boundaries. It is expected that the advantages
of specifically conceived periodic boundary conditions will significantly reduce the
computational burden and accelerate the convergence to the RVE allowing us the
estimation of the effective material constants.
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Paradoxical Size Effects in Composite
Laminates and Other Heterogeneous
Materials

Marcus A. Wheel, Jamie C. Frame and Philip E. Riches

Abstract Size effects in which there is an apparent increase in stiffness with reduc-
ing size scale are forecast in those heterogeneous materials that have constitutive
behaviour described by more generalized continuum theories such as couple stress,
micropolar or micromorphic elasticity. This short paper considers possibly the sim-
plest heterogeneous material exhibiting such size effects, a two phase composite
laminate consisting of alternating layers of stiff and compliant material, and shows
that when loaded in bending the nature of the size effect actually depends on the
composition of the sample surfaces. The laminate material is apparently capable of
exhibiting a diversity of size effects some of which are compatible with the pre-
dictions of generalized continuum theories while others are contradictory. Another
heterogeneous material consisting of a periodic or regular array of voids within a
classically elastic matrix is then considered. Detailed finite element analysis shows
that the diversity of size effects encountered in the laminate material may also be
observed in this more representative material thereby providing some insight into
the contradictory size effects that have sometimes been reported elsewhere in the
literature.

Keywords Generalized continua · Size effect · Laminate · Micropolar (Cosserat)
elasticity

M.A. Wheel (B)
Department of Mechanical and Aerospace Engineering, University of Strathclyde,
Glasgow G1 1XJ, UK
e-mail: marcus.wheel@strath.ac.uk

J.C. Frame · P.E. Riches
Department of Biomedical Engineering, University of Strathclyde,
Glasgow G4 0NW, UK

P.E. Riches
e-mail: philip.riches@strath.ac.uk

© Springer International Publishing Switzerland 2016
H. Altenbach and S. Forest (eds.), Generalized Continua as Models
for Classical and Advanced Materials, Advanced Structured Materials 42,
DOI 10.1007/978-3-319-31721-2_21

443



444 M.A. Wheel et al.

1 Introduction

Loaded materials are often assumed to deform in a manner described by classical
or Cauchy elasticity theory which presumes that the material stiffness, quantified
by its modulus, will be independent of size scale. The fact that many engineering
materials actually demonstrate such size independent behaviour across those size
scales of interest has resulted in the almost unanimous acceptance of this theory.
However, there are some materials that do exhibit size dependent behaviour when
loaded. Such behaviour has been observed in fabricated materials like foams (Lakes
1983, 1986; Anderson and Lakes 1994) as well as biological tissues such as bone
(Yang and Lakes 1982; Choi et al. 1990). The size dependency apparently results
from the size scale of their microstructure which may be sufficient to influence their
macroscopic behaviour.

More generalized continuum theories with the capacity to forecast size depen-
dent behaviour do exist and while some of these incorporate higher derivatives of
the deformation into the constitutive equations others contain additional degrees
of freedom. Examples of the latter type include in ascending level of complexity:
couple stress, Cosserat or micropolar and micromorphic elasticity theories (Eringen
1999). Common to all of these theories is the incorporation of additional constitu-
tive parameters that must be identified through experimentation on real materials
or simulation of virtual materials. Parameter identification invariably involves test-
ing or simulating material samples of different sizes in loading modes that induce a
non uniform state of stress such as torsion or bending to reveal any size dependency
(Lakes 1995). The observed size effect can then be used to identify the additional con-
stitutive parameters. The generalized continuum theories already mentioned predict
size effects in which size scale reduction results in an apparent increase in stiffness.
Behaviour like this has been observed in both polymeric foams (Lakes 1983, 1986;
Anderson and Lakes 1994) and materials comprised of a two dimensional homoge-
neous matrix perforated by a regular array of circular voids (Beveridge et al. 2013;
McGregor and Wheel 2014; Waseem et al. 2013). Micromorphic elasticity requires
that the observed stiffness variation should remain finite as size diminishes while
Cosserat elasticity permits singular behaviour. Although such behaviour is arguably
physically less reasonable the experimental evidence is unable to discriminate since
there is inevitably a practical limit to the minimum sample size that can be tested.
Moreover, there are materials such as cortical bone, for which both increasing and
decreasing stiffness with reducing size have been reported (Yang and Lakes 1982;
Choi et al. 1990). This contradictory behaviour has been attributed to surface effects
induced in sample preparation that increase compliance and result in a distorted size
effect. Careful sample preparation has been highlighted as a requirement to avoid
such distortion (Anderson and Lakes 1994). While sample preparation may give rise
to unanticipated size effects, the influence of the material microstructure on surface
behaviour might also be a possible cause. Indeed, size effects in transversely loaded
beams were recently (Gao and Mahmoud 2014) shown to depend on the combined
behaviour of bulk and surface where these were represented by a generalized con-
tinuum theory and a surface elasticity model respectively.
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It has also been reported that composite or laminate materials demonstrate
behaviour consistent with the predictions of micropolar or Cosserat elasticity includ-
ing the dispersion of propagating elastic waves when loaded dynamically (Herrmann
and Achenbach 1968) and also a size dependent stiffness when loaded statically
(Forest and Sab 1998). This paper considers a simple laminate comprised of just two
alternately layered constituents of differing moduli and demonstrates via a straight-
forward analysis that a rich variety of size effectsmight be anticipated. The paper then
considers a material with regular or periodic heterogeneity, whose behaviour has pre-
viously been shown to be consistent with Cosserat elasticity theory, and demonstrates
that some of the size effects exhibited by the laminate are also seen in this material.
Finally, the size effects predicted for the laminate material are briefly compared to
those reported for both virtual and real materials in other literature.

2 Size Effects in a Two Phase Laminated Beam

Figure1 shows the cross sections of slender rectangular beam samples comprised of
a simple laminated material consisting of alternating layers or plies of two different
materials of Young’s moduli E1 and E2 respectively. For simplicity all plies of both
materials are assumed to be of the same thickness, t , and thus all internal layers of

t
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E
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E
1 E
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E
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t

t

0.5t

Fig. 1 Laminated beam model of heterogeneous material
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the laminate are of the same thickness as illustrated. The central or core layer may be
comprised of either of the two materials hence the two variants of the cross section
shown in Fig. 1. However, the upper and lower surface layers of the sample always
consist of the second material with modulus E2 and, in addition, the thickness of
these surface layers is always half that of the internal plies. The sample cross section
is thus both symmetric, with the neutral axis of bending midway through the section,
and comprised of equal proportions of each constituent material. Now if there are
n plies of the first material then there will be n − 1 internal plies together with the
two surface plies of the second material so that the cross section is comprised of
2n + 1 layers in total. The case where n is odd corresponds to the central layer of
the beam consisting of the first material while when n is even the central ply will
be comprised of the second material. Both cases are illustrated in Fig. 1. Bernoulli
Euler beam theory allows the flexural rigidity, D, of the laminated beam section to
be obtained by firstly evaluating the products of the moduli and second moments of
area about the section neutral axis of each of the individual plies and then summing
these products. When n is odd this summation is represented thus:

D = 2

t/2∫
0

E1by2dy +
(n−1)/2∑

i=1

2

(i+1/2)t+i t∫
(i−1/2)t+i t

E1by2dy

+
(n−1)/2∑

i=1

2

(i−1/2)t+i t∫
(i−1/2)t+(i−1)t

E2by2dy + 2

nt∫
(n/2)t+[(n−1)/2]t]

E2by2dy (1)

and when n is even the summation becomes:

D = 2

t/2∫
0

E2by2dy +
n/2∑
i=1

2

(i+1/2)t+i t∫
(i−1/2)t+i t

E1by2dy

+
n/2−1∑

i=1

2

i t+(i+1/2)t∫
i t+(i−1/2)t

E2by2dy + 2

nt∫
(n/2)t+[(n−1)/2]t]

E2by2dy (2)

where b is the breadth of the beam and y the distance from the neutral axis. The
core layer is accounted for by the first term in each of these expressions while
the summation terms are associated with all remaining internal layers and the final
integrals account for the surface layers which are always comprised of the second
material. Interestingly, when these summations are evaluated the flexural rigidity is
given by following single expression:

D = E1bnt3

12
[4n2 − 3] + E2bnt3

12
[4n2 + 3] (3)

in both cases.
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The depth, d, of the beam is:
d = 2nt (4)

and if the length to depth aspect ratio of the beam is a it follows that the length, L ,
of the beam is given by

L = 2ant (5)

When loaded in three point bending the stiffness, K , of the beam will therefore be:

K = E1bn

2a3n3
[4n2 − 3] + E2bn

2a3n3
[4n2 + 3] (6)

which can be rearranged thus:

K = 4(E1 + E2)b

2a3
+ 3(E1 − E2)b

2a3
(7)

The motivation for considering three point bending in particular is its practical sim-
plicity which frequently renders it the loading mode of choice; the stiffness of the
beam when loaded in other bending configurations could of course be derived simi-
larly.

Now, given that the ply thicknesses of both constituent materials are the same then
if the samples were loaded in uniaxial tension parallel to the plies then the material
modulus, E∗, would simply be:

E∗ = (E1 + E2)

2
(8)

and thus the first term in (7) could be simplified so that the expression for the stiffness
of the beam becomes:

K = 4E∗b

2a3
+ 3(E1 − E2)b

2a3
(9)

In (9) the first term can be regarded as the stiffness of a slender homogeneous beam
of modulus E∗ loaded in three point bending. The second term however gives rise to
a size effect resulting from the heterogeneous nature of the laminated beam. Equa-
tion (9) can be compared to the expression for the stiffness of a slender micropolar
beam:

K = 4E∗b

(
d

L

)3
[
1 +

(
lc

d

)2
]

(10)

which was derived by assuming that on every cross section of the beam a linear
variation in bending stress and a uniform state of couple stress act (Beveridge et al.
2013) and that across the breadth of the beam any transverse deformations can be
ignored. Equation (10) represents a simplification of themore general solution for the
deformation quoted previously (Lakes 1995). The constitutive parameter, lc that is
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usually termed the characteristic length, quantifies the length scale associatedwith the
couple stresses. It should be noted that this definition of the characteristic length is a
factor of

√
24 greater than the usual definition denoted lb (Lakes 1995) and termed the

characteristic length in bending. Equation (10) implies that both the modulus and the
the characteristic length can be determined from the size effect that may be observed
when the stiffness of material samples of differing sizes but with the same aspect
ratio, L/d, and breadth, b, are loaded in three point bending. Experimental testing and
detailed finite element analysis of slender beam samples of a heterogeneous material
comprised of periodically distributed circular voids within a homogeneous matrix
confirmed the validity of Eq. (10) (Beveridge et al. 2013). Beam stiffness was found
to increase linearly with the reciprocal of beam depth squared, 1/d2, in accordance
with Eq. (10). Characteristic length values were determined from the gradient of the
stiffness variation while modulus values were identified from the interception of this
variation with the stiffness axis. Subsequently, comparable behaviour was observed
in slender ring samples with similar heterogeneity that were loaded diametrically
(Waseem et al. 2013) and in ring samples in which the topology of the void array
constituting the heterogeneity was varied (McGregor and Wheel 2014).

Equation (10) predicts that as sample size is reduced there will be a corresponding
increase in stiffness; a size effect that agrees with the forecasts of more general-
ized continuum theories such as micropolar and micromorphic elasticity and with
observed behaviour as already noted. However, in the case of the laminate Eq. (9)
implies that size effects may be more elaborate since the second term depends on the
relative magnitudes of the ply moduli, E1 and E2 and thus it may either amplify or
modulate the stiffness at any particular sample size.

Figures2 and 3 show how the predicted stiffness varies with sample size for
different combinations of constituentmaterial moduli. The stiffness variations shown
in these figures assume an aspect ratio, a, of 10 and a common breadth, b, of unity.

Fig. 2 Variation in stiffness with beam size for cases where E1 = 0.1E2 and E1 = 10.0E2
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Fig. 3 Variation in stiffness with beam size for cases where E1 = 0.01E2 and E1 = 100.0E2

In both figures the sample size is quantified by the reciprocal of depth squared, 1/d2,
to enable the predicted size effects to be compared directly with the forecasts of
Eq. (10). Furthermore, this size measure, 1/d2, has been normalized with respect to
that of the thinnest possible beam, this being 1/(2t)2 while the stiffness has been
normalized with respect to that of a beam of almost infinite depth, that is, a beam
for which n is very large implying that the second term in Eq. (9) diminishes to zero
and any size effect becomes insignificant.

Figure2 shows the size effects predicted by Eq. (9) when one of the materials is
10 times stiffer than the other. Evidently, when the material constituting the surface
layers is the stiffer of the two, that is E1 = 0.1E2, a positive size effect in which
stiffness increases as size reduces is predicted. Furthermore, this positive size effect
is apparently linear as anticipated by Eq. (10). While extrapolation of this size effect
to smaller size scales implies unbounded stiffness increase with diminishing size,
any such extrapolation is doubtful since the size scales involved are then less than
the minimum laminate thickness of 2t . Thus it is uncertain whether the behaviour
of the laminate is best described by Cosserat or micromorphic elasticity. Figure2
also shows that when E1 = 10E2 and the surface is therefore formed from the more
compliant material a contrasting, negative size effect is seen. This negative effect
appears to vary linearly in accordance with its positive counterpart. Interestingly,
although these size effects are entirely different in nature the magnitude of the rate
at which the stiffness varies appears to be similar in both cases.

Figure3 shows the corresponding stiffness variationswhen the ratio of thematerial
moduli is increased by a further factor of 10. When E1 = 0.01E2 implying the
surfaces are comprised of the stiffer material, a positive size effect is again seenwhile
when E1 = 100E2 and the surfaces are more compliant a negative size effect results
once more. It is also interesting to note that when presented in this non dimensional
manner both of the size effects seen at this ratio of material moduli reflect those
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shown in Fig. 2. By utilizing Eq. (4) to compare Eqs. (9) and (10) it can be shown that
the characteristic length parameter, lc, present in the latter is related to the thickness
of the layers, t , by:

l2c = 3[(E2/E1) − 1]
[1 + (E2/E1)] t2 (11)

implying lc varies linearly with t when the moduli ratio, (E2/E1), is greater than
unity. For the positive size effects depicted in Figs. 2 and 3 in which the moduli ratios
are 10.0 and 100.0 respectively, the corresponding values of lc are 1.57t and 1.72t .
As the moduli ratio is increased further, signifying greater material heterogeneity,
the value of lc asymptotically approaches

√
3t according to Eq. (11) indicating an

upper bound in the value of this parameter.

3 Size Effects in a Two Dimensional Material
with Periodic Heterogeneity

Figure4 illustrates a material with regular heterogeneity created by introducing a
periodic array of circular voids into an otherwise classically elastic matrix material.
The constitutive behaviour of materials of this type has been investigated previously
(Beveridge et al. 2013) in the context of generalized continua and the behaviour
shown to be consistent with the predictions of micropolar elasticity theory. Prescrib-
ing the void radius, VR , together with the separation of the void centres, Sx and
Sy , in the indicated x and y directions respectively is sufficient to fully define the
geometry of the heterogeneity. The void centres thus lie on a triangular grid. When
Sy = √

3Sx/2 a detailed finite element analysis of a representative piece of material
incorporating a sufficiently large number of voids revealed that thematerial exhibited
approximate planar isotropy. Thus the material is transversely isotropic. The analysis
assumes that the matrix material exhibits classically elastic behaviour as quantified
by its Young’s modulus and Poisson’s ratio.

This material was shown to exhibit a size dependent stiffening consistent with
Eq. (10) through finite element analysis of slender beam samples of different depths
but the same aspect ratio (Beveridge et al. 2013). In producing the mesh required to
represent each beam sample the geometric details of the heterogeneity were explic-

Fig. 4 Two dimensional
material with regular,
periodic heterogeneity
investigated previously
within the context of
micropolar elasticity theory
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itly incorporated by firstly paving the rectangular region around a particular void
with the structured array of quadratic quadrilateral elements illustrated in Fig. 5 and
then repeatedly regenerating this array of elements at suitable spatial increments to
represent an entire sample. One consequence of generating the entire sample repre-
sentation in this way was that the upper and lower sample surfaces were each located
midway between adjacent rows of voids as illustrated in Fig. 6 and thus these surfaces
intersected none of the voids. However, this is not the only manner in which a finite
sized beam sample could be identified from within an infinite sheet of the perforated
material. A sample could just as easily be identified in alternative ways and in some
of these the surfaces may intersect the voids. Figure6 shows one such alternative in
which the structured mesh shown in Fig. 7 was employed to represent the region of
matrix material located between a specific void and its neighbours. Consequently,
when this mesh is repeatedly regenerated to represent an entire sample the sample
surfaces periodically bisect all voids in a given row as shown in Fig. 6. Both means of
mesh generation were therefore used to analyse beams of increasing depth, this being

Fig. 5 Structured mesh of quadratic quadrilateral finite elements used to represent rectangular
region around a particular void within two dimensional heterogeneous material

Fig. 6 Representation of beam samples of increasing size generated by finite element meshes
shown in Figs. 5 (right) and 7 (left)
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Fig. 7 Alternative mesh of quadratic quadrilateral finite elements used to represent region between
neighbouring voids within two dimensional heterogeneous material

determined by the number of rows of voids as shown in Fig. 6. The length to depth
aspect ratio was set at 10.4:1 for all beamswhile the void separations, Sx and Sy , were
prescribed at 1.0mm and 0.866 mm respectively thus fixing the overall dimensions
of each beam. For the matrix material plane stress behaviour was assumed while
Young’s modulus and Poisson’s ratio were set to 20 GPa and 0.3 respectively. Con-
straints and loading representative of three point bending were applied. However,
to reduce computational effort suitable boundary conditions were imposed at the
central loading plane to exploit the symmetries in geometry and loading and thereby
facilitate analysis of only one half of each beam.

Figure8 shows the predicted variations in beam stiffness with size for different
void volume fractions, V f , when the sample surfaces do not intersect the array of
voids. The stiffness variation appears to be approximately linear at any given void
size. The characteristic length of each material can be obtained from the gradient of
the corresponding variation while the modulus of can be derived from the intercept
according to Eq. (10). Table1 lists values of each of these constitutive parameters
as a function of void radius and volume fraction. This table also lists data derived
from the stiffness variations determined for more slender samples with an increased
aspect ratio of 20.8:1. These data imply that as void radius increases the material
modulus decreases, as might be expected since there is less material to support the
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Fig. 8 Stiffness against the reciprocal of depth squared for beams with smooth surfaces at a 10.4:1
length to depth aspect ratio for various void volume fractions, V f

Table 1 Comparison of the characteristic lengths for different void radii at 10.4:1 and 20.8:1 length
to depth aspect ratios

Void
diameter Vd
(m)

Void
fraction V f

Normalised
void radius
VR/Sy

Young’s Modulus (GPa) Characteristic length (mm)

10.4:1
aspect ratio

20.8:1
aspect ratio

10.4:1
aspect ratio

20.8:1
aspect ratio

0.2 0.036 0.12 17.47 17.87 0.28 0.28

0.3 0.082 0.17 15.37 15.71 0.42 0.43

0.4 0.145 0.23 12.90 13.16 0.55 0.57

0.5 0.227 0.29 10.31 10.50 0.66 0.70

0.6 0.326 0.35 7.74 7.83 0.75 0.82

applied loading, while the characteristic length increases. Furthermore, the values of
this latter parameter obtained at aspect ratios of 10.4:1 and 20.8:1 only vary slightly
implying that although slender beam behaviour is assumed in Eq. (10) the lower,
10.4:1, aspect ratio beams are sufficiently slender enough to provide very reasonable
estimates of the characteristic length since they appear to satisfy this underlying
assumption. Figure9 shows the relationship between void radius and characteristic
length for the higher, 20.8:1, aspect ratio beams. This relationship is evidently linear
as anticipated by both a previous theoretical prediction (Bigoni and Drugan 2007)
and the laminate model through Eq. (11).

Figure10 shows variations in beam stiffnesswith size for the same void radii when
the aspect ratio is set at 10.4:1 but the surfaces now bisect the voids. These variations
each show a decrease in stiffness with reducing size and therefore no longer concur
with Eq. (10). However, each variation is nonetheless linear which does accord with



454 M.A. Wheel et al.

Fig. 9 Variation inmicropolar characteristic lengthwith void diameter for 20.8:1 aspect ratio beams

Fig. 10 Stiffness against the reciprocal of depth squared for beams with intersected surfaces at a
10.4:1 length to depth aspect ratio for various void volume fractions, V f

Eq. (9) for the case where the sample surfaces are comprised of the more compliant
material. Additionally, the intercept of a given negative size effect seen in Fig. 10
corresponds to that obtained from the positive effect shown in Fig. 8 for the equivalent
void radius. This correspondence thus reflects the convergence of both size effects
seen in the laminate material at large beam depths and illustrated in Fig. 2. Figure11
shows how the magnitudes of both the positive size effects seen in Fig. 8 and their
negative counterparts shown in Fig. 10 vary with void volume fraction. This figure
suggests that the magnitude of the negative effect broadly reflects that of the positive
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Fig. 11 The magnitude of the size effects as a function of void volume fraction V f for beams with
both smooth and intersected surfaces and a 20.8:1 length to depth aspect ratio

effect. Moreover, when the void volume fraction is low then both size effects are
small since the beam samples are predominantly comprised of matrix material. The
magnitudes of each effect then increase as void volume fraction increases. However,
both magnitudes reach a maximum beyond which they then diminish as the samples
become predominantly comprised of voids.

4 Discussion and Conclusions

Size effects forecasts were made previously (Tekoglu and Onck 2008) for virtual two
dimensional foams. The stochastic cellularmicrostructurewas represented as random
Voronoi tessellations with Timoshenko beam finite elements being used to represent
individual cell wall sections. Closed polygons were used to represent all internal
cells within an elongated rectangular region. However, for those cells intersecting
the boundary no elements were located coincident to the boundary to facilitate their
closure and they remained open. The finite element representations were loaded in
pure bending of themajor axis andmultiple analyseswere conducted using a different
randomly generated finite element mesh on each occasion in order to capture the
behaviour of the intrinsically stochastic microstructure. Bending stiffness was found
to vary with beam depth which was altered by changing the lesser dimension of the
representative rectangular region. At small depths forecast stiffness was less than that
anticipated by classical elasticity theory. However, as depth increased stiffness was
predicted to rise and asymptotically approach the classical result. This behaviour



456 M.A. Wheel et al.

appears to arise from the rupture of those cells adjacent to the boundaries which
results in a local increase in compliance thereby compromising bending stiffness
and ultimately resulting in a negative size effect rather than a positive one that might
be expected for a generalized continuum. Thus the negative size effect forecast for the
stochastic foam reflects that seen in both the present laminate and voided materials
when stiffness of the material adjacent to the surface is deliberately compromised.

Contradictory size effects have been reported previously in human cortical bone
(Yang and Lakes 1982; Choi et al. 1990) where samples were loaded in bending
experiments in each case. While the earlier work reported a positive size effect the
later reported an opposite, negative effect. In the earlier work beam specimens with
depths down to 1.4mmwere tested but in the later samples with substantially smaller
depths were also investigated. While a mild positive size effect was reported earlier
the most significant effect was observed in the small samples investigated in the
later work and, moreover, this effect was unequivocally negative. The investigators
suggested a qualitative explanation of this size effect based on the exposure of the
major microstructural feature, the vascular channel or Haversian canal system, at the
sample surfaces giving rise to an increase in compliance of the material located in
the vicinity. However, the effect was interpreted quantitatively as a reduction in the
apparent modulus of the material rather than the behaviour of a more generalized
continuum. Nevertheless, the negative effect reported for cortical bone appears to
reflect that seen in the laminate and voided materials considered here.

These negative size effects seen in both stochastic foams and cortical bone have
not been interpreted in the context of generalized continuum theories. Presumably
since these effects appear to contradict the predictions of such theories identification
of relevant constitutive properties was not attempted. However, constitutive property
identification is paramount since it provides a rational basis for comparing the practi-
cal performance of materials when loaded. Apparently this cannot be realized in the
case of a heterogeneous material that displays a negative size effect. Nevertheless,
the correspondence between the positive and negative size effects forecast for both
the simple laminated and the more involved perforated materials considered suggest
a pragmatic, albeit empirical, resolution to this dilemma since the correspondence
suggests that it may be possible to infer constitutive property data from observed
effects in cases where these are negative.
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