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Abstract. Instance matching in linked data has become increasingly
important because of the rapid development of linked data. The goal of
instance matching is to detect co-referent instances that refer to the same
real-world objects. In order to realize such instances, instance matching
systems use a configuration, which specifies the matching properties, sim-
ilarity measures, and other settings of the matching process. For differ-
ent repositories, the configuration is varied to adapt with the particular
characteristics of the input. Therefore, the automation of configuration
creation is very important. In this paper, we propose cLink, a supervised
instance matching system for linked data. cLink is enhanced by a heuris-
tic algorithm that learns the optimal configuration on the basic of input
repositories. We show that cLink can achieve effective performance even
when being given only a small amount of training data. Compared to
previous configuration learning algorithms, our algorithm significantly
improves the results. Compared to the recent supervised systems, cLink
is also consistently better on all tested datasets.

Keywords: Instance matching · Schema-independent · Supervised ·
Linked data

1 Introduction

The general problem of instance matching was first employed in the 1950s. Up
to now, researchers have conducted numerous related studies. The targets of the
solutions for this problem are diverse, from the general areas of data mining, to
more specific application of data cleansing and integration. Instance matching
is very important in integrating information from multiple sources because it
maintains the consistency and integrity of the final data. This study focuses on
instance matching for linked data repositories. Instance matching on linked data
has been a topic of extensive research [3]. However, developing a perfect instance
matching algorithm remains an open research problem.

The main difficulties of instance matching originate from the ambiguity and
heterogeneity of input repositories. The ambiguity exists because many instances
of a repository can share similar descriptions (e.g., Tokyo bay and Tokyo station),
especially when the number of instances is high. Meanwhile, the heterogeneity
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relates to the inconsistent representations of the identical information, including
the instance-level (e.g., Tokyo and the capital of Japan) and schema-level1 (e.g.,
name and label). Compared to other type of data, web-based data like linked
data is more heterogeneous and ambiguous due to its high scale and the open-
access mechanism.

Basically, in order to match two instances of different repositories, instance
matching algorithms have to estimate the similarities between the values of the
same attributes. After that, these similarities are aggregated into one matching
score. This score is used to determine whether two instances are co-referent or
not. The mechanisms of those steps can be described by a matching configuration
[12,25].

The construction of configuration defines the approach of an instance match-
ing system. Basic methods [2,19] manually define the configuration and thus are
limited to only the repositories whose schema are well-documented and realized
by user. Advanced methods create the matching configuration automatically
using the observation on the input repositories. They are also called schema-
independent methods. For obtaining the schema-independent goal, many tech-
niques have been proposed, such as pure statistic [1,17], unsupervised learning
[18], and supervised learning [6–8,11,13,21]. Among them, the supervised learn-
ing though requires a number of labeled co-referent instances, delivers the best
accuracy.

Recently, supervised learning of configuration has been investigated with
genetic algorithm [8,11] and information-gain based selection [7]. The reported
results of using these methods are promising. Unfortunately, the genetic algo-
rithm is not supported by a clear strategy as it is based on random search
principle. Meanwhile, the information-gain based selection ignores the evalua-
tion of combining different similarity estimation methods. We are motivated in
constructing an instance matching system that can take these issues into account.

We propose cLink, an instance matching system that is enhanced by a novel
configuration learning algorithm named cLearn. From two input repositories,
cLink performs a pre-learning stage to automatically generate initial similarity
functions and co-referent candidates. Given that some candidates are labeled and
input into cLearn, the algorithm uses a heuristic search method to optimize the
combination of similarity functions as well as all other settings of the instance
matching process. The learning outcome of cLearn is an optimal configuration
for discovering the co-references from unlabeled candidates. cLearn is previously
presented in its initial form in [15]. In this paper, we present the cLink system
whose core learning algorithm is cLearn and report in detail many important
descriptions, analyses, and evaluations.

The remaining parts of this paper are organized as follows. Section 2 reviews
remarkably related work. Section 3 describes the details of cLink. Section 4 reports
the experiments. Section 5 summarizes the paper and future work.

1 In this paper, the schema of a linked data repository is defined as the list of all
predicates, which is part of the RDF statements (< subject, predicate, object >).
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2 Related Work

SILK [25] and LIMES [12] are among the frontiers of linked data instance match-
ing frameworks. These frameworks define a declarative structure to represent a
manually-defined matching configuration. Zhishi.Links [19], AggrementMaker [2],
and RiMOM [10] are more advanced system of manual approach, which focus on
both accuracy and scalability. Zhishi.Links leverages domain knowledge while
AggrementMaker and RiMOM combine many strategies to improve matching
accuracy. RiMOM is also one of the current state-of-art automatic instance
matching systems.

SERIMI [1] and SLINT+ [17] attempted to eliminate user involvement by
automatically detecting property alignments using overlap measure. KnoFuss
[18] is an unsupervised system that learn the matching configuration using
genetic algorithm. The advantage of Knofuss is that this system does not require
labeled data for training. However, since the fitness value is calculated using a
pseudo value of the actual accuracy, the learned configuration can contain incor-
rect alignments and thus reduce the performance. PARIS [24] is an automatic
system that consider the similarities of RDF objects, predicates, instances, and
classes as related components. The matching process is done by iteratively com-
puting and propagating the similarities over these components. Also based on
probabilistic theory but combining with crowdsourcing technology, Zencrowd
offers a large scale instance matching framework. Although these automatic sys-
tems obtained good results in experiment, when the high accuracy is the first
priority and the existing co-references are available, the supervised learning app-
roach is still the first option.

ADL [7] and ObjectCoref [6] learn discriminative properties that are expected
to effectively separate the positive and negative co-references. These systems
include the domain knowledge in order to improve the accuracy. Instance match-
ing also can be treated as a binary classification problem. A benchmark of
many different classifiers for linked data instance matching can be found in [23].
Recently, Rong et al. used Adaboost algorithm to enhance the performance
of a random forest classifier [21]. The disadvantage of using classifier is that
the matching scores of instances are not explicitly calculated and hence the
further post-processing steps, whose these scores are the demand, cannot be
implemented. For example, adaptive filtering in SLINT+ greatly improves the
result [17].

Most related to our work are RAVEN [11], EAGLE [13], EUCLID [14], and
ActiveGenLink [8], which learn the matching configuration using supervised app-
roach. While RAVEN and EUCLID use deterministic methods, EAGLE and
ActiveGenLink apply genetic algorithm in order to improve the efficiency, espe-
cially when many attributes are input. However, genetic algorithm still has to
check many configurations to reach the convergence. In addition, active learning
is used for RAVEN, EAGLE, and ActiveGenLink. Compared to these systems,
cLink is different at the novel learning algorithm. cLink also supports many
similarity aggregation strategies and matching score post-filtering. In the next
section, we describe the detail of cLink.
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Fig. 1. The workflow of cLink.

3 The cLink System

cLink consists of six components, property alignment generator, similarity func-
tion generator, candidate generator, configuration learner, similarity aggregator,
and co-reference filter. The workflow of cLink is illustrated in Fig. 1. Given two
input repositories, Rsource and Rtarget, cLink first creates the property align-
ments. Then, these alignments are used to build the initial similarity functions
and to select the possibly co-referent candidates. Using the existing co-references,
some candidates are labeled and input into the configuration learner to find an
optimal configuration. The optimal configuration defines the appropriate sim-
ilarity functions selected from the initial similarity functions. Each similarity
function computes the similarity of two instances on one property. The similar-
ity aggregator combines many similarities into a final matching score. Finally,
co-references filter considers the matching score of all candidates and produces
the final co-references. Next, we describe the details of each component.

3.1 Property Alignment Generator

This component generates the property alignments between Rsource and Rtarget.
An appropriate property alignment is expected to describe the same information
of two instances (e.g., ‘born in’ and ‘home town’). In linked data, as properties are
represented by RDF predicates, the outputs of this component are the alignments
between RDF predicates.

Property alignments are generated in two steps. First, cLink selects in the
source repository the predicates that satisfy two conditions. Second, cLink aligns
each selected predicate with the corresponding ones in the target repository using
an overlap measure. The conditions used in the first step are the discriminabil-
ity and the coverage, which are constructed by a modification on the basic of [22].
The discriminability discr(pk) expresses the diversity of the RDF objects declared
by pk, while the coverage cover(pk) represents the instance-wise frequency of pk.
Eqs. 1 and 2 describe discr(pk) and cover(pk), respectively:

discr(pk) =
|{o|x ∈ Rsource, < s, pk, o >∈ x}|

|{< s, pk, o > |x ∈ Rsource, < s, pk, o >∈ x}| (1)
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cover(pk) =
|{x|x ∈ Rsource, < s, pk, o >∈ x}|

|Rsource| (2)

where R stands for repository, < s, p, o > is a RDF triple, and x is an instance,
which is a set of RDF triples sharing the same subject s. We separate the predi-
cates by their data type: string, number, date, and URI. The type of a predicate
is assigned with the most frequent type of its RDF objects. For each type, we
select the predicates having the discriminability discr higher than α and then
retain only the Kcover predicates with the highest coverages cover.

One predicate selected from the source repository can be aligned with many
predicates having the same type in the target. The confidence overlap of an
alignment [psource, ptarget] is measured as follows:

overlap([psource, ptarget]) =
|Opsource

∩ Optarget
|

|Opsource
| (3)

Opk
= {E(o)|x ∈ Rk, < s, pk, o >∈ x}

where E is a pre-processing function. E is applied for each RDF object. E works
in flexible ways depending on the property type. For string, E collects the tokens.
For number, E returns the rounded value at two decimal digits. For date, E keeps
the original value. For URI, E extracts the remaining string after stripping
away the domain. For each predicate of the source repository, we select the top
Kalign alignments having the highest overlap. The confidence is not enough
to guarantee the correctness of generated alignments. Therefore, a medium or
large number of property alignments is safer to retain the useful alignments.
Removing incorrect alignments is the mission of configuration learner. In cLink,
we set α = 0.5,Kcover = 4 and Kalign = 4 for all types as the default parameter.
In total, by default this component produces at most 64 property alignments.

Equation 3 works under the assumption that the target repository contains
many co-references with the source repository. Therefore, the denominator is
related only to the source repository instead of both repositories like a Jaccard
measure, which is used in SERIMI [1] and SLINT+ [17]. Equation 3 is reasonable
because currently there are many large repositories that cover a wide range of
instances (e.g., DBpedia, Freebase, and Wikidata). Furthermore, as the predicate
alignments are generated using only RDF objects, cLink does not require the
specification of the schemata. In other words, cLink is schema-independent.

3.2 Similarity Function Generator

This component assigns to each property alignment the suitable similarity met-
rics and the result of one assignment is one similarity function. In other word,
each similarity function computes the similarity of two instances on one des-
ignated property. The final matching score is computed by multiple similarity
functions. The detail is described in Sect. 3.5. Equation 4 is the definition of a
similarity function sim:
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sim{[psource,ptarget],metric}(x, y) = max
ox,oy

(metric(E(ox), E(oy))) (4)

< s, psource, ox >∈ x,< s, ptarget, oy >∈ y

A similarity function is specified by two pieces of information: a property align-
ment [psource, ptarget] and a similarity measure metric. For two instances: x ∈
Rsource and y ∈ Rtarget, a similarity function returns the similarity of the most
similar RDF objects declared by psource and ptarget. In other words, the max
operator effects if psource or ptarget appears many times in x or y. The function
E defined in Sect. 3.1 is used to pre-process the RDF objects.

Table 1. Example of property alignments and assigned similarity measures

Source property Target property Similarity measures

Label name Levenshtein, TFIDF-Cosine

leader Levenshtein, TFIDF-Cosine

Description comment TFIDF-Cosine

abstract TFIDF-Cosine

Establish named date ExactMatch

Population area size ReversedDifference

elevation ReversedDifference

The similarity measure metric is assigned to the similarity function in accor-
dance with the type of psource and ptarget, as illustrated in Table 1. cLink sup-
ports five similarity measures. For ‘date’ and ‘URI’, cLink uses the exact match-
ing, which returns 1.0 if two values are identical and 0.0 otherwise. For ‘number’,
cLink uses the reversed difference (Eq. 5), which calculates how much close two
numbers a and b are to each other:

diff(a, b) = (1 + |a − b|)−1 (5)

For string, cLink supports two measures having different characteristics. For
short string2, we select Levenshtein because of its robustness. For long string,
we select cosine similarity on TFIDF vectors calculated from the token sets. In
order to obtain the TFIDF weight for each token, we adapt the original weighting
calculation for being compatible with linked data instances. We calculate the
normalized term frequency for TF and probabilistic inverse frequency for IDF,
which are described by Eqs. 6 and 7, respectively.

TF (w, x,R) =
|{< s, p, o > |w ∈ E(o), < s, p, o >∈ x}|

maxy∈R |{< s, p, o > |w ∈ E(o), < s, p, o >∈ y}| (6)

IDF (w,R) = log
|R| − |{y| < s, p, o >∈ y, w ∈ E(o), y ∈ R}|

|{y| < s, p, o >∈ y, w ∈ E(o), y ∈ R}| (7)

2 The strings whose length is less than 100 characters.
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where, w is the token of interest, x is an instance belonging to the repository R.
Function E extracts the tokens of the input RDF object.

All property alignments generated previously are input into this component.
In parallel, the alignments of string properties are input into the candidate gen-
erator, which is described in the following section.

3.3 Candidate Generator

This component detects the pairs of potentially co-referent instances. Such pairs
are called candidates. cLink uses a simple token-based prefix blocking approach
[20], by which a pair of two instances is considered as a candidate if they share a
number of first tokens of the RDF objects declared by designated properties. In
cLink, we use only one token so that cLink can retain as many correct candidates
as possible. In addition, only the generated string property alignments are used
for comparing the tokens.

The mission of the candidate generator is to limit the huge number of pairwise
alignments between instances, which is |Rsource|×|Rtarget|. Therefore, this com-
ponent is very important because it is impractical to check all pairs of instances,
especially when the repositories are large.

There is possibility to use weighting schemes for reducing the number of
candidates [9,17,25]. However, such reduction is companied with a drop in the
number of correct candidates. For that reason, we recommend using the simple
token-based blocking without weighting.

Given that positive and negative labels are assigned (e.g., manually or auto-
matically by using some existing co-references) to some candidates for creating
labeled ones, they are divided into training set T and validation set V , which
are required by the learning algorithm in the next step.

3.4 Configuration Learner

The input of this component are the labeled candidates, including a training set T
and a validation set V ; initial similarity functions Isim (Sect. 3.2); and similarity
aggregators Iagg (Sect. 3.5). The output of this component is the optimal config-
uration Copt that is most suitable to the input repositories. A configuration spec-
ifies the combination of similarity functions Fsim, the similarity aggregator Agg,
the parameters δsim associated with each similarity function sim, and the para-
meter δ of the co-reference filter (Sect. 3.6). For solving the configuration learn-
ing problem, we use cLearn algorithm. cLearn uses a heuristic search method to
learn the combination of the similarity functions, the similarity aggregator, and
other parameters. The pseudo code of cLearn is given in Algorithm 1. Note that in
the pseudo code, we use dot (‘.’) notation as the member accessing function. The
Init function creates a configuration by assigning Agg, Fsim, and δ with given
values. The Evaluate function first executes the similarity aggregator and the co-
reference filter specified by a configuration, on a set of candidates. Then, based
on the label of those candidates, it computes the performance, F1 score. F1 is
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Algorithm 1. cLearn

Input: Training set T , validation set V , integer paramerter Ktop

list of similarity functions Isim, list of similarity aggregators Iagg
Output: Optimal configuration Copt

1 Cagg ← ∅
2 foreach A ∈ Iagg do
3 visited ← ∅
4 foreach sim ∈ Isim do
5 c ← Init(Agg ← A, Fsim ← sim, δ ← 0)
6 [c.δ, F1] ← EvaluateAndAssignThreshold(c, T )
7 c.σsim ← c.δ
8 visited ← visited ∪ {[c, F1]}
9 candidate ← TopHighestF1(visited, Ktop)

10 while candidate �= ∅ do
11 next ← ∅
12 foreach g ∈ candidate do
13 foreach h ∈ candidate do
14 c ← Init(Agg ← A, Fsim ← g.c.Fsim ∪ h.c.Fsim, δ ← 0)
15 [c.δ, F1] ← EvaluateAndAssignThreshold(c, T )
16 visited ← visited ∪ {[c, F1]}
17 if g.c.Fsim �= h.c.Fsim and F1 ≥ g.F1 and F1 ≥ h.F1 then
18 next ← next ∪ {[c, F1]}

19 candidate ← next

20 F1 ← Evaluate(argmaxv∈visited(v.F1).c, V )
21 Cagg ← Cagg ∪ {[c, F1]}
22 [Copt, F1] ← argmaxv∈Cagg (v.F1)
23 return Copt

the harmonic mean of the recall rec and the precision pre, which are calculated as
follow:

rec =
Number of correctly detected co-references

Number of actual co-references
(8)

pre =
Number of correctly detected co-references

Number of all detected co-references
(9)

The EvaluateAndAssignThreshold function works similarly to Evaluate, but
at the same time, it finds a value for δ. This function selects the top N candidates
with highest matching score, where N is the number of the actual co-references
in L. After that, it assigns the lowest score of the correctly detected co-reference
to δ. In cLearn, Ktop controls the maximum size of Fsim in the learned config-
uration and is fixed to 16 by default. This parameter also limits the number of
configurations that the algorithm has to check to 2Ktop and thus guarantees a
constantly maximum response time.
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cLearn begins with each single similarity function and then considers the
combinations of those individuals. cLearn is based on a greedy enhancement
heuristic (line 17), which assumes that the performance of a new combination
of similarity functions must not be less than that of the combined components.
The heuristic is reasonable because a series of similarity functions that reduces
the performance has little possibility of generating a further combination with
improvement.

The global optimum of configuration can be found using exhaustive search.
However, such method is extremely expensive in term of computational cost
and thus has not been used. Some systems try to use genetic search to solve
the issue [8,13,18] but this algorithm is still time-consuming and contains many
parameters. We use a heuristic search to reduce the complexity and minimize
the parameters.

cLearn uses validation set V (line 20) in order to increase the generality of
the final configuration Copt. Each iteration controlled by line 2 finds an optimal
configuration associated to a similarity aggregator A. Therefore, Cagg contains
|Iagg| configurations that is optimized for training set T . In order to identify the
most general configuration, using V , a different set from T , is a better option.

cLearn algorithm is generic because the function EvaluateAndAssignThre−
shold can be replaced by other functions having the similar purpose. There-
fore, this algorithm not only works in cLink, but also is compatible with any
configuration-based matching system [7,12,14,25].

3.5 Similarity Aggregator

The similarity aggregator computes the final matching score for each candidate
using the similarity functions Fsim and their parameter δsim, which are specified
by the configuration. The computation of the matching score mScore(x, y) for
two instances x and y is defined as follows:

mScore(x, y) = weight(y) × combineFsim
(x, y) (10)

where weight is a function weighting the target instance y and combine is a
similarity combination function. cLink provides non-weighting and weighting
versions. For non-weighting, weight(y) simply returns 1.0. For weighting, the
weight is calculated by Eq. 11:

weight(y) = logmaxt∈Rtarget size(t) size(y) (11)

where size(y) counts the number of RDF triples existing in y. By using Eq. 10,
we assume that instances containing many triples are more prioritized. The loga-
rithmic scale is used to reduce the weight of instances whose size is particularly
large. This weighting method is effective when the target repository is very
ambiguous, such as large repositories.
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For similarity combination, cLink uses the following equation:

combineFsim
(x, y) =

1
valid(UFsim

(x, y))

∑
v∈UFsim

(x,y)
vk (12)

UFsim
(x, y) = {sim(x, y)|sim(x, y) ≥ σsim, sim ∈ Fsim}

where k ∈ {1, 2}, valid is a counting function, and σsim is the parameter for each
similarity function sim, which is determined automatically by cLearn (line 7 of
Algorithm 1). k controls the transformation for each similarity v. When k = 1,
combine acts as a first order aggregation. When k = 2, we have a quadratic aggre-
gation. There are also two variations of valid, which return the number of elements
in UFsim

(x, y) and 1.0 always. The difference between these variations is that the
latter penalizes the (x, y) pair having similarities sim(x, y) < σsim while the for-
mer does not. In addition, cLink provides a restriction mechanism to enable or
disable σsim. When disabling, all σsim are set to zero instead of their original value.
In total, there are 16 combinations of weight, valid, k, and restriction. Conse-
quently, there are 16 different aggregators supported by cLink. All aggregators
are used to initialize Iagg and let cLearn select the best one.

3.6 Co-reference Filter

This component produces the final predictive co-references on the basis of match-
ing scores of all candidates. cLink reuses the adaptive filter of in SLINT+ [17].
This filter follows the idea of the stable marriage problem [4]. A pair of instances
(x, y) is co-referent if its matching score mScore(x, y), where x ∈ Rsource and
y ∈ Rtarget, satisfies the conditional statement of Eq. 13:

mScore(x, y) ≥ max( max
z∈Rsource

mScore(z, y), max
t∈Rtarget

mScore(x, t)) (13)

In addition, this component uses a cut-off filter to eliminate the incorrect
candidates but satisfying Eq. 13. A threshold δ is used for this task. δ is assigned
by the learning algorithm. Only instance pairs whose scores satisfy the condition
statement of the filter and threshold δ are promoted to be a final co-reference.

Above we have described the details of cLink. The next section reports the
experiments and the results.

4 Experiment

We report in total three experiments. The first experiment is to evaluate the can-
didate generator. The second experiment evaluates learning algorithm cLearn.
In this experiment, we compare cLearn with other configuration learning algo-
rithms. The third experiment compares cLink with other systems, including the
systems that use supervised learning approach. We use the default parameters
for the settings of cLink for every experiment. The details of the experiments
are described from Sect. 4.3 to 4.5.
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cLink in implemented as part of ScSLINT framework [16] and is available at
http://ri-www.nii.ac.jp/ScSLINT/.

Because cLink uses training data for the learning algorithm, before reporting
the experiments, we describe the annotation process, which is compatible not
only for cLink but also for other learning-based instance matching systems.

4.1 Candidate Labeling and Separation

From the input of source repository Rsource, a target repository Rtarget, and
the actual co-references R, we execute the first three components of cLink to
obtain the candidates. After that, we annotate the candidates using the actual
co-references. Concretely, if a candidate (x, y) appears in R, where x ∈ Rsource

and y ∈ Rtarget, we assign positive label to (x, y) and candidate label to (x, z),
where y �= z ∈ Rtarget.

When splitting the candidates into different sets, we propose to put all the
candidates sharing the source instance into one set. In other words, each sepa-
rated set does not share any source instance with each other. This separation
strategy is used because it is compatible with the practical annotation process.
In order to keep the quality of annotated data, the following process can be
applied. Given an instance from source repository, a ranked list of instance pairs
is created using a simple matching method. Annotators are asked to assign the
positive labels for the top ranked pairs. Because the list is sorted, the remaining
pairs can be assumed to be negative. By following this manner, such positive
label assignments have tiny possibility to be incorrect. That is, the quality of
training data is guaranteed. In previous experiments [7,8,13,21], other super-
vised systems randomly select training examples from the candidates set and
thus fail to address the issue of annotation quality in real matching tasks.

For our experiments, we first randomly separate the candidates into two sets
using the above strategy. The size of these sets is determined differently for
each experiment. The first set is reserved for learning, and the second set (test
set) is used for evaluating the performance. After that, the first set is similarly
separated into training set T (80 %) and validation set V (20 %). Furthermore,
since the source repository frequently contains many instances that are not co-
referent with any instance in the target, an arbitrary randomization possibly
creates the sets that are drastically different from each other in term of the ratio
between the positive and the negative candidates. Therefore, in our experiment,
we remain the same ratio r for all separated sets, where r is the actual ratio
between the number of the source instances related to at least one co-reference
and the ones that do not involve with any co-reference.

4.2 Datasets

We use two the datasets provided by the instance matching track of OAEI 2010
and OAEI 2012, which have been considering to be among the most challenging
datasets. There are five subsets (D1 to D5) for OAEI 2010, and seven subsets
(D6 to D12) for OAEI 2012. The details of these subsets are given in Table 2.

http://ri-www.nii.ac.jp/ScSLINT/
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Table 2. Summary of OAEI 2010 (D1 to D5) and OAEI 2012 (D6 to D12) datasets

ID Source repository Target repository Co-references

Name #Instances #Properties Name #Instances #Properties

D1 Sider 2,670 10 Drugbank 19,689 118 1,142

D2 Sider 2,670 10 Diseasome 8,149 18 344

D3 Sider 2,670 10 Dailymed 10,002 27 3,225

D4 Sider 2,670 10 DBpedia 4,183,461 45,858 1,449

D5 Dailymed 10,002 27 DBpedia 4,183,461 45,858 2,454

D6 NYT loc 3,837 22 DBpedia 4,183,461 45,858 1,917

D7 NYT org 5,967 20 DBpedia 4,183,461 45,858 1,922

D8 NYT peo 9,944 20 DBpedia 4,183,461 45,858 4,964

D9 NYT loc 3,840 22 Freebase 40,358,162 2,455,627 1,920

D10 NYT org 6,045 20 Freebase 40,358,162 2,455,627 3,001

D11 NYT peo 9,958 20 Freebase 40,358,162 2,455,627 4,979

D12 NYT loc 3,785 22 Geonames 8,514,201 14 1,729

Table 3. Result of candidate generation.

D1 D2 D3 D4 D5 D6

#cans 5,771 4,258 5,013 482,605 987,856 38,201,823

rec 0.9721 0.9535 0.9939 0.9538 0.9780 0.9718

D7 D8 D9 D10 D11 D12

#cans 61,702,166 46,942,099 222,686,524 357,365,003 620,073,101 32,161,659

rec 0.9880 0.9970 0.9875 0.9770 0.9912 0.9676

For OAEI 2010, we use the data provided by the OAEI website. The OAEI
2010 dataset contained five repositories related to healthcare domain: Sider,
Diseasome, Drugbank, Dailymed, and DBpedia. The OAEI 2012 dataset con-
tains four repositories NYTimes (NYT), DBpedia, Freebase, and Geonames
with three domains location (loc), organization (org) and people (peo). For this
dataset, we use the dump of NYTimes 2014/02, DBpedia 3.7 English, Free-
base 2013/09/03, and Geonames 2014/02. There are a few slight inconsistencies
between the ground-truth provided by OAEI 2012 and our downloaded dump
data, because of the difference in the release dates. Therefore, we exclude 130
(0.298 %) source instances which are related to such inconsistencies.

We use these datasets because the purpose of our experiments is to know the
performance of cLink on the real data with large size. Although there are some
newer datasets, they are either small, artificial, or focus on the benchmarks with
some special targets (e.g., reasoning-based, string distortion, language variation).
Therefore, we do not use such datasets. In addition, using OAEI 2010 dataset pro-
videsus theopportunity to compareourproposed systemwithother learning-based
systems, which were already tested on this dataset.
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Table 4. F1 score of cLink when using cLearn and other algorithms.

cLearn genetic naive none

D1 0.9365 0.9375 0.8767 0.8137

D2 0.8679 0.8450 0.8733 0.8430

D3 0.8686 0.7665 0.6741 0.6841

D4 0.6676 0.6673 0.6407 0.5535

D5 0.4725 0.4727 0.3100 0.2080

D6 0.8835 0.8249 0.8289 0.7336

D7 0.9058 0.9058 0.8594 0.4508

D8 0.9645 0.9635 0.9581 0.9506

D9 0.8781 0.8781 0.8609 0.1934

D10 0.9116 0.9089 0.8105 0.2223

D11 0.9465 0.9477 0.9325 0.4640

D12 0.9163 0.9106 0.8908 0.8852

H.Mean 0.8191 0.8022 0.7236 0.4249

4.3 Experiment 1: Candidate Generation

We evaluate the recall of the generated candidates by using Eq. 8. In order to use
Eq. 8, we consider all the candidates as the detected co-references. We report this
experiment because candidate generation is a very important step of instance
matching system. The recall of this step is the upper bound of the final recall
of the full instance matching process. In addition, we report the number of
generated candidates because it reflects the complexity of further tasks.

Table 3 lists the number of the generated candidates #cans and the recall
rec by each subset. According to this table, the recall is very high although
it cannot reach 1.0, even when cLink uses the token sharing, a very relaxed
constraint. Such a lose constraint leads to high number of candidates, compared
to the expected co-references (Table 2), especially on OAEI 2012 dataset (D6 to
D12). However, compared to the number of all possible instance pairs between
the source and the target repository, for all subsets, more than 99.9 % of pairwise
alignments are excluded. Shortly, candidate generator shows its important role
as it considerably reduces the complexity of further components, such as the
similarity aggregator and the configuration learner.

4.4 Experiment 2: Evaluation of cLearn Algorithm

We report the result of cLink when using cLearn and other alternatives, so
that we can simultaneously evaluate the effectiveness of cLearn and compare it
with other algorithms. We implement two baseline algorithms, non-optimization
(none) and naive (naive). none does accept all generated similarity functions
without any validation. This approach is similar to that of SLINT+ [17] and
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Table 5. F1 score of the compared systems on OAEI 2010.

Training data System D1 D2 D3 D4 D5 H.mean

5 % cLink 0.911 0.824 0.777 0.6414 0.424 0.663

Adaboost 0.903 0.794 0.733 0.641 0.375 0.628

Varied by subset cLink 0.894 0.829 0.722 0.799

ObjectCoref 0.464 0.743 0.708 0.611

Reference systems

RiMOM 0.504 0.458 0.629 0.576 0.267 0.445

PARIS 0.649 0.108 0.149 0.502 0.219 0.207

SERIMI [1], which totally rely on the accuracy of property alignment generator.
naive selects the Ktop similarity functions that offer the highest F1 on training
data. For other alternatives, we select genetic algorithm (genetic) as the state-
of-the-art in configuration learning [8,13]. genetic represents the combination of
similarity functions by binary array, in which an element indicates the active
or inactive status of the associated similarity function. We choose exponential
ranking for fitness selection, 0.7 for single point cross-over probability, 0.1 for
single point mutation probability, and 50 for the population size.

5-folds cross validation is used for this experiment. We choose cross-validation
because this option in turn puts all candidates into training as well as testing.

In Table 4, we report the average F1 scores on each subset of the tested
algorithms. According to this table, cLearn consistently outperforms other algo-
rithms in term of harmonic mean of all subsets. Although genetic is competitive
with cLearn on some subsets, when considering each fold separately, so that
there are 60 test cases for 12 subsets, the paired t-test over all tests at 0.05
significant level shows that cLearn is significantly better than genetic, as well
as all other algorithms. In addition, the efficiency of cLearn is much better than
genetic. genetic spends averagely 7,231 s3 for learning on one subset of OAEI
2012 while cLearn only takes 2,977 s3 (See Footnote 3). The average numbers
of configurations that cLearn and genetic have to check is 137 and 263, respec-
tively. That is, almost 50 % configurations are skipped by using cLearn compared
to genetic. This fact supports the efficiency of using our heuristic against the
random convergence principle of genetic.

4.5 Experiment 3: Compare cLink with Other Systems

We compare cLink with two supervised instance matching systems, Object-
Coref [6] and the work in [21], which uses Adaboost to train a classifier. In this
paper, we temporarily refer to this work with the name Adaboost. In addition,
we also report the result of RiMOM [10] and PARIS [24] for reference. RiMOM
and PARIS are the two state-of-the-art systems among non-learning based ones.

3 Tested on a computer equipped with two Intel E5-2690 CPUs and 256 GB memory.
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OAEI 2010 dataset is used for this comparison. According to the reported
result of Adaboost and ObjectCoref, Adaboost used 5 % candidates for training
on all subsets, while ObjectCoref uses 20 actual co-references, which is equiv-
alent to 2.3 %, 11.6 % and 1.2 % candidates on D1, D2, and D3, respectively4.
Therefore, we feed the same amount of training data into cLink, on each respec-
tive subset and for each comparison. The results of cLink in this experiment are
the average of 10 times repeat.

Table 5 reports the F1 scores of cLink and other systems. According to this
table, cLink consistently outperforms the others. In detail, cLink improves the
results against ObjectCoref and cLink is remarkably better than Adaboost on D3
and D5. These subsets are difficult for other systems because they involve with
DailyMed, a repository containing the highest number of co-references inside.
The comparison also reveals that cLink can achieve promising results by being
given a small amount of training data (at most 5 %). Compared to the reference
systems, RiMOM and PARIS, all of cLink, Adaboost, and ObjectCoref are far
better. This fact supports the necessity of supervised resolution systems when
effectiveness is the first priority.

5 Conclusion and Future Work

We presented cLink, an effective and efficient schema-independent entity reso-
lution system. cLink supports many aggregation methods and uses a reasonable
filtering technique to refine the final resolution results. The matching configura-
tion is optimized by a novel and efficient learning algorithm using only a small
amount of training data. The cLearn algorithm significantly improves the result
of cLink against other algorithms, including the ones that are used by other
state-of-the-art systems. cLink also achieves better performance compared to
recent systems.

In future work, we are interested in experimenting with learning goals that
are different from F1 for each particular property (e.g., prioritizing the recall or
precision). Since there is labeled data, a learning algorithm for optimizing the
candidate generator is also very useful to reduce the candidates. In addition,
transfer learning and active learning are the two technologies that are applicable
in cLink in order to even reduce more the training data.
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