
Chapter 9

Snap-Through Buckling of Micro/
Nanobeams in Bistable Micro/
Nanoelectromechanical Systems

Xue Chen and Shaker A. Meguid

Abstract In this chapter, we investigate the instability behavior of an initially

curved micro/nanobeam subject to an electrostatic force. The general governing

equations of the curved beam are developed using Euler-Bernoulli beam theory and

are solved using the Galerkin decomposition method. Firstly, the size effect on the

symmetric snap-through buckling of the microbeam is studied. The size effect is

accounted for in the beam model using the modified couple stress theory. The

fringing field effect and the intermolecular effects, such as van der Waals and

Casimir forces, are also included in the snap-through formulations. The model

simulations reveal the significant effect of the beam size, and to a much lesser

extent the effect of fringing field and intermolecular forces, upon the snap-through

criterion for the curved microbeam. Secondly, the surface effects on the asymmetric

bifurcation of the nanobeam are studied. The surface effects, including the surface

elasticity and the residual surface tension, are accounted for in the model formula-

tion. The results reveal the significant size effect due to the surface elasticity and the

residual surface tension on the symmetry-breaking criterion for the considered

nanobeam.

9.1 Introduction

Micro/nano-electro-mechanical systems (MEMS/NEMS) have aroused great inter-

est for their unique advantages such as small size, high precision, and low power

consumption. One benchmark of MEMS/NEMS is the initially straight micro/

nanobeam system driven by electrostatic force, whose static and dynamic behaviors

have been largely investigated in the literature (Carr et al. 1999; Dequesnes

et al. 2002; Jia et al. 2011; Ke et al. 2005; Kinaret et al., 2003; Li et al., 2013;

Ruzziconi et al., 2013; Tilmans and Legtenberg, 1994; Verbridge et al., 2007
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among many others). Recently, the bistable MEMS/NEMS based on initially

curved micro/nanobeams have drawn more and more attention from the scientific

community for their various potential applications such as optical switches, micro-

valves, and non-volatile memories (Charlot et al., 2008; Goll et al., 1996;

Intaraprasonk and Fan (2011); Roodenburg et al., 2009).

The initially curved beam (arch) under transverse forces may exhibit two main

instabilities: symmetric snap-through buckling and asymmetric bifurcation. The

symmetric snap-through buckling is the transition between two stable states

(Medina et al. 2012). After the snap-though, the arch shape is symmetric, as

depicted in Fig. 9.1a. However, for the asymmetric bifurcation, the arch may

exhibit one of the asymmetric deformations shown in Fig. 9.1b.

The existence of snap-through buckling and asymmetric bifurcation depends on

various factors, e.g., initial arch rise and beam thickness. Pippard (1990) conducted

experiments to develop a phase diagram of instability in terms of the arch span and

the initial angle at the clamped ends. This work was followed by Patricio

et al. (1998) in which they developed theoretical model simulations to derive a

similar phase diagram. As a result of the earlier experiments and model simulations,

Krylov et al. (2008) revealed that the symmetric snap-through buckling occurs at

large initial deflections. Pane and Asano (2008) conducted energy analysis and

further found that the existence of bistable states in an initially curved beam

depends on the ratio of its initial deflection to its thickness. Park and Hah (2008)

conducted theoretical investigations and showed that the existence of bistable states

also depends on the residual axial stress in the beam. Das and Batra (2009a)

developed a finite element model to study the transient snap-through behavior of

the initially curved beam, and found that at high loading rates (i.e., voltage is

applied at a high rate), the snap-through buckling is suppressed. Moghimi Zand

(2012) also developed a finite element model and found the significant inertia effect

on the dynamic snap-through behavior. Medina et al. (2012, 2014a) examined the

symmetric snap-through buckling and the asymmetric bifurcation of an electrostat-

ically actuated mircobeam with/without residual stress. They derived the criteria of

symmetric snap-through and symmetry breaking for quasi-static loading

conditions.

Careful literature review indicates that many studies consider a uniform mechan-

ical force as the applied load. However, the electrostatic force applied on the curved

micro/nanobeam is highly nonuniform and strongly depends on the beam deflec-

tion. Several studies consider the electrostatic force, but they fail to examine the

Fig. 9.1 Schematics of instability behaviors of arch under transverse force
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fringing field effect and/or the influence of the intermolecular forces such as

Casimir and van der Waals forces. Furthermore, the size effect at the microscale

and the surface effects at the nanoscale are neglected in almost all the existing

studies.

For the microstructures, the size effect on deformation behaviors has already

been observed experimentally (Fleck et al. 1994; Lam et al. 2003; Ma and Clarke

1995; McFarland and Colton 2005), and such size dependency is attributed to the

non-local effects, which cannot be described by the classical continuum theories of

local character. Various nonclassical continuum theories with additional material

length scale parameters have been proposed (Eringen 1983; Fleck and Hutchinson

2001; Lam et al. 2003; Mindlin 1965; Toupin 1962; Yang et al. 2002). Among

them, the modified couple stress theory developed by Yang et al. (2002) with a

length scale parameter is one of the most used. Determining the microstructure-

dependent length scale parameters is difficult, so it is desirable to use the theories

with only one length scale parameter (Reddy 2011). Based on the nonclassical

continuum theories, the size effect on various behaviors of microbeams has been

theoretically studied, including bending, buckling, free vibration, and pull-in insta-

bility (Belardinelli et al. 2014; Farokhi et al. 2013; Kong 2013; Ma et al. 2008).

For the nanostructures, experiments have shown that their elastic properties are

size dependent (Cuenot et al. 2004; Jing et al. 2006; Li et al. 2003; Poncharal

et al. 1999; Sadeghian et al. 2009; Salvetat et al. 1999; Shin et al. 2006), and such

size dependency can be explained by the associated surface effects (Cuenot

et al. 2004; Dingreville et al. 2005; Jing et al. 2006; Miller and Shenoy 2000;

Sadeghian et al. 2011; Zhu 2010). The surface elasticity theory of Gurtin and

Murdoch (1975, 1978) can predict the size-dependent effective elastic properties

of the nanostructures, which has been extensively validated by experiments

(Asthana et al. 2011; Fu et al. 2010; He and Lilley 2008; Xu et al. 2010). Based

on this theory, the surface effects on various deformation behaviors of nanobeams

have been investigated, such as bending, buckling, free vibration, and pull-in

instability (Fu and Zhang 2011; He and Lilley 2008; Wang and Feng 2007, 2009).

In this chapter, we extend the earlier studies to investigate the size effect and the

surface effects on the instability behaviors of the initially curved micro- and

nanobeams under electrostatic force. Section 9.2 is devoted to the size effect on

the symmetric snap-through buckling of microbeam. The beam model is developed

considering the modified couple stress theory (Yang et al. 2002). The fringing field

effect is taken into account by Meijs-Fokkema formula (van der Meijs and

Fokkema 1984), and the influence of the intermolecular forces is also examined.

In Sect. 9.3, the surface effects on the asymmetric bifurcation of nanobeam are

studied. The surface elasticity and the residual surface tension are accounted for in

the beammodel by using the surface elasticity theory of Gurtin and Murdoch (1975,

1978) and the generalized Young–Laplace equation (Chen et al. 2006; Gurtin

et al. 1998). Based on the models and simulation results, the criteria for the

existence of snap-through buckling and asymmetric bifurcation are derived,

which can be used for the design of the bistable MEMS/NEMS.
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9.2 Size Effect on Symmetric Snap-Through Buckling
of Microbeam

9.2.1 Formulation

9.2.1.1 Governing Equations

Consider an initially curved rectangular microbeam of span L, width b, and

thickness h undergoing in-plane bending (x� z plane in Fig. 9.2). The respective

displacements ux, uy, and uz along x-, y-, and z-coordinates are assumed to

be dependent only on x and z. uy is further assumed to be 0. For a thin beam

(h<< L ), the Euler-Bernoulli beam theory is applied:

ux x; zð Þ ¼ u xð Þ � zw
0
xð Þ ð9:1aÞ

uz x; zð Þ ¼ w xð Þ ð9:1bÞ

where u(x) and w(x) are, respectively, the axial (along x-coordinate) and transverse

(along z) displacements of a point on the midplane of the beam; a superimposed

apostrophe denotes a derivative with respect to x. During the snap-through buck-

ling, the midplane stretching can be important. To consider this effect, the von

Karman nonlinear strain is used. With the aid of Eq. (9.1a, b), the nonzero strain

component (i.e., axial strain ε�xx) can be obtained as (Reddy 2011)

ε*xx ¼ u
0 � zw

00 þ 1

2
w

0
� �2

ð9:2Þ

Considering the initial strain ε0xx related to the initial deflection w0(x) by

ε0xx ¼ �zw
00
0 þ w

0
0

� �2
=2, we calculate the axial strain change εxx from Eq. (9.2) as

Fig. 9.2 Initially curved double-clamped micro/nanobeam under electrostatic force. The direc-

tions of electrostatic and intermolecular forces are indicated by arrows
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εxx ¼ ε∗xx � ε0xx ¼ u
0 � z w

0 0 � w
0 0
0

� �
þ 1

2
w

0
� �2

� w
0
0

� �2� �
ð9:3Þ

The symmetric curvature tensor χ conjugated to the deviatoric couple stress tensor

ψ in the modified couple stress theory is (Yang et al. 2002)

χ ¼ 1

2
∇ωþ ∇ω

� �T� �
ð9:4Þ

where ω ¼ ∇� u
� �

=2
� �

is the rotation vector, with u ¼ ux; uy; uz
� �T� �

being the

displacement vector; the superimposed T denotes the transpose of thematrix.With the

aid of Eq. (9.1a, b), the nonzero curvature components in Eq. (9.4) are calculated as

χ*xy ¼ χ*yx ¼ �1

2
w

00 ð9:5Þ

Considering the initial nonzero curvature χ0xy ¼ χ0yx ¼ �w
0 0
0=2 due to the initial

deflection w0, we obtain the curvature change χxy and χyx from Eq. (9.5) as

χxy ¼ χyx ¼ χ*xy � χ0xy ¼ �1

2
w

00 � w
00
0

� �
ð9:6Þ

To derive the governing equations, the theorem of minimum potential energy is

used:

δUelas � δWext ¼ 0 ð9:7Þ

where δUelas and δWext are, respectively, the variations of the elastic strain energy,

and the work done by the external forces. Considering the nonzero strain compo-

nent εxx and the nonzero curvature components χxy and χyx, we can calculate δUelas

as (Yang et al. 2002)

δUelas ¼
ð L
0

ð
S

σ : δε þ ψ : δχÞds dx ¼
ð L
0

ð
S

σxxδεxx þ 2ψ xyδχxy
� �

ds dx

�
ð9:8Þ

where

ð
S

ds is the integral over the cross section (y–z plane in Fig. 9.2). Introduce

Eqs. (9.3) and (9.6) into Eq. (9.8), integrate the resulting equation by parts with

respect to x, and we obtain
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δUelas ¼ �
ð L
0

N
0
δudx�

ð L
0

M
0 0 þ C

0 0 þ Nw
0

� �0� �
δwdx

� Nð0Þδuð0Þ þ NðLÞδuðLÞ � ðM0 ð0Þ þ C
0 ð0Þ þ Nð0Þw0 ð0ÞÞδwð0Þ

þ ðM0 ðLÞ þ C
0 ðLÞ þ NðLÞw0 ðLÞÞδwðLÞ þ ðMð0Þ þ Cð0ÞÞδw0 ð0Þ

� ðMðLÞ þ CðLÞÞδw0 ðLÞ
ð9:9Þ

where the stress resultants N, M, and C are defined as

N ¼
ð
S

σxx ds ð9:10aÞ

M ¼
ð
S

zσxx ds ð9:10bÞ

C ¼
ð
S

ψ xy ds ð9:10cÞ

Neglecting the gravity, we can calculate the variation δWext of the work done by the

external forces as

δWext ¼
ð L
0

f z xð Þδw dx ð9:11Þ

where the distributed transverse load fz is composed of

f z ¼ f elec þ f casi þ f VDW ð9:12Þ

felec, fcasi, and fVDW are, respectively, the electrostatic force, Casimir force, and van

der Waals force per unit length.

The electrostatic force felec per unit length can be calculated using (Batra

et al. 2006; Dequesnes et al. 2002)

f elec ¼
1

2
V2 dCcap

dg
ð9:13Þ

where the sign of the force depends on the coordinate system, V is the applied

voltage between the beam and the rigid electrode, Ccap is the capacitance per unit

length of the capacitor composed of the beam and the electrode, and g is the gap

between the beam and the electrode as being

g xð Þ ¼ g0 þ w xð Þ ð9:14Þ

with g0 being the initial gap (i.e., distance between the clamped beam ends and the

rigid electrode (see Fig. 9.2)). For a small gap g (<< beam length), the beam with
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the electrode can be regarded as a parallel-plate capacitor. To further take into

account the fringing fields at the edges of the microbeam, the capacitance Ccap is

estimated using the Meijs-Fokkema formula (van der Meijs and Fokkema 1984):

C gð Þ ¼ ε0
b

g
þ 0:77þ 1:06

b

g

� �0:25

þ 1:06
h

g

� �0:5
 !

ð9:15Þ

where ε0 is the vacuum permittivity. It is noted that the error of the estimated

capacitance using Eq. (9.15) is within 6% for the microbeam systems satisfying

beam-width-to-gap ratio (b/g) larger than 0.3 and beam-thickness-to-gap ratio (h/g)
smaller than 10 (van der Meijs and Fokkema 1984). So to ensure the proper

application of Eq. (9.15), this chapter only studies the microbeam systems with

the width-to-initial-gap ratio (b/g0) larger than 0.5 (considering wmax¼ 0.5 g0 in

Eq. (9.14)) and the thickness-to-initial-gap ratio (h/g0) smaller than 5 (considering

wmin¼�0.5 g0). Introduce Eqs. (9.14) and (9.15) into Eq. (9.13), and after several

calculations we obtain (Krylov et al. 2008)

f elec¼�1

2

ε0bV
2

g0þwð Þ2 1þ0:265
b

h

� ��0:75 g0þw

h

� �0:75
þ0:53

b

h

� ��1 g0þw

h

� �0:5 !

ð9:16Þ

The intermolecular forces can be described by Casimir and van der Waals forces.

The former force is attributed to the attraction between two closely spaced

conducting surfaces, and the latter one is due to the electrostatic interactions

among dipoles at the atomic scale (Batra et al. 2007; Lifshitz 1956). For a small

gap (<< beam length), the parallel-plate approximation is applied (Casimir 1948;

Israelachvili 2011):

f casi ¼ � π2hcb

240 g0 þ wð Þ4 ð9:17aÞ

fVDM ¼ � Ab

6π g0 þ wð Þ3 ð9:17bÞ

where h is the reduced Planck constant; c is the speed of light; A is the Hamaker

constant.

Introducing Eqs. (9.9) and (9.11) into Eq. (9.7), we arrive at

ð L
0

N
0
δudxþ

ð L
0

M
0 0 þ C

0 0 þ Nw
0

� �0

þ f z

� �
δwdxþ Nð0Þδuð0Þ � NðLÞδuðLÞ

þðM0 ð0Þ þ C
0 ð0Þ þ Nð0Þw0 ð0ÞÞδwð0Þ � ðM0 ðLÞ þ C

0 ðLÞ þ NðLÞw0 ðLÞÞδwðLÞ
�ðMð0Þ þ Cð0ÞÞδw0 ð0Þ þ ðMðLÞ þ CðLÞÞδw0 ðLÞ ¼ 0

ð9:18Þ
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To satisfy Eq. (9.18) with arbitrary variations of displacements δu and δw, we
obtain the following governing equations:

δu : N
0 ¼ 0 ð9:19aÞ

δw : M
0 0 þ C

0 0 þ Nw
0

� �0

þ f z ¼ 0 ð9:19bÞ

With Eq. (9.19a), Eq. (9.19b) can be reduced to

M
00 þ C

00 þ Nw
00 þ f z ¼ 0 ð9:20Þ

Suppose the beam material is elastically isotropic with Young’s modulus E and

Poisson’s ratio ν. For an Euler-Bernoulli beam undergoing in-plane bending, the 1D

constitutive relation is

σxx ¼ Eεxx ð9:21Þ

The deviatoric couple stress ψxy is related to the symmetric curvature χxy by (Yang

et al. 2002):

ψ xy ¼
El2

1þ νð Þ χxy ð9:22Þ

where l is a length scale parameter. With Eqs. (9.3), (9.6), (9.21), and (9.22),

Eq. (9.10a, b, c) is changed to

N xð Þ ¼ ES u
0 þ 1

2
w

0
� �2

� 1

2
w

0
0

� �2� �
ð9:23aÞ

M xð Þ ¼ �EI w
00 � w

00
0

� �
ð9:23bÞ

C xð Þ ¼ � ESl2

2 1þ νð Þ w
00 � w

00
0

� �
ð9:23cÞ

where S (¼bh) is the cross-sectional area (y–z plane in Fig. 9.2); I (¼bh3/12) is the
second moment of area. Introduce Eq. (9.23a, b, c) into Eq. (9.20), and we have

EI 1þ 6

1þ νð Þ
l

h

� �2
 !

w0000 � w0
0000ð Þ

� ES u
0 þ 1

2
w

0
� �2

� 1

2
w

0
0

� �2� �
w

0
� �0

� f z ¼ 0

ð9:24Þ

Equation (9.19a) shows that the axial force N is constant. So N can be

estimated as the average value calculated from Eq. (9.23a):

242 X. Chen and S.A. Meguid



ES

L

ð L
0

u
0 þ 1

2
w

0
� �2

� 1

2
w

0
0

� �2� �
dx

� �
. In Eq. (9.24), replace N with the average

value, consider the boundary conditions of double-clamped beam, and we obtain

EI 1þ 6

1þ νð Þ
l

h

� �2
 !

w0000 � w0
0000ð Þ

� ES

2L

ð L
0

w
0

� �2
� w

0
0

� �2� �
dx

� �
w

00 � f z ¼ 0

ð9:25Þ

Introducing Eqs. (9.12), (9.16), and (9.17a, b) into Eq. (9.25), and we have

EI 1þ 6

1þ νð Þ
l

h

� �2
 !

w0000 � w0
0000ð Þ � ES

2L

ð L
0

w
0

� �2
� w

0
0

� �2� �
dx

� �
w

00

þ 1

2

ε0bV
2

g0 þ wð Þ2 1þ 0:265
b

h

� ��0:75 g0 þ w

h

� �0:75
þ 0:53

b

h

� ��1 g0 þ w

h

� �0:5 !

þ π2hcb

240 g0 þ wð Þ4 þ
Ab

6π g0 þ wð Þ3 ¼ 0

ð9:26Þ

It is seen from Eq. (9.26) that the length scale parameter l has the effect of

increasing the effective Young’s modulus (E)eff for bending, being

Eð Þeff ¼ E 1þ 6

1þ νð Þ
l

h

� �2
 !

ð9:27Þ

For thin beams (beam thickness h close to l ), the effective Young’s modulus for

bending can be as large as 1þ 6
1þνð Þ

� �
(�5.7 at ν¼ 0.27) times the conventional

Young’s modulus (E), while for thick beams (h� l ) the effective Young’s modulus

is nearly equal to the conventional one, indicating that the size effect is negligible.

Rewrite Eq. (9.26) in the following non-dimensional form:

w0000 � w0
0000ð Þ � α

ð1
0

w0ð Þ2 � w0
0ð Þ2

� �
dx

� �
w00 þ λVDW

1

1þ wð Þ3 þ λcasi
1

1þ wð Þ4

¼ � βv
1þ wð Þ2 1þ 0:265

b

h

� ��0:75
1þ w

h

� �0:75

þ 0:53
b

h

� ��1
1þ w

h

� �0:5
 !

ð9:28Þ

where the non-dimensional quantities are defined in Table 9.1; a superimposed

apostrophe in the non-dimensional equations denotes a derivative with respect to
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the normalized coordinate x. The non-dimensional boundary conditions of double-

clamped beam are

δw : w 0ð Þ ¼ 0, w 1ð Þ ¼ 0 ð9:29aÞ
δw

0
: w

0 ð0Þ ¼ 0, w
0 ð1Þ ¼ 0 ð9:29bÞ

9.2.1.2 Influence of Intermolecular Forces

In the non-dimensional governing equation (Eq. (9.28)), we can identify the

dimensionless van der Waals force fVDW, Casimir force f casi , and electrostatic

force f elec as

fVDW ¼ �λVDW
1

1þ wð Þ3 ð9:30aÞ

f casi ¼ �λcasi
1

1þ wð Þ4 ð9:30bÞ

f elec ¼ � βv
1þ wð Þ2 1þ 0:265

b

h

� ��0:75
1þ w

h

� �0:75

þ 0:53
b

h

� ��1
1þ w

h

� �0:5
 !

ð9:30cÞ

Table 9.1 Non-dimensional quantities adopted in this chapter

Quantity Expression Meaning

h h/g0 Dimensionless thickness

q0 r/g0 Dimensionless initial arch rise

w w/g0 Dimensionless deflection

w0 w0/g0 Dimensionless initial deflection

x x/L Normalized coordinate

α
6= h

g0

� �2
= 1þ 6

1þνð Þ
l
h

� �2� �
Stretching parameter (size effect considered)

α*
6 1þ 2 Es

E*
1
h

� �
= h

g0

� �2
= 1þ 6 Es

E*
1
h

� �
Stretching parameter (surface effects

considered)

βv ε0bL
4V2= 2EIg30

� �
= 1þ 6

1þνð Þ
l
h

� �2� �
Voltage parameter (size effect considered)

β�v ε0bL
4V2= 2E*Ig30

� �
= 1þ 6 Es

E*
1
h

� �
Voltage parameter (surface effects

considered)

λcasi π2hcbL4= 240EIg50
� �

= 1þ 6
1þνð Þ

l
h

� �2� �
Casimir force parameter

λs 2bL2τ0=E*I= 1þ 6 Es

E*
1
h

� �
Dimensionless residual surface tension

λVDW AbL4= 6πEIg40
� �

= 1þ 6
1þνð Þ

l
h

� �2� �
van der Waals force parameter
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where λVDW, λcasi, and βv are, respectively, the van der Waals force parameter, the

Casimir force parameter, and the voltage parameter. With the aid of Table 9.1, we

can compare λVDW and λcasi with βv as follows:

λVDW
βv

¼ A

3πε0

1

g0V
2

ð9:31aÞ

λcasi
βv

¼ π2hc
120ε0

1

g20V
2

ð9:31bÞ

Consider g0 � 10�6m for the microscale systems and V � 101V for the order of

applied voltage, and with the values of the constants in Table 9.2 we calculate

Eq. (9.31a, b) as

λVDW
βv

� 10�5 ð9:32aÞ

λcasi
βv

� 3� 10�6 ð9:32bÞ

With Eqs. (9.30a, b, c) and (9.32a, b), the force ratios can be estimated as

fVDW=f elec
�� �� < 10�5 1

1þ w
ð9:33aÞ

f casi=f elec
�� �� < 3� 10�6 1

1þ wð Þ2 ð9:33bÞ

The maximum force ratios are determined by the minimum stable deflection, i.e.,

deflection at pull-in instability, which is roughly half gap (w ¼ �0:5) (Ballestra
et al. 2010; Dequesnes et al. 2002; Hu et al. 2004). Then Eq. (9.33a, b) leads to

max fVDW=f elec
�� �� � 2� 10�5 ð9:34aÞ

max f casi=f elec
�� �� � 1� 10�5 ð9:34bÞ

Table 9.2 Values of constants

Constant Meaning Value

A Hamaker

constant
10�19 J (Hamaker constants of condensed phases are about 10�19

J for interactions in vacuum (Israelachvili 2011))

c Speed of light 3� 108 m � s�1

h Reduced Planck

constant
1:0546� 10�34 J � s

ε0 Vacuum

permittivity
8:8542� 10�12 F �m�1
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Equation (9.34a, b) shows that the intermolecular forces (van der Waals and

Casimir forces) are negligible with respect to the electrostatic force when studying

the snap-through buckling of microbeams.

9.2.1.3 One Degree of Freedom Reduced-Order Model

In the previous subsection, we have proved that the intermolecular forces can be

neglected in the study of snap-through buckling of microbeams. So the governing

equation (Eq. (9.28)) can be further reduced to

w0000 � w0
0000ð Þ � α

ð1
0

w0ð Þ2 � w0
0ð Þ2

� �
dx

� �
w00

¼ � βv
1þ wð Þ2 1þ 0:265

b

h

� ��0:75
1þ w

h

� �0:75

þ 0:53
b

h

� ��1
1þ w

h

� �0:5
 !

ð9:35Þ

Equation (9.35) with the boundary conditions expressed in Eq. (9.29a, b) can be

solved using the Galerkin decomposition of the dimensionless deflection w xð Þ (Das
and Batra 2009b; Krylov et al. 2008; Medina et al. 2012):

w xð Þ �
Xn
k¼1

qkϕk xð Þ ð9:36Þ

where ϕk (k¼ 1, 2, . . ., n) is the kth eigenmode of the straight beam, and qk is its
generalized coordinate. The buckling eigenmodes are taken here, which have been

foundmore suitable for the studies on the buckling behaviors (Medina et al. 2014a, b):

ϕk xð Þ ¼ Ak
cos λkð Þ � 1

sin λkð Þ � λk
sin λkxð Þ � cos λkxð Þ � λk

cos λkð Þ � 1

sin λkð Þ � λk
xþ 1

� �
ð9:37Þ

where Ak is a constant satisfying max
x20;1½ �

ϕk xð Þj j ¼ 1, and λk is the eigenvalue satisfy-

ing λk sin λkð Þ þ 2 cos λkð Þ ¼ 2.

It is shown by Das and Batra (2009b) that the numerical simulations using n	 6

in Eq. (9.36) are indistinguishable from each other. They also found that a reason-

ably accurate prediction of the symmetric snap-through behavior can be given by

considering only the first mode, which indicates that the first mode approximation

of the deflection can capture the characteristics of the symmetric snap-through
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behavior. So in order to simplify our study for an analytical snap-through criterion,

we decided to make the first mode approximation here. Suppose that the dimen-

sionless initial deflection w0 xð Þ is also in the first mode, then we have

w xð Þ ¼ q1ϕ1 xð Þ ð9:38aÞ
w0 xð Þ ¼ q0ϕ1 xð Þ ð9:38bÞ

where q1 is the dimensionless midpoint deflection; q0 (¼ r/g0) is the dimensionless

initial arch rise, with r being the initial arch rise (i.e., initial deflection at the

midpoint). Introduce Eq. (9.38a, b) into Eq. (9.35), multiply the result by ϕ1, and

then integrate over the domain [0, 1]. Further integrate by parts with respect to x and
consider the boundary conditions (Eq. (9.29a, b)); we obtain the following reduced-

order model with one degree of freedom:

βv ¼ � αs211
I1 q1ð Þ q

3
1 �

b11 � αs211q
2
0

I1 q1ð Þ q1 þ
b11q0
I1 q1ð Þ ð9:39Þ

where the values of b11 and s11 are given in Table 9.3, and the expression of I1 is

I1 q1ð Þ ¼
ð1
0

ϕ1

1þ q1ϕ1ð Þ2 1þ 0:265
b

h

� ��0:75
1þ q1ϕ1

h

� �0:75
 

þ0:53
b

h

� ��1
1þ q1ϕ1

h

� �0:5
!

dx

ð9:40Þ

Table 9.3 Values of

coefficients related to first and

second buckling eigenmodes

Coefficient Expression Value

b11
ð1
0

ðϕ0 0
1Þ2dx

194.8182

b22
ð1
0

ðϕ0 0
2Þ2dx

1667.9624

f1
ð1
0

ϕ1dx
0.5000

m11
ð1
0

ϕ2
1dx

0.3750

m22
ð1
0

ϕ2
2dx

0.4262

s11
ð1
0

ðϕ0
1Þ2dx

4.9348

s22
ð1
0

ðϕ0
2Þ2dx

20.6529
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9.2.2 Results and Discussions

9.2.2.1 Influence of Initial Arch Rise on Snap-Through Behavior

Let us consider an electrostatically actuated microbeam system described by the

dimensional quantities in Table 9.4, which is obtained from Krylov et al. (2008) for

the experiments, and Zhang et al. (2007) for the material properties. Taking the

material length scale parameter l¼ 10�1 μm for silicon (Rokni et al. 2013), and with

the aid of Tables 9.1 and 9.4, we calculate the corresponding dimensionless

quantities, and introduce them into Eq. (9.39). The obtained equation is plotted in

Fig. 9.3 at different levels of q0 (0 ~ 0.5). The experimental results from Krylov

et al. (2008) are also shown. It is seen that the model (Eq. (9.39)) can approximately

describe the snap-through behavior observed from the experiments. The difference

in the critical voltages (i.e., voltage parameters at the extreme points) is possibly

due to the non-ideal clamping conditions, residual stresses, initial imperfections in

the beam shape, and variations of beam geometry due to the low fabrication

tolerances (Krylov et al. 2008).

Figure 9.3 shows that the existence of the snap-through buckling depends on the

level of the dimensionless initial arch rise q0. For very small q0 (e.g., q0¼ 0 in

Fig. 9.3a), there is only one extreme point qp on the βv�q1 curve. With the increase

of the voltage (βv increases), the microbeam bends towards the rigid electrode due

to the electrostatic force. The equilibrium position of the beam can be determined

by the balance of the elastic and electrostatic forces. Therefore, the beam deflection

decreases gradually (see the loading path A! qp in Fig. 9.3a). When the critical

point qp is reached, the microbeam becomes unstable (i.e., the elastic force can no

longer resist the electrostatic force), so it collapses onto the rigid electrode

(qp!B). This behavior is called pull-in instability.

For a larger value of q0 (e.g., 0.35 in Fig. 9.3b), two more extreme points qs and
qr appear, which correspond, respectively, to the snap-through buckling and the

release (snap-back). With the increase of βv, the beam deflection decreases gradu-

ally (C! qs in Fig. 9.3b) until reaching the critical point qs where two stable states

(qs and D) coexist. A slight increase in βv makes the state at qs unstable, which

Table 9.4 Dimensional quantities of electrostatically actuated microbeam system obtained from

Krylov et al. (2008) and Zhang et al. (2007)

Quantity Meaning Value

b Beam width 30 μm
E Young’s modulus of silicon 160 GPa

g0 Gap between beam ends and rigid electrode 10 μm
h Beam thickness 2.5 μm
L Span of arch 1000 μm
r Initial arch rise 0–5 μm
V Applied voltage 0–120 V

ν Poisson’s ratio of silicon 0.27
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results in a sudden transition from qs to the second stable state D. Such transition is

called snap-through buckling. After the snap-through buckling, the beam deflection

continues to decrease gradually with βv (D! qp) until reaching the pull-in insta-

bility where the beam collapses onto the rigid electrode (qp!E).

9.2.2.2 Size and Fringing Field Effects on Necessary Snap-Through

Criterion

The extreme points qs, qr, and qp on βv� q1 curve (refer to Fig. 9.3) can be obtained
by solving the following equation with the aid of Eq. (9.39):

dβv
dq1

¼ 0

) αs211I2q
3
1 � 3αs211I1q

2
1 þ I2 b11 � αs211q

2
0

� �
q1 � b11 � αs211q

2
0

� �
I1

� b11I2q0
¼ 0 ð9:41Þ

where I2 is calculated from Eq. (9.40) as

Fig. 9.3 Evolution of voltage parameter βv with dimensionless midpoint deflection q1 at different
levels of dimensionless initial arch rise q0. The extreme points qs, qr, and qp correspond,

respectively, to the critical points of the snap-through buckling, the release (snap-back), and the

pull-in instability. The insets show the evolutions of the deformed beam
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I2 ¼ dI1
dq1

¼
ð1
0

�2ϕ2
1

1þ q1ϕ1ð Þ3 1þ 0:165625
b

h

� ��0:75
1þ q1ϕ1

h

� �0:75
 

þ0:3975
b

h

� ��1
1þ q1ϕ1

h

� �0:5
!
dx

ð9:42Þ

Equation (9.41) containing integrals (I1, I2) cannot be solved analytically. So we

solve the equation numerically, and show the typical results in Fig. 9.4. It is seen

that q0 must be larger than a critical value qmin
0 for the existence of the snap-through

points qs and qr. At q0¼ qmin
0 , both qs and qr are near 0. So for a first approximation,

we take q1¼ 0 in Eq. (9.41) and find

qmin
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b11
αs211

þ b11m*
11

αs211f
*
1

 !2
vuut � b11m

*
11

αs211f
*
1

ð9:43Þ

where the values of b11 and s11 are given in Table 9.3; f�1 and m�
11 are

Fig. 9.4 Evolutions of the extreme points (qs, qr, qp) with the dimensionless initial arch rise q0 at
different levels of stretching parameter α and width-to-thickness ratio b/h
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f *1 ¼ 1þ 0:265
b

h

� ��0:75

h
� ��0:75 þ 0:53

b

h

� ��1

h
� ��0:5

 !ð1
0

ϕ1dx ð9:44aÞ

m*
11 ¼ 1þ 0:165625

b

h

� ��0:75

h
� ��0:75 þ 0:3975

b

h

� ��1

h
� ��0:5

 !ð1
0

ϕ2
1dx

ð9:44bÞ

Introducing Eq. (9.44a, b) into Eq. (9.43) and replacing the non-dimensional

quantities (α, q0) with the expressions in Table 9.1, we obtain the following

necessary criterion for the existence of snap-through buckling:

r

h

� �
min

¼

b11
6s211

1þ 6

1þνð Þ
l

h

� �2
 !

þ b11m11

6s211f 1
h

� �2

1þ 6

1þνð Þ
l

h

� �2
 !2

1þ0:165625 b
h

� ��0:75
h
� ��0:75þ0:3975 b

h

� ��1
h
� ��0:5

1þ0:265 b
h

� ��0:75
h
� ��0:75þ0:53 b

h

� ��1
h
� ��0:5

 !2
vuut

�b11m11

6s211f 1
h 1þ 6

1þνð Þ
l

h

� �2
 !

1þ0:165625 b
h

� ��0:75
h
� ��0:75þ0:3975 b

h

� ��1
h
� ��0:5

1þ0:265 b
h

� ��0:75
h
� ��0:75þ0:53 b

h

� ��1
h
� ��0:5

 !

ð9:45Þ

where the values of b11, s11, f1, and m11 are given in Table 9.3. Eq. (9.45) is plotted

in Fig. 9.5 to show the size effect (by introducing the length scale parameter l,
normalized as l/h) and the fringing field effect (considering the finite beam width b,
normalized as b/h) on the minimum allowable ratio (r/h)min. It is seen that both

effects increase (r/h)min and the size effect is much more significant. Eq. (9.27)

shows that the size effect (l/h) increases the effective Young’s modulus for bending,

so the microbeam becomes stiffer and more difficult to exhibit snap-through

buckling. As a result, the minimum allowable ratio (r/h)min increases.

Fig. 9.5 (a) Size effect (l/h) on the minimum allowable ratio (r/h)min at b/h¼þ1. No size effect

at l/h¼ 0 (i.e., beam thickness h� l ). (b) Fringing field effect (b/h) on the minimum allowable

ratio (r/h)min at l/h¼ 0. No fringing field effect at b/h¼þ1 (infinitely wide beam)
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9.3 Surface Effects on Asymmetric Bifurcation
of Nanobeam

9.3.1 Formulation

9.3.1.1 Surface Effects

In the surface elasticity theory of Gurtin and Murdoch (1975, 1978), the surface

layer is regarded as a thin film of negligible thickness. In the surface layer, there

exists a surface stressσ s N=mð Þ, which is related to the surface energy density γ (J/m2)

by (Cammarata 1994)

σ s ¼ γδ þ ∂γ
∂εs

ð9:46Þ

where δ is the Kronecker delta; εs is the strain tensor in the surface layer. Assuming

an elastic surface, we can derive a linear constitutive equation from Eq. (9.46) as

(Miller and Shenoy 2000)

σ s ¼ τ0 þ C s : εs ð9:47Þ

where τ0 is the residual surface stress tensor; C s N=mð Þ is the surface elasticity

tensor. Both τ0 and C s can be calculated by atomistic simulations, and they can be

either positive or negative depending on the crystallographic structures of the

materials (Miller and Shenoy 2000; Wang and Feng 2009). We only consider the

axial stress here. Then Eq. (9.47) can be reduced to the following 1D form (He and

Lilley 2008; Wang and Feng 2009):

σs ¼ τ0 þ Esεs ð9:48Þ

where τ0 is the residual surface tension; Es (N/m) is the surface elastic modulus,

which is related to the surface Lame constants μs and λs by Es¼ 2μsþ λs in 1D

condition.

It is seen from Eq. (9.48) that there are two contributions to the surface effects:

the residual surface tension (τ0) and the surface elasticity (Es). The surface elasticity

(Es) introduces an additional axial elastic stress σ* being

σ∗ ¼ Esεs ð9:49Þ

And the residual surface tension τ0 results in a distributed transverse load f s, which
can be determined by the generalized Laplace-Young equation (Chen et al. 2006;
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Gurtin et al. 1998). This equation relates the stress jump [σ] across an interface to

the curvature κ and the surface stress σ s of that interface, from which we have (Chen

et al. 2006; Miller and Shenoy 2000; Wang and Feng 2007)

n : σ : n ¼ σ s : κ ð9:50Þ

where n is the interface unit normal. By only considering the axial stress, we can

simplify the right-hand side of Eq. (9.50) to σsκ, where κ is the beam curvature.

Suppose that the slope of the beam is small compared with the unity; then κ can be

approximated as w00, with w being the beam deflection (transverse displacement).

Considering a rectangular beam of width b, we can obtain the distributed transverse
load f s from Eq. (9.50) as (He and Lilley 2008; Wang and Feng 2007, 2009)

f s ¼ 2τ0bw
00 ð9:51Þ

9.3.1.2 Governing Equations

Consider an initially curved rectangular nanobeam subjected to an electrostatic

force (Fig. 9.2). For a thin beam (h
 L ), the axial strain change εxx is given in

Eq. (9.3). Then the variation δUelas of the elastic strain energy including the surface

elasticity can be calculated as

δUelas ¼
ð L
0

 ð
S

σxxδεxxdsþ
ð
∂S
σ∗δεxxdl

!
dx

¼ �
ð L
0

N
0
δudx�

ð L
0

ðM0 0 þ ðNw0 Þ0 Þδwdx

� Nð0Þδuð0Þ þ NðLÞδuðLÞ � ðM0 ð0Þ þ Nð0Þw0 ð0ÞÞδwð0Þ
þ ðM0 ðLÞ þ NðLÞw0 ðLÞÞδwðLÞ þMð0Þδw0 ð0Þ �MðLÞδw0 ðLÞ

ð9:52Þ

where stress resultants N and M are defined as

N ¼
ð
S

σxxdsþ
ð
∂S
σ∗dl ð9:53aÞ
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M ¼
ð
S

zσxxdsþ
ð
∂S
zσ∗dl ð9:53bÞ

σ* is the additional axial stress from surface elasticity (Eq. (9.49)), and

ð
∂S
dl is the

integral over the boundary of the cross section. Neglecting the gravity and the

intermolecular forces, we can calculate the variation δWext of the work done by the

external forces as

δWext ¼
ð L
0

ð f elec þ f sÞδwdx ð9:54Þ

where f s is the distributed load due to the residual surface tension (Eq. (9.51)); felec
is the distributed electrostatic force. Suppose that the beam is infinitely wide (width

b� thickness h); then the fringing field can be neglected, and Eq. (9.16) can be

reduced to

f elec ¼ �1

2

ε0bV
2

g0 þ wð Þ2 ð9:55Þ

Introducing Eqs. (9.52) and (9.54) into the theorem of minimum potential energy

given in Eq. (9.7), we obtain the following governing equations:

δu : N
0 ¼ 0 ð9:56aÞ

δw : M
0 0 þ ðNw0 Þ0 þ f elec þ f s ¼ 0 ð9:56bÞ

With Eq. (9.56a), Eq. (9.56b) can be rewritten as

M
00 þ Nw

00 þ f elec þ f s ¼ 0 ð9:57Þ

Suppose that the beam material is elastically isotropic with Young’s modulus

E and Poisson’s ratio ν. Then the 1D constitutive equation for an infinitely wide

beam becomes

σxx ¼ E*εxx ð9:58Þ

where the effective elastic modulus E* is

E* ¼ E

1� ν2
ð9:59Þ

Introduce Eqs. (9.3), (9.49), and (9.58) into Eq. (9.53a, b), and consider b� h; we have
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N xð Þ ¼ E*S 1þ 2
Es

E*

1

h

� �
u

0 þ 1

2
w

0
� �2

� 1

2
w

0
0

� �2� �
ð9:60aÞ

M xð Þ ¼ �E*I 1þ 6
Es

E*

1

h

� �
w

00 � w
00
0

� �
ð9:60bÞ

The effective axial stiffness (ES)eff can be derived from Eq. (9.60a) as

ESð Þeff ¼ E*bhþ 2Esb ð9:61Þ

And the effective Young’s modulus (E)eff for bending can be derived from

Eq. (9.60b) as

Eð Þeff ¼ E* 1þ 6
Es

E*

1

h

� �
ð9:62Þ

It is seen that the surface elasticity (Es) has the effect of increasing or decreasing

(E)eff, depending on the sign of Es.

Introduce Eqs. (9.51), (9.55), and (9.60b) into Eq. (9.57), replace the axial force

by the average value calculated from Eq. (9.60a), and we obtain the following

governing equation:

E∗I 1þ 6
Es

E∗

1

h

� �
ðw0 0 0 0 � w0

0 0 0 0 Þ � E∗S

2L
1þ 2

Es

E∗

1

h

� ��ð L
0

ððw0 Þ2 � ðw0
0Þ2Þdx

�
� w0 0 � 2τ0bw

0 0 ¼ �1

2

ε0bV
2

ðg0 þ wÞ2
ð9:63Þ

Rewrite Eq. (9.63) in the non-dimensional form as

ðw0 0 0 0 � w0
0000Þ �

�
λs þ α∗

�ð1
0

ððw0 Þ2 � ðw0
0Þ2Þd x

��
w

0 0 ¼ � β∗v
ð1þ wÞ2 ð9:64Þ

with the non-dimensional quantities given in Table 9.1, and the non-dimensional

boundary conditions given in Eq. (9.29a, b).

9.3.1.3 Two Degrees of Freedom Reduced-Order Model

Equations (9.64) and (9.29a, b) can be solved using the Galerkin decomposition

method (see Eq. (9.36)). For the asymmetric deformations, the participation of the

second mode is more than that of the fourth and sixth modes (Das and Batra 2009b).
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So we decided to focus on the first two modes (i.e., n¼ 2 in Eq. (9.36)).

The dimensionless initial deflection w0 xð Þ is assumed to be in the first mode

state; then we have

w xð Þ ¼ q1ϕ1 xð Þ þ q2ϕ2 xð Þ ð9:65aÞ
w0 xð Þ ¼ q0ϕ1 xð Þ ð9:65bÞ

where q1 is the dimensionless midpoint deflection (sinceϕ1 0:5ð Þ ¼ 1,ϕ2 0:5ð Þ ¼ 0);

q0 (¼ r/g0) is the dimensionless initial arch rise, with r being the initial arch rise

(deflection at the midpoint). Introduce Eq. (9.65a, b) into Eq. (9.64), multiply the

result by ϕ1 and ϕ2, respectively, and then integrate over the domain [0, 1]. Further

integrate by parts and take into account the orthogonality of ϕ1 and ϕ2; we obtain

the reduced-order model with two degrees of freedom:

ϕ1 : α*s211q
3
1 þ b11 � α*s211q

2
0 þ λss11

� �
q1 þ α*s11s22q1q

2
2 � b11q0 ¼ �β*vI

*
1 q1; q2ð Þ
ð9:66aÞ

ϕ2 : α*s222q
3
2 þ b22 � α*s11s22q

2
0 þ λss22

� �
q2 þ α*s11s22q

2
1q2 ¼ �β*vI

*
2 q1; q2ð Þ

ð9:66bÞ

where b11, b22, s11, s22, and f1 are given in Table 9.3; the integrals I
�
1 and I

�
2 are given

below:

I*1 q1; q2ð Þ ¼
ð1
0

ϕ1

1þ q1ϕ1 þ q2ϕ2ð Þ2 dx ð9:67aÞ

I*2 q1; q2ð Þ ¼
ð1
0

ϕ2

1þ q1ϕ1 þ q2ϕ2ð Þ2 dx ð9:67bÞ

9.3.2 Results and Discussions

9.3.2.1 Influence of Initial Arch Rise on Asymmetric Bifurcation

Behavior

Introducing α*¼ 600 and λs¼ 2 into Eq. (9.66a, b), we plot the obtained equation in

Fig. 9.6 at different levels of the dimensionless initial arch rise q0. The dimension-

less residual surface tension λs is calculated using the expression in Table 9.1 with

the surface parameters τ0 ¼ 0:6056 N �m�1 andEs ¼ �10:036 N �m�1 fromMiller

and Shenoy (2000), and the beam dimensions and bulk material properties

L¼ 15 μm, b¼ 400 nm, h¼ 200 nm, E¼ 185 GPa, and ν¼ 0.28 from Intaraprasonk

and Fan (2011).
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It is seen from Fig. 9.6 that when q0 is small (e.g., 0.1 in Fig. 9.6a), the solution

of the asymmetric deformation doesn’t exist (i.e., q2� 0), so the beam always

deforms symmetrically. When q0 is large enough (0.3 in Fig. 9.6b), the solution

of the asymmetric deformation exists. With the decrease of the midpoint deflection

(q1 decreases), the beam deforms symmetrically (①!② in Fig. 9.6b) until

reaching the bifurcation point ② where there are two asymmetric deformations

given by Eq. (9.66a, b). By following one of the asymmetric deformations, the

beam deforms asymmetrically (②!③) until reaching another bifurcation point

③. After ③, the beam returns to deform symmetrically with the decrease of the

midpoint deflection.

9.3.2.2 Surface Effects on Necessary Symmetry-Breaking Criterion

Near the asymmetric bifurcation points (② and③ in Fig. 9.6b), q2 is about 0. So we
linearize the governing equations (Eq. (9.66a, b)) around q2¼ 0 as (Medina

et al. 2014a)

ϕ1 : α*s211q
3
1 þ b11 � α*s211q

2
0 þ λss11

� �
q1 � b11q0 ¼ �β*vI

*
1 q1; 0ð Þ ð9:68aÞ

ϕ2 : b22 � α*s11s22q
2
0 þ λss22 þ α*s11s22q

2
1

� �
q2 ¼ 2βvI

*
3 q1ð Þq2 ð9:68bÞ

with I�3 being

Fig. 9.6 Bifurcation diagram of nanobeam actuated by electrostatic force. ② and ③ are bifurca-

tion points. The insets show the evolutions of the deformed beam
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I*3 q1ð Þ ¼
ð1
0

ϕ2
2

1þ q1ϕ1ð Þ3 dx ð9:69Þ

To obtain Eq. (9.68a, b), the following relations are used:

ð1
0

ϕ1ϕ2

1þ q1ϕ1ð Þ3 dx ¼ 0,ð1
0

ϕ2

1þ q1ϕ1ð Þ2 dx ¼ 0. For the asymmetric deformations (q2 6¼ 0), Eq. (9.68b) can

be further reduced to

ϕ2 : b22 � α*s11s22q
2
0 þ λss22 þ α*s11s22q

2
1 ¼ 2β*vI

*
3 q1ð Þ ð9:70Þ

Express β�v , respectively, from Eqs. (9.68a) and (9.70), equilibrate these expres-

sions, and we obtain the following equation for the asymmetric bifurcation points:

2α*s211I
*
3q

3
1 þ α*s11s22I

*
1 q1; 0ð Þq21 þ 2 b11 � α*s211q

2
0 þ λss11

� �
I*3q1

þ b22 þ λss22ð ÞI*1 q1; 0ð Þ � 2b11I
*
3q0 � α*s11s22I

*
1 q1; 0ð Þq20 ¼ 0

ð9:71Þ

Taking λs¼ 2 in Eq. (9.71), we solve the obtained equation numerically and

show the results in Fig. 9.7. It is seen that the dimensionless initial arch rise q0
should be larger than a critical value qmin

0 for the existence of the asymmetric

bifurcation points. It is also seen that at qmin
0 , q1 is near 0. So as a first approximation

of qmin
0 , we take q1¼ 0 in Eq. (9.71) and find

Fig. 9.7 Evolutions of asymmetric bifurcation points (② and ③) with dimensionless initial arch

rise at different levels of the stretching parameter α*
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qmin
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 þ λss22
α*s11s22

þ b11m22

α*s11s22f 1

� �2
s

� b11m22

α*s11s22f 1
ð9:72Þ

where b11, b22, s11, s22, f1, and m22 are given in Table 9.3. In Eq. (9.72), replace the

non-dimensional quantities (q0, α
*, λs) with the expressions in Table 9.1, and we

obtain the necessary symmetry-breaking criterion as follows:

r

h

� �
min

¼


b22

6s11s22
1þ4

1

h

Es=E*
þ2

0
BB@

1
CCAþ 4

s11

L

h

� �2
1

h

Es=E*
þ2

0
BB@

1
CCAτ0

Esþ
b11m22

6s11s22f 1
1þ4

1
h

Es=E*þ2

 ! !2
h

g0

� �2

vuuuuut

� b11m22

6s11s22f 1
1þ4

1

h

Es=E*
þ2

0
BB@

1
CCA h

g0

ð9:73Þ

Equation (9.73) is plotted in Fig. 9.8, from which it is found that the positive

residual surface tension (τ0/Es> 0 in Fig. 9.8a, τ0/Es< 0 in Fig. 9.8b) increases

(r/h)min, while the negative one decreases it. The positive surface tension (traction)

Fig. 9.8 Minimum allowable ratio (r/h)min between the initial arch rise r and the beam thickness

h for the asymmetric bifurcation at different levels of beam thickness h (normalized as h/(Es/E*))

and residual surface tension τ0 (normalized as τ0/Es). The beam length-to-thickness ratio L/h¼ 25
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reduces the arch rise, so larger initial arch rise (larger (r/h)min) is required for the

existence of asymmetric bifurcation, and vice versa for the negative surface tension

(compression).

It is also found from Fig. 9.8 that the beam size (thickness h, normalized as h/(Es/

E*)) affects (r/h)min. Such size dependency of (r/h)min can be explained by the

influences of the effective Young’s modulus (E)eff and the residual surface tension τ
0.

In the case of positive surface Young’s modulus Es (refer to Fig. 9.8a), the

effective Young’s modulus (E)eff increases with the decrease of h (see

Eq. (9.62)), so the nanobeam becomes stiffer, which will lead to an increase of

(r/h)min. On the other hand, since the effective axial stiffness decreases when

decreasing h (see Eq. 9.61), the negative surface tension τ0 will induce more arch

rise, so the required initial arch rise ((r/h)min) for asymmetric bifurcation is

reduced. When τ0 is small (i.e., negative residual surface tension is large enough),

the influence of τ0 is dominant, so (r/h)min appears to decrease when reducing

h (see the curve at τ0/Es¼�0.04 in Fig. 9.8a). When τ0 is large, (E)eff is dominant,

so (r/h)min increases when reducing h (see the curve at τ0/Es¼�0.01). Both

positive τ0 and (E)eff have the effect of increasing (r/h)min when reducing

h (see the curves at τ0/Es¼ 0.02 and 0.04). The size effect on (r/h)min in the

case of negative surface Young’s modulus (refer to Fig. 9.8b) can be explained in

the similar way.

It is noted that in Fig. 9.8, (r/h)min is plotted in the range (i.e., h/(Es/E*)��6

and	 0) where the effective Young’s modulus (Eq. (9.62)) is nonnegative. More-

over, if (r/h)min is negative or an imaginary number, the asymmetric bifurcation

may take place in an initially straight beam. In this case, (r/h)min is taken to be 0 in

the figure.

9.4 Conclusions

In this chapter, we examine the instability behaviors of the electrostatically actuated

micro/nanobeam. The governing equations are developed with the aid of Euler-

Bernoulli beam theory and are solved using Galerkin decomposition method. The

symmetric snap-through of the microbeam is studied first. The fringing field effect,

the beam size effect, and the intermolecular forces are accounted for in the model

formulation. Our results, which are based on the first mode approximation, reveal

that the size of the microbeam plays a major role in dictating the existence of the

snap-through behavior of the beam, while the fringing field and intermolecular

forces play an insignificant role. In the second part, the asymmetric bifurcation of

the nanobeam is investigated. The surface effects at nanoscale are accounted for in

the beam model. Our results, which are based on the reduced-order model of two

degrees of freedom, show that the beam size and the residual surface tension play

significant roles in the symmetry-breaking criterion.
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