
Chapter 5

Smart Fuzzy Fiber-Reinforced Piezoelectric
Composites

Manas C. Ray

Abstract In this chapter analytical micromechanics model of a novel smart fuzzy

fiber-reinforced composite (SFFRC) has been derived. The novel constructional

feature of such SFFRC is that the existing vertically reinforced 1–3 piezoelectric

composite has been hybridized by radially growing carbon nanotubes (CNTs) on

the surface of the cylindrical vertical piezoelectric fibers. The model predicts that

the effective in-plane piezoelectric coefficient and the elastic properties of such

SFFRC are significantly improved over those of the existing 1–3 piezoelectric

composite without reinforced with CNTs.

5.1 Piezoelectric Effects

Piezoelectric effect is an electromechanical coupling phenomenon exhibited by

non-centrosymmetric dielectric materials. These materials do not possess inversion

symmetry. This means that the inversion of the atomic positions alters the original

crystalline structure, and different equilibrium positions of charges are associated

with different polarization. Such polarization is called the piezoelectricity. Two

types of piezoelectric effects exist in the piezoelectric materials. One of the effects

by virtue of which the conversion of the mechanical energy into the electric energy

occurs when the piezoelectric materials are deformed upon mechanical stimulus is

called the direct piezoelectric effect. The other effect is called the converse piezo-

electric effect by virtue of which piezoelectric materials are deformed due to the

application of the electric field resulting in the conversion of the electrical energy

into the mechanical energy. To exhibit piezoelectric effect, piezoelectric materials

must be poled. Normally, a piezoelectric material has electric dipoles which are

randomly oriented. When it is heated above a certain temperature called the Curie

temperature and is subjected to a very strong electric field, the electric dipoles
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reorient themselves and are aligned relative to the electric field. Such process is

called poling. If the dipoles maintain their aligned orientations after cooling, the

material is said to be poled and exhibits piezoelectric effect. Let four charges be in

equilibrium on a straight line as shown in Fig. 5.1. Let the magnitudes of the

first and the fourth charges be “þq” and “�q” while the second and the third charges
be “�2q” and “þ2q.” The first and the fourth charges are “2a” apart, while the

distance between the second and the third charges is “a.” The locations of the

charges are symmetric about the center, and thus, the charges are in equilibrium,

but they are not centrosymmetric as the 180� rotation of this system of charges

causes a different system of charges. The net dipole moment or the polarization of

this system of charges is obviously zero. Now if the first and the fourth charges are

displaced toward the center of the charges by an amount “x” due to an applied force
F, this system of charges will exhibit a net polarization of amount “2qx.” This

displacement “x” is treated as the measure of mechanical deformation due to the

application of mechanical energy. Thus the non-centrosymmetric system of charges

exhibits electric polarization upon mechanical stimulation. On the other hand, if this

system of charges is subjected to an electric field E, the charges will be displaced
resulting in the conversion of the electrical energy into the mechanical energy.

5.2 Introduction to Smart Fuzzy Fiber-Reinforced
Composite

In the quest for developing very lightweight high-performance flexible structures, a

concept has emerged for developing the structures with self-controlling and/or self-

monitoring capabilities. Expediently, utilizing the piezoelectric effects, Forward

(1981) first attempted to demonstrate the feasibility of the effectiveness of the

piezoelectric actuator to damp out the vibrations of a cylindrical fiber glass mast.

Subsequently, Bailey and Hubbard (1985), (1987), Crawley and Luis (1987), and

Im and Atluri (1989) successfully reported that the patches of piezoelectric
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Fig. 5.1 Schematic

representation of

piezoelectric phenomena
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actuators being bonded with the host beams efficiently perform as the distributed

actuators of the host beams. Miller and Hubbard (1987) first demonstrated that a

layer of the piezoelectric material being integrated with a cantilever beam can act as

the distributed sensor of the host cantilever beam. When these distributed sensors

and actuators are coupled with the elements of the control systems such that the

distributed piezoelectric actuators can be activated with a proper control voltage,

the host structure attains the self-controlling and self-sensing capabilities. Such

flexible host structures possessing built-in mechanism for achieving self-

controlling and self-sensing capabilities are being customarily called as smart

structures. Since its inception, enormous research (Baz and Poh 1988; Ha

et al. 1992; Ray et al. 1994; Lin et al. 1996; Saravanos et al. 1997; Chee

et al. 1999; Varadarajan et al. 2000; Ray and Pradhan 2007; Sohn et al. 2009;

Ray and Faye 2009; Suresh Kumar and Ray 2012) on smart structures has been

going on for developing very light weight smart flexible structures.

The performance of the smart structures depends on the magnitudes of the

piezoelectric coefficients of the piezoelectric materials. The magnitudes of the

piezoelectric coefficients of monolithic polymer piezoelectric materials are very

low, while the monolithic piezoceramic materials are characterized with large

values of the piezoelectric coefficients. But the monolithic piezoceramic materials

such as PZT5, PZT5H, etc. are highly brittle and not conformable to the cylindrical

surface or vibrating surface of the host structures. Hence, these smart materials find

limitations in their use as distributed actuators. The conventional advanced fiber-

reinforced composites are composed of brittle fibers of high stiffness. Probably this

way of using high stiff brittle materials motivated the researchers to develop

piezoelectric composites using brittle piezoceramic fibers. One of the commercially

available piezoelectric composites (Smith and Auld 1991) is popularly known as

1–3 piezoelectric (PZC). In a lamina of vertically reinforced 1–3 PZC, the ceramic

piezoelectric fibers are vertically aligned across the thickness of the lamina. Such

1–3 PZC provides a wide range of effective material properties not offered by the

existing monolithic piezoelectric materials, renders anisotropic actuations, and is

characterized by good conformability and strength. However, this 1–3 PZC also

suffers from the drawback that its effective in-plane piezoelectric coefficient is

much smaller than its transverse effective piezoelectric coefficient. The in-plane

piezoelectric coefficient accounts for the performance of the piezoelectric actuator

for bending control of smart structures. The performance of the distributed actuator

made of such 1–3 PZC can be enhanced if the magnitude of its in-plane piezoelec-

tric coefficient can be tailored to an improved value.

Since the discovery of carbon nanotubes (CNTs) (Iijima 1991), researchers have

been carrying out extensive work (Treacy et al. 1996; Shen and Li 2004; Cheng

et al. 2009) to predict their effective material properties, and it has been revealed

that the CNTs are characterized with exceptionally high elastic properties. How-

ever, CNTs alone cannot be used for structural applications as they are difficult to

be aligned and prone to agglomeration. To exploit the excellent elastic properties of

CNTs, a great deal of research has been devoted to the development of high-

performance nanocomposites using CNTs as reinforcements (Thostenson and
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Chou 2003; Griebel and Hamaekers 2004; Odegard et al. 2003; Seidel and

Lagoudas 2004; Jiang et al. 2009; Shadlou et al. 2011). For structural applications,

recent research focuses on improving the effective properties of the existing

advanced fiber-reinforced polymer composite by growing CNTs on the surfaces

of the fiber reinforcements. Bower et al. (2000) demonstrated the growth of aligned

CNTs on the substrate surface using microwave plasma-enhanced chemical vapor

deposition. Mathur et al. (2008) experimentally investigated that the flexural

strength and the modulus of the carbon fiber-reinforced composite can be improved

by growing CNTs on the surface of the carbon fiber. Zhang et al. (2008) produced

CNT arrays on the host aluminum silicate and the quartz fiber. Gracia et al. (2008)

fabricated a hybrid laminate in which the reinforcement is a woven cloth of alumina

fibers with in situ-grown CNTs on the surface of the fibers. They demonstrated that

both the mechanical and electrical properties of such a laminate are enhanced

because of CNTs grown on the surface of the alumina fibers. Recently, Kundalwal

and Ray (2011, 2012) derived micromechanics models for estimating all the

effective elastic coefficients of novel fuzzy fiber-reinforced composite (FFRC).

Chatzigeorgiou et al. (2012) also estimated the effective mechanical properties of

fuzzy fiber composite employing the composite cylinder method. Lanzara and

Chang (2009) designed and fabricated the piezoelectric ceramic discs coated with

vertically alignedCNTs. They demonstrated that the arrays of alignedCNTs can be

normally grown on the surface of the piezoceramic (PZT) disc.

The paper authored by Lanzara and Chang (2009) motivated the author to

presume that the PZT fibers may be coated with radially grown CNTs. Hence, in

order to further improve the effective in-plane properties of the existing 1–3 PZC,

Ray (2010) and Dhala and Ray (2015) delineated a concept of developing novel

SFFRC. The SFFRC is a smart hybrid piezoelectric composite in which the

piezoelectric fiber reinforcements are vertically aligned and CNTs are radially

grown on the surfaces of these piezoelectric fibers. This chapter is concerned

with the derivation of an analytical micromechanics model for estimating the

effective elastic and piezoelectric properties of this novel SFFRC. First an analyt-

ical micromechanics model of the existing vertically reinforced 1–3 PZC is

presented. How this model is augmented to derive the micromechanics model of

SFFRC is presented in the subsequent sections. Numerical results are presented to

demonstrate that the CNTs can improve the effective in-plane piezoelectric coef-

ficient of the existing 1–3 PZC.

5.3 Three-Dimensional Effective Properties of 1–3
Piezoelectric Composites

Figure 5.2 schematically illustrates a lamina made of the vertically reinforced 1–3

piezoelectric composite (PZC). Here the pattern “1–3” refers to the connectivity

pattern of the piezoelectric composite. In case of the pattern like “1–3,” the first
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digit represents the number of connectivity of the fiber reinforcement along the

principal material coordinate axes, while the second digit denotes the same of the

matrix phase (Newnham et al. 1978). It may be observed from Fig. 5.2 that the

piezoelectric fiber reinforcements are vertically aligned across the thickness of the

lamina. The matrix phase is a polymer material.

The top and the bottom surfaces of the lamina are electroded such that the

electric field can be applied across the thickness of the lamina. The orthogonal

principal material coordinate system (1� 2� 3) is considered in such a way that the

3-axis is aligned with the length of the fibers while 1- and 2-axes are aligned with

the length and the width of the lamina, i.e., transverse to the fiber direction. The

in-plane and vertical cross sections of the representative volume element (RVE) of
this 1–3 PZC are illustrated in Fig. 5.3. It is considered that the lamina of the 1–3

PZC shown in Fig. 5.2 is subjected to the electric field along the thickness of the

lamina only. Thus, the constitutive equations for the converse piezoelectric effect

(Ray and Pradhan 2007), exhibited by the piezoelectric material of the fibers, are

given by

σpf g ¼ Cp½ � 2pf g � epf gE3 ð5:1Þ

Piezoelectric fiberPolymer matrix

3

21

Fig. 5.2 Schematic

diagram of a lamina of

vertically reinforced 1–3

piezoelectric composite

3

Piezoelectric Fiber

1

2

1

Matrix

Piezoelectric Fiber

Matrix

Fig. 5.3 In-plane and

transverse cross sections of

the RVE of the 1–3

piezoelectric composite
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The constitutive relations for the matrix material are

σmf g ¼ Cm½ � 2mf g ð5:2Þ

In Eqs. (5.1) and (5.2), {σ}, 2f g, and [C] with superscript p or m represent the state

of stress, the state of strain, and the elastic coefficient matrix at any point in the

constituent phase, respectively, while {e} and E3 are the piezoelectric coefficient

matrix and the electric field along the thickness (i.e., 3-axis) of the lamina of the 1–3

PZC, respectively. Their explicit forms are

σrf g ¼ � σ r
1 σ r

2 σ r
3 σ r

23 σ r
13 σ r

12

� T
, 2rf g ¼ �2r

1 2r
2 2r

3 γ r23 γ r13 γ r12
� T

,

Cr½ � ¼

Cr
11 Cr

12 Cr
13 0 0 0

Cr
12 Cr

22 Cr
23 0 0 0

Cr
13 Cr

23 Cr
33 0 0 0

0 0 0 Cr
44 0 0

0 0 0 0 Cr
55 0

0 0 0 0 0 Cr
66

2
666666664

3
777777775
and epf g ¼

ep31
ep32
ep33
0

0

0

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
; r ¼ porm

ð5:3Þ
In Eq. (5.3), for the constituent phase denoted by r, σr1, σ

r
2, and σr3 represent the

normal stresses along the 1-, 2-, and 3-axes, respectively; σr23, σ
r
13, and σr12 are the

shear stresses; and Cr
ij is the elastic coefficient. Also, it may be noted that if the

applied electric field is applied along the 3-direction, the in-plane piezoelectric

coefficients ep31 and ep32 provide the measure of the in-plane actuations along the 1-

and 2-directions, respectively, while the piezoelectric coefficient ep33 accounts for

the measure of the transverse actuation. The existence of perfect bonding between

the fibers and the matrix phase in the RVE allows one to write the following

iso-field conditions (Aboudi et al. 2013):

σ pc
1

σ pc
2

2pc
3

σ pc
23

σ pc
13

σ pc
12

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

σm
1

σm
2

2m
3

σm
23

σm
13

σm
12

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

σ p
1

σ p
2

2p
3

σ p
23

σ p
13

σ p
12

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð5:4Þ

The existence of perfect bonding between the fibers and matrix also requires to

satisfy the following rules of mixtures (Aboudi et al. 2013):

σpc3 ¼ Vpσ
p
3 þ Vmσ

m
3 , 2pc

1 ¼ Vp2p
1 þVm2m

1 , 2pc
2 ¼ Vp2p

2 þVm2m
2 ,

γpc23 ¼ Vpγ
p
23 þ Vmγ

m
23, γ

pc
13 ¼ Vpγ

p
13 þ Vmγ

m
13, γ

pc
12 ¼ Vpγ

p
12 þ Vmγ

m
12;

ð5:5Þ
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In Eq. (5.5), Vp and Vm represent the piezoelectric fiber volume fraction and the

matrix volume fraction in the RVE of the 1–3 PZC, respectively. It should be noted

that the field variables with superscript pc appearing in Eqs. (5.4) and (5.5)

represent the field variables of the homogenized RVE of the 1–3 PZC. At this

juncture, it must be noted that a field variable used here for the constituent phases or

the homogenized RVE actually represents the average of the corresponding field

variable in the constituent phases or the homogenized RVE, respectively (Aboudi

et al. 2013). The state of stress {σpc} and the state of strain 2pcf g in the homogenized

RVE can be written in terms of the strains in the constituent phases as follows:

σpcf g ¼ C1½ � 2pf g þ C2½ � 2mf g � e1f g Ef g ð5:6Þ

2pcf g ¼ V1½ � 2pf g þ V2½ � 2mf g ð5:7Þ

in which

σpcf g ¼

σ pc
1

σ pc
2

σ pc
3

σ pc
23

σ pc
13

σ pc
12

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
, 2pcf g ¼

2pc
1

2pc
2

2pc
3

γ pc
23

γ pc
13

γ pc
12

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
, C1½ � ¼

0 0 0 0 0 0

0 0 0 0 0 0

VpC
p
13 VpC

p
23 VpC

p
33 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
66666666664

3
77777777775

C2½ � ¼

Cm
11 Cm

12 Cm
13 0 0 0

Cm
12 Cm

22 Cm
23 0 0 0

VmC
m
13 VmC

m
23 VmC

m
33 0 0 0

0 0 0 Cm
44 0 0

0 0 0 0 Cm
55 0

0 0 0 0 0 Cm
66

2
66666666664

3
77777777775
, e1f g ¼

0

0

Vpe
p
33

0

0

0

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

V1½ � ¼

Vp 0 0 0 0 0

0 Vp 0 0 0 0

0 0 1 0 0 0

0 0 0 Vp 0 0

0 0 0 0 Vp 0

0 0 0 0 0 Vp

2
66666666664

3
77777777775
and V2½ � ¼

Vm 0 0 0 0 0

0 Vm 0 0 0 0

0 0 0 0 0 0

0 0 0 Vm 0 0

0 0 0 0 Vm 0

0 0 0 0 0 Vm

2
66666666664

3
77777777775

ð5:8Þ
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The continuity conditions between the fiber and the matrix phase of the RVE of the

1–3 PZC given in Eq. (5.4) can be expressed in terms of the strains in the

constituent phases and the electric field as follows:

C3½ � 2pf g � C4½ � 2mf g ¼ e2f g Ef g ð5:9Þ

in which

C3½ � ¼

Cp
11 Cp

12 Cp
13 0 0 0

Cp
12 Cp

22 Cp
23 0 0 0

0 0 1 0 0 0

0 0 0 Cp
44 0 0

0 0 0 0 Cp
55 0

0 0 0 0 0 Cp
66

2
6666666664

3
7777777775
, C4½ � ¼

Cm
11 Cm

12 Cm
13 0 0 0

Cm
12 Cm

22 Cm
23 0 0 0

0 0 1 0 0 0

0 0 0 Cm
44 0 0

0 0 0 0 Cm
55 0

0 0 0 0 0 Cm
66

2
6666666664

3
7777777775
,

and e2f g ¼ ep31 ep32 0 0 0 0
� �T

ð5:10Þ

Using Eqs. (5.6) and (5.8), one can derive that

2mf g ¼ V3½ ��1 2pcf g � V3½ ��1 V1½ � C3½ ��1 e2f gE3 ð5:11Þ

and

2pf g ¼ V4½ ��1 2pcf g � V4½ ��1 V2½ � C4½ ��1 e2f gE3 ð5:12Þ

in which

V3½ � ¼ V2½ � þ V1½ � C3½ ��1 C4½ � and V4½ � ¼ V1½ � þ V2½ � C4½ ��1 C3½ �.
Substituting Eqs. (5.10) and (5.11) into Eq. (5.5), the following effective con-

stitutive relation for the converse piezoelectric effect in the vertically reinforced

1–3 PZC can be derived:

σpcf g ¼ Cpc½ � 2pcf g � epcf gE3 ð5:13Þ

in which the effective elastic coefficient matrix [Cpc] and the effective piezoelectric

coefficient matrix {epc} of the 1–3 PZC are given by

Cpc½ � ¼ C1½ � V4½ ��1 þ C2½ � V3½ ��1 ð5:14Þ

epcf g ¼ e1f g � C1½ � V4½ ��1 V2½ � C4½ ��1 e2f g þ C2½ � V3½ ��1 V1½ � C3½ ��1 e2f g ð5:15Þ

It is obvious from Eq. (5.14) that the in-plane effective piezoelectric coefficients epc31
and epc32 of the 1–3 PZC are epc(1) and epc(2), respectively, while the transverse
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effective piezoelectric coefficient epc33 of the 1–3 PZC is epc(3). It may be noted that

the matrix [C4] contains the elastic properties of the matrix phase. Hence, it is

obvious from the expression of the effective piezoelectric coefficient {epc} given by
Eq. (5.14) that for a particular piezoelectric material, the magnitude of the effective

piezoelectric coefficient can be improved if the elastic properties of the matrix are

improved.

5.4 Effective Properties of the SFFRC

Figure 5.4 illustrates a schematic sketch of a lamina of the SFFRC. The novel

constructional feature of such a continuous unidirectional vertically reinforced

composite is that CNTs of equal length are uniformly aligned in the plane of the

lamina and radially grown on the surface of the piezoelectric fiber reinforcements.

CNTs considered here are transversely isotropic (Shen and Li 2004). They are

grown on the surface of the piezoelectric fibers in such a way that their axes of

transverse isotropy are normal to the surface of the piezoelectric fibers. Such a

resulting piezoelectric fuzzy fiber (PFF) is shown in Fig. 5.5. When this PFF is

embedded into the polymer material, the gap between the CNTs is filled with the

polymer. Therefore, the radially aligned CNTs reinforce the polymer matrix sur-

rounding the piezoelectric fiber along the direction transverse to the length of the

piezoelectric fiber. Consequently, the augmented PFF can be viewed as a circular

cylindrical piezoelectric composite fuzzy fiber (PCFF) in which a piezoelectric

fiber is embedded in the CNT-reinforced polymer matrix nanocomposite (PMNC)

and the radius of the PCFF is equal to the sum of the radius of the piezoelectric fiber

and the length of a CNT. The cross sections of such a PCFF are illustrated in

Fig. 5.6. Therefore, the RVE of the SFFRC can be treated as being composed of

two phases where the reinforcement is the PCFF and the matrix is the polymer

material. The piezoelectric fiber is poled along the thickness direction, and the only

electric field considered here is applied across the thickness of the lamina. Thus, the

analytical micromechanics model for estimating the effective properties of the

Piezoelectric fiber

CNT
Polymer matrix

Polymer matrix 3

21

Fig. 5.4 Schematic

diagram of a lamina of

smart fuzzy fiber-reinforced

composite (SFFRC)
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SFFRC first needs the derivation of the micromechanics model for estimating the

effective elastic properties of the PMNC material. Subsequently, considering the

PMNC material as the matrix phase and the piezoelectric fibers as the reinforce-

ments, effective elastic properties and effective piezoelectric properties of the

PCFF are to be computed. Finally, utilizing the effective properties of the PCFF

and the polymer matrix, the effective properties of the SFFRC can be estimated.

Also, PCFFs are assumed to be uniformly spaced over the volume of a lamina of

the SFFRC in such a way that three orthogonal principal material coordinate axes

(1–2–3) exist in the composite as shown in Fig. 5.4. Micromechanics models for

estimating the properties of the PMNC, the PCFF, and the SFFRC are derived in

the following sections.

5.4.1 Micromechanics Model of the PMNC

This section presents a simple micromechanics model to estimate the effective

elastic properties of the PMNC material surrounding the piezoelectric fiber which

Piezoelectric fiber

CNT

Fig. 5.5 Piezoelectric

fuzzy fiber (PFF)

CNT

3

1

2

1

Piezoelectric fiber

1
2

'
'

θ

Fig. 5.6 Longitudinal and

transverse cross sections
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are required as inputs for the derivation of the model of the PCFF. Since the

piezoelectric fibers are vertically aligned, the radially grown CNTs on the surface

of the piezoelectric fibers are aligned either with the 1-axis or with the 10-axis as
shown in Fig. 5.6. Let us first estimate the properties of an RVE in which the CNT

fiber aligns with the 1-axis. The cross sections of such an RVE of the PMNC have

been shown in Fig. 5.7. Assuming CNTs as solid fibers (Gao and Li 2005), the

micromechanics model derived in Sect. 5.3 can be modified to predict the average

effective elastic constants of the PMNC surrounding the piezoelectric fiber. Based

on the principal material coordinate (1–2–3) axes shown in Fig. 5.7, the constitutive

relations for the constituent phases of the RVE of the PMNC are given by

σrf g ¼ Cr½ � 2rf g; r ¼ ntandm ð5:16Þ

where the stress vector, the strain vector, and the elastic coefficient matrix of the

phase denoted by r are given by Eq. (5.3). In Eq. (5.14) the superscripts nt and
m denote, respectively, the CNT fiber and the monolithic polymer matrix. It may be

mentioned here that the basics of CNTs may be studied from some original

literature (Thostenson and Chou 2003). It is assumed that CNTs and the polymer

matrix are perfectly bonded. Therefore, the following iso-field relations and the

rules of mixture (Aboudi et al. 2013) satisfying the perfect bonding conditions

between the fiber and the matrix can be written as

σnc2
σnc3
2nc1
σnc23
σnc13
σnc12

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

σm
2

σm
3

2m
1

σm
23

σm
13

σm
12

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

σ nt
2

σ nt
3

2nt
1

σ nt
23

σ nt
13

σ nt
12

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð5:17Þ

and

σnc1 ¼ Vntσ
nt
1 þ Vmσ

nt
1 , 2nc

2 ¼ Vnt2nt
2 þVm2m

2 , 2nc
3 ¼ Vnt2nt

3 þVm2m
3 ,

γnc23 ¼ Vntγ
nt
23 þ Vmγ

m
23, γ

nc
13 ¼ Vntγ

nt
13 þ Vmγ

m
13 and γnc12 ¼ Vntγ

nt
12 þ Vmγ

m
12

ð5:18Þ

2 Polymer Matrix

CNT

1 2

3
CNT

Polymer Matrix

Fig. 5.7 Longitudinal and transverse section of the RVE of the PMNC
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In Eqs. (5.15) and (5.17), Vnt is the volume fraction of the CNT with respect to the

volume of the RVE of the PMNC and Vm ¼ 1� Vnt. Also, the superscript nc
represents the homogenized PMNC material. From Eqs. (5.15) and (5.17), the

stress and the strain vectors in the homogenized PMNC material can be expressed

in terms of the strain vectors of the constituent phases as follows:

σncf g ¼ C5½ � 2ntf g þ C6½ � 2mf g ð5:19Þ

2ncf g ¼ V5½ � 2ntf g þ V6½ � 2mf g ð5:20Þ

Also, using the iso-field conditions between the constituent phases given by

Eq. (5.15), the relations among the strains in the constituent phases can be written as

C7½ � 2ntf g ¼ C8½ � 2mf g ð5:21Þ

The various matrices appearing in Eqs. (5.16)–(5.18) are

C5½ � ¼ Vnt

Cnt
11 Cnt

12 Cnt
13 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
66666666664

3
77777777775
, C6½ � ¼

VmC
m
11 VmC

m
12 VmC

m
13 0 0 0

Cm
12 Cm

22 Cm
23 0 0 0

Cm
13 Cm

23 Cm
33 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
66666666664

3
77777777775
,

V5½ � ¼

1 0 0 0 0 0

0 Vnt 0 0 0 0

0 0 Vnt 0 0 0

0 0 0 Vnt 0 0

0 0 0 0 Vnt 0

0 0 0 0 0 Vnt

2
66666666664

3
77777777775
, V6½ � ¼

0 0 0 0 0 0

0 Vm 0 0 0 0

0 0 Vm 0 0 0

0 0 0 Vm 0 0

0 0 0 0 Vm 0

0 0 0 0 0 Vm

2
66666666664

3
77777777775
,

C7½ � ¼

1 0 0 0 0 0

Cnt
12 Cnt

22 Cnt
23 0 0 0

Cnt
13 Cnt

23 Cnt
33 0 0 0

0 0 0 Cnt
44 0 0

0 0 0 0 Cnt
55 0

0 0 0 0 0 Cnt
66

2
66666666664

3
77777777775
, C8½ � ¼

1 0 0 0 0 0

Cm
12 Cm

22 Cm
23 0 0 0

Cm
13 Cm

23 Cm
33 0 0 0

0 0 0 Cm
44 0 0

0 0 0 0 Cm
55 0

0 0 0 0 0 Cm
66

2
66666666664

3
77777777775
;

ð5:22Þ
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Using Eqs. (5.17) and (5.18), the local strain vectors 2ntf g and 2mf g can be

expressed in terms of 2ncf g, and subsequently, using them in Eq. (5.16), the

following constitutive relation between the states of stresses and strains at any

point in the homogenized PMNC material is obtained:

σncf g ¼ Cnc½ � 2ncf g ð5:23Þ

where the effective elastic coefficient matrix [Cnc] of the lamina of the PMNC is

given by

Cnc½ � ¼ C5½ � V8½ ��1 þ C6½ � V7½ ��1 ð5:24Þ

in which

V7½ � ¼ V6½ � þ V5½ � C7½ ��1 C8½ �and V8½ � ¼ V5½ � þ V6½ � C8½ ��1 C7½ � ð5:25Þ

It should be noted that the effective elastic coefficient matrix at a point in the

portion of the PMNC surrounding the piezoelectric fiber where the CNT is aligned

with the 1-axis or 10-axis is given by [Cnc]. Thus, the matrix [Cnc] provides the local

effective elastic coefficient matrix at a point in the PMNC either with respect to the

1� 2� 3 coordinate system or with respect to the 1
0 � 2

0 � 3 coordinate system.

But for estimating the effective properties of the SFFRC, the homogenized prop-

erties of the PMNC with respect to the 1� 2� 3 coordinate system are to be

estimated. For the point located in the PMNC where the CNT is oriented at an

angle θ with the 1-axis of the 1� 2 plane, the effective elastic coefficient matrix

C
nc� �

at the said point with respect to the 1� 2� 3 coordinate system can be

obtained by the following transformations:

C
nc� � ¼ T½ �T Cnc½ � T½ � ð5:26Þ

where

T½ � ¼

m2 n2 0 0 0 �2mn
n2 m2 0 0 0 2mn
0 0 1 0 0 0

0 0 0 m n 0

0 0 0 �n m 0

mn �mn 0 0 0 m2 � n2

2
6666664

3
7777775
, m ¼ cos θ andn ¼ sin θ ð5:27Þ

Therefore, the effective elastic properties of the PMNC surrounding the piezoelectric

fiber with respect to the principal material coordinate axes of the SFFRC varies over

an annular cross section of the PMNC phase of the RVE of the PCFF. However,

without loss of generality, the volume average of these location-dependent effective
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elastic properties C
nc� �

over the volume of the PMNC can be treated as the effective

elastic properties [CPMNC] of the PMNCmaterial surrounding the piezoelectric fiber

with respect to the 1–2–3 coordinate axes of the SFFRC and is given by

CPMNC
� � ¼ 1

π R2 � a2
� � ð2π

0

ðR
a

C
nc
r dr dθ ð5:28Þ

in which a and R are the radii of the piezoelectric fiber and the PCFF, respectively.
Thus, the effective constitutive relations for the PMNC material with respect to the

principal material coordinate axes of the SFFRC can be expressed as

σPMNC
� � ¼ CPMNC

� � 2PMNC
� � ð5:29Þ

5.4.2 Effective Elastic Properties of the PCFF

The constructional feature of the PCFF shown in Fig. 5.6 can be viewed as a

circular cylindrical fiber which has been cut from a lamina of the vertically

reinforced 1–3 PZC. The reinforcement phase of such 1–3 PZC is the piezoelectric

fiber and the matrix phase is composed of the homogenized PMNC material with

its effective elastic properties given by Eq. (5.23). Thus, following the

micromechanics model derived in Sect. 5.3 for the vertically reinforced 1–3

PZC, the constitutive relation for the converse piezoelectric effect in the PCFF

can be derived as follows:

σPCFF
� � ¼ CPCFF

� � 2PCFF
� �� ePCFF

� �
E3 ð5:30Þ

in which the effective elastic coefficient matrix [CPCFF] and the effective piezo-

electric coefficient matrix {ePCFF} of the PCFF are

CPCFF
� � ¼ C9½ � V12½ ��1 þ C10½ � V11½ ��1 ð5:31Þ

ePCFF
� � ¼ e1f g � C9½ � V12½ ��1 V10½ � C12½ ��1 e2f g þ C10½ � V11½ ��1 V9½ � C11½ ��1 e2f g

ð5:32Þ

The various matrices appearing in Eqs. (5.26) and (5.27) are
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C9½ � ¼ C1½ �, C11½ � ¼ C3½ �,

C10½ � ¼

CPMNC
11 CPMNC

12 CPMNC
13 0 0 0

CPMNC
12 CPMNC

22 CPMNC
23 0 0 0

VPMNCC
PMNC
13 VPMNCC

PMNC
23 VPMNCC

PMNC
33 0 0 0

0 0 0 CPMNC
44 0 0

0 0 0 0 CPMNC
55 0

0 0 0 0 0 CPMNC
66

2
66666666664

3
77777777775
,

V9½ � ¼

Vp 0 0 0 0 0

0 Vp 0 0 0 0

0 0 1 0 0 0

0 0 0 Vp 0 0

0 0 0 0 Vp 0

0 0 0 0 0 Vp

2
66666666664

3
77777777775
,

V10½ � ¼

VPMNC 0 0 0 0 0

0 VPMNC 0 0 0 0

0 0 0 0 0 0

0 0 0 VPMNC 0 0

0 0 0 0 VPMNC 0

0 0 0 0 0 VPMNC

2
66666666664

3
77777777775
,

C12½ � ¼

CPMNC
11 CPMNC

12 CPMNC
13 0 0 0

CPMNC
12 CPMNC

22 CPMNC
23 0 0 0

0 0 1 0 0 0

0 0 0 CPMNC
44 0 0

0 0 0 0 CPMNC
55 0

0 0 0 0 0 CPMNC
66

2
66666666664

3
77777777775
,

VPMNC ¼ 1� Vp, V11½ � ¼ V10½ � þ V9½ � C11½ ��1 C12½ �
and V12½ � ¼ V9½ � þ V10½ � C12½ ��1 C11½ �

ð5:33Þ

It should be noted that here the piezoelectric fiber volume fractionVp is based on the

volume of the RVE of the PCFF.
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5.4.3 Effective Properties of the SFFRC

The constructional feature of the SFFRC can also be viewed as a vertically

reinforced 1–3 PZC in which the PCFF is the piezoelectric fiber reinforcement

and the monolithic polymer is the matrix phase. Thus, replacing the piezoelectric

fiber by the PCFF in the micromechanics model of the 1–3 PZC derived in

Sect. 5.3, the micromechanics model of the converse piezoelectric effect in the

SFFRC can be derived as follows:

σf g ¼ C½ � 2f g � ef gE3 ð5:34Þ

in which the effective elastic coefficient matrix [C] and the effective piezoelectric

coefficient matrix {e} of the SFFRC are given by

C½ � ¼ C13½ � V16½ ��1 þ C14½ � V15½ ��1 ð5:35Þ
ef g ¼ e3f g � C13½ � V16½ ��1 V14½ � C16½ ��1 e4f g þ C14½ � V15½ ��1 V13½ � C15½ ��1 e4f g

ð5:36Þ
The various matrices appearing in Eqs. (5.30) and (5.31) are

C13½ � ¼ VPCFF

0 0 0 0 0 0

0 0 0 0 0 0

CPCFF
13 CPCFF

23 CPCFF
33 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
666666664

3
777777775
, C14½ � ¼ C2½ �, V14½ � ¼ V2½ �,

V13½ � ¼

VPCFF 0 0 0 0 0

0 VPCFF 0 0 0 0

0 0 1 0 0 0

0 0 0 VPCFF 0 0

0 0 0 0 VPCFF 0

0 0 0 0 0 VPCFF

2
666666664

3
777777775
,

V15½ � ¼ V14½ � þ V13½ � C15½ ��1 C16½ �, V16½ � ¼ V13½ � þ V14½ � C16½ ��1 C15½ �,

C15½ � ¼

CPCFF
11 CPCFF

12 CPCFF
13 0 0 0

CPCFF
12 CPCFF

22 CPCFF
23 0 0 0

0 0 1 0 0 0

0 0 0 CPCFF
44 0 0

0 0 0 0 CPCFF
55 0

0 0 0 0 0 CPCFF
66

2
666666664

3
777777775
, C16½ � ¼ C4½ �,

e3f g ¼ 0 0 VPCFFe
PCFF
33 0 0 0

� �T
and e4f g ¼ ePCFF31 ePCFF32 0 0 0 0

� �T
ð5:37Þ
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5.5 Determination of Volume Fractions

Volume fraction of CNTs (VCNT) in the SFFRC depends on the CNT diameter, the

piezoelectric fiber diameter, and the surface to surface distance of two adjacent

radially aligned CNTs at their roots. The surface to surface distance between the

two adjacent CNTs at their roots is considered as 1.7 nm (Jiang et al. 2009). For

fibers with circular cross section, it is well known that the hexagonal array of

packing is the optimal packing of fibers and the corresponding maximum fiber

volume fraction is 0.9069. Hence, for computing the numerical values of the

effective properties of the SFFRC, the hexagonal packing array of the PCFFs is
considered as shown in Fig. 5.8. It is also to be noted that the number of CNTs

grown on the surface of the piezoelectric fibers imposes a constraint on the

maximum value of VCNT. Thus, one cannot arbitrarily assume the large value of

VCNT. Based on the hexagonal array of packing of the PCFF, the transverse cross

section of the RVE of the SFFRC will be an equilateral triangle. Thus, the volume

(VSFFRC) of the RVE of the SFFRC is given by

VSFFRC ¼
ffiffiffi
3

p

4
D2L ð5:38Þ

where D is the diameter of the PCFF and L is the length of the RVE. The volume

(Vp) of the piezoelectric fiber is

Vp ¼ π

8
d2L ð5:39Þ

where d is the diameter of the piezoelectric fiber. Thus, the piezoelectric fiber

volume fraction (Vp) in the SFFRC can be found as

Vp ¼ Vp

VSFFRC
¼ π

2
ffiffiffi
3

p d2

D2
ð5:40Þ

Piezoelectric Fiber

Polymer Matrix Polymer Matrix

CNT

Fig. 5.8 Hexagonal array

of packing for the PCFF
fibers in SFFRC
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Using Eqs. (5.34) and (5.35), the piezoelectric fiber volume fraction (Vp) based on

the volume of the PCFF can be determined as

Vp ¼ 2
ffiffiffi
3

p

π
Vp ð5:41Þ

Based on the surface to surface distance at the roots of the two adjacent CNTs and

the CNT diameter, the maximum number of radially grown aligned CNTs

(NCNTjmax) on the surface of the piezoelectric fiber can be determined as

NCNTjmax ¼
πdL

2 dn þ 1:7� 10�9
� �2 ð5:42Þ

where dn is the diameter of CNT. Therefore, the volume of CNTs (VCNT) present in

the RVE is

VCNT ¼ π

π
d2n R� að ÞNCNTjmax ð5:43Þ

Thus, the maximum volume fraction (VCNTjmax) of CNTs with respect to the

volume of the RVE of the SFFRC is

VCNTjmax ¼
VCNT

VSFFRC
¼ πd2n

2 dn þ 1:7� 10�9
� �2

ffiffiffiffiffiffiffiffiffi
πVp

2
ffiffiffi
3

p
s

� Vp

 !
ð5:44Þ

Finally, the maximum volume fraction (Vntjmax) of the CNTs with respect to the

volume of the PMNC can be determined as follows:

Vntjmax ¼
VCNT

VPMNC
¼ 2

ffiffiffi
3

p

π � 2
ffiffiffi
3

p
Vp

VCNTjmax ð5:45Þ

5.6 Numerical Example

An example of the SFFRC is considered for presenting the numerical estimation of

its effective properties. The SFFRC considered here is composed of epoxy, PZT5

fiber, and armchair CNTs. The material properties of these constituent phases are

listed in Table 5.1.

It is evident from Eq. (5.39) that when Vp is zero, VCNT is zero. Also, when

Vp ¼ π=2
ffiffiffi
3

p
, i.e., PMNC is absent, the value of VCNT is also zero. Thus, the

maximum value of VCNT given by Eq. (5.39) will be maximized at a particular

value of Vp. Figure 5.9 illustrates the variation of the maximum volume fraction of
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CNTs in the SFFRC with respect to Vp. It may be observed from this figure that the

maximum values of VCNT for different CNT diameters are almost independent of

the CNT diameter and are maximized at Vp ¼ 0:24. Few graphical results are

presented in Figs. 5.10, 5.11, 5.12, 5.13, and 5.14. While estimating the effective

properties shown in Figs. 5.10, 5.11, 5.12, 5.13, and 5.14, the maximum value of

Table 5.1 Material properties of the constituent phases of SFFRC

Material

C11

(GPa)

C12

(GPa)

C23

(GPa)

C33

(GPa)

C55

(GPa)

e31
(Cm�2)

e33
(Cm�2) (nm)

CNT (5, 5)

Shen and Li

(2004)

2143.4 184.4 404 668 791 – – dn ¼ 0:678

CNT (10, 10)

Shen and Li

(2004)

1088.4 87.8 254 442 – – dn ¼ 1:356

CNT (20, 20)

Shen and Li

(2004)

545 43.52 134 138 227 – – dn ¼ 2:712

PZT5 Smith

and Auld (1991)

121 75.4 75.2 111 21.1 �5.4 15.8 –

Epoxy Smith

and Auld (1991)

5.3 3.1 3.1 5.3 0.64 – – –

Fig. 5.9 Variation of the maximum value of CNT volume fraction with the piezoelectric fiber

volume fraction in SFFRC
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VCNT for a particular value of Vp is used from Eq. (5.39). First the effective

properties of the PMNC are computed using Eq. (5.23). Using the results obtained

by Eq. (5.23), effective properties of the PCFF are evaluated from Eqs. (5.26) and

Fig. 5.10 Effective elastic coefficient C11 of the SFFRC

Fig. 5.11 Effective elastic coefficient C33 of the SFFRC
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(5.27). Finally, Eqs. (5.30) and (5.31) are used to estimate the effective properties of

the SFFRC. Figure 5.10 illustrates the variation of the effective in-plane elastic

coefficient C11 of the SFFRC with the piezoelectric fiber volume fraction Vp. It

Fig. 5.12 Effective elastic coefficient C12 of the PFFRC

Fig. 5.13 Effective in-plane piezoelectric coefficient e31 of the SFFRC
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may be observed from Fig. 5.10 that the effective value of C11 of the PFFRC is

significantly larger than that of the existing 1–3 PZC without having CNTs.

This is attributed to the fact that the radially grown CNTs strengthen the matrix

surrounding the piezoelectric fiber along 1- or 10-direction. Figure 5.11 illustrates

the variation of the transverse effective elastic coefficient C33 of the SFFRC with

the piezoelectric fiber volume fraction Vp. It is important to note from this figure

that the radially grown CNTs on the surface of the piezoelectric fibers do not

appreciably affect the magnitude of the effective transverse elastic coefficient C33

when compared with that of the existing 1–3 PZC without CNTs. This is attributed

to the fact that the CNTs are grown transverse to the piezoelectric fiber and the

elastic properties of CNT transverse to its axis (i.e., along 3-direction) are much

less than those along its axis. Radially grown CNTs also significantly improve the

other effective elastic coefficient C12 of the SFFRC as shown in Fig. 5.12. It is also

to be noted from Figs. 5.10, 5.11, and 5.12 that the CNT diameter marginally

influences the effective elastic properties of the SFFRC. Figure 5.13 illustrates the

variation of the effective in-plane piezoelectric coefficient e31 of the SFFRC. It can
be observed from this figure that for Vp ¼ 0:6, the magnitude of e31 of the SFFRC
is almost three times that of the existing 1–3 PZC without containing CNTs. This

enhancement of the in-plane piezoelectric coefficient is attributed to the in-plane

stiffening of the polymer matrix surrounding the piezoelectric fiber by radially

grown aligned CNTs. The other in-plane effective piezoelectric coefficient e32 is
found to be identical to e31. It is because that the SFFRC is transversely isotropic.

Figure 5.14 illustrates the variation of the effective transverse piezoelectric coeffi-

cient e33 of the SFFRC with the piezoelectric fiber volume fraction. It is important

Fig. 5.14 Effective piezoelectric coefficient (e33) of the SFFRC
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to note from this figure that the radially grown CNTs on the surface of the

piezoelectric fibers negligibly affect the magnitude of the effective piezoelectric

coefficient e33 when compared with that of the 1–3 PZC without CNTs.
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