
Chapter 1

Multiscale Modeling of Nanoreinforced
Composites

Ahmed R. Alian and Shaker A. Meguid

Abstract In this chapter, we present different multiscale modeling techniques to

determine the elastic and interfacial properties of carbon nanotube (CNT)-

reinforced polymer composites. The elastic properties of CNT-reinforced compos-

ite (hereinafter the “nanocomposite”) are obtained in a two-step approach. First, at

the nanoscale level, molecular dynamics (MD) and atomistic-based continuum

(ABC) techniques are used to determine the effective elastic properties of a

representative volume element (RVE) that is comprised of a nanofiller and its

immediate surrounding. Second, at the microscale level, several micromechanics

models and hybrid Monte Carlo finite-element (FE) simulations are used to deter-

mine the bulk properties of nanocomposite. The interfacial properties are deter-

mined through pullout test using MD and ABC techniques. The effect of length,

diameter, agglomeration, waviness, defects, and orientation of CNTs on the elastic

and interfacial properties of nanocomposites is also investigated. The development

of multiscale modeling and the proper selection of simulation parameters are

discussed in detail. The results of several studies are presented and compared to

show the inherited limitations in each technique.

1.1 Introduction

CNTs are lighter than aluminum (density�1.4 g/cm3; Iijima 1991; Gao et al. 1998),

are stronger than steel (Young’s modulus >1 TPa; Treacy et al. 1996; Krishnan

et al. 1998; Shen and Li 2004), have large fracture strain (Wong et al. 1997; Yu

et al. 2000) and high aspect ratio (Qian et al. 2000), and are more thermally

conductive than copper (>2500 W⁄mK; Hone et al. 1999; Yang 2005; Awad and

Ladani 2015). Due to these remarkable properties, CNTs have emerged as a

promising reinforcement for polymer-based nanocomposites (Li and Chou 2003a;

Shen and Li 2004; Tsai et al. 2010). It is believed that few weight percentages of
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CNTs can significantly improve the mechanical, thermal, and physical properties of

their nanocomposites (Coleman et al. 2006a; Spitalsky et al. 2010; Rahmat and

Hubert 2011).

Several experimental studies have been carried out to study the mechanical

properties of nanocomposites. An earlier attempt was made by Schadler

et al. (1998) to measure the mechanical properties of nanocomposite under tension

and compression loadings. They reported that the compression modulus is higher

than that of the tensile modulus, indicating the load transfer to CNTs from the

matrix is higher in compression. Allaoui et al. (2002) managed to double Young’s
modulus and yield strength of the nanocomposite by adding 1 and 4 wt% of

multiwalled CNTs, respectively, compared to the pure epoxy matrix. Uniform

dispersion of CNTs resulted in a 250–300% increase in the storage modulus of

epoxy nanocomposite at 20–30 wt% of CNTs due to the strong interfacial bonding

between CNTs and epoxy resin (Gou et al. 2004). Qian et al. (2000) investigated the

load transfer in multiwalled CNT–polystyrene composites and reported an increase

in the tensile modulus and strength by �39 and 25%, respectively, at 1 wt% of

CNTs. Meguid and Sun (2004) showed that the homogeneous dispersion of CNTs

in the epoxy matrix can improve the tensile and shear strengths of the resulting

synthesized nanocomposite. However, at higher CNT concentrations, the mechan-

ical properties of the nanocomposite were found to deteriorate due to the formation

of CNT agglomerates, which act as stress concentrators. The multifunctionality of

nanocomposites was also investigated experimentally. For example, Park

et al. (2002) synthesized a polyimide composite reinforced with CNTs and reported

improved mechanical, thermal, electrical, and optical properties.

The mechanical performance of nanocomposites is significantly influenced by

the interfacial cohesion between the CNT and the surrounding matrix. Higher

interfacial shear strength (ISS) is an indicator of better stress transfer from the

polymer matrix to the embedded CNTs and hence an enhanced reinforcement effect

(Desai and Haque 2005). Several experimental studies used direct methods such as

pullout test and indirect methods such as fragmentation test and Raman spectros-

copy to investigate the interfacial characteristics of nanocomposites. For instance,

Wagner et al. (1998) estimated the interfacial shear stress between the multiwalled

CNTs and the polymer based on the fragmentation test to be as high as 500 MPa,

which is more than one order of magnitude compared to the conventional compos-

ites. Micro-Raman spectroscopy was used by Ajayan et al. (2000) to measure the

local mechanical behavior of single-walled CNT bundles in the epoxy

nanocomposite. They noticed that the efficiency of stress transfer and hence the

enhancement of the mechanical properties is lower than expected due to the sliding

of CNTs within the bundle. Cooper et al. (2002) used scanning probe microscope

tip to pull out individual single- and multiwalled CNT ropes from epoxy matrix.

The ISS of both the cases was found in the range of 35–376 MPa. This relatively

high value of the ISS was attributed to the formation of strong ultrathin epoxy layer

at the interface. This layer exits as a result of the formation of covalent bonds

between CNTs and the surrounding polymer molecules, which originate from the

defects on the CNTs.
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The efficiency of CNTs in reinforcing the matrix depends on several parameters

such as chirality, aspect ratio, defects, alignment, degree of waviness, chemical

functionalization, agglomeration, and aggregation in the prepared nanocomposite

system (Gojny et al. 2005; Coleman et al. 2006b; Wang et al. 2012). A significant

number of experimental and numerical studies have been conducted so far to study

the influence of these parameters on the mechanical performance of

nanocomposites. Due to the atomic nature of CNTs, we cannot use the existing

analytical and numerical techniques of traditional reinforced fiber composites for

studying the mechanical properties of nanocomposites (Zeng et al. 2008). In

nanocomposites, the bonding between the embedded CNTs and the polymer orig-

inates mainly from the weak nonbonded van der Waals (vdW) and Coulombic

interactions (Han and Elliott 2007). However, chemical functionalization of CNTs

can introduce some strong interfacial covalent bonds between the nanotube walls

and the polymer chains leading to a stronger nanocomposite (Xiao et al. 2015). Due

to these inherited limitations in conventional modeling techniques of composite

materials, different multiscale modeling techniques were developed to address the

length scale effect and to determine the effective properties of nanocomposites.

In general, multiscale modeling of nanocomposites is carried out in two stages,

as shown in Fig. 1.1 (Wernik 2013). The first stage usually addresses different

issues related to the atomic structure of CNTs and the surrounding polymer at the

nanoscale level. Mainly, MD simulations and ABC modeling technique are used in

the first stage. Because of the nonbonded interactions between the CNT and the

matrix and the formation of a strong ultrathin polymer layer at their interface, a

representative volume element (RVE) is needed to capture the interfacial and

mechanical properties of the resulting nanocomposite (Alian et al. 2015a). The

results of the atomistic simulations are then used as an input to the second stage.

Analytical and numerical micromechanical techniques are used in the second stage

to determine the bulk properties of the nanocomposite (Wernik and Meguid 2014).

The RVE from the first stage is used here as an equivalent effective fiber embedded

in the bulk matrix.

In this chapter, we cover the basics of multiscale modeling techniques utilized

for CNT-reinforced composites. In particular, the application of each model in

studying the elastic and interfacial properties is presented. The results predicted by

Representative Volume Element Effective fiber Nanocomposite

MicromechanicalHomogenization
AnalysisProcess

Fig. 1.1 Modeling steps involved in the multiscale model
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multiscale models have been validated with those of experimental data reported in

the literature. The influence of CNT morphology and dispersion on the interfacial

and mechanical properties is investigated to determine the best method to prepare

nanocomposites with optimal properties. The effect of CNT dispersion is investi-

gated considering the two cases: aligned and randomly distributed CNTs, while the

effect of agglomeration is investigated by considering CNT bundles of different

sizes. CNTs with different curvatures are modeled as well to study the effect of their

waviness on the mechanical behavior of nanocomposites. The results of the

conducted investigations are presented and compared to show the inherited limita-

tions in each modeling technique.

This chapter is organized as follows. Following this Introduction, the basics of

MD and its applications in nanocomposites are described in Sect. 1.2. The basics of

ABC technique and its application in determining the elastic and interfacial prop-

erties of nanocomposites are presented in Sect. 1.3. The micromechanical proce-

dure based on Mori–Tanaka technique is reviewed and subsequently used to study

the effect of CNT agglomeration, waviness, and dispersion on the bulk properties of

nanocomposite in Sect. 1.4. Finally, Monte Carlo method and FE technique are then

combined in Sect. 1.5 as an alternative method to Mori–Tanaka technique. Numer-

ical and analytical results are presented for each modeling technique at the end of

each section.

1.2 Molecular Modeling

MD simulations offer an appropriate and effective means to deal with large

nanoscale systems and relatively longer simulation times compared to density

functional theory (DFT) simulations and have been extensively used for determin-

ing the interfacial and mechanical properties of nanocomposites. MD has been also

a very valuable tool for studying the effect of CNT agglomeration, waviness, aspect

ratio, defects, and functionalization on the mechanical behavior of nanocomposites.

For example, Frankland et al. (2003a) used MD simulations to calculate the

longitudinal and transverse Young’s moduli of polymer nanocomposite reinforced

with long and short CNTs. Grujicic et al. (2007) studied the effect of chemical

functionalization on the mechanical properties of multiwalled CNT–vinyl ester

epoxy composites using MD simulations. Their results showed that introducing

covalent bonds between CNTs and the surrounding polymer results in significant

improvements in the transverse elastic properties of the nanocomposite. Alian

et al. (2015b) studied the effect of CNT agglomeration on the elastic properties of

CNT–epoxy composites by modeling different RVEs reinforced with bundles of

CNTs. Their results showed that the CNT agglomerates dramatically reduce the

effective properties of epoxy nanocomposites.
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1.2.1 Basics of MD Simulations

MD is a computational method that was firstly introduced into theoretical physics

by Alder and Wainwright (1957) to simulate elastic collisions between hard

spheres. Since then, MD has become an important and attractive computational

tool for many research fields including chemical physics, biochemistry, and mate-

rials science. MD allows to study relatively large molecular systems that cannot be

simulated using quantum mechanics-based techniques such as DFT and ab initio

approaches due to the enormous computational cost (Srivastava et al. 2003). The

main purpose of MD simulations is to simulate the time-dependent behavior of the

system by calculating the current and future position and velocity of each atom

using Newton’s equations of motion. This information can be used later to calculate

the averaged mechanical, physical, and thermal properties of the system (van

Gunsteren and Berendsen 1990).

The initial position and velocity of each atom of the system must be known at the

beginning of the MD simulation. This initial data is randomly generated based on

statistical mechanics and the required average temperature of the system. Then, the

trajectories of the atoms are determined by solving the Newton’s equations of

motion of the interacting atoms of the system:

F
*

i ¼ mi a
*
i ð1:1Þ

where F
*

i, mi, and a
*
i are the acting force, mass, and acceleration of atom i,

respectively. The interatomic forces are the gradient of the total potential energy,

V, of the system:

F
*

i ¼ �∇ V r
*

� �
ð1:2Þ

The velocity, v
*
i, and displacement vector, r

*
i, of each atom are the first and second

derivatives of the acceleration:

a
*
i ¼ dv

*
i

dt
ð1:3Þ

v
*
i ¼ dr

*
i

dt
ð1:4Þ

Using Eqs. (1.1), (1.3), and (1.4), we obtain the following differential equation:

�∇ V r
*

� �
¼ mi

d2 r
*
i

dt2
ð1:5Þ
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The most popular algorithm to integrate the resulting equations of motion of the

system is the Verlet algorithm (Verlet 1967). In this algorithm, Newton’s equations
of motion are approximated by a Taylor series expansion as a time series:

r tþ δtð Þ ¼ r tð Þ þ v tð Þ δtþ 1

2
a tð Þ δt2 þ 1

6

d3r tð Þ
dt3

δt3 þ O δt4
� � ð1:6Þ

r t� δtð Þ ¼ r tð Þ � v tð Þ δtþ 1

2
a tð Þ δt2 � 1

6

d3r tð Þ
dt3

δt3 þ O δt4
� � ð1:7Þ

Adding the above two equations and moving the r t� δtð Þ term to the right-hand

side, we obtain

r tþ δtð Þ ¼ 2r tð Þ � r t� δtð Þ þ a tð Þ δt2 þ O δt4
� � ð1:8Þ

This is the general form of the Verlet algorithm for MD, where δt is the time step of

the analysis; accuracy significantly increases with the decrease in this time step

because it is a function of the fourth order of δt. The value of a(t) is determined from

Eq. (1.5), which depends on the location of the atom. Here, we use the positions

from the previous and current time steps and acceleration of the current step to

predict the trajectory of the atom. The instantaneous velocity v(t) of each atom can

be later calculated using Taylor series expansion, as follows:

v tð Þ ¼ r tþ δtð Þ � r t� δtð Þ
2δt

þ O δt3
� � ð1:9Þ

The accuracy of the velocity is a function of δt3 implying that it has lower accuracy

than the position which is a function of δt4. The kinetic energy K(t) and the

averaged instantaneous temperature T of the system, based on the equipartition

theory, can be calculated using the obtained velocities using the following relations:

K tð Þ ¼ 1

2

X
i
mi vi tð Þð Þ2 ð1:10Þ

T tð Þ ¼ 2

3

K tð Þ
N KB

ð1:11Þ

where KB is the Boltzmann constant. The averaged stress tensor of the MD unit cell

is defined in the form of virial stress (Zhou 2003), as follows:

σ ¼ 1

V

XN

i¼1

mi

2
vi
2 þ Fi ri

� �
ð1:12Þ

where V is the volume of the MD unit cell and vi, mi, ri, and Fi are the velocity,

mass, position, and force acting on the ith atom, respectively.
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The total potential energy of the system can be defined by interatomic potentials

or molecular mechanics force fields which describe how the atoms interact with

each other (LeSar 2013). The selected interatomic potential or force field for the

system under investigation must be very accurate for the quantum mechanical

process and to yield reliable results. These potentials and force fields have been

developed by several researchers based on quantum mechanics calculations and

then validated by comparing their results with experimental tests (Brenner 2000;

LeSar 2013). The general expression for the total atomistic potential energy of the

system can be written as a many-body expansion that depend on the position of one,

two, three atoms or more at a time (LeSar 2013):

V r
*
1, r

*
2, . . . :, r

*
N

� �
¼

XN

i
V1 r

*
i

� �
þ
XN

i, j
V2 r

*
i ; r

*
j

� �
þ
XN

i, j,k
V3 r

*
i ; r

*
j ; r

*
ik

� �
þ . . .

ð1:13Þ

where V1 is the one-body term (energy of the isolated atom i due to an external force
field such as the electrostatic force), V2 is the two-body term (pairwise interactions

of the atoms i and j such as Lennard–Jones potential (Jones 1924)), V3 is the three-

body term (three-body interactions and usually called many-body interactions such

as Tersoff and Brenner potentials), N is the number of atoms in the system, and r
*
i is

the position vector of atom i (Tersoff 1988; Brenner 1990). However, most of the

polymeric systems need a more generalized interatomic potential which is mainly

defined based on geometrical parameters such as bond lengths, angles, and rotation.

To tackle this problem, many force fields were developed (LeSar 2013). The total

energy in force fields consists of two parts: the first one is concerned with the

bonded interactions of the covalently bonded atoms, and the second is concerned

with the nonbonded interactions originating from the relatively weak long-range

electrostatic and vdW forces:

V ¼
X

Vr þ
X

Vθ þ
X

Vφ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Vbonded

þ
X

VvdW þ
X

Velec|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Vnon-bonded

ð1:14Þ

where Vr term is for oscillations about the equilibrium bond length (i.e., bond

stretching), Vθ term is for oscillations of 3 atoms about an equilibrium bond angle

(i.e., bond angle bending), Vφ term is for torsional rotation of 4 atoms about a

central bond (i.e., dihedral angle torsion), VvdW term is for a nonbonded vdW

interactions, and Vele term is for a nonbonded electrostatic interactions (Li and

Chou 2003a). The components of the potential energy due to the bonded interac-

tions are shown in Fig. 1.2.

All MD simulations are being conducted under specified conditions. These

ensembles are characterized by fixed values of the following thermodynamic vari-

ables: potential energy, temperature, pressure, volume, and total number of parti-

cles. The most commonly used ensembles in MD simulations are:
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• Micro-canonical ensemble: constant number of atoms, volume, and energy (N,V,E)
• Isothermal–isobaric ensemble: constant number of atoms, temperature, and

pressure (N,T,P)
• Canonical ensemble: constant number of atoms, temperature, and volume (N,V,T)

There is a common sequence that can be followed to build an MD model and

perform a successful simulation. The first step is to build the initial structure of the

system using software such as NanoEngineer, Materials Studio, Packmol, etc. This

step consumes a significant time of the work as it usually requires the building of

small units of the system and dispersing them in a largeMD unit cell. The second step

is to minimize the structure by changing the initial location of the atoms to reduce the

total potential energy of the system and to relieve the residual stresses. The third step

is assigning an initial velocity to each atom based on the targeted average temperature

of the system. The fourth is to equilibrate the minimized structure to obtain the

system at targeted initial conditions (pressure, volume, temperature). Finally,

conducting the required analysis and measuring the system properties of interest.

1.2.2 Modeling of Nanocomposite and Its Constituents

In this section, we will present modeling of CNTs, epoxy, and nanocomposites

using MD simulations (see Fig. 1.3). The main objective is to obtain the atomic-

level elastic and interfacial properties of the nanocomposite. All MD simulations

will be performed with large-scale atomic/molecular massively parallel simulator

(LAMMPS; Plimpton 1995) using either the consistent valence force field (CVFF;

Dauber-Osguthorpe et al. 1988) or the adaptive intermolecular reactive bond order

(AIREBO) potential (Stuart et al. 2000). CVFF has been used successfully by

several researchers to predict the mechanical properties of CNTs, epoxy polymers,

and CNT–epoxy composites (Alian et al. 2015b; Li et al. 2012; Tunvir et al. 2008).

AIREBO has been also used by many researchers for CNTs, hydrocarbons, and

polymers consisting of only carbon and hydrogen such as polyethylene (Coluci

et al. 2007; Zang et al. 2009). Conjugate gradient algorithm is used to minimize the

total potential energy of the initial configurations. The structure is considered to be

optimized once the change in the total potential energy of the system between

Torsion

Angle Bending

Fig. 1.2 Schematic of both

bonded and nonbonded

interactions between the

atoms of a small molecule
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subsequent steps is less than 1.0� 10�10 kcal/mol. Velocity Verlet algorithm is

used to integrate the equations of motion in all MD simulations. Periodic boundary

conditions are imposed on all directions of the MD unit cells. The cutoff distance

for the nonbonded interaction is set to 14.0 Å (Haghighatpanah and Bolton 2013).

1.2.2.1 Modeling of CNTs

In this section, MD simulations are conducted to determine the elastic properties of

pristine SWCNTs using AIREBO interatomic potential. The effect of CNT diam-

eter size on its mechanical properties is investigated considering different armchair

SWCNTs, with diameter ranging from �6 to �35 Å, as shown in Fig. 1.4.

The transversely isotropic elastic moduli of the armchair CNTs are determined

using the strain energy density–elastic constant relations. The following four

loading conditions are imposed on the CNT: axial tension for axial Young’s
modulus (E1) and major Poisson’s ratio (ν12), torsional moment for axial shear

modulus (G12), in-plane biaxial tension for plane strain bulk modulus (K23), and

in-plane shear for in-plane shear modulus (G23). Schematic representations of these

loading conditions are depicted in Fig. 1.5. The equations written underneath the

figures indicate the respective strain energy densities (U ) stored in the CNT due to

the applied strain.

Fig. 1.3 Molecular structures of (a) (5,5) armchair CNT, (b) RVE consists of SWCNT embedded

in polymer, and (c) pullout of CNT bundle from epoxy matrix

1 Multiscale Modeling of Nanoreinforced Composites 9



The equivalent-continuum structure of a CNT is assumed to be annular cylinder

by considering its effective wall thickness as 3.4 Å (Hao et al. 2008), and its area is

determined as A ¼ 2πrt, where r is the outer radius of the CNT and t is its wall
thickness. The sequence of the MD simulations is as follows: first, the initial

structures of the generated CNTs are first optimized using the conjugate gradient

algorithm to obtain the nanotube configurations of minimum energy. Subsequently,

the minimized structures of the CNTs are equilibrated for 50 ps in the constant

temperature and volume canonical (NVT) ensemble using a 0.5 fs time step at

300 K. Then, a defined strain increment of 0.1% is applied to the CNTs followed by

potential energy minimization. During each loading step, one end of the CNT is

fixed, while a prescribed load/displacement is applied to the other end. In case of

axial tension, an incremental axial displacement is applied to the top end. In case of

twisting moment, an incremental tangential displacement was applied to the top end

while constraining its motion in the radial direction to maintain the presumed

Fig. 1.4 Schematics of different CNTs adopted in the study: (a) (5, 5) CNT, (b) (10, 10) CNT, and
(c) (20, 20) CNT

Fig. 1.5 Loading conditions used to determine the elastic constants of the CNT: (a) tensile, (b)
twist, (c) in-plane biaxial tension, and (d) in-plane shear
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cylindrical shape of the CNT. In case of in-plane biaxial tension, all atoms of the

CNT were subjected to two-dimensional plane strain condition by axially

constraining the two ends of the CNT. In case of in-plane shear condition, the

CNT is subjected to in-plane shear in such a way that its circular cross section

deforms into an elliptical shape. Finally, this loading step is repeated until the strain

reaches up to 3%. Under each strain increment, the change in potential energy that

is equivalent to the stored strain energy in the CNTs is used to determine the elastic

properties based on the relation between the deformation energy density and the

elastic constants.

Five types of armchair CNTs (5, 5), (10, 10), (15, 15), (20, 20), and (25, 25) are

considered in the current analysis to study the effect of nanotube diameter on the

elastic moduli of CNTs. The MD results show that the elastic coefficients of the

CNTs decrease as the diameter of a CNT increases (see Fig. 1.6a–d).

Fig. 1.6 Effect of vacancy defects on (a) axial Young’s modulus, (b) axial shear modulus, (c)
plane strain bulk modulus, and (d) in-plane shear modulus of (5,5) armchair CNT
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1.2.2.2 Modeling of Pure Epoxy

MD simulations are conducted to determine the isotropic elastic moduli of epoxy

material using CVFF. We will model a specific two-component epoxy material

based on diglycidyl ether of bisphenol A (DGEBA) epoxy resin and

triethylenetetramine (TETA) curing agent, which is typically used in the aerospace

industry (see Fig. 1.7). The volumetric bulk (K ) and shear (G) moduli of the epoxy

will be determined by applying volumetric and three-dimensional shear strains,

respectively.

During the curing process, the hydrogen atoms in the amine groups of the curing

agent react with the epoxide groups of the resin forming covalent bonds, which

result in a highly cross-linked epoxy structure. The resin/curing agent weight ratio

in the epoxy polymer was set to 2:1 in order to achieve the best elastic properties

(Wernik 2013). The cross-linked polymer structure consisted of 80 DGEBA mol-

ecules cross-linked with 40 molecules of curing agent TETA. The cross-linked

structure was utilized to form a 3D structure of epoxy. This structure was then used

to build the epoxy system in the subsequent MD simulations of both neat epoxy and

CNT–epoxy composite.

The neat epoxy model was generated by randomly placing 5 cross-linked

structures in a cubic simulation box of size 150 Å� 150 Å� 150 Å to form a

system containing �25,000 atoms, as shown in Fig. 1.8a. The MD unit cell was

compressed gradually to the targeted dimensions of 60 Å� 60 Å� 60 Å through

25 consecutive steps. At each compression step, the atoms coordinates were

remapped to fit inside the compressed box, and then the updated structure was

optimized by minimizing its potential energy to obtain a relaxed configuration, as

shown Fig. 1.8b.

The optimized system was then equilibrated at room temperature in the constant

temperature and volume canonical (NVT) ensemble over 200 ps using a 0.5 fs time

step at 300 K. The compressed system was equilibrated for another 200 ps in the

isothermal–isobaric (NPT) ensemble at 300 K and 1 atm to generate an epoxy

system with the correct density. This equilibration step resulted in an equilibrated

amorphous structure with an average density of 1.1 g/cm3. At the end, the structure

is again equilibrated for another 200 ps in the NVT ensemble at 300 K. In order to

Fig. 1.7 Molecular structures of (a) epoxy resin (DGEBA) and (b) curing agent (TETA)
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determine the bulk modulus of the epoxy, the simulation box was volumetrically

strained in both tension and compression by applying equal uniform strains along

the three axes. The bulk modulus was calculated by

K ¼ σh
εv

ð1:15Þ

where εv and σh are the volumetric strain and the averaged hydrostatic stress,

respectively. In order to determine the average shear modulus, equal shear strains

were applied on the simulation box in xy, xz, and yz planes. The shear modulus was

calculated by

G ¼ τij
γij

, i 6¼ j ð1:16Þ

where τij and γij denote the averaged shear stress and shear strain, respectively. In

each loading case, strain increments of 0.25% were applied along a particular

direction by uniformly expanding or shearing the simulation box and updating

the atoms coordinates to fit within the new dimensions. After each strain increment,

the MD unit cell was equilibrated using the NVT ensemble at 300 K for 10 ps.

Then, the stress tensor is averaged over an interval of 10 ps to reduce the effect of

fluctuations. These steps were repeated again in the subsequent deformation incre-

ments. The procedure was stopped when the total strain reached up to 2.5%.

Fig. 1.8 The simulation box containing 400 chains of DGEBA and 200 chains of TETA (a)

placed randomly in a simulation box of size 150 Å� 150 Å� 150 Å and (b) equilibrated after

being compressed into a cube of size 60 Å� 60 Å� 60 Å
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Based on the calculated bulk and shear moduli, Young’s modulus (E) and Poisson’s
ratio (ν) were determined as follows:

E ¼ 9KG

3K þ G
and ν ¼ 3K � 2G

2 3K þ Gð Þ ð1:17Þ

The predicted elastic properties of the epoxy from the conducted MD simula-

tions are found to be consistent with the experimentally measured moduli of a

similar epoxy, as summarized in Table 1.1 (Littell et al. 2008).

1.2.2.3 Modeling of CNT–Epoxy Interface

The structure of the polymer matrix at the vicinity of the CNT surface differs from

the bulk polymer far from the interface due to the formation of an ultrathin polymer

layer at the CNT–epoxy polymer (Cooper et al. 2002). This ultrathin layer consists

of a highly packed crystalline polymer, which has higher elastic properties than the

amorphous bulk polymer (Coleman et al. 2004). In this section, the interface

thickness of the CNT–epoxy composites will be determined using MD simulations.

In order to obtain the actual CNT–epoxy properties using multiscale modeling

technique, the size of the RVE must be large enough to incorporate the interface

layer. Armchair (5,5) CNT of length 76 Å is used in the present study. Interface

thickness is an important parameter in calculating the actual volume fraction of

CNTs in composite. The cylindrical molecular structure of the (5,5) SWCNT is

treated as an equivalent solid cylindrical fiber (Kundalwal and Ray 2012;

Thostenson and Chou 2003) for determining its volume fraction in the

nanocomposite RVE:

vCNT ffi f n NCNT π DCNT þ hvdWð Þ2 LCNT
4Vcell

ð1:18Þ

where DCNT and LCNT denote the respective diameter and length of a CNT, hvdW is

the vdW equilibrium distance between a CNT and the surrounding polymer matrix,

NCNT is the number of CNTs in the bundle, fn is a factor based on the shape of the

bundle of CNTs, and Vcell is the volume of the RVE.

In order to determine the thickness of the interface layer, we performed MD

simulations for a system consisting of a CNT surrounded by epoxy structures using

Table 1.1 Elastic moduli of the epoxy material

Young’s modulus

(GPa)

Shear modulus

(GPa)

Bulk modulus

(GPa)

Poisson’s
ratio

MD simulations 3.2 1.1 4.8 0.39

Experimental work

(Littell et al. 2008)

2.9 1.07 3.3 0.35
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the same steps as adopted in the pure epoxy case without any further chaining

between the epoxy molecules. This approach does not address how the interfacial

layer thickness changes with the epoxy chain growth during reaction curing, but we

can determine the average interfacial layer thickness when the MD system reaches

an equilibrium state. Figure 1.9 shows the radial distribution function (RDF) of the

epoxy atoms surrounding the embedded CNT after the equilibration. The variation

of the RDF along the radial direction represents the change of the epoxy structure in

the vicinity of the embedded CNT. It may be observed from Fig. 1.9 that the RDF of

the epoxy atoms is zero at a radial distance of 0.56 nm and reaches its maximum

value of 160 atoms/nm3 at the radial distance of 0.77 nm. Then, it starts to fluctuate

around an average value of 110 atoms/nm3. This result indicates that the value of

the vdW equilibrium distance hvdW is �2.75 Å and the thickness of CNT–epoxy

matrix interface layer is �3.0 Å. The obtained values of the interfacial layer

thickness and the equilibrium separation distance were used to select the appropri-

ate RVE sizes for MD simulations of nanocomposites in the next section.

1.2.2.4 Modeling of Nanocomposite Containing Agglomerated CNTs

CNTs have a tendency to agglomerate and aggregate into bundles due to poor

dispersion of CNTs and their high surface energy and surface area (Dumlich

et al. 2011). The presence of CNT agglomerates and aggregates deteriorates the

interfacial properties of the nanocomposite resulting in limited stress transfer and

load sharing (Alian et al. 2015b). Therefore, the issue of agglomeration of CNTs

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25
0

20

40

60

80

100

120

140

160

Radial distance from CNT axis (nm)

R
D

F 
of

 e
po

xy
 a

to
m

s (
A

to
m

s/
nm

3 )

Fig. 1.9 RDF of the epoxy atoms around the embedded CNT
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needs to be addressed. The effect of agglomeration is investigated by modeling

RVEs reinforced with CNT bundles of different sizes. Three RVEs are constructed

to represent an epoxy matrix containing a (1) single CNT, (2) bundle of three CNTs,

and (3) bundle of seven CNTs (see Fig. 1.10). Each RVE will be used as an effective

fiber in the micromechanical model to calculate the effective elastic moduli of the

nanocomposite at the microscale level, as shown in Fig. 1.1. All MD simulations

are conducted using CVFF force field.

The initial distance between the adjacent CNTs in the bundle was taken to be

3.4Å, which is equivalent to the intertube separation distance in multiwalled CNTs.

The RVEs are assumed to be transversely isotropic with the 3-axis being the axis of

symmetry. Therefore, only five independent material constants are required to fully

define the elastic stiffness matrix. The constitutive relationship of the transversely

isotropic RVE is given by

σ11
σ22
σ33
σ23
σ13
σ12

2
6666664

3
7777775
¼

C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C11 � C12ð Þ=2

2
6666664

3
7777775

ε11
ε22
ε33
ε23
ε13
ε12

2
6666664

3
7777775

ð1:19Þ

where σij and εij are the respective stress and strain components with (i, j¼ 1, 2, 3,

4, 5, 6) and Cij represents the elastic coefficients of the RVE. The MD simulation

box in each case was constructed by randomly placing cross-linked epoxy struc-

tures around an individual CNT or a CNT bundle. The CNT volume fraction is kept

the same in all RVE �6.5%. The details of the three RVEs are summarized in

Table 1.2. To determine the five elastic constants, the RVEs were subjected to five

different loading conditions: longitudinal tension, transverse tension, in-plane

tension, in-plane shear, and out-of-plane shear. The steps involved in the MD

simulations of the RVEs are the same as adopted in the previous section for pure

epoxy. The boundary and loading conditions that have been applied to the RVE to

determine the corresponding five independent elastic coefficients of the RVE are

listed in Table 1.3.

Fig. 1.10 MD unit cells containing a (a) single CNT, (b) bundle of three CNTs, and (c) bundle of
seven CNTs
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Table 1.4 summarizes the outcome of the MD simulations. It may be observed

from the results that the elastic properties of the RVEs are significantly higher than

those of the neat epoxy. It is also clear from the results that the CNT agglomeration

reduces the reinforcing effect of the embedded CNTs, which eventually degrades

the bulk elastic moduli of the nanocomposites. The axial elastic coefficients, C33, of

the RVEs containing bundles of three and seven CNTs decreased by some 21 and

38.5%, respectively, as compared with the RVE containing an individual CNT. The

CNT agglomeration is also found to reduce the transverse elastic coefficients of the

RVEs. For example, the transverse elastic coefficient, C11, of the RVEs containing

bundles of three and seven CNTs decreased by 11.0 and 22.9%, respectively,

compared with the RVE containing an individual CNT.

Table 1.2 Parameters used in the RVE

Parameter Single CNT

Bundle of three

CNTs

Bundle of seven

CNTs

CNT type (5, 5) (5, 5) (5, 5)

Number of CNTs 1 3 7

Length of a CNT (Å) 73 73 76

CNT volume fraction 6.5% 6.5% 6.5%

RVE dimensions (Å3) 31� 31� 76 55� 55� 76 88� 88� 76

Total number of DGEBA

molecules

120 320 960

Total number of TETA molecules 60 160 480

Total number of atoms 7836 21116 62028

Table 1.3 Effective elastic

coefficients of the RVEs

and corresponding

displacement fields

Elastic coefficients Applied strains Applied displacement

C11 ε11 ¼ e u1 ¼ ex1
C33 ε33 ¼ e u3 ¼ ex3
C44 ε23 ¼ e=2 u2 ¼ e

2
x3, u3 ¼ e

2
x2

C66 ε12 ¼ e=2 u1 ¼ e

2
x2, u2 ¼ e

2
x1

K12 ¼ C11 þ C12

2

ε11 ¼ ε22 u1 ¼ ex1, u2 ¼ ex2

Table 1.4 Material properties of the nanocomposite RVE containing either an individual CNT or

its bundle

RVE

CNT volume

fraction in RVE

(vCNT)
C11

(GPa)

C12

(GPa)

C13

(GPa)

C33

(GPa)

C44

(GPa)

C66

(GPa)

Single CNT 6.5% 11.8 7.1 5.6 47.35 3.16 2.35

Bundle of three CNTs 10.5 6.6 4.5 37.4 1.89 1.95

Bundle of seven CNTs 9.1 5.9 3.5 29.2 1.48 1.6
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The effective elastic moduli of the RVE are related to the effective elastic

stiffness components as follows:

E33 ¼ C33 �
2C2

23

C12 þ C11

ð1:20Þ

E11 ¼ E22 ¼
C11 � C12ð Þ C11C33 þ C12C33 � 2C

2

23

� �
C11C33 � C2

23

ð1:21Þ

G12 ¼ C11 � C12ð Þ
2

ð1:22Þ

G13 ¼ G23 ¼ C44 ð1:23Þ

K12 ¼ C11 þ C12

2
ð1:24Þ

where E33, E11, G23, G12, and K12 are the effective axial Young’s, transverse
Young’s, axial shear, transverse shear, and bulk moduli of the nanocomposite,

respectively.

1.2.2.5 Modeling of Nanocomposite Containing Wavy CNTs

CNTs have a tendency to bend in the prepared nanocomposites due to their

relatively high aspect ratio and low bending stiffness (Falvo et al. 1997). In order

to investigate the effect of CNT waviness on the mechanical performance of their

nanocomposites, we conducted MD simulations to determine the elastic moduli of

nanocomposites reinforced with straight and wavy CNTs using CVFF force field.

Sinusoidal armchair (5,5) CNT of shape factor α (a/λ) 0.77 and length 256 Å is used

in the simulations (see Fig. 1.11a). Due to the symmetry of the appiled boundary

and loading conditions, only half of a complete sine-wave CNT was modeled

(Matveeva et al. 2014). The MD simulation box in each case was constructed by

randomly placing cross-linked epoxy structures around the embedded CNT (see

Fig. 1.11b), and its size in each case was adjusted in such a way that the CNT

volume fraction remains constant at 2.5%. The details of the seven RVEs are

summarized in Table 1.5.

Curved CNTs have reinforcement effects on both the chord and the transverse

directions; therefore, the RVE is considered to be orthotropic. Nine independent

material constants are required to fully define the elastic stiffness tensor of the

orthotropic RVE. The constitutive relationship of the orthotropic RVE is given by
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σ11
σ22
σ33
σ23
σ13
σ12

2
6666664

3
7777775
¼

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

2
6666664

3
7777775

ε11
ε22
ε33
ε23
ε13
ε12

2
6666664

3
7777775

ð1:25Þ

The nine independent stiffness constants can be determined by applying six loading

conditions on the RVE: uniaxial tension and compressions in all directions and

in-plane shears in 1–2, 2–3, and 1–3 planes. The steps involved in the MD

simulations are the same as those adopted for the pure epoxy and RVE reinforced

with agglomerated CNTs. The boundary and loading conditions applied to the RVE

are listed in Table 1.6.

Table 1.7 summarizes the outcome of the MD simulations. It may be observed

from the results that the CNT waviness reduces the reinforcing effect of CNTs,

which eventually degrades the bulk elastic moduli of the nanocomposites.

Table 1.5 Parameters used in the RVEs

a (Å) λ (Å)
Shape parameter

(α¼ a/λ)
No. of DGEBA

resins

No. of TETA

curing agents

Total no.

of atoms

0 128 0.0 1476 738 96480

75 94 0.77

Fig. 1.11 (a) A schematic representation of a wavy CNT showing the main parameters that

control curvature.(b) MD unit cell reinforced with wavy CNT (α¼ 0.8)
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1.2.2.6 CNT Pullout Simulations

The mechanical performance of nanocomposites depends on the efficiency of stress

transfer between the polymer matrix and the embedded CNTs. Due to the difficul-

ties associated with experimental studies of the interfacial properties of

nanocomposites on the atomic scale, a significant number of analytical models

have been developed, and numerical studies have also been conducted to study

these nanocomposites (Wernik et al. 2012). For instance, in an effort to understand

the main factors that govern the interfacial adhesion, Lordi and Yao (2000) used

force-field-based molecular mechanics calculations to determine the binding ener-

gies and sliding frictional stresses between CNTs and a range of polymer matrices.

Their results show that binding energies and frictional forces slightly affect the

strength of the interface. Liao and Li (2001) used molecular mechanics simulations

to study the interfacial characteristics of a CNT-reinforced polystyrene composite

due to nonbonded electrostatic and vdW interactions and reported the interfacial

shear stress approximately to be�160 MPa. Frankland and Harik (2003b) used MD

simulations to pull out a CNT from a crystalline polymer matrix. Based on their MD

results, they developed an interfacial friction model based on the pullout force, an

effective viscosity, and the strain rate. Li et al. (2011) studied the effects of CNT

length, diameter, and wall number on the interfacial properties of CNT–polyethyl-

ene composite using MD simulations. Their results showed that the ISS does not

depend on the CNT length, but it is proportional to the CNT diameter.

In this section, we will determine the ISS of an epoxy nanocomposite using

MD simulations. The MD simulation box is constructed using the same steps as

mentioned previously herein. During the pullout simulation, one end of the fully

embedded CNT is extracted from the matrix at constant velocity of 1� 10�5Å=fs

Table 1.6 Effective elastic

coefficients of the RVEs

and corresponding

displacement fields

Elastic coefficients Applied strains Applied displacement

C11, C12, C13 ε11 ¼ e u1 ¼ ex1
C22, C12, C13 ε22 ¼ e u2 ¼ ex2
C33, C13, C23 ε33 ¼ e u3 ¼ ex3

C44 ε23 ¼ e=2 u2 ¼ e

2
x3, u3 ¼ e

2
x2

C55 ε13 ¼ e=2 u1 ¼ e

2
x2, u3 ¼ e

2
x3

C66 ε12 ¼ e=2 u1 ¼ e

2
x2, u2 ¼ e

2
x1

Table 1.7 Material properties of the nanocomposite RVE containing straight or wavy CNT at

~1.8 vol.%

Waviness

parameter (α) C11 C22 C33 C12 C13 C23 C44 C55 C66

0.0 9.72 9.72 41.89 7.61 7.81 7.97 2 2 2.32

0.77 10.42 11.81 19.92 8.53 7.04 7.56 1.69 2.22 2.29
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in the NVT ensemble at 300 K (Yang et al. 2012a). The periodic boundary

conditions were removed along the axial direction of the CNT, and the polymer

atoms are constrained during the pullout simulation (Li et al. 2011). The pullout

force and the average ISS are then determined based on the work done during the

pullout test. Typical snapshots during CNT pullout from the epoxy matrix are

shown in Fig. 1.12. The corresponding ISS is determined by dividing the pullout

force by the initial interfacial area, A ¼ π dCNT lCNT, where dCNT and lCNT are the

diameter and length of the embedded CNT, respectively.

Five different CNT lengths up to 200 Åwere modeled to study the effect of CNT

length on the interfacial properties. Figure 1.13 shows the effect of embedded CNT

lengths on the ISS of a nanocomposite with an interfacial thickness of 3.4 Å. The
ISS of the CNT–polymer composite system exhibits a decaying length trend similar

to traditional fiber composites (Herrera-Franco and Drzal 1992).

The effect of CNT size on the interfacial properties was investigated by model-

ing RVEs reinforced with SWCNT of different diameters. The smallest CNT is of

(5, 5) chirality and 6.78 Å diameter, while the largest is of (18, 18) chirality and

24.4 Å diameter. Figure 1.14 shows that the ISS decreases approximately linearly

with the increase of the CNT diameter. The effect of the interface thickness on the

ISS of nanocomposite is investigated by modeling the CNT–epoxy RVEs with

different interface thicknesses ranging from 2.2 to 4.25 Å. The measured ISS was

found to decrease with increasing the interfacial thickness, as shown in Fig. 1.15.

This dependence is attributed to the fact that vdW interactions between any two

atoms become weaker with the increase of their atomic separation distance.

Fig. 1.12 Snapshots of CNT-reinforced epoxy composite at various displacements during the

CNT pullout simulation
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Fig. 1.14 Effect of CNT diameter on the ISS

Fig. 1.13 Effect of CNT length on the ISS
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1.3 ABC Mechanics Technique

Due to the computational cost of MD simulations, another atomistic technique was

developed to model CNT and its nanocomposite by replacing their structures with

equivalent-continuum elements. In this method, in contrast to the traditional con-

tinuum modeling techniques, the discrete nature of the structure is considered by

replacing the carbon–carbon covalent bond and the interatomic interaction with

beam and truss elements, respectively. In general, ABC simulations are conducted

using conventional finite element analysis (FEA) packages bymodeling (1) CNTs as

space frame structures; (2) bonded interactions using beam, truss, and spring

elements; and (3) nonbonded interactions using nonlinear truss elements (Nasdala

and Ernst 2005).

1.3.1 Basics of ABC Technique

At the nanoscale level, the total interatomic potential energy of the system can be

described as the sum of individual energy contributions from bonded- and

nonbonded interactions:

V ¼
X

Vr þ
X

Vθ þ
X

Vφ þ
X

Vω þ
X

VvdW ð1:26Þ

Fig. 1.15 Effect of interface thickness on the ISS
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where the terms Vr, Vθ, Vφ, Vω, and VvdW represent the bond-stretch interaction,

bond angle bending, dihedral angle torsion, improper (out-of-plane) torsion, and

nonbonded vdW interaction, respectively (Li and Chou 2003a). Figure 1.16 shows

schematic representations of these interatomic potential energies.

Li and Chou (2003a) modeled the deformation of CNTs by modeling their

structures as geometrical frame-like structures in which each atom acts as a joint

of connecting load-bearing beam members which represent C–C covalent bonds

where the interatomic potential energies are linked to the strain energies. They

described the first four terms of the interatomic potential energy for the bonded

interactions using harmonic approximation assuming only small deformations. In

addition, they merged the potential energy from the dihedral angle torsion and the

improper torsion into a single equivalent term. As a result, the total potential energy

due to the covalent bonding can be calculated using only three terms as follows:

Vr ¼ 1

2
kr r � roð Þ2 ¼ 1

2
krΔr2 ð1:27Þ

Vθ ¼ 1

2
kθ θ � θoð Þ2 ¼ 1

2
kθΔθ2 ð1:28Þ

Vτ ¼ Vφ þ Vω ¼ 1

2
kτΔφ2 ð1:29Þ

where kr is the bond-stretching force constant, kθ is the bond angle-bending force

constant, kτ is the torsional resistance, Δr is the bond-stretching increment, Δθ is

the bond angle change, and Δφ is the angle change of bond twisting. Then, they

used beam elements to replace C–C bonds by equating the beam strain energy due

to axial deformation, pure bending, and pure torsion due to the total potential

energy of the bond. The governing parameters that characterize the beam elements

are axial stiffness (EA), bending stiffness (EI), and torsional stiffness (GJ) (see

Fig. 1.17) and can be calculated as follows:

EA

L
¼ kr,

EI

L
¼ kθ,

GJ

L
¼ kτ ð1:30Þ

Bond Stretching

Improper Torsion

Bond angle bending Non-bonded interactions

Improper

Fig. 1.16 Interatomic interactions in atomic structures
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Later, Li and Chou (2003b) determined the elastic properties of multiwalled

CNTs by modeling them as space frame structures using connected beam elements

where the vdW interactions between the CNT walls were modeled as nonlinear

truss elements (see Fig. 1.18).

1.3.2 Modeling of Nanocomposites

A more advanced and generalized ABC model was developed by Wernik and

Meguid (2010) based on the modified Morse potential to study the nonlinear elastic

response of SWCNTs under tensile and torsional loadings. The stretching and

angle-bending components in the interatomic potential were modeled by nonlinear

rotational spring and beam elements, respectively, as shown in Fig. 1.19. The

following equations were used to describe the bond-stretching and angle-bending

components of the modified Morse potential:

Vmodified morse potential ¼ Vbond stretching þ Vangle bending ð1:31Þ

L

N N D
Ma b cM

T T

Fig. 1.17 Beam element under (a) axial tension, (b) pure bending, and (c) torsion

Beam Element Connecting node
Element

a b

Truss element

Fig. 1.18 (a) CNT modeled as a frame-like structure based on beam elements and (b) a double-
wall CNT and a schematic representation of the truss elements used to model the intertube vdW

interactions
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Vbond stretching ¼ De 1� exp�β r�roð Þ
h i2

� 1

� �
ð1:32Þ

Vangle bending ¼ 1

2
kθ θ � θoð Þ2 1þ ksextic θ � θoð Þ4

h i
ð1:33Þ

where r, θ, De, β, kθ, and ksextic are parameters of the potential.

The results of their ABC simulations showed that armchair CNTs offer a better

reinforcement for the nanocomposite due to their superior properties compared to

all other types of CNTs. For example, the induced initial damage on the CNT wall

expanded more rapidly in the case of zigzag CNTs, as shown in Fig. 1.20. However,

zigzag CNTs showed a higher resistance to torsional buckling by having a higher

angle of twist for each buckling mode in comparison to the armchair CNTs (see

Fig. 1.21).

Meguid et al. (2013) extended their model to incorporate vdW interactions

between neighboring atoms of the CNT and the polymer matrix by modeling the

weak nonbonded interactions as truss elements. They used the modified model to

study the interfacial and mechanical properties of nanocomposites. They used LJ

interatomic potential to describe the vdW interactions between the embedded CNT

and the surrounding polymer matrix, as given below:

Hexagonal lattice

Rotational 
spring 

Beam
element

Connecting 
node

a b

Fig. 1.19 Schematic representations of (a) a hexagonal lattice of CNT and (b) the connecting

structural elements used to model C–C covalent bond

Fig. 1.20 CNTs at different fracture stages under tensile loading condition (Wernik and Meguid

2010)
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VLJ ¼ 4μ
ψ

r

� �12

� ψ

r

� �6
	 


ð1:34Þ

where μ is the depth of energy well and its value indicates the bond strength, ψ is the

distance at which ELJ is zero and known as the effective diameter of the hard sphere

atom, and r is the distance between the two atoms. To model the surrounding

polymer matrix, a specific two-component epoxy was used based on a DGEBA and

TETA formulation. The Young’s modulus and Poisson’s ratio of the epoxy matrix

were taken to be 1.07 GPa and 0.28, respectively. The epoxy was modeled using

higher-ordered 3D, 10-node solid tetrahedral elements with quadratic displacement

behavior as shown in Fig. 1.22.

Fig. 1.21 CNTs buckling under torsional loading (Wernik and Meguid 2010)

SWCNT
(Space Frame Structure)

CNT/Epoxy interface 
(Truss elements)

Epoxy 
(3D elements)

Fig. 1.22 Schematic

representation of the

CNT–epoxy interface
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Figure 1.23 shows a schematic of the displacement boundary conditions applied

during the pullout process. The nodes in the CNT are constrained from any radial

displacements, and an incremental axial displacement boundary condition is

applied to the top of CNT nodes to initiate the pullout process. The force required

to withdraw the CNT from the matrix is evaluated over the course of the pullout

process by summing the reaction forces at the upper CNT nodes. The corresponding

ISS was determined by dividing the maximum pullout force by the initial interfacial

area, A ¼ π dl, where d and l are the diameter and length of the embedded CNT,

respectively. The pullout model was used to study the effect of CNT length and

diameter on the pullout force and the interfacial shear strength (Figs. 1.24 and 1.25).

The pullout force was found to increase with increasing CNT diameter, while it was

found to be independent of the CNT length. The ISS was found to decrease with

increasing the CNT diameter and length.

Wernik and Meguid (2014) then used their model to determine the elastic

properties of a transversely isotropic nanoscale RVE consists of a SWCNT, the

surrounding polymer matrix, and their interface (see Fig. 1.26). The five stiffness

constants required to fully describe the elastic behavior of the RVE were

Axial 
displacement

Polymer atoms     Interfaced layer
PolymerCNT

(Fully constrained) 

CNT atoms             
(Radially constrained) 

a b

Fig. 1.23 Schematic drawing showing (a) the three-phase model that consists of the polymer, the

reinforcing CNT, and interface layer; (b) pullout of a CNT from matrix to determine the ISS of the

nanocomposite

0.9
a b

0.8

0.7

0.6

0.5

0.4

0.3

A
ve

ra
ge

 P
ul

lo
ut

 F
or

ce
 (

nN
)

0.2

0.1

0
0.0 0.5 1.0 1.5 2.0

Pull-Out Distance (nm)

P
ul

l-O
ut

 F
or

ce
 (

nN
)

Pull-Out Distance (nm)
2.5

(5,5) Nanotube (D=0.67nm)
(8,8) Nanotube (D=1.08nm)
(12,12) Nanotube (D=1.63nm)
(15,15) Nanotube (D=2.04nm)
(18,18) Nanotube (D=2.44nm)

3.0 3.5 4.0 4.5 0.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0

3.3 nm

6.6 nm
12.8 nm

Fig. 1.24 Effect of geometrical parameters on the pullout force of a SWCNT from epoxy matrix.

(a) Effect of CNT diameter. (b) Effect of CNT length (Meguid et al. 2013)
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determined by applying five different sets of boundary conditions on the RVE and

equating the total strain energies of the RVE and an equivalent representative fiber,

exhibiting the same geometrical and mechanical characteristics, under identical sets

of loading conditions as listed in Table 1.3 (assuming 2–3 planes of symmetry in the

current case). Table 1.8 summarizes the obtained stiffness constants and the

corresponding elastic moduli of the RVE from the ABC simulations.

Fig. 1.25 Effect of geometrical parameters on the ISS of CNT–epoxy composite. (a) Effect of
CNT diameter. (b) Effect of CNT length (Meguid et al. 2013)

Fig. 1.26 Geometrical dimensions of the RVE and the equivalent effective fiber represent CNT–

epoxy composite with 32% CNT volume fraction (Wernik and Meguid 2014)

Table 1.8 Stiffness constants

and the corresponding elastic

moduli of the RVE from the

ABC simulations

Elastic constants

Value

(GPa)

Stiffness

constants

Value

(GPa)

Transverse shear modulus (GT)

Plane-strain bulk modulus (KT)

Longitudinal shear modulus

(GL)

Longitudinal Young’s modulus

((EL)

7.2

14.3

26.0

465.6

C11

C12

C22

C23

C66

469.3

7.3

21.5

7.0

26.0
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1.4 Micromechanics Modeling

Multiscale modeling of nanocomposites can be conducted using a two-step scheme.

First, the effective elastic properties of a RVE that account for the nanofiller and its

immediate surrounding are determined using an appropriate atomistic modeling

technique. This RVE is subsequently homogenized into an effective fiber with the

same dimensions but with uniform properties (Yang et al. 2012b). Second,

established micromechanical techniques such as Mori–Tanaka technique are then

used to determine the mechanical properties of the nanocomposites on a macro-

scopic scale using the effective fiber as the reinforcing fiber in the polymer matrix.

Odegard and coworkers (2003, 2005) developed a sequential multiscale model in

which the CNT, polymer matrix, and interface were all combined and modeled as

an effective continuum fiber using an equivalent-continuum modeling method.

Then Mori–Tanaka method was employed to determine the bulk properties of a

nanocomposite reinforced with aligned and randomly orientated effective fibers for

varied CNT lengths and concentrations. Selmi et al. (2007) compared the predicted

elastic properties of CNT-based polymers using different micromechanical tech-

niques including various extensions of the Mori–Tanaka method. Their compara-

tive study showed that the two-level Mori–Tanaka/Mori–Tanaka (MT–MT)

approach delivers the most accurate predictions compared to experimental results.

In this section, we will use Mori–Tanaka method to scale up the elastic properties of

the pure epoxy and the effective fiber, which are determined using MD simulations,

to the bulk level. This method has been successfully employed to similar problems

by many researchers (Jam et al. 2013; Sobhani Aragh et al. 2012).

Mori–Tanaka model can be developed by utilizing the elastic properties of the

nanocomposite containing transversely isotropic aligned CNT or the orthotropic

wavy CNT and the isotropic elastic properties of the pure epoxy. In case of

two-phase composite, where the inhomogeneity is randomly orientated in the

three-dimensional space, the following relation can be used to determine the

effective stiffness tensor [C] of the nanocomposite:

C½ � ¼ Cm½ � þ vRVE CRVE
� �� Cm½ �� �
 �

A½ � vm I½ � þ vRVE h A½ �i½ ��1
� �

ð1:35Þ

in which the mechanical strain concentration tensor [A] is given by

A½ � ¼ I½ � þ SRVE
� �

Cm½ �ð Þ�1 CRVE
� �� Cm½ �� �h i�1

ð1:36Þ

where [Cm] and [CRVE] are the stiffness tensors of the epoxy matrix and the RVE,

respectively; [I] is an identity matrix; vm and vRVE represent the volume fractions of

the epoxy matrix and the RVE, respectively; and [SRVE] indicate the Eshelby tensor
(Mori and Tanaka 1973). The specific form of the Eshelby tensor for the RVE

inclusion given by Qiu and Weng (1990) is utilized herein.

It may be noted that the elastic coefficient matrix [C] directly provides the values
of the effective elastic properties of the nanocomposite, where the RVE is aligned
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with the 3-axis. In case of random orientations of CNTs, the terms enclosed with

angle brackets in Eq. (1.35) represent the average value of the term over all

orientations defined by transformation from the local coordinate system of the

RVE to the global coordinate system. The transformed mechanical strain concen-

tration tensor for the RVEs with respect to the global coordinates is given by

~Aijkl

h i
¼ tiptjqtkrtls Apqrs

� � ð1:37Þ

where tij are the direction cosines for the transformation and are given by

t11 ¼ cosϕ cosψ � sinϕ cos γ sinψ , t12 ¼ sinϕ cosψ þ cosϕ cos γ sinψ ,

t13 ¼ sinψ sin γ, t21 ¼ � cosϕ sinψ � sinϕ cos γ cosψ ,

t22 ¼ � sinϕ sinψ þ cosϕ cos γ cos ψ , t23 ¼ sin γ cos ψ , t31 ¼ sinϕ sin γ,

t32 ¼ � cosϕ sin γ, and t33 ¼ cos γ

Consequently, the random orientation average of the dilute mechanical strain

concentration tensor [A] can be determined by using the following equation:

h A½ �i ¼

ð π

�π

ð π

0

ðπ=2
0

~A
� �

ϕ, γ, ψð Þ sin γ dϕdγdψ

ð π

�π

ð π

0

ðπ=2
0

sin γ dϕdγdψ

ð1:38Þ

where ϕ, γ, and ψ are the Euler angles as shown in Fig. 1.27. It may be noted that the

averaged mechanical strain concentration tensors given by Eqs. (1.36) and (1.38)

are used for the cases of aligned and random orientations of CNTs, respectively, in

Eq. (1.35).

The effect of CNT orientation on the bulk properties was investigated by

considering polymer reinforced with aligned and randomly oriented CNTs, as

shown in Fig. 1.28. The effect of CNT agglomeration was investigated by consid-

ering effective fibers representing RVEs reinforced with bundle of three CNTs and

Fig. 1.27 Relationship

between the local

coordinates (1, 2, 3) of the

RVE and the global

coordinates (10, 20, 30) of the
bulk composite
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bundle of seven CNTs. The maximum CNT volume fraction (VCNT) considered in

the nanocomposite is 5% because CNT concentrations above this loading are not

normally realized (Wernik and Meguid 2014).

Unless otherwise stated, the bulk elastic properties of the nanocomposite are

relate to the aligned nanocomposite RVEs along the 3-axis. Let us first demonstrate

the effect of agglomeration of CNTs on the effective elastic properties of the aligned

CNT-reinforced epoxy composite. Figure 1.29a–d shows the variations of the effective

axial Young’s modulus (E33), the transverse Young’s modulus (E11), the effective axial

shear modulus (G23), and the transverse shear modulus (G12) of the nanocomposite

with the CNT volume fraction. The elastic moduli increase with increasing CNT

volume fraction and decrease with increasing the CNT bundle size. The results show

clearly that the CNT agglomerates significantly reduce the elastic moduli.

The orientations of the CNT reinforcement in the polymer matrix can vary over

the volume of the nanocomposite. Therefore, studying the properties of

nanocomposites reinforced with randomly oriented CNTs is of a great importance.

For such investigation, CNTs or their bundles are considered to be randomly

dispersed in the epoxy matrix over the volume of the nanocomposite. As expected,

this case provides the isotropic elastic properties for the resulting nanocomposite.

Figure 1.30a, b illustrates the variations of the effective Young’s (E) and shear (G)

moduli of the nanocomposite with the CNT loading. These results clearly demon-

strate that the randomly dispersed CNTs improve the effective Young’s and shear

moduli of the nanocomposite over those of the transverse Young’s modulus (E11)

and the shear moduli (G12 and G23) of the nanocomposite reinforced with aligned

CNTs. This is attributed to the fact that the CNTs are homogeneously dispersed in

the epoxy matrix in the random case, and hence, the overall elastic properties of the

resulting nanocomposite improve in comparison to the aligned case. These findings

are also consistent with the previously reported findings by Odegard et al. (2003)

and Wernik and Meguid (2014). It may also be observed that both E and G decrease

with the increase of the number of CNTs in the bundle, and this effect becomes

more pronounced at higher CNT volume fractions.

a b

Fig. 1.28 Schematic representations of RVE reinforced with (a) aligned CNTs and (b) randomly

dispersed CNTs
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Fig. 1.29 Variation of the (a) axial Young’s modulus, (b) the transverse Young’s modulus, (c) the
effective axial shear modulus, and (d) the transverse shear modulus of the nanocomposite

containing aligned CNTs with the CNT volume fraction
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Fig. 1.30 Variation of the (a) Young’s modulus and (b) the shear modulus of the nanocomposite

containing randomly oriented CNTs with the CNT volume fraction
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1.5 Large-Scale Hybrid Monte Carlo FEA Simulations

Finite element (FE) analysis with the aid of Monte Carlo technique offers a unique

opportunity to study the local mechanical behavior and also the overall properties

of CNT-reinforced polymer composites under large deformations and specific

boundary conditions (Wernik 2013). Complementary to the traditional

micromechanical techniques, large-scale three-dimensional (3D) FE models of

polymer matrix reinforced with enough number of randomly oriented CNTs are

used to predict the average properties of the nanocomposite at a certain CNT

volume fraction. Simulation is carried out for several times to yield better averaged

results with less scattering. This technique uses the effective elastic moduli of the

RVE and the pure epoxy obtained from the atomistic simulations as an input into

the analysis.

Here, we will describe the large-scale FE model developed by Wernik and

Meguid (2014) to study CNT–epoxy composites. First, a constitutive model for

both the effective fiber and the surrounding epoxy polymer that accounts for the

material nonlinearities was determined using ABC technique. They benefited from

the available nonlinear material models which represent an advantage over the

linear elastic micromechanical models. The multi-linear elastic material model was

used to describe the nonlinear behavior of the nanocomposite constituents allowing

the full response of the composite to be determined when subjected to large

deformations. Figure 1.31 shows a FE unit cell that represents a composite loaded

with 1.0% CNT volume fraction.

Higher-ordered 3D, 10-node solid tetrahedral elements with quadratic displace-

ment behavior were used to mesh both the polymer and representative fibers.

Fig. 1.31 Hybrid Monte Carlo FEA computational cell model in its (a) unmeshed and (b) fully
meshed form. The model utilizes a CNT volume fraction of 1.0% and a CNT aspect ratio of

100 (from Wernik 2013)
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Periodic boundary conditions were imposed on the FE computational cell. This

model represents perfectly straight reinforcing representative fibers of diameter

2.4 nm and aspect ratio of 100. The main disadvantage of this method is the

enormous computational cost that is required for such simulations. As a result, a

great attention should be given in selecting the cell size that provides accurate

results with reasonable computational cost. The RVE was then subjected to a tensile

strain up to 10% by displacing the nodes located at the upper surface while fixing the

nodes located at the lower surface. The constitutive relations of the RVE were then

evaluated by dividing the total reaction force by the cross-sectional area at each

iteration of the simulation. Figure 1.32 shows the predicted constitutive response of

the FE unit cell under tensile load plotted against experimental measurements for an

epoxy matrix reinforced with the same CNT concentration (0.5 wt%).
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