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Preface

Carbon nanotubes (CNTs) are lighter than aluminum, stronger than steel, and more

thermally conductive than copper. Additionally, with their exceptionally large

fracture strain and extremely high aspect ratio, CNTs have emerged as promising

nano-particulate reinforcements that can be used to tailor the physical and mechan-

ical properties of polymer. Due to their surface/volume ratio, nanoscopic size, and

exceptional properties, it is believed that by suitably dispersing a few weight

percentages of CNTs into a polymer, the physical and mechanical properties of

that polymer can be significantly tailored leading to multifunctional

nanocomposites. The unique property combinations that result from the dispersion

and interactions between the properly dispersed CNTs, the interface, and the

polymer provide greater opportunities for the development of novel material

technologies to meet the challenges of the next century. Their applications have

been demonstrated in electronic packaging, photonics, sensing, imaging, drug

delivery, among others.

There are four reasons for the surge and interest in nanocomposites research. The

first stems from the desire to tailor the electro-thermo-opto-mechanical properties

of engineered materials to suit a specific application(s). The second from the desire

to reduce our carbon print and ensure effective use of resources. The third from the

current advances in computational nanomechanics and multiscale modeling. The

fourth from the advances and the expanded efforts needed for conducting experi-

ments at the nanoscopic level that would allow greater understanding of the

CNT-polymer interactions.

This book is not an attempt to exhaustively cover all the relevant topics on

nanocomposites. Instead, it is dedicated to recent developments in the field and the

most exciting aspects of nanocomposites. It covers a range of topics that clearly

demonstrate the depth, the diversity, and the breadth of this fertile area of research

which is governed by size/scale, anisotropy, and morphology dependence of

interacting phases that define the bulk properties of the resulting nanocomposites.

It contains nine chapters authored/coauthored by some of the most talented and

respected researchers in the community. Specifically, it covers multiscale modeling
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of nanoreinforced composites (Chap. 1), piezoelectric response at nanoscale

(Chap. 2), nanoscale mechanical characterization of 1D and 2D materials with

application to nanocomposites (Chap. 3), effects of nano-porosity on the mechan-

ical properties and applications of aerogels in composite structures (Chap. 4), smart

fuzzy fiber-reinforced piezoelectric composites (Chap. 5), composite nanowires for

room-temperature mechanical and electrical bonding (Chap. 6), recent develop-

ments of multiscale thermo-mechanical analysis of nanocomposites (Chap. 7),

magnetoelectric coupling and overall properties of a class of multiferroic compos-

ites (Chap. 8), and snap-through buckling of micro/nanobeams in bistable micro/

nanoelectromechanical systems (Chap. 9). In each chapter, the state of the art in the

respective field and the future trends are covered and discussed.

This effort offers an up-to-date coverage of diverse but highly related topics on

modeling, characterization, and applications of nanocomposites in a single volume.

We believe that it is an excellent resource and it should be of interest to undergrad-

uate and graduate physics and engineering students as well as researchers in

academic institutions, government agencies, and industry specializing in material

science, aerospace, electrical, biomedical, and mechanical engineering. We are

confident that the readers will find the information covered in this book current,

useful, and informative.

Finally, I wish to take this opportunity to express my gratitude to the authors for

their outstanding contributions in addressing many of the exciting new concepts

and developments in nanocomposites. Their informative efforts should guide both

the experienced and the newcomers to this fascinating new area of research. I’m

also indebted to my wife Valerie Meguid for her affectionate encouragement and

support throughout the different stages of this effort.

Toronto, Canada Shaker A. Meguid
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Chapter 1

Multiscale Modeling of Nanoreinforced
Composites

Ahmed R. Alian and Shaker A. Meguid

Abstract In this chapter, we present different multiscale modeling techniques to

determine the elastic and interfacial properties of carbon nanotube (CNT)-

reinforced polymer composites. The elastic properties of CNT-reinforced compos-

ite (hereinafter the “nanocomposite”) are obtained in a two-step approach. First, at

the nanoscale level, molecular dynamics (MD) and atomistic-based continuum

(ABC) techniques are used to determine the effective elastic properties of a

representative volume element (RVE) that is comprised of a nanofiller and its

immediate surrounding. Second, at the microscale level, several micromechanics

models and hybrid Monte Carlo finite-element (FE) simulations are used to deter-

mine the bulk properties of nanocomposite. The interfacial properties are deter-

mined through pullout test using MD and ABC techniques. The effect of length,

diameter, agglomeration, waviness, defects, and orientation of CNTs on the elastic

and interfacial properties of nanocomposites is also investigated. The development

of multiscale modeling and the proper selection of simulation parameters are

discussed in detail. The results of several studies are presented and compared to

show the inherited limitations in each technique.

1.1 Introduction

CNTs are lighter than aluminum (density�1.4 g/cm3; Iijima 1991; Gao et al. 1998),

are stronger than steel (Young’s modulus >1 TPa; Treacy et al. 1996; Krishnan

et al. 1998; Shen and Li 2004), have large fracture strain (Wong et al. 1997; Yu

et al. 2000) and high aspect ratio (Qian et al. 2000), and are more thermally

conductive than copper (>2500 W⁄mK; Hone et al. 1999; Yang 2005; Awad and

Ladani 2015). Due to these remarkable properties, CNTs have emerged as a

promising reinforcement for polymer-based nanocomposites (Li and Chou 2003a;

Shen and Li 2004; Tsai et al. 2010). It is believed that few weight percentages of
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CNTs can significantly improve the mechanical, thermal, and physical properties of

their nanocomposites (Coleman et al. 2006a; Spitalsky et al. 2010; Rahmat and

Hubert 2011).

Several experimental studies have been carried out to study the mechanical

properties of nanocomposites. An earlier attempt was made by Schadler

et al. (1998) to measure the mechanical properties of nanocomposite under tension

and compression loadings. They reported that the compression modulus is higher

than that of the tensile modulus, indicating the load transfer to CNTs from the

matrix is higher in compression. Allaoui et al. (2002) managed to double Young’s
modulus and yield strength of the nanocomposite by adding 1 and 4 wt% of

multiwalled CNTs, respectively, compared to the pure epoxy matrix. Uniform

dispersion of CNTs resulted in a 250–300% increase in the storage modulus of

epoxy nanocomposite at 20–30 wt% of CNTs due to the strong interfacial bonding

between CNTs and epoxy resin (Gou et al. 2004). Qian et al. (2000) investigated the

load transfer in multiwalled CNT–polystyrene composites and reported an increase

in the tensile modulus and strength by �39 and 25%, respectively, at 1 wt% of

CNTs. Meguid and Sun (2004) showed that the homogeneous dispersion of CNTs

in the epoxy matrix can improve the tensile and shear strengths of the resulting

synthesized nanocomposite. However, at higher CNT concentrations, the mechan-

ical properties of the nanocomposite were found to deteriorate due to the formation

of CNT agglomerates, which act as stress concentrators. The multifunctionality of

nanocomposites was also investigated experimentally. For example, Park

et al. (2002) synthesized a polyimide composite reinforced with CNTs and reported

improved mechanical, thermal, electrical, and optical properties.

The mechanical performance of nanocomposites is significantly influenced by

the interfacial cohesion between the CNT and the surrounding matrix. Higher

interfacial shear strength (ISS) is an indicator of better stress transfer from the

polymer matrix to the embedded CNTs and hence an enhanced reinforcement effect

(Desai and Haque 2005). Several experimental studies used direct methods such as

pullout test and indirect methods such as fragmentation test and Raman spectros-

copy to investigate the interfacial characteristics of nanocomposites. For instance,

Wagner et al. (1998) estimated the interfacial shear stress between the multiwalled

CNTs and the polymer based on the fragmentation test to be as high as 500 MPa,

which is more than one order of magnitude compared to the conventional compos-

ites. Micro-Raman spectroscopy was used by Ajayan et al. (2000) to measure the

local mechanical behavior of single-walled CNT bundles in the epoxy

nanocomposite. They noticed that the efficiency of stress transfer and hence the

enhancement of the mechanical properties is lower than expected due to the sliding

of CNTs within the bundle. Cooper et al. (2002) used scanning probe microscope

tip to pull out individual single- and multiwalled CNT ropes from epoxy matrix.

The ISS of both the cases was found in the range of 35–376 MPa. This relatively

high value of the ISS was attributed to the formation of strong ultrathin epoxy layer

at the interface. This layer exits as a result of the formation of covalent bonds

between CNTs and the surrounding polymer molecules, which originate from the

defects on the CNTs.

2 A.R. Alian and S.A. Meguid



The efficiency of CNTs in reinforcing the matrix depends on several parameters

such as chirality, aspect ratio, defects, alignment, degree of waviness, chemical

functionalization, agglomeration, and aggregation in the prepared nanocomposite

system (Gojny et al. 2005; Coleman et al. 2006b; Wang et al. 2012). A significant

number of experimental and numerical studies have been conducted so far to study

the influence of these parameters on the mechanical performance of

nanocomposites. Due to the atomic nature of CNTs, we cannot use the existing

analytical and numerical techniques of traditional reinforced fiber composites for

studying the mechanical properties of nanocomposites (Zeng et al. 2008). In

nanocomposites, the bonding between the embedded CNTs and the polymer orig-

inates mainly from the weak nonbonded van der Waals (vdW) and Coulombic

interactions (Han and Elliott 2007). However, chemical functionalization of CNTs

can introduce some strong interfacial covalent bonds between the nanotube walls

and the polymer chains leading to a stronger nanocomposite (Xiao et al. 2015). Due

to these inherited limitations in conventional modeling techniques of composite

materials, different multiscale modeling techniques were developed to address the

length scale effect and to determine the effective properties of nanocomposites.

In general, multiscale modeling of nanocomposites is carried out in two stages,

as shown in Fig. 1.1 (Wernik 2013). The first stage usually addresses different

issues related to the atomic structure of CNTs and the surrounding polymer at the

nanoscale level. Mainly, MD simulations and ABC modeling technique are used in

the first stage. Because of the nonbonded interactions between the CNT and the

matrix and the formation of a strong ultrathin polymer layer at their interface, a

representative volume element (RVE) is needed to capture the interfacial and

mechanical properties of the resulting nanocomposite (Alian et al. 2015a). The

results of the atomistic simulations are then used as an input to the second stage.

Analytical and numerical micromechanical techniques are used in the second stage

to determine the bulk properties of the nanocomposite (Wernik and Meguid 2014).

The RVE from the first stage is used here as an equivalent effective fiber embedded

in the bulk matrix.

In this chapter, we cover the basics of multiscale modeling techniques utilized

for CNT-reinforced composites. In particular, the application of each model in

studying the elastic and interfacial properties is presented. The results predicted by

Representative Volume Element Effective fiber Nanocomposite

MicromechanicalHomogenization
AnalysisProcess

Fig. 1.1 Modeling steps involved in the multiscale model
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multiscale models have been validated with those of experimental data reported in

the literature. The influence of CNT morphology and dispersion on the interfacial

and mechanical properties is investigated to determine the best method to prepare

nanocomposites with optimal properties. The effect of CNT dispersion is investi-

gated considering the two cases: aligned and randomly distributed CNTs, while the

effect of agglomeration is investigated by considering CNT bundles of different

sizes. CNTs with different curvatures are modeled as well to study the effect of their

waviness on the mechanical behavior of nanocomposites. The results of the

conducted investigations are presented and compared to show the inherited limita-

tions in each modeling technique.

This chapter is organized as follows. Following this Introduction, the basics of

MD and its applications in nanocomposites are described in Sect. 1.2. The basics of

ABC technique and its application in determining the elastic and interfacial prop-

erties of nanocomposites are presented in Sect. 1.3. The micromechanical proce-

dure based on Mori–Tanaka technique is reviewed and subsequently used to study

the effect of CNT agglomeration, waviness, and dispersion on the bulk properties of

nanocomposite in Sect. 1.4. Finally, Monte Carlo method and FE technique are then

combined in Sect. 1.5 as an alternative method to Mori–Tanaka technique. Numer-

ical and analytical results are presented for each modeling technique at the end of

each section.

1.2 Molecular Modeling

MD simulations offer an appropriate and effective means to deal with large

nanoscale systems and relatively longer simulation times compared to density

functional theory (DFT) simulations and have been extensively used for determin-

ing the interfacial and mechanical properties of nanocomposites. MD has been also

a very valuable tool for studying the effect of CNT agglomeration, waviness, aspect

ratio, defects, and functionalization on the mechanical behavior of nanocomposites.

For example, Frankland et al. (2003a) used MD simulations to calculate the

longitudinal and transverse Young’s moduli of polymer nanocomposite reinforced

with long and short CNTs. Grujicic et al. (2007) studied the effect of chemical

functionalization on the mechanical properties of multiwalled CNT–vinyl ester

epoxy composites using MD simulations. Their results showed that introducing

covalent bonds between CNTs and the surrounding polymer results in significant

improvements in the transverse elastic properties of the nanocomposite. Alian

et al. (2015b) studied the effect of CNT agglomeration on the elastic properties of

CNT–epoxy composites by modeling different RVEs reinforced with bundles of

CNTs. Their results showed that the CNT agglomerates dramatically reduce the

effective properties of epoxy nanocomposites.
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1.2.1 Basics of MD Simulations

MD is a computational method that was firstly introduced into theoretical physics

by Alder and Wainwright (1957) to simulate elastic collisions between hard

spheres. Since then, MD has become an important and attractive computational

tool for many research fields including chemical physics, biochemistry, and mate-

rials science. MD allows to study relatively large molecular systems that cannot be

simulated using quantum mechanics-based techniques such as DFT and ab initio

approaches due to the enormous computational cost (Srivastava et al. 2003). The

main purpose of MD simulations is to simulate the time-dependent behavior of the

system by calculating the current and future position and velocity of each atom

using Newton’s equations of motion. This information can be used later to calculate

the averaged mechanical, physical, and thermal properties of the system (van

Gunsteren and Berendsen 1990).

The initial position and velocity of each atom of the system must be known at the

beginning of the MD simulation. This initial data is randomly generated based on

statistical mechanics and the required average temperature of the system. Then, the

trajectories of the atoms are determined by solving the Newton’s equations of

motion of the interacting atoms of the system:

F
*

i ¼ mi a
*
i ð1:1Þ

where F
*

i, mi, and a
*
i are the acting force, mass, and acceleration of atom i,

respectively. The interatomic forces are the gradient of the total potential energy,

V, of the system:

F
*

i ¼ �∇ V r
*

� �
ð1:2Þ

The velocity, v
*
i, and displacement vector, r

*
i, of each atom are the first and second

derivatives of the acceleration:

a
*
i ¼ dv

*
i

dt
ð1:3Þ

v
*
i ¼ dr

*
i

dt
ð1:4Þ

Using Eqs. (1.1), (1.3), and (1.4), we obtain the following differential equation:

�∇ V r
*

� �
¼ mi

d2 r
*
i

dt2
ð1:5Þ
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The most popular algorithm to integrate the resulting equations of motion of the

system is the Verlet algorithm (Verlet 1967). In this algorithm, Newton’s equations
of motion are approximated by a Taylor series expansion as a time series:

r tþ δtð Þ ¼ r tð Þ þ v tð Þ δtþ 1

2
a tð Þ δt2 þ 1

6

d3r tð Þ
dt3

δt3 þ O δt4
� � ð1:6Þ

r t� δtð Þ ¼ r tð Þ � v tð Þ δtþ 1

2
a tð Þ δt2 � 1

6

d3r tð Þ
dt3

δt3 þ O δt4
� � ð1:7Þ

Adding the above two equations and moving the r t� δtð Þ term to the right-hand

side, we obtain

r tþ δtð Þ ¼ 2r tð Þ � r t� δtð Þ þ a tð Þ δt2 þ O δt4
� � ð1:8Þ

This is the general form of the Verlet algorithm for MD, where δt is the time step of

the analysis; accuracy significantly increases with the decrease in this time step

because it is a function of the fourth order of δt. The value of a(t) is determined from

Eq. (1.5), which depends on the location of the atom. Here, we use the positions

from the previous and current time steps and acceleration of the current step to

predict the trajectory of the atom. The instantaneous velocity v(t) of each atom can

be later calculated using Taylor series expansion, as follows:

v tð Þ ¼ r tþ δtð Þ � r t� δtð Þ
2δt

þ O δt3
� � ð1:9Þ

The accuracy of the velocity is a function of δt3 implying that it has lower accuracy

than the position which is a function of δt4. The kinetic energy K(t) and the

averaged instantaneous temperature T of the system, based on the equipartition

theory, can be calculated using the obtained velocities using the following relations:

K tð Þ ¼ 1

2

X
i
mi vi tð Þð Þ2 ð1:10Þ

T tð Þ ¼ 2

3

K tð Þ
N KB

ð1:11Þ

where KB is the Boltzmann constant. The averaged stress tensor of the MD unit cell

is defined in the form of virial stress (Zhou 2003), as follows:

σ ¼ 1

V

XN

i¼1

mi

2
vi
2 þ Fi ri

� �
ð1:12Þ

where V is the volume of the MD unit cell and vi, mi, ri, and Fi are the velocity,

mass, position, and force acting on the ith atom, respectively.
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The total potential energy of the system can be defined by interatomic potentials

or molecular mechanics force fields which describe how the atoms interact with

each other (LeSar 2013). The selected interatomic potential or force field for the

system under investigation must be very accurate for the quantum mechanical

process and to yield reliable results. These potentials and force fields have been

developed by several researchers based on quantum mechanics calculations and

then validated by comparing their results with experimental tests (Brenner 2000;

LeSar 2013). The general expression for the total atomistic potential energy of the

system can be written as a many-body expansion that depend on the position of one,

two, three atoms or more at a time (LeSar 2013):

V r
*
1, r

*
2, . . . :, r

*
N

� �
¼

XN

i
V1 r

*
i

� �
þ
XN

i, j
V2 r

*
i ; r

*
j

� �
þ
XN

i, j,k
V3 r

*
i ; r

*
j ; r

*
ik

� �
þ . . .

ð1:13Þ

where V1 is the one-body term (energy of the isolated atom i due to an external force
field such as the electrostatic force), V2 is the two-body term (pairwise interactions

of the atoms i and j such as Lennard–Jones potential (Jones 1924)), V3 is the three-

body term (three-body interactions and usually called many-body interactions such

as Tersoff and Brenner potentials), N is the number of atoms in the system, and r
*
i is

the position vector of atom i (Tersoff 1988; Brenner 1990). However, most of the

polymeric systems need a more generalized interatomic potential which is mainly

defined based on geometrical parameters such as bond lengths, angles, and rotation.

To tackle this problem, many force fields were developed (LeSar 2013). The total

energy in force fields consists of two parts: the first one is concerned with the

bonded interactions of the covalently bonded atoms, and the second is concerned

with the nonbonded interactions originating from the relatively weak long-range

electrostatic and vdW forces:

V ¼
X

Vr þ
X

Vθ þ
X

Vφ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Vbonded

þ
X

VvdW þ
X

Velec|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Vnon-bonded

ð1:14Þ

where Vr term is for oscillations about the equilibrium bond length (i.e., bond

stretching), Vθ term is for oscillations of 3 atoms about an equilibrium bond angle

(i.e., bond angle bending), Vφ term is for torsional rotation of 4 atoms about a

central bond (i.e., dihedral angle torsion), VvdW term is for a nonbonded vdW

interactions, and Vele term is for a nonbonded electrostatic interactions (Li and

Chou 2003a). The components of the potential energy due to the bonded interac-

tions are shown in Fig. 1.2.

All MD simulations are being conducted under specified conditions. These

ensembles are characterized by fixed values of the following thermodynamic vari-

ables: potential energy, temperature, pressure, volume, and total number of parti-

cles. The most commonly used ensembles in MD simulations are:
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• Micro-canonical ensemble: constant number of atoms, volume, and energy (N,V,E)
• Isothermal–isobaric ensemble: constant number of atoms, temperature, and

pressure (N,T,P)
• Canonical ensemble: constant number of atoms, temperature, and volume (N,V,T)

There is a common sequence that can be followed to build an MD model and

perform a successful simulation. The first step is to build the initial structure of the

system using software such as NanoEngineer, Materials Studio, Packmol, etc. This

step consumes a significant time of the work as it usually requires the building of

small units of the system and dispersing them in a largeMD unit cell. The second step

is to minimize the structure by changing the initial location of the atoms to reduce the

total potential energy of the system and to relieve the residual stresses. The third step

is assigning an initial velocity to each atom based on the targeted average temperature

of the system. The fourth is to equilibrate the minimized structure to obtain the

system at targeted initial conditions (pressure, volume, temperature). Finally,

conducting the required analysis and measuring the system properties of interest.

1.2.2 Modeling of Nanocomposite and Its Constituents

In this section, we will present modeling of CNTs, epoxy, and nanocomposites

using MD simulations (see Fig. 1.3). The main objective is to obtain the atomic-

level elastic and interfacial properties of the nanocomposite. All MD simulations

will be performed with large-scale atomic/molecular massively parallel simulator

(LAMMPS; Plimpton 1995) using either the consistent valence force field (CVFF;

Dauber-Osguthorpe et al. 1988) or the adaptive intermolecular reactive bond order

(AIREBO) potential (Stuart et al. 2000). CVFF has been used successfully by

several researchers to predict the mechanical properties of CNTs, epoxy polymers,

and CNT–epoxy composites (Alian et al. 2015b; Li et al. 2012; Tunvir et al. 2008).

AIREBO has been also used by many researchers for CNTs, hydrocarbons, and

polymers consisting of only carbon and hydrogen such as polyethylene (Coluci

et al. 2007; Zang et al. 2009). Conjugate gradient algorithm is used to minimize the

total potential energy of the initial configurations. The structure is considered to be

optimized once the change in the total potential energy of the system between

Torsion

Angle Bending

Fig. 1.2 Schematic of both

bonded and nonbonded

interactions between the

atoms of a small molecule

8 A.R. Alian and S.A. Meguid



subsequent steps is less than 1.0� 10�10 kcal/mol. Velocity Verlet algorithm is

used to integrate the equations of motion in all MD simulations. Periodic boundary

conditions are imposed on all directions of the MD unit cells. The cutoff distance

for the nonbonded interaction is set to 14.0 Å (Haghighatpanah and Bolton 2013).

1.2.2.1 Modeling of CNTs

In this section, MD simulations are conducted to determine the elastic properties of

pristine SWCNTs using AIREBO interatomic potential. The effect of CNT diam-

eter size on its mechanical properties is investigated considering different armchair

SWCNTs, with diameter ranging from �6 to �35 Å, as shown in Fig. 1.4.

The transversely isotropic elastic moduli of the armchair CNTs are determined

using the strain energy density–elastic constant relations. The following four

loading conditions are imposed on the CNT: axial tension for axial Young’s
modulus (E1) and major Poisson’s ratio (ν12), torsional moment for axial shear

modulus (G12), in-plane biaxial tension for plane strain bulk modulus (K23), and

in-plane shear for in-plane shear modulus (G23). Schematic representations of these

loading conditions are depicted in Fig. 1.5. The equations written underneath the

figures indicate the respective strain energy densities (U ) stored in the CNT due to

the applied strain.

Fig. 1.3 Molecular structures of (a) (5,5) armchair CNT, (b) RVE consists of SWCNT embedded

in polymer, and (c) pullout of CNT bundle from epoxy matrix
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The equivalent-continuum structure of a CNT is assumed to be annular cylinder

by considering its effective wall thickness as 3.4 Å (Hao et al. 2008), and its area is

determined as A ¼ 2πrt, where r is the outer radius of the CNT and t is its wall
thickness. The sequence of the MD simulations is as follows: first, the initial

structures of the generated CNTs are first optimized using the conjugate gradient

algorithm to obtain the nanotube configurations of minimum energy. Subsequently,

the minimized structures of the CNTs are equilibrated for 50 ps in the constant

temperature and volume canonical (NVT) ensemble using a 0.5 fs time step at

300 K. Then, a defined strain increment of 0.1% is applied to the CNTs followed by

potential energy minimization. During each loading step, one end of the CNT is

fixed, while a prescribed load/displacement is applied to the other end. In case of

axial tension, an incremental axial displacement is applied to the top end. In case of

twisting moment, an incremental tangential displacement was applied to the top end

while constraining its motion in the radial direction to maintain the presumed

Fig. 1.4 Schematics of different CNTs adopted in the study: (a) (5, 5) CNT, (b) (10, 10) CNT, and
(c) (20, 20) CNT

Fig. 1.5 Loading conditions used to determine the elastic constants of the CNT: (a) tensile, (b)
twist, (c) in-plane biaxial tension, and (d) in-plane shear
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cylindrical shape of the CNT. In case of in-plane biaxial tension, all atoms of the

CNT were subjected to two-dimensional plane strain condition by axially

constraining the two ends of the CNT. In case of in-plane shear condition, the

CNT is subjected to in-plane shear in such a way that its circular cross section

deforms into an elliptical shape. Finally, this loading step is repeated until the strain

reaches up to 3%. Under each strain increment, the change in potential energy that

is equivalent to the stored strain energy in the CNTs is used to determine the elastic

properties based on the relation between the deformation energy density and the

elastic constants.

Five types of armchair CNTs (5, 5), (10, 10), (15, 15), (20, 20), and (25, 25) are

considered in the current analysis to study the effect of nanotube diameter on the

elastic moduli of CNTs. The MD results show that the elastic coefficients of the

CNTs decrease as the diameter of a CNT increases (see Fig. 1.6a–d).

Fig. 1.6 Effect of vacancy defects on (a) axial Young’s modulus, (b) axial shear modulus, (c)
plane strain bulk modulus, and (d) in-plane shear modulus of (5,5) armchair CNT
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1.2.2.2 Modeling of Pure Epoxy

MD simulations are conducted to determine the isotropic elastic moduli of epoxy

material using CVFF. We will model a specific two-component epoxy material

based on diglycidyl ether of bisphenol A (DGEBA) epoxy resin and

triethylenetetramine (TETA) curing agent, which is typically used in the aerospace

industry (see Fig. 1.7). The volumetric bulk (K ) and shear (G) moduli of the epoxy

will be determined by applying volumetric and three-dimensional shear strains,

respectively.

During the curing process, the hydrogen atoms in the amine groups of the curing

agent react with the epoxide groups of the resin forming covalent bonds, which

result in a highly cross-linked epoxy structure. The resin/curing agent weight ratio

in the epoxy polymer was set to 2:1 in order to achieve the best elastic properties

(Wernik 2013). The cross-linked polymer structure consisted of 80 DGEBA mol-

ecules cross-linked with 40 molecules of curing agent TETA. The cross-linked

structure was utilized to form a 3D structure of epoxy. This structure was then used

to build the epoxy system in the subsequent MD simulations of both neat epoxy and

CNT–epoxy composite.

The neat epoxy model was generated by randomly placing 5 cross-linked

structures in a cubic simulation box of size 150 Å� 150 Å� 150 Å to form a

system containing �25,000 atoms, as shown in Fig. 1.8a. The MD unit cell was

compressed gradually to the targeted dimensions of 60 Å� 60 Å� 60 Å through

25 consecutive steps. At each compression step, the atoms coordinates were

remapped to fit inside the compressed box, and then the updated structure was

optimized by minimizing its potential energy to obtain a relaxed configuration, as

shown Fig. 1.8b.

The optimized system was then equilibrated at room temperature in the constant

temperature and volume canonical (NVT) ensemble over 200 ps using a 0.5 fs time

step at 300 K. The compressed system was equilibrated for another 200 ps in the

isothermal–isobaric (NPT) ensemble at 300 K and 1 atm to generate an epoxy

system with the correct density. This equilibration step resulted in an equilibrated

amorphous structure with an average density of 1.1 g/cm3. At the end, the structure

is again equilibrated for another 200 ps in the NVT ensemble at 300 K. In order to

Fig. 1.7 Molecular structures of (a) epoxy resin (DGEBA) and (b) curing agent (TETA)
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determine the bulk modulus of the epoxy, the simulation box was volumetrically

strained in both tension and compression by applying equal uniform strains along

the three axes. The bulk modulus was calculated by

K ¼ σh
εv

ð1:15Þ

where εv and σh are the volumetric strain and the averaged hydrostatic stress,

respectively. In order to determine the average shear modulus, equal shear strains

were applied on the simulation box in xy, xz, and yz planes. The shear modulus was

calculated by

G ¼ τij
γij

, i 6¼ j ð1:16Þ

where τij and γij denote the averaged shear stress and shear strain, respectively. In

each loading case, strain increments of 0.25% were applied along a particular

direction by uniformly expanding or shearing the simulation box and updating

the atoms coordinates to fit within the new dimensions. After each strain increment,

the MD unit cell was equilibrated using the NVT ensemble at 300 K for 10 ps.

Then, the stress tensor is averaged over an interval of 10 ps to reduce the effect of

fluctuations. These steps were repeated again in the subsequent deformation incre-

ments. The procedure was stopped when the total strain reached up to 2.5%.

Fig. 1.8 The simulation box containing 400 chains of DGEBA and 200 chains of TETA (a)

placed randomly in a simulation box of size 150 Å� 150 Å� 150 Å and (b) equilibrated after

being compressed into a cube of size 60 Å� 60 Å� 60 Å
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Based on the calculated bulk and shear moduli, Young’s modulus (E) and Poisson’s
ratio (ν) were determined as follows:

E ¼ 9KG

3K þ G
and ν ¼ 3K � 2G

2 3K þ Gð Þ ð1:17Þ

The predicted elastic properties of the epoxy from the conducted MD simula-

tions are found to be consistent with the experimentally measured moduli of a

similar epoxy, as summarized in Table 1.1 (Littell et al. 2008).

1.2.2.3 Modeling of CNT–Epoxy Interface

The structure of the polymer matrix at the vicinity of the CNT surface differs from

the bulk polymer far from the interface due to the formation of an ultrathin polymer

layer at the CNT–epoxy polymer (Cooper et al. 2002). This ultrathin layer consists

of a highly packed crystalline polymer, which has higher elastic properties than the

amorphous bulk polymer (Coleman et al. 2004). In this section, the interface

thickness of the CNT–epoxy composites will be determined using MD simulations.

In order to obtain the actual CNT–epoxy properties using multiscale modeling

technique, the size of the RVE must be large enough to incorporate the interface

layer. Armchair (5,5) CNT of length 76 Å is used in the present study. Interface

thickness is an important parameter in calculating the actual volume fraction of

CNTs in composite. The cylindrical molecular structure of the (5,5) SWCNT is

treated as an equivalent solid cylindrical fiber (Kundalwal and Ray 2012;

Thostenson and Chou 2003) for determining its volume fraction in the

nanocomposite RVE:

vCNT ffi f n NCNT π DCNT þ hvdWð Þ2 LCNT
4Vcell

ð1:18Þ

where DCNT and LCNT denote the respective diameter and length of a CNT, hvdW is

the vdW equilibrium distance between a CNT and the surrounding polymer matrix,

NCNT is the number of CNTs in the bundle, fn is a factor based on the shape of the

bundle of CNTs, and Vcell is the volume of the RVE.

In order to determine the thickness of the interface layer, we performed MD

simulations for a system consisting of a CNT surrounded by epoxy structures using

Table 1.1 Elastic moduli of the epoxy material

Young’s modulus

(GPa)

Shear modulus

(GPa)

Bulk modulus

(GPa)

Poisson’s
ratio

MD simulations 3.2 1.1 4.8 0.39

Experimental work

(Littell et al. 2008)

2.9 1.07 3.3 0.35
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the same steps as adopted in the pure epoxy case without any further chaining

between the epoxy molecules. This approach does not address how the interfacial

layer thickness changes with the epoxy chain growth during reaction curing, but we

can determine the average interfacial layer thickness when the MD system reaches

an equilibrium state. Figure 1.9 shows the radial distribution function (RDF) of the

epoxy atoms surrounding the embedded CNT after the equilibration. The variation

of the RDF along the radial direction represents the change of the epoxy structure in

the vicinity of the embedded CNT. It may be observed from Fig. 1.9 that the RDF of

the epoxy atoms is zero at a radial distance of 0.56 nm and reaches its maximum

value of 160 atoms/nm3 at the radial distance of 0.77 nm. Then, it starts to fluctuate

around an average value of 110 atoms/nm3. This result indicates that the value of

the vdW equilibrium distance hvdW is �2.75 Å and the thickness of CNT–epoxy

matrix interface layer is �3.0 Å. The obtained values of the interfacial layer

thickness and the equilibrium separation distance were used to select the appropri-

ate RVE sizes for MD simulations of nanocomposites in the next section.

1.2.2.4 Modeling of Nanocomposite Containing Agglomerated CNTs

CNTs have a tendency to agglomerate and aggregate into bundles due to poor

dispersion of CNTs and their high surface energy and surface area (Dumlich

et al. 2011). The presence of CNT agglomerates and aggregates deteriorates the

interfacial properties of the nanocomposite resulting in limited stress transfer and

load sharing (Alian et al. 2015b). Therefore, the issue of agglomeration of CNTs
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Fig. 1.9 RDF of the epoxy atoms around the embedded CNT
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needs to be addressed. The effect of agglomeration is investigated by modeling

RVEs reinforced with CNT bundles of different sizes. Three RVEs are constructed

to represent an epoxy matrix containing a (1) single CNT, (2) bundle of three CNTs,

and (3) bundle of seven CNTs (see Fig. 1.10). Each RVE will be used as an effective

fiber in the micromechanical model to calculate the effective elastic moduli of the

nanocomposite at the microscale level, as shown in Fig. 1.1. All MD simulations

are conducted using CVFF force field.

The initial distance between the adjacent CNTs in the bundle was taken to be

3.4Å, which is equivalent to the intertube separation distance in multiwalled CNTs.

The RVEs are assumed to be transversely isotropic with the 3-axis being the axis of

symmetry. Therefore, only five independent material constants are required to fully

define the elastic stiffness matrix. The constitutive relationship of the transversely

isotropic RVE is given by

σ11
σ22
σ33
σ23
σ13
σ12

2
6666664

3
7777775
¼

C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C11 � C12ð Þ=2

2
6666664

3
7777775

ε11
ε22
ε33
ε23
ε13
ε12

2
6666664

3
7777775

ð1:19Þ

where σij and εij are the respective stress and strain components with (i, j¼ 1, 2, 3,

4, 5, 6) and Cij represents the elastic coefficients of the RVE. The MD simulation

box in each case was constructed by randomly placing cross-linked epoxy struc-

tures around an individual CNT or a CNT bundle. The CNT volume fraction is kept

the same in all RVE �6.5%. The details of the three RVEs are summarized in

Table 1.2. To determine the five elastic constants, the RVEs were subjected to five

different loading conditions: longitudinal tension, transverse tension, in-plane

tension, in-plane shear, and out-of-plane shear. The steps involved in the MD

simulations of the RVEs are the same as adopted in the previous section for pure

epoxy. The boundary and loading conditions that have been applied to the RVE to

determine the corresponding five independent elastic coefficients of the RVE are

listed in Table 1.3.

Fig. 1.10 MD unit cells containing a (a) single CNT, (b) bundle of three CNTs, and (c) bundle of
seven CNTs
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Table 1.4 summarizes the outcome of the MD simulations. It may be observed

from the results that the elastic properties of the RVEs are significantly higher than

those of the neat epoxy. It is also clear from the results that the CNT agglomeration

reduces the reinforcing effect of the embedded CNTs, which eventually degrades

the bulk elastic moduli of the nanocomposites. The axial elastic coefficients, C33, of

the RVEs containing bundles of three and seven CNTs decreased by some 21 and

38.5%, respectively, as compared with the RVE containing an individual CNT. The

CNT agglomeration is also found to reduce the transverse elastic coefficients of the

RVEs. For example, the transverse elastic coefficient, C11, of the RVEs containing

bundles of three and seven CNTs decreased by 11.0 and 22.9%, respectively,

compared with the RVE containing an individual CNT.

Table 1.2 Parameters used in the RVE

Parameter Single CNT

Bundle of three

CNTs

Bundle of seven

CNTs

CNT type (5, 5) (5, 5) (5, 5)

Number of CNTs 1 3 7

Length of a CNT (Å) 73 73 76

CNT volume fraction 6.5% 6.5% 6.5%

RVE dimensions (Å3) 31� 31� 76 55� 55� 76 88� 88� 76

Total number of DGEBA

molecules

120 320 960

Total number of TETA molecules 60 160 480

Total number of atoms 7836 21116 62028

Table 1.3 Effective elastic

coefficients of the RVEs

and corresponding

displacement fields

Elastic coefficients Applied strains Applied displacement

C11 ε11 ¼ e u1 ¼ ex1
C33 ε33 ¼ e u3 ¼ ex3
C44 ε23 ¼ e=2 u2 ¼ e

2
x3, u3 ¼ e

2
x2

C66 ε12 ¼ e=2 u1 ¼ e

2
x2, u2 ¼ e

2
x1

K12 ¼ C11 þ C12

2

ε11 ¼ ε22 u1 ¼ ex1, u2 ¼ ex2

Table 1.4 Material properties of the nanocomposite RVE containing either an individual CNT or

its bundle

RVE

CNT volume

fraction in RVE

(vCNT)
C11

(GPa)

C12

(GPa)

C13

(GPa)

C33

(GPa)

C44

(GPa)

C66

(GPa)

Single CNT 6.5% 11.8 7.1 5.6 47.35 3.16 2.35

Bundle of three CNTs 10.5 6.6 4.5 37.4 1.89 1.95

Bundle of seven CNTs 9.1 5.9 3.5 29.2 1.48 1.6
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The effective elastic moduli of the RVE are related to the effective elastic

stiffness components as follows:

E33 ¼ C33 �
2C2

23

C12 þ C11

ð1:20Þ

E11 ¼ E22 ¼
C11 � C12ð Þ C11C33 þ C12C33 � 2C

2

23

� �
C11C33 � C2

23

ð1:21Þ

G12 ¼ C11 � C12ð Þ
2

ð1:22Þ

G13 ¼ G23 ¼ C44 ð1:23Þ

K12 ¼ C11 þ C12

2
ð1:24Þ

where E33, E11, G23, G12, and K12 are the effective axial Young’s, transverse
Young’s, axial shear, transverse shear, and bulk moduli of the nanocomposite,

respectively.

1.2.2.5 Modeling of Nanocomposite Containing Wavy CNTs

CNTs have a tendency to bend in the prepared nanocomposites due to their

relatively high aspect ratio and low bending stiffness (Falvo et al. 1997). In order

to investigate the effect of CNT waviness on the mechanical performance of their

nanocomposites, we conducted MD simulations to determine the elastic moduli of

nanocomposites reinforced with straight and wavy CNTs using CVFF force field.

Sinusoidal armchair (5,5) CNT of shape factor α (a/λ) 0.77 and length 256 Å is used

in the simulations (see Fig. 1.11a). Due to the symmetry of the appiled boundary

and loading conditions, only half of a complete sine-wave CNT was modeled

(Matveeva et al. 2014). The MD simulation box in each case was constructed by

randomly placing cross-linked epoxy structures around the embedded CNT (see

Fig. 1.11b), and its size in each case was adjusted in such a way that the CNT

volume fraction remains constant at 2.5%. The details of the seven RVEs are

summarized in Table 1.5.

Curved CNTs have reinforcement effects on both the chord and the transverse

directions; therefore, the RVE is considered to be orthotropic. Nine independent

material constants are required to fully define the elastic stiffness tensor of the

orthotropic RVE. The constitutive relationship of the orthotropic RVE is given by
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σ11
σ22
σ33
σ23
σ13
σ12

2
6666664

3
7777775
¼

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

2
6666664

3
7777775

ε11
ε22
ε33
ε23
ε13
ε12

2
6666664

3
7777775

ð1:25Þ

The nine independent stiffness constants can be determined by applying six loading

conditions on the RVE: uniaxial tension and compressions in all directions and

in-plane shears in 1–2, 2–3, and 1–3 planes. The steps involved in the MD

simulations are the same as those adopted for the pure epoxy and RVE reinforced

with agglomerated CNTs. The boundary and loading conditions applied to the RVE

are listed in Table 1.6.

Table 1.7 summarizes the outcome of the MD simulations. It may be observed

from the results that the CNT waviness reduces the reinforcing effect of CNTs,

which eventually degrades the bulk elastic moduli of the nanocomposites.

Table 1.5 Parameters used in the RVEs

a (Å) λ (Å)
Shape parameter

(α¼ a/λ)
No. of DGEBA

resins

No. of TETA

curing agents

Total no.

of atoms

0 128 0.0 1476 738 96480

75 94 0.77

Fig. 1.11 (a) A schematic representation of a wavy CNT showing the main parameters that

control curvature.(b) MD unit cell reinforced with wavy CNT (α¼ 0.8)
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1.2.2.6 CNT Pullout Simulations

The mechanical performance of nanocomposites depends on the efficiency of stress

transfer between the polymer matrix and the embedded CNTs. Due to the difficul-

ties associated with experimental studies of the interfacial properties of

nanocomposites on the atomic scale, a significant number of analytical models

have been developed, and numerical studies have also been conducted to study

these nanocomposites (Wernik et al. 2012). For instance, in an effort to understand

the main factors that govern the interfacial adhesion, Lordi and Yao (2000) used

force-field-based molecular mechanics calculations to determine the binding ener-

gies and sliding frictional stresses between CNTs and a range of polymer matrices.

Their results show that binding energies and frictional forces slightly affect the

strength of the interface. Liao and Li (2001) used molecular mechanics simulations

to study the interfacial characteristics of a CNT-reinforced polystyrene composite

due to nonbonded electrostatic and vdW interactions and reported the interfacial

shear stress approximately to be�160 MPa. Frankland and Harik (2003b) used MD

simulations to pull out a CNT from a crystalline polymer matrix. Based on their MD

results, they developed an interfacial friction model based on the pullout force, an

effective viscosity, and the strain rate. Li et al. (2011) studied the effects of CNT

length, diameter, and wall number on the interfacial properties of CNT–polyethyl-

ene composite using MD simulations. Their results showed that the ISS does not

depend on the CNT length, but it is proportional to the CNT diameter.

In this section, we will determine the ISS of an epoxy nanocomposite using

MD simulations. The MD simulation box is constructed using the same steps as

mentioned previously herein. During the pullout simulation, one end of the fully

embedded CNT is extracted from the matrix at constant velocity of 1� 10�5Å=fs

Table 1.6 Effective elastic

coefficients of the RVEs

and corresponding

displacement fields

Elastic coefficients Applied strains Applied displacement

C11, C12, C13 ε11 ¼ e u1 ¼ ex1
C22, C12, C13 ε22 ¼ e u2 ¼ ex2
C33, C13, C23 ε33 ¼ e u3 ¼ ex3

C44 ε23 ¼ e=2 u2 ¼ e

2
x3, u3 ¼ e

2
x2

C55 ε13 ¼ e=2 u1 ¼ e

2
x2, u3 ¼ e

2
x3

C66 ε12 ¼ e=2 u1 ¼ e

2
x2, u2 ¼ e

2
x1

Table 1.7 Material properties of the nanocomposite RVE containing straight or wavy CNT at

~1.8 vol.%

Waviness

parameter (α) C11 C22 C33 C12 C13 C23 C44 C55 C66

0.0 9.72 9.72 41.89 7.61 7.81 7.97 2 2 2.32

0.77 10.42 11.81 19.92 8.53 7.04 7.56 1.69 2.22 2.29

20 A.R. Alian and S.A. Meguid



in the NVT ensemble at 300 K (Yang et al. 2012a). The periodic boundary

conditions were removed along the axial direction of the CNT, and the polymer

atoms are constrained during the pullout simulation (Li et al. 2011). The pullout

force and the average ISS are then determined based on the work done during the

pullout test. Typical snapshots during CNT pullout from the epoxy matrix are

shown in Fig. 1.12. The corresponding ISS is determined by dividing the pullout

force by the initial interfacial area, A ¼ π dCNT lCNT, where dCNT and lCNT are the

diameter and length of the embedded CNT, respectively.

Five different CNT lengths up to 200 Åwere modeled to study the effect of CNT

length on the interfacial properties. Figure 1.13 shows the effect of embedded CNT

lengths on the ISS of a nanocomposite with an interfacial thickness of 3.4 Å. The
ISS of the CNT–polymer composite system exhibits a decaying length trend similar

to traditional fiber composites (Herrera-Franco and Drzal 1992).

The effect of CNT size on the interfacial properties was investigated by model-

ing RVEs reinforced with SWCNT of different diameters. The smallest CNT is of

(5, 5) chirality and 6.78 Å diameter, while the largest is of (18, 18) chirality and

24.4 Å diameter. Figure 1.14 shows that the ISS decreases approximately linearly

with the increase of the CNT diameter. The effect of the interface thickness on the

ISS of nanocomposite is investigated by modeling the CNT–epoxy RVEs with

different interface thicknesses ranging from 2.2 to 4.25 Å. The measured ISS was

found to decrease with increasing the interfacial thickness, as shown in Fig. 1.15.

This dependence is attributed to the fact that vdW interactions between any two

atoms become weaker with the increase of their atomic separation distance.

Fig. 1.12 Snapshots of CNT-reinforced epoxy composite at various displacements during the

CNT pullout simulation

1 Multiscale Modeling of Nanoreinforced Composites 21



Fig. 1.14 Effect of CNT diameter on the ISS

Fig. 1.13 Effect of CNT length on the ISS
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1.3 ABC Mechanics Technique

Due to the computational cost of MD simulations, another atomistic technique was

developed to model CNT and its nanocomposite by replacing their structures with

equivalent-continuum elements. In this method, in contrast to the traditional con-

tinuum modeling techniques, the discrete nature of the structure is considered by

replacing the carbon–carbon covalent bond and the interatomic interaction with

beam and truss elements, respectively. In general, ABC simulations are conducted

using conventional finite element analysis (FEA) packages bymodeling (1) CNTs as

space frame structures; (2) bonded interactions using beam, truss, and spring

elements; and (3) nonbonded interactions using nonlinear truss elements (Nasdala

and Ernst 2005).

1.3.1 Basics of ABC Technique

At the nanoscale level, the total interatomic potential energy of the system can be

described as the sum of individual energy contributions from bonded- and

nonbonded interactions:

V ¼
X

Vr þ
X

Vθ þ
X

Vφ þ
X

Vω þ
X

VvdW ð1:26Þ

Fig. 1.15 Effect of interface thickness on the ISS
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where the terms Vr, Vθ, Vφ, Vω, and VvdW represent the bond-stretch interaction,

bond angle bending, dihedral angle torsion, improper (out-of-plane) torsion, and

nonbonded vdW interaction, respectively (Li and Chou 2003a). Figure 1.16 shows

schematic representations of these interatomic potential energies.

Li and Chou (2003a) modeled the deformation of CNTs by modeling their

structures as geometrical frame-like structures in which each atom acts as a joint

of connecting load-bearing beam members which represent C–C covalent bonds

where the interatomic potential energies are linked to the strain energies. They

described the first four terms of the interatomic potential energy for the bonded

interactions using harmonic approximation assuming only small deformations. In

addition, they merged the potential energy from the dihedral angle torsion and the

improper torsion into a single equivalent term. As a result, the total potential energy

due to the covalent bonding can be calculated using only three terms as follows:

Vr ¼ 1

2
kr r � roð Þ2 ¼ 1

2
krΔr2 ð1:27Þ

Vθ ¼ 1

2
kθ θ � θoð Þ2 ¼ 1

2
kθΔθ2 ð1:28Þ

Vτ ¼ Vφ þ Vω ¼ 1

2
kτΔφ2 ð1:29Þ

where kr is the bond-stretching force constant, kθ is the bond angle-bending force

constant, kτ is the torsional resistance, Δr is the bond-stretching increment, Δθ is

the bond angle change, and Δφ is the angle change of bond twisting. Then, they

used beam elements to replace C–C bonds by equating the beam strain energy due

to axial deformation, pure bending, and pure torsion due to the total potential

energy of the bond. The governing parameters that characterize the beam elements

are axial stiffness (EA), bending stiffness (EI), and torsional stiffness (GJ) (see

Fig. 1.17) and can be calculated as follows:

EA

L
¼ kr,

EI

L
¼ kθ,

GJ

L
¼ kτ ð1:30Þ

Bond Stretching

Improper Torsion

Bond angle bending Non-bonded interactions

Improper

Fig. 1.16 Interatomic interactions in atomic structures
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Later, Li and Chou (2003b) determined the elastic properties of multiwalled

CNTs by modeling them as space frame structures using connected beam elements

where the vdW interactions between the CNT walls were modeled as nonlinear

truss elements (see Fig. 1.18).

1.3.2 Modeling of Nanocomposites

A more advanced and generalized ABC model was developed by Wernik and

Meguid (2010) based on the modified Morse potential to study the nonlinear elastic

response of SWCNTs under tensile and torsional loadings. The stretching and

angle-bending components in the interatomic potential were modeled by nonlinear

rotational spring and beam elements, respectively, as shown in Fig. 1.19. The

following equations were used to describe the bond-stretching and angle-bending

components of the modified Morse potential:

Vmodified morse potential ¼ Vbond stretching þ Vangle bending ð1:31Þ

L

N N D
Ma b cM

T T

Fig. 1.17 Beam element under (a) axial tension, (b) pure bending, and (c) torsion

Beam Element Connecting node
Element

a b

Truss element

Fig. 1.18 (a) CNT modeled as a frame-like structure based on beam elements and (b) a double-
wall CNT and a schematic representation of the truss elements used to model the intertube vdW

interactions
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Vbond stretching ¼ De 1� exp�β r�roð Þ
h i2

� 1

� �
ð1:32Þ

Vangle bending ¼ 1

2
kθ θ � θoð Þ2 1þ ksextic θ � θoð Þ4

h i
ð1:33Þ

where r, θ, De, β, kθ, and ksextic are parameters of the potential.

The results of their ABC simulations showed that armchair CNTs offer a better

reinforcement for the nanocomposite due to their superior properties compared to

all other types of CNTs. For example, the induced initial damage on the CNT wall

expanded more rapidly in the case of zigzag CNTs, as shown in Fig. 1.20. However,

zigzag CNTs showed a higher resistance to torsional buckling by having a higher

angle of twist for each buckling mode in comparison to the armchair CNTs (see

Fig. 1.21).

Meguid et al. (2013) extended their model to incorporate vdW interactions

between neighboring atoms of the CNT and the polymer matrix by modeling the

weak nonbonded interactions as truss elements. They used the modified model to

study the interfacial and mechanical properties of nanocomposites. They used LJ

interatomic potential to describe the vdW interactions between the embedded CNT

and the surrounding polymer matrix, as given below:

Hexagonal lattice

Rotational 
spring 

Beam
element

Connecting 
node

a b

Fig. 1.19 Schematic representations of (a) a hexagonal lattice of CNT and (b) the connecting

structural elements used to model C–C covalent bond

Fig. 1.20 CNTs at different fracture stages under tensile loading condition (Wernik and Meguid

2010)
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VLJ ¼ 4μ
ψ

r

� �12

� ψ

r

� �6
	 


ð1:34Þ

where μ is the depth of energy well and its value indicates the bond strength, ψ is the

distance at which ELJ is zero and known as the effective diameter of the hard sphere

atom, and r is the distance between the two atoms. To model the surrounding

polymer matrix, a specific two-component epoxy was used based on a DGEBA and

TETA formulation. The Young’s modulus and Poisson’s ratio of the epoxy matrix

were taken to be 1.07 GPa and 0.28, respectively. The epoxy was modeled using

higher-ordered 3D, 10-node solid tetrahedral elements with quadratic displacement

behavior as shown in Fig. 1.22.

Fig. 1.21 CNTs buckling under torsional loading (Wernik and Meguid 2010)

SWCNT
(Space Frame Structure)

CNT/Epoxy interface 
(Truss elements)

Epoxy 
(3D elements)

Fig. 1.22 Schematic

representation of the

CNT–epoxy interface
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Figure 1.23 shows a schematic of the displacement boundary conditions applied

during the pullout process. The nodes in the CNT are constrained from any radial

displacements, and an incremental axial displacement boundary condition is

applied to the top of CNT nodes to initiate the pullout process. The force required

to withdraw the CNT from the matrix is evaluated over the course of the pullout

process by summing the reaction forces at the upper CNT nodes. The corresponding

ISS was determined by dividing the maximum pullout force by the initial interfacial

area, A ¼ π dl, where d and l are the diameter and length of the embedded CNT,

respectively. The pullout model was used to study the effect of CNT length and

diameter on the pullout force and the interfacial shear strength (Figs. 1.24 and 1.25).

The pullout force was found to increase with increasing CNT diameter, while it was

found to be independent of the CNT length. The ISS was found to decrease with

increasing the CNT diameter and length.

Wernik and Meguid (2014) then used their model to determine the elastic

properties of a transversely isotropic nanoscale RVE consists of a SWCNT, the

surrounding polymer matrix, and their interface (see Fig. 1.26). The five stiffness

constants required to fully describe the elastic behavior of the RVE were

Axial 
displacement

Polymer atoms     Interfaced layer
PolymerCNT

(Fully constrained) 

CNT atoms             
(Radially constrained) 

a b

Fig. 1.23 Schematic drawing showing (a) the three-phase model that consists of the polymer, the

reinforcing CNT, and interface layer; (b) pullout of a CNT from matrix to determine the ISS of the

nanocomposite
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Fig. 1.24 Effect of geometrical parameters on the pullout force of a SWCNT from epoxy matrix.

(a) Effect of CNT diameter. (b) Effect of CNT length (Meguid et al. 2013)
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determined by applying five different sets of boundary conditions on the RVE and

equating the total strain energies of the RVE and an equivalent representative fiber,

exhibiting the same geometrical and mechanical characteristics, under identical sets

of loading conditions as listed in Table 1.3 (assuming 2–3 planes of symmetry in the

current case). Table 1.8 summarizes the obtained stiffness constants and the

corresponding elastic moduli of the RVE from the ABC simulations.

Fig. 1.25 Effect of geometrical parameters on the ISS of CNT–epoxy composite. (a) Effect of
CNT diameter. (b) Effect of CNT length (Meguid et al. 2013)

Fig. 1.26 Geometrical dimensions of the RVE and the equivalent effective fiber represent CNT–

epoxy composite with 32% CNT volume fraction (Wernik and Meguid 2014)

Table 1.8 Stiffness constants

and the corresponding elastic

moduli of the RVE from the

ABC simulations

Elastic constants

Value

(GPa)

Stiffness

constants

Value

(GPa)

Transverse shear modulus (GT)

Plane-strain bulk modulus (KT)

Longitudinal shear modulus

(GL)

Longitudinal Young’s modulus

((EL)

7.2

14.3

26.0

465.6

C11

C12

C22

C23

C66

469.3

7.3

21.5

7.0

26.0
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1.4 Micromechanics Modeling

Multiscale modeling of nanocomposites can be conducted using a two-step scheme.

First, the effective elastic properties of a RVE that account for the nanofiller and its

immediate surrounding are determined using an appropriate atomistic modeling

technique. This RVE is subsequently homogenized into an effective fiber with the

same dimensions but with uniform properties (Yang et al. 2012b). Second,

established micromechanical techniques such as Mori–Tanaka technique are then

used to determine the mechanical properties of the nanocomposites on a macro-

scopic scale using the effective fiber as the reinforcing fiber in the polymer matrix.

Odegard and coworkers (2003, 2005) developed a sequential multiscale model in

which the CNT, polymer matrix, and interface were all combined and modeled as

an effective continuum fiber using an equivalent-continuum modeling method.

Then Mori–Tanaka method was employed to determine the bulk properties of a

nanocomposite reinforced with aligned and randomly orientated effective fibers for

varied CNT lengths and concentrations. Selmi et al. (2007) compared the predicted

elastic properties of CNT-based polymers using different micromechanical tech-

niques including various extensions of the Mori–Tanaka method. Their compara-

tive study showed that the two-level Mori–Tanaka/Mori–Tanaka (MT–MT)

approach delivers the most accurate predictions compared to experimental results.

In this section, we will use Mori–Tanaka method to scale up the elastic properties of

the pure epoxy and the effective fiber, which are determined using MD simulations,

to the bulk level. This method has been successfully employed to similar problems

by many researchers (Jam et al. 2013; Sobhani Aragh et al. 2012).

Mori–Tanaka model can be developed by utilizing the elastic properties of the

nanocomposite containing transversely isotropic aligned CNT or the orthotropic

wavy CNT and the isotropic elastic properties of the pure epoxy. In case of

two-phase composite, where the inhomogeneity is randomly orientated in the

three-dimensional space, the following relation can be used to determine the

effective stiffness tensor [C] of the nanocomposite:

C½ � ¼ Cm½ � þ vRVE CRVE
� �� Cm½ �� � �

A½ � vm I½ � þ vRVE h A½ �i½ ��1
� �

ð1:35Þ

in which the mechanical strain concentration tensor [A] is given by

A½ � ¼ I½ � þ SRVE
� �

Cm½ �ð Þ�1 CRVE
� �� Cm½ �� �h i�1

ð1:36Þ

where [Cm] and [CRVE] are the stiffness tensors of the epoxy matrix and the RVE,

respectively; [I] is an identity matrix; vm and vRVE represent the volume fractions of

the epoxy matrix and the RVE, respectively; and [SRVE] indicate the Eshelby tensor
(Mori and Tanaka 1973). The specific form of the Eshelby tensor for the RVE

inclusion given by Qiu and Weng (1990) is utilized herein.

It may be noted that the elastic coefficient matrix [C] directly provides the values
of the effective elastic properties of the nanocomposite, where the RVE is aligned
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with the 3-axis. In case of random orientations of CNTs, the terms enclosed with

angle brackets in Eq. (1.35) represent the average value of the term over all

orientations defined by transformation from the local coordinate system of the

RVE to the global coordinate system. The transformed mechanical strain concen-

tration tensor for the RVEs with respect to the global coordinates is given by

~Aijkl

h i
¼ tiptjqtkrtls Apqrs

� � ð1:37Þ

where tij are the direction cosines for the transformation and are given by

t11 ¼ cosϕ cosψ � sinϕ cos γ sinψ , t12 ¼ sinϕ cosψ þ cosϕ cos γ sinψ ,

t13 ¼ sinψ sin γ, t21 ¼ � cosϕ sinψ � sinϕ cos γ cosψ ,

t22 ¼ � sinϕ sinψ þ cosϕ cos γ cos ψ , t23 ¼ sin γ cos ψ , t31 ¼ sinϕ sin γ,

t32 ¼ � cosϕ sin γ, and t33 ¼ cos γ

Consequently, the random orientation average of the dilute mechanical strain

concentration tensor [A] can be determined by using the following equation:

h A½ �i ¼

ð π

�π

ð π

0

ðπ=2
0

~A
� �

ϕ, γ, ψð Þ sin γ dϕdγdψ

ð π

�π

ð π

0

ðπ=2
0

sin γ dϕdγdψ

ð1:38Þ

where ϕ, γ, and ψ are the Euler angles as shown in Fig. 1.27. It may be noted that the

averaged mechanical strain concentration tensors given by Eqs. (1.36) and (1.38)

are used for the cases of aligned and random orientations of CNTs, respectively, in

Eq. (1.35).

The effect of CNT orientation on the bulk properties was investigated by

considering polymer reinforced with aligned and randomly oriented CNTs, as

shown in Fig. 1.28. The effect of CNT agglomeration was investigated by consid-

ering effective fibers representing RVEs reinforced with bundle of three CNTs and

Fig. 1.27 Relationship

between the local

coordinates (1, 2, 3) of the

RVE and the global

coordinates (10, 20, 30) of the
bulk composite
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bundle of seven CNTs. The maximum CNT volume fraction (VCNT) considered in

the nanocomposite is 5% because CNT concentrations above this loading are not

normally realized (Wernik and Meguid 2014).

Unless otherwise stated, the bulk elastic properties of the nanocomposite are

relate to the aligned nanocomposite RVEs along the 3-axis. Let us first demonstrate

the effect of agglomeration of CNTs on the effective elastic properties of the aligned

CNT-reinforced epoxy composite. Figure 1.29a–d shows the variations of the effective

axial Young’s modulus (E33), the transverse Young’s modulus (E11), the effective axial

shear modulus (G23), and the transverse shear modulus (G12) of the nanocomposite

with the CNT volume fraction. The elastic moduli increase with increasing CNT

volume fraction and decrease with increasing the CNT bundle size. The results show

clearly that the CNT agglomerates significantly reduce the elastic moduli.

The orientations of the CNT reinforcement in the polymer matrix can vary over

the volume of the nanocomposite. Therefore, studying the properties of

nanocomposites reinforced with randomly oriented CNTs is of a great importance.

For such investigation, CNTs or their bundles are considered to be randomly

dispersed in the epoxy matrix over the volume of the nanocomposite. As expected,

this case provides the isotropic elastic properties for the resulting nanocomposite.

Figure 1.30a, b illustrates the variations of the effective Young’s (E) and shear (G)

moduli of the nanocomposite with the CNT loading. These results clearly demon-

strate that the randomly dispersed CNTs improve the effective Young’s and shear

moduli of the nanocomposite over those of the transverse Young’s modulus (E11)

and the shear moduli (G12 and G23) of the nanocomposite reinforced with aligned

CNTs. This is attributed to the fact that the CNTs are homogeneously dispersed in

the epoxy matrix in the random case, and hence, the overall elastic properties of the

resulting nanocomposite improve in comparison to the aligned case. These findings

are also consistent with the previously reported findings by Odegard et al. (2003)

and Wernik and Meguid (2014). It may also be observed that both E and G decrease

with the increase of the number of CNTs in the bundle, and this effect becomes

more pronounced at higher CNT volume fractions.

a b

Fig. 1.28 Schematic representations of RVE reinforced with (a) aligned CNTs and (b) randomly

dispersed CNTs
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Fig. 1.29 Variation of the (a) axial Young’s modulus, (b) the transverse Young’s modulus, (c) the
effective axial shear modulus, and (d) the transverse shear modulus of the nanocomposite

containing aligned CNTs with the CNT volume fraction

0 1 2 3 4 5
2

4

6

8

10

12

14

CNT Volume Fraction (%)

E
 (G

Pa
)

Single CNT
Bundle of 3 CNTs
Bundle of 3 CNTs

0 1 2 3 4 5
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

CNT Volume Fraction (%)

G
 (G

Pa
)

Single CNT
Bundle of 3 CNTs
Bundle of 3 CNTs

a b

Fig. 1.30 Variation of the (a) Young’s modulus and (b) the shear modulus of the nanocomposite

containing randomly oriented CNTs with the CNT volume fraction

1 Multiscale Modeling of Nanoreinforced Composites 33



1.5 Large-Scale Hybrid Monte Carlo FEA Simulations

Finite element (FE) analysis with the aid of Monte Carlo technique offers a unique

opportunity to study the local mechanical behavior and also the overall properties

of CNT-reinforced polymer composites under large deformations and specific

boundary conditions (Wernik 2013). Complementary to the traditional

micromechanical techniques, large-scale three-dimensional (3D) FE models of

polymer matrix reinforced with enough number of randomly oriented CNTs are

used to predict the average properties of the nanocomposite at a certain CNT

volume fraction. Simulation is carried out for several times to yield better averaged

results with less scattering. This technique uses the effective elastic moduli of the

RVE and the pure epoxy obtained from the atomistic simulations as an input into

the analysis.

Here, we will describe the large-scale FE model developed by Wernik and

Meguid (2014) to study CNT–epoxy composites. First, a constitutive model for

both the effective fiber and the surrounding epoxy polymer that accounts for the

material nonlinearities was determined using ABC technique. They benefited from

the available nonlinear material models which represent an advantage over the

linear elastic micromechanical models. The multi-linear elastic material model was

used to describe the nonlinear behavior of the nanocomposite constituents allowing

the full response of the composite to be determined when subjected to large

deformations. Figure 1.31 shows a FE unit cell that represents a composite loaded

with 1.0% CNT volume fraction.

Higher-ordered 3D, 10-node solid tetrahedral elements with quadratic displace-

ment behavior were used to mesh both the polymer and representative fibers.

Fig. 1.31 Hybrid Monte Carlo FEA computational cell model in its (a) unmeshed and (b) fully
meshed form. The model utilizes a CNT volume fraction of 1.0% and a CNT aspect ratio of

100 (from Wernik 2013)
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Periodic boundary conditions were imposed on the FE computational cell. This

model represents perfectly straight reinforcing representative fibers of diameter

2.4 nm and aspect ratio of 100. The main disadvantage of this method is the

enormous computational cost that is required for such simulations. As a result, a

great attention should be given in selecting the cell size that provides accurate

results with reasonable computational cost. The RVE was then subjected to a tensile

strain up to 10% by displacing the nodes located at the upper surface while fixing the

nodes located at the lower surface. The constitutive relations of the RVE were then

evaluated by dividing the total reaction force by the cross-sectional area at each

iteration of the simulation. Figure 1.32 shows the predicted constitutive response of

the FE unit cell under tensile load plotted against experimental measurements for an

epoxy matrix reinforced with the same CNT concentration (0.5 wt%).
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Gao, G., Çagin, T., Goddard, W.A.: Energetics, structure, mechanical and vibrational properties of

single-walled carbon nanotubes. Nanotechnology 9, 184–191 (1998). doi:10.1088/0957-4484/

9/3/007

Gojny, F., Wichmann, M., Fiedler, B., Schulte, K.: Influence of different carbon nanotubes on the

mechanical properties of epoxy matrix composites—a comparative study. Compos. Sci.

Technol. 65, 2300–2313 (2005). doi:10.1016/j.compscitech.2005.04.021

Gou, J., Minaie, B., Wang, B., Liang, Z., Zhang, C.: Computational and experimental study of

interfacial bonding of single-walled nanotube reinforced composites. Comput. Mater. Sci. 31,
225–236 (2004). doi:10.1016/j.commatsci.2004.03.002

36 A.R. Alian and S.A. Meguid

http://dx.doi.org/10.1016/j.polymer.2015.06.004
http://dx.doi.org/10.1016/S0266-3538(02)00129-X
http://dx.doi.org/10.1016/S0266-3538(02)00129-X
http://dx.doi.org/10.1088/0957-4484/26/48/485705
http://dx.doi.org/10.1103/PhysRevB.42.9458
http://dx.doi.org/10.1103/PhysRevB.42.9458
http://dx.doi.org/10.1002/(SICI)1521-3951(200001)217:1%3C23::AID-PSSB23%3E3.0.CO;2-N
http://dx.doi.org/10.1002/(SICI)1521-3951(200001)217:1%3C23::AID-PSSB23%3E3.0.CO;2-N
http://dx.doi.org/10.1002/(SICI)1521-3951(200001)217:1%3C23::AID-PSSB23%3E3.0.CO;2-N
http://dx.doi.org/10.1002/adfm.200305200
http://dx.doi.org/10.1002/adfm.200305200
http://dx.doi.org/10.1016/j.carbon.2006.02.038
http://dx.doi.org/10.1016/j.carbon.2006.02.038
http://dx.doi.org/10.1002/adma.200501851
http://dx.doi.org/10.1103/PhysRevB.75.075417
http://dx.doi.org/10.1063/1.1521585
http://dx.doi.org/10.1002/prot.340040106
http://dx.doi.org/10.1016/j.tws.2005.07.003
http://dx.doi.org/10.1002/pssb.201100212
http://dx.doi.org/10.1038/39282
http://dx.doi.org/10.1016/S0039-6028(02)02532-3
http://dx.doi.org/10.1016/S0266-3538(03)00059-9
http://dx.doi.org/10.1088/0957-4484/9/3/007
http://dx.doi.org/10.1088/0957-4484/9/3/007
http://dx.doi.org/10.1016/j.compscitech.2005.04.021
http://dx.doi.org/10.1016/j.commatsci.2004.03.002


Grujicic, M., Sun, Y.-P., Koudela, K.L.: The effect of covalent functionalization of carbon

nanotube reinforcements on the atomic-level mechanical properties of poly-vinyl-ester-

epoxy. Appl. Surf. Sci. 253, 3009–3021 (2007). doi:10.1016/j.apsusc.2006.06.050

Haghighatpanah, S., Bolton, K.: Molecular-level computational studies of single wall carbon

nanotube-polyethylene composites. Comput. Mater. Sci. 69, 443–454 (2013). doi:10.1016/j.

commatsci.2012.12.012

Han, Y., Elliott, J.: Molecular dynamics simulations of the elastic properties of polymer/carbon

nanotube composites. Comput. Mater. Sci. 39, 315–323 (2007). doi:10.1016/j.commatsci.

2006.06.011

Hao, X., Qiang, H., Xiaohu, Y.: Buckling of defective single-walled and double-walled carbon

nanotubes under axial compression by molecular dynamics simulation. Compos. Sci. Technol.

68, 1809–1814 (2008). doi:10.1016/j.compscitech.2008.01.013

Herrera-Franco, P.J., Drzal, L.T.: Comparison of methods for the measurement of fibre/matrix

adhesion in composites. Composites 23, 2–27 (1992). doi:10.1016/0010-4361(92)90282-Y

Hone, J., Whitney, M., Piskoti, C., Zettl, A.: Thermal conductivity of single-walled carbon

nanotubes. Phys. Rev. B 59, 2514–2516 (1999). doi:10.1103/PhysRevB.59.R2514

Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991). doi:10.1038/

354056a0

Jam, J.E., Pourasghar, A., kamarian, S., Maleki, S.: Characterizing elastic properties of carbon

nanotube-based composites by using an equivalent fiber. Polym. Compos. 34, 241–251 (2013).
doi:10.1002/pc.22401

Jones, J.E.: On the determination of molecular fields. II. From the equation of state of a gas. Proc.

R. Soc. Math. Phys. Eng. Sci. 106, 463–477 (1924). doi:10.1098/rspa.1924.0082

Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N., Treacy, M.M.J.: Young’s modulus of

single-walled nanotubes. Phys. Rev. B 58, 14013–14019 (1998). doi:10.1103/PhysRevB.58.

14013

Kundalwal, S.I., Ray, M.C.: Effective properties of a novel continuous fuzzy-fiber reinforced

composite using the method of cells and the finite element method. Eur. J. Mech. A Solids 36,
191–203 (2012). doi:10.1016/j.euromechsol.2012.03.006

LeSar, R.: Introduction to Computational Materials Science: Fundamentals to Applications.

Cambridge University Press, Cambridge, NY (2013)

Li, C., Chou, T.-W.: A structural mechanics approach for the analysis of carbon nanotubes. Int.

J. Solids Struct. 40, 2487–2499 (2003a). doi:10.1016/S0020-7683(03)00056-8

Li, C., Chou, T.-W.: Elastic moduli of multi-walled carbon nanotubes and the effect of van der

Waals forces: modeling and characterization of nanostructured materials. Compos. Sci.

Technol. 63, 1517–1524 (2003b). doi:10.1016/S0266-3538(03)00072-1

Li, Y., Liu, Y., Peng, X., Yan, C., Liu, S., Hu, N.: Pull-out simulations on interfacial properties of

carbon nanotube-reinforced polymer nanocomposites. Comput. Mater. Sci. 50, 1854–1860
(2011). doi:10.1016/j.commatsci.2011.01.029

Li, C., Medvedev, G.A., Lee, E.-W., Kim, J., Caruthers, J.M., Strachan, A.: Molecular dynamics

simulations and experimental studies of the thermomechanical response of an epoxy thermoset

polymer. Polymer 53, 4222–4230 (2012). doi:10.1016/j.polymer.2012.07.026

Liao, K., Li, S.: Interfacial characteristics of a carbon nanotube-polystyrene composite system.

Appl. Phys. Lett. 79, 4225–4227 (2001). doi:10.1063/1.1428116

Littell, J.D., Ruggeri, C.R., Goldberg, R.K., Roberts, G.D., Arnold, W.A., Binienda, W.K.:

Measurement of epoxy resin tension, compression, and shear stress–strain curves over a

wide range of strain rates using small test specimens. J. Aerosp. Eng. 21, 162–173 (2008).

doi:10.1061/(ASCE)0893-1321(2008)21:3(162)

Lordi, V., Yao, N.: Molecular mechanics of binding in carbon-nanotube-polymer composites.

J. Mater. Res. 15, 2770–2779 (2000). doi:10.1557/JMR.2000.0396

Matveeva, A.Y., Pyrlin, S.V., Ramos, M.M.D., B€ohm, H.J., van Hattum, F.W.J.: Influence of

waviness and curliness of fibres on mechanical properties of composites. Comput. Mater. Sci.

87, 1–11 (2014). doi:10.1016/j.commatsci.2014.01.061

1 Multiscale Modeling of Nanoreinforced Composites 37

http://dx.doi.org/10.1016/j.apsusc.2006.06.050
http://dx.doi.org/10.1016/j.commatsci.2012.12.012
http://dx.doi.org/10.1016/j.commatsci.2012.12.012
http://dx.doi.org/10.1016/j.commatsci.2006.06.011
http://dx.doi.org/10.1016/j.commatsci.2006.06.011
http://dx.doi.org/10.1016/j.compscitech.2008.01.013
http://dx.doi.org/10.1016/0010-4361(92)90282-Y
http://dx.doi.org/10.1103/PhysRevB.59.R2514
http://dx.doi.org/10.1038/354056a0
http://dx.doi.org/10.1038/354056a0
http://dx.doi.org/10.1002/pc.22401
http://dx.doi.org/10.1098/rspa.1924.0082
http://dx.doi.org/10.1103/PhysRevB.58.14013
http://dx.doi.org/10.1103/PhysRevB.58.14013
http://dx.doi.org/10.1016/j.euromechsol.2012.03.006
http://dx.doi.org/10.1016/S0020-7683(03)00056-8
http://dx.doi.org/10.1016/S0266-3538(03)00072-1
http://dx.doi.org/10.1016/j.commatsci.2011.01.029
http://dx.doi.org/10.1016/j.polymer.2012.07.026
http://dx.doi.org/10.1063/1.1428116
http://dx.doi.org/10.1061/(ASCE)0893-1321(2008)21:3(162)
http://dx.doi.org/10.1557/JMR.2000.0396
http://dx.doi.org/10.1016/j.commatsci.2014.01.061


Meguid, S., Sun, Y.: On the tensile and shear strength of nano-reinforced composite interfaces.

Mater. Des. 25, 289–296 (2004). doi:10.1016/j.matdes.2003.10.018

Meguid, S.A., Wernik, J.M., Al Jahwari, F.: Toughening mechanisms in multiphase

nanocomposites. Int. J. Mech. Mater. Des. 9, 115–125 (2013). doi:10.1007/s10999-013-

9218-x

Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with

misfitting inclusions. Acta Metall. 21, 571–574 (1973). doi:10.1016/0001-6160(73)90064-3

Nasdala, L., Ernst, G.: Development of a 4-node finite element for the computation of nano-

structured materials. Comput. Mater. Sci. 33, 443–458 (2005). doi:10.1016/j.commatsci.2004.

09.047

Odegard, G.M., Gates, T.S., Wise, K.E., Park, C., Siochi, E.J.: Constitutive modeling of nanotube-

reinforced polymer composites: modeling and characterization of nanostructured materials.

Compos. Sci. Technol. 63, 1671–1687 (2003). doi:10.1016/S0266-3538(03)00063-0

Odegard, G.M., Frankland, S.-J.V., Gates, T.S.: Effect of nanotube functionalization on the elastic

properties of polyethylene nanotube composites. AIAA J. 43, 1828–1835 (2005). doi:10.2514/
1.9468

Park, C., Ounaies, Z., Watson, K.A., Crooks, R.E., Smith, J., Lowther, S.E., Connell, J.W., Siochi,

E.J., Harrison, J.S., Clair, T.L.S.: Dispersion of single wall carbon nanotubes by in situ

polymerization under sonication. Chem. Phys. Lett. 364, 303–308 (2002). doi:10.1016/

S0009-2614(02)01326-X

Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117,
1–19 (1995). doi:10.1006/jcph.1995.1039

Qian, D., Dickey, E.C., Andrews, R., Rantell, T.: Load transfer and deformation mechanisms in

carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76, 2868–2870 (2000). doi:10.

1063/1.126500

Qiu, Y.P., Weng, G.J.: On the application of Mori-Tanaka’s theory involving transversely isotro-

pic spheroidal inclusions. Int. J. Eng. Sci. 28, 1121–1137 (1990). doi:10.1016/0020-7225(90)

90112-V

Rahmat, M., Hubert, P.: Carbon nanotube-polymer interactions in nanocomposites: a review.

Compos. Sci. Technol. 72, 72–84 (2011). doi:10.1016/j.compscitech.2011.10.002

Schadler, L.S., Giannaris, S.C., Ajayan, P.M.: Load transfer in carbon nanotube epoxy composites.

Appl. Phys. Lett. 73, 3842 (1998). doi:10.1063/1.122911

Selmi, A., Friebel, C., Doghri, I., Hassis, H.: Prediction of the elastic properties of single walled

carbon nanotube reinforced polymers: a comparative study of several micromechanical

models. Compos. Sci. Technol. 67, 2071–2084 (2007). doi:10.1016/j.compscitech.2006.11.

016

Shen, L., Li, J.: Transversely isotropic elastic properties of single-walled carbon nanotubes. Phys.

Rev. B 69, 045414 (2004). doi:10.1103/PhysRevB.69.045414

Sobhani Aragh, B., Nasrollah Barati, A.H., Hedayati, H.: Eshelby–Mori–Tanaka approach for

vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels.

Compos. Part B Eng. 43, 1943–1954 (2012). doi:10.1016/j.compositesb.2012.01.004

Spitalsky, Z., Tasis, D., Papagelis, K., Galiotis, C.: Carbon nanotube-polymer composites: chem-

istry, processing, mechanical and electrical properties. Prog. Polym. Sci. 35, 357–401 (2010).

doi:10.1016/j.progpolymsci.2009.09.003

Srivastava, D., Wei, C., Cho, K.: Nanomechanics of carbon nanotubes and composites. Appl.

Mech. Rev. 56, 215–230 (2003). doi:10.1115/1.1538625

Stuart, S.J., Tutein, A.B., Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular

interactions. J. Chem. Phys. 112, 6472–6486 (2000). doi:10.1063/1.481208

Tersoff, J.: Empirical interatomic potential for silicon with improved elastic properties. Phys. Rev.

B 38, 9902–9905 (1988). doi:10.1103/PhysRevB.38.9902

Thostenson, E.T., Chou, T.-W.: On the elastic properties of carbon nanotube-based composites:

modelling and characterization. J. Phys. Appl. Phys. 36, 573–582 (2003). doi:10.1088/0022-

3727/36/5/323

38 A.R. Alian and S.A. Meguid

http://dx.doi.org/10.1016/j.matdes.2003.10.018
http://dx.doi.org/10.1007/s10999-013-9218-x
http://dx.doi.org/10.1007/s10999-013-9218-x
http://dx.doi.org/10.1016/0001-6160(73)90064-3
http://dx.doi.org/10.1016/j.commatsci.2004.09.047
http://dx.doi.org/10.1016/j.commatsci.2004.09.047
http://dx.doi.org/10.1016/S0266-3538(03)00063-0
http://dx.doi.org/10.2514/1.9468
http://dx.doi.org/10.2514/1.9468
http://dx.doi.org/10.1016/S0009-2614(02)01326-X
http://dx.doi.org/10.1016/S0009-2614(02)01326-X
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1063/1.126500
http://dx.doi.org/10.1063/1.126500
http://dx.doi.org/10.1016/0020-7225(90)90112-V
http://dx.doi.org/10.1016/0020-7225(90)90112-V
http://dx.doi.org/10.1016/j.compscitech.2011.10.002
http://dx.doi.org/10.1063/1.122911
http://dx.doi.org/10.1016/j.compscitech.2006.11.016
http://dx.doi.org/10.1016/j.compscitech.2006.11.016
http://dx.doi.org/10.1103/PhysRevB.69.045414
http://dx.doi.org/10.1016/j.compositesb.2012.01.004
http://dx.doi.org/10.1016/j.progpolymsci.2009.09.003
http://dx.doi.org/10.1115/1.1538625
http://dx.doi.org/10.1063/1.481208
http://dx.doi.org/10.1103/PhysRevB.38.9902
http://dx.doi.org/10.1088/0022-3727/36/5/323
http://dx.doi.org/10.1088/0022-3727/36/5/323


Treacy, M.M.J., Ebbesen, T.W., Gibson, J.M.: Exceptionally high Young’s modulus observed for

individual carbon nanotubes. Nature 381, 678–680 (1996). doi:10.1038/381678a0

Tsai, J.-L., Tzeng, S.-H., Chiu, Y.-T.: Characterizing elastic properties of carbon nanotubes/

polyimide nanocomposites using multi-scale simulation. Compos. Part B Eng. 41, 106–115
(2010). doi:10.1016/j.compositesb.2009.06.003

Tunvir, K., Kim, A., Nahm, S.H.: The effect of two neighboring defects on the mechanical

properties of carbon nanotubes. Nanotechnology 19, 065703 (2008). doi:10.1088/0957-4484/

19/6/065703

van Gunsteren, W.F., Berendsen, H.J.C.: Computer simulation of molecular dynamics: method-

ology, applications, and perspectives in chemistry. Angew. Chem. Int. Ed. Engl. 29, 992–1023
(1990). doi:10.1002/anie.199009921

Verlet, L.: Computer “experiments” on classical fluids. I. Thermodynamical properties of

Lennard-Jones molecules. Phys. Rev. 159, 98–103 (1967). doi:10.1103/PhysRev.159.98

Wagner, H.D., Lourie, O., Feldman, Y., Tenne, R.: Stress-induced fragmentation of multiwall

carbon nanotubes in a polymer matrix. Appl. Phys. Lett. 72, 188–190 (1998). doi:10.1063/1.

120680

Wang, Z., Colorad, H.A., Guo, Z.-H., Kim, H., Park, C.-L., Hahn, H.T., Lee, S.-G., Lee, K.-H.,

Shang, Y.-Q.: Effective functionalization of carbon nanotubes for bisphenol F epoxy matrix

composites. Mater. Res. 15, 510–516 (2012). doi:10.1590/S1516-14392012005000092

Wernik, J.: Multiscale Modeling of Nano-reinforced Aerospace Adhesives (PhD). University of

Toronto, Toronto, ON (2013)

Wernik, J.M., Meguid, S.A.: Atomistic-based continuum modeling of the nonlinear behavior of

carbon nanotubes. Acta Mech. 212, 167–179 (2010). doi:10.1007/s00707-009-0246-4

Wernik, J.M., Meguid, S.A.: Multiscale micromechanical modeling of the constitutive response of

carbon nanotube-reinforced structural adhesives. Int. J. Solids Struct. 51, 2575–2589 (2014).

doi:10.1016/j.ijsolstr.2014.03.009

Wernik, J.M., Cornwell-Mott, B.J., Meguid, S.A.: Determination of the interfacial properties of

carbon nanotube reinforced polymer composites using atomistic-based continuum model. Int.

J. Solids Struct. 49, 1852–1863 (2012). doi:10.1016/j.ijsolstr.2012.03.024

Wong, E.W., Sheehan, P.E., Lieber, C.M.: Nanobeam mechanics: elasticity, strength, and tough-

ness of nanorods and nanotubes. Science 277, 1971–1975 (1997). doi:10.1126/science.277.

5334.1971

Xiao, T., Liu, J., Xiong, H.: Effects of different functionalization schemes on the interfacial

strength of carbon nanotube polyethylene composite. Acta Mech. Solida Sin. 28, 277–284
(2015). doi:10.1016/S0894-9166(15)30014-8

Yang, X.-S.: Modelling heat transfer of carbon nanotubes. Model. Simul. Mater. Sci. Eng. 13,
893–902 (2005). doi:10.1088/0965-0393/13/6/008

Yang, L., Tong, L., He, X.: MD simulation of carbon nanotube pullout behavior and its use in

determining mode I delamination toughness. Comput. Mater. Sci. 55, 356–364 (2012a). doi:10.
1016/j.commatsci.2011.12.014

Yang, S., Yu, S., Kyoung, W., Han, D.-S., Cho, M.: Multiscale modeling of size-dependent elastic

properties of carbon nanotube/polymer nanocomposites with interfacial imperfections. Poly-

mer 53, 623–633 (2012b). doi:10.1016/j.polymer.2011.11.052

Yu, M.-F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S.: Strength and breaking

mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000).
doi:10.1126/science.287.5453.637

Zang, J.-L., Yuan, Q., Wang, F.-C., Zhao, Y.-P.: A comparative study of Young’s modulus of

single-walled carbon nanotube by CPMD, MD and first principle simulations. Comput. Mater.

Sci. 46, 621–625 (2009). doi:10.1016/j.commatsci.2009.04.007

Zeng, Q.H., Yu, A.B., Lu, G.Q.: Multiscale modeling and simulation of polymer nanocomposites.

Prog. Polym. Sci. 33, 191–269 (2008). doi:10.1016/j.progpolymsci.2007.09.002

Zhou, M.: A new look at the atomic level virial stress: on continuum-molecular system equiva-

lence. Proc. R. Soc. Math. Phys. Eng. Sci. 459, 2347–2392 (2003). doi:10.1098/rspa.2003.1127

1 Multiscale Modeling of Nanoreinforced Composites 39

http://dx.doi.org/10.1038/381678a0
http://dx.doi.org/10.1016/j.compositesb.2009.06.003
http://dx.doi.org/10.1088/0957-4484/19/6/065703
http://dx.doi.org/10.1088/0957-4484/19/6/065703
http://dx.doi.org/10.1002/anie.199009921
http://dx.doi.org/10.1103/PhysRev.159.98
http://dx.doi.org/10.1063/1.120680
http://dx.doi.org/10.1063/1.120680
http://dx.doi.org/10.1590/S1516-14392012005000092
http://dx.doi.org/10.1007/s00707-009-0246-4
http://dx.doi.org/10.1016/j.ijsolstr.2014.03.009
http://dx.doi.org/10.1016/j.ijsolstr.2012.03.024
http://dx.doi.org/10.1126/science.277.5334.1971
http://dx.doi.org/10.1126/science.277.5334.1971
http://dx.doi.org/10.1016/S0894-9166(15)30014-8
http://dx.doi.org/10.1088/0965-0393/13/6/008
http://dx.doi.org/10.1016/j.commatsci.2011.12.014
http://dx.doi.org/10.1016/j.commatsci.2011.12.014
http://dx.doi.org/10.1016/j.polymer.2011.11.052
http://dx.doi.org/10.1126/science.287.5453.637
http://dx.doi.org/10.1016/j.commatsci.2009.04.007
http://dx.doi.org/10.1016/j.progpolymsci.2007.09.002
http://dx.doi.org/10.1098/rspa.2003.1127


Chapter 2

Piezoelectric Response at Nanoscale

Jin Zhang and Shaker A. Meguid

Abstract Considerable efforts were invested to study the piezoelectricity at the

nanoscale, which serves as a physical basis for a wide range of smart nanodevices

and nanoelectronics. This chapter reviews the recent progress in characterizing the

effective piezoelectric property in a nanoworld and the influence of the piezoelec-

tric effect on the mechanical responses of nanoscale structures. Extremely strong

piezoelectric responses of piezoelectric nanomaterials were reported in experi-

ments, and the size dependence was observed in atomistic simulations. Attempts

were also made to reveal the physics behind these unique features, but the universal

theory has not yet been established. Among the proposed mechanisms, the theory of

surface piezoelectricity is widely accepted and thus used to derive two effective

piezoelectric coefficients (EPCs) for investigating the effect of piezoelectricity on

(1) stress or strain and (2) the effective elastic moduli of piezoelectric

nanomaterials. The EPCs are found to be size-dependent and also deformation-

selective. The obtained results also show that at the nanoscale the surface piezo-

electricity can enhance the piezoelectric potential of nanostructures when subjected

to a static deformation. In addition, the intrinsic loss of oscillating piezoelectric

nanostructures can be mitigated through the piezoelectric effect at the nanoscale.

2.1 Introduction

The discovery of advanced nanomaterials has greatly accelerated the development

of nanoscience and nanotechnology. Among these nanomaterials are the family of

carbon nanomaterials (Kroto et al. 1985; Iijima 1991; Ebbesen and Ajayan 1992;

Geim and Novoselov 2007) and that of piezoelectric nanomaterials (PNs) (Wang

2009; Faucher et al. 2009; Smith et al. 2008; Dunn 2003). In particular, the last

decade has witnessed increasing interest in PNs, such as nanoscale zinc oxide

(ZnO) (Wang 2009), gallium nitride (GaN) (Faucher et al. 2009), barium titanate

(BaTiO3) (Smith et al. 2008), and lead zirconate titanate (PZT) (Dunn 2003). These
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PNs form different configurations (e.g., nanodotes, nanowires, nanofilms, nanorings,

and nanotubes) and have great potential for constructing a wide range of smart

piezoelectronic nanosystems, e.g., piezoelectric nanoresonators, nanosensors/actua-

tors, nanogenerators, and nanoelectromechanical systems (Wang 2009; Faucher

et al. 2009; Smith et al. 2008; Dunn 2003), which are highly expected to excite

ground-breaking innovations in the twenty-first century. Nano-piezoelectricity thus

has become a current topic of great interest in recent research (Zhao et al. 2004;

Fan et al. 2006; Wang et al. 2006b; Zhu et al. 2008; Bdikin et al. 2010; Espinosa

et al. 2012; Fang et al. 2013; Zhang et al. 2014; Xiang et al. 2006; Li et al. 2007;

Dai et al. 2010, 2011; Momeni et al. 2012; Momeni and Attariani 2014).

Until now, experimental techniques (Zhao et al. 2004; Fan et al. 2006; Wang

et al. 2006b; Zhu et al. 2008; Bdikin et al. 2010; Espinosa et al. 2012;

Fang et al. 2013; Zhang et al. 2014) and atomistic simulations (Espinosa

et al. 2012; Fang et al. 2013; Zhang et al. 2014; Xiang et al. 2006; Li et al. 2007;

Dai et al. 2010, 2011; Momeni et al. 2012; Momeni and Attariani 2014) have been

utilized to measure the effective piezoelectric coefficients (EPCs) and examine

their size dependence for different sizes and configurations of PNs. Various phys-

ical mechanisms were proposed, and especially the theory of surface piezoelectric-

ity (Zhang et al. 2014; Zhang 2014; Zhang and Meguid 2015a, b) was established to

interpret the existing data at the nanoscale. However, large discrepancy remains

among these studies. For example, EPCs obtained for ZnO nanocrystals differ by up

to orders of magnitude and exhibit the size dependence qualitatively different from

one another. Specifically, existing piezoelectric measurement was focused on the

EPCs describing the electric field-stress relation in the constitutive equations of PNs.

The ones characterizing the effect of piezoelectricity on the effective elastic moduli

(EEM) of PNs as nanostructures were never considered although they may be of

significance for PNs as engineering nanostructures. This situation as it currently

stands indeed provides an impulsion to summarize the latest developments, capture

the major issues that need to be resolved, and identify the future direction in studying

nanoscale piezoelectricity. In addition, further study of the EPCs of PNs by consid-

ering both the electric field-stress relation and the electromechanical coupling is

essential for the development of PNs and their smart nanosystems.

To achieve these goals, we present this review of the latest developments of

nano-piezoelectricity and the derivation of size-dependent and deformation-

selective EPCs. The materials are organized as follows: First, a critical review

was conducted in Sect. 2.2 regarding the experimental measurements of EPCs and

atomistic simulations on the size dependence of EPCs for different configurations

of PNs. In Sect. 2.3 we summarized the physical mechanisms proposed in earlier

studies for the interpretation of the unique behavior of EPCs. Particular attention

was placed on the investigation of the effect of surface piezoelectricity of PNs.

Analytical models were derived in Sect. 2.4 for the EPCs and EEM of PNs. Two

types of EPCs were obtained in this section reflecting the electric field-stress

relation and the electromechanical coupling of PNs. The importance of two EPCs

was also evaluated for existing PNs. The influence of the nanoscale piezoelectricity

on the mechanical responses (statics and dynamics) of piezoelectric nanostructures

was discussed in Sect. 2.5. Finally, the conclusion remarks were given in Sect. 2.6.
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2.2 Measurement of Nano-piezoelectricity

ZnO nanocrystal exhibits the strongest piezoelectric effect among the tetrahedrally

bonded semiconductors, which thus makes it the most studied PNs in the literature

(Wang 2009). Throughout the paper, we shall mainly focus our attention on the

piezoelectric characterization of ZnO nanocrystals. In 2004 the first piezoelectric

measurement of nanoscale ZnO was reported by Zhao et al. (2004) where the

piezoelectric force microscope (PFM) was employed to excite the local transverse

vibration (the amplitude Af) on the ZnO nanobelts (tens of nanometers in thickness)

by applying AC voltage (the amplitude Uf) in the thickness direction. The effective

e33 calculated by e33 ¼ Af =Uf was found to increase from 14.3 to 26.7 pm/V while

the driving vibration frequency significantly decreased from 150 to 30 kHz. In other

words, obtained e33 was found to be frequency-dependent and 40–160% greater

than that of bulk ZnO. Four years later, Zhu et al. (2008) measured e33 of ZnO

nanowires of diameter ~230 nm using a nanoelectromechanical oscillating system.

Their study reported the value of e33 ¼ 3� 12 nm=Valong the c-axis [0001] using

e33 ¼ Δl=V bias
sd , where Vbias

sd is a DC bias voltage applied in the axial direction and

Δl is the axial extension due to Vbias
sd . These values are found to be two to three

orders of magnitude greater than the bulk value and those reported for ZnO

nanobelts by Zhao et al. (2004). In addition, the giant e33 up to 100 pm/V was

also achieved by Wang et al. (2006b) for the ZnO nanofilms of thickness ~200 nm

doped with ferroelectric vanadium. This value is lower than those reported by Zhu

et al. (2008) but still around an order of magnitude greater than the bulk value. The

study by Zhao et al. (2004) indicated the rising of EPC with decreasing deriving

frequency, and it was attributed to the pinning of spontaneous polarization or

imperfect electrical contacts at high frequency. Based on this frequency dependency,

the DC bias voltage was thought to be responsible for the extreme value of e33
reported by Zhu et al. (2008). Wang et al. (2006b) obtained the giant e33, and they

attributed this to the switchable spontaneous polarization induced by voltage dopants

and the accompanying relatively high permittivity. In contrast to the observations in

Zhao et al. (2004), Wang et al. (2006b), and Zhu et al. (2008), e33 measured for large

ZnO nanopillar (300 nm in diameter and 2 mm in height) in Fan et al. (2006) was

around 7.5 pm/V, which was lower than the bulk value. In early studies (Zhao

et al. 2004; Fan et al. 2006; Wang et al. 2006b; Zhu et al. 2008), piezoelectric

measurement was centered on the ZnO single nanocrystalline. The characterization

of the polycrystalline at the nanoscale was not reported until 2010, where the EPCs

were measured for the polycrystalline ZnO nanofilms (around 200 nm in thickness

and 2 μm in length) based on PFM (Bdikin et al. 2010). The obtained effective value

of e33 is found to be 12 pm/V, almost the same as the accepted bulk value.

As reviewed above, EPCs were measured for individual PNs in experiments, but

the possible size dependence of EPCs have not yet been investigated experimen-

tally. This is probably due to lack of suitable techniques to control the geometric

size of synthesized PNs. To circumvent this hurdle, theoretical studies were

performed to calculate the EPC for a group of ZnO nanofilms and nanowires
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where the geometric size varies monotonically. Xiang et al. (2006) conducted a

density functional study of ZnO nanowires with diameter up to 2.8 nm. In their

study, the atomic averaged effective e33 is defined as e33 ¼ Vscell=Nð ÞdP=dε for

one-dimensional nanowires, where ε is the axial compression or tension, P is the

polarization induced by ε, Vscell is the volume, and N represents the number of

atoms in the supercell. It was found that the effective e33 exhibits a significant but
nonmonotonic diameter dependence, i.e., with the increasing diameter, e33 first

decreases to reach its minimum value, then rises, and finally stabilizes when the

diameter exceeds 2.8 nm. Here the obtained e33 falls in the range 1837–2025 (unit:

10�16 μCA/ion), which is 20–40% greater than that of the bulk ZnO. Likewise,

density functional theory (DFT) was used by Li et al. (2007) to calculate the

effective e33 for ZnO nanofilms of a thickness (h) up to 2.9 nm. They expressed

effective e33 as ∂P3=∂ε3ð Þu þ ∂P3=∂uð Þε du=dε3ð Þ, where ε3 and P3 are the strain

and polarization in the c-axis, respectively, and u is the internal parameter. In this

expression, the contributions to the piezoelectric polarization from both the

clamped ion and the internal strain have been considered. The results showed that

the effective e33 increases monotonically with increasing thickness. It becomes

greater than the bulk value only when the value of h exceeds 2.4 nm. At the

maximum thickness of h¼ 2.9 nm studied, e33 was found to be increased by 11%

in comparison to the bulk value. Beyond this limit, the authors expected that e33
would further increase to the maximum value and then decrease with increasing h to
approach the bulk value at large h. This again suggested a nonmonotonic depen-

dence of e33 on the feature size of the ZnO nanofilms.

So far, in the existing works, the first-principle calculation remains computa-

tionally expensive. Thus, measurements based on this technique (Xiang et al. 2006;

Li et al. 2007) are limited to very small ZnO nanocrystal, e.g., feature size less than

2.8 nm (Xiang et al. 2006) and 2.9 nm (Li et al. 2007). To further improve the

efficiency and expand the scope of the study, Dai et al. (2010; 2011), Momeni

et al. (2012), and Momeni and Attariani (2014) computed the EPC of ZnO

nanofilms/nanowires by utilizing molecular dynamics simulations (MDS) based

on the empirical core-shell potential. This more efficient technique enabled the

authors to consider the nanofilms/nanowires with the thickness up to 10 nm (Dai

et al. 2011). The maximum size that can be handled by MDS, however, is still very

small as compared with the feature size of synthesized PNs that is of the order of tens

to hundreds of nanometers (Zhao et al. 2004; Fan et al. 2006; Wang et al. 2006b;

Zhu et al. 2008; Bdikin et al. 2010). A study by Dai et al. (2011) reveals that the

magnitudes of the effective e33 and e31 increase monotonically with increasing

thickness h and approach the bulk values gradually at large thickness, h � 10 nm.

As compared with the DFT studies, the MDS predicted the small magnitude and

qualitatively different size dependence of the EPC (Dai et al. 2010; Dai et al. 2011;

Momeni et al. 2012; Momeni and Attariani 2014). In particular, the magnitudes of the

MDS results are always found to be lower than the bulk values.

To show the large scattering of the obtained results, we have summarized the

aforementioned experimental and atomistic simulations on (undoped) single ZnO

nanocrystal (see Table 2.1). Note that the strong piezoelectric response was
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reported in the experiments (Zhao et al. 2004; Fan et al. 2006; Zhu et al. 2008) and

DFT studies (Xiang et al. 2006; Li et al. 2007; Dai et al. 2011), where the obtained

values of e33 were found to be larger than the bulk value. In Zhao et al. (2004), the

enhanced piezoelectric response was partially attributed to the perfect single crys-

tallinity and the low density of defects at the nanoscale. This theory, to some extent,

is confirmed by the fact that e33 of the polycrystalline ZnO nanofilms is almost the

same as the bulk value (Bdikin et al. 2010) and also in accordance with Fan

et al. (2006) where the authors believed that small e33 (smaller than the bulk

value) obtained might be a result of relatively high density of defects in the large

ZnO films. The free boundary conditions on the lateral surface of nanowires or

nanofilms (Zhao et al. 2004; Xiang et al. 2006) were also considered as a physical

origin leading to the strong piezoelectric response at the nanoscale, i.e., the free

relaxation of the surface atoms along the lateral direction of nanofilms/nanowires

would lead to an increase of the strain, which, in turn, yields an effective e33 ¼ eb33�
νeb13 > eb33 where ν (>0) is Poisson’s ratio and eb13 (<0) and eb33 are piezoelectric

coefficients of bulk ZnO. However, the small e33 of the polycrystalline ZnO nanofilms

indicates that the perfect single crystallinity is more important in determining

the piezoelectric effect of ZnO nanocrystal (Bdikin et al. 2010). Moreover, as men-

tioned before the atomistic simulations in Li et al. (2007) and Dai et al. (2011)

predicted weak piezoelectric responses for the perfect ZnO single nanocrystal

(i.e., no defects) with the relaxation of surface atoms, which can also be observed

from Table 2.1. Obviously, the small EPCs obtained in these simulations cannot be

understood based on the physical mechanisms proposed above. Thus, further efforts

were made to reveal the physics behind the unique piezoelectric effect at the nanoscale.

Following this, the effect of the surface piezoelectricity was identified as one of the

major factors that would exert significant influence on the electromechanical behavior

of PNs (Dai et al. 2011; Miller and Shenoy 2000; Wang and Feng 2009, 2010; Liu and

Rajapakse 2010; Assadi et al. 2010; Assadi and Farshi 2010; Huang and Yu 2006; Yan

and Jiang 2010, 2011; Li et al. 2011; Zhang and Wang 2012; Zhang et al. 2012a, b).

2.3 Effect of Piezoelectric Surface Layer

It is understood that the miniaturization of materials into the nanoscale significantly

increases their surface-to-volume ratio and, thus, substantially enhances the effect

of thin surface layers, where atoms experience an environment different than that in

the inner section. As reviewed above, one of the surface effects, i.e., the free

relaxation of the surface atoms in lateral direction, was thought to be responsible

for the enhanced piezoelectric effect at the nanoscale (Zhao et al. 2004; Xiang

et al. 2006). In addition to the less constrained atoms, the surface layer also

experiences structural changes (e.g., the change in atomic bond length) relative to

the bulk materials at the inner sections. In general, these alterations lead to nonzero
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residual surface stress and the surface material properties distinct from those of the

bulk materials. To examine the effect of elastic surface layer(s), a core-shell or

core-surface (CS) model was developed and efficiently utilized to examine the

effect of residual surface stress and surface elasticity on the elastic properties and

the mechanical responses of nanomaterials (Miller and Shenoy 2000; Wang and

Feng 2009, 2010; Liu and Rajapakse 2010; Assadi et al. 2010; Assadi and Farshi

2010). In the CS model, nanomaterials are treated as equivalent composite mate-

rials consisting of the bulk material wrapped by a two-dimensional (2D) surface

layer.

The “core-surface” concept was extended by Huang and Yu (2006) to evaluate

the effect of piezoelectric surface on the structural responses of PNs. Along with the

surface residual stress and surface elasticity, the surface piezoelectricity was con-

sidered for the first time in the analysis of PNs. The significant influence of surface

piezoelectricity was further confirmed based on ab initio and MDS studies (Zhang

et al. 2009, 2010). For example, the distributions of polarization due to strain were

obtained in Zhang et al. (2010) for a 2 nm thick BaTiO3 nanowire. As shown in

Fig. 2.1, the results of Zhang et al. (2010) indicated that the strain-induced polariza-

tion on the surface is greater than that found in the core (bulk) section. Motivated by

the study of Huang and Yu (2006), Yan and Jiang (2010, 2011) and Li et al. (2011)

incorporated the surface piezoelectricity into the CS beam model and studied the

bending, vibration, and buckling of one-dimensional (1D) piezoelectric nanowires

and nanofilms. Most recently, a sandwich-plate model was developed based on the

“core-surface” concept to study the static and dynamic behaviors of 2D piezoelectric

nanofilms (Zhang and Wang 2012; Zhang et al. 2012a, b). The influence of the

surface piezoelectricity on the EPCs was also discussed briefly in the works of Zhang

and Wang (2012) and Zhang et al. (2012a, b).

A general theoretical framework of surface piezoelectricity was formulated by

Shen and Hu (2010) for PNs. Consistent with the existing piezoelectric CS models,

they stated that the total internal energy density (W ) consists of the surface energy

density (Us) and the energy density of the core section (Ub). As a result, the

piezoelectricity of both the surface layer and the core section contributes to the

Fig. 2.1 Evolution of axial polarization distribution along the cross section of a BaTiO3 nanowire

under different axial strains. (a) �0.5% strain, (b) 0.0% strain, and (c) 0.5% strain (Zhang

et al. 2010)
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effective piezoelectric properties or the EPCs of PNs. This theory of surface

piezoelectricity enabled Dai et al. (2011) to conduct a comprehensive study on

the effect of piezoelectric surface on EPCs. Based onW ¼ Us=hþ Ub, they derived

the analytical formulae for the EPCs (eeffij3 ) of the nanofilms with thickness h

(Dai et al. 2011):

e effij3 ¼ ebij3 þ n
esij3
h

ð2:1Þ

where ebij3 and esij3 are the piezoelectric coefficients of the inner bulk material and

2D surface layer, respectively, and n denotes the number of the contributing

surfaces. It is interesting to see that the MDS and DFT simulations in Li

et al. (2007) and Dai et al. (2011) were well fitted into Eq. (2.1) with almost

constant ebij3 and esij3 for n¼ 2 or 4 and h increasing from 0.3 to 10 nm. For a

given eb31 ¼ �0:59C=m2 and eb33 ¼ 1:22 C=m2 of bulk ZnO, the DFT (or MDS)

yields es31 ¼ 0:1� 10�9 C=m, 0:29� 10�9 C=m
� �

, and es33 ¼ �0:15� 10�9 C=m

�0:29� 10�9 C=m
� �

for surface layers of ZnO nanofilms. In these studies, the

EPCs were also calculated for BaTiO3 and SrTiO3 nanofilms and similar size

dependence was also achieved. These results, to a large extent, confirm that the

size-dependent EPCs obtained for the PNs attributed to the surface piezoelectricity

(Dai et al. 2011). In other words, the piezoelectric CS model can be used for the

interpretation of the atomistic simulations on relatively large PNs studied in Dai

et al. (2011). Furthermore, it is noted that the surface layer and the bulk materials of

ZnO exhibit reverse piezoelectric effects characterized by the piezoelectric coeffi-

cients of opposite signs. Thus, the surface piezoelectricity reduces the overall

piezoelectric effect of ZnO nanocrystals and leads to the EPCs lower than the

bulk values. This is in contrast to the effect of free relaxations of the surface atoms,

which, as argued in Zhao et al. (2004) and Xiang et al. (2006), would enhance the

resultant piezoelectric effect. We believe that the above two effects of the surface

layers were considered naturally in the DFT and MDS studies (Dai et al. 2011).

Thus, the low EPCs suggest that the effect of surface piezoelectricity could be even

stronger than that of free relaxation of the surface atoms.

On the other hand, the theory of surface piezoelectricity (see Eq. (2.1)) is unable

to explain the enhancement of piezoelectric response observed in the experiments

(Zhao et al. 2004; Zhu et al. 2008; Bdikin et al. 2010) and earlier atomistic

simulations (Xiang et al. 2006; Li et al. 2007) for ZnO nanocrystal. It thus still

remains a big challenge to develop a universal theory that is able to account for the

large scattering of the EPCs summarized in Table 2.1 and the different size

dependence predicted in the simulations (Xiang et al. 2006; Li et al. 2007; Dai

et al. 2011). The current authors believe that, in addition to the uncertainty in the

experiments and the discrepancy in the simulation theories, the difference among

the existing studies may be due to the fact that multifactors instead of single factor

influence the piezoelectric responses of PNs. Specifically, in different cases, e.g., at

distinct size scale, the key factor may switch from one to another. For example, as
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far as very thin PNs (e.g., the feature size is of the order of 1 nm) are concerned with

the quantum effect may be predominant over the surface effects. The change of the

crystal constant of such thin PNs with their geometric size may also affect their

EPCs significantly (Xiang et al. 2006). The effect of these factors, however, is

negligible for relatively large PNs (e.g., the feature size of the order of 10 nm)

where the surface piezoelectricity dominates. Moreover, for synthesized PNs with

geometric size of up to hundred nanometers, the surface effect should also decline

as the surface energy decreases at large size. The exceptional piezoelectric effect of

synthesized PNs (Zhao et al. 2004; Zhu et al. 2008) is likely due to the specific

microstructures of the tested samples, the boundary conditions enforced in the

experiments, as well as other factors in the experimental setups due to some

unknown physical mechanisms. Indeed, great efforts are required to further

advance the physics of the piezoelectricity in a nanoscale world.

2.4 Piezoelectricity of Nanostructures

Evidently the continuous attempts to estimate the size-dependent EPCs for

PNs are crucial for the design of the PN-based smart nanodevices and

nanoelectromechanical systems. Here, it should be emphasized that when put into

practical use, PNs serve as not only materials characterized by material constants

but also structures (e.g., beams, plates, or cylinders) which are able to sustain

different external loadings, e.g., extension, bending, and torsion. As reported

previously, in the latter case, the nanostructures may exhibit effective material

properties depending on the deformation patterns (or loading conditions). The

typical examples are the loading condition-dependent Young’s modulus of carbon

nanotubes (Huang et al. 2006) and ZnO nanowires (He et al. 2009; Xu et al. 2010).

Nevertheless, in all existing theoretical and experimental measurement of EPCs,

effective e33 and e31 were extracted by considering the uniform normal deformation

(stresses) generated by an electric field (voltage) or vice versa. Bending or torsion

associated with nonuniform deformation (stresses) has never been used. The EPCs

obtained in this scenario are the effective material constants relating an electric field

to the stresses (stains) in the constitutive relations. The possible loading condition

or deformation dependence of EPCs and its influence on the EEM of PNs however

have not received enough attention so far.

In fact, as pointed out in Zhang and Wang (2012), Zhang et al. (2012a, b), and

Yan and Jiang (2010), (2011), the piezoelectricity of an engineering structure

affects its structural responses not only by the voltage (V )-induced stresses (strains)
due to the converse piezoelectric effect but also via the electromechanical coupling

that changes the EEM associated with specific structural stiffnesses. Consequently,

both effects of the piezoelectricity should be taken into consideration in calculating

the EPCs of PNs as nanostructures. In what follows two piezoelectric

nanostructures studied in Yan and Jiang (2010), (2011), Zhang and Wang (2012),

and Zhang et al. (2012a, b) will be considered herein: (1) the 2D piezoelectric
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rectangular nanofilms with thickness h and an electric voltage V applied in their

thickness direction (Zhang and Wang 2012; Zhang et al. 2012a, b) (Fig. 2.2a) and

(2) the 1D piezoelectric nanowires (films) subjected to an electrical voltage

V across their cross sections (Yan and Jiang 2010, 2011) (Fig. 2.2b, c). It was

shown in Zhang and Wang (2012) and Zhang et al. (2012a, b) that the overall

structural responses of the piezoelectric nanofilms are controlled by the membrane

stress, Nij; the off-plane stiffness, Dijkl; and in-plane stiffness, Kijkl:

Nij ¼ Kijklγkl þ 2σ0ij þ ebij3 þ 2
esij3
h

� �
V ð2:2Þ

Kijkl ¼ cijkl þ 2
csijkl
h

� �
h ð2:3Þ

Dijkl ¼ cijkl þ 6
csijkl
h

þ ebij3
k33

db
kl3 þ 6

eskl3
h

� �" #
h3

12
ð2:4Þ

Here cbijkl and c
s
ijkl are elastic moduli, ebijkl and e

s
ijkl are piezoelectric constants, and k33

is dielectric constant. Superscripts b and s represent the parameters of the bulk

material and surface layer, respectively. Subscripts i, j, k, and l are equal to 1 or

2. γkl and σ0ij represent in-plane strain and surface residual stresses, respectively. In

addition, Yan and Jiang (2010, 2011) showed that for beam-like piezoelectric

nanowires, the structural responses are determined by the applied axial force, P;
the extensional stiffness, EA; and the bending stiffness, EI. For the nanowires with
rectangular cross section of width a and height b (see Fig. 2.2b), we have (Yan and

Jiang 2011)

a

a

b x1

x2

x3

hSurface layer Bulk

V

VV b d

Bulk

x2

x1

Surface layerb c

Fig. 2.2 Schematic

illustrations of (a) a
piezoelectric rectangular

nanofilm, (b) a piezoelectric
nanobeam with rectangular

cross section, and (c) a
piezoelectric nanobeam

with circular cross section

subjected to an electric

voltage V
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P ¼ EAε0 þ 2σ011 þ eb31 þ 2
es31
b

� �
V

� �
a ð2:5Þ

EA ¼ cb11 þ 2
cs11
b

� �
ab ð2:6Þ

EI ¼ cb11 þ
6

b
þ 2

a

� �
cs11 þ

e31
k33

eb31 þ
6

b
þ 2

a

� �
es31

� �� 	
ab3

12
ð2:7Þ

Those derived for the nanowires with circular cross section of diameter

d (Fig. 2.2c) are as follows (Yan and Jiang 2011):

P ¼ EAε0 þ 2σ011 þ eb31 þ
8

π

es31
d

� �
π

4
V

� �
d ð2:8Þ

EA ¼ cb11 þ
8

π

cs11
d

� �
πd2

4
ð2:9Þ

EI ¼ cb11 þ 8
cs11
d

þ eb31
k33

eb31 þ 8
es31
d

� �� �
πd4

64
ð2:10Þ

2.4.1 Effective Piezoelectric Coefficients ee131 and ee231

Based on Eqs. (2.2) to (2.10), we will first derive ee131 of the PNs considering the

contribution of piezoelectricity to the EEM of the PNs. This effect of piezoelec-

tricity has never been considered before in piezoelectric measurement. We shall

first obtain the formulae of EEM. In the structural stiffness Eqs. (2.3), (2.4), (2.5),

(2.7), (2.9), and (2.10), the coefficients represent the EEM of the nanostructures and

thus are tabulated in Table 2.2. As noted in Table 2.2, EEM not only depends on the

feature size of the PNs (e.g., the thickness h or the diameter d ) but also varies with

the deformation of the PNs. The origin of these unique features is the surface

piezoelectricity and/or surface elasticity, whose effect is inversely proportional to

the geometric size of the PNs and turns out to be more significant for the EEM

associated with off-plane deformation, e.g., bending or off-plane torsion. It is also

noted that the piezoelectricity of the PNs only contributes to c11 (note c11 ¼ c22 for
an isotropic material) associated with bending but has no influence on the EEM

associated with uniform tension/compression or torsion.

Next, let us calculate ee131 characterizing the electromechanical coupling of the

nanostructures, i.e., the effect of piezoelectricity on the EEM. To this end, we shall

concentrate on the piezoelectric terms found in the function of ce111 and ce211 (see

Table 2.2). First eb31 eb31 þ 6=hð Þes31

 �

=k33 can be obtained for the piezoelectric

nanoplates (films). At es31 ¼ 0 it reduces to (eb31)
2/k33 providing the effect of
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piezoelectricity on c11 of classical piezoelectric plates without surface piezoelec-

tricity. Therefore, considering the nanofilms as equivalent classical plates with

piezoelectric constant ee131, one can have ee131
� �2 ¼ eb31 eb31 þ 6=hð Þes31


 �
which yields

ee131 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eb31 eb31 þ 6=hð Þes31

 �q

. Following a similar procedure, one is able to derive

ee131 for the two nanobeams studied here. The results are also shown in Table 2.2.

Subsequently, we shall turn to ee231 characterizing the V-induced forces on the

piezoelectric nanofilms and nanowires, i.e., the relation between the stresses

(deformation) and an electric voltage (field). This is the piezoelectric effect we

usually refer to and was considered in previous piezoelectric measurements of PNs

(Zhao et al. 2004; Fan et al. 2006; Wang et al. 2006a, b; Zhu et al. 2008; Bdikin

et al. 2010; Espinosa et al. 2012; Fang et al. 2013; Zhang et al. 2014). The

V-induced forces of the PNs extracted from Eqs. (2.2), (2.5), and (2.8) are

ebij3 þ 2esij3=h
 �

V, eb31 þ 2es31=b
� �

aV, and eb31 þ 8=πð Þes31=d

 �

πdV=4, respectively.

By assuming esij3 ¼ 0 the V-induced forces of the corresponding macroscopic

structures can be achieved as ebij3V, e
b
31aV, and eb31πdV/4. Subsequently, e

e2
31 of

PNs can be easily obtained by equating the V-induced forces of PNs to the forces

of corresponding macroscopic structures. The results are presented in Table 2.2 in

comparison with ee131.
It may be observed from Table 2.2, EPCs of PNs are also size-dependent as a

result of the effect of surface piezoelectricity. Such an effect increases with

decreasing geometric size of the nanofilms or nanobeams. In particular, it is

noted that ee231 achieved for the quasi-2D piezoelectric nanofilms via the voltage-

stress relation is identical to Eq. (2.1) (Dai et al. 2011) derived based on the theory

of surface piezoelectricity (Zhang et al. 2009). Other formulae in Table 2.2 are

reported for the first time in the literature. From Table 2.2 it follows that, in

principle, the general form of EPC function does not exist. Thus, a particular

form of EPC should be selected for corresponding deformation experienced by

the PNs. For example, when uniform tension or compression is concerned, ee231
should be incorporated, whereas ee131 is not required as there is no bending. However,

both ee131 and ee231 may be used when more general cases are considered, e.g., the

transverse vibration or the buckling of nanofilms and nanobeams, where both

bending stiffness and normal prestresses may significantly influence (Yan and

Jiang 2010, 2011; Zhang and Wang 2012; Zhang et al. 2012a, b).

2.4.2 Importance of Coefficients ee131 and ee231

As shown in Sect. 2.4.1, in nano-piezoelectricity theory, there exist two types of

EPCs for PNs, i.e., ee131 and ee231, which reflect different physical mechanisms of the

piezoelectric effect. It is thus of interest to evaluate (1) the effect of the surface

piezoelectricity on the two EPCs and (2) the importance of the two EPCs for
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existing PNs of different configurations. To achieve the first goal, the ratios α1 ¼
ee131=e

b
31 and α2 ¼ ee231=e

b
31 are calculated in Fig. 2.3 for nanofilms and nanobeams

against their feature size. The material properties of ZnO and BaTiO3 considered in

Fig. 2.3 are summarized in Table 2.3. It is seen from Fig. 2.3 that α1 and α2 < 0:95,

i.e., ee131 and ee231 < 0:95eb31, at the feature size around 10 nm or smaller. Thus, the

surface piezoelectricity affects the EPCs of ZnO and BaTiO3 nanocrystal signifi-

cantly (say,>5%) when the feature size is of the order of 10 nm. In Fig. 2.3 such an

effect increases to 10% (i.e., α1 and α2 < 0:9 or ee131 and ee231 < 0:9eb31 ) when the

feature size is down to around 5 nm. On the other hand, at the feature size much

Fig. 2.3 The ratios α1 ¼ ee131=e
b
31 and α2 ¼ ee231=e

b
31 calculated for ZnO and BaTiO3 (a) nanofilms

with thickness h (Fig. 2.2a), (b) nanowires with rectangular cross section of height b (Fig. 2.2b),

and (c) nanowire with circular cross section of diameter d (Fig. 2.2c)

Table 2.3 Material

properties of ZnO and BaTiO3

used in Figs. 2.3, 2.4, and 2.5

ZnO BaTiO3

c11 (GPa) 209.7 222

eb31 (C/m
2) �0.59 �4.1

es31 (10
�9 C/m) 0.1 0.7

k33 (pF/m) 78.89 1142.17

c11 is the elastic modulus, eb31 and e
s
31 are the piezoelec-

tric constants for the bulk materials and surface layer,

and k33 is dielectric constant
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larger than 10 nm, the effect of the surface piezoelectricity becomes negligible.

These results are found to be in a good agreement with those predicted by Dai

et al. (2011).

According to the definition illustrated above, ee231 characterizes the contribution
of piezoelectricity to the initial stress on the PNs. The surface residual stress σ0 of
~1 N/m (Zhang and Wang 2012; Zhang et al. 2012a, b) is also a part of this initial

stress and is identified as a major factor that can substantially affect the structural

responses of PNs (Yan and Jiang 2010, 2011; Zhang and Wang 2012; Zhang

et al. 2012a, b). Thus, to show the significance of ee231, we computed the ratio β ¼ σ=σ0

in Fig. 2.4 for the samePNs studied in Fig. 2.3.Hereσ ¼ ee231V is theV-induced initial
stress and σ0 (~1N/m) represents the surface residual stress. Figure 2.4 shows that at

low voltage V¼ 0.1–0.5 V, σ is up to 1.2 (BaTiO3) and 2 (ZnO) times that of σ0 and
will further increase at higher V. The importance of ee231 can thus be manifested here

as σ due to ee231 which can be even greater than σ0. Next, the importance of ee131 was

evaluated in Fig. 2.5 by calculating the ratio γ ¼ ee131e
e1
31=k33

� �
=c11, where e

e1
31e

e1
31/k33

is the increase of c11 (associated with bending in Table 2.2) due to the electrome-

chanical coupling characterized by ee131. Figure 2.5 shows that the increase of the

elastic modulus is considerable (~6%) for ZnO nanocrystal but negligible (~2%)

Fig. 2.4 The ratio of β ¼ σ=σ0 calculated for ZnO and BaTiO3 (a) nanofilms with thickness

h (Fig. 2.2a), (b) nanowires with rectangular cross section of height b (Fig. 2.2b), and (c)

nanowires with circular cross section of diameter d (Fig. 2.2c). Here ee231V is the stress induced

by an electrical voltage V due to ee231 and σ0 (~1 N/m) is the residual surface stress
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for the BaTiO3 nanostructures. Here it is worth noting that in Figs. 2.3, 2.4, and 2.5,

the values of piezoelectric constants determined using MDS (Dai et al. 2011) are

shown, which are even lower than the bulk values. Nevertheless, the existing

experiments (Zhao et al. 2004; Wang et al. 2006a, b; Zhu et al. 2008) showed that

the e33 of ZnO at the nanoscale can be increased to one to three orders of magnitude

greater than the bulk value, by, e.g., doping with ferroelectric vanadium (Wang

et al. 2006a, b). In this case, the value of ee131 and ee231 would also increase and thus

greatly increase the ratios β ¼ σ=σ0 and γ ¼ ee131e
e1
31=k33

� �
=c11. In other words, the

EEM (Table 2.2) and σ of PNswould rise by orders ofmagnitude. In these particular

cases, both ee131 and e
e2
31 play a critical role in structural responses ofPNsand thushave

to be taken into consideration in static deformation and vibration and buckling

analyses of PNs.

2.5 Influence of Piezoelectricity on Mechanical Responses
of Nanostructures

In preceding sections we have summarized the measurement of the piezoelectricity

at the nanoscale and also compared the piezoelectricity at the nanoscale to that at

the macroscale. In this section we will discuss how the nanoscale piezoelectricity

Fig. 2.5 The ratio (ee131e
e1
31/k33)/c11 calculated for ZnO and BaTiO3 nanofilms with thickness

h (Fig. 2.2a), nanowires with rectangular cross section of height b (Fig. 2.2b), and nanowires with

circular cross section of diameter d (Fig. 2.2c). Here ee131e
e1
31/k33 represents the contribution of piezo-

electricity to the effective elastic modulus ce211 and c11 is the elastic modulus of the bulk materials
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influences the mechanical responses (statics and dynamics) of piezoelectric

nanostructures. Specifically, regarding the static behavior, we will study the piezo-

electric potential of GaN nanotubes. In terms of the dynamics, we will show the

piezoelectric effect on the intrinsic dissipation in oscillating GaN nanobelts.

2.5.1 On the Piezoelectric Potential of GaN Nanotubes

2.5.1.1 Material Properties of GaN Nanotubes

In this section, MDS were employed to calculate the equivalent elastic, piezoelec-

tric, and dielectric properties of GaN nanotubes. In this study, we consider the most

common GaN nanotube whose growth direction is along the [001] crystalline

direction. The nanotubes have hexagonal cross sections with a sixfold symmetry

and lateral surfaces {100} (Han et al. 2000) as shown in Fig. 2.6a. Such shapes have

been observed in GaN nanotubes grown by chemical-thermal evaporation (Han

et al. 2000). Initially, Ga and N atoms are arrayed in a single-crystalline wurtzite

structure with the lattice constants, a¼ 3.19 Å and c¼ 5.20 Å (Bere and Serra
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Fig. 2.6 (a) Molecular representation of the cross section of a GaN nanotube. The radius is R and

the wall thickness is t. The simulation setup for the measurement of (b) the elastic property, and (c)
the piezoelectric and dielectric properties of GaN nanotubes. (d) The elastic constant c33, (e) the
piezoelectric coefficient e33, and (f) the dielectric constant ε33 as a function of the inverse of the

wall thickness, 1/t, of the nanotubes with various radii R, which are based on MDS and CS model.

The insets in (d)–(f) show the corresponding results for solid GaN nanowire as a function of the

inverse of their radius, 1/R (Zhang and Meguid 2015a)
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2006). The length L of the nanotubes is fixed at 30 nm, whereas the radius R and the

wall thickness t of the hexagonal cross section were allowed to change to study the

size-dependent material properties of nanotubes.

Classical MDS were conducted in this study, and the NVT ensemble (constant

number of particles, volume, and temperature) was employed to update the posi-

tions and velocities of the atoms after each time step by using the Nosé-Hoover

temperature thermostat (Nosé 1984). The interactions between Ga-Ga, N-N, and

Ga-N were described by the Stillinger-Weber (SW) potential (Stillinger and Weber

1985), which contains a two-body term φ2 and a three-body term φ3, as follows:

φ2 rij
� � ¼ Aδ B

rij
d

 ��4

� 1

� �
exp

rij
d
� r

 ��1
� �

,
rij
d
< r; ð2:11Þ

φ2 rij
� � ¼ 0,

rij
d
� r; ð2:12Þ

φ3 rij; rik; θijk
� � ¼ δCexp γ rij � r

� ��1 þ γ rik � rð Þ�1
 �

cos θijk þ 1

3

� �2

ð2:13Þ

Here, subscripts i, j, and k represent the different atoms in the system; δ is the

cohesive energy of the bond; d is the length unit; r is the cutoff distance; rij is the
length of the bond ij; and θijk is the angle formed by the ji and the jk bonds. Other
parameters, A, B, and C, are dimensionless fitting parameters adjusted to match the

material properties. The values used in this study are taken from Bere and Serra

(2006). The SW potentials have been used to reproduce bulk structures and

mechanical properties; they have been successfully employed to evaluate the

material properties of single-crystal GaN nanowires (Zhang et al. 2013; Zhang

2014; Minary-Jolandan et al. 2012; Wang et al. 2007) and fracture of single-crystal

GaN nanotubes (Wang et al. 2006a, 2008). These calculations have demonstrated

that the empirical SW potentials for GaN can be employed to study the mechanical

behaviors of single-crystal GaN structures. In addition, the potentials can handle

dangling bonds, wrong bonds, and excess bonds in bulk GaN very well. Therefore,

these potentials are proven to be reliable in characterizing the mechanical responses

of GaN nanotubes.

As a quasi-1D nanostructure, the elastic, piezoelectric, and dielectric properties

of the GaN nanotubes in the axial direction (c-axis) are of major concern and can

be, respectively, characterized by the axial elastic constant c33, piezoelectric coef-
ficient e33, and dielectric constant k33. At the beginning of all simulations of these

material properties, the equilibrium of the initial structure was achieved

corresponding to the lowest energy of the nanotube structure in 100 ps. After the

full relaxation, different treatments were applied to calculate the material properties

(see Fig. 2.6b, c) and are discussed briefly below. Here all MDS were conducted

using the open-source LAMMPS (Plimpton 1995) under room temperature (300 K)

and without periodic boundary conditions.
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Determination of the Elastic Property

To measure the elastic constant c33, one end of the nanotube was pulled along the

axial direction while the other end was fixed (Fig. 2.6b). The deformation of the

nanotube was then measured by the axial strain λ3, which generated a tensile stress

σ3 in the nanotubes. Here, the tensile stress σ3 was taken as the arithmetic mean of

the local stresses on all atoms, as follows:

σ3 ¼ 1

N

XN
i¼1

1

Vi
miv

i
3v

i
3 þ

1

2

XN
j 6¼i

Fij
3r

ij
3

 !
ð2:14Þ

Here mi is the mass of atom i; vi3 is the velocity component in the axial direction of

atom i; Fij
3 refers to the axial component of the interatomic force between atoms

i and j; rij3 is the interatomic distance in the axial direction between atoms i and j;
Vi refers to the volume of atom i, which is assumed as a hard sphere in a closely

packed undeformed crystal structure; and N is the number of atoms. For small strain

case, i.e., λ3 � 0:01, the elastic constant c33 can be obtained from the slope of the

linear σ3 � λ3 curve since c33 ¼ ∂σ3=∂λ3 for structure under small deformation.

Determination of the Piezoelectric Property

In the measurement of the piezoelectric coefficient e33, we fixed the two ends of the
nanotubes. It is worth mentioning that simulation process was conducted after its

initial relaxation to avoid prestraining the nanotube structure. Then, an electric field

E3 was applied to the nanotubes along the axial direction (see Fig. 2.6c). The

external force on ion i due to the electric field can be expressed as Fi ¼ qiE3,

where qi is the charge on ion i. Finally, the nanotube was relaxed again to reach a

new equilibrium state. Following that, the stress σ3 in the axial direction is calcu-

lated based on Eq. (2.12). The piezoelectric coefficient e33 can then be calculated as
the negative slope of the σ3 � E3 curve, since it is defined as e33 ¼ �∂σ3=∂E3

(Zhang et al. 2013).

Determination of the Dielectric Property

The dielectric constant k33 can be defined as k33 ¼ k0 1þ χ33ð Þ with χ33 ¼
∂P3=∂E3ð Þ=k0 being the electric susceptibility of the material (Zhang 2014).

Here k0 is the vacuum permittivity and P3 is the axial polarization density. It is

noted that the axial polarization P3 is mainly determined by the polarization due to

the relative displacement between Ga and N atoms, since the polarization between

the nucleus and electron cloud is negligible (Zhang 2014). The axial polarization

density vector can thus be further written as P3 ¼
XN
i¼1

x i3qi=V, where xi3 is the
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coordinate along the axial direction of atom i and V is the volume of the nanotube.

To obtain χ33 and k33, we fixed the two ends of the nanotubes after the initial

relaxation and applied an electric field E3 to the nanotube in the axial direction (see

Fig. 2.6c). Following this, the nanotube was relaxed again to reach a new equilib-

rium state. The axial polarization density vector P3 of this new equilibrium state

was obtained according to the above definition. Finally, the dielectric constant k33
can thus be determined from the slope of the obtained linear P3 � E3 curve.

The elastic constant c33, piezoelectric coefficient e33, and relative dielectric

constant ε33 ( ε33 ¼ k33=k0 ) obtained from the approaches described above are

plotted in Fig. 2.6d–f (solid circles) as a function of the inverse of the wall

thickness, 1/t, of nanotubes with various radii R. In addition, based on similar

simulation techniques described above, the corresponding results of their solid

nanowire counterparts are also measured and presented as insets in Fig. 2.6d–f

(solid circles) against the inverse of their radius, 1/R. It is well known that for the

solid nanowire, its cross section is determined based on its radius. As a result, its

material properties are generally found to only depend on the nanowire radius due

to the small-scale effect (Zhang et al. 2013; Zhang 2014). For example, we can see

from the insets of Fig. 2.6d–f that c33 and ε33 of the nanowires, respectively,

increase by 28 and 23% as their R increases from 1.5 to 3.5 nm. Similarly, in this

process, e33 is found to decrease by 30%. Concerning the nanotube structures, we

notice that their cross section is not only characterized by R but also by their wall

thickness t (see Fig. 2.6a). From Fig. 2.6d–f, we can observe that in nanotubes, the

wall thickness t rather than the radius R becomes the major geometric parameter

that dominates their material properties. For instance, when t¼ 1.5 nm, all mea-

sured c33, e33, and ε33 of the nanotubes were found to be around 146 GPa, 2.18 C/m
2,

and 4.73, respectively, as R increases from 1.5 to 3.5 nm. However, when R is fixed at

3.5 nm, c33 and ε33 of the nanotubes increased by 63 and 53%, respectively, and e33
decreased by 39% as t increases from 1 to 2.5 nm.

2.5.1.2 Core-Surface Model

To understand the size-dependent material properties observed in Sect. 2.5.1.1, we

will introduce a CS model in this section. It is known that the reduction in the size of

materials to the nanoscale increases their surface-to-volume ratio and substantially

enhances the influence of thin surface layers, where atoms experience structure

reconstruction. In general, the surface reconstruction leads to a distinct surface

layer that is different than its bulk. For example, in Fig. 2.7a we have shown the

potential energy distribution of the cross section of a GaN nanotube after the full

relaxation. Figure 2.7a illustrates that nanotubes usually hold two surfaces (inner

and outer surfaces) and note that the potential energy of these two surfaces is almost

the same. However, the potential energy of these two surfaces is different from that

of their bulk counterpart. In fact, the potential energy of the two surfaces is about

23% greater than that of their bulk counterpart (see Fig. 2.7a). It is believed that the
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difference of the physics between the surface layer and the bulk part of the

nanostructures results in distinct material properties in layer and bulk and is

responsible for the size-dependent material properties observed at the nanoscale

(Zhang et al. 2014). Inspired by this idea, a CS model was developed to characterize

the size-dependent material properties observed in nanowires (Chen et al. 2006; Xu

et al. 2010; Zhang et al. 2013; Zhang 2014; Yang et al. 2012; Yao et al. 2012),

where a nanowire is modeled as a composite beam consisting of the core section of

the bulk material and the surface layer with two distinct properties. In this section,

we will extend the idea of the CS model from the nanowire to the present nanotube

structure, which holds two surface layers, as depicted in Fig. 2.7b.

The internal energy densityW (incorporating surface contributions) isW ¼ Ub

þ6Us 2R� tð Þ=S for the present nanotube with a hexagonal cross section andW ¼
Ub þ 6UsR=S for its solid nanowire counterpart, where Ub is the bulk internal

energy density function and Us is the surface internal energy density. Here S is the

area of the cross section and equals to 3
ffiffiffi
3

p
2R� tð Þt=2 for the nanotube and 3

ffiffiffi
3

p
R2=2 for the nanowire. Thus, the internal energy density can be rewritten as:

For nanotube:

W ¼ Ub þ 4
ffiffiffi
3

p

3

Us

t
; ð2:15Þ

For nanowire:

W ¼ Ub þ 4
ffiffiffi
3

p

3

Us

R
ð2:16Þ

Comparing Eqs. (2.15) with (2.16), we can observe that the geometric parameter

determining the size dependency has changed from the radius R for the nanowire to

the wall thickness t for the nanotube, which is consistent with the results demon-

strated in the MDS (see Fig. 2.6d–f).
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-3.4

(eV) Core
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Fig. 2.7 (a) The potential energy distribution of the cross section of the GaN nanotube after the

full relaxation. (b) An equivalent core-surface model of the GaN nanotube (Zhang and Meguid

2015a)
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Following Huang and Yu (2006), the internal surface energy density can be

written as

Us λα, Eið Þ ¼ Us 0, 0ð Þ þ σ0αλα þ
1

2
csαβλαλβ þ D0

i Ei þ 1

2
k s
ijEiEj þ esαkλαEk ð2:17Þ

where σ0α and D0
i can be termed as the surface stress and the surface electric

displacement without applying strain and electric field, respectively; csαβ, k
s
ij, and

esαk, respectively, can be defined as the surface stiffness tensor, surface dielectric

tensor, and surface piezoelectric tensor; and λα and Ei are the strain and electric field

vectors, respectively. After substituting Eq. (2.13) into Eqs. (2.15) and (2.16) and

considering c33 ¼ ∂2
W=∂λ23 (Xu and Pan 2006), e33 ¼ ∂2

W= ∂λ3∂E3ð Þ (Dai

et al. 2010), and k33 ¼ ∂2
W=∂E2

3 (Zhang 2014), we can obtain the equivalent

material properties of the nanotube and nanowire from the CS model as follows:

ρ33 ¼ ρb
33 þ

4
ffiffiffi
3

p

3

ρ s
33

ς
ð2:18Þ

where ρb33 and ρ
s
33 are the bulk and surface elastic constant, piezoelectric coefficient,

or relative dielectric constant with ρ2 c, e, εð Þ and ς ¼ t for the nanotube and

ς ¼ R for the nanowire. According to Eq. (2.14), a linear curve fitting to the data

was used in the MDS depicted in Fig. 2.6d–f. Following that, we were able to

present the bulk elastic constant cb33, the piezoelectric coefficient eb33, and the

relative dielectric constant εb33 in Fig. 2.6d–f (the values at 1/t¼ 0 or 1/R¼ 0).

It is to be noted that the respective bulk values cb33, e
b
33, and εb33 obtained from the

present MDS-based CS model are ~319 GPa, ~0.748 C/m2, and ~8.8, respectively,

and are in good agreement with the experimental and ab initio findings (cb33 ¼
311 GPa, eb33 ¼ 0:73 C=m2, and εb33 ¼ 9:7, respectively) (reported in Levinshtein

et al. 2001; Schwarz and Khachaturyan 1997; Bernardini and Fiorentini 1997).

Moreover, the results in Fig. 2.6d–f (solid lines) of the present CS model are

applicable to large-scale structure, where MDS are not feasible.

2.5.1.3 Piezoelectric Potential in GaN Nanotubes

In this section, the material properties measured in Sect. 2.5.1.1 are employed to

study the piezoelectric potential generated in GaN nanotubes under compression.

Here, as shown in Fig. 2.8, a GaN nanotube is fixed and grounded at the substrate.

Then, an axial force F is applied to the free surface of the nanotube to produce the

piezoelectric polarization in the GaN nanotube. Theoretically, to obtain the piezo-

electric potential, one needs to solve the following constitutive relations for GaN

nanotubes (Zhang 2014):
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σα ¼ cαβλβ � eαkEk ð2:19Þ

Di ¼ eiβλβ þ kikEk ð2:20Þ

where cαβ, eαk, and kik are the linear elastic constant, the piezoelectric coefficient,

and the dielectric constant, respectively. Di and σα are the electric displacement and

the stress vectors, respectively. Incorporating constitutive Eqs. (2.19) and (2.20)

with the equilibrium equation, geometrical compatibility equation, and Gauss

equation in Gao and Wang (2007), we have calculated the piezoelectric potential

in the deformed nanotube from the finite element method (FEM). In the present

study, the FEM calculation was carried out using the commercial software ANSYS.

In this process, the SOLID5 element was selected to describe the piezoelectric

nanotubes, and 12,000 elements were chosen after conducting element convergence

analysis. The electric potential distribution in a deformed GaN nanotube obtained

from the FEM calculation is plotted in Fig. 2.8. It is found that when a compression

force is uniformly applied on the free surface of the nanotube, it creates a negative

potential between the nanotubes and the substrate. A similar FEM calculation was

also conducted to the nanowire to develop its piezoelectric potential. The obtained

electric potential distribution of nanowires is found to be comparable to nanotubes,

where the potential drops linearly only along the length direction.

To quantitatively evaluate the difference in the piezoelectric potential between

nanotubes and nanowires, we have normalized the potential V of the nanotubes by

the potential V0 of the nanowires to be the ratio α. Such a piezoelectric potential

ratio is then calculated in Fig. 2.9 (shown in solid squares) as a function of the wall

thickness-to-radius ratio, t/R, of the nanotube. Here, the nanotubes and nanowires

are assumed to have the same length (30 nm) and radius (3.5 nm) and are subjected

to the same force (10 nN). It can be seen from Fig. 2.9 that α increases from 1.34 to

10.27 as t/R decreases from 0.71 to 0.29. In other words, the piezoelectric potential

generated in the nanotubes can be up to over nine times greater than that in the

nanowires even though they have the same radii. Based on this observation, we can

conclude that the nanotubes, especially those with thin wall thickness, can generate

much higher piezoelectric potential than their nanowire counterparts. Thus,

Fig. 2.8 Piezoelectric potential distribution of a GaN nanotube subjected to the uniaxial com-

pression (Zhang and Meguid 2015a)
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compared with its mostly used nanowire counterpart, the nanotube can be consid-

ered as a better candidate for building piezotronic nanodevices in terms of its

piezoelectric potential generation.

In principle, the difference between the nanowires and nanotubes may originate

from their different material properties (see Fig. 2.6d–f) and geometrical properties

(different cross sections). To better quantitatively understand the influence of these

two factors, we have focused our attention to the following two piezoelectric

potential ratios, α1 ¼ V1=V0 and α2 ¼ V2=V0. Here V1 is the piezoelectric potential

calculated based on the nanotube’s material properties and the nanowire’s geomet-

rical properties, and V2 is the piezoelectric potential obtained based on the

nanotube’s geometrical properties and the nanowire’s material properties. Thus,

α1 and α2 measure the contribution of material and geometrical properties of the

nanotubes, respectively. The results of α1 (solid circles) and α2 (solid triangles) are

plotted in Fig. 2.9 for the nanotubes with R ¼ 3:5 nm and t/R decreasing from 0.71

to 0.29. This figure illustrates that the different material and geometrical properties

of nanotubes, compared to nanowires, enhance the piezoelectric potential of

nanotubes, and this effect becomes more significant for the nanotubes with smaller

t/R. Moreover, from Fig. 2.9, we can also observe that the resultant effect of the

material and geometrical properties is much stronger than their individual effect.

For example, the resultant influence (α) from the material and geometrical proper-

ties can enhance the piezoelectric potential of nanotubes with t=R ¼ 0:29 by nine

times. However, the influence of the material (α1) properties increases the piezo-

electric potential by 400%, while the influence of the geometrical properties (α2)
increases the piezoelectric potential by 108%. Thus, it is of interest to examine how

these two factors influence the resultant potential. In what follows, we will provide
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Fig. 2.9 Piezoelectric potential ratios α, α1, and α2 as a function of the wall thickness-to-radius

ratio, t/R, of the GaN nanotubes with various radii R (Zhang and Meguid 2015a)
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an analytical expression of the piezoelectric potential of GaN nanotubes/nanowires

under compression.

Suppose an axial force F is applied on the GaN nanotube/nanowire, it will

produce a uniform uniaxial strain since λ3 ¼ �F= c33Sð Þ. Under this uniaxial

compressive strain, the wurtzite GaN cell will be deformed so that a bound charge

will be generated at both ends of the structure, thus creating a dipole-like piezo-

electric potential along the c-axis x3. Due to the piezoelectric effect, the strain

produces a polarization field, P3 ¼ e33λ3. It is known that the lateral and the free

surfaces are constrained to have zero surface charge when the base of the nanotube

or nanowire is connected to the ground and is at the reference potential. Under this

condition, the piezoelectric potential is constant along the cross-sectional area (see

Fig. 2.8), and its trend along the c-axis can be obtained by solving the 1D Poisson’s
equation (Romano et al. 2011):∂ k33∂φ=∂x3 � P3ð Þ=∂x3 ¼ 0. This equation gives a

linear potential profile, φ ¼ P3x3=k33, where the conditions E3 x3 ¼ Lð Þ ¼ �P3=k33
and φ x3 ¼ 0ð Þ ¼ 0 have been used. The piezoelectric potential is therefore

V ¼ φ Lð Þ ¼ �F
e33

c33k0k33

L

S
ð2:21Þ

From Eq. (2.17), we can observe that the resultant influence of the material

properties and geometrical properties can be considered as the product of their

individual effect, i.e., α ¼ α1 � α2.
In addition, Eq. (2.17) also provides a convenient way to predict the piezoelec-

tric potential of a relatively large nanotube/nanowire by incorporating the CS model

(see Eq. (2.14)) into it. Using this technique, we are able to calculate the piezo-

electric potential ratios, α, α1, and α2, for relatively large nanotubes, e.g., R¼ 10

and 20 nm. The results are plotted as a function of their t/R ratios in Fig. 2.9 (shown

by lines). This figure demonstrates that α2 is independent of R and is only deter-

mined by the ratio, t/R. However, α1 is found to depend on both the ratio t/R and the

radius R. Specifically, α1 decreases with increasing R and almost vanishes (α1 � 1)

when R> 135 nm even for nanotube with extremely small wall thickness-to-radius

ratio, e.g., t=R ¼ 0:1. This observed R-dependent α1 and R-independent α2 further
lead to a reduction in α with increasing R as it finally approaches α2 when R is

relatively large, i.e., R> 135 nm. In addition, we can also observe from this figure

that the contribution of the material properties (measured by α1) is stronger than
that of the geometrical properties (measured by α2) for a relatively small radius of

nanotube, e.g., R¼ 3.5 nm. However, due to the R-dependent α1 and R-independent
α2, the contribution of the material properties is negligible compared to the geo-

metrical properties when a relatively large nanotube is considered, e.g., R¼ 20 nm.

Finally, it is worth mentioning that the present calculation (Figs. 2.8 and 2.9, and

Eq. (2.17)) is based on Lippmann theory, since we assume that there are no free

charge carriers and the whole system is isolated. However, according to recent

studies, the piezoelectric potential in a strained GaN nanostructure would be

screened by the free charge carriers, since the as-grown GaN nanostructure always

shows an n-type semiconducting behavior (Gao and Wang 2009; Romano
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et al. 2011; Araneo et al. 2012). In order to overcome this screening effect, the idea

of controlling the screening effect by imposing external surface charges on the

nanowire/nanotube system has recently been invalidated theoretically and experi-

mentally (Kim et al. 2012; Sohn et al. 2013). Existing numerical simulations reveal

that this surface functionalization can fully deplete the free carriers (electrons) and

make the piezoelectric potential of nanowires/nanotubes recover to their intrinsic

case (Kim et al. 2012; Sohn et al. 2013). In addition, the numerical results also

indicate that the full coverage of surface charges surrounding the nanotubes

increases the piezoelectric output potential exponentially within a relatively smaller

range of charge density compared to the case of nanowires for a typical donor

concentration (Kim et al. 2012). This efficient surface functionalization of

nanotubes could be another advantage of GaN nanotubes serving as a building

block of piezotronic nanodevices, especially the nanogenerators compared with

their mostly used nanowire counterparts.

2.5.2 Piezoelectric Effect on the Intrinsic Dissipation
in Oscillating GaN Nanobelts

In this section, classical MDS have been employed to study the piezoelectric effect

on the dynamic response of GaN nanobelts (see Fig. 2.10). Special attention was

paid to the piezoelectric effect on the intrinsic energy dissipation of such vibrating

Fig. 2.10 Top: A schematic of a doubly clamped GaN nanobelt resonator subjected to an electric

field E3. Here L, b, and h are the respective length, width, and thickness of the nanobelt. Bottom:

kinetic energy time history of the vibrating nanobelts under (a) E3¼�2 V/nm, (b) no electric field
(E3¼ 0 V/nm), and (c) E3¼ 2 V/nm (Zhang and Meguid 2015b)
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GaN nanobelts, since the intrinsic energy loss sets a fundamental limit for the

performance of nanodevices (Imboden and Mohanty 2014). In the present study, we

considered the most common GaN nanobelts (Yu et al. 2012) whose growth

direction is the c-axis [0001] with the top surface being [2110] and the side surface
being [0110], as shown in Fig. 2.10. In this figure, the x-, y-, and z-axes are,

respectively, taken along the [0110], [2110], and [0001] directions. The nanobelts

studied here have a dimension of 14 nm� 4 nm� 2 nm. The interactions

between Ga-Ga, N-N, and Ga-N were described by the SW potential (see

Eqs. (2.11)–(2.13)). After obtaining the energy-minimized configuration of GaN

nanobelts from the conjugate gradient method, our simulation was conducted using

the following four steps. First, the initial configuration was relaxed at a specified

temperature ranging from 10 to 300 K to reach its equilibrium state in 100 ps. Here,

the NVT ensemble (constant number of particles, volume, and temperature) was

employed to update the positions and velocities of the atoms after each time step

using a Nosé-Hoover temperature thermostat (Nosé 1984). Second, to simulate the

piezoelectric effect, the two ends of the relaxed nanobelt were fixed, and an electric

field E3 was applied along the axial direction (see Fig. 2.10), which produces an

external force f i ¼ qiE3 on ion i, where qi is the charge of ion i. Subsequently,
another relaxation with 100 ps was utilized to get the new equilibrium state. Third,

after the second thermal equilibration, a point bending force was applied along the

y-axis at the midpoint of a nanobelt to deflect it to a certain displacement, which is

less than 2% of the nanobelt length to avoid the influence of the geometric

nonlinearity. Fourth, this bending force was removed, and the vibration of the

nanobelt was then achieved under a constant energy (NVE) ensemble.

InFig. 2.10a–c,we illustrate thekinetic energy timehistoryof thevibratingnanobelts

at room temperature (300 K) under different electric fields: E3 ¼ �2 V=nm
in Fig. 2.10a, no electric field applied (E3 ¼ 0 V=nm) in Fig. 2.10b, and E3 ¼
2 V=nm in Fig. 2.10c. It is worth mentioning that in Fig. 2.10a–c the total

kinetic energy Ek is composed of two parts: one is the external kinetic energy

for the flexural mode Eek and the other is the internal kinetic energy Eik due to

thermal vibrations. The oscillation in the kinetic energy reflects the vibration of

nanobelts. Specifically, the kinetic energy vibrates at a frequency of 2f, where
f is the natural frequency of the flexural mode of the nanobelts.

After applying the fast Fourier transform to the obtained kinetic energy time

history in Fig. 2.10a–c, we obtain their corresponding frequency spectrum in

Fig. 2.11a. From this figure we can see that the frequency of the nanobelts is shifted

by the applied electric field through the piezoelectric effect. Similar piezoelectric

effect-induced frequency shift phenomenon was also observed in recent experiments

and treated as a novel method to tune the frequency of nanoelectromechanical system

resonators (Masmanidis et al. 2007). In Fig. 2.11b, we plot the frequency f and
frequency shift Δf of the nanobelts as a function of the electric field strength. It is

observed that the resonant frequency shifts upward as the negative electric field is

increased, while it shifts downward with increasing positive electric field. To explain

this resonant frequency shift phenomenon, we show the distribution of the atomic

2 Piezoelectric Response at Nanoscale 67



level stress on the cross section of GaN nanobelts subjected to different electric fields

in Fig. 2.11c. We can observe from this figure that due to the piezoelectric effect, a

positive stress is generated in the nanobelt by a negative electric field, and thus,

according to the classical beam theory (Olsson 2010), it increases the frequency of the

nanobelt. On the contrary, a negative stress is produced by a positive electric field,

leading to a reduction in the frequency. In addition, according to the classical

piezoelectric theory (Zhang 2014; Zhang and Meguid 2015a, b), the stress σ in the

nanobelt due to the piezoelectric effect is σ ¼ �e33E3, where e33 is the piezoelectric
coefficient. In Fig. 2.11d, we fit this expression to the results obtained from our MDS.

After curve fitting the results, we obtain e33 ¼ 1:65 C=m2, which closely agrees with

the predicted values for GaN nanowires with the same cross-sectional size using first-

principle calculations (Hoang et al. 2013).

Moreover, analogous to the experimental observation (Masmanidis et al. 2007),

an almost linear relationship between the frequency shift and the electric field

strength is also observed in the present MDS results (see Fig. 2.11b). To shed

light on this observation, we resort to the classical piezoelectric and Euler beam

theories, which give the resonant frequency f as

f ¼ f 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E3e33AL

2

4π2EI

s
ð2:22Þ

Fig. 2.11 (a) Fast Fourier transform of the kinetic energy time history. (b) The resonant frequency
f and frequency shiftΔf as a function of the electric field strength E3. (c) Distribution of the normal

stress in the cross section of nanobelts subjected to different electric fields. (d) The average normal

stress as a function of E3 (Zhang and Meguid 2015b)
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where A is the cross-sectional area, I is the second moment of area, L is the length of

the nanobelt, E is Young’s modulus, and f 0 ¼ 3:56
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI= ρAL4
� �q

(ρ being the mass

density) is the frequency of the nanobelt without piezoelectric effect. Under small

electrical perturbations, the frequency shift obtained from Eq. (2.18) is

Δf ¼ �f 0E3e33AL
2= 8π2EIð Þ. This expression shows a linear relationship between

Δf and E3, which agrees with our MDS results (see Fig. 2.11b). In addition, we obtain

the piezoelectric coefficient of the present GaN nanobelts as e33 ¼ 1:7 C=m2 by

fitting the f - E3 curve in Fig. 2.11b with Eq. (2.18). The obtained piezoelectric

coefficient is consistent with the value calculated by above direct measurements

(Fig. 2.11d).

Next, we will turn our attention to the energy dissipation (the quality factor) of

the GaN nanobelt resonator. In Fig. 2.10a–c, the decay of the oscillation amplitude

in the kinetic energy represents the energy dissipation in the nanobelt resonators.

Assuming that the quality factorQ is constant during vibration, i.e., after n vibration
cycles, the maximum external kinetic energy Eek(n) is related to the initial external

kinetic energy Eek(0) by the relation Eek nð Þ ¼ Eek 0ð Þ 1� 2π=Qð Þn (Jiang

et al. 2004). This expression is used in the present work to determine the quality

factors of the nanobelt resonators based on their kinetic energy time history

(Fig. 2.10a–c). In addition, comparing Fig. 2.10a–c, we can observe that the

nanobelt resonator that is subjected to a negative electric field (Fig. 2.10a) demon-

strates considerable higher energy dissipation than its counterpart without an

electric field (Fig. 2.10b). On the contrary, the nanobelt resonator subjected to a

positive electric field (Fig. 2.10c) holds much lower energy dissipation. These

results suggest that the piezoelectric effect can greatly influence the energy dissi-

pation and thus the quality factor of the nanobelt resonators. Indeed, we calculated

Q of a nanobelt resonator as a function of the electric field strength E3 in Fig. 2.12a.

It can be seen from Fig. 2.12a that Q is increased by up to 12 times as E3 increases

from�2 to 2 V/nm. In other words, a negative electric field significantly decreases

the quality factor, while a positive one increases it. This result suggests that

applying a negative electric field can mitigate the intrinsic loss of GaN nanobelt

resonators via their piezoelectric effect.

To provide some possible explanation to the above observed phenomenon, we

will present a brief discussion based on the classical theory of energy dissipation at

the nanoscale. Among various sources of the energy dissipation, it is believed that

at relatively high temperature (>100 K), the thermoelastic dissipation is the dom-

inant mechanism for a nanobeam oscillator involving bending deformation (Jiang

et al. 2004). Based on Zener’s work on rectangular reeds (Li et al. 2010), the

thermoelastic dissipation in the flexural mode of the present nanobelt can be

approximated by (Jiang et al. 2004)

1

Q
¼ 2Eα2h2

πk
Tf ð2:23Þ

2 Piezoelectric Response at Nanoscale 69



where α is the coefficient of thermal expansion, k is the thermal conductivity, h is

the thickness of the nanobelt, and T is the temperature. Equation (2.19) shows that

the quality factor Q increases with the decrease in the resonant frequency f since
Q / 1=f . This trend is consistent with our MDS results, where a negative E3

increases f but reduces Q and a positive E3 decreases f but improves Q. In addition,
it is also expected from Eq. (2.19) that the relative change in 1/Q should be close to

the relative change in f. Nevertheless, from Figs. 2.11b to 2.12a, we can observe that

1/Q can be reduced by up to 92% as E3 increases from�2 to 2 V/nm. However, in

this process f is found to be decreased by only 22%. In other words, if compared

with f, the change of Q is more sensitive to the change of the applied electric field.

This observation implies that the figure of merit f � Qð Þof the nanobelt resonator can
be efficiently tuned by applying an electric field, and specifically a negative electric

field can improve the performance of the resonator. On the other hand, the more

sensitive Q (compared with f ) to the electric field also suggests that the piezoelec-

tric effect may influence the thermoelastic dissipation and the quality factor through

some other factors, including f. To shed some light on this issue, let us examine the

atomic details of the wurtzite GaN subjected to an electric field, whose atomic

structure is illustrated in Fig. 2.12b. For this purpose, we measured the variation of

bond lengths and angles with different applied electric fields and plotted the

measured results in Fig. 2.12c. It can be seen from Fig. 2.12c that due to the

Fig. 2.12 (a) The quality factor as a function of the electric field strength E3. (b) The bond

configuration of the wurtzite GaN. (c) The evolution of bond length and bond angle of the wurtzite
GaN subjected to E3 (Zhang and Meguid 2015b)
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piezoelectric effect, the bond lengths and angles of wurtzite GaN significantly vary

with the changing electric field. It has been proven from previous studies on carbon

nanotubes (Li et al. 2010), graphene sheets (Li et al. 2010), and semiconductor

nanowires (Li et al. 2010) that the varied bond lengths and angles of nanostructures

greatly shift their phonon spectra and thus significantly influence their thermal

conductivity. Thus, based on this discussion together with Eq. (2.19), we can

conclude that the changed thermal conductivity k of GaN nanobelts due to the

piezoelectric effect can be regarded as another possible explanation for the electric

field-dependent quality factor detected in the present study.

Finally, we will study the dependence of the dynamic behaviors (Q and f ) on the
temperature T. We displayQ of nanobelts subjected to various electric fields against

T in Fig. 2.13a. From this figure we can deduce that Q increases exponentially with

decreasing T and can be described by the following relation, Q / 1=Tβ, where the

thermoelastic damping exponent β is in the range 0.59–0.72, and depends on the

electric field strength. Such deduction relationship of the quality factor with

increasing temperature deviates from the 1/T dependence obtained from the clas-

sical description of thermoelastic loss for bulk materials (Eq. (2.19)). This discrep-

ancy is attributed to a surface effect, which results in dynamic behaviors of the

surface layer of the nanobelt that is distinctly different from its bulk counterpart

(Zhang et al. 2012b). In addition, although the initial temperatures are fixed in the

simulations, a small raise of the temperature is still unavoidable because of the

nature of the simulations in the micro-canonical ensemble. This slight temperature

increase could be another explanation for the above observed discrepancy.

Fig. 2.13 (a) The quality factor and (b) the resonant frequency f as a function of the temperature

for GaN nanobelts subjected to different electric fields (Zhang and Meguid 2015b)

2 Piezoelectric Response at Nanoscale 71



It is noted here that β ¼ 0:67 for GaN nanobelts without an applied electric field is

close to that of 0.7 as obtained from MDS of silicon nanowires (Georgakaki

et al. 2014). Moreover, β is found to significantly depend on the electric field

strength, E3. This E3-dependent β can be attributed to the pyroelectric character

of the wurtzite GaN crystal, which makes the piezoelectric effect of GaN nanobelts

temperature dependent (Zhang et al. 2013; Zhang and Meguid 2015a). We further

determined the influence of the temperature on the resonant frequency of GaN

nanobelts. Owing to the so-called thermal-softening effect on the elastic properties

and/or the pyroelectric effect, f is found to decrease with increasing T (Fig. 2.13b).

However, the effect of T on f almost can be ignored, since f is reduced by no more

than 1% when T increases from 10 to 300 K. Similar negligible influence of

temperature on the resonant frequency was also observed in a recent experimental

study of GaN nanowire resonators (Montague et al. 2012).

2.6 Conclusion Remarks

Piezoelectric response in a nanoscale world has attracted considerable attention in

recent research. Effort has been made to characterize the piezoelectricity of PNs in

different configurations. Experimental techniques were used for synthesized PNs of

the feature size tens to hundreds of nanometers, while the atomistic simulations are

focused on small PNs of the feature size 0.5–10 nm. Due to unknown physical

mechanisms, strong or extreme piezoelectric response was reported for ZnO PNs,

characterized by the EPCs orders of magnitude greater than the bulk values. In

particular the EPCs at the nanoscale are not constants but vary significantly with the

geometric size of PNs. On the other hand, large discrepancy is found among the

existing studies in measuring the values of EPCs and predicting their size

dependence.

In addition, various mechanisms have been proposed as possible physical origins

of unique piezoelectric response at the nanoscale, such as the quantum effects,

single or polycrystallinity, the density of defects, the free relaxation of surface

atoms, and the piezoelectricity of the surface layers. The effect of individual factor

may vary drastically in different cases, e.g., length scales. Specifically, the theoret-

ical framework of the surface piezoelectricity has been established and was found to

be in good agreement with some atomistic simulations. Thus, surface piezoelec-

tricity can be accepted as a major factor that determines the magnitudes and

behavior of the EPCs of PNs, at least, in some cases. Nevertheless, it still remains

a challenge to formulate a universal theoretical framework that is able to achieve

physical insights into the scattering of the obtained results.

Moreover, based on the structural models accounting for the effect of the surface

piezoelectricity, two types of EPCs of PNs are derived for the first time character-

izing the relation of an electric field to the initial stress and the contribution of

piezoelectricity to EEM. Both of them are found to vary with not only the geometric

size of PNs but also the deformation experienced by the PNs.
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Finally, the influence of the nanoscale piezoelectricity on the mechanical

responses (statics and dynamics) of piezoelectric nanostructures was also discussed.

It is found that at the nanoscale, the surface piezoelectricity can enhance the

piezoelectric potential of nanostructures when they are subjected to a static defor-

mation. In addition, the intrinsic loss of oscillating piezoelectric nanostructure can

be mitigated through the piezoelectric effect at the nanoscale.
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Chapter 3

Nanoscale Mechanical Characterization
of 1D and 2D Materials with Application
to Nanocomposites

Guillaume Colas and Tobin Filleter

Abstract In this chapter the critical recent advances in the area of nanoscale

mechanical characterization of 1D and 2D nanostructures with application to

nanocomposites are presented. CNTs and graphene have been the most widely

studied within this class of materials; however, a number of additional 1D and 2D

nanostructures such as molybdenum disulfide (MoS2) ultrathin films have also

recently emerged and will be discussed. The chapter will cover a variety of

nanomechanical characterization techniques that have been developed recently,

with a particular focus on methods which characterize the nature of interactions

(shear strength, interfacial friction, etc.) between the nanocomposite constituents

which can play a significant role in governing macroscopic nanocomposite

behavior.

3.1 Introduction

Over the last decade, the diversity of usage of graphene, graphene oxides (GOs),

and carbon nanotubes (CNTs) has grown exponentially and covers a wide range of

applications. For example, CNTs, which can be classified as pseudo 1D

nanostructures, can be used as building blocks to form bundles, yarns, and large-

scale fibers (Kwon et al. 2015; Meng et al. 2012; Mirzaeifar et al. 2015; Dong

et al. 2011; Compton et al. 2012; Vilatela et al. 2011; Liu et al. 2015; Naraghi

et al. 2010; Qiu et al. 2013; Alemán et al. 2015) and composites materials (Mirjalili

et al. 2014) for lightweight structures. They are also found useful to create actuators

(Kwon et al. 2015; Mirzaeifar et al. 2015) and electronics (Azoubel and Magdassi

2014). 2D nanostructures, such as graphene and its less expensive cousin GO, have

attracted a great deal of interest for bendable electronics, light emission, and super-

elastic electronics (Wang et al. 2015; Kim et al. 2015); as sensors using the
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vibrational response of graphene to molecules (Rodrigo et al. 2015), evolution of

resistivity of GO to water to create humidity sensor (Borini et al. 2013); for

wettability control of surfaces (Boddeti et al. 2013); and also as lubricants at

the nano-/microscale (Chen and Filleter 2015; Lee et al. 2010) and even at the

macroscale (Berman et al. 2014, 2015). Many of these applications require the 1D

and 2D nanostructures to be integrated within other matrix materials or connected

by heterogeneous cross-links as nanocomposites, which is particularly true for the

applications of CNTs and graphene as reinforcement elements in structural

nanocomposites (Qian et al. 2010; Coleman et al. 2006).

To achieve such a wide range of already available and potential future

nanocomposite applications, there is a need to characterize the nanostructure

materials individually (single-layer graphene, single-layer GO, individual

SWCNT and MWCNT, etc.), then as building blocks comprised of the same nature

individuals (multilayer graphene, multilayer GO, yarn of CNTs) or comprised of

mixed materials (graphene/GO, graphene/CNTs, GO/CNTs, etc.), and finally with

the surrounding extra materials or matrix (polymers, silicon, metals, etc.). For

many applications, this characterization must be both mechanical and chemical in

nature and focused on the different interactions existing between each of the

individual components of the nanocomposite material. In this chapter we will

present a summary of the critical recent advances in the area of nanoscale

mechanical characterization of this class of materials. While CNTs and graphene

have been the most widely studied within this class, a number of other 1D and 2D

nanostructures such as molybdenum disulfide (MoS2) and boron nitride

(BN) nanotubes and sheets have also emerged recently. A particular focus of

the chapter will be put on characterizing the nature of interactions (shear strength,

interfacial friction, etc.) between the nanocomposite constituents which can play a

significant role in governing their macroscopic behavior.

3.2 In Situ Mechanical Characterization of 1D and 2D
Nanomaterials

3.2.1 MEMS-Based In Situ Characterization

One of the great challenges of characterizing the interfacial properties of

nanostructures and nanostructured composite materials is developing and applying

experimental techniques that can both handle and deform such small structures, as

well as measure interaction forces in the nN range. One research direction that has

emerged over the last decade is utilizing micro-electro-mechanical sys-

tems (MEMS) to operate as miniaturized mechanical testing setups to accomplish

this (Haque and Saif 2002; Lu et al. 2010; Espinosa et al. 2012a; Zhang

et al. 2014). An additional benefit to MEMS devices is that they are small enough

to operate in situ high-resolution imaging tools such as scanning electron
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microscopes (SEM) and transmission electron microscopes (TEM). This enables

both testing of interfacial properties and direct visualization of deformational and

structural changes in the nanostructures.

MEMS testing has played a significant role in developing an understanding of

shear interactions and the mechanical properties of graphene- and CNT-based

materials used as reinforcement elements in structural nanocomposites. The frac-

ture toughness of graphene, which is an extremely important material property to be

considered in graphene-based nanocomposite design, has recently been measured

using an in situ TEM MEMS device (Zhang et al. 2014). Figure 3.1 shows the

MEMS device used for fracture toughness measurements, as well as images of

graphene films before and after fracture. In situ TEM MEMS-based tensile testing

systems have also been applied to study 1D carbon-based nanomaterials such as

CNTs. It has been demonstrated recently that the weak van der Waals interactions

between adjacent MWNT shells and CNT within CNT bundles can be strengthened

through covalent bonding via electron irradiation (Peng et al. 2008; Filleter

et al. 2011). The strength and stiffness improvements for CNT bundles demon-

strated via electron irradiation are predicted to translate to significant improvements

in the composite strength and modulus for both CNT/polymer and CNT/epoxy

nanocomposites (Filleter et al. 2011).

3.2.2 In Situ Shear and Peeling Techniques

Miniaturized testing systems can also be applied using in situ SEM and TEM to

measure the cleavage and adhesion behavior of layered 2D nanomaterials. Recent

studies on MoS2 cleavage have directly measured the surface energy of atomically

thin MoS2 layers under observation of the TEM (Tang et al. 2014). In the future,

similar techniques can be applied for 2D carbon-based nanostructures such as

graphene and GO. Peeling experiments, conducted using in situ SEM, have also

been used in conjunction with numerical modeling to study interfacial interactions

of CNTs and graphene. In these measurements, one end of a CNT is attached to the

Fig. 3.1 MEMS-based testing of the fracture toughness of graphene films. Left: In situ SEM

MEMS device. Middle: Graphene film prior to testing with a predefined crack. Right: Graphene
film after fracture. Reproduced from Zhang et al. (2014)
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tip of an AFM cantilever which is brought away from the surface until the CNT

detached itself from the surface in order to measure adhesion. This has demon-

strated CNTs functionalized to exhibit high adhesion toward graphene-based

nanocomposites (Roenbeck et al. 2015). In addition to peeling, the shear interac-

tions between adjacent CNTs within CNT bundles can also be measured using a

similar technique in situ SEM. Figure 3.2 shows the pullout force recorded during a

shear experiment conducted on a CNT bundle using in situ SEM.

3.2.3 In Situ Raman Spectroscopy Techniques

Spectroscopy techniques based on the inelastic scattering of light upon interaction

with nanostructures have been used to characterize interfaces between carbon

nanostructures and composite matrix materials. Raman spectroscopy is one of the

most common techniques used to characterize structural characteristics of carbon-

based nanostructures such as graphene, CNTs, and GOs. For example, Raman

spectroscopy can be used to measure the wall diameters within CNTs by measuring

the vibrational breathing mode frequencies (Dresselhaus et al. 2005), and it can be

used to identify the number of layers in few-layer graphene (Malard et al. 2009;

Ferrari and Basko 2013). The nature of Raman spectroscopy also allows for the

identification of variations in strain of the carbon honeycomb lattice, enabling in

situ Raman studies of load transfer at the interface of the nanostructures and the

composite matrix (Cooper et al. 2001; Gong et al. 2012). Gong et al. demonstrated

Fig. 3.2 (Left) In situ SEM shear testing of CNT bundles. (Right) Molecular mechanics simula-

tion of CNT bundles used to study the shear interactions between CNTs. Reproduced from Filleter

et al. (2012)
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an in situ Raman method to study the load transfer between multilayer graphene

flakes and a PMMA matrix during tensile testing (Gong et al. 2012). By monitoring

the stress-induced shift in the 2D band from Raman measurements, the local strain

within the graphene layers was mapped during tensile loading of the composite

material. Figure 3.3 shows this local strain mapping for a bilayer graphene region

on a polymer substrate which shows the nonhomogeneity of the load transfer

between the underlying PMMA matrix layer and the graphene layers (Gong

et al. 2012).

3.3 Probe-Based Mechanical Characterization
of Nanocomposite Materials

3.3.1 Friction Force Microscopy and Shear Testing

Friction is a particularly important parameter to take into account when considering

the interactions within nanocomposite materials. When 1D (CNTs) and 2D

Fig. 3.3 In situ Raman spectroscopy strain mapping of bilayer graphene flake attached to a

PMMA underlying substrate in tension. Reproduced from Gong et al. (2012)
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materials (graphene, GO, MoS2, etc.) are used as building blocks, they will

necessarily interact with each other and friction plays an important role in those

interactions. To characterize friction at the nano- and microscale, atomic force

microscopy (AFM) operated in a friction force microscopy (FFM) mode is typically

used due to the possibility to conduct experiments at very low normal load (few to

hundreds of nN) and measure friction forces in the nano-Newton range. Extensively

used for many years for characterizing local friction at surfaces of “bulk” materials

(Bharat et al. 2000; Bhushan 2005; Santos et al. 2001; Samyn et al. 2010; Sahoo and

Biswas 2009), the versatility of the AFM allows working in different environments

and with functionalized cantilevers, which make it a predilection tool for studying

1D and 2D material friction. AFM was used to demonstrate both that graphene can

exhibit exceptionally low friction and that the layer thickness of multilayer 2D

nanostructures can influence the frictional behavior (Lee et al. 2010; Filleter

et al. 2009). Figure 3.4 shows AFM-based friction measurements of graphene and

MoS2 multilayer films which clearly exhibit a thickness dependence on the mea-

sured friction. Layer thicknesses of approximately 4 monolayers are found to

exhibit friction similar to their corresponding bulk materials (Lee et al. 2010).

Chen et al. (2015) notably terminated an AFM cantilever with 70 μm colloidal

glass beads to perform quantitative friction tests on graphene and GO. Obtaining

reliable quantitative measurements is a hard task and requires calibration of the

cantilever as well as the consideration of the adhesion force between the bead and

the material.

Similar friction test experiments demonstrated that GO tribological behavior

(friction coefficient and wear) is highly related to the nature and amount of

functional groups on the GO (Chen and Filleter 2015). This technique also

highlighted that some other phenomena such as a reversible negative compressibil-

ity may occur when few-layer graphene, MoS2, or hexagonal boron nitride is

submitted to shear (Barboza et al. 2012). If the number of layers is high, only a

few 5–6 top layers might contribute to this phenomenon. Interestingly, some other

materials such as mica and Bi2Se3 are not found to exhibit such behavior.

3.3.2 Ultrathin Film Deflection and AFM-Based Methods

In addition to friction testing using AFM, a number of AFM-based techniques have

also been developed through the years to measure the intrinsic mechanical proper-

ties of nanomaterials at the different scales. A well-known approach is the inden-

tation of suspended structures to measure force–displacement curves and calculate

the Young’s modulus, toughness, etc., of single-layer and multilayer graphene (Wei

and Kysar 2012; Cao et al. 2014), GO (Suk et al. 2010; Cao et al. 2015), single-layer

(Bertolazzi et al. 2011) and multilayer MoS2 (Castellanos-Gomez et al. 2012), and

multilayer heterogeneous materials (Liu et al. 2014). Figure 3.5 shows AFM-based

indentation measurements of the 2D modulus measured for a variety of single-layer

and multilayer MoS2 and graphene materials (Liu et al. 2014). In all of these
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Fig. 3.4 AFM-based friction measurements of graphene (left) and MoS2 (right) multilayer films.

Reproduced from Lee et al. (2010)
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studies, the material is held in place only by the adhesion forces between the films,

and the holey substrate and sequential indentation are usually performed in differ-

ent places on the suspended structure. Indeed, localizing the center of the structure

is difficult and performing several measurements allows diminishing the error. With

those measures, stress–strain behavior can be extracted, and properties such as the

Young’s modulus and ultimate strength can be calculated and/or directly measured.

In the case of measuring the Young’s modulus of MoS2 materials, studies of Liu

et al. (2014) and Bertolazzi et al. (2011) appear to be consistent with one another

although, contrary to Bertolazzi et al. (2011), Liu et al. (2014) define an interaction

coefficient between the two layers of the bilayer structure for the sake of determin-

ing the contribution of each to the total. Castellanos-Gomez (Castellanos-Gomez

et al. 2012) estimations are much higher than the two other studies. Table 3.1 shows

a detailed summary of different Young’s modulus measurements of MoS2 mono-

layers and multilayers. For comparison, Suk et al. (2010) and Cao et al. (2015)

found a Young’s modulus of 145.3� 16.4 N/m (207.6� 23.4 GPa) for monolayer

Fig. 3.5 Comparison of elastic properties of different 2D layers. (a) Experimental data of 2D

modulus and pretension for various 2D layers and heterostructures. (b) Interaction coefficients for
different types of bilayers. Figure and caption reproduced from Liu et al. (2014)

Table 3.1 Comparison of estimated Young’s modulus measurements of MoS2

Study

Monolayer MoS2 Multilayer

CommentE2D (N/m) E (GPa) E2D (N/m) E (GPa)

(Liu et al. 2014) 171� 11 – 300� 13a – aBilayer with interac-

tion coefficient of 0.75

between layers

(Bertolazzi

et al. 2011)

180� 60 270� 100 260� 70b 200� 60 bBilayer

(Castellanos-

Gomez

et al. 2012)

– – – 330� 70c cTests with 5–25

layers
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GO with C/O ratio of 5:1. For monolayer graphene, Liu et al. (2014) measured a

Young’s modulus of 349� 12 N/m (1,000 GPa). Interestingly, in their study, they

showed that when they stacked two different materials, one layer of each, the

pretention of the bilayer structure is close to the sum of both the values from

each layer; however, the Young’s modulus of the bilayer structure was found to

be lower.

CNTs have also been tested using AFM deflection measurements of structures

suspended over a hole and indented (Kis et al. 2004). Kis et al. used this method to

measure the bending stiffness of CNT bundles revealing the benefits of irradiation-

induced covalent cross-linking between CNTs on increasing the stiffness of CNT

bundles (Kis et al. 2004). However, due to their size and cylindrical shape, it is

extremely difficult to indent CNTs and CNT bundles at a precise location. Conse-

quently, other testing methods have been developed. Another pseudo AFM-based

technique consists of gluing one end of the CNT or CNT bundle to a rigid and

extremely stiff support and gluing the other end to an AFM cantilever (Filleter

et al. 2012). Those tests are generally performed using in situ SEM to be able to

follow the deflection of the cantilever (load applied) and the elongation of the CNT

(strain). Thus, “classical” tensile tests can be performed. Such a tensile testing

technique has also been applied to other materials. Recently, it has been used to

characterize GO paper (Wang et al. 2013). In this study beams of constant length

and thickness but with variable width were FIB milled at the edge of a large GO

paper. Each beam has then been successively glued to an AFM cantilever to

perform the tensile test using in situ SEM.

3.3.3 Adhesion Characterization

As mentioned previously, the adhesion can play an important role in friction (Chen

and Filleter 2015) but also within structures made of individual 1D and 2D

component (multilayer structures, DW- and MWCNTs, etc.) (Dong et al. 2011;

Liu et al. 2014; Gao et al. 2011) and between materials and the surrounding

materials used for the application such as the switchable blister (Boddeti

et al. 2013). It is also of great importance for some specific mechanical studies

where monolayer and few-layer materials are fixed to the surface only by adhesion

forces. A good example is the indentation of suspended structure to calculate from

the force–displacement curve the Young’s modulus and strength of single-layer and

multilayer graphene (Wei and Kysar 2012; Cao et al. 2014), GO (Suk et al. 2010;

Cao et al. 2015), single-layer (Bertolazzi et al. 2011) and multilayer MoS2
(Castellanos-Gomez et al. 2012), and multilayer heterogeneous materials (Liu

et al. 2014). In all those studies, the material is held in place only by the adhesion

forces between them and the holed substrate.

Adhesion between nanostructures can be measured with the well-known pull-off

force measurement protocol with an AFM which consists in approaching a canti-

lever with a regular or functionalized tip into contact with the material to

3 Nanoscale Mechanical Characterization of 1D and 2D Materials. . . 85



characterize and measure the pull-off force when the tip is pulled away from the

surface (Chen and Filleter 2015; Lee et al. 2010; Bharat et al. 2000; Sahoo and

Biswas 2009; Jiang and Zhu 2015; Jacobs et al. 2015a, b; Lin et al. 2007). Figure 3.6

shows an example of AFM-based adhesion measurements conducted on graphene

films (Jiang and Zhu 2015). When the cantilever is brought into contact with the

material, it is done at low loads in order to remain in the elastic regime. However,

adhesion is a general term to define how much force will be needed to separate two

surfaces that have been brought into contact. Adhesion can be influenced by long-

range and short-range forces and bonds (van der Waals forces, Coulomb forces,

capillary forces, etc.) (Israelachvili 1992). Consequently, the pull-off force is a

convolution of a variety of influences which can make it difficult to interpret.

Controlling experimental parameters becomes of critical importance as well as

defining which theoretical model should be used to extract adhesion data from

the pull-off force measurement. The main models used to extract the data and define

the real contact areas are the well-known JKR, DMT, and Maugis–Dugdale which

Fig. 3.6 (Top) Spherical AFM probe used for adhesion measurements on graphene. (Bottom)
AFM image of a graphene film and force vs. distance curve recorded to measure the adhesion of

graphene. Reproduced from Jiang and Zhu (2015)
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is a transition model between JKR and DMT (Chen and Filleter 2015; Bharat

et al. 2000; Lin et al. 2007; Israelachvili 1992). However, those contact mechanics

models require assumption that perfect flat surfaces are used, which is practically

impossible to achieve experimentally, and some assumption regarding the tip

geometry. To obtain more physical data such as the equilibrium distance of

adhesion between two materials or the real work of adhesion, other models based

on chemical and physical aspects (surface tension, Lennard–Jones potential, etc.)

are needed. But most of the time, from pull-off force data, knowing the contact area

will be required.

The Persson convention (Persson and Tosatti 2001), used by Jacobs et al. (2015a, b),

dissociates adhesion into the effective work of adhesion and the intrinsic work of

adhesion. The former is defined as pull-off force between two rough surfaces (the

globally encountered measure), while the latter corresponds to the pull-off force

between two perfectly flat surfaces. Several models have been developed to take into

account the roughness and the exact tip geometry in the extraction of adhesion

parameters from the pull-off force. The modified Rumpf model (Jiang and Zhu 2015;

Jacobs et al. 2013;Rabinovich et al. 2000)which takes into account the roughness at the

nanoscale (by hemispherical approximation of it) was demonstrated to give a better

estimation of the effectiveworkof adhesion. Comparisons betweenMDsimulation and

in situ TEM experimental data post treated using the modified Rumpf model showed

good agreements (Jacobs et al. 2013). Indeed, the decrease by 50% of the work of

adhesion predicted by theMD simulationwhen theRMS roughness changed from0.03

to 0.1 nm was found experimentally. Recently, Jacobs et al. (2015a, b) developed a

mathematical approach to measure the strength and length of adhesive interactions

between rigid materials using the real geometry of the tip. Their approach notably

allows measurement of both the z0 distance and the intrinsic work of adhesion. In the
review done in Jacobs et al. (2015b), the authors notably explain that whatever the

approach developed up to now, even in situ TEMmeasurements, requires an assump-

tion of the z0 distance. The in situ TEM experiments reported show huge difference in

determination of work of adhesion compared to conventional AFM pull-off measure-

mentwhich demonstrates the importance to be cautiouswhen relying only on reference

values for conventional calculations.

Numerous direct and non-direct techniques exist to measure and estimate adhe-

sion forces between bodies. However, the question that one must ask is “which

adhesion, value of adhesion, is representative of the system I am working on?” For

large-scale application where surface roughness is completely unavoidable, the

classical pull-off force to get the effective adhesion might suffice. On the contrary,

for nanocomposite applications where atomically thick materials are to be used, the

intrinsic work of adhesion must be known. Finally, the question of the material to be

used is of interest, and the interactions depend on the nature of the materials brought

into contact. For example, Biswas et al. (Sahoo and Biswas 2009) measured

adhesion between MoS2 particles and glass beads. As it is for a micro-/macroscale

tribological application, the adhesion measured is the effective adhesion directly

linked to the pull-off force, which is fine considering the scale and the application.
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However, in many applications of MoS2 as a solid lubricant layer, the real contact is

steel vs. MoS2 and not glass vs. MoS2 which greatly limits the transposition of the

data to the real application.

Throughout the previous sections on friction and adhesion, the discussion

mentioned different models to define adhesion, for example. But some of those

models, like JKR or DMT, require the knowledge of the mechanical properties of

the material tested. Moreover, to employ those materials in large-scale applications

such as the bendable electronics, the mechanical properties of individual 1D and 2D

component and their assembly must be known.

3.4 Indirect Mechanical Characterization of Interfaces
Within Nanocomposites

3.4.1 Dynamic Mechanical Analysis

Dynamic mechanical analysis (DMA) is another experimental technique that has

been used to study the mechanical behavior of carbon nanostructure-based com-

posite materials (Compton et al. 2010, 2012; Yang et al. 2004; Zou et al. 2004;

Wang et al. 2004; Espinosa et al. 2012b; An et al. 2011). While DMA has been

extensively used to measure the viscoelastic response of CNT–polymer and CNT–

epoxy matrix nanocomposites as it measures both the storage and loss moduli

(Yang et al. 2004; Zou et al. 2004; Wang et al. 2004; Espinosa et al. 2012b), it

can also be used to indirectly study the shear interactions within other forms of

carbon-based nanocomposites. An et al. used DMA to measure the stiffening effects

of bio-inspired composite GO papers which were similar to borate cross-linkers.

DMA measurements showed significant increases in the GO paper stiffness as a

result of the inclusion of borate between the GO sheets which introduced covalent

bonding increasing the bond strength and stiffness between layers (An et al. 2011).

Similar stiffening effects have also been observed using DMA for polyvinyl alcohol

(PVA)–GO nanocomposites. Figure 3.7 shows DMA experimental results and

molecular dynamics (MD) simulations of PVA–GO composite papers with inter-

calated water content. The presence of an optimal concentration of water molecules

between the PVA–GO layers introduces hydrogen-bonding networks at the inter-

faces between GO layers which act cooperatively to enhance the stress transfer

between layers and ultimately modify the stiffness of the composites (Compton

et al. 2012).
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3.4.2 Micro Tensile Testing, Compression,
and Nanoindentation

The mechanical stress–strain response under uniaxial tension can be measured for

nanocomposite material via micro tensile testing. While this is often the mechanical

characterization method of choice for graphene- and CNT-reinforced fibers and

plates to determine the macroscopic mechanical properties, it can also be utilized

indirectly to gain insights into the internal mechanisms within the composite

materials. In the case of graphene-based nanocomposites, micro tensile testing,

accompanied by post failure SEM imaging of fracture surfaces, has been used to

identify the nature of shear interactions and fracture with the nanocomposite

materials (Dikin et al. 2007; Stankovich et al. 2006). Micro tensile testing has

also been heavily utilized to characterize the mechanical behavior of both pure

CNT and CNT nanocomposite fibers (Naraghi et al. 2010; Koziol et al. 2007; Stano

et al. 2008; Motta et al. 2005; Zhang et al. 2005; Dalton et al. 2003).

The interaction between adjacent nanostructures can also be indirectly probed by

analysis of compression and nanoindentation experiments on arrays or bundles.

Compression and nanoindentation studies on tightly packed CNT forests and arrays

have given insights into the shear interactions between individual CNTs and

bundles during loading (Ginga and Sitaraman 2013; Cao et al. 2011). Cao

et al. demonstrated that the buckling behavior of CNT forests is affected by

entanglements and shear interactions between the adjacent CNTs in the densely

packed array structures which has an impact on the energy adsorption behavior of

the materials (Cao et al. 2011).

When the thickness of the material to be characterized reaches a few hundreds of

nanometers, typically for thin films, or contains different phase or structure,

nanoindentation also becomes of interest. This technique allows measuring the

mechanical properties of materials such as the hardness, the Young’s modulus, or

the yield strength at the nanoscale. Both AFM and nanoindenter can be used.

However, due to the intrinsic design of both systems, nanoindenter is much stiffer

Fig. 3.7 (a) Molecular dynamics simulation cell for a PVA–GO nanocomposite. (b) Comparison

between DMA storage modulus measurements and MD simulation results at varying water content

levels. (c) MD simulation of the stress–strain response of a PVA–GO composite. Adapted with

permission from Compton et al. (2012)
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than AFM-based systems and allows working at higher loads and measuring the

contact stiffness accurately and continuously during indentation. Numerous models

exist to extract the different properties from the measurements. The Oliver–Pharr

model (Oliver and Pharr 1992) is the most known and certainly used model for

elastic plastic indentation. However, similarly to the Hertz, JKR, DMT, and Maugis

models used for indentation in the elastic domain, the Oliver–Pharr model can be

employed only under specific conditions, and notably in homogeneous isotropic

materials, the body indented must be semi-infinite compared to the indenter, no

pileup of material around the indentation, and no significant deformation of the

indenter. The Oliver–Pharr model relies on the measurements of the indentation

depth from the unloading curve. However, this value can be questioned if pileup

occurs around the indenter or if the indentation depth is low which can induce big

errors in its measurement. Guillonneau et al. (2012) developed a technique based on

the detection of the second harmonic of the displacement signal to determine the

mechanical properties independently of indentation depth measurement. This tech-

nique appears to be limited to constant Young’s modulus materials, but appears

useful to low indentation depth experiments. When both adhesion and mechanical

properties, in the elastic regime, are of interest, methods based on other models like

JKR can be used (Ebenstein and Wahl 2006). In this study, the authors notably

extended the model to viscoelastic materials and managed to extract both the

frequency-dependent and relaxed modulus of PDMS materials.

Nanoindentation can be of interest when 2D materials are stacked and the overall

structure reaches a few hundred nanometers. Stempflé and von Stebut (2006) in

their study of the 3rd body created from graphite showed that when the 3rd body is

quasi-continuous, i.e., formed by agglomeration of cleaved basal planes, indenta-

tion showed energy dissipation but no indentation marks. This energy is dissipated

via a dissipation mode by shearing of the basal planes. The thicknesses of the quasi-

continuous 3rd body films tested were approximately 150, 300, and 450 nm.

Despite its usefulness and widespread application, nanoindentation can suffer

from limitations that may strongly influence the measurement reliability. The

reader is invited to read Fischer-Cripps (2011) for a review of the different

parameters (pileup, friction, substrate, roughness, system compliance, etc.)

influencing the measurement reliability.

3.5 Perspectives and Future Directions for Research

A complete understanding of the mechanical properties of nanocomposite materials

requires a detailed characterization of both the intrinsic behavior of the

nanomaterial constituents and interfacial interactions at multiple length scales. In

this chapter a number of advances in nanomechanical characterization techniques

including both macroscale indirect approaches and direct in situ approaches have

been summarized. In order to further advance nanoscale mechanical testing of 1D

and 2D materials, progress in a number of research directions is needed. Notable
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directions include conducting tribology experiments using in situ SEM and TEM as

well as controlling the environmental conditions for nanomechanical testing such

that they are more aligned with conditions of real applications.

Given the small length scales of the constituents with nanocomposites and the

importance of interfacial properties, further advancements of in situ tribology

approaches are still needed. For example, the majority of approaches to characterize

friction and adhesions discussed herein have been conducted ex situ with little

direct knowledge of the contact under investigation. Advanced in situ FFM tech-

niques are needed in which SEM and TEM are used to directly measure the contact

geometry and local deformation of the interfaces for which friction and adhesion

are being measured. Although some significant advances have been achieved in this

direction to visualize nanoscale contacts under sliding (Merkle and Marks 2007),

many are currently limited to qualitative characterization and do not enable full

quantitative force and stress analysis available from conventional table top

AFM-based techniques.

The environment within which nanostructures are characterized can also play a

significant role in the measured properties. For example, as was discussed earlier,

the water content present around and within carbon-based nanocomposite materials

can play a role in varying mechanical properties such as ductility and stiffness

(Compton et al. 2012). Despite this important role of environment, many

nanomechanical techniques are currently employed under either poorly controlled

room temperature and humidity conditions or under vacuum environments that do

not accurately represent application conditions. Integration of the techniques

discussed herein within controlled environment chambers with careful monitoring

is needed to ensure that measured properties are fully understood with respect to the

presence of humidity and contaminants.
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Chapter 4

Effects of Nanoporosity on the Mechanical
Properties and Applications of Aerogels
in Composite Structures

Teng Yong Ng, Sunil C. Joshi, Jingjie Yeo, and Zishun Liu

Abstract Aerogels are ultralight solids with nanoporous structure and are one of

the world’s lightest materials available in the market. It is a dry gel, principally

made up of 99.8% of air and weighing just around three times that of air. The first

aerogels were realized in 1931, when Kistler (J Phys Chem 36:52–64, 1932)

attempted to remove liquid from a wet gel. It started out with the testing of the

hypothesis that the liquid in a jelly can be replaced by a gas so as to avoid the

collapse of the wet gel. He postulated that it was possible to slowly expand the

supercritical fluid within a gel and obtain an air-filled non-collapsed gel structure.

He subsequently succeeded in producing silica aerogels with densities in the range

20–100 kg/m3, as well as aerogels of alumina, tungsten, ferric, and stannic oxides.

Today, silica aerogel is frequently used in nanocomposites for their light weight and

excellent thermal insulating properties. In this chapter, we document some of the

silica aerogel-filled carbon composite sandwich structures we have recently devel-

oped and also numerically examine the underlying mechanisms which enable silica

aerogels to possess extreme insulation properties and especially how pore size plays

a major role.
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4.1 Introduction

Many novel ultralight materials have been developed over the past decades in the

unending drive to construct engineering nanocomposites which are lighter, stron-

ger, and cheaper than ever before. A method to achieve these purposes is the

simultaneous reduction of the weight of the material (such as introducing extreme

porosity) while maximizing its toughness and strength. One such class of materials

utilizing this approach is termed aerogels. For instance, silica aerogels are highly

porous materials synthesized through supercritical drying of a wet gel, originating

in the early 1930s from Kistler (1932; Aegerter et al. 2011). Supercritical drying

occurs at high temperatures and pressures due to the liquid–gas phase boundary

becoming indistinguishable. Without supercritical drying, high surface tensions

from evaporation of the liquids would result in xerogels of low porosities rather

than aerogels due to shrinkage and collapsing (Fricke and Emmerling 1992). The

nanoporous network of silica aerogels is formed through a multistep process of

polymerization, gelation, hydrolysis, and condensation, using alkoxides of Si(OR)4
as precursors. For example, a good precursor could be tetramethoxysilane (TMOS)

where the R group is a methyl group CH3, such that

Si OCH3ð Þ4 þ 2H2O ! SiO2 þ 4CH3OH

Subsequently, polycondensation and supercritical drying of the aqueous gel will

form a coherent nanoporous network. Other potential precursors include tetraethyl

orthosilicate (TEOS), polyethoxysilane (PEDS), perfluoroalkysilane (PFAS), and

3-(2-aminoethylamino) propyltrimethoxysilane (EDAS) (Aegerter et al. 2011).

Such a wide range of choices allows the enhancement or tailoring of the desired

geometrical, chemical, and mechanical properties of the end product such as the

pore-size distribution, density, and strength. Other important factors in aerogel

production include the nature of the solvent, the nature and concentration of the

catalyst, the molar ratio of precursors to water, and the concentration of precursors

(Aegerter et al. 2011). Moreover, aerogels can be produced from materials other

than silica such as carbon, sodium silicate, zirconium dioxide, and many other

organic and inorganic materials, resulting in a wide variety of properties for

different applications. These properties can include opacity, strength and tough-

ness, and electrical and thermal conductivity. The Aerogel Handbook is a compre-

hensive compendium of aerogels outside of silica aerogels (Aegerter et al. 2011).

Due to pure silica aerogels’ low density and connectivity within the silica

network, their mechanical properties tend to be rather poor, such that elastic

contraction of approximately 50% in comparison to their length can be attained

easily. However, hybridization, doping, and aging of silica aerogels could help to

alleviate some of these drawbacks (Aegerter et al. 2011). In spite of these deficien-

cies, their low dielectric constants and thermal conductivity enable silica aerogels

to be highly suitable for applications in dielectrics for integrated circuits (ICs),

passive solar energy collection devices, and thermal and acoustic insulation in
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buildings and appliances (Hrubesh 1998). Silica aerogels can also substitute plastics

produced from chlorofluorocarbons, used in thermal insulation of refrigerators, as

they are nontoxic to the environment. Most notably, Cherenkov counters in Che-

renkov radiators (Cantin et al. 1974) were made from silica aerogels. Another

crucial aspect of silica aerogels is their extremely low density for a solid, which

can be as low as only three times that of air at 0.003 g/cm3. Such a low density

results in dramatic weight savings when silica aerogels are employed in

nanocomposites or other monolithic structures. This extreme porosity also allows

silica aerogels to be utilized for nanoparticulate sorption, entrapment, storage, and

release (Aegerter et al. 2011). Other structural features of silica aerogels in the

nanoscale include self-similar patterns known as fractals, where aerogels display

significant geometrical similarity regardless of viewing distance. Such fractal

features can be characterized through the parameter known as the fractal dimen-

sion measured experimentally using a variety of methods such as small-angle

neutron scattering (SANS) spectroscopy, adsorption of molecules of different

cross-sectional areas, or small- or ultrasmall-angle x-ray scattering (SAXS/

USAXS).

Currently, there is a great proliferation of silica aerogels as thermal insulators

due to large-scale commercial production, generally as granular beads (Herrmann

et al. 1995; Cabot-Corp. 2011; Jelle et al. 2011). This granular form allows silica

aerogels to be embedded in other materials as nanocomposites and fillers to

customize the thermal and optical properties for specific applications including

passive solar windows (Wittwer 1989), cryogenic thermal insulation systems on

space launch vehicles (Fesmire 2006; Jones 2006), and thermal insulation of

windows (Rubin and Lampert 1983; Duer and Svendsen 1998). Theoretical calcu-

lations found that the thermal conductance of a window using just 5 mm thick

aerogel insulation is potentially halved, a reduction that is much larger than that

attainable by double-glass windows (Rubin and Lampert 1983). By ensuring the

Rovers are kept at relative steady temperatures in spite of the 100 �C variations in

temperatures on the surface of Mars, silica aerogels also played an important role in

the ongoing exploration of the planet Mars by the Mars Rovers, Spirit and Oppor-

tunity, launched in 2003 (Jones 2006).

4.2 Types of Aerogels

The three most established and prevalent types of aerogels, namely, silica aerogel,

alumina aerogel, and carbon aerogel, have been reported in the literature. Table 4.1

compares different properties of these aerogels.
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4.2.1 Alumina Aerogel

Alumina-based ceramics, in addition to its relatively high strength, offer better

thermal and chemical stability. These non-silica aerogels are notably weak and

fragile in monolithic form. It is especially difficult to prepare uncracked monoliths

of pure alumina aerogels that are robust and moisture stable. However, by using a

two-step sol–gel process, strong stable monolithic and high porosity alumina

aerogels can be produced (Poco et al. 2001). Monolithic alumina aerogels could

be used separately or added to other thermal protection materials to make compos-

ites with superior thermal resistance properties. Alumina aerogels are also used as

catalysts for NO reduction with C3H6 (Hirashima et al. 1997).

4.2.2 Carbon Aerogel

Carbon aerogels are promising materials which can be electrodes for high-

performance capacitors and batteries (Fu et al. 2003). They are nanoporous mate-

rials with controllable structural properties, such as low mass densities, high surface

areas, and continuous porosities. Moreover, they offer the possibility to incorporate

metallic species in the carbon framework. In the last decade, many efforts have

been devoted to increase the graphitization of carbon aerogels in order to enhance

their electrical conductivity. It was reported that transition metals incorporated into

the carbon aerogels structure seem to be the best catalysts for graphitization of

carbon aerogels.

Table 4.1 Comparison of different types of aerogels (Steiner 2015)

Parameter

Alumina aerogel

(Poco et al. 2001)

Carbon aerogel

(Cotet et al. 2007)

Silica aerogel

(Tillotson and

Hrubesh 1992)

Class and composition Metal oxide (Al2O3) Carbon (C) Silica (SiO2)

Density range (kg/m3) 30–100 20–500 1.1–65.0

Surface area (m2/g) 150–370 600–800 500–950

Primary particle size (nm) – 3.0–20 2.0–3.0

Average pore size (nm) – 7.0–20.0 20

Thermal conductivity at

room temperature (W/mK)

29 120–320 0.016–0.03

Young’s modulus (MPa) 0.55 (at 0.037 g/cm3) – 0.05–400
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4.2.3 Silica Aerogel

Silica aerogels (see Fig. 4.1) are marked with properties, such as high-specific

surface area, high porosity, low density, high thermal insulation value, ultralow dielec-

tric constant, and low index of refraction. Monolithic silica aerogel has been used

extensively in high energy physics in radiation detectors. Other application of silica

aerogels are shock wave studies at high pressures, inertial confinement fusion, radio

luminescent devices, and micrometeorites (Soleimani Dorcheh and Abbasi 2008).

Another area in which silica aerogels are being applied is in solar architecture, as

transparent insulation. Silica aerogel readily allows the passage of solar radiation

into the solar panel but prevents the heat which is generated in the solar panel from

being dissipated. Furthermore, the transparent material allows through light as well.

Silica aerogel is hydrophobic, which keeps it free from atmospheric moisture. By

holding air in its micron-sized pores, silica aerogel makes an excellent insulator

thermally, electrically, and acoustically. The authors have used it as a core filler in

various composite panels, as seen in Fig. 4.2, either as the granules or as blocks with

certain binders.

Fig. 4.1 Silica aerogel granules (Sachithanadam 2015)

Fig. 4.2 (a) Granular core filler (Joshi and Xu 2010) and (b) lightweight aerogel blocks

(Sachithanadam 2015)
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4.3 Aerogel Porosity and Properties

The porous structure is an integral feature of an aerogel produced during the

synthesis process. Gel preparation is the first step of aerogel production (Soleimani

Dorcheh and Abbasi 2008). To obtain the silica gel, the sol–gel process has to be

carried out. The sol is prepared by the addition of a catalyst to a silica solution. One

of the common types of silicon derivatives used is tetramethoxysilane (TMOS). The

solvent is usually alcohol or acetone. The next step is the addition of a catalyst

solution to the sol–gel to carry out the hydrolysis process. There are three different

catalyst methods, namely, acid catalyst, base catalyst, and two-step catalyst

methods.

4.3.1 Surface Nanopores and Their Formation

Acid catalysts generally produce linear or randomly branched chains. Acid cata-

lysts used are HCL, H2SO4, HNO, HF, etc. The lower the PH of the sol, the longer it

will take for the sol to gel. Base catalysts generally form a network that contains

uniform particles in the sol. Base catalyst used is dilute ammonia. Pore volume

obtained by using base catalyst is quite large. In the two-step catalyst process, first,

an acid, e.g., HCL, is added to the sol followed by a second step addition of

NH4OH. The addition of the base NH4OH increases the rate of condensation and

reduces gelation time. Generally acid catalyzed hydrolysis and condensation forms

gels that have weaker branches and have more microporous structure. In the base

and two-step process, cross-linking is increased resulting in lesser microporosity.

Additives like polyethylene glycol (PEG) can be added to the sol to control pore-

size and mechanical properties. Aging of the wet gel is carried out to further

enhance the mechanical properties for aerogel production. It was found that aging

processes resulted in stronger and stiffer wet gels; however, a maximum strength

and stiffness was observed after a certain aging time (Strøm et al. 2007). Drying of

the gel is one of the most critical steps in production of aerogel. This is the process

whereby liquid within the gel is removed, leaving behind the cross-linked silica

network structure. Capillary pressure affects the drying of the gel, and capillary

tension developed during the drying process leads to damage to the pores of the gel.

This is unavoidable if drying is done at ambient temperature and pressure

(Soleimani Dorcheh and Abbasi 2008).

To reduce the capillary tension thus protecting the network pore structure,

supercritical drying method has to be used. Using supercritical drying, liquid in

the pore is extracted above the critical temperature and pressure of the pore liquid.

With supercritical drying, there is the elimination of the liquid vapor interface and

therefore no capillary pressure is present. There are two methods of supercritical
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drying: the high-temperature supercritical drying (HTSCD) and low-temperature

supercritical drying (LTSCD). The HTSCD is a three-step process:

1. Wet gel containing solvent is placed in an autoclave. Temperature in the

autoclave is slowly increased. Both the temperature and pressure are increased

above critical points of the fluid in the gel and held constant for some time.

2. Fluid in the gel is then vented with the temperature being held constant. Pressure

will decrease slowly.

3. Upon reaching the ambient pressure, the autoclave is allowed to cool to room

temperature. Using this method, the liquid vapor phase boundary is not crossed

at any time, and there is the elimination of capillary pressure problem. The silica

aerogel structural network is not damaged in the drying process.

In LTSCD, before the drying process is carried out, the liquid in the gel is

exchanged with another solvent that has a critical temperature and pressure closer

to the ambient pressure and temperature. Liquid CO2 is used to replace the liquid in

the gel. Using liquid CO2, LTSCD can be carried out at a temperature of less than

40 �C and a pressure of less than 80 bar. Here the gel with the solvent is placed in

the autoclave and sealed. Liquid CO2 is pumped into the autoclave at a temperature

between 4 and 12 �C. Pumping is stopped when pressure reaches 100 bar. Outlet

valve is open to allow for solvent that had been removed by the liquid CO2 in the gel

to be vented out. When all the solvent has been vented out, outlet valve is closed.

The temperature is increased to 40 �C. Steps 2 and 3 are similar to that of the

HTSCD method. The difference is that aerogels produced using LTSCD are

hydrophilic.

4.3.2 Pore Structure

Most aerogels have pore diameter of between 2 and 50 nm. Pore sizes of this range

are termed “mesopores.” Aerogels have an open-pore structure and pores are

interconnected. For open-pore structures, pores are “open” to fluid flow and fluids

are able to travel from one pore to another and eventually flow through the whole

structure (Gibson and Ashby 1999). Several methods have been employed in

examining the porosity and pore structure by various researchers. The most com-

monly used method is the nitrogen adsorption/desorption technique or BET method

(Xu et al. 2007; Ye et al. 2010). High-resolution scanning electron microscopy

(SEM) and transmission electron microscopy (TEM) allow for direct examination

of aerogel structure and provide estimation of the pore sizes (Moner-Girona

et al. 1999; Rao et al. 2003; Xu et al. 2007). Lesser known methods of character-

izing the pore structure such as ultrasmall-angle X-ray scattering (USAXS) (Reim

et al. 2004) and atomic force microscopy (AFM) (Borne et al. 1995) have also been

used by several researchers.
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4.3.3 Properties of Silica Aerogel

Here we will briefly review the pertinent properties of silica aerogel (SA) which

have made it of such immense interest to the materials research community.

4.3.3.1 Density

Density is an essential physical property of SAs. Two terms are used in character-

izing the density of aerogels: bulk density and skeletal density. Bulk density (ρb) is
defined as the ratio of aerogel’s mass to its volume. The skeletal density (ρs) refers
to the density of bulk solid of the material the aerogel is made of. The pore volume

and porosity are related to ρb and ρs by

Pore Volume
cm3

g

� �
¼ 1

ρb
� 1

ρs

� �
ð4:1Þ

Porosity ¼ 1� ρb
ρs

� �
� 100 % ð4:2Þ

4.3.3.2 Optical Properties

SAs are highly transparent for a porous material. This is due to the nanoscaled

microstructure of aerogels compared to the wavelength of light (Pajonk 1998). The

transparency of the aerogels can be controlled at the hydrolysis and condensation

stages of the process through careful setting of parameters (Pajonk 1998).

4.3.3.3 Hydrophobicity

SAs can be either hydrophilic or hydrophobic. Both characteristics of the aerogels

depend vastly on the precursors, solvents, drying methods, and silylating agents

used. Hydrophilic aerogels due to its water-absorbing nature and subsequent col-

lapse of its solid fractal component were rarely used, till recently with growing

interest in drug delivery systems especially ketoprofen and griseofulvin (Smirnova

et al. 2004). Thus, most of the aerogels in applications are hydrophobic. As

mentioned previously, SA will lose its hydrophobic qualities at above 350 �C or

after a prolonged period of time. This process of oxidation revert the aerogels back

to its hydrophilic state. The thermal stability of aerogels in terms of hydrophobic

degradation can be estimated by means of thermogravimetric and differential

thermal analysis (TGA–DTA).
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4.3.3.4 Thermal Conductivity

Thermal conductivity, λ, is the property of a material to conduct heat that is

primarily governed by the Fourier’s Law of heat conduction. SAs have unique

properties resulting from the sol–gel method producing extremely low-density

transparent solids having small pore size that has extremely high thermal resistance.

When evacuated under partial vacuum (0.1 bar), the effective thermal conductivity

is reduced by a factor of 3 to about 0.007 W/m-K at 280 K (van Bommel

et al. 1997). Reim et al. (2004) studied the thermal and optical properties of the

SA granules as compared to the monolith SA, noting the similarity in the reduction

of gaseous conductivity at 0.1 bar. Typically, the thermal conductivity of SA

granules ranges from 0.017 to 0.024 W/(m-K) as highlighted by Schmidt and

Schwertfeger (1998). Measuring the individual mode of thermal transport, that is,

conduction, convection, and radiation, can be difficult as each mode is

interdependent on the other. Total thermal conductivity measurements are usually

done to gage the thermal conductivity of the SAs.

4.3.3.5 Modulus and Strength

Most published literature analyzed the elastic modulus of SA by drawing inspira-

tion from the cellular solid models. For example, Ashby and Gibson describe the

open cellular foam model compressive modulus to follow power-law dependence

on the relative density as shown in Eq. (4.3) where C and μ are geometric constants

that depend on the topological features and microstructure undergoing cell wall

bending as the dominant deformation (Gibson and Ashby 1999).

E

Es

� �
¼ C

ρ

ρs

� �μ

ð4:3Þ

4.4 Numerical Characterization of Aerogel Structures
and Properties

Various numerical characterizations of the mechanical properties of silica aerogels

were also performed, where the focus was on detailed mimicry of the silica

aerogels’ porosity and fractal features. To form fractal structures from dense

amorphous silica, Kieffer and Angell (Kieffer and Angell 1988) employed molec-

ular dynamics (MD) simulations together with an expansion scheme dubbed neg-

ative pressure rupturing by the authors, and the resulting structures had fractal

dimensions reminiscent of experimental porous silica. The same expansion scheme

was employed by Nakano et al. (1994) with the Vashishta interatomic potential
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(Vashishta et al. 1990) to determine structural correlations such as the internal

surface area, pore surface-to-volume ratio, pore-size distribution, fractal dimension,

correlation length, and mean-particle size as a function of aerogel density. Subse-

quently, a different method of expanding, heating, and quenching dense amorphous

silica was developed by Murillo et al. (2010) to characterize the mechanical

properties of silica aerogels. In comparison with experimental results, this method

achieved a good fit for the elastic moduli but not the strength. Methods of signif-

icantly greater complexity and computational intensity can be utilized to model

silica aerogels (Pohl et al. 1995; Beckers and de Leeuw 2000; Bhattacharya and

Kieffer 2005; Kieffer and Bhattacharya 2008), but scaling these methods to large

simulations are challenging as the computational costs are too prohibitive. An

example of this is simulations of sol–gel synthesis in an aqueous environment by

Bhattacharya and Kieffer (2005), through a reactive force field in MD with charge

transfer.

To determine the effects of silica aerogels in nanocomposites, the numerical

methods detailed above could potentially be utilized, or other methods need to be

derived to accurately reproduce silica aerogel’s thermal features, such as their

extremely low thermal conductivity, because the main focus of previous studies

were on the geometrical, mechanical, and chemical properties of silica aerogels.

Appropriate MD models have been formulated by the authors (Ng et al. 2012; Lei

et al. 2013; Yeo et al. 2013) across a wide range of densities for fast and reasonable

reproduction of the geometrical, mechanical, and thermal properties of bulk exper-

imental porous silica aerogel. It will be demonstrated that differing methods of

negative pressure rupturing first introduced by Kieffer and Angell (1988), as well as

the heating, expanding, and quenching scheme first proposed by Murillo

et al. (2010), will result in dramatic variations in thermal conductivities obtained.

These are modeled using the van Beest–Kramer–van Santen interatomic potential

(van Beest et al. 1990; Kramer et al. 1991) and a re-parameterized Tersoff potential

(Munetoh et al. 2007), respectively. Each model’s shortcomings and potential

improvements will be discussed to establish the most accurate model in terms of

the thermal conductivity.

The thermal transport mechanisms in aerogels have been characterized experi-

mentally, and it was determined that separate components of gaseous, solid, and

radiative thermal conductivity constitute the total thermal conductivity of mono-

lithic silica aerogels (Lu et al. 1995; Heinemann et al. 1996; Zeng et al. 1996; Wei

et al. 2011), and the coupling between these modes were negligible, together with

non-convection of heat by gases within the pores (Lu et al. 1995). The extremely

low solid thermal conductivity of silica aerogels was also found to be due to strong

restrictions in the movement of local excitations within the aerogel’s backbone due
to large amounts of pores. The solid thermal conductivity was characterized as a

function of density, such that

λs ¼ Cλρ
ζ ð4:4Þ
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where particle connectivity within the aerogel significantly influences the factor Cλ,

and the exponent, ζ, was approximately 1.6 for silica aerogels with densities, ρ,
between 0.3 and 1 g/cm3 (Fricke 1988).

In this chapter, classical all-atom molecular dynamics is utilized to investigate

silica aerogel’s thermal properties, where the construction of the aerogel structures

is realized through different schemes. Two simulation steps are needed: generation

of percolated silica aerogel structures at various densities via either negative

pressure rupturing or an expand, heat, and quench method, followed by reverse

nonequilibrium molecular dynamics to determine their thermal conductivities.

4.4.1 Molecular Dynamics: Theory and Formulation

To fully model numerous physical phenomena, more than one order of time or

length scales are typically needed with four main classifications as identified in

Fig. 4.3. For instance, ab initio methods of quantum mechanics deal with minuscule

length scales smaller than a few angstroms, while finite element methods (FEM),

computational fluid dynamics (CFD), and continuum elasticity (CE) deal with

phenomena that occur beyond the order of microns.

Bridging these scales is molecular dynamics (MD), where simulations can span

time scales between picoseconds to a few microseconds, together with length scales

of a few angstroms to several microns. As atomistic interactions in MD simulations

are treated with empirical interatomic potentials, MD naturally incorporates

anharmonic atomic vibrations and interactions. This is vital to our study with

respect to modeling nanoscale atomic heat transport effectively and efficiently.

Moreover, analytical solutions for classical many-body problems are generally not

available as the complexity of the solutions rapidly escalates with increasing

numbers of atoms. MD simulation is capable of employing computational power

Fig. 4.3 The broad range

of time and length scales

that can be modeled with

varying computational

methods
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that is currently swiftly increasing to provide meaningful solutions of atomistic

behaviors without relying on experimental systems. These capabilities make MD an

imperative computational tool in many fields of science, especially in areas of

materials science, physics, and biochemistry (Allen and Tildesley 1989; Sadus

1999; Frenkel and Smit 2002; Rapaport 2004; Shakouri et al. 2014; Cheng

et al. 2015).

4.4.1.1 Interatomic Interaction Potentials

MD is the numerical embodiment of Newtonian, Eulerian, Hamiltonian, and

Lagrangian analytical mechanics. For example, Newton’s second law is exempli-

fied in the simplest case of hard spheres moving at constant velocity and experienc-

ing perfectly elastic collisions (Alder and Wainwright 1957, 1959). More intricate

systems can be treated with empirical mathematical functions to model the inter-

actions between pairs, triplets, and even groups of atoms. These mathematical

functions are known as interatomic interaction potentials, and they are typically

functions of individual atomic coordinates, such that the total potential energy can

be given by

U ¼
X
i

U1 rið Þ þ
X
i

X
j>i

U2 ri; rj
� �þX

i

X
j>i

X
k>j>i

U3 ri; rj; rk
� �þ . . . ð4:5Þ

where i, j, and k are individual atom indices. The forces corresponding to a potential

is written as

f ¼ �∇U rð Þ ð4:6Þ

and the equations of motions are determined from Newton’s second law

mri ¼ f i ¼
XNm

j

f ij ð4:7Þ

where m is the atomic mass of the atom under consideration. A possible choice of

pair potential functions is the well-known “12-6” Lennard-Jones (LJ) potential

(Jones 1924; Rapaport 2004), expressed as

U rij
� � ¼ 4εij

σij
rij

� �12

� σij
rij

� �6
� 	

,


for rij < rc

0 ,


for rij � rc

8<
: ð4:8Þ

where rij is the separation between atoms i and j and the parameter εij denotes the
interatomic interaction strength. There are no interactions if σij is equivalent to rij,
and similarly so if rij exceeds the interaction cutoff distance rc.
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For the purposes of modeling silica, we examined two different interatomic

potentials, namely, the van Beest–Kramer–van Santen (BKS) (van Beest

et al. 1990; Kramer et al. 1991) potential and the Tersoff potential (Tersoff 1988)

re-parameterized to model silica (Munetoh et al. 2007). Both of these potentials are

implemented on the Large-scale Atomic/Molecular Massively Parallel Simulator

(LAMMPS) (Plimpton 1995), an open-source classical molecular dynamics code.

The BKS potential is expressed as

U rij
� � ¼ qiqj

rij
þ Aijexp �Bijrij

� �� cij

r6ij
ð4:9Þ

where qi and qj are the atomic charges and constants Aij, Bij, and Cij varies between

atom pairs i and j, as defined by van Beest et al. (1990). Numerous MD studies in

the literature have used the BKS potential to model silica to study thin films,

nanowires, nanoparticles, and bulk silica (Horbach and Kob 1999; Horbach

et al. 1999; Jund and Jullien 1999; Shell et al. 2002; McGaughey and Kaviany

2004; Mahajan et al. 2007; Coquil et al. 2011). However, the BKS potential alone

was found to be unable to handle the simulation process of quenching silica at high

temperatures to obtain amorphous silica, as uncontrollable dynamics can be caused

by atoms coming together too closely at these temperatures (Guissani and Guillot

1996; McGaughey and Kaviany 2004; Mahajan et al. 2007). To maintain cohesion,

the BKS potential can be modified with an additional “24-6” LJ potential to obtain

(Guissani and Guillot 1996)

U rij
� � ¼ qiqj

rij
þ Aijexp �Bijrij

� �� cij
r6ij

þ 4εij
σij
rij

� �24

� σij
rij

� �6
" #

ð4:10Þ

with parameters from McGaughey and Kaviany (2004).

The Tersoff potential’s mathematical form is

U ¼
X
i

Ui ¼ 1

2

X
i 6¼j

Vij ð4:11Þ

Vij ¼ f c rij
� �

VR rij
� �þ bijV

A rij
� �� � ð4:12Þ

where the function VR and VA are repulsive and attractive pair potentials, respec-

tively; fc is a smoothly varying cutoff function; bij is a monotonically decreasing

function dependent on the coordination of atoms i and j. Details and parameters of

this potential were previously reported by Munetoh et al. (2007). This potential has

been used to model interactions between amorphous silica and CNTs and

heterojunctions between crystalline silicon and amorphous silica, and we will

also show subsequently that it reproduces the vibrational density of states (vDOS)

of bulk amorphous silica (Laughlin and Joannopoulos 1977; Ong and Pop 2010;

Chen et al. 2012).
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4.4.1.2 Thermal Conductivity Simulations

An equilibrium method can be used in MD simulations to determine the thermal

conductivity of materials through the perturbation response of a system (Allen and

Tildesley 1989; Mahajan et al. 2007), expressed as

λ ¼ 1

VkBT
2

ð1
0

j ez tð Þj ez 0ð Þ �
dt ð4:13Þ

However, the convergence of this method is heavily reliant on very long

simulation times (Sellan et al. 2010). A simpler approach can be utilized using

Fourier’s Law, given by

λ ¼ je

dT=dx
ð4:14Þ

To do so, the reverse nonequilibrium molecular dynamics (RNEMD) method

(Muller-Plathe and Bordat 2004) can be applied by imposing a heat flux across the

simulation cell. Firstly, atoms are binned into an even number of slabs in the direction

of heat transfer. Secondly, the first slab is designated as the cold slab, while the

middle slab is designated as the hot slab. Figure 4.4 illustrates this concept.

Enforcement of these hot and cold conditions requires periodic numerical inter-

changes of the energy of the atom with the highest kinetic energy within the cold slab

with that of the atom with the lowest kinetic energy within the hot slab. Over time, a

temperature gradient in the system is induced by energy flux from the more energetic

middle slab to the less energetic end slabs. This energy flux can be written as

je ¼ 1

2tA

X
Nswap

mi

2
v2hot � v2cold
� � ð4:15Þ

Fig. 4.4 Reverse nonequilibrium molecular dynamics (RNEMD) represented schematically,

where the direction of heat flux is depicted by arrows. The periodic image of the cold slab is

represented by dotted lines
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where t is the total simulation time; A the cross-sectional area of the simulation cell,

orthogonal to the direction of heat flux; Nswap the total number of swaps; mi the

atomic mass; and vhot and vcold the velocities of the hot and cold atom, respectively.

Sampling of the simulation cell’s temperature profile through time averaging can be

performed at steady state:

3NslabkBTslab

2
¼ 1

2

XNslab

i

miv
2
i

* +
ð4:16Þ

where Nslab is the number of atoms in the slab, Tslab the temperature of the slab, and

kB the Boltzmann’s constant. Figure 4.5 depicts a typical temperature profile

obtained at steady state, and linear regression can be performed on slabs that

show linear variation of temperature with distance as illustrated in Fig. 4.6. Once

the heat flux and temperature gradient are known, Fourier’s Law can be used to

determine the thermal conductivity.

Fig. 4.5 A typical plot of the temperature distribution determined from RNEMD

Fig. 4.6 The temperature gradient is averaged by linear regression in the region displaying linear

response
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4.4.2 Numerical Generation of Aerogel Structures

To obtain silica aerogel’s percolated backbone, amorphous silica systems must be

prepared first by quenching β-cristobalite (Wyckoff 1963) linearly from 6000 to

300 K over 500 ps. The initial crystal lattice is depicted in Fig. 4.7.

We explored two different methods of generating porous aerogel structures in

our MD studies. The first method was dubbed negative pressure rupturing by

Kieffer and Angell (1988), where stepwise expansion of amorphous silica brought

the system to the percolation threshold. Instantaneous stretching of existing bonds

beyond 10–35% of their equilibrium at each expansion step ruptures these bonds

till the desired density is obtained. Subsequently, conjugate gradient minimization

was performed to bring the system to a local minimum-energy configuration, and

the system is thermalized at 300 K for another 15 ps to attain the final percolated

structure, as illustrated in Fig. 4.8.

The second method to generate porous silica is the expanding, heating, and

quenching scheme of Murillo et al. (2010). In this scheme, instantaneous expansion

of the same initial β-cristobalite lattice configuration brings the system to the

Fig. 4.7 Ideal

β-cristobalite is used as the

initial configuration, where

small black dots denote
oxygen atoms and big blue
dots denote silicon

Fig. 4.8 Negative pressure rupturing produced percolated aerogel structures at varying densities

of 2.17 g/cm3, 0.50 g/cm3, and 0.32 g/cm3 from left to right, respectively
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desired density, before it is heated and quenched from 3000 to 300 K over 350 ps to

produce aerogels in the density range of 0.3–1.0 g/cm3. An example of the final

equilibrated percolated state at a simulation cell volume of 5832 nm3 and a density

of 0.3 g/cm3 is displayed in Fig. 4.9.

4.4.3 Solid Thermal Conductivity of Silica Aerogels

Following the production of the aerogels at the desired density, their thermal

conductivity is determined through RNEMD as discussed earlier. All simulations

were fully periodic with a time step of 0.5 fs, and energies were swapped every

50 steps to impose the heat flux. Subsequent equilibration for 500 ps leads to a

linear temperature gradient and another 500 ps was ran to obtain time averages of

the results. Final averaging was performed for the thermal conductivity of each

sample in the x, y, and z directions.

4.4.3.1 Dense Amorphous Silica with BKS Potential

The thermal conductivity of dense amorphous silica is determined first to validate

the current MD simulation scheme. A system of 216 silicon atoms and 432 oxygen

atoms was quenched to obtain amorphous silica, and the thermal conductivity was

found to be approximately 1.20� 0.07 W/(m-K) using RNEMD, in excellent

agreement with previous MD results (Jund and Jullien 1999; Coquil et al. 2011).

The thermal conductivity for a larger system of 3000 atoms were also determined to

be 1.39 W/(m-K) at 300 K, close to the experimental value of 1.40 W/(m-K)

Fig. 4.9 The expanding,

heating, and quenching

scheme produced the

percolated aerogel

backbone at a density of

0.3 g/cm3
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(Weber 2002). This is in good agreement with studies investigating system size

effects on thermal conductivity (Huang et al. 2009; Coquil et al. 2011), where

thermal conductivity was found to increase with lengthening of the simulation cells,

independent of the cross-sectional area. These results are shown in Fig. 4.10. Their

results also indicated an overestimation of the thermal conductivity as the system

size continuously increase, leading to a plateau at 2.1 W/(m-K) (Coquil et al. 2011).

4.4.3.2 Silica Aerogel with BKS Potential

Negative pressure rupturing is applied on the system of 3000 atoms to produce

porous networks with densities ranging from 0.99 to 0.32 g/cm3 while preserving

axial connectivity. To determine the fractal dimension at each density using a

method proposed previously (Kieffer and Angell 1988), power-law fits were

performed on the total radial distributions (Le Roux and Petkov 2010) at the regions

that are varying linearly in the log-scale plot of the total radial distributions.

Figure 4.11 compares the fractal dimensions obtained by this method, which is in

good agreement with Kieffer and Angell (1988). The experimental values of the

fractal dimensions vary with aerogel processing conditions, being slightly higher at

2.2–2.4 under acidic and neutral conditions and lower under basic processing

conditions at approximately 1.8 (Woignier et al. 1990).

RNEMD was used to determine the thermal conductivity at each density as

shown in Fig. 4.12 with a power-law fit of the data, where thermal conductivity

Fig. 4.10 Amorphous silica’s thermal conductivity plotted with results of previously reported

data by Huang et al. (2009) and Coquil et al. (2011) for various system lengths at 300 K. S refers to
the cross-sectional area of the simulated samples in units of angstroms
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decreases linearly with decreasing density. Negative pressure rupturing reproduced

the same experimental observation of such large decreases in thermal conductivity

with decreases in aerogel density, being an order of magnitude lower in comparison

with dense amorphous silica at the aerogel density of 0.32 g/cm3. However, the

power-law fit produced a ζ value of 1.01 in the density range of 0.32–0.99 g/cm3, in

contrast with experimental values of 1.6 in the density range of 0.3–1.0 g/cm3

Fig. 4.11 Fractal dimensions increased with increasing density, in good agreement with results

from Kieffer and Angell (1988)

Fig. 4.12 Solid thermal conductivities of the simulated aerogel samples shows a power-law

variation with density

4 Effects of Nanoporosity on the Mechanical Properties and Applications. . . 115



(Fricke 1988). Furthermore, our results were an order of magnitude higher than the

experimental value of 0.01 W/(m-K) (Fricke 1988) at a density of 0.3 g/cm3. This is

likely to be due to the dependence of the aerogels’ thermal conductivity on their

processing conditions, such that sintered aerogels had a lower ζ value of 1.04 for a

density range of 0.4–1.6 g/cm3 with a prefactor Cλ of 0.58 (Jain et al. 2002). This

was in good agreement with our results. As the method of negative pressure

rupturing does not reproduce the actual sol–gel conditions, it is unable to reproduce

defects such as micro-cracks, impurities, and very broad pore-size distributions

found in experimental aerogels. These defects are significant factors that contribute

to the extremely low thermal conductivity as they scatter phonons significantly and

limit the mean free path. Jain et al. (2002) verified this experimentally, where

substantial amounts of defects were removed by aerogel sintering, leading to much

higher thermal conductivities and an almost linear variation with density. These

results are compared in Fig. 4.13.

This explanation is further reinforced through the calculated pore-size distribu-

tion (Bhattacharya and Gubbins 2006) of our simulated aerogel, as shown in

Fig. 4.14 for the lowest density of 0.32 g/cm3. The largest pore diameter that can

be represented at this density is in the order of less than 30 Å, significantly lower

than that found in experimental aerogels. The additional role that finite size effects

may have played, together with the fact that the BKS potential may be unsuitable

for modeling the thermal properties of amorphous silica, lead to an enhanced model

devised and validated using an expanding, heating, and quenching scheme as

discussed earlier, together with the re-parameterized Tersoff. This enhanced

model improved the representation of the experimental and theoretical thermal

properties of bulk experimental silica aerogel.

Fig. 4.13 Power-law fit of the present results in comparison with experimental data from Jain

et al. (2002) and Fricke (1988)
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4.4.3.3 Dense Amorphous Silica with Tersoff Potential

The thermal conductivity of amorphous silica is compared once more with exper-

imental results for validation purposes. RNEMD was used to determine the thermal

conductivities of amorphous silica of increasing system lengths, and the results

were plotted in Fig. 4.15 in comparison with results from previous theoretical

studies (Huang et al. 2009; Coquil et al. 2011) and with the BKS potential.

The same trend of increasing thermal conductivity with increasing system length

is observed, where the Tersoff potential slightly underestimates the experimental

value of 1.37–1.4 W/(m-K) for amorphous silica (Weber 2002) and plateaued at

1.10� 0.01 W/(m-K). In contrast, the BKS potential approximately plateaued at

values between 1.89� 0.12 W/(m-K) and 1.94� 0.09 W/(m-K), significantly over-

shooting the experimental value. Significantly higher values were reported by

previous MD studies in much smaller systems, as observed in Fig. 4.15. From

these results, it can be seen that major differences in the cross-sectional areas and

limited system length scales can cause finite size effects. To provide a better

characterization for thermal conductivities predicted by the Tersoff and the BKS

potential for bulk amorphous silica, the results can be extrapolated to an infinite

length scale. This extrapolation showed that the Tersoff potential considerably

improves upon the estimation of bulk thermal properties than the BKS potential

as plotted in Fig. 4.16, which shows the variation of the inverse of the thermal

conductivities with the inverse of the system lengths (1/λs vs. 1/L ) extrapolated to

zero. The inverse of the x-intercepts of each curve gave values of 2.13 W/(m-K) for

the BKS potential and 1.19 W/(m-K) for the Tersoff potential, which translates into

55% overestimation and 13% underestimation of the experimental value, respec-

tively. Clearly, the Tersoff potential is more desirable for better reproduction of

bulk thermal properties.

Fig. 4.14 At the lowest density of 0.32 g/cm3, the pore-size distribution is well below 30 Å
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The Tersoff potential is also capable of reproducing the vibrational density of states

(vDOS) of bulk amorphous silica. The vDOS is derived from the Fourier transform of

the velocity autocorrelation function (VACF) (Dove 1993), and it characterizes the

excitable phonon frequencies in amorphous silica. It has been shown that the vDOS of

amorphous silica has three distinct peaks near the frequencies of 10.5, 24.0, and

Fig. 4.15 Amorphous silica’s thermal conductivity plotted with results of previously reported

data by Huang et al. (2009) and Coquil et al. (2011) for various system lengths at 300 K. S refers to
the cross-sectional area of the simulated samples in units of angstroms

Fig. 4.16 To obtain estimates of the thermal conductivities for bulk amorphous silica, the inverse

of the thermal conductivities for amorphous silica systems are linearly extrapolated to zero using

the BKS and Tersoff potentials
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36.0 THz. Results from the Tersoff potential clearly shows these peaks as observed in

Fig. 4.17b, whereas the lower frequencies were smeared for the BKS potential as seen

in Fig. 4.17a, such that only the 36.0 THz peak is evident.

From these numerical data of the thermal conductivities and the vDOS of

amorphous silica, we can conclude that the BKS potential is far less suitable for

the thermal characterization of bulk amorphous silica than the Tersoff potential.

4.4.3.4 Silica Aerogel with Tersoff Potential

Next, the heating, expanding, and quenching scheme described earlier was used to

produce the porous network of silica aerogels together with the Tersoff potential.

The system is cubic with 52,728 atoms and the densities ranged from 0.3 to 1 g/cm3.

The fractal dimensions were determined and plotted in Fig. 4.18 in comparison with

results from previous theoretical studies (Nakano et al. 1994; Murillo et al. 2010),

where good agreement was obtained.

From RNEMD, the thermal conductivity at each density was determined and

plotted on a log scale in Fig. 4.19, in comparison with results from the BKS

potential and from previous experimental studies (Fricke 1988; Ng et al. 2012).

Fig. 4.17 Vibrational

density of states of

amorphous silica based on

(a) the BKS potential and

(b) the Tersoff potential
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In contrast with the BKS potential, results from the Tersoff potential showed a

nonlinear reduction in the thermal conductivity with decreases in density.

The lowest value obtained was 0.05� 0.003 W/(m-K) at the lowest density of

0.3 g/cm3, and this value is close to 3 times lower than that obtained from the

BKS potential. Furthermore, the ζ value of 1.61 is in excellent correlation with

experimental results of 1.6 in the same density range of 0.3–1.0 g/cm3 (Fricke 1988)

which is a significant improvement over the ζ value of 1.01 obtained from the

Fig. 4.18 Fractal dimensions increased with increasing density, in good agreement with results

from Murillo et al. (2010) and Nakano et al. (1994)

Fig. 4.19 Thermal conductivities of the simulated aerogel samples show power-law variations

with density, where the power-law exponent from the Tersoff potential is in excellent agreement

with experimental results from Fricke (1988)
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BKS potential. An added advantage was that the current model can produce

aerogels with densities below 0.1 g/cm3 without any adverse effects.

The main downside observed for the current model was that the overall thermal

conductivities at each density was 5 times higher than the experimental value as

seen in Fig. 4.19. This can be explained by deficiencies in the pore-size distribution

of the current model. Through PSDsolv (Bhattacharya and Gubbins 2006), the pore-

size distribution was determined for three systems with increasing lengths of

69, 180, and 277 Å. The largest pore sizes accessible through our simulations

increased in tandem with increasing system length scales from 20.75 to 32 Å in

diameter as shown in Fig. 4.20.

Fig. 4.20 At the lowest

density of 0.3 g/cm3 for

three different system

length scales of (a) 69 Å,
(b) 180 Å, and (c) 277 Å,
pore sizes are still

significantly smaller than

bulk experimental aerogels
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However, realistic pore-size regimes in bulk experimental silica aerogels can be

in the order of microns, a regime inaccessible to fully atomistic MD simulations as

the maximum pore sizes accessible is increasing at a decreasing rate. A conse-

quence of this is that the largest pore diameters only increased by approximately

50% given a fourfold increase in system length. In order for realistic pore-size

regimes to be accessible, it would require MD simulations with tens of millions of

atoms for system sizes that are 1000–10,000 times larger than our current model.

While such an endeavor may be deemed feasible with the current supercomputing

facilities available and sheer brute force, pure MD simulations may not be the best

solution given the computational intensity. It is likely that more meaningful results

can be obtained in a reasonable manner through multiscale modeling techniques

which utilizes the current model to characterize the thermal properties of silica

aerogel in the nanoporous regime.

4.5 Conclusions

In this chapter, we reported the molecular dynamics modeling and simulation of

silica aerogels used in nanocomposites to reproduce their thermal properties. The

BKS potential augmented with a “24-6” Lennard-Jones potential was used to

validate the model through determination of the thermal properties of nonporous

amorphous silica and the results showed reasonable agreement with previously

reported studies. Negative pressure rupturing was applied to create the porous

backbone of silica aerogels of decreasing densities and the fractal dimensions

were found to be comparable to previously reported studies. RNEMD was applied

to determine the thermal conductivities, and it was found that the variation of

thermal conductivity with density correlated very well with bulk sintered aerogel

with values in the same order of magnitude. It does not compare as well with bulk

as-prepared aerogels as our results were more than an order of magnitude higher.

The pore-size distributions were determined and maximum pore sizes were found

to be less than 3 nm. Together with the fact that defects such as micro-cracks were

absent in the model, it explained the lack of congruence of our results with bulk

as-prepared aerogels. Finite size effects could also be a significant factor as the

predicted thermal conductivity of amorphous silica was found to increase with

increasing system size.

To remedy these issues, an enhanced model was devised, using a combination of

the Tersoff potential with an expanding, heating, and quenching scheme. It was

determined that the Tersoff potential was more capable of reproducing the thermal

properties of amorphous silica when compared to the BKS potential as the Tersoff

potential provided a slight 13% underestimation of bulk amorphous silica’s thermal

conductivity, whereas the BKS potential significantly overestimated by 55%.

Additionally, it was verified that the vDOS from the Tersoff potential was more

comparable to the theoretical and experimental results of amorphous silica’s vibra-
tional spectra. Fractal dimensions of aerogels derived from this enhanced model
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showed good agreement with experimental studies for densities ranging from 0.3 to

1 g/cm3. This model showed nonlinear decrease in thermal conductivity with

decreasing density, in stark contrast to the linear variation determined in the

previous model. While the magnitudes of thermal conductivities were still five

times higher than those determined experimentally, the power-law variation was in

excellent agreement. It was verified that this model was also unable to breach larger

pore-size regime by analysis of the pore-size distribution; hence, it was proposed

that multiscale modeling methods should be applied for future characterizations.
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Chapter 5

Smart Fuzzy Fiber-Reinforced Piezoelectric
Composites

Manas C. Ray

Abstract In this chapter analytical micromechanics model of a novel smart fuzzy

fiber-reinforced composite (SFFRC) has been derived. The novel constructional

feature of such SFFRC is that the existing vertically reinforced 1–3 piezoelectric

composite has been hybridized by radially growing carbon nanotubes (CNTs) on

the surface of the cylindrical vertical piezoelectric fibers. The model predicts that

the effective in-plane piezoelectric coefficient and the elastic properties of such

SFFRC are significantly improved over those of the existing 1–3 piezoelectric

composite without reinforced with CNTs.

5.1 Piezoelectric Effects

Piezoelectric effect is an electromechanical coupling phenomenon exhibited by

non-centrosymmetric dielectric materials. These materials do not possess inversion

symmetry. This means that the inversion of the atomic positions alters the original

crystalline structure, and different equilibrium positions of charges are associated

with different polarization. Such polarization is called the piezoelectricity. Two

types of piezoelectric effects exist in the piezoelectric materials. One of the effects

by virtue of which the conversion of the mechanical energy into the electric energy

occurs when the piezoelectric materials are deformed upon mechanical stimulus is

called the direct piezoelectric effect. The other effect is called the converse piezo-

electric effect by virtue of which piezoelectric materials are deformed due to the

application of the electric field resulting in the conversion of the electrical energy

into the mechanical energy. To exhibit piezoelectric effect, piezoelectric materials

must be poled. Normally, a piezoelectric material has electric dipoles which are

randomly oriented. When it is heated above a certain temperature called the Curie

temperature and is subjected to a very strong electric field, the electric dipoles
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reorient themselves and are aligned relative to the electric field. Such process is

called poling. If the dipoles maintain their aligned orientations after cooling, the

material is said to be poled and exhibits piezoelectric effect. Let four charges be in

equilibrium on a straight line as shown in Fig. 5.1. Let the magnitudes of the

first and the fourth charges be “þq” and “�q” while the second and the third charges
be “�2q” and “þ2q.” The first and the fourth charges are “2a” apart, while the

distance between the second and the third charges is “a.” The locations of the

charges are symmetric about the center, and thus, the charges are in equilibrium,

but they are not centrosymmetric as the 180� rotation of this system of charges

causes a different system of charges. The net dipole moment or the polarization of

this system of charges is obviously zero. Now if the first and the fourth charges are

displaced toward the center of the charges by an amount “x” due to an applied force
F, this system of charges will exhibit a net polarization of amount “2qx.” This

displacement “x” is treated as the measure of mechanical deformation due to the

application of mechanical energy. Thus the non-centrosymmetric system of charges

exhibits electric polarization upon mechanical stimulation. On the other hand, if this

system of charges is subjected to an electric field E, the charges will be displaced
resulting in the conversion of the electrical energy into the mechanical energy.

5.2 Introduction to Smart Fuzzy Fiber-Reinforced
Composite

In the quest for developing very lightweight high-performance flexible structures, a

concept has emerged for developing the structures with self-controlling and/or self-

monitoring capabilities. Expediently, utilizing the piezoelectric effects, Forward

(1981) first attempted to demonstrate the feasibility of the effectiveness of the

piezoelectric actuator to damp out the vibrations of a cylindrical fiber glass mast.

Subsequently, Bailey and Hubbard (1985), (1987), Crawley and Luis (1987), and

Im and Atluri (1989) successfully reported that the patches of piezoelectric

a

+q -q+2q-2q

2a

a

+q -q+2q-2q

2(a-x)

+q -q+2q-2q

2(a-x)
E

FF

Fig. 5.1 Schematic

representation of

piezoelectric phenomena
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actuators being bonded with the host beams efficiently perform as the distributed

actuators of the host beams. Miller and Hubbard (1987) first demonstrated that a

layer of the piezoelectric material being integrated with a cantilever beam can act as

the distributed sensor of the host cantilever beam. When these distributed sensors

and actuators are coupled with the elements of the control systems such that the

distributed piezoelectric actuators can be activated with a proper control voltage,

the host structure attains the self-controlling and self-sensing capabilities. Such

flexible host structures possessing built-in mechanism for achieving self-

controlling and self-sensing capabilities are being customarily called as smart

structures. Since its inception, enormous research (Baz and Poh 1988; Ha

et al. 1992; Ray et al. 1994; Lin et al. 1996; Saravanos et al. 1997; Chee

et al. 1999; Varadarajan et al. 2000; Ray and Pradhan 2007; Sohn et al. 2009;

Ray and Faye 2009; Suresh Kumar and Ray 2012) on smart structures has been

going on for developing very light weight smart flexible structures.

The performance of the smart structures depends on the magnitudes of the

piezoelectric coefficients of the piezoelectric materials. The magnitudes of the

piezoelectric coefficients of monolithic polymer piezoelectric materials are very

low, while the monolithic piezoceramic materials are characterized with large

values of the piezoelectric coefficients. But the monolithic piezoceramic materials

such as PZT5, PZT5H, etc. are highly brittle and not conformable to the cylindrical

surface or vibrating surface of the host structures. Hence, these smart materials find

limitations in their use as distributed actuators. The conventional advanced fiber-

reinforced composites are composed of brittle fibers of high stiffness. Probably this

way of using high stiff brittle materials motivated the researchers to develop

piezoelectric composites using brittle piezoceramic fibers. One of the commercially

available piezoelectric composites (Smith and Auld 1991) is popularly known as

1–3 piezoelectric (PZC). In a lamina of vertically reinforced 1–3 PZC, the ceramic

piezoelectric fibers are vertically aligned across the thickness of the lamina. Such

1–3 PZC provides a wide range of effective material properties not offered by the

existing monolithic piezoelectric materials, renders anisotropic actuations, and is

characterized by good conformability and strength. However, this 1–3 PZC also

suffers from the drawback that its effective in-plane piezoelectric coefficient is

much smaller than its transverse effective piezoelectric coefficient. The in-plane

piezoelectric coefficient accounts for the performance of the piezoelectric actuator

for bending control of smart structures. The performance of the distributed actuator

made of such 1–3 PZC can be enhanced if the magnitude of its in-plane piezoelec-

tric coefficient can be tailored to an improved value.

Since the discovery of carbon nanotubes (CNTs) (Iijima 1991), researchers have

been carrying out extensive work (Treacy et al. 1996; Shen and Li 2004; Cheng

et al. 2009) to predict their effective material properties, and it has been revealed

that the CNTs are characterized with exceptionally high elastic properties. How-

ever, CNTs alone cannot be used for structural applications as they are difficult to

be aligned and prone to agglomeration. To exploit the excellent elastic properties of

CNTs, a great deal of research has been devoted to the development of high-

performance nanocomposites using CNTs as reinforcements (Thostenson and
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Chou 2003; Griebel and Hamaekers 2004; Odegard et al. 2003; Seidel and

Lagoudas 2004; Jiang et al. 2009; Shadlou et al. 2011). For structural applications,

recent research focuses on improving the effective properties of the existing

advanced fiber-reinforced polymer composite by growing CNTs on the surfaces

of the fiber reinforcements. Bower et al. (2000) demonstrated the growth of aligned

CNTs on the substrate surface using microwave plasma-enhanced chemical vapor

deposition. Mathur et al. (2008) experimentally investigated that the flexural

strength and the modulus of the carbon fiber-reinforced composite can be improved

by growing CNTs on the surface of the carbon fiber. Zhang et al. (2008) produced

CNT arrays on the host aluminum silicate and the quartz fiber. Gracia et al. (2008)

fabricated a hybrid laminate in which the reinforcement is a woven cloth of alumina

fibers with in situ-grown CNTs on the surface of the fibers. They demonstrated that

both the mechanical and electrical properties of such a laminate are enhanced

because of CNTs grown on the surface of the alumina fibers. Recently, Kundalwal

and Ray (2011, 2012) derived micromechanics models for estimating all the

effective elastic coefficients of novel fuzzy fiber-reinforced composite (FFRC).

Chatzigeorgiou et al. (2012) also estimated the effective mechanical properties of

fuzzy fiber composite employing the composite cylinder method. Lanzara and

Chang (2009) designed and fabricated the piezoelectric ceramic discs coated with

vertically alignedCNTs. They demonstrated that the arrays of alignedCNTs can be

normally grown on the surface of the piezoceramic (PZT) disc.

The paper authored by Lanzara and Chang (2009) motivated the author to

presume that the PZT fibers may be coated with radially grown CNTs. Hence, in

order to further improve the effective in-plane properties of the existing 1–3 PZC,

Ray (2010) and Dhala and Ray (2015) delineated a concept of developing novel

SFFRC. The SFFRC is a smart hybrid piezoelectric composite in which the

piezoelectric fiber reinforcements are vertically aligned and CNTs are radially

grown on the surfaces of these piezoelectric fibers. This chapter is concerned

with the derivation of an analytical micromechanics model for estimating the

effective elastic and piezoelectric properties of this novel SFFRC. First an analyt-

ical micromechanics model of the existing vertically reinforced 1–3 PZC is

presented. How this model is augmented to derive the micromechanics model of

SFFRC is presented in the subsequent sections. Numerical results are presented to

demonstrate that the CNTs can improve the effective in-plane piezoelectric coef-

ficient of the existing 1–3 PZC.

5.3 Three-Dimensional Effective Properties of 1–3
Piezoelectric Composites

Figure 5.2 schematically illustrates a lamina made of the vertically reinforced 1–3

piezoelectric composite (PZC). Here the pattern “1–3” refers to the connectivity

pattern of the piezoelectric composite. In case of the pattern like “1–3,” the first
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digit represents the number of connectivity of the fiber reinforcement along the

principal material coordinate axes, while the second digit denotes the same of the

matrix phase (Newnham et al. 1978). It may be observed from Fig. 5.2 that the

piezoelectric fiber reinforcements are vertically aligned across the thickness of the

lamina. The matrix phase is a polymer material.

The top and the bottom surfaces of the lamina are electroded such that the

electric field can be applied across the thickness of the lamina. The orthogonal

principal material coordinate system (1� 2� 3) is considered in such a way that the

3-axis is aligned with the length of the fibers while 1- and 2-axes are aligned with

the length and the width of the lamina, i.e., transverse to the fiber direction. The

in-plane and vertical cross sections of the representative volume element (RVE) of
this 1–3 PZC are illustrated in Fig. 5.3. It is considered that the lamina of the 1–3

PZC shown in Fig. 5.2 is subjected to the electric field along the thickness of the

lamina only. Thus, the constitutive equations for the converse piezoelectric effect

(Ray and Pradhan 2007), exhibited by the piezoelectric material of the fibers, are

given by

σpf g ¼ Cp½ � 2pf g � epf gE3 ð5:1Þ

Piezoelectric fiberPolymer matrix

3

21

Fig. 5.2 Schematic

diagram of a lamina of

vertically reinforced 1–3

piezoelectric composite

3

Piezoelectric Fiber

1

2

1

Matrix

Piezoelectric Fiber

Matrix

Fig. 5.3 In-plane and

transverse cross sections of

the RVE of the 1–3

piezoelectric composite
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The constitutive relations for the matrix material are

σmf g ¼ Cm½ � 2mf g ð5:2Þ

In Eqs. (5.1) and (5.2), {σ}, 2f g, and [C] with superscript p or m represent the state

of stress, the state of strain, and the elastic coefficient matrix at any point in the

constituent phase, respectively, while {e} and E3 are the piezoelectric coefficient

matrix and the electric field along the thickness (i.e., 3-axis) of the lamina of the 1–3

PZC, respectively. Their explicit forms are

σrf g ¼ � σ r
1 σ r

2 σ r
3 σ r

23 σ r
13 σ r

12

� T
, 2rf g ¼ �2r

1 2r
2 2r

3 γ r23 γ r13 γ r12
� T

,

Cr½ � ¼

Cr
11 Cr

12 Cr
13 0 0 0

Cr
12 Cr

22 Cr
23 0 0 0

Cr
13 Cr

23 Cr
33 0 0 0

0 0 0 Cr
44 0 0

0 0 0 0 Cr
55 0

0 0 0 0 0 Cr
66

2
666666664

3
777777775
and epf g ¼

ep31
ep32
ep33
0

0

0

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
; r ¼ porm

ð5:3Þ
In Eq. (5.3), for the constituent phase denoted by r, σr1, σ

r
2, and σr3 represent the

normal stresses along the 1-, 2-, and 3-axes, respectively; σr23, σ
r
13, and σr12 are the

shear stresses; and Cr
ij is the elastic coefficient. Also, it may be noted that if the

applied electric field is applied along the 3-direction, the in-plane piezoelectric

coefficients ep31 and ep32 provide the measure of the in-plane actuations along the 1-

and 2-directions, respectively, while the piezoelectric coefficient ep33 accounts for

the measure of the transverse actuation. The existence of perfect bonding between

the fibers and the matrix phase in the RVE allows one to write the following

iso-field conditions (Aboudi et al. 2013):

σ pc
1

σ pc
2

2pc
3

σ pc
23

σ pc
13

σ pc
12

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

σm
1

σm
2

2m
3

σm
23

σm
13

σm
12

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

σ p
1

σ p
2

2p
3

σ p
23

σ p
13

σ p
12

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð5:4Þ

The existence of perfect bonding between the fibers and matrix also requires to

satisfy the following rules of mixtures (Aboudi et al. 2013):

σpc3 ¼ Vpσ
p
3 þ Vmσ

m
3 , 2pc

1 ¼ Vp2p
1 þVm2m

1 , 2pc
2 ¼ Vp2p

2 þVm2m
2 ,

γpc23 ¼ Vpγ
p
23 þ Vmγ

m
23, γ

pc
13 ¼ Vpγ

p
13 þ Vmγ

m
13, γ

pc
12 ¼ Vpγ

p
12 þ Vmγ

m
12;

ð5:5Þ
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In Eq. (5.5), Vp and Vm represent the piezoelectric fiber volume fraction and the

matrix volume fraction in the RVE of the 1–3 PZC, respectively. It should be noted

that the field variables with superscript pc appearing in Eqs. (5.4) and (5.5)

represent the field variables of the homogenized RVE of the 1–3 PZC. At this

juncture, it must be noted that a field variable used here for the constituent phases or

the homogenized RVE actually represents the average of the corresponding field

variable in the constituent phases or the homogenized RVE, respectively (Aboudi

et al. 2013). The state of stress {σpc} and the state of strain 2pcf g in the homogenized

RVE can be written in terms of the strains in the constituent phases as follows:

σpcf g ¼ C1½ � 2pf g þ C2½ � 2mf g � e1f g Ef g ð5:6Þ

2pcf g ¼ V1½ � 2pf g þ V2½ � 2mf g ð5:7Þ

in which

σpcf g ¼

σ pc
1

σ pc
2

σ pc
3

σ pc
23

σ pc
13

σ pc
12

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
, 2pcf g ¼

2pc
1

2pc
2

2pc
3

γ pc
23

γ pc
13

γ pc
12

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
, C1½ � ¼

0 0 0 0 0 0

0 0 0 0 0 0

VpC
p
13 VpC

p
23 VpC

p
33 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
66666666664

3
77777777775

C2½ � ¼

Cm
11 Cm

12 Cm
13 0 0 0

Cm
12 Cm

22 Cm
23 0 0 0

VmC
m
13 VmC

m
23 VmC

m
33 0 0 0

0 0 0 Cm
44 0 0

0 0 0 0 Cm
55 0

0 0 0 0 0 Cm
66

2
66666666664

3
77777777775
, e1f g ¼

0

0

Vpe
p
33

0

0

0

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

V1½ � ¼

Vp 0 0 0 0 0

0 Vp 0 0 0 0

0 0 1 0 0 0

0 0 0 Vp 0 0

0 0 0 0 Vp 0

0 0 0 0 0 Vp

2
66666666664

3
77777777775
and V2½ � ¼

Vm 0 0 0 0 0

0 Vm 0 0 0 0

0 0 0 0 0 0

0 0 0 Vm 0 0

0 0 0 0 Vm 0

0 0 0 0 0 Vm

2
66666666664

3
77777777775

ð5:8Þ
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The continuity conditions between the fiber and the matrix phase of the RVE of the

1–3 PZC given in Eq. (5.4) can be expressed in terms of the strains in the

constituent phases and the electric field as follows:

C3½ � 2pf g � C4½ � 2mf g ¼ e2f g Ef g ð5:9Þ

in which

C3½ � ¼

Cp
11 Cp

12 Cp
13 0 0 0

Cp
12 Cp

22 Cp
23 0 0 0

0 0 1 0 0 0

0 0 0 Cp
44 0 0

0 0 0 0 Cp
55 0

0 0 0 0 0 Cp
66

2
6666666664

3
7777777775
, C4½ � ¼

Cm
11 Cm

12 Cm
13 0 0 0

Cm
12 Cm

22 Cm
23 0 0 0

0 0 1 0 0 0

0 0 0 Cm
44 0 0

0 0 0 0 Cm
55 0

0 0 0 0 0 Cm
66

2
6666666664

3
7777777775
,

and e2f g ¼ ep31 ep32 0 0 0 0
� �T

ð5:10Þ

Using Eqs. (5.6) and (5.8), one can derive that

2mf g ¼ V3½ ��1 2pcf g � V3½ ��1 V1½ � C3½ ��1 e2f gE3 ð5:11Þ

and

2pf g ¼ V4½ ��1 2pcf g � V4½ ��1 V2½ � C4½ ��1 e2f gE3 ð5:12Þ

in which

V3½ � ¼ V2½ � þ V1½ � C3½ ��1 C4½ � and V4½ � ¼ V1½ � þ V2½ � C4½ ��1 C3½ �.
Substituting Eqs. (5.10) and (5.11) into Eq. (5.5), the following effective con-

stitutive relation for the converse piezoelectric effect in the vertically reinforced

1–3 PZC can be derived:

σpcf g ¼ Cpc½ � 2pcf g � epcf gE3 ð5:13Þ

in which the effective elastic coefficient matrix [Cpc] and the effective piezoelectric

coefficient matrix {epc} of the 1–3 PZC are given by

Cpc½ � ¼ C1½ � V4½ ��1 þ C2½ � V3½ ��1 ð5:14Þ

epcf g ¼ e1f g � C1½ � V4½ ��1 V2½ � C4½ ��1 e2f g þ C2½ � V3½ ��1 V1½ � C3½ ��1 e2f g ð5:15Þ

It is obvious from Eq. (5.14) that the in-plane effective piezoelectric coefficients epc31
and epc32 of the 1–3 PZC are epc(1) and epc(2), respectively, while the transverse
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effective piezoelectric coefficient epc33 of the 1–3 PZC is epc(3). It may be noted that

the matrix [C4] contains the elastic properties of the matrix phase. Hence, it is

obvious from the expression of the effective piezoelectric coefficient {epc} given by
Eq. (5.14) that for a particular piezoelectric material, the magnitude of the effective

piezoelectric coefficient can be improved if the elastic properties of the matrix are

improved.

5.4 Effective Properties of the SFFRC

Figure 5.4 illustrates a schematic sketch of a lamina of the SFFRC. The novel

constructional feature of such a continuous unidirectional vertically reinforced

composite is that CNTs of equal length are uniformly aligned in the plane of the

lamina and radially grown on the surface of the piezoelectric fiber reinforcements.

CNTs considered here are transversely isotropic (Shen and Li 2004). They are

grown on the surface of the piezoelectric fibers in such a way that their axes of

transverse isotropy are normal to the surface of the piezoelectric fibers. Such a

resulting piezoelectric fuzzy fiber (PFF) is shown in Fig. 5.5. When this PFF is

embedded into the polymer material, the gap between the CNTs is filled with the

polymer. Therefore, the radially aligned CNTs reinforce the polymer matrix sur-

rounding the piezoelectric fiber along the direction transverse to the length of the

piezoelectric fiber. Consequently, the augmented PFF can be viewed as a circular

cylindrical piezoelectric composite fuzzy fiber (PCFF) in which a piezoelectric

fiber is embedded in the CNT-reinforced polymer matrix nanocomposite (PMNC)

and the radius of the PCFF is equal to the sum of the radius of the piezoelectric fiber

and the length of a CNT. The cross sections of such a PCFF are illustrated in

Fig. 5.6. Therefore, the RVE of the SFFRC can be treated as being composed of

two phases where the reinforcement is the PCFF and the matrix is the polymer

material. The piezoelectric fiber is poled along the thickness direction, and the only

electric field considered here is applied across the thickness of the lamina. Thus, the

analytical micromechanics model for estimating the effective properties of the

Piezoelectric fiber

CNT
Polymer matrix

Polymer matrix 3

21

Fig. 5.4 Schematic

diagram of a lamina of

smart fuzzy fiber-reinforced

composite (SFFRC)
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SFFRC first needs the derivation of the micromechanics model for estimating the

effective elastic properties of the PMNC material. Subsequently, considering the

PMNC material as the matrix phase and the piezoelectric fibers as the reinforce-

ments, effective elastic properties and effective piezoelectric properties of the

PCFF are to be computed. Finally, utilizing the effective properties of the PCFF

and the polymer matrix, the effective properties of the SFFRC can be estimated.

Also, PCFFs are assumed to be uniformly spaced over the volume of a lamina of

the SFFRC in such a way that three orthogonal principal material coordinate axes

(1–2–3) exist in the composite as shown in Fig. 5.4. Micromechanics models for

estimating the properties of the PMNC, the PCFF, and the SFFRC are derived in

the following sections.

5.4.1 Micromechanics Model of the PMNC

This section presents a simple micromechanics model to estimate the effective

elastic properties of the PMNC material surrounding the piezoelectric fiber which

Piezoelectric fiber

CNT

Fig. 5.5 Piezoelectric

fuzzy fiber (PFF)

CNT

3

1

2

1

Piezoelectric fiber

1
2

'
'

θ

Fig. 5.6 Longitudinal and

transverse cross sections
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are required as inputs for the derivation of the model of the PCFF. Since the

piezoelectric fibers are vertically aligned, the radially grown CNTs on the surface

of the piezoelectric fibers are aligned either with the 1-axis or with the 10-axis as
shown in Fig. 5.6. Let us first estimate the properties of an RVE in which the CNT

fiber aligns with the 1-axis. The cross sections of such an RVE of the PMNC have

been shown in Fig. 5.7. Assuming CNTs as solid fibers (Gao and Li 2005), the

micromechanics model derived in Sect. 5.3 can be modified to predict the average

effective elastic constants of the PMNC surrounding the piezoelectric fiber. Based

on the principal material coordinate (1–2–3) axes shown in Fig. 5.7, the constitutive

relations for the constituent phases of the RVE of the PMNC are given by

σrf g ¼ Cr½ � 2rf g; r ¼ ntandm ð5:16Þ

where the stress vector, the strain vector, and the elastic coefficient matrix of the

phase denoted by r are given by Eq. (5.3). In Eq. (5.14) the superscripts nt and
m denote, respectively, the CNT fiber and the monolithic polymer matrix. It may be

mentioned here that the basics of CNTs may be studied from some original

literature (Thostenson and Chou 2003). It is assumed that CNTs and the polymer

matrix are perfectly bonded. Therefore, the following iso-field relations and the

rules of mixture (Aboudi et al. 2013) satisfying the perfect bonding conditions

between the fiber and the matrix can be written as

σnc2
σnc3
2nc1
σnc23
σnc13
σnc12

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

σm
2

σm
3

2m
1

σm
23

σm
13

σm
12

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

σ nt
2

σ nt
3

2nt
1

σ nt
23

σ nt
13

σ nt
12

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð5:17Þ

and

σnc1 ¼ Vntσ
nt
1 þ Vmσ

nt
1 , 2nc

2 ¼ Vnt2nt
2 þVm2m

2 , 2nc
3 ¼ Vnt2nt

3 þVm2m
3 ,

γnc23 ¼ Vntγ
nt
23 þ Vmγ

m
23, γ

nc
13 ¼ Vntγ

nt
13 þ Vmγ

m
13 and γnc12 ¼ Vntγ

nt
12 þ Vmγ

m
12

ð5:18Þ

2 Polymer Matrix

CNT
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3
CNT
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Fig. 5.7 Longitudinal and transverse section of the RVE of the PMNC
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In Eqs. (5.15) and (5.17), Vnt is the volume fraction of the CNT with respect to the

volume of the RVE of the PMNC and Vm ¼ 1� Vnt. Also, the superscript nc
represents the homogenized PMNC material. From Eqs. (5.15) and (5.17), the

stress and the strain vectors in the homogenized PMNC material can be expressed

in terms of the strain vectors of the constituent phases as follows:

σncf g ¼ C5½ � 2ntf g þ C6½ � 2mf g ð5:19Þ

2ncf g ¼ V5½ � 2ntf g þ V6½ � 2mf g ð5:20Þ

Also, using the iso-field conditions between the constituent phases given by

Eq. (5.15), the relations among the strains in the constituent phases can be written as

C7½ � 2ntf g ¼ C8½ � 2mf g ð5:21Þ

The various matrices appearing in Eqs. (5.16)–(5.18) are

C5½ � ¼ Vnt

Cnt
11 Cnt

12 Cnt
13 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
66666666664

3
77777777775
, C6½ � ¼

VmC
m
11 VmC

m
12 VmC

m
13 0 0 0

Cm
12 Cm

22 Cm
23 0 0 0

Cm
13 Cm

23 Cm
33 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
66666666664

3
77777777775
,

V5½ � ¼

1 0 0 0 0 0

0 Vnt 0 0 0 0

0 0 Vnt 0 0 0

0 0 0 Vnt 0 0

0 0 0 0 Vnt 0

0 0 0 0 0 Vnt

2
66666666664

3
77777777775
, V6½ � ¼

0 0 0 0 0 0

0 Vm 0 0 0 0

0 0 Vm 0 0 0

0 0 0 Vm 0 0

0 0 0 0 Vm 0

0 0 0 0 0 Vm

2
66666666664

3
77777777775
,

C7½ � ¼

1 0 0 0 0 0

Cnt
12 Cnt

22 Cnt
23 0 0 0

Cnt
13 Cnt

23 Cnt
33 0 0 0

0 0 0 Cnt
44 0 0

0 0 0 0 Cnt
55 0

0 0 0 0 0 Cnt
66

2
66666666664

3
77777777775
, C8½ � ¼

1 0 0 0 0 0

Cm
12 Cm

22 Cm
23 0 0 0

Cm
13 Cm

23 Cm
33 0 0 0

0 0 0 Cm
44 0 0

0 0 0 0 Cm
55 0

0 0 0 0 0 Cm
66

2
66666666664

3
77777777775
;

ð5:22Þ
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Using Eqs. (5.17) and (5.18), the local strain vectors 2ntf g and 2mf g can be

expressed in terms of 2ncf g, and subsequently, using them in Eq. (5.16), the

following constitutive relation between the states of stresses and strains at any

point in the homogenized PMNC material is obtained:

σncf g ¼ Cnc½ � 2ncf g ð5:23Þ

where the effective elastic coefficient matrix [Cnc] of the lamina of the PMNC is

given by

Cnc½ � ¼ C5½ � V8½ ��1 þ C6½ � V7½ ��1 ð5:24Þ

in which

V7½ � ¼ V6½ � þ V5½ � C7½ ��1 C8½ �and V8½ � ¼ V5½ � þ V6½ � C8½ ��1 C7½ � ð5:25Þ

It should be noted that the effective elastic coefficient matrix at a point in the

portion of the PMNC surrounding the piezoelectric fiber where the CNT is aligned

with the 1-axis or 10-axis is given by [Cnc]. Thus, the matrix [Cnc] provides the local

effective elastic coefficient matrix at a point in the PMNC either with respect to the

1� 2� 3 coordinate system or with respect to the 1
0 � 2

0 � 3 coordinate system.

But for estimating the effective properties of the SFFRC, the homogenized prop-

erties of the PMNC with respect to the 1� 2� 3 coordinate system are to be

estimated. For the point located in the PMNC where the CNT is oriented at an

angle θ with the 1-axis of the 1� 2 plane, the effective elastic coefficient matrix

C
nc� �

at the said point with respect to the 1� 2� 3 coordinate system can be

obtained by the following transformations:

C
nc� � ¼ T½ �T Cnc½ � T½ � ð5:26Þ

where

T½ � ¼

m2 n2 0 0 0 �2mn
n2 m2 0 0 0 2mn
0 0 1 0 0 0

0 0 0 m n 0

0 0 0 �n m 0

mn �mn 0 0 0 m2 � n2

2
6666664

3
7777775
, m ¼ cos θ andn ¼ sin θ ð5:27Þ

Therefore, the effective elastic properties of the PMNC surrounding the piezoelectric

fiber with respect to the principal material coordinate axes of the SFFRC varies over

an annular cross section of the PMNC phase of the RVE of the PCFF. However,

without loss of generality, the volume average of these location-dependent effective
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elastic properties C
nc� �

over the volume of the PMNC can be treated as the effective

elastic properties [CPMNC] of the PMNCmaterial surrounding the piezoelectric fiber

with respect to the 1–2–3 coordinate axes of the SFFRC and is given by

CPMNC
� � ¼ 1

π R2 � a2
� � ð2π

0

ðR
a

C
nc
r dr dθ ð5:28Þ

in which a and R are the radii of the piezoelectric fiber and the PCFF, respectively.
Thus, the effective constitutive relations for the PMNC material with respect to the

principal material coordinate axes of the SFFRC can be expressed as

σPMNC
� � ¼ CPMNC

� � 2PMNC
� � ð5:29Þ

5.4.2 Effective Elastic Properties of the PCFF

The constructional feature of the PCFF shown in Fig. 5.6 can be viewed as a

circular cylindrical fiber which has been cut from a lamina of the vertically

reinforced 1–3 PZC. The reinforcement phase of such 1–3 PZC is the piezoelectric

fiber and the matrix phase is composed of the homogenized PMNC material with

its effective elastic properties given by Eq. (5.23). Thus, following the

micromechanics model derived in Sect. 5.3 for the vertically reinforced 1–3

PZC, the constitutive relation for the converse piezoelectric effect in the PCFF

can be derived as follows:

σPCFF
� � ¼ CPCFF

� � 2PCFF
� �� ePCFF

� �
E3 ð5:30Þ

in which the effective elastic coefficient matrix [CPCFF] and the effective piezo-

electric coefficient matrix {ePCFF} of the PCFF are

CPCFF
� � ¼ C9½ � V12½ ��1 þ C10½ � V11½ ��1 ð5:31Þ

ePCFF
� � ¼ e1f g � C9½ � V12½ ��1 V10½ � C12½ ��1 e2f g þ C10½ � V11½ ��1 V9½ � C11½ ��1 e2f g

ð5:32Þ

The various matrices appearing in Eqs. (5.26) and (5.27) are
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C9½ � ¼ C1½ �, C11½ � ¼ C3½ �,

C10½ � ¼

CPMNC
11 CPMNC

12 CPMNC
13 0 0 0

CPMNC
12 CPMNC

22 CPMNC
23 0 0 0

VPMNCC
PMNC
13 VPMNCC

PMNC
23 VPMNCC

PMNC
33 0 0 0

0 0 0 CPMNC
44 0 0

0 0 0 0 CPMNC
55 0

0 0 0 0 0 CPMNC
66

2
66666666664

3
77777777775
,

V9½ � ¼

Vp 0 0 0 0 0

0 Vp 0 0 0 0

0 0 1 0 0 0

0 0 0 Vp 0 0

0 0 0 0 Vp 0

0 0 0 0 0 Vp

2
66666666664

3
77777777775
,

V10½ � ¼

VPMNC 0 0 0 0 0

0 VPMNC 0 0 0 0

0 0 0 0 0 0

0 0 0 VPMNC 0 0

0 0 0 0 VPMNC 0

0 0 0 0 0 VPMNC

2
66666666664

3
77777777775
,

C12½ � ¼

CPMNC
11 CPMNC

12 CPMNC
13 0 0 0

CPMNC
12 CPMNC

22 CPMNC
23 0 0 0

0 0 1 0 0 0

0 0 0 CPMNC
44 0 0

0 0 0 0 CPMNC
55 0

0 0 0 0 0 CPMNC
66

2
66666666664

3
77777777775
,

VPMNC ¼ 1� Vp, V11½ � ¼ V10½ � þ V9½ � C11½ ��1 C12½ �
and V12½ � ¼ V9½ � þ V10½ � C12½ ��1 C11½ �

ð5:33Þ

It should be noted that here the piezoelectric fiber volume fractionVp is based on the

volume of the RVE of the PCFF.

5 Smart Fuzzy Fiber-Reinforced Piezoelectric Composites 141



5.4.3 Effective Properties of the SFFRC

The constructional feature of the SFFRC can also be viewed as a vertically

reinforced 1–3 PZC in which the PCFF is the piezoelectric fiber reinforcement

and the monolithic polymer is the matrix phase. Thus, replacing the piezoelectric

fiber by the PCFF in the micromechanics model of the 1–3 PZC derived in

Sect. 5.3, the micromechanics model of the converse piezoelectric effect in the

SFFRC can be derived as follows:

σf g ¼ C½ � 2f g � ef gE3 ð5:34Þ

in which the effective elastic coefficient matrix [C] and the effective piezoelectric

coefficient matrix {e} of the SFFRC are given by

C½ � ¼ C13½ � V16½ ��1 þ C14½ � V15½ ��1 ð5:35Þ
ef g ¼ e3f g � C13½ � V16½ ��1 V14½ � C16½ ��1 e4f g þ C14½ � V15½ ��1 V13½ � C15½ ��1 e4f g

ð5:36Þ
The various matrices appearing in Eqs. (5.30) and (5.31) are

C13½ � ¼ VPCFF

0 0 0 0 0 0

0 0 0 0 0 0

CPCFF
13 CPCFF

23 CPCFF
33 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
666666664

3
777777775
, C14½ � ¼ C2½ �, V14½ � ¼ V2½ �,

V13½ � ¼

VPCFF 0 0 0 0 0

0 VPCFF 0 0 0 0

0 0 1 0 0 0

0 0 0 VPCFF 0 0

0 0 0 0 VPCFF 0

0 0 0 0 0 VPCFF

2
666666664

3
777777775
,

V15½ � ¼ V14½ � þ V13½ � C15½ ��1 C16½ �, V16½ � ¼ V13½ � þ V14½ � C16½ ��1 C15½ �,

C15½ � ¼

CPCFF
11 CPCFF

12 CPCFF
13 0 0 0

CPCFF
12 CPCFF

22 CPCFF
23 0 0 0

0 0 1 0 0 0

0 0 0 CPCFF
44 0 0

0 0 0 0 CPCFF
55 0

0 0 0 0 0 CPCFF
66

2
666666664

3
777777775
, C16½ � ¼ C4½ �,

e3f g ¼ 0 0 VPCFFe
PCFF
33 0 0 0

� �T
and e4f g ¼ ePCFF31 ePCFF32 0 0 0 0

� �T
ð5:37Þ
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5.5 Determination of Volume Fractions

Volume fraction of CNTs (VCNT) in the SFFRC depends on the CNT diameter, the

piezoelectric fiber diameter, and the surface to surface distance of two adjacent

radially aligned CNTs at their roots. The surface to surface distance between the

two adjacent CNTs at their roots is considered as 1.7 nm (Jiang et al. 2009). For

fibers with circular cross section, it is well known that the hexagonal array of

packing is the optimal packing of fibers and the corresponding maximum fiber

volume fraction is 0.9069. Hence, for computing the numerical values of the

effective properties of the SFFRC, the hexagonal packing array of the PCFFs is
considered as shown in Fig. 5.8. It is also to be noted that the number of CNTs

grown on the surface of the piezoelectric fibers imposes a constraint on the

maximum value of VCNT. Thus, one cannot arbitrarily assume the large value of

VCNT. Based on the hexagonal array of packing of the PCFF, the transverse cross

section of the RVE of the SFFRC will be an equilateral triangle. Thus, the volume

(VSFFRC) of the RVE of the SFFRC is given by

VSFFRC ¼
ffiffiffi
3

p

4
D2L ð5:38Þ

where D is the diameter of the PCFF and L is the length of the RVE. The volume

(Vp) of the piezoelectric fiber is

Vp ¼ π

8
d2L ð5:39Þ

where d is the diameter of the piezoelectric fiber. Thus, the piezoelectric fiber

volume fraction (Vp) in the SFFRC can be found as

Vp ¼ Vp

VSFFRC
¼ π

2
ffiffiffi
3

p d2

D2
ð5:40Þ

Piezoelectric Fiber

Polymer Matrix Polymer Matrix

CNT

Fig. 5.8 Hexagonal array

of packing for the PCFF
fibers in SFFRC
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Using Eqs. (5.34) and (5.35), the piezoelectric fiber volume fraction (Vp) based on

the volume of the PCFF can be determined as

Vp ¼ 2
ffiffiffi
3

p

π
Vp ð5:41Þ

Based on the surface to surface distance at the roots of the two adjacent CNTs and

the CNT diameter, the maximum number of radially grown aligned CNTs

(NCNTjmax) on the surface of the piezoelectric fiber can be determined as

NCNTjmax ¼
πdL

2 dn þ 1:7� 10�9
� �2 ð5:42Þ

where dn is the diameter of CNT. Therefore, the volume of CNTs (VCNT) present in

the RVE is

VCNT ¼ π

π
d2n R� að ÞNCNTjmax ð5:43Þ

Thus, the maximum volume fraction (VCNTjmax) of CNTs with respect to the

volume of the RVE of the SFFRC is

VCNTjmax ¼
VCNT

VSFFRC
¼ πd2n

2 dn þ 1:7� 10�9
� �2

ffiffiffiffiffiffiffiffiffi
πVp

2
ffiffiffi
3

p
s

� Vp

 !
ð5:44Þ

Finally, the maximum volume fraction (Vntjmax) of the CNTs with respect to the

volume of the PMNC can be determined as follows:

Vntjmax ¼
VCNT

VPMNC
¼ 2

ffiffiffi
3

p

π � 2
ffiffiffi
3

p
Vp

VCNTjmax ð5:45Þ

5.6 Numerical Example

An example of the SFFRC is considered for presenting the numerical estimation of

its effective properties. The SFFRC considered here is composed of epoxy, PZT5

fiber, and armchair CNTs. The material properties of these constituent phases are

listed in Table 5.1.

It is evident from Eq. (5.39) that when Vp is zero, VCNT is zero. Also, when

Vp ¼ π=2
ffiffiffi
3

p
, i.e., PMNC is absent, the value of VCNT is also zero. Thus, the

maximum value of VCNT given by Eq. (5.39) will be maximized at a particular

value of Vp. Figure 5.9 illustrates the variation of the maximum volume fraction of
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CNTs in the SFFRC with respect to Vp. It may be observed from this figure that the

maximum values of VCNT for different CNT diameters are almost independent of

the CNT diameter and are maximized at Vp ¼ 0:24. Few graphical results are

presented in Figs. 5.10, 5.11, 5.12, 5.13, and 5.14. While estimating the effective

properties shown in Figs. 5.10, 5.11, 5.12, 5.13, and 5.14, the maximum value of

Table 5.1 Material properties of the constituent phases of SFFRC

Material

C11

(GPa)

C12

(GPa)

C23

(GPa)

C33

(GPa)

C55

(GPa)

e31
(Cm�2)

e33
(Cm�2) (nm)

CNT (5, 5)

Shen and Li

(2004)

2143.4 184.4 404 668 791 – – dn ¼ 0:678

CNT (10, 10)

Shen and Li

(2004)

1088.4 87.8 254 442 – – dn ¼ 1:356

CNT (20, 20)

Shen and Li

(2004)

545 43.52 134 138 227 – – dn ¼ 2:712

PZT5 Smith

and Auld (1991)

121 75.4 75.2 111 21.1 �5.4 15.8 –

Epoxy Smith

and Auld (1991)

5.3 3.1 3.1 5.3 0.64 – – –

Fig. 5.9 Variation of the maximum value of CNT volume fraction with the piezoelectric fiber

volume fraction in SFFRC
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VCNT for a particular value of Vp is used from Eq. (5.39). First the effective

properties of the PMNC are computed using Eq. (5.23). Using the results obtained

by Eq. (5.23), effective properties of the PCFF are evaluated from Eqs. (5.26) and

Fig. 5.10 Effective elastic coefficient C11 of the SFFRC

Fig. 5.11 Effective elastic coefficient C33 of the SFFRC
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(5.27). Finally, Eqs. (5.30) and (5.31) are used to estimate the effective properties of

the SFFRC. Figure 5.10 illustrates the variation of the effective in-plane elastic

coefficient C11 of the SFFRC with the piezoelectric fiber volume fraction Vp. It

Fig. 5.12 Effective elastic coefficient C12 of the PFFRC

Fig. 5.13 Effective in-plane piezoelectric coefficient e31 of the SFFRC
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may be observed from Fig. 5.10 that the effective value of C11 of the PFFRC is

significantly larger than that of the existing 1–3 PZC without having CNTs.

This is attributed to the fact that the radially grown CNTs strengthen the matrix

surrounding the piezoelectric fiber along 1- or 10-direction. Figure 5.11 illustrates

the variation of the transverse effective elastic coefficient C33 of the SFFRC with

the piezoelectric fiber volume fraction Vp. It is important to note from this figure

that the radially grown CNTs on the surface of the piezoelectric fibers do not

appreciably affect the magnitude of the effective transverse elastic coefficient C33

when compared with that of the existing 1–3 PZC without CNTs. This is attributed

to the fact that the CNTs are grown transverse to the piezoelectric fiber and the

elastic properties of CNT transverse to its axis (i.e., along 3-direction) are much

less than those along its axis. Radially grown CNTs also significantly improve the

other effective elastic coefficient C12 of the SFFRC as shown in Fig. 5.12. It is also

to be noted from Figs. 5.10, 5.11, and 5.12 that the CNT diameter marginally

influences the effective elastic properties of the SFFRC. Figure 5.13 illustrates the

variation of the effective in-plane piezoelectric coefficient e31 of the SFFRC. It can
be observed from this figure that for Vp ¼ 0:6, the magnitude of e31 of the SFFRC
is almost three times that of the existing 1–3 PZC without containing CNTs. This

enhancement of the in-plane piezoelectric coefficient is attributed to the in-plane

stiffening of the polymer matrix surrounding the piezoelectric fiber by radially

grown aligned CNTs. The other in-plane effective piezoelectric coefficient e32 is
found to be identical to e31. It is because that the SFFRC is transversely isotropic.

Figure 5.14 illustrates the variation of the effective transverse piezoelectric coeffi-

cient e33 of the SFFRC with the piezoelectric fiber volume fraction. It is important

Fig. 5.14 Effective piezoelectric coefficient (e33) of the SFFRC
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to note from this figure that the radially grown CNTs on the surface of the

piezoelectric fibers negligibly affect the magnitude of the effective piezoelectric

coefficient e33 when compared with that of the 1–3 PZC without CNTs.
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Chapter 6

Composite Nanowires for Room-
Temperature Mechanical and Electrical
Bonding

Yanbin Cui and Yang Ju

Abstract At millimeter dimension or less, the conventional bonding technology in

electronic assembly relies heavily on reflow soldering and suffers from severe

performance and reliability degradation. Meanwhile, the traditional high tempera-

ture bonding process (easily reach 220 �C) tends to result in undesired thermal

damage and residual stress at the bonding interface. It is therefore a major challenge

to find a means to preparing room-temperature connectors or fasteners with good

mechanical and electrical bonding. Very recently, composite nanowires have been

used to fabricate room-temperature fasteners. In this chapter, we summarize the

state-of-the-art progress on the use of composite nanowires for room-temperature

mechanical and electrical bonding. Using anodic aluminum oxide (AAO) and

polycarbonate (PC) membrane as templates, the fabrication of Cu/parylene and

Cu/polystyrene nanowires was described, while the fabrication of carbon nanotube

(CNTs) array used to connect with Cu/parylene nanowires was also introduced.

Finally, the performances of the composite nanowires (Cu/parylene,

Cu/polystyrene, and CNT-Cu/parylene) used as surface fastener for room-

temperature mechanical and electrical bonding were demonstrated.

6.1 Introduction

Surface mount devices (SMDs) relies heavily on reflow soldering and has become

the cornerstone of today’s electronic industry. The heating temperatures of tradi-

tional reflow soldering technique can easily reach 220 �C during reflow soldering,

which may not only cause energy consumption but also thermal damage to the
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surface mount components. Additionally, the toxicity of traditional Sn-Pb solder

has led to a trend of worldwide legislation that mandates the removal of lead from

electronics. Although various types of lead-free solder have been proposed and

adopted in the electronics industry, the melting points of these lead-free solders are

always 5–20 �C higher than Sn-Pb solder. Moreover, the recycling of rare metals in

the surface mount components and printed circuit boards is not easy due to the

difficulties in detaching the components, circuit boards, and solder materials

(Ju et al. 2012). On the other hand, the continuous trend toward miniaturization

and functional density enhancement makes it necessary to improve the bonding

technology in surface mount technology (SMT). At millimeter dimensions or less,

conventional electrical connectors or fasteners tend to suffer from severe perfor-

mance and reliability degradation (Cui et al. 2014a). It is therefore a major

challenge to find a nontoxic and room-temperature bonding technique that afford

good mechanical bonding as well as electrical contact; especially for micro/nano-

electronic circuits and flexible electronic devices.

With regard to developing a room-temperature bonding technique for SMT, one

possible approach is to make use of cold welding. Cold welding of thin gold films

on elastomeric supports has been carried out under ambient conditions and low

loads (Ferguson et al. 1991). However, only the lower limit of approximately

0.1 N/cm2 was reported for the adhesion strength. Besides, many researchers

have also succeeded in joining individual nanostructures by nanoscale-welding

method (Dong et al. 2006; Jin et al. 2008; Peng et al. 2008). Although direct heating

was not performed and large forces were not applied in these nanoscale-welding

techniques, fine manipulation of an individual nanowire or nanotube by specific

equipment was always necessary. Therefore, these nanoscale-welding techniques,

in which the connection between two nanowires or nanotubes was performed, are

suitable for nanoscale connection but inefficient for the mass production of SMDs.

Recently, hybrid core/shell nanowire forests have been used to fabricate electri-

cal and chemical connectors (Ko et al. 2009; Kapadia et al. 2009). Specifically, we

prepared a serial of nanowire (including metallic and hybrid core/shell nanowire

arrays) and carbon nanotube (CNT) arrays, in which the nanowire and CNT arrays

were used as a fastener for SMT (Cui et al. 2014a, b; Ju et al. 2012; Teshima

et al. 2014; Wang et al. 2013a, b, 2015). For SMT, the fastener should ideally have

both high adhesion strength and provide a good electrical connection. In this

chapter, we summarize the state of the art concerning the use of composite

nanowires for room-temperature mechanical and electrical bonding. First, the

fabrication of anodic aluminum oxide (AAO) membrane, which used for the

growing Cu nanowires, is presented. Then, using AAO and polycarbonate

(PC) membrane as templates, the synthesis of copper/parylene and copper/polysty-

rene composite nanowires are described and discussed. While, the fabrication of

carbon nanotube (CNTs) array used to connect with Cu/parylene nanowires is also

introduced. Lastly, the performances of the composite nanowires used as surface

fastener for room-temperature mechanical and electrical bonding are demonstrated.
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6.2 Fabrication of Anodic Aluminum Oxide Membrane

Anodic aluminum oxide (AAO) nanoporous membrane is popular for its self-

organized nanostructure. Due to its highly ordered porous structure, significant

thermal stability, and cost-effectiveness (Woo et al. 2005; Li et al. 2005), AAO

membranes are widely used for the fabrication of nanowires and nanotube arrays to

be utilized as filters, sensors, catalysts, and solar cells, among others (Woo

et al. 2005; Gorokh et al. 2006; Attaluri et al. 2009; Wei et al. 2008; Zhiyong

et al. 2009). Since Masuda and Fukuda (1995) introduced two-step anodization, the

AAO got more attention from nanotechnology community. In order to produce

highly ordered nanopore structures, a significant number of studies concerned with

process parameters had been carried out. By changing the anodizing parameters

(such as electrolytes, anodizing voltage, anodizing time, temperature, and etching

methods), the structure of AAO (such as pore size, pore depth, interpore distance,

thickness of membrane, and pore geometry) can be easily controlled (Crouse

et al. 2000; Gâlcă et al. 2003; Chu et al. 2005; Kasi et al. 2012). AAO templates

exhibit columnar pore structure, vertical to the substrate and parallel to each other

with pore diameters from several tens to hundreds nanometers and with an aspect

ratio between 10 and 1000 or more (Crouse et al. 2000; Chen et al. 2003;

Pu et al. 2004). By filling the pores of the AAO templates, arrays of well-aligned

nanowires or other 1D nanostructures with uniform diameter and length can be

obtained using electroplating or other growth methods (Yan et al. 2007).

In general, a two-step anodization method was employed to produce well-

arranged porous AAO template (Masuda and Fukuda 1995). Typical fabrication

processes of the AAO template are shown in Fig. 6.1. Appropriate electrolyte

solution (such as oxalic acid) was used for the anodization. The pretreated

Fig. 6.1 Schematic of fabricating the AAO: (a) a first-step anodization, (b) wet etching of AAO

fabricated in a first-step anodization, (c) a second-step anodization, (d) extending the pores, (e)
sputtering Au film, (f) dissolving aluminum substrate, and (g) dissolving barrier layer and

extending pores (Teshima et al. 2014)
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aluminum foils were anodized in electrolyte solution under constant voltage at

room temperature. At the first anodization step, the alumina layer fabricated

was dissolved by wet chemical etching in a mixture of 6 wt% phosphoric acid

and 1.5 wt% chromic acid solution for 30 min at 60 �C. The resulting inner

aluminum foils have uniform concave nanoarray, which is crucial to achieving

ordered pore size distribution (Belwalkar et al. 2008). After removal, the second

anodization step was carried out at the same condition. After the two-step anodi-

zation process, the remaining aluminum on the AAO was dissolved in the solution

made up of one part by volume of 0.1 mol/L CuCl2 solution and four parts by

volume of 10 wt% HCl (Belwalkar et al. 2008). Finally, the oxide barrier layer of

the AAO was removed and the pores were enlarged by floating the sample on the

surface of 0.5 mol/L phosphoric acid solution at room temperature using to the

surface tension of the AAO (Cui et al. 2012).

It is well known that the value of the anodizing voltage for preparing the best

nanopore order in self-ordered AAO is different for each electrolyte (Zaraska

et al. 2011). For instance, in sulfuric acid, oxalic acid, and phosphoric acid,

anodizing voltages were 25, 40, and 195 V, respectively. If a higher anodizing

voltage is applied, then the higher current density and Joule heating generation will

cause damage or lead to the collapse of the pore structure. In practice, a higher

potential is beneficial in increasing the pore size. Chung et al. (2013) proposed a

high-potential hybrid pulse anodization (HPA) technique to resolve this problem. In

HPA technique, a period of small negative potential is applied to suppress the Joule

heating effect during the AAO preparation process. The scanning electron micro-

scope (SEM) results showed that HPA with an anodizing potential of 60 V resulted

in an intact pore structure on the AAO surface (Fig. 6.2). By contrast, the AAO

formed using conventional direct current anodization (DCA) with the same anod-

izing potential contained many small irregular pores around each original pore

(Fig. 6.2a) (Chung et al. 2013). On the other hand, it is clearly seen that the

reduction of the irregular small branch pores in AAO formed by HPA, as shown

in Fig. 6.2b. Chung et al. (2011) also found that the HPA technique not only merits

manufacturing convenience and cost reduction but also promotes pore distribution

Fig. 6.2 Top-view SEM micrographs of AAO nanostructures formed by (a) DCA 60 V, (b) HPA
60 V with following pore widening for 10 min (Chung et al. 2013)
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uniformity of AAO at severe conditions of low-purity Al foils and relatively high

room temperature. The pore distribution uniformity can be improved by HPA

compared with the DCA. Very good AAO distribution uniformity (91%) was

achieved in high-purity aluminum foil by HPA. This is because it can suppress

the heating effect to diminish the dissolution reaction (Chung et al. 2011).

Controlling the size and uniformity of the pores is the key in manipulating the

structure and properties of the materials confined within the pores of AAO. Kim

et al. (2007) reported a new approach for preparing pretextured surface patterns on

aluminum using solvent-dependent differential swelling of block copolymers.

Long-range order in a hexagonal-packed monolayer was created using solvent-

induced ordering of poly (styrene-b-4-vinylpyridine) (PS-b-P4VP) micellar films,

followed by surface reconstruction to make nanoporous patterns. Using reactive ion

etching (RIE), patterns were transferred to the Al surface. Subsequent anodization

in concentrated sulfuric acid enabled the formation of channels with long-range

lateral order. Highly ordered porous alumina with a hole interval of 45 nm and a

hole size of 12 nm was produced (Fig. 6.3) (Kim et al. 2007).

Besides, ultrathin AAO membranes were also be used as masks for the fabrica-

tion of nanoparticle arrays on different surfaces. The AAO membranes can be

formed directly on some surfaces, such as silicon and indium tin oxide. Typically,

a thin layer of Al is deposited on these substrates, and nanoporous masks are

fabricated by the anodization of this layer (Chu et al. 2001; Mao et al. 2009). Pastore

et al. (2011) fabricated ultrathin AAO membranes by applying low anodization

voltages that provide low reaction speed during AAO formation. A low anodization

speed is required to obtain membrane thickness below 100 nm in a reproducible

manner. With this procedure, AAOmembranes with pore diameters below 20 nm and

membrane thickness below 70 nm were obtained (Pastore et al. 2011).

Fig. 6.3 Scanning force microscopy (SFM) image of surface view of anodized Al in 2.5 M

sulfuric acid at 19 V at 48 �C for 10 min (a) and SEM image of anodized Al after pore widening

carried out in 5 wt% phosphoric acid at 20 �C for 5 min (b). (Scale bar: 200 nm.) (Kim et al. 2007)
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6.3 Synthesis of Copper/Parylene Composite Nanowires

Due to its ability to control nanomaterial shape, size, and uniformity, template-

assisted synthesis has attracted considerable attention and proved to be a simple and

versatile approach for preparing ordered nanowire, nanorod, nanoparticle, and

nanodot arrays in a wide range of materials (Huczko 2000; Xu et al. 2010). Numer-

ous nanomaterials have been prepared by utilizing hard templates such as track-

etched polycarbonate (PC) membranes (Demoustier 2001), AAO templates (Ding

et al. 2006; Wei et al. 2005), and soft templates such as polymers (Sumikura

et al. 2008) and surfactants (Bakshi et al. 2007). On the other hand, various

techniques, such as chemical vapor deposition (Venkatasubramanian et al. 2001),

molecular beam epitaxy (Harman et al. 1999), vapor–liquid–solid growth process

(Li et al. 2003), and hydrothermal process (Li et al. 2001), have been applied to

synthesize nanowire- and/or nanotube-structured materials. Compared to those

methods, electrodeposition is one the most cost-effective techniques to fabricate

the nanostructured materials (Feng et al. 2008). Therefore, directional growth of

nanowires/rods/pillars through PC or AAO templates via electrodeposition process

is a very popular method because of its inexpensive, simple technique and ability to

incorporate complex geometrical structures and easy tenability of the nanopores’
dimensions (also nanowires/rods’ dimension) by controlling the deposition param-

eters (Joo and Banerjee 2010).

Recently, Ge/parylene core/shell nanowire array was used as an electrical

connector after the deposition of an Ag film with relatively high shear adhesion

strength (Kapadia et al. 2009). In addition, Ni and Cu nanowire arrays have been

found to have very low electrical resistance (Baek and Fearing 2009; Xu

et al. 2012). Specially, nanowire surface fasteners based on gold and copper

nanowire arrays were also proposed (Ju et al. 2012; Wang et al. 2013a), with

relatively low electrical resistance and adhesion strengths. However, the maximum

adhesion strength of the metallic nanowire surface fastener is only 8.17 N/cm2.

Therefore, it is still a challenge to achieve high adhesive strength and low electrical

resistance at the same time for room-temperature surface fastener. In order to

improve the performance of nanowire surface fastener, copper/parylene core/shell

nanowire surface fastener was fabricated (Wang et al. 2013b). Compared with

metallic nanowire surface fastener, the adhesion strength increased dramatically.

A peculiar cell (Fig. 6.4) was used to fabricate freestanding copper nanowire on

the substrate directly. The introduced porous glass and porous cellulose membrane

have three important functions. First, the capillary forces provided by the porous

glass plate and the porous cellulose membrane help maintain a continuous electro-

lyte flow from the bulk of the electrolyte to PC membrane (Taberna et al. 2006).

Second, the stiffness of porous glass plate ensures the contact of the substrate with

PC membrane. Third, the compliance of the porous cellulose membrane offers a

buffer and ensures a tight contact of the substrate with PC membrane. It is known

that for flat anodes the metal is deposited preferentially at the outer border areas of

the cathode (Wang et al. 2013b). This effect was avoided by using a conical copper

anode, leading to a noticeably more homogeneous copper nanowire distribution
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over the whole cathode surface (Tomil et al. 2001). Before and after the assembly of

the cell, two additional immersions were introduced to ensure an even copper ion

density throughout the PC membrane (Millipore) (Wang et al. 2013b). Copper

nanowire arrays were then synthesized by electrodeposition under a constant

current. The electrodeposition electrolyte used was a 0.4 M CuSO4�5H2O solution,

adjusted to pH 2 with sulfuric acid. The electrodeposition was performed at room

temperature and without stir. After etching in methylene chloride to remove the PC

membrane, the freestanding copper nanowire arrays on the substrate were obtained.

Then, a thin film of Parylene C was deposited on copper nanowire arrays by using a

DACS-LAB deposition system. The typical deposition conditions were 160 �C for

the evaporation of the parylene dimer precursor, 650 �C for the pyrogenic decom-

position of the dimer into monomers, and 60 mTorr for the vacuum chamber.

Through controlling the amount of the loaded precursor, the corresponding thick-

ness of parylene shell was obtained.

The fabrication procedure of the copper/parylene core/shell nanowire surface

fastener is outlined in Fig. 6.5a. At first, copper nanowires were grown on glass/Cr/

Au substrates by the template-assisted electrodeposition method. After etching the

PC template, a thin layer of Parylene C was evenly deposited on the copper

nanowires to enhance the adhesive ability of nanowire surface fastener. The SEM

image of the copper nanowire arrays with an average diameter of 150 nm (Fig. 6.5b)

indicates that most of the nanowires were grown vertically on the substrate, but

oriented in a wide range of directions. Figure 6.5c, d show the SEM image of copper

nanowires with a 100 and 200 nm parylene coating, respectively. Clearly, the

grown copper nanowires sustain their high aspect ratio without aggregation, due

to the high Young’s modulus of the copper (110 GPa).

Fig. 6.4 Schematic of the cell for copper nanowire fabrication: (a) conical copper anode, (b)
porous glass plate, (c) cellulose membrane, (d) polycarbonate template, (e) glass substrate with

gold film, (f) isolation holder, (g) screw and nut, and (h) copper wire (Wang et al. 2013b)
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6.4 Synthesis of Copper/Polystyrene Composite Nanowires

To further improve the performance of nanowire surface fastener, a copper/poly-

styrene core/shell nanowire surface fastener was prepared, which shows higher

adhesion strength and a much lower electrical resistance than copper/parylene core/

shell nanowire surface fastener (Wang et al. 2014, 2015).

The fabrication procedure of the copper/polystyrene core/shell nanowire surface

fastener is shown in Fig. 6.6. The AAO membranes (Synkera Company) with a

nominal pore diameter of ~80 nm and interpore distance of ~240 nm were used as

templates for the synthesis of polystyrene nanotubes. These open-ended nanotubes

were synthesized into the AAO template by spin-casting method (Jin et al. 2012;

Wang et al. 2014). Briefly, a polymer solution (~20 μl of 2.5 wt% polystyrene

solution in toluene) was directly loaded over the spinning AAO template. After 90 s

of spinning, the toluene was evaporated and then the polystyrene nanotubes were

formed in the template. The thickness of polystyrene nanotube can be controlled

through adjusting the loaded times. After the formation of nanotubes, the copper

nanowire array was fabricated into polystyrene nanotubes using template-assisted

electrodeposition method (Wang et al. 2014) by setting up the stacked cell (Fig. 6.4)

in a 0.4 M CuSO4�5H2O solution, under a constant current of 3 mA at room

temperature. The pH value of the copper sulfate solution was maintained at pH 2

Fig. 6.5 (a) The fabrication process of copper/parylene core/shell nanowire. SEM images of

copper nanowires (b) without parylene coating, (c) with 100 nm parylene coating, and (d) with
200 nm parylene coating. The red arrows in (c) and (d) indicate the parylene shell. The scale bar is
1 μm (Wang et al. 2013b)
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with sulfuric acid. Finally, the copper/polystyrene core/shell nanowire array was

obtained after etching the AAO template by 3 M NaOH solution.

SEM image of a typical copper/polystyrene core/shell nanowire array is shown

in Fig. 6.7, clearly indicating the mainly vertical orientation and the uniform shell

thickness of the nanowires. Each of the components plays an essential role in

Fig. 6.6 Schematics of the fabrication process for the copper/polystyrene core/shell nanowire

array (Wang et al. 2015)

Fig. 6.7 SEM images of (a) a typical copper/polystyrene core/shell nanowire array and (b)
enlarged view (Wang et al. 2015)
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achieving the desired functionality of the electrical nanowire surface fasteners. The

Cu core provides the following functions: (1) an electrical conductive function as

the polymer shell shrinks to nanoscale (Wang et al. 2013b) and (2) preventing

aggregation and/or collapse of nanowires, thereby resulting in high aspect ratio

structures. The polystyrene shell enhances the surface compliance and the adhesion

energy, thereby leading to an increase in the adhesion strength.

6.5 Fabrication of Carbon Nanotube Array

CNTs have been among the most scientifically studied materials for the past two

decades (Gogotsi 2010). Due to their unique properties, such as extremely mechan-

ical properties, high electrical conductivity, and thermal conductivity/stability

(Chen et al. 2010; Cui et al. 2013a), CNTs have been suggested for a variety of

practical applications (Cao and Rogers 2009; Cui and Zhang 2013a; Green

et al. 2009; Wei and Liu 2008). The most intriguing properties of CNTs lie in

their unique one-dimensional nanoscale structures that are anisotropic: properties in

the longitudinal direction are drastically different from those in the azimuthal

directions (Lan et al. 2011). It is highly desirable in the realization of most of the

applications to control the orientation of CNTs either as a stand-alone system or in a

group of many systems (Cui and Zhang 2013b).

CNT arrays typically comprise billions of CNTs per square centimeter. CNTs in

a CNT array are nearly parallel to each other and have more uniform direction and

length distribution than other kinds of CNTs such as tangled CNTs. CNT arrays can

provide a well-defined large surface area, and they can be readily incorporated into

devices with improved uniformities in mass production, greatly facilitating their

integration into practical devices (Chen et al. 2010). Due to their highly ordered

nature and high surface area with excellent electronic and mechanical properties

(Liu et al. 2007), CNT arrays have wider applications than random bulk CNTs.

These applications include field emission cathodes (Liao et al. 2010),

supercapacitors (Niu et al. 1997), nanofiltration membranes (Dai 2002), and fuel

cell and solar cells (Lan et al. 2011).

CNTs in CNT arrays are straight and uniformly aligned in the vertical direction,

which is beneficial for fastener applications. Compared with metallic nanowires,

CNTs are more bendable and have significant ability to entangle, both of which

enhance side contact with fibrillary arrays. Moreover, CNTs possess good mechan-

ical properties and high electrical conductivity, and are consequently predicted to

have potential applications in electrical fasteners (Cui et al. 2014a). Therefore,

CNT and Cu/parylene core/shell nanowire array was used to construct an electrical

fastener. Compared with a metallic nanowire array fastener (Ju and Amano 2012;

Wang et al. 2013a), the adhesion strength of the CNT-Cu/parylene nanowire array

fastener is significantly greater, offering a sixfold increase that encourages their use

in practical applications of room-temperature electrical fasteners (Cui et al. 2014a).
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A Si wafer (<100> type, 1–10 Ω/cm) with a 600 nm SiO2 layer was used as a

substrate. A catalyst film of Fe (0.5–1.0 nm) was deposited on the Si wafer by

electron beam (E-beam) evaporation (Edwards EB3 Electron Beam Evaporator).

The evaporation was carried out at a pressure of about 5� 10�7 Torr. The deposi-

tion rate of the Fe film was kept at 0.05 nm/s to achieve uniform and controllable

film thickness. The thickness of the thin Fe film was monitored in situ by a quartz-

crystal sensor fixed inside the E-beam evaporation chamber and calibrated ex situ

by atomic force microscopy (AFM, Veeco Explorer).

The CNT arrays were synthesized in a quartz tube furnace. The reaction chamber

was a quartz tube with a 3 in. diameter. The substrates were placed in the middle of

the quartz tube and the quartz tube was pumped down to 5 mTorr to remove any

ambient gas. The total pressure was maintained at 1 atm for all the experiments. The

furnace was heated up to the growth temperature (690–780 �C) at 20 �C/min and

under Ar flow. Then, C2H2 (99.99%) and/or H2 (99.99%) were introduced into the

reactor and the CNT arrays were synthesized at the growth temperature for a certain

time. Lastly, the acetylene and/or hydrogen gas flow was turned off and the

furnace was cooled down to room temperature with the Ar gas flow continuing

(Cui et al. 2013a).

Figure 6.8 shows typical SEM images of CNT arrays on a Si substrate, grown

under conditions of C2H2¼ 100 sccm, H2¼ 50 sccm, and 750 �C. In the top layer of
CNT array, it can be seen that the CNTs are entangled and not aligned (Fig. 6.8b).

Fig. 6.8 (a) Cross-sectional SEM image of CNT array. (b) Top view of CNT array showing

entanglement of CNTs at the surface. (c) High magnification SEM image showing the alignment of

CNTs in the array side wall (Cui et al. 2014a)
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It should be noted that the CNT array in this case was prepared by a normal

chemical vapor deposition process, which can be easily scaled-up for the prepara-

tion of CNT arrays. The morphology of the top surface is similar to that of other

CNT arrays prepared by low-pressure chemical vapor deposition methods

(Qu et al. 2008). As shown in Fig. 6.8c, the CNTs in the array are well-aligned

and bundled in the vertical direction, with these bundles being parallel to one

another, while the waved CNTs switch between different straight CNT bundles.

The curved CNTs in the top surface of the array, and the waved CNTs, can entangle

and coil on the surface of Cu/parylene nanowires. This in turn increases the contact

area between CNTs and Cu/parylene nanowires, which enhances the adhesion

strength of the fastener (Cui et al. 2014a).

6.6 Mechanical and Electrical Performances of Nanowire
Surface Fasteners

As shown in Fig. 6.9, a specific pattern for the fastener areas and printed wires

(1 mm width) were designed to facilitate the testing of the mechanical bonding

strength and the parasitic resistance of the electrical bonding. The diameter of each

of the four fastener areas was 2 mm (Wang et al. 2013b). Au films approximately

100 nm thick were deposited onto the fastener and wire areas on Si or glass

substrates with around 50 nm thick Cr adhesive layer to improve the adhesion

between the substrate and the Au film. The adhesive layer and the Au film were

deposited via E-beam evaporation or sputtering (Ju et al. 2012; Wang et al. 2015).

To better understand the adhesion performance of the nanowire surface fastener,

we carried out macroscopic measurement of adhesion strength. The bonding

strength is defined as the force acted to the nanowire surface fasteners to separate

their bonding divided by the bonding area, in the normal and the shear directions.

As shown in Fig. 6.10, two nanowire surface fastener samples (Fig. 6.10a), which

had patterned nanowire arrays on the substrate, were brought into interconnection at

a preload force (Fig. 6.10b) (Wang et al. 2013a). After the preload force was

Fig. 6.9 Sketch of a sample

with a specific pattern

(Wang et al. 2014)
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completely released, the weight of balance was used to measure the pull-off forces

with the parallel (i.e., the shear adhesive strength) and normal (i.e., the normal

adhesive strength) directions to the substrate (Fig. 6.10c) (Wang et al. 2015). To

eliminate the effects of the attachment cycles and avoid the pre-alignment effect for

subsequent adhesion measurements, the adhesion forces obtained from the first

attachment of each sample were adopted. Adhesion tests for each reported condi-

tion were completed for four samples, and the average values were used. The

four-point probe method was used to measure the electrical resistance

(Fig. 6.10d). During the measurement, an electrical current in the range from 0 to

19 mA was applied using the current source and the corresponding voltage was

extracted from the voltmeter (Wang et al. 2013b, 2015).

6.6.1 Performances of Copper/Parylene Nanowire Surface
Fasteners

To characterize the properties of copper/parylene nanowire surface fasteners, we

first measured the adhesive strength and relative electrical resistance as a function

of nanowire length (5, 10, and 20 μm). All the samples in this test have a parylene

Fig. 6.10 The assembly sequence of patterned nanowire arrays as NSF together with the adhesion

strength and electrical resistance test setup (Wang et al. 2015)
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shell (100 nm thickness) and a preload of 78.02 N/cm2. Interestingly, the Parylene

C film becomes conductive due to dielectric breakdown when the thickness of it is

miniaturized to nanoscale. The reason why Parylene C film in nanoscale thickness

becomes conductive is mainly due to the dielectric breakdown phenomenon (Wang

et al. 2013b). As can be seen in Fig. 6.11a, both shear and normal adhesion can be

realized at the same time. Moreover, the adhesive strength is strongly affected by

the length of the nanowires. The maximum shear and normal strengths were

obtained when the length was 10 μm. When L< 10 μm, the nanowires sustained

their high aspect ratio and the neighboring nanowires did not contact each other

(Fig. 6.12a); therefore, the contact area is directly proportional to the nanowire

length. However, when the nanowire length is as large as 20 μm, the nanowires tend

to collapse and the neighboring nanowires contact each other (Fig. 6.12c), which

leads to a reduction of the contact area of the nanowire surface fasteners. The

electrical resistance is also strongly affected by the length of nanowires. Specifi-

cally, longer nanowire length results in a smaller electrical resistance (Fig. 6.11b).

As can be seen in Fig. 6.12a–c, the interconnection of neighboring nanowires

increases as the length of nanowires increases, and they were interconnected before

the parylene coating. The interconnected neighboring nanowires connect in parallel

in the electrical connection, which led to the reduction of resistance.

Besides the nanowire length, the adhesive strength and electrical resistance are

also affected by the parylene thickness. The samples with the same nanowire length

(10 μm) and the same preload (78.02 N/cm2) are used in the test. As can be seen in

Fig. 6.11c, the adhesive strength strongly depends on the thickness of the parylene

shell. Specifically, weak adhesive strengths (~0.99 N/cm2 in shear and ~0.57 N/cm2

in normal directions) are obtained from the pristine copper nanowires. The adhesive

strength is dramatically enhanced by the application of the parylene shell. When the

thickness of the parylene shell is 150 nm, the maximum adhesive strengths

(~24.97 N/cm2 in shear and ~10.82 N/cm2 in normal directions) are obtained.

This significant enhancement in adhesion is attributed to the higher surface com-

pliance of the parylene shell, enabling conformal contact with increased contact

area between the interpenetrating nanowires (Kapadia et al. 2009). When the

thickness of parylene shell further increases, the adhesive strengths decrease. This

trend is attributed to the higher filling factor for thicker parylene shells (Fig. 6.5b–d).

When the thickness of the parylene shell increases to 250 nm, almost no spare space

exists between the neighboring nanowires (Wang et al. 2013b). Hence, the

interconnected mode changes from “wire–wire” to “tip–tip” when the thickness of

parylene shell increases, which results in the reduction of adhesive strengths.

The electrical properties of nanowire surface fasteners are also affected by the

parylene shell thickness. It can be seen from Fig. 6.11d that larger parylene shell

thickness results in larger electrical resistance of the nanowire surface fasteners. This

trend is attributed to the poor electrical conductivity of parylene. To examine the

effect of preload on the adhesive and electrical properties of copper/parylene core/

shell nanowire surface fastener, two nanowire surface fastener samples were brought

into interconnection at a preload of 39.01, 78.02, and 156.04 N/cm2. A monotonic

increase in the normal adhesive strength and decrease in electrical resistance are
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Fig. 6.11 (a) Adhesive strength and (b) electrical resistance of nanowire surface fasteners as a

function of nanowire length. The preload is 78.02 N/cm2 and the thickness of the parylene shell is

100 nm. (c) Adhesive strength and (d) electrical resistance of nanowire surface fasteners as a

function of parylene thickness. The preload is 78.02 N/cm2 and the length of the nanowire array is

10 μm. (e) Adhesive strength and (f) electrical resistance of nanowire surface fasteners as a

function of preload. The thickness of parylene shell is 150 nm and the length of nanowire array

is 10 μm (Wang et al. 2013b)



observed with the increase of preload force (Fig. 6.11e, f). This phenomenon is just as

expected because the higher preload force leads to a larger contact area between the

nanowires. However, no increase in the shear adhesion was observed when the

preload increases from 78.02 to 156.04 N/cm2. This phenomenon is attributed to

the poor adhesion of electrodeposited copper nanowires on the Au seed layer (Wang

et al. 2013b).

Figure 6.13a shows a schematic of copper/parylene core/shell nanowire surface

fasteners. An example of the strong bonding achieved is shown in Fig. 6.13b in

which the copper/parylene core/shell nanowire surface fasteners with a surface area

of ~3.14� 4 mm2 enables 300 g of weight to be hung without failure in the shear

direction. As shown in Fig. 6.13c, the red light from the light-emitting diode shows

that the core/shell nanowire surface fasteners are conductive.

Fig. 6.12 (a–c) Side-view SEM images of copper nanowire arrays before parylene coating with

lengths of 5, 10, and 20 μm. (d) Illustration of nanowire arrays before the parylene coating with the
length of 5, 10, and 20 μm. (e) Illustration of nanowire arrays after the parylene coating with

lengths of 5, 10, and 20 μm. The scale bar is 1 μm (Wang et al. 2013b)
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6.6.2 Performances of Copper/Polystyrene Nanowire
Surface Fasteners

To demonstrate the importance of the polystyrene shell, we systematically studied

the adhesion strength as a function of polystyrene thickness. The samples with the

same nanowire length (40 μm) and the same preload (9.8 N) are used in the test. As

can be seen in Fig. 6.14a, the adhesive properties strongly depend on the thickness

of the polystyrene shell. Specifically, weak adhesion strengths (1.25 N/cm2 in shear

and 0.76 N/cm2 in normal directions) are obtained from the pristine copper

nanowires. The adhesion strength is dramatically enhanced by the application of

polystyrene shell. When the thickness of the polystyrene shell is 18 nm, the

maximum adhesion strengths (44.42 N/cm2 in shear and 21.43 N/cm2 in normal)

are obtained. This drastic enhancement of the adhesion strength with polystyrene

shell thickness can be explained by an increase in contact width between the

engaged nanowire arrays (Kapadia et al. 2009). A decrease in adhesion strength

is observed for the thickness of the polystyrene shell that is larger than 18 nm. This

trend is attributed to decrease the density of Cu core because of thicker polystyrene

shells. When the thickness of the polystyrene shell increases to 24 nm, the poly-

styrene nanotube becomes more hydrophobic which prevents the electrolyte getting

into the polystyrene nanotube and then decreasing the density of Cu core (Jin

et al. 2005). The electrical properties of copper/polystyrene core/shell nanowire

Fig. 6.13 (a) Schematic of

this room-temperature

electrical bonding

technique. (b) Photo
showing a weight of 300 g

hanging on the

interconnected copper

nanowire surface fasteners.

(c) Light-emitting diode

suspended by the nanowire

surface fasteners to show

electrical conductivity

(Wang et al. 2013b)
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surface fastener are also affected by the polystyrene shell thickness. It can be seen

from Fig. 6.14b that larger polystyrene shell thickness results in larger electrical

resistance of the nanowire surface fastener. This trend is attributed to the poor

electrical conductivity of polystyrene (Wang et al. 2015).

Besides the polystyrene shell thickness, the adhesion strength is also affected by

the molecular weight of polystyrene shell. The samples with the same shell thick-

ness (18 nm) and the same preload (9.8 N) are used in the test. As can be seen in

Fig. 6.15a, a monotonic increase in the adhesion strength is observed with the

molecular weight of polystyrene. Specifically, the shear adhesion strength increases

from 4.64 to 44.42 N/cm2 as the molecular weight of polystyrene is increased from

35,000 to 350,000 g/mol. The adhesion energy of polystyrene increases with an

increase in the molecular weight, thus enhancing the adhesion forces between the

core/shell nanowires (Lau and Burns 1974). On the other hand, the changes of the

electrical resistance for the nanowire surface fastener were rather small when the

molecular weight of polystyrene varied (Fig. 6.15b). The reason is due to that

polystyrene shells reach dielectric breakdown and become conductive at this

thickness, which is no relationship with the molecular weight of polystyrene shells

(Wang et al. 2015).

Compared with the copper/parylene core/shell nanowire surface fastener (Wang

et al. 2013b), the copper/polystyrene core/shell nanowire surface fastener tends to

achieve higher adhesion strength. Different with parylene, polystyrene is a kind of

solvent-welding plastic. Plastic solvent-welding is a technique which uses a solvent

to partially liquefy plastic along the joint and allows the joint to solidify, causing a

permanent chemical weld. Besides the van der Waals force, the chemical force has

a big contribution to the adhesion strength. That is the reason that polystyrene shell

has a better performance than parylene shell for nanowire surface fastener. More-

over, the polymer shell thickness of copper/polystyrene core/shell nanowire surface

Fig. 6.14 (a) Adhesion strength and (b) electrical resistance of nanowire surface fastener as a

function of polystyrene thickness. The preload is 9.8 N and the length of nanowire array is ~40 μm
(Wang et al. 2015)
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fastener is much thinner than that of copper/parylene core/shell nanowire surface

fastener (Wang et al. 2013b), which leads to a good electrical conductivity of

copper/polystyrene core/shell nanowire surface fastener. On the other hand, the

copper/polystyrene core/shell nanowire surface fastener was fabricated by synthe-

sizing copper nanowires into polystyrene nanotubes, which may easily form homo-

geneous polymer shell along the whole length of copper nanowires by comparing

with copper/parylene core/shell nanowire surface fastener which was formed by

coating parylene shell on core copper nanowires (Wang et al. 2015).

6.6.3 Performances of CNT-Copper/Parylene Nanowire
Surface Fasteners

To characterize the performance of a CNT-Cu/parylene nanowire array fastener, we

systematically measured the macroscopic shear and normal adhesion strength as a

function of the CNT array length (Fig. 6.16a). This revealed that the adhesion

strength of a CNT-Cu/parylene nanowire array fastener steadily increases with the

increase in the length of the CNT array. For example, the adhesive shear strength

increases almost linearly from 20.29 to 50.72 N/cm2 when the length of the CNT

array increases from 35 to 120 μm. The maximum adhesive shear strength obtained

of 50.72 N/cm2 is comparable to that achievable with CNT-based adhesives

(Qu et al. 2008; Qu and Dai 2007) and is six times higher than that of a metallic

nanowire fastener (Ju et al. 2012; Ko et al. 2009; Wang et al. 2013a). The

corresponding normal adhesion strength also increases from 14.82 to 28.48 N/cm
2 over the same range of CNT lengths, which is approximately five times higher

than that of a metallic nanowire fastener (Ju et al. 2012; Wang et al. 2013a). Unlike

Fig. 6.15 (a) Adhesion strength and (b) electrical resistance of nanowire surface fastener as a

function of the molecular weight of polystyrene. The preload is 9.8 N and the thickness of

polystyrene shell is ~18 nm (Wang et al. 2015)
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gecko adhesives, the CNT-Cu/parylene nanowire array fastener produces both high

shear and normal adhesion strengths simultaneously, which is important for the

practical application of electrical fasteners.

Besides the length of the CNT array, the adhesion strength of CNT-Cu/parylene

nanowire array fasteners is also affected by the preload applied to engage the

fastener. As shown in Fig. 6.16b, the adhesion strength of a CNT-Cu/parylene

nanowire array fastener increases with the applied preload. Specifically, it increases

from 7.02 to 20.29 N/cm2 as the preload is increased from 4.9 to 19.6 N. The

interpenetration depth between CNTs and Cu/parylene nanowires increases with an

increase in the applied preload force, thus enhancing the contact area and van der

Waals interactions between the CNTs and Cu/parylene nanowires (Hyunhyub

et al. 2010; Chen et al. 2012).

As shown in Fig. 6.17a, the electrical resistance of the CNT-Cu/parylene

nanowire array fastener was investigated. The solid lines in the figure are obtained

through linear fitting of the measured values. The resistance of the fastener was

extracted from the I–V curves (Fig. 6.17b) (Kapadia et al. 2009). As shown in

Fig. 6.17a, the fastener exhibits ohmic behavior over the entire range of measure-

ment; however, the resistance of the fastener decreases with an increase in the

preload force. For example, the resistance decreases from 142.3 to 45.4 Ω when the

preload force is increased from 0 to 19.6 N as shown in Fig. 6.17b, which indicates

that the CNT-Cu/parylene nanowire array fastener has good electrical conductivity.

Since an increase in preload force increases the interpenetration depth and connec-

tion between CNTs and Cu/parylene nanowires, the electrical performance of the

fastener is also improved (Cui et al. 2014a). It should also be noted that the

resistance of the CNT-Cu/parylene nanowire array fastener was almost constant

for the first 20 cycles of attachment–detachment tests.

Fig. 6.16 (a) Shear and normal adhesion force of a CNT-Cu/parylene nanowire array fastener as a

function of the CNT array length. The preload used to engage the fastener was 19.6 N. (b) Preload
force-dependent adhesion force of a CNT-Cu/parylene nanowire array fastener. The errors repre-

sent standard errors calculated from four measurements (Cui et al. 2014a)
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6.7 Conclusions

In this chapter, we outlined the progress made in the use of composite nanowires for

room-temperature mechanical and electrical bonding. The fabrication of

Cu/parylene and Cu/polystyrene nanowires using AAO and PC membrane as

templates was described. While, the fabrication of carbon nanotube (CNTs) array

used to connect with Cu/parylene nanowires was also discussed. For copper/

parylene core/shell nanowire array, both strong bonding and small electrical resis-

tance were achieved at room temperature. It is important to note that this electrical

surface fastener exhibits high macroscopic adhesion strength (25 N/cm2) and low

electrical resistance (4.22� 10�2 Ω cm2). We also developed an electrical surface

fastener with strong adhesion based on copper/polystyrene core/shell nanowire

arrays. The adhesion strength of this surface fastener could be mediated by the

shell thickness and the molecular weight of polystyrene. Uniquely, this electrical

surface fastener exhibits high macroscopic adhesion strength (44.42 N/cm2) and

low electrical resistance (~0.75� 10�2 Ω cm2), indicative that the copper/polysty-

rene core/shell nanowire surface fastener exhibits a higher adhesion strength and a

lower electrical resistance than the copper/parylene core/shell nanowire surface

fastener. Besides, copper/parylene nanowires and a CNT array were also chosen to

construct a room-temperature electrical fastener. The adhesion strength of this

fastener was found to increase with an increase in the length of the CNT arrays.

The shear adhesion strength (50.72 N/cm2) of the CNT-Cu/parylene nanowire array

fastener is shown to be six times higher than that of a metallic nanowire fastener.

The resistance of the fastener was measured as 45.4 Ω, which indicates that it has

good electrical conductivity. In comparison with conventional reflow soldering

method, the present cold bonding technique can be performed at room temperature,

Fig. 6.17 (a) I–V curves of CNT-Cu/parylene array fastener under different preload forces. (b)
Measured resistance as a function of preload force (Cui et al. 2014a)
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which could improve the process compatibility and component reliability. Further-

more, a type of surface fastener without solder enables easier detachment of the

surface mount component from the circuit board, by which recycling and sustain-

ability of rare metals becomes significantly more convenient.
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Chapter 7

Recent Developments in Multiscale
Thermomechanical Analysis
of Nanocomposites

J.N. Reddy, V.U. Unnikrishnan, and G.U. Unnikrishnan

Abstract Multifunctional nanocomposite materials have been used extensively in

aerospace, mechanical, civil engineering industries, and other engineering applica-

tions. This is mainly due to the enhanced mechanical characteristics such as high

strength-to-weight ratio and the unique thermal and physiochemical properties of

these nanostructures. It has been reported that there are significant improvements in

the thermal conductivity of composite structures with the addition of low volume

fractions of graphene. To understand and develop efficient composite systems with

desired thermal characteristics, it is necessary to develop accurate thermal transport

models of these advanced composite systems. In this chapter, the authors discuss

some of the recent developments in multiscale modeling of the thermal and

mechanical properties of advanced nanocomposite systems. To enhance the theo-

retical model development discussed in this chapter, the authors have also included

some relevant works from the literature.

7.1 Introduction

Carbon nanotubes are excellent alternatives to conventional materials used in

modern electronic devices (Ezawa 2008; Geim and MacDonald 2007) and are

considered to be the most important material used in modern industrial age,

especially for thermal applications. Conductive nanostructures (such as carbon

nanotubes and graphene) embedded in polymers or other high-strain alloys (the

matrix phase), with appropriate network morphology and interface junctions
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between the nano-constituents, are being studied for bridging material conductivity

(electrical and thermal). However, commercial applications of these nanostructures

remain limited due to the lack of understanding of the thermal flux change and

dissipation characteristics of the nanocomposite materials. This difficulty can be

overcome by developing multiscale computational models that consider the influ-

ence of materials at the nano- and macroscales. There has been tremendous effort to

characterize the high thermal conductance properties of nanocomposites. Thermal

interfacial effects are one of the most challenging properties to measure particularly

at the nano- and microlevels (Pulavarthy and Haque 2015; Li et al. 2015). The

effect of interfacial properties of the nanoparticles can significantly affect the

overall effective behavior of composite system (Torquato and Rintoul 1995;

Chapelle et al. 2009), especially the debonding characteristics and contact resis-

tance at the interface, which can significantly affect the overall effective behavior

of the composite. Thus, in this chapter, we focus on the recent developments in the

theoretical formulations and associated computational procedures in the

thermomechanical characterization of nanocomposite systems. Specifically, atten-

tion is devoted to examining the effect of the size of nanoparticles on the overall

effective properties of composite systems. These formulations, which are multi-

physical and multiscale in nature, can ascertain the thermal dissipation character-

istics of composites (Brey and Fertig 2006; Stauber et al. 2007).

The estimation of thermal properties of the nanomaterials has been carried out

by considering the effect of the “size” of the nanoparticle, excluding the geometry

and material property. The size effect is considered as a resistance to the flow of

thermal energy. There have been numerous attempts in the literature to characterize

the size and interfacial property from an atomistic level to a continuum level using

mean field theories (Nan et al. 1997, 2003; Unnikrishnan et al. 2008a, b; Duan and

Karihaloo 2007; Shenogin et al. 2004; Bryning et al. 2005; Dunn and Taya 1993).

The effect of the size of the nanoparticles on the thermal properties was developed

by Duan and Karihaloo (2007). The effect of the size of the nanoparticles on the

thermal properties of nanocomposite systems was studied using atomistic simula-

tions of the interfacial thermal resistance (Unnikrishnan et al. 2008a, b, 2009). This

was further extended to the study of the size parameter for different types of

nanotube composite systems (Unnikrishnan 2015).

Following this brief “Introduction,” the remainder of the chapter is organized as

follows: estimation of interfacial thermal resistance of atomistic systems is

discussed next, followed by a discussion on the study of the size of nanoparticles

and their orientations. The chapter also presents some of the significant numerical

results on the estimation of the overall effective thermal conductivities for pristine

and defective nanotube-based composite systems. The chapter concludes with some

results and discussion.
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7.2 Atomistic Thermomechanical Properties
of Nanostructures

Carbon nanotubes can be idealized as those formed by folding a (graphene) sheet

made of graphene ring units into hollow cylinders, each of the carbon atoms having

three nearest neighboring bonds. In a fully relaxed system, the angles between these

bonds depend on the radius of the cylinder as well as on their orientation. The

fundamental CNT structure can be classified into three categories in terms of their

helicity: armchair, zigzag, and chiral. The properties of these atomistic systems at

various configurations of the nanostructures can be studied more accurately using

atomistic simulations when compared to experimental investigations. The experi-

mental investigation is extremely difficult to conduct as it is difficult to obtain high-

quality defect-free CNTs of sufficient length and purity. These physical processes

(e.g., thermal) that occur at different spatial and temporal scales can be studied

using atomistic simulations that can establish the mechanical properties as well as

the thermal dissipation characteristics (Brey and Fertig 2006; Stauber et al. 2007) of

the nanocomposite material.

The properties of nanomaterials estimated from these atomistic simulations are

often found to be higher than the bulk properties of the same material (Clancy and

Gates 2006). This is due to the degradation of higher-scale properties from the

microscale imperfections in the bulk material. The accurate characterization of

molecular interactions is not always straightforward as predicting the material

properties like strength, thermal characteristics, and so on from principles of

continuum mechanics (Reddy 2006, 2013).

Multiscale modeling of nano-reinforced polymeric systems, therefore, seeks an

understanding of the atomistic- and macroscopic-level interactions. The mechani-

cal properties of nanocomposite systems are often estimated using molecular

dynamics (MD) simulations. A typical computational model of the carbon

nanotube-based composite is shown in Fig. 7.1. In MD simulations, the motion of

particles in an atomistic system is governed by the Hamiltonian and the Hamilto-

nian equations of motion. The variation of the potential energy with respect to the

spatial distance gives the elastic constants for nanoparticles (Unnikrishnan and

Reddy 2005; Blonski et al. 1994). The elastic moduli tensor components can be

expressed as

Cαβγδ ¼ 1

2NΩa

X
j6¼i

d2U

dr2ij
� 1

rij
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drij
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where Cαβγδ are the elastic moduli; U ¼ U rij
� �

is the strain energy as a function of

interatomic distance rij; Aαγ is internal stress tensor, which at equilibrium is equal to

zero; Ωa is the average volume of an atom; N is the number of atoms; δαβ is the
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Kronecker delta symbol (i.e., components of identity tensor); aij is the undeformed

value of rij, uij ¼ rij � aij with uβ
ij ¼ aα

ij εαβ ; εαβ is the infinitesimal strain tensor

between atoms i, j; and α, β, γ, δ are the indices taking the values of the spatial

dimensions.

Apart from the material deformation response characterization, the determina-

tion of thermal properties of nanomaterials has also received considerable attention

lately, and this is primarily due to the different physical processes that play a role in

an atomistic regime. Thermal transport properties of nanotubes can be estimated

using MD simulations, which are conducted in equilibrium conditions under con-

stant energy, temperature, atomic number, volume, or pressure. Increasingly,

non-equilibrium MD method (NEMD) is also used to calculate the thermal prop-

erties of atomistic systems. In NEMD, a constant temperature difference or a heat

flux is applied on the computational domain to simulate a heat source and sink. The

thermal energy transport between these regions gives a direct indication of the

thermal properties of the nano-systems (Feng et al. 2015; Mohebbi 2012; Mortazavi

et al. 2012; Salaway and Zhigilei 2014).

Most of the experimental studies have shown that nanomaterials enhance the

thermal properties of the ensuing composite; however, there is a large discrepancy

in the accepted values, and there is a lack of understanding of the processes that

depends on the size, which becomes highly significant as we go down the length

scales. The interfacial thermal barrier resistance (1/hc), also known as the Kapitza

resistance, offers resistance to heat flow and reduces the effective conductivity of a

fiber in a composite medium. This interfacial resistance is dependent on the time

constant τ of temperature decay of a nanotube with the surrounding matrix

depending on the nanotube heat capacity (CT) and the thermal resistance of the

nanotube-matrix interface Rk (see Fig. 7.2):

Fig. 7.1 Computational

model of a nanotube

embedded in polymer

matrix
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τ ¼ Rk

1
AT=CT

 !
ð7:2Þ

AT is the area of the nanotube and CT

AT
is the heat capacity per unit area of the

nanostructure which is usually taken as 5.6� 10�4 J/m2 K for carbon nanotubes.

Let us consider a composite material having a dilute dispersion phase with thermal

conductivity (κp) and interfacial thermal conductance hc and embedded in a matrix

having thermal conductivity κm. The effective transverse thermal conductivity of

flat plates with half thickness a/2 with n dispersions per unit volume can be obtained

using the modifiedMaxwell-Raleigh theory (see Hasselman and Johnson (1987)) as

in Eq. (7.3):

κe ¼ κp

1� κp
κm

þ 2κp
ahc

� �
vp þ κp

κm

� � ð7:3Þ

At the interface, the normal component of heat flux is continuous (i.e., balanced)

with q
1ð Þ
i ni ¼ q

2ð Þ
i ni, where ni are the direction cosines of the unit vector normal to

the interfacial surface, while the temperature field is discontinuous (Benveniste

1987). The volume-averaged intensity (Hi ) and flux fields qi over the interfacial

surface are given by

Hi ¼ �1

V

ð
s

ϕnidS ð7:4Þ

qi ¼ �1

V

ð
s

qinjxidS ð7:5Þ

Fig. 7.2 Composite unit

cell of a nanostructure with

a thin interfacial thermal

barrier layer
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For a two-phase material with dilute dispersion phase consisting of a nanoparticle

with thermal conductivity kp and interfacial thermal conductance hc and embedded

in a matrix with thermal conductivity km, the effective thermal transport behavior

is given by the averaged response of the two material phases having volume

fraction ϕ. Thus, the averaged heat flux and temperature gradient under steady-

state conditions without the heat source is given by

qh ic ¼ ϕ qh ip þ 1� ϕð Þ qh im ð7:6Þ

Hh ic ¼ ϕ Hh ip þ J
h i

þ 1� ϕð Þ Hh im ð7:7Þ

The average heat flux involves only the two terms for the matrix and the particle

phase since the normal component of the heat flux is continuous across the interface

between the nanoparticle and the matrix. The discontinuous temperature jump

between the particle and matrix phase is indicated by J (Benveniste 1987), and

the temperature jump is proportional to the normal heat flux across the interface as

given by ΔT ¼ �Rkq
n. The particle with the interfacial thermal resistance is

replaced by an equivalent particle having a perfect thermal interface in a self-

consistent method, and the averaged heat flux is solved for a particle embedded in

an unbounded matrix under uniform far-field heat flux (Yin et al. 2008), as given in

Eq. (7.8). The average heat flux and temperature gradient are given by

qih iΩ ¼ 1

VΩ

ð
Ω
qi xð Þ dx ð7:8Þ

Hih iΩ ¼ 1

VΩ

ð
Ω
Hi xð Þ dxþ

ð
∂Ω

ΔT xð Þnj dS

� �
ð7:9Þ

where hqii, for example, is the jump in heat flux at the interface along the surface

having an outward normal nj (Unnikrishnan 2015). Thus, for a spherical nanopar-

ticle with radius α, the effective thermal conductivity kp of the nanoparticle

becomes (Yin et al. 2008) kp ¼ kp

1þRkkp
α

, where kp is the original thermal conductivity

of the particle.

Next, consider an ellipsoidal particle with an imperfect interface embedded in a

matrix. The imperfect interface may be considered as a having thermal conductivity

ks and thickness δ. From the multiple scattering approach of Nan (1993), the

equivalent thermal conductivity Kc
ii of the composite system along the symmetric

axis of the unit cell is given by

K c
ii ¼ Ks

Ks þ Lii Kp � Ks

� �
1� νð Þ þ ν Kp � Ks

� �
Ks þ Lii Kp � Ks

� �
1� νð Þ ð7:10Þ
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where ν ¼ a2
1
a3

a1þδð Þ2 a3þδð Þ and Kp is the thermal conductivity of the ellipsoidal particle;

a1 and a3 denote the major and the minor radii of the ellipsoidal particle, respec-

tively, and Lii is the geometrical parameter that depends on the particle size and

shape as given by

L11 ¼ L22 ¼
p2

2 p2 � 1ð Þ �
p

2 p2 � 1ð Þ3=2
cosh�1p, for p > 1

p2

2 p2 � 1ð Þ �
p

2 1� p2ð Þ3=2
cos �1p, for p < 1

8>>><
>>>:

9>>>=
>>>;

ð7:11Þ

L33 ¼ 1� 2L11 ð7:12Þ

Here p ¼ a3
a1
denotes the aspect ratio of the ellipsoid, and p > 1 and p < 1 are for a

prolate (particle with a1 ¼ a2 < a3 ) and oblate (particle with a1 ¼ a2 > a3 )
ellipsoidal inclusion.

The interfacial thermal resistance Rk that offers resistance to heat flow reduces

the effective conductivity of the nanoparticle in a composite medium (Jiajun and

Xiao-Su 2004). This interfacial thermal resistance is dependent on the time constant

τ of temperature decay of nanoparticle with the surrounding matrix, and it depends

on the heat capacity Cτ and thermal resistance of the nanoparticle-matrix interface

Rk (Shenogin et al. 2004; Clancy and Gates 2006; Huxtable et al. 2003). The

effective thermal conductivity of the nanoparticle reinforced composite system

using the self-consistent method is given by (see Yin et al. (2008) for details)

k* ¼ km

1� 3ϕ kp�km

kpþ2k*

	 
 ð7:13Þ

Similarly, the thermal conductivity of an equivalent ellipsoidal inclusion was

obtained by Duan and Karihaloo (2007) for low conducting interfaces, and the

effective thermal conductivity of this ellipsoidal inclusion was given in Eq. (7.14).

Thus, the effective transverse thermal conductivity of the composite for aligned

cylindrical fibers is given by

kp ¼ kp

1þ RkKpSir
1
ar
þ 1

br
þ 1

cr

	 
 ð7:14Þ

k
∗

t ¼ km þ km
ϕξt

1� ϕξt
2

� � ð7:15Þ

where ξt ¼ 2
k
t

p�km

k
t

pþkm
for cylindrical inclusions.
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7.3 Results and Discussion

Consider a nanotube embedded in a polymer layer, as shown in Fig. 7.1, and heated

to a required temperature. The general-purpose universal force field (UFF) of

Cerius2 (version 4.6, Accelrys, Inc.) was used in the MD simulations with direct

velocity scaling of the atoms of pristine nanotubes. Analyses were also carried out

on defective nanotubes with one and two Stone-Wales defect (Pan et al. 2012;

Ebrahimi 2015). The temperature of the individual atoms was prescribed to

predefined temperatures (Clancy and Gates 2006; Yao and Lordi 1998). Once the

central nanotube was brought to the required temperature, the entire ensemble was

allowed to cool. From the cooling profile, the difference in temperature with time is

shown for pristine nanotube in Fig. 7.3 and for nanotubes with defects at single and

double locations in Figs. 7.4 and 7.5, respectively. A monotonic decay of the

temperature, which follows an exponential order, is observed in these simulations.

The interfacial thermal resistance value is estimated for single-walled nanotube

embedded in LDPE as 5:05� 10�8m2K=W (Unnikrishnan et al. 2008a, 2009). The

effect of the defects in single-walled nanotubes is found to decrease the interfacial

thermal resistance values to 3.85� 10�8 m2 K/W and 4.42� 10�8 m2 K/W for one

and two defects, respectively (Unnikrishnan et al. 2008a, 2009).

The nanotube can now be considered as a homogeneous material, which helps in

expressing the heat transfer from the central nanotube to the surrounding polymer

using various thermal measures, namely, the interfacial thermal resistance, the

Fig. 7.3 Cooling profiles of pristine single-walled nanotube in LDPE
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thermal conductivity, and the size of the nanoparticle (Unnikrishnan et al. 2008a,

2009). It should be noted that, because of the interfacial boundary resistance, there

exists a strong anisotropy in the thermal behavior of the nanomaterials. In the

simulations, the thermal conductivity of the nanoparticle is taken as 6000 W/mK

and for the matrix polyethylene (LDPE) is taken as 0.33 W/mK (Nan et al. 2004),
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Fig. 7.4 Cooling profiles of single-walled nanotube in LDPE with a single Stone-Wales defect

SWNT - 2 defects
Polyethylene (matrix)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

0 2 4 6 8 10
Time (ps)

L
n(

dT
) 

(K
)

500 K 750 K 1000 K

Fig. 7.5 Cooling profiles of single-walled nanotube in LDPE with a double Stone-Wales defect
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and the variation of the effective thermal conductivity of the composite is calcu-

lated for various sizes of the nanoparticles with interfacial thermal resistance value

of 3:5� 10�8m2K=W using the self-consistent method.

The variation of the effective thermal conductivity of the composite was calcu-

lated for various sizes of the pristine and defective aligned nanotubes, as shown in

Fig. 7.6. It is seen that the effect of larger sized nanoparticles increases the effective

thermal conductivity of the composite while smaller scaled nanoparticles

reduces the effective conductivity due to the predominance of the interfacial

thermal resistance effects. The simulations also indicate that the thermal conduc-

tivity increased with decrease in the interfacial thermal resistance values as was

expected.

7.4 Conclusions

Carbon nanotube and nanographene-based nanostructures have generated great

interest, and they hold promise to be the next-generation materials for use in a

variety of applications. This is attributed primarily to their high strength-to-weight

ratio and unique thermal and physiochemical properties. In this work, recent

developments in the thermal-mechanical analysis of carbon nanostructure with

specific emphasis on the interfacial thermal characteristics have been discussed.

Fig. 7.6 Effective thermal conductivity of nanocomposite with aligned defective nanotube for

varying radius of nanoparticle
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The thermomechanical analysis is carried out from the atomistic level using MD

simulations, and the properties of interest are scaled to the macroscale using

homogenization techniques to develop the overall thermal conductivity of the

nanocomposite system.
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Chapter 8

Magnetoelectric Coupling and Overall
Properties of a Class of Multiferroic
Composites

Yang Wang and George J. Weng

Abstract In this chapter we present a widely useful composite model for the

calculation of magnetoelectric coupling and all other properties of a two-phase

multiferroic composite consisting of aligned piezomagnetic (or piezoelectric) sphe-

roidal inclusions in a piezoelectric (or piezomagnetic) matrix. Both perfect and

imperfect interface conditions are considered. Among the many features of

the properties reported is the intriguing magnetoelectric coupling that signifies

the “0þ 0 ! 1” product effect of the multiferroic composite. It is also reported

that, due to the piezoelectric-piezomagnetic interaction, the elastic C44 of the

composite can be substantially higher than that of either of the two phases. We

have used the theory to calculate the 17 independent material constants: 5 elastic,

3 piezoelectric, 3 piezomagnetic, 2 dielectric, 2 magnetic, and 2 magnetoelectric

coefficients of a transversely isotropic BaTiO3-CoFe2O4 composite, and show how

these magneto-electro-elastic constants depend on the volume concentration, aspect

ratio of inclusions, and the interface condition. We conclude by pointing out that a

weak interface model is often required to capture the experimentally measured data

of a bulk multiferroic composite.

8.1 Introduction

A multiferroic composite generally refers to a two-phase composite involving two

ferroic phases. Most notable among them is the piezoelectric-piezomagnetic com-

posite. The piezoelectric phase, such as barium titanate (BaTiO3, or BTO), lead

zirconium titanate (PZT), and lead magnesium titanate-lead titanate (PMT-PT), is

generally transversely isotropic, and so is the piezomagnetic phase, such as cobalt

ferrite (CoFe2O4, or CFO), Terfenol-D, lanthanum strontium manganite (LSMO),

and nickel ferrite (NFO). In such composites, strong coupling tends to develop
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among the elastic, piezoelectric, dielectric, piezomagnetic, and magnetic properties

of the constituent phases. These coupling effects can lead to some unique overall

properties for the composite. Among the most intriguing features of the coupled

effects is the generation of the magnetoelectric coupling coefficients, α33 and α11,
which are absent in either the piezoelectric or the piezomagnetic phase alone. This

property enables the composite to exhibit magnetization under an electric field, and

electric polarization under a magnetic field. It is the so-called “0þ 0 ! 1” product
effect that makes this class of composite so appealing. For instance, in information

storage this coupling allows the data to be written electronically and read magnet-

ically; it does not require the generation of a strong local magnetic field to write. In

addition, the strong coupling can also make the elastic constant, C44, of the

composite greater than that of either phase. The unique and strong properties

generated in multiferroic composites due to the magneto-electro-elastic coupling

make them highly attractive for applications that require the exchange and inter-

action of mechanical, electrical, and magnetic energies. They are also useful as

sensors, actuators, transducers, and high-frequency devices whose properties need

to be tuned electrically or magnetically.

These potential applications and the desire to understand the underlying mech-

anism of magneto-electro-elastic coupling were what motivated us to undertake this

study. In this work, we will consider a two-phase composite consisting of aligned

spheroidal piezomagnetic (or piezoelectric) inclusions embedded in a piezoelectric

(or piezomagnetic) matrix, as depicted in the general sketch of Fig. 8.1a, to develop

the theory and examine the overall characteristics of the multiferroic composite.

Here the aspect ratio (length-to-diameter ratio) of the inclusions can be 1, 1, or

0 that respectively represents the particulate, fibrous, and multilayered composites.

These three types are also shown in Fig. 8.1b–d that display the commonly referred

0-3, 1-3, and 2-2 connectivities. The inclusion shape in the intermediate state can be

oblate or prolate that, as the particulate one, also belongs to 0-3 connectivity. In

addition, the interface between the two phases may or may not be perfect. Both

phases will be taken to be transversely isotropic, with direction 3 representing the

symmetric axis and plane 1-2 isotropic. In such a system the composite as a whole is

also transversely isotropic. It has 17 independent material constants, whereas the

piezoelectric or the piezomagnetic phase each has 12. The objective of this study is

to find all these 17 independent magneto-electro-elastic constants of the

multiferroic composite in terms of the 12 independent constants of each phase,

and the volume concentration, c1, and aspect ratio, α, of the inclusions under both
perfect and imperfect interface conditions.

We will first introduce a homogenization theory for its overall property under

both perfect and imperfect interface conditions, and then use the properties of

BaTiO3 (or BTO) and CoFe2O4 (or CFO) to represent the piezoelectric and the

piezomagnetic phase, respectively, to calculate and illustrate the general character-

istics of the 17 overall constants for both CFO-in-BTO and BTO-in-CFO compos-

ites. Then the results with a weak interface are discussed. In this way we will be able

to make a direct comparison between the two systems to draw the conclusion

whether CFO-in-BTO will perform better than BTO-in-CFO in terms of the

190 Y. Wang and G.J. Weng



generated magnetoelectric coupling coefficients and other magneto-electro-elastic

constants at the same volume concentration of the piezomagnetic or piezoelectric

phase. We will also be able to see to what extent an imperfect interface, that is, a

weak interface, could adversely affect the generated magnetoelectric coupling

coefficients and other constants.

In retrospect, the magnificent feature of “0þ 0 ! 1” product effect was long

reported (van Suchtelen 1972), but it was not until the Green’s function formulation

put forward by Nan (1994) that a sound theoretical treatment was given. Nan also

used the properties of CFO and BTO as the model constituents to compute the

aspect-ratio dependence of the magnetoelectric coupling coefficients, α33 and α11.
On a more restricted basis a square block model was earlier adopted by

Fig. 8.1 Schematics of the piezoelectric/piezomagnetic multiferroic composite with an interface:

(a) general aligned spheroidal inclusions, (b) particulate composite with 0-3 connectivity α ¼ 1ð Þ,
(c) fibrous composite with 1-3 connectivity α�1ð Þ, and (d) multilayers with 2-2 connectivity

α ! 0ð Þ. In calculations BaTiO3 (or BTO) and CoFe2O4 (or CFO) are taken as the piezoelectric

and piezomagnetic phases, respectively
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Harshé et al. (1993) and a multilayer model considered by Avellaneda and Harshé

(1994). Soon after, Benveniste (1995) also presented a theory in a spirit related to

Hill (1964) and Milgrom and Shtrikman (1989) to determine the magnetoelectric

coupling of a fibrous piezoelectric-piezomagnetic composite. The explicit expres-

sions of the coupling coefficient, α33, of the fibrous composite given by Nan (1994)

and Benveniste (1995) are particularly enlightening, as the expressions vividly

show how the elastic, piezoelectric, and piezomagnetic constants of the constituent

phases jointly contribute to this magnetoelectric coupling coefficient. It is often said

that magnetoelectric coupling of a piezoelectric phase and a piezomagnetic phase is

created by the compatibility of their elastic strains, but these explicit results have

made it clear that it is not just the elastic constants, but also the piezoelectric and the

piezomagnetic constants, that jointly play the role for the transmission from electric

to magnetic field, or from magnetic to electric field, to create the magnetoelectric

coupling of a multiferroic fibrous composite.

A critical issue in Nan’s Green’s function approach was the evaluation of

Eshelby’s S-tensor (1957) of an ellipsoidal inclusion in the context of piezoelectric
(or piezomagnetic) response. This issue was not directly confronted within Nan’s
paper, as the study of Green’s function in a transversely isotropic piezoelectric

(or piezomagnetic) medium was still in its infant stage in the early 1990s. To this

writer’s recollection, the first paper to analyze the Green’s function of a 3-D

piezoelectric material was published by Wang (1992), but immediately also by

Chen (1993a, b, 1997), Dunn and Taya (1993a), and Dunn and Wienecke (1996).

During this period, the explicit components of the S-tensor for the fibrous and the

lamellar inclusion began to emerge, as reported by Dunn and Taya (1993b), Dunn

(1994), Huang and Yu (1994), Huang (1998), Huang et al. (1998), Li and Dunn

(1998a), and Mikata (2000, 2001). But so far no explicit expressions have been

derived for the spherical inclusion in a transversely isotropic piezoelectric

(or piezomagnetic) matrix, or for the general ellipsoid. This issue remains a

challenge at present.

The progress in the formulation of Green’s function and Eshelby’s S-tensor has
made it possible for the study of effective properties of transversely isotropic

piezoelectric composites containing spheroidal inclusions. Most notably among

them are the works of Huang and Kuo (1997), Li and Dunn (1998b), and Srinivas

et al. (2006), in addition to Nan’s seminal work. The availability of explicit

formulae for the S-tensor of a flat lamina and long circular cylinder has also greatly

facilitated the study of piezoelectric multilayered structures and fibrous systems.

For details one may refer to Kuo et al. (2010), Bichurin et al. (2003), Wang

et al. (2012), Liu and Kuo (2012), Kuo and Bhattacharya (2013), Chen

et al. (2014), and Liu et al. (2014), among others.

Nevertheless, all of these works were concerned with the perfect interface case.

In contrast there have been very few studies on the magnetoelectric coupling of

multiferroic composites with an imperfect interface. It appears that the first one to

undertake such a study was by Wang and Pan (2007) for the case of a fibrous

composite. They conducted a 2-D study under the transverse electric and magnetic

fields and longitudinal axial shear loading. The imperfect interface was modeled by
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the jump conditions of axial displacement and electric and magnetic potentials

across the fiber-matrix interface. Then, a complex variable approach was adopted to

find the 2-D average field, and, finally, the Mori-Tanaka method was employed to

calculate the overall property of the imperfectly bonded fibrous composite. Later

Dinzart and Sabar (2012), Kuo (2013), and Yue and Xu (2013) have also considered

a similar issue for the fibrous composites. The approach of Dinzart and Sabar

(2012) was very similar to that of Wang and Pan (2007). On the other hand, Kuo

(2013) has extended Rayleigh’s analysis of periodic conditions to the coupled,

imperfectly bonded interface, while Yue and Xu (2013) have instead used Taylor’s
expansion to solve the fields in the interphase. These few works have all pointed to

the significance of interface conditions in magnetoelectric coupling, but so far the

focus of interface effects has been limited to the fibrous composites.

We now return to the composite model depicted in Fig. 8.1. To address the stated

problem the constitutive equations of the constituent phases and the multiferroic

composite will be recalled first, in Sect. 8.2. A homogenization theory with a

perfect interface will be provided in Sect. 8.3, and another one with an imperfect

interface given in Sect. 8.4. The 17 constants of the multiferroic composite will be

calculated and discussed in Sect. 8.5, where the importance of the imperfect

interface model will also be highlighted. We will conclude in Sect. 8.6, and add

several useful information in the Appendix.

8.2 The Coupled Magneto-Electro-Elastic Constitutive
Equations

The piezoelectric or the piezomagnetic phase has its usual electroelastic or

magnetoelastic coupling, but neither has the magnetoelectric coupling. The

multiferroic composite, however, has them all. The coupled linear relations involve

six physical quantities: mechanical stress σ and strain ε, electric displacement

D and electric field E, and magnetic flux density B and magnetic field H, all in
tensors or vectors. As shown in Appendix 1, there are eight different ways to write

the constitutive equations. But here we choose σ, D, and B as one pair and ε, E, and
H as the other. This choice has the virtue that the quantities of the former group all

satisfy the divergence-free condition whereas the latter can all be derived from the

appropriate potentials. In indicial notations they satisfy

σij, j ¼ 0, Di, i ¼ 0, Bi, i ¼ 0: ð8:1Þ

εij ¼ 1

2
ui, j þ uj, i
� �

, Ei ¼ �ϕ, i, Hi ¼ �φ, i; ð8:2Þ

where ui is the displacement vector, and ϕ and φ are the electric and magnetic

potentials, respectively. The first equation in Eq. (8.1) is the mechanical equilib-

rium in the absence of body force and the remaining two are the quasi-static form of
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Maxwell’s equations in the absence of free charges. The coupled constitutive

equations can be written as

σ ¼ Cε � eTE� qTH;

D ¼ eεþ κEþ αH; ð8:3Þ
B ¼ qεþ αEþ μH;

where the diagonal terms C, κ, and μ are the elastic stiffness tensor (measured at

constant electric and magnetic fields), electric permittivity tensor (measured at

constant strain and magnetic field), and magnetic permeability tensor (measured

at constant strain and electric field), respectively. The off-diagonal e and q are the

piezoelectric and piezomagnetic constant tensors, and the off-diagonal α is the

magnetoelectric coupling coefficient tensor. The superscript T stands for the trans-

pose (note that α in bold face is a tensor, with the components, α33 and α11 ¼ α22ð Þ;
but α in scalar is the aspect ratio of inclusions).

This set of constitutive equations can be cast in a unified notation in matrix

form, as

Xi ¼ LijYj, i, j ¼ 1 � 12; ð8:4Þ

where

X ¼ σ, D, B½ �T ¼ σ1 σ2 σ3 σ4 σ5 σ6 D1 D2 D3 B1 B2 B3½ �T ,
Y ¼ ε, � E, � H½ �T ¼ ε1 ε2 ε3 ε4 ε5 ε6 � E1 � E2 � E3 � H1 � H2 � H3½ �T ;

ð8:5Þ

and

L ¼
C eT qT

e �κ �α

q �α �μ

2
664

3
775: ð8:6Þ

BothX andY are 12-dimensional vectors, and L is a12� 12matrix, which includes

C as a 6� 6, e and q as a 3� 6, and κ, α, and μ as a 3� 3 matrix. The matrix L is

the magneto-electro-elastic moduli matrix. If L is transversely isotropic along

direction-3 as is the case in the present study, it can be simplified to
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L¼

C11 C12 C13 0 0 0 0 0 e31 0 0 q31

C12 C11 C13 0 0 0 0 0 e31 0 0 q31

C13 C13 C33 0 0 0 0 0 e33 0 0 q33

0 0 0 C44 0 0 0 e15 0 0 q15 0

0 0 0 0 C44 0 e15 0 0 q15 0 0

0 0 0 0 0 C66 0 0 0 0 0 0

0 0 0 0 e15 0 �κ11 0 0 �α11 0 0

0 0 0 e15 0 0 0 �κ11 0 0 �α11 0

e31 e31 e33 0 0 0 0 0 �κ33 0 0 �α33

0 0 0 0 q15 0 �α11 0 0 �μ11 0 0

0 0 0 q15 0 0 0 �α11 0 0 �μ11 0

q31 q31 q33 0 0 0 0 0 �α33 0 0 �μ33

2
666666666666666666666664

3
777777777777777777777775

:

ð8:7Þ

This matrix involves 17 independent material constants (note: C66¼ (C11�C12)/2):

five elastic ones, C11, C12, C13, C33, C44; two dielectric ones, κ33 and κ11; two
magnetic ones, μ33 and μ11; three piezoelectric ones, e31, e33, and e15; three

piezomagnetic ones, q31, q33, and q15; and two magnetoelectric ones, α33 and α11,
for the multiferroic composite. But for the piezoelectric phase the piezomagnetic

q-components and the magnetoelectric α-components are all zero, and for the

piezomagnetic phase the piezoelectric e-components and the magnetoelectric

α-components are also zero. This makes the constituent piezoelectric and

piezomagnetic phases have 12 independent constants each. It is the determination

of these 17 independent constants of the multiferroic composite that is the objective

of this study.

In this formulation we have chosen the negative �Ei and �Hi as the input

variables so that matrix L can be diagonally symmetric. Such a diagonal symmetry

for the constituent phases will ensure its product with Eshelby’s S-tensor—which is

not diagonally symmetric for a general spheroid—to recover the diagonal

symmetry for the effective L of the composite. This occurs in Eq. (8.8) below for

the SL0
�1-term.

8.3 The Effective Magneto-Electro-Elastic Tensor, L,
of the Composite with a Perfect Interface

With the inclusion-matrix microgeometry shown in Fig. 8.1, the Mori-Tanaka

method is the most convenient one to apply. In the elastic context this approach

has been extensively discussed by Weng (1984, 1990) and Benveniste (1987). Its

extension to this coupled problem is direct with the proper choice of the field

8 Magnetoelectric Coupling and Overall Properties of a Class of Multiferroic. . . 195



quantities. By taking the inclusions as phase 1 and matrix as phase 0, and then

denoting their respective volume concentrations as c1 and c0, and phase moduli as

L1 and L0, respectively, the effective magneto-electro-elastic moduli tensor of the

composite can be written analogously as (Weng 1984)

L ¼ L0 þ c1 L1 � L0ð Þ Iþ c0SL0
�1 L1 � L0ð Þ� ��1

; ð8:8Þ

where S is Eshelby’s S-tensor of the ellipsoidal inclusion in the matrix phase which

can be piezoelectric or piezomagnetic. With the exception of a fibrous composite

(1-3 connectivity) or a multilayered structure (2-2 connectivity), its components

cannot be written explicitly but can be evaluated numerically. We have adopted a

Gaussian quadrature procedure to calculate these components. It is outlined in

Appendix 2, where the explicit components of S-tensor for both fibrous and

multilayered composites are also given in Eq. (8.22).

Equation (8.8) enables us to determine the needed 17 constants of L from L1 and

L0, at a given volume concentration, c1, and aspect ratio, α, of inclusions. This
moduli tensor also has the virtue that it always stays on or within the Willis bounds

(1977); it will never violate the bounds (see Weng 1992).

8.4 The Influence of an Imperfect Interface on L

To treat the effect of an imperfect interface as shown in Fig. 8.1, we assume that

there exists a very thin layer of interphase. This thin layer is taken to be on the

surface of the inclusion which could be piezomagnetic or piezoelectric.

Together they form a thinly coated inclusion. The volume concentration of the

interphase in the coated inclusion is denoted as cint, and that of the remaining

inclusion as (1� cm). Due to the amorphous nature of the interphase, its property

will be assumed to be isotropic, with no piezoelectric, piezomagnetic, or magneto-

electric coupling. So there are only four independent constants for the interphase

moduli, Lint; that is, Lint ¼ Cint
11 , C

int
44 , κint, μint

� �
and its form is given in Appen-

dix 2. But tensor L1 of the inclusion remains transversely isotropic as before. By

treating the interphase as the matrix phase in this thinly coated inclusion, the

effective moduli tensor of this coated inclusion, denoted by Lcoat, follows analo-

gously from Eq. (8.8), as

Lcoat ¼ Lint þ 1� cintð Þ L1 � Lintð Þ Iþ cintSintLint
�1 L1 � Lintð Þ� ��1

: ð8:9Þ

This S-tensor, denoted as Sint, implies that its components are evaluated with the

property of the isotropic Lint. These components are known explicitly; we have also

listed them in Eq. (8.22) of Appendix 2.

The overall property, L, of the multiferroic composite with an imperfect inter-

face can be evaluated from Eq. (8.8) again by replacing L1 there by Lcoat. This
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two-step procedure will give rise to a reduced L due to the reduction of field transfer

from the matrix to the inclusion across the interface.

Both Eqs. (8.8) and (8.9) are explicit, but their simplicity can be deceiving, as

Eq. (8.8) involves some heavy computations during the evaluation of S-tensor of

the transversely isotropic spheroidal piezoelectric (or piezomagnetic) inclusion.

The general spheroidal shape of the inclusion and the anisotropic piezoelectric

(or piezomagnetic) matrix property are what make it complicated, but for the α33
and α11 of 1-3 and 2-2 composites, we have worked out a set of explicit formulae

under both perfect and imperfect interface conditions. Due to the importance of

these two quantities, we have added an Appendix 3 to provide the explicit forms of

α33 and α11 under both perfect and imperfect interface conditions.

8.5 Results and Discussion

The established theory allows us to calculate all the 17 independent components of

the effective magneto-electro-elastic moduli tensor, L, for the piezoelectric-

piezomagnetic multiferroic composite. We now use the property of BaTiO3

(BTO) as the piezoelectric phase and that of CoFe2O4 (CFO) as the piezomagnetic

phase to present the calculated results. BTO and CFO are two widely considered

piezoelectric and piezomagnetic materials. Even though the CFO-BTO composite

systems have been considered before, very few covered the entire range of aspect

ratio, and none addressed the issue of an imperfect interface of spheroidal inclu-

sions. So the results reported here could have benchmark value. Their properties are

also listed in Table 8.1.

With this set of phase properties, the two magnetoelectric αij, two dielectric κij,
two magnetic μij, three piezoelectric eij, three piezomagnetic qij, and five elastic Cij

of tensor L under a perfect interface can be calculated from Eq. (8.8). To calculate

the properties under the imperfect interface condition, the following interphase

properties—taken from Wang et al. (2015)—will be adopted:

Cint
11 ¼ 3� 109Pa, Cint

44 ¼ 1� 109Pa;

κint ¼ 2ε0, ε0 ¼ 8:854� 10�22F=m, vacuum permittivity; ð8:10Þ
μint ¼ 2μ0, μ0 ¼ 1:257� 10�6H=m, vacuum permeability:

Initially the interphase volume concentration, cint, is taken to be 0.01 (1% of the

coated inclusion), but to guarantee it to reduce to zero as c1 reaches 1, we take it to
depend on c1 as

cint ¼ 0:01� 1� F c1; 20, 1ð Þ½ �; ð8:11Þ

where F is the cumulative distribution function of the Bata distribution. The nature

of this cint is plotted in Fig. 8.2 along with the cint ¼ 0:01 used in Wang et al. (2015)
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in the evaluation of α33 and α11. It can be seen that there is little difference between
the two when c1 < 0:8, but this new interface model has the virtue that the interface

will disappear as c1 ! 1, whereas the former still retains a finite cint ¼ 0:01. While

this is not a critical issue for the calculation of α33 and α11 because the interphase
possesses no α33 or α11, it becomes a problem for the evaluation of other constants,

such as Cij, κij, and μij, where the different values of these constants in the

Table 8.1 Material constants used in numerical calculations

Source

Huang and Kuo (1997) and

Li and Dunn (1998a, b) Harshé et al. (1993)

Matrix phase BTO CFO BTO CFO

C11 GPa 166 286 283 284

C12 GPa 77 173 186 171

C13 GPa 78 170 142 168

C33 GPa 162 269.5 178 268

C44 GPa 43 45.3 43 45.3

e31 C/m
2 �4.4 0 �9.69 0

e33 C/m
2 18.6 0 11.7 0

e15 C/m
2 11.6 0 11.6 0

q31 N/(A�m) 0 550 0 574

q33 N/(A�m) 0 580.3 0 695

q15 N/(A�m) 0 699.7 0 550

κ11 C
2/(N�m2) 11.2� 10�9 0.08� 10�9 11.2� 10�9 0.08� 10�9

κ33 C
2/(N�m2) 12.6� 10�9 0.093� 10�9 8.2� 10�9 0.089� 10�9

μ11 N/A
2 5� 10�6 590� 10�6 5� 10�6 590� 10�6

μ33 N/A
2 10� 10�6 157� 10�6 10� 10�6 157� 10�6

Fig. 8.2 Variation of volume concentration of interphase cint as c1 increases
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interphase will not bring the composite property back to that of inclusions as

c1 ! 1. Since all the 17 material constants are to be evaluated here, this new

interphase function is deemed to be more appropriate.

In what follows, the results for the perfect interface will be given first, followed

by those with an imperfect interface. To make a direct comparison between the

CFO-in-BTO and BTO-in-CFO composites, we will present their results in parallel,

in (a) and (b), for each figure.

8.5.1 Effective Properties of CFO-in-BTO and BTO-in-CFO
Composites with a Perfect Interface

8.5.1.1 The Magnetoelectric Coupling Coefficients, α33 and α11

This set of properties is often referred to as the figure of merits in a multiferroic

composite. It is the true expression of the “0þ 0 ! 1” product effect. The

magnitude—especially its maximum—signifies its potential for applications in

many electronic devices.

For α33, its c1-dependences at five aspect ratios of inclusions, α ¼ 0, 0:5, 1, 10,
and 1, are displayed in Fig. 8.3a for the CFO-in-BTO composite, and in Fig. 8.3b

for BTO-in-CFO. This quantity represents the induced axial magnetization, B3,

under a unit axial electric field, E3, or conversely, the induced axial electric

displacement, D3, under a unit axial magnetic field, H3, of the composite. From

both figures it can be observed that, in this axial direction, fibrous composite always

provides the strongest magnetoelectric coupling. Its 1-3 connectivity is strongly

favored over other microstructures, including the particle-type 0-3 connectivity of

all aspect ratios, such asα ¼ 0:5, 1, and 10, and the 2-2 multilayers withα ! 0. For

CFO-in-BTO, the maximum coupling occurs at around c1 ¼ 0:56, with a magni-

tude of about 30� 10�10C= A �mð Þ. The maximum value steadily decreases as the

aspect ratio of inclusions decreases, down to almost zero with the lamellar structure.

The data for BTO-in-CFO in Fig. 8.3b show a similar trend. The maximum of the

Fig. 8.3 The c1 dependence of the magnetoelectric coefficient α33: (a) CFO-in-BTO and

(b) BTO-in-CFO
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fibrous composite occurs at around c1 ¼ 0:44, which is 0.56 in terms of the volume

concentration of CFO, as in Fig. 8.3a, but its value at 28� 10�10C= A �mð Þ is

lower. The multilayered structure is also the least effective for α33, virtually

remaining at 0. But with other aspect ratios, such as α ¼ 10, 1, and 0:5, it is
observed that the differences in the maximum values for these two composite

configurations are significant. In general the maximum values for CFO-in-BTO

are notably higher than those for BTO-in-CFO. This indicates that, in terms of the

α33-coupling, the CFO-in-BTO composite system is superior to BTO-in-CFO.

The calculated results for α11 are shown in Fig. 8.4a, b. In this transverse

direction the superiority of multilayers becomes apparent. The negative values of

this quantity imply that a positive E1 will generate a negative B1, or conversely a

positive H1 will generate a negative D1. The difference between α33 and α11 for

each aspect ratio in Figs. 8.3 and 8.4 signifies the transverse anisotropy of the

composite. In both CFO-in-BTO and BTO-in-CFO, the multilayered structure is

seen to generate the strongest magnetoelectric coupling for α11, while the fibrous

composite gives virtually no coupling effect. This is in direct contrast to the α33
characteristics. The multilayered curves in Fig. 8.4a, b are symmetric, for in this

case there is no distinction between inclusions and matrix. The maximum occurs at

c1 ¼ 0:5, with an absolute value of 350� 10�10C= A �mð Þ. This is one order of

magnitude higher than the 30� 10�10C= A �mð Þ generated for α33 by the fibrous

CFO-in-BTO composite. For oblate inclusions with aspect ratio α ¼ 0:5, CFO-in-

BTO is again superior to BTO-in-CFO, with the maxima of 20� 10�10C= A �mð Þ
and 10� 10�10C= A �mð Þ, respectively, for α11. This level of difference is also

observed with spherical inclusions. When the inclusion shape turns into a prolate

one, the magnitudes of α11 are all negligible. This is similar to the oblate shapes in

their effect on α33, which further suggests the sharp contrast between the inclusion-
shape dependence of α33 and α11. Comparison between Figs. 8.3 and 8.4 for both

CFO-in-BTO and BTO-in-CFO also reflects the strong anisotropy of the coupled

behavior in an aligned multiferroic composite for each chosen inclusion shape.

Fig. 8.4 The c1 dependence of the magnetoelectric coefficient α11: (a) CFO-in-BTO and

(b) BTO-in-CFO

200 Y. Wang and G.J. Weng



8.5.1.2 The Piezoelectric Constants, e31, e33, and e15

The piezoelectric constants eij connect the applied electric field Ej to the induced

mechanical stress σi, or conversely the applied mechanical strain εj to the induced

electric displacement Di, as indicated in Eq. (8.3). The variations of these constants

as a function of inclusion concentration, c1, at the five selected aspect ratios are

shown in Figs. 8.5, 8.6, and 8.7. As CFO possesses no piezoelectric effect, the

Fig. 8.6 The c1 dependence of the piezoelectric constant e33: (a) CFO-in-BTO and (b)BTO-in-CFO

Fig. 8.5 The c1 dependence of the piezoelectric constant e31: (a) CFO-in-BTO and (b) BTO-in-CFO

Fig. 8.7 The c1 dependence of the piezoelectric constant e15: (a) CFO-in-BTO and (b) BTO-in-CFO
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magnitudes of these quantities all vary from those of BTO to zero of CFO as c1
varies between 0 and 1. Since e31 is negative for BTO, this value is also negative for
the composite. However, the values of e33 and e15 are all positive. Their c1- and α-
dependence as shown here all display strong sensitivity of inclusion shape on the

piezoelectric constants.

8.5.1.3 The Piezomagnetic Constants, q31, q33, and q15

The piezomagnetic constants qij are strong in the ferromagnetic CFO, but zero in

the piezoelectric BTO, so the values of the composite all vary between zero on the

BTO end to those of CFO as c1 varies from 0 to 1. The calculated results are shown

in Figs. 8.8, 8.9, and 8.10, for q31, q33, and q15, in turn. For q31, which signifies the

induced magnetic flux density B3 in the axial direction by the tensile strain ε1 in the
transverse direction, or the induced transverse stress σ1 by the axial magnetic field,

H3, the fibrous composite α ¼ 1ð Þ is seen to provide the strongest coupling effect.

This is also the case for q33 that reflects the magneto-elastic interaction solely along

the axial direction. For q15 which reflects the induced axial shear stress σ5 (or σ4) by

Fig. 8.8 The c1 dependence of the piezomagnetic constant q31: (a) CFO-in-BTOand (b) BTO-in-CFO

Fig. 8.9 The c1 dependenceof thepiezomagnetic constantq33: (a)CFO-in-BTOand (b)BTO-in-CFO
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the transverse magnetic field H1 (or H2), as well as the induced transverse magnetic

flux B1 (or B2) by the axial shear strain ε5 (or ε4), the multilayer (α ¼ 0) is the most

effective microstructure.

8.5.1.4 The Electric Permittivity, κ33 and κ11

The variations of electric permittivity κ33 are shown in Fig. 8.11, and κ11 in

Fig. 8.12. The constant κ33 defines the induced electric displacement, B3 in the

axial direction by the axial electric field E3, whereas κ11 provides the connection in
the transverse direction 1 (and 2). As the electric permittivity is strong in BTO and

very low in CFO, the trends are quite similar to those displayed for the piezoelectric

constants above. The variations of these two quantities also exhibit similar charac-

teristics as e33 and e15, while the trends of κ33 are also similar to e33 and those of κ11
similar to e15. For κ33, it is the strongest with the fibrous composite, with a c1-
dependence that is almost linear. It is the weakest with the multilayers. For κ11, the
trend is exactly reversed. In the transverse direction the multilayers always repre-

sent the most effective microstructure. One may also observe the symmetric version

of the multilayers by comparing (a) to (b) in each figure.

Fig. 8.10 The c1 dependence of the piezomagnetic constant q15: (a) CFO-in-BTO and (b)
BTO-in-CFO

Fig. 8.11 The c1 dependence of the permittivity κ33: (a) CFO-in-BTO and (b) BTO-in-CFO
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8.5.1.5 The Magnetic Permeability, μ33 and μ11

The overall permeability of the multiferroic composite, μ33 and μ11, is shown in

Figs. 8.13 and 8.14, respectively. In contrast to the permittivity, the permeability of

CFO is very high whereas that of BTO is very weak. But the linear nature of the

curves associated with fibrous composites for μ33 remains unchanged, and so is its

highly nonlinear variation associated with multilayers. For μ11, the trends are

Fig. 8.13 The c1 dependence of the permeability μ33: (a) CFO-in-BTO and (b) BTO-in-CFO

Fig. 8.12 The c1 dependence of the permittivity κ11: (a) CFO-in-BTO and (b) BTO-in-CFO

Fig. 8.14 The c1 dependence of the permeability μ11: (a) CFO-in-BTO and (b) BTO-in-CFO
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reversed, with multilayers displaying a more linear increase. These results again

point to the superiority of 1-3 connectivity for the direction-3 properties such as κ33
and μ33, and that of 2-2 connectivity for the transverse properties such as κ11
and μ11.

8.5.1.6 The Five Elastic Constants, C11, C12, C13, C33, and C44

The five independent elastic constants, C11, C12, C13, C33, and C44, are shown in

Figs. 8.15, 8.16, 8.17, 8.18, and 8.19. As the elastic properties of CFO are stiffer

than those of BTO, there is an increasing trend for CFO-in-BTO, as shown in figure

(a) of each set, and a decreasing trend for BTO-in-CFO in figure (b). It can also be

observed that, for C11, C12, and C13, there is virtually no aspect-ratio dependence,

and for C33 its dependence is visible, but very weak. So for these four constants the

main factor is their c1-dependence. In reading these figures it is useful to keep in

mind that direction 3 is the axial, symmetric direction while plane 1-2 is isotropic.

But for C44 in Fig. 8.19, the axial shear modulus of the composite, it is highly

aspect-ratio dependent. Moreover, there is a remarkable feature that its magnitude

can be higher than either of the constituent phases. This feature is not to be commonly

found in ordinary elastic composites. This is seen to occur in CFO-in-BTO as well as

Fig. 8.15 The c1 dependence of the elastic constant C11: (a) CFO-in-BTO and (b) BTO-in-CFO

Fig. 8.16 The c1 dependence of the elastic constant C12: (a) CFO-in-BTO and (b) BTO-in-CFO
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in BTO-in-CFO. This outcome is a consequence of the piezoelectric-piezomagnetic

interactions in the multiferroic composite. To demonstrate that it is a unique property

of the multiferroics, we have made another round of calculations using solely the

elastic constants of CFO and BTO, without any piezoelectric, piezomagnetic, dielec-

tric, or magnetic constants. The calculated C44 with the same five aspect ratios are

shown in Fig. 8.20a, b. They all become very linear. It is clear that no such synergistic

feature is present in the purely elastic composites. To make this finding more

Fig. 8.17 The c1 dependence of the elastic constant C13: (a) CFO-in-BTO and (b) BTO-in-CFO

Fig. 8.18 The c1 dependence of the elastic constant C33: (a) CFO-in-BTO and (b) BTO-in-CFO

Fig. 8.19 The c1 dependence of the elastic constant C44: (a) CFO-in-BTO and (b) BTO-in-CFO
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accessible, we have derived an explicit form of C44 for the fibrous multiferroic

composite and the purely elastic composites. The results are given in Eq. (8.56) of

Appendix 4, where one can see that CM
44 of the multiferroic composite is always

higher than CE
44 of the purely elastic one.

8.5.2 Properties of CFO-in-BTO and BTO-in-CFO
Composites with an Imperfect Interface

With the interphase property and volume concentration in the coated inclusion

given in Eqs. (8.10) and (8.11), respectively, we have applied Eqs. (8.8) and (8.9) to

compute the 17 effective magneto-electro-elastic constants of the imperfectly

bonded multiferroic composite. Here we present the calculated results in the same

order as in the preceding section for ready comparison. It will become evident that,

due to the presence of a weak interface, many quantities are reduced.

8.5.2.1 The Magnetoelectric Coupling Coefficients, α33 and α11,
with an Imperfect Interface

The magnetoelectric coupling coefficient in the axial direction, α33, is shown in

Fig. 8.21a, b, for CFO-in-BTO and BTO-in-CFO, respectively. This set of data is to

be compared with Fig. 8.3a, b. It is evident that the maximum with an imperfect

interface is lower in each case. For instance with the fibrous composite the maxi-

mum is now only 21� 10�10C= A �mð Þ for CFO-in-BTO, whereas it was about

30� 10�10C= A �mð Þ. With the aspect ratio of α ¼ 10, the maximum decreases

from 23� 10�10C= A �mð Þ to about 16� 10�10C= A �mð Þ. The values for BTO-in-
CFO also have notable reductions for all aspect ratios of inclusions. For α11, the
results are shown in Fig. 8.22a, b. In this direction the multilayered composite gives

Fig. 8.20 The c1 dependence of the elastic constant C44 in a purely elastic composite with the

elastic properties of BTO and CFO: (a) CFO-in-BTO and (b) BTO-in-CFO
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the highest coupling, but with an imperfect interface, its maximum magnitude has

decreased to about 300� 10�10C= A �mð Þ from about 360� 10�10C= A �mð Þ in

Fig. 8.4.

8.5.2.2 The Piezoelectric Constants, e31, e33, and e15, with an Imperfect

Interface

The piezoelectric constants of the multiferroic composite with an imperfect inter-

face are shown in Figs. 8.23, 8.24, and 8.25, for e31, e33, and e15, respectively. As
compared to Figs. 8.5, 8.6, and 8.7, we also see notable reductions. For instance,

with α ¼ 0:5, the magnitude of e31 for CFO-in-BTO is now about �2 C/m2 at

c1 ¼ 0:4, whereas it was about �2.5 C/m2 with a perfect interface. For BTO-in-

CFO, the reduction with α ! 8 was from �2.3 to �1.6 C/m2 at c1 ¼ 0:4. But we
notice that the reduction for e33 does not appear to be significant in comparison with

Fig. 8.6, and so is for e15 in the case of CFO-in-BTO, but for BTO-in-CFO it is

notable with the multilayer structure.

Fig. 8.21 The magnetoelectric coefficient α33 with an imperfect interface: (a) CFO-in-BTO and

(b) BTO-in-CFO

Fig. 8.22 The magnetoelectric coefficients α11 with an imperfect interface: (a) CFO-in-BTO and

(b) BTO-in-CFO
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Fig. 8.23 The piezoelectric constant e31 with an imperfect interface: (a) CFO-in-BTO and

(b) BTO-in-CFO

Fig. 8.24 The piezoelectric constant e33 with an imperfect interface: (a) CFO-in-BTO and

(b) BTO-in-CFO

Fig. 8.25 The piezoelectric constant e15 with an imperfect interface: (a) CFO-in-BTO and

(b) BTO-in-CFO
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8.5.2.3 The Piezomagnetic Constants, q31, q33, and q15,
with an Imperfect Interface

With the interface effect, these three constants are shown in Figs. 8.26, 8.27, and

8.28. Since CFO is strongly piezomagnetic but BTO has no such effect, these two

end conditions must be met in all plots as c1 varies from 0 to 1. For q31 and q33,

Fig. 8.26 The piezomagnetic constant q31 with an imperfect interface: (a) CFO-in-BTO and

(b) BTO-in-CFO

Fig. 8.27 The piezomagnetic constant q33 with an imperfect interface: (a) CFO-in-BTO and

(b) BTO-in-CFO

Fig. 8.28 The piezomagnetic constant q15 with an imperfect interface: (a) CFO-in-BTO and

(b) BTO-in-CFO
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which are associated with the axial magnetic loading, H3, the fibrous composite

with 1-3 connectivity represents the most favored microstructure. Their magnitudes

steadily decrease as the aspect ratio of inclusions decreases. But for q15, which
involves the transverse magnetic loading of H1 or H2, multilayered structure is the

most favored one. The magnitude of this constant tends to decrease with the

increase of aspect ratio. In essence, the aspect-ratio dependence of these three

quantities are similar to the trend displayed in the three piezoelectric constants,

except that the end conditions are reversed. From these results, we can conclude

that, under the axial electric or magnetic loading, 1-3 connectivity should be

chosen, but under the transverse electric or magnetic loading, 2-2 connectivity

should be selected, regardless of the interface condition.

8.5.2.4 The Electric Permittivity, κ33 and κ11, with an Imperfect

Interface

The influence of an imperfect interface on the dielectric permittivity, κ33 and κ11, is
shown in Figs. 8.29 and 8.30, respectively. This is to be compared with Figs. 8.11

and 8.12 with a perfect interface for the extent of reduction. With the prescribed

Fig. 8.29 The permittivity κ33 with an imperfect interface: (a) CFO-in-BTO and (b) BTO-in-CFO

Fig. 8.30 The permittivity κ11 with an imperfect interface: (a) CFO-in-BTO and (b) BTO-in-CFO
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interphase property and volume concentration, the reductions for both constants do

not appear to be particularly significant for all aspect ratios, regardless of CFO-in-

BTO or BTO-in-CFO. Direct comparison between these two composite configura-

tions indicates that they are almost identical. The possible reason for this outcome is

likely to be due to the small volume concentration of the interphase, cint, that its
effect on the overall permittivity is not sufficiently significant to be visible. We

have double-checked the calculations for the imperfect interface; no errors were

detected.

8.5.2.5 The Magnetic Permeability, μ33 and μ11, with an Imperfect

Interface

The results with the imperfect interface for μ33 and μ11 are shown in Figs. 8.31 and

8.32. In comparison with Figs. 8.13 and 8.14 for the perfect interface, the reductions

in the magnitude of magnetic permeability are also found to be small. Indeed the

influence of an imperfect interface here is essentially the same as that displayed in

κ33 and κ11. It turns out that, in addition to these two constants, the piezoelectric

constant, e33, with a perfect interface in Fig. 8.6 and an imperfect interface in

Fig. 8.31 The permeability μ33 with an imperfect interface: (a) CFO-in-BTO and (b) BTO-in-CFO

Fig. 8.32 The permeability μ11 with an imperfect interface: (a) CFO-in-BTO and (b) BTO-in-CFO
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Fig. 8.24, is found to be another one that shows little interface effect. This is also the

case for the q33 of BTO-in-CFO in Figs. 8.9b and 8.27b, but for the same q33 of
CFO-in-BTO in Figs. 8.9a and 8.27a, interface effect is visible.

8.5.2.6 The Five Elastic Constants, C11, C12, C13, C33, and C44,

with an Imperfect Interface

The five independent elastic constants are shown in Figs. 8.33, 8.34, 8.35, 8.36, and

8.37. Unlike the prevailing cases the reductions here are significant for each

quantity. Previously the transverse stiffness C11 in Fig. 8.15 under the perfect

interface condition was virtually aspect-ratio independent, but here this quantity

is highly dependent upon the aspect ratio of inclusions. For CFO-in-BTO, the

multilayered structure is found to be the most significantly affected because along

the planar direction 1, the weak interface can drastically lower the effective

stiffness. In the case of BTO-in-CFO, its value can be lower than that of the BTO

as inclusion concentration, c1, is approaching 1. The reduction in C12 is very similar

Fig. 8.33 The elastic constantC11with an imperfect interface: (a) CFO-in-BTOand (b)BTO-in-CFO

Fig. 8.34 The elastic constantC12with an imperfect interface: (a) CFO-in-BTOand (b)BTO-in-CFO
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to that in C11. Comparing Figs. 8.17, 8.18, 8.19, 8.20, 8.21, 8.22, 8.23, 8.24, 8.25,

8.26, 8.27, 8.28, 8.29, 8.30, 8.31, 8.32, 8.33, 8.34, and 8.35 for C13, a uniform

reduction is found for CFO-in-BTO over the range of c1 from 0 to 0.9, while for

BTO-in-CFO, the reduction becomes more severe when the BTO inclusion con-

centration is near 0.9. For C33 and C44, the influence of the interphase with the

Fig. 8.35 The elastic constantC13with an imperfect interface: (a) CFO-in-BTOand (b)BTO-in-CFO

Fig. 8.36 The elastic constantC33with an imperfect interface: (a) CFO-in-BTOand (b)BTO-in-CFO

Fig. 8.37 The elastic constantC44with an imperfect interface: (a) CFO-in-BTOand (b)BTO-in-CFO
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multilayered composite is extremely sensitive. With C33, it also increases mono-

tonically at low c1, but afterward it can cause this elastic constant to decrease with

increasing c1 over the range between c1 ¼ 0:1 and c1 ¼ 0:9. With the constant C44,

the value with an imperfect interface is found to be lower than that of either CFO or

BTO. This is an opposite synergistic effect as C44 in the perfect interface case due to

the simultaneous interactions of piezoelectric, piezomagnetic, and interphase

effects.

8.5.3 Why Is the Imperfect Interface Model Needed?

We have taken great length to study the impact of an imperfect interface on the

17 multiferroic constants. Some are found to be very sensitive to the interface

condition whereas others are less so. But the most important reason for the

introduction of the imperfect interface is to be able to model the property of the

real material system, as the interface of most bulk multiferroic composites is not

perfect. This is also observed in carbon nanotube-based polymer nanocomposites

(Wang et al. 2014). We now demonstrate that, without an imperfect interface

model, the experimentally measured data cannot be adequately predicted.

Even though there are not many experimental data reported in the literature,

Harshé et al. (1993) did report their measured magnetoelectric voltage coefficient,

αE33, of a CFO-in-BTO multiferroic composite. The voltage coefficient is related to

the magnetoelectric coupling coefficient, α33, through αE33 ¼ α33=κ33, where κ33 is
the electric permittivity of the multiferroic composite in direction 3. They provided

the data of αE33 at two volume concentrations of CFO, one at 11% and the other at

22%. Their results are reproduced in Fig. 8.38, with the range of data indicated by

the black error bar. They also provided the material constants of BTO and CFO. As

the constants were given under a stress-controlled boundary condition, the values

needed to be translated into the strain-controlled boundary conditions as described

in Eq. (8.14) in Appendix 1. The newly calculated constants are also listed in the

right column of Table 8.1. To make the comparison, we have first applied the

perfect interface model to calculate αE33; the result is also shown in Fig. 8.38, in red
curve. It is evident that the perfect interface model has substantially overestimated

the measured data, and that an imperfect interface model is needed.

We then adopt the imperfect interface model to calculate this quantity. The

constants used are cint ¼ 0:02� 1� F c1; 20, 1ð Þ½ �; and

Cint
11 ¼ 2� 109Pa, Cint

44 ¼ 1� 109Pa;

κint ¼ 2ε0, ε0 ¼ 8:854� 10�12F=m, vacuum permittivity; ð8:12Þ
μint ¼ 2μ0, μ0 ¼ 1:257� 10�6H=m, vacuum permeability:
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The calculated results are also shown in Fig. 8.38, in blue. It is seen that the

experimental data now can be captured with this weak interface model. This

comparison speaks for the need of the imperfect interface model in modeling a

real system.

8.6 Conclusions

In this chapter we have presented a composite model to calculate the magnetoelec-

tric coupling coefficients and overall magneto-electro-elastic properties of a class of

multiferroic composites. This class of composites is represented by aligned sphe-

roidal inclusions which can be piezomagnetic or piezoelectric, embedded in a

homogeneous piezoelectric or piezomagnetic matrix with an interface which can

be perfect or imperfect. The aspect ratio of inclusions can be from 0 to1 that covers

the entire range from multilayered structures to fibrous composites. Between these

limiting cases lies the general spheroidal shape whose aspect ratio can be less than,

equal to, or greater than 1. This microgeometry includes the three most widely

considered microstructures that are commonly referred to as 2-2, 0-3, and 1-3

connectivities. This class of composites has 17 independent material constants

whereas the piezoelectric or the piezomagnetic phase each has only 12. The

determination of these 17 constants for the multiferroic composite over the entire

range of inclusion concentration and aspect ratio has been the major objective of

this investigation.

We have used this theory to determine these 17 material constants, first under the

perfect and then under the imperfect interface condition. The case with a perfect

Fig. 8.38 Comparison between experiment and theory based on a perfect and an imperfect

interface models for the magnetoelectric voltage coefficient αE33 of a CFO-in-BTO composite
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interface can be readily addressed by the Mori-Tanaka method. To address the

influence of an imperfect interface, we have introduced a thinly coated inclusion

model that consists of the original inclusion and an interphase to address the effect

of interface. The coated inclusion is then embedded into the matrix to study the

influence of the interface on the overall properties of the multiferroic composite.

This two-step procedure renders the Mori-Tanaka approach useful in the study of

multiferroic composites under either a perfect or an imperfect interface condition.

One of the most challenging steps in the process of computation is the determina-

tion of the components of Eshelby’s S-tensor for either the transversely isotropic

spheroidal piezoelectric or piezomagnetic inclusion. While its components are

explicitly known for 2-2 and 1-3 connectivity, they are not so with a general

spheroid. For this purpose a Gaussian quadrature numerical procedure to evaluate

its components is presented in Appendix 2.

Among the 17 material constants that are present in the multiferroic composite,

the two most intriguing ones are the magnetoelectric coupling coefficients, α33 and
α11. These constants are absent in either the piezoelectric or the piezomagnetic

phase, but is present in the composite. It represents the signature product effect of

the multiferroic composite. These two quantities have been determined over the

entire range of inclusion volume concentration and aspect ratio, under both perfect

and imperfect interface conditions, for both CFO-in-BTO and BTO-in-CFO com-

posites. It is shown that, for α33, the fibrous composite represents the most favorable

connectivity whereas for α11 it is the multilayered structure that gives the most

optimal result. Due to the importance of α33 and α11 for both 1-3 and 2-2 connec-

tivity, we have listed their explicit results under both perfect and imperfect interface

conditions in Appendix 3.

We have further demonstrated how the three piezoelectric constants, e31, e33,
and e15; the three piezomagnetic constants, q31, q33, and q15; the two dielectric

permittivity, κ33 and κ11; the two magnetic permeability, μ33 and μ11; and the five

elastic constants, C11, C12, C13, C33, and C44, depend on the volume concentration

and aspect ratio of inclusions, for both CFO-in-BTO and BTO-in-CFO, under both

perfect and imperfect interface conditions. One of the intriguing features of these

constants is the unusually high magnitude of C44 under the perfect interface that can

far exceed the C44 of either the piezoelectric or the piezomagnetic phase. Such an

exceptional feature is found to exist solely in a multiferroic composite but not in a

purely elastic composite. An explicit expression for C44 of the fibrous multiferroic

and elastic composites is also given in Appendix 4. It is further emphasized that, in

order to capture the magnetoelectric coupling of real bulk multiferroic composites,

a weak interface model is often required. As CFO-in-BTO and BTO-in-CFO are

two of the most widely considered multiferroic composites, the wide range of

results reported here could serve as a benchmark for future comparison.

We conclude by saying that single-phase multiferroics are rare, and that among

the existing ones their magnetoelectric coupling is generally weak. It takes a

multiferroic composite to generate strong magnetoelectric coupling. The present

study is strongly motivated by this observation. The field of magnetoelectric

coupling in multiferroic composites is a very challenging one that offers plenty of
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opportunities for future research. This chapter covers only the linear coupling of

piezoelectric-piezomagnetic composites; it does not include the nonlinear coupling

of ferroelectric-ferromagnetic composites. The study of such nonlinear behavior

would allow us to understand more deeply how the electric polarization can be

switched under a magnetic field and magnetization vector can be rotated under an

electric field inside each constituent phase. This will require the examination of

internal magneto-electro-elastic fields by a micromechanics approach such as the

one developed in Li and Weng (1999) and Weng and Wong (2009) in the study of

domain switch in piezoelectric crystals. Such a nonlinear, micromechanics study

will offer an expanded scope of the coupled behavior, and is much needed. In that

context the present linear theory can serve as the starting point for the development

of such micromechanics-based nonlinear ones.
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Appendix 1: The Eight Variants of the Coupled Constitutive
Equations

Eight different types of thermodynamic potentials can be developed based on

different choices of the (σ, ε),, (D,E), and (B,H ) pairs. This leads to eight different

variants of the magneto-electro-elastic constitutive equations. Following Soh and

Liu (2005), we write

Type Independent variables Constitutive equations

1 ε, E, H σ ¼ CE,Hε� eTHE� qT
EH

D ¼ eHεþ kε,HEþ αεH

B ¼ qEεþ αεEþ με,EH

2 σ, D, B ε ¼ SD,Bσ þ gT
BDþmT

DB

E ¼ �gBσ þ βσ,BD� λσB

H ¼ �mDσ � λσDþ υσ,DB

3 ε, D, H σ ¼ CD,Hε� hT
HD� qT

DH

E ¼ �hHεþ βε,HD� ςεH

B ¼ qDεþ ςεDþ με,DH

4 σ, E, B ε ¼ SE,Bσ þ dT
B EþmT

E B

D ¼ dBσ þ kσ,BEþ ησB

H ¼ �mEσ � ησEþ υσ,EB

5 ε, E, B σ ¼ CE,Bε� eTBE� nT
E B

D ¼ eBεþ kε,BEþ ηεB

H ¼ �nEε� ηεEþ υε,EB

(continued)
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6 σ, D, H ε ¼ SD,Hσ þ gT
HDþ pT

DH

E ¼ �gHσ þ βσ,HD� ςσH

B ¼ pDσ þ ςσDþ μσ,DH

7 ε, D, B σ ¼ CD,Bε� hT
BD� nT

DB

E ¼ �hBεþ βε,BD� λεB

H ¼ �nDε� λεDþ υε,DB

8 σ, E, H ε ¼ SE,Hσ þ dT
HEþ pT

EH

D ¼ dHσ þ κσ,HEþ ασH

B ¼ pEσ þ ασEþ μσ,EH

In the above constitutive equations, each subscript denotes that the

corresponding tensor is measured under which kind of constant field. For instance,

CE,H means this elastic stiffness tensor is measured under constant electric and

magnetic field, so it is different from CE,B. However the coefficients of one pair are

dependent upon the coefficients of another. From any given pair we can derive the

rest seven pairs. They can be converted from each other, as below:

1. When all the independent variables are to be reversed, a direct inversion of the

matrix is sufficient. For instance, given the matrix for independent variables

(ε, E, H ), we can find that for (σ, D, B) through

SD,B gT
B mT

D

�gB βσ,B �λσ

�mD �λσ υσ,D

2
64

3
75 ¼

CE,H �eTH �qT
E

eH κε,H αε

qE αε με,E

2
64

3
75
�1

: ð8:13Þ

2. But when only one or two independent variables are to be changed, a sequential

conversion is needed. For example, given the matrix for (ε, E, H ), we can find

that for (σ, E, H ) by

SE,H dT
H pT

E

dH κσ,H ασ

pE ασ μσ,E

2
64

3
75¼

SD,B gT
B mT

D

0 I 0

0 0 I

2
64

3
75

CE,H �eTH �qT
E

eH κε,H αε

qE αε με,E

2
64

3
75

CE,H �eTH �qT
E

0 I 0

0 0 I

2
64

3
75
�1

:

ð8:14Þ
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Appendix 2: The Determination of the Magneto-Electro-
Elastic S-Tensor

The magneto-electro-elastic S-tensor has been studied by Li and Dunn (1998a, b),

Huang et al. (1998), and several others. Here we briefly summarize the method for

calculating this S-tensor with the notations used here.

First, we define a material constant “tensor” (which is not a real tensor by

rigorous definition) LiJMn for the matrix phase of multiferroic composites, with

subscript i, n ¼ 1 � 3 and J,M ¼ 1 � 5:

LiJMn ¼

CiJMn, J,M ¼ 1, 2, 3,

eniJ , J ¼ 1, 2, 3,M ¼ 4,

qniJ , J ¼ 1, 2, 3,M ¼ 5,

eiMn, J ¼ 4,M ¼ 1, 2, 3,

qiMn, J ¼ 5,M ¼ 1, 2, 3,

�κin, J ¼ 4, M ¼ 4,

�αin, J ¼ 4, M ¼ 5 & J ¼ 5, M ¼ 4,

�μin, J ¼ 5, M ¼ 5:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð8:15Þ

With LiJMn, we introduce a 5� 5 matrix KMJ,

KMJ ¼ LiJMnxixn; ð8:16Þ

where xi ¼ x1, x2, x3½ �T. Then we define another pseudo tensor JinMJ,

JinMJ x1, x2, x3ð Þ ¼ xixnK
�1
MJ; ð8:17Þ

so that it is a function of x1, x2, and x3. Next we integrate JinMJ over the volume of an

ellipsoid inclusion Ω : x21=a
2
1 þ x22=a

2
2 þ x23=a

2
3 � 1. When this inclusion is sphe-

roidal and symmetric about three-direction, it satisfies a1 ¼ a2 and α ¼ α3=a1,
where α is the aspect ratio of inclusions used in the text. Hence the volume integral

of JinMJ can be written as

HinMJ ¼
ð
Ω
JinMJ x1=a1, x2=a2, x3=a3ð ÞdV ¼

ð
Ω
JinMJ x1, x2, x3=αð ÞdV,

¼
ð1
�1

dτ

ð2π
0

JinMJ y1, y2, y3=αð Þdθ;
ð8:18Þ
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where the second equality is based on the fact that JinMJ is a homogeneous function

of order zero; thus multiplying all the variables by a1 will not affect the integration.
The third equality is given by applying a change of variables from x1, x2, and x3 to

y1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� τ2

p
cos θ, y1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� τ2

p
sin θ, y3 ¼ τ; ð8:19Þ

with τ2 �1, 1½ � and θ2 0, 2π½ �. Finally the S-tensor is determined by

SMnAb ¼

1

8π
LiJAb HinMJ þHiMnJð Þ, M ¼ 1 � 3,

1

4π
LiJAbHin4J , M ¼ 4,

1

4π
LiJAbHin5J , M ¼ 5:

8>>>>>><
>>>>>>:

ð8:20Þ

Still SMnAb is a pseudo tensor. For the convenience of calculation we now convert it

into a 12� 12 matrix S by the Voigt-Nye contract notations.

For a general spheroid, evaluation of the integral in Eq. (8.18) can be carried out

by the Gaussian quadrature method. It turns the definite integral into a weighted

sum of function values at specified points within the domain of integration. Then it

can be rewritten as

HinMJ ¼
ð1
�1

dτ

ð2π
0

JinMJ y1, y2, y3=αð Þdθ �
Xn
i¼1

wif τið Þ; ð8:21Þ

where f τð Þ ¼
ð2π
0

JinMJ y1, y2, y3=αð Þdθ, n is the total number of specified points

(usually n ¼ 20 or more will provide enough accuracy), and wi is the weight at each

specified point which can be constructed by different kinds of weight function. Up

to this point the calculation of S-tensor is completed. In general, S-tensor is not

symmetric, while SL�1
0 must always be symmetric, as L0 (the material constant for

matrix phase) written in Eq. (8.8) is symmetric. This can be used as a criterion to

check if the calculated components of S-tensor are correct.

Explicit forms of the S-tensor are available for 1-3 fibrous composite α ! 1ð Þ
and 2-2 multilayered structure α ! 0ð Þ. These two connectivities represent the

most widely used microstructures and are frequently adopted in experiments. Due

to the transverse isotropy of the phase, its derivation is quite involved. Keeping in

mind that direction 3 is symmetric and plane 1-2 isotropic, its components can be

summarized as below:
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Type Piezoelectricmatrix Piezomagneticmatrix

S11¼S22¼5C11þC12

8C11

, S11¼S22¼5C11þC12

8C11

,

S12¼S21¼�1

8
þ3C12

8C11

, S12¼S21¼�1

8
þ3C12

8C11

,

1-3 S13¼S23¼ C13

2C11

, S19¼S29¼ e31
2C11

, S13¼S23¼ C13

2C11

, S1,12¼S2,12¼ q31
2C11

,

S66¼3

4
� C12

4C11

, S66¼3

4
� C12

4C11

,

S44¼S55¼S77¼S88¼S10,10¼S11,11¼1

2
, S44¼S55¼S77¼S88¼S10,10¼S11,11¼1

2
,

all the other components are zero: all the other components are zero:

S31¼S32¼e31e33þC13κ33
e332þC33κ33

, S31¼S32¼q31q33þC13μ33
q33

2þC33μ33
,

2-2 S57¼S48¼ e15
C44

, S5,10¼S4,11¼ q15
C44

,

S91¼S92¼�C33e31þC13e33
e332þC33κ33

, S12,1¼S12,2¼�C33q31þC13q33
q33

2þC33μ33
,

S33¼S44¼S55¼S99¼S12,12¼1, S33¼S44¼S55¼S99¼S12,12¼1,

all the other components are zero: all the other components are zero:

ð8:22Þ

For the S-tensor of the interphase, which is isotropic, its components are

Sint11 ¼ Sint22 ¼ 3

8 1� ν0ð Þ
α2

α2 � 1
þ 1

4 1� ν0ð Þ 1� 2ν0 � 9

4 α2 � 1ð Þ
� �

g gαð Þ;

Sint33 ¼ 1

2 1� ν0ð Þ 1� 2ν0 þ 3α2 � 1

α2 � 1
� 1� 2ν0 þ 3α2

α2 � 1

� �
g αð Þ

	 

;

Sint12 ¼ Sint21 ¼ 1

4 1� ν0ð Þ
α2

2 α2 � 1ð Þ � 1� 2ν0 þ 3

4 α2 � 1ð Þ
� �

g αð Þ
	 


;

Sint13 ¼ Sint23 ¼ � 1

2 1� ν0ð Þ
α2

α2 � 1
þ 1

4 1� ν0ð Þ
3α2

α2 � 1
� 1� 2ν0ð Þ

	 

g αð Þ;

Sint31 ¼ Sint32 ¼ � 1

2 1� ν0ð Þ 1� 2ν0 þ 1

α2 � 1

� �
þ 1

2 1� ν0ð Þ 1� 2ν0 þ 3

2 α2 � 1ð Þ
� �

g αð Þ;

ð8:23Þ

Sint44 ¼ Sint55 ¼ 1

2 1� ν0ð Þ 1� 2ν0 � α2 þ 1

α2 � 1
� 1

2
1� 2ν0 � 3 α2 þ 1ð Þ

α2 � 1

� �
g αð Þ

	 

;
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Sint66 ¼ 1

2 1� ν0ð Þ
α2

2 α2 � 1ð Þ þ 1� 2ν0 � 3

4 α2 � 1ð Þ
� �

g αð Þ
	 


;

Sint77 ¼ Sint88 ¼ Sint10,10 ¼ Sint11,11 ¼
1

2
g αð Þ;

Sint99 ¼ Sint12,12 ¼ 1� g αð Þ;

and all the other components are zero. Here ν0 ¼ Cint
11 � 2Cint

44

� �
=2 Cint

11 � Cint
44

� �
is

Poisson’s ratio of the interphase, and function g(α) depends on the aspect ratio, as

g αð Þ ¼

α

1� α2ð Þ32
cos �1α� α 1� α2

� �1
2

h i
, α < 1,

α

α2 � 1ð Þ32
α α2 � 1
� �1

2 � cosh�1α
h i

, α 	 1:

8>>><
>>>: ð8:24Þ

This set of S-tensor can reduce to the commonly used S-tensor for the uncoupled

elastic, dielectric, magnetic, electrical, or thermal conduction problem.

Finally the matrix form for the isotropic magneto-electro-elastic tensor of the

interphase Lint is

Lint ¼

Cint
11 Cint

12 Cint
12 0 0 0 0 0 0 0 0 0

Cint
12 Cint

11 Cint
12 0 0 0 0 0 0 0 0 0

Cint
12 Cint

12 Cint
11 0 0 0 0 0 0 0 0 0

0 0 0 Cint
44 0 0 0 0 0 0 0 0

0 0 0 0 Cint
44 0 0 0 0 0 0 0

0 0 0 0 0 Cint
44 0 0 0 0 0 0

0 0 0 0 0 0 �κint 0 0 0 0 0

0 0 0 0 0 0 0 �κint 0 0 0 0

0 0 0 0 0 0 0 0 �κint 0 0 0

0 0 0 0 0 0 0 0 0 �μint 0 0

0 0 0 0 0 0 0 0 0 0 �μint 0

0 0 0 0 0 0 0 0 0 0 0 �μint

2
66666666666666666666666664

3
77777777777777777777777775

;

ð8:25Þ

where Cint
12 ¼ Cint

11 � 2Cint
44 .
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Appendix 3: Explicit Results for α33 and α11 of the 1-3
and 2-2 Multiferroic Composites with a Perfect
and an Imperfect Interface

For fibrous composites and multilayers, explicit formulae for the components of

S-tensor are listed in the Appendix 2. With it and the theory given in Eq. (8.8) for

the perfect interface, and Eq. (8.9) together with Eq. (8.8) for the imperfect

interface, we have obtained the explicit expressions for the magnetoelectric cou-

pling coefficients, α33 and α11. As the 1-3 and 2-2 composites are widely used, we

give the results here for ready reference.

In reading the following expressions, care must be exercised that superscript “e”
always refers to the properties of BaTiO3 regardless whether BTO exists as the

matrix or inclusions, and superscript “m” always refers to the properties of

CoFe2O4, also regardless whether it exists as inclusion or matrix. Superscript

“int” on the other hand refers to the properties of the interface. In addition, for

1-3 composites, c1 and c0 denote the volume concentrations of the inclusions and

matrix, respectively, which could be CFO or BTO. cint denotes the volume concen-

tration of interface in the thinly coated inclusion. While for 2-2 composites, c0, c1,
and cint denote the volume concentrations of BTO, CFO, and interface in the whole

composite, so that c0 þ c1 þ cint ¼ 1.

The 1-3 Multiferroic Fibrous Composites
with a Perfect Interface

With CoFe2O4 as inclusions and BaTiO3 as the matrix, we find

α33 ¼ � 2c0c1e
eð Þ
31 q

mð Þ
31

C
eð Þ
11 þ C

mð Þ
11 � c0 C

eð Þ
12 � C

mð Þ
12

� �
þ c1 C

eð Þ
11 � C

mð Þ
11

� � ; ð8:26Þ

α11 ¼ � 4c0c1e
eð Þ
12 q

mð Þ
15 κ mð Þ

11 μ eð Þ
11

DBTO
α11

; ð8:27Þ

where denominator DBTO
α11 is

DBTO
α11 ¼ c20q

mð Þ
15

2 κ eð Þ
11 þ κ mð Þ

11 þ c1 κ eð Þ
11 � κ mð Þ

11

� �h i
þ 1þ c1ð Þ2e eð Þ

15 2
n

þ C
eð Þ
44 þ C

mð Þ
44 þ c1 C

eð Þ
44 � C

mð Þ
44

� �h i
� κ eð Þ

11 þ κ mð Þ
11 þ c1 κ eð Þ

11 � κ mð Þ
11

� �h io
μ eð Þ
11 þ μ mð Þ

11 þ c1 μ eð Þ
11 � μ mð Þ

11

� �h i
:

ð8:28Þ
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On the other hand with BaTiO3 as inclusion phase, we have

α33 ¼ � 2c0c1e
eð Þ
31 q

mð Þ
31

C
eð Þ
11 þ C

mð Þ
11 þ c0 C

eð Þ
12 � C

mð Þ
12

� �
� c1 C

eð Þ
11 � C

mð Þ
11

� � ; ð8:29Þ

α11 ¼ 4c0c1e
eð Þ
15 q

mð Þ
15 κ mð Þ

11 μ eð Þ
11

DCFO
α11

; ð8:30Þ

where

DCFO
α11 ¼ c20e

eð Þ
15

2
μ mð Þ
11 þ μ eð Þ

11 þ c1 μ mð Þ
11 � μ eð Þ

11

� �h i
þ 1 þc1ð Þ2
n

q
mð Þ
15 2

þ C
mð Þ
44 þ C

eð Þ
44 þ c1 C

mð Þ
44 � C

eð Þ
44

� �h i
� μ mð Þ

11 þ μ eð Þ
11 þ c1 κ mð Þ

11 � κ eð Þ
11

� �h io
κ mð Þ
11 þ κ eð Þ

11 þ c1 κ mð Þ
11 � κ eð Þ

11

� �h i
:

ð8:31Þ

The 1-3 Multiferroic Fibrous Composites with an Imperfect
Interface

In order to obtain the effective magnetoelectric coefficients of 1-3 multiferroic

composites with imperfect interface, we first obtain the relevant properties of

coated inclusion from Eq. (8.9). This in turn can be used for the properties of the

inclusion phase in Eq. (8.8) for the overall composite.

For the coated CoFe2O4 inclusion—with a prime added to superscript m—we

obtain from Eq. (8.9)

C
m

0ð Þ
11 ¼

C
intð Þ
11 C

mð Þ
11 þ C

mð Þ
12 þ 2C

intð Þ
44

� �
2C

intð Þ
11 þ cint C

mð Þ
11 þ C

mð Þ
12 � 2C

intð Þ
11 þ 2C

intð Þ
44

� �

þ
2 1� cintð ÞC intð Þ

11 C
intð Þ
44 C

mð Þ
11 � C

mð Þ
12 � 2C

intð Þ
44

� �
4C

intð Þ
11 C

intð Þ
44 þ cint C

intð Þ
11 þ C

intð Þ
44

� �
C

mð Þ
11 � C

mð Þ
12 � 2C

intð Þ
44

� � ;

ð8:32Þ
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C
m

0ð Þ
12 ¼

C
intð Þ
11 C

mð Þ
11 þ C

mð Þ
12 þ 2C

intð Þ
44

� �
2C

intð Þ
11 þ cint C

mð Þ
11 þ C

mð Þ
12 � 2C

intð Þ
11 þ 2C

intð Þ
44

� �

�
2C

intð Þ
44 C

intð Þ
11 C

mð Þ
11 � C

mð Þ
12 þ 2C

intð Þ
44

� �
þ cintC

intð Þ
44 C

mð Þ
11 � C

mð Þ
12 � 2C

intð Þ
44

� �h i
4C

intð Þ
11 C

intð Þ
44 þ cint C

intð Þ
11 þ C

intð Þ
44

� �
C

mð Þ
11 � C

mð Þ
12 � 2C

intð Þ
44

� � ;

ð8:33Þ

C
m

0ð Þ
44 ¼ C

intð Þ
44 �

�

4C
mð Þ
44 μ intð Þ þ 2cint q

mð Þ
15

2 þ C
mð Þ
44 μ mð Þ

11 � μ intð Þ
� �

� μint C
mð Þ
44 � C

intð Þ
44

� �h i
� cint2 q

mð Þ
15

2 þ C
mð Þ
44 � C

intð Þ
44

� �
μ mð Þ
11 � μ intð Þ

� �h i
4C

intð Þ
44 μ intð Þ þ 2cint C

intð Þ
44 μ mð Þ

11 � μ intð Þ
� �

þ μ intð Þ C
mð Þ
44 � C

intð Þ
44

� �h i
þ cint2 q

mð Þ
15

2 þ C
mð Þ
44 � C

intð Þ
44

� �
μ mð Þ
11 � μ intð Þ

� �h i
;

ð8:34Þ

q
m

0ð Þ
31 ¼ κ intð Þ

2κ mð Þ
11 � cint κ mð Þ

11 � κ intð Þ
� �

2κ intð Þ þ cint κ mð Þ
11 � κ intð Þ

� � ; ð8:35Þ

q
m

0ð Þ
15 ¼ 4 1� cintð Þq mð Þ

15 C
intð Þ
44 μ intð Þ

4C
intð Þ
44 μ intð Þ þ 2cint C

intð Þ
44 μ mð Þ

11 � μ intð Þ
� �

þ μ intð Þ C
mð Þ
44 � C

intð Þ
44

� �h i
þ cint2 q

mð Þ
15

2 þ C
mð Þ
44 � C

intð Þ
44

� �
μ mð Þ
11 � μ intð Þ

� �h i
; ð8:36Þ

κ
m

0ð Þ
11 ¼ κ intð Þ

2κ mð Þ
11 � cint κ mð Þ

11 � κ intð Þ
� �

2κ intð Þ þ cint κ mð Þ
11 � κ intð Þ

� � ; ð8:37Þ

μ
m

0ð Þ
11 ¼ μ intð Þ�

�

4μ mð Þ
11 C

intð Þ
44 þ 2cint q

mð Þ
15

2 þ μ mð Þ
11 C

mð Þ
44 � C

intð Þ
44

� �
� C

intð Þ
44 μ mð Þ

11 � μ intð Þ
� �h i

� cint2 q
mð Þ
15

2 þ C
mð Þ
44 � C

intð Þ
44

� �
μ mð Þ
11 � μ intð Þ

� �h i
4μ intð ÞC intð Þ

44 þ 2cint μ intð Þ C
mð Þ
44 � C

intð Þ
44

� �
þ C

intð Þ
44 μ mð Þ

11 � μ intð Þ
� �h i

þ cint2 q
mð Þ
15

2 þ C
mð Þ
44 � C

intð Þ
44

� �
μ mð Þ
11 � μ intð Þ

� �h i
:

ð8:38Þ
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This set can be used to replace the properties of CFO in Eqs. (8.25)–(8.27) to obtain

α33 and α11 of the CFO-in-BTO composite with an imperfect interface.

Likewise for the coated BaTiO3 inclusion—also with a prime added to e—we

have

C
e
0ð Þ

11 ¼
c

intð Þ
11 c

eð Þ
11 þ c

eð Þ
12 þ 2C

intð Þ
44

� �
2C

intð Þ
11 þ cint C

eð Þ
11 þ C

eð Þ
12 � 2C

intð Þ
11 þ 2C

intð Þ
44

� �

þ
2 1� cintð ÞC intð Þ

11 C
intð Þ
44 C

eð Þ
11 � C

eð Þ
12 � 2C

intð Þ
44

� �
4C

intð Þ
11 C

intð Þ
44 þ cint C

intð Þ
11 þ C

intð Þ
44

� �
C

eð Þ
11 � C

eð Þ
12 � 2C

intð Þ
44

� � ;

ð8:39Þ

C
e
0ð Þ

12 ¼
c

intð Þ
11 c

eð Þ
11 þ c

eð Þ
12 þ 2C

intð Þ
44

� �
2C

intð Þ
11 þ cint C

eð Þ
11 þ C

eð Þ
12 � 2C

intð Þ
11 þ 2C

intð Þ
44

� �

�
2C

intð Þ
44 C

intð Þ
11 C

eð Þ
11 � C

eð Þ
12 þ 2C

intð Þ
44

� �
þ cintC

intð Þ
44 C

eð Þ
11 � C

eð Þ
12 � 2C

intð Þ
44

� �h i
4C

intð Þ
11 C

intð Þ
44 þ cint C

intð Þ
11 þ C

intð Þ
44

� �
C

eð Þ
11 � C

eð Þ
12 � 2C

intð Þ
44

� � ;

ð8:40Þ

C
e
0ð Þ

44 ¼ C
intð Þ
44

�

4C
eð Þ
44 κ

intð Þ þ 2cint e
eð Þ
15

2 þ C
eð Þ
44 κ eð Þ

11 � κ intð Þ
� �

� κint C
eð Þ
44 � C

intð Þ
44

� �h i
� cint2 e

eð Þ
15

2 þ C
eð Þ
44 � C

intð Þ
44

� �
κ eð Þ
11 � κ intð Þ

� �h i
4C

intð Þ
44 κ intð Þ þ 2cint C

intð Þ
44 κ eð Þ

11 � κ intð Þ
� �

þ κ intð Þ C
eð Þ
44 � C

intð Þ
44

� �h i
þ cint2 e

eð Þ
15

2 þ C
eð Þ
44 � C

intð Þ
44

� �
κ eð Þ
11 � κ intð Þ

� �h i
;

ð8:41Þ

e
e
0ð Þ

31 ¼ 2 1� cintð Þe eð Þ
31 C

intð Þ
11

cint C
eð Þ
11 þ C

eð Þ
12 � 2C

intð Þ
11 þ 2C

intð Þ
44

� �
þ 2C

intð Þ
11

; ð8:42Þ

e
e
0ð Þ

15

¼ 4 1� cintð Þe eð Þ
15 C

intð Þ
44 κ intð Þ

4C
intð Þ
44 κ intð Þ þ 2cint C

intð Þ
44 κ eð Þ

11 � κ intð Þ
� �

þ κ intð Þ C
eð Þ
44 � C

intð Þ
44

� �h i
þ cint2 e

eð Þ
15

2 þ C
eð Þ
44 � C

intð Þ
44

� �
κ eð Þ
11 � κ intð Þ

� �h i
; ð8:43Þ
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κ
e
0ð Þ

11 ¼ κ intð Þ

�

4κ eð Þ
11 C

intð Þ
44 þ 2cint e

eð Þ
15

2 þ κ eð Þ
11 C

eð Þ
44 � C

intð Þ
44

� �
� C

intð Þ
44 κ eð Þ

11 � κ intð Þ
� �h i

� cint2 e
eð Þ
15

2 þ C
eð Þ
44 � C

intð Þ
44

� �
κ eð Þ
11 � κ intð Þ

� �h i
4κ intð ÞC intð Þ

44 þ 2cint κ intð Þ C
eð Þ
44 � C

intð Þ
44

� �
þ C

intð Þ
44 κ eð Þ

11 � κ intð Þ
� �h i

þ cint2 e
eð Þ
15

2 þ C
eð Þ
44 � C

intð Þ
44

� �
κ eð Þ
11 � κ intð Þ

� �h i
;

ð8:44Þ

μ
e
0ð Þ

11 ¼ μ intð Þ
2μ eð Þ

11 � cint μ eð Þ
11 � μ intð Þ

� �
2μ intð Þ þ cint μ eð Þ

11 � μ intð Þ
� � : ð8:45Þ

This set can be used to replace the properties of BTO in Eqs. (8.28)–(8.30) to obtain

α33 and α11 of the BTO-in-CFO composite with an imperfect interface.

The 2-2 Multiferroic Multilayers with a Perfect Interface

For the 2-2 multiferroic composites with a perfect interface, we find

α33 ¼ � c0c1e
eð Þ
33 q

mð Þ
33 κ mð Þ

33 μ eð Þ
33

Dα33
; ð8:46Þ

α11 ¼ � c0c1e
eð Þ
15 q

mð Þ
15

c0C
mð Þ
44 þ c1C

eð Þ
44

; ð8:47Þ

where the denominator Dα33 is

Dα33 ¼ c02 c0κ
mð Þ
33 þ c1κ

eð Þ
33

� �
q

mð Þ
33

2 þ C
mð Þ
33 μ mð Þ

33

� �
þ c0c1 c0κ

mð Þ
33 þ c1κ

eð Þ
33

� �
C

mð Þ
33 μ eð Þ
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h
þ c0μ

mð Þ
33 þ c1μ

eð Þ
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� �
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eð Þ
33 κ

mð Þ
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i
þ c1

2 c0μ
mð Þ
33 þ c1μ

eð Þ
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� �
e

eð Þ
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2 þ C
eð Þ
33 κ

eð Þ
33

� �
;

ð8:48Þ

where c0 is for BTO and c1 for CFO.
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The 2-2 Multiferroic Multilayers with an Imperfect Interface

With an imperfect interface, we have

α33 ¼ � c0c1e
eð Þ
33 q

mð Þ
33 κ mð Þ

33 μ eð Þ
33 C

intð Þ
11 κintμint

Dα33
; ð8:49Þ

α11 ¼ � c0c1e
eð Þ
15 q

mð Þ
15 C

intð Þ
44

c0C
mð Þ
44 C

intð Þ
44 þ c1C

eð Þ
44 C

intð Þ
44 þ cintC

eð Þ
44 C

mð Þ
44

; ð8:50Þ

where

Dα33 ¼ λ1c03 þ λ2c13 þ λ3cint3 þ λ4c02c1 þ λ5c02cint þ λ6c12c0 þ λ7c12cint þ λ8cint2c0

þ λ9cint2c1 þ λ10c0c1cint:

ð8:51Þ

The coefficients λ1 to λ10 are given by

λ1 ¼ κ mð Þ
33 q

mð Þ
33

2 þ C
mð Þ
33 μ mð Þ

33
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33

� �
þ μ eð Þ

33 C
eð Þ
33 κ

int þ C
intð Þ
11 κ eð Þ

33

� �h i
;

λ9 ¼ μ mð Þ
33 q

mð Þ2
33 þC

mð Þ
33 μ mð Þ

33

� �
κint q

mð Þ2
33 þC

mð Þ
33 μ mð Þ

33

� �
þμ mð Þ

33 C
mð Þ
33 μintþC

intð Þ
11 κ mð Þ

33

� �h i
;

λ10 ¼C
intð Þ
11 κ mð Þ

33 μ mð Þ
33 μ e

eð Þ2
33 þC

eð Þ
33 κ

eð Þ
33

� �
þ κ eð Þ

33 μ
eð Þ
33 κ

int q
mð Þ2
33 þC

mð Þ
33 μ mð Þ

33

� �h
þκ mð Þ

33 μ eð Þ
33 C

eð Þ
33 μ

mð Þ
33 κintþC

mð Þ
33 κ eð Þ

33 μ
int

� �i
þ κintμint e

eð Þ2
33 þC

eð Þ
33 κ

eð Þ
33

� �
q

mð Þ2
33 þC

mð Þ
33 μ mð Þ

33

� �
:

ð8:52Þ

Most of Appendix 2 and 3 can also be found in Wang et al. (2015).
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Appendix 4: The Elastic C44 of the Fibrous Multiferroic
Composite and the Purely Elastic Composite

We have seen the extraordinary value of C44 of the multiferroic composite in

Fig. 8.19, and that its value can be higher than the individual value of the constit-

uent phases. But this is not the case with the purely elastic composite shown in

Fig. 8.20. This extraordinary value is an outcome of the piezoelectric and

piezomagnetic interactions. To make such a difference more apparent, we give

the explicit form of C44 with 1-3 connectivity.

Here we use the superscript (e) to denote the piezoelectric phase such as BTO,

and the superscript (m) to denote the piezomagnetic phase such as CFO. We further

use CE
44 to denote the C44 value of the purely elastic composite, and CM

44 to denote

the C44 of the multiferroic composite. After making use of the explicit form of

S-tensor for a circular cylinder, we have used Eq. (8.8) to derive the effective C44 in

both cases.

First with the piezoelectric BTO as the matrix, we have found that, for the elastic

composite,

CE
44 ¼

C
eð Þ
44 C

eð Þ
44 þ C

mð Þ
44

� �
� c1 C

eð Þ
44 � C

mð Þ
44

� �h i
C

eð Þ
44 þ C

mð Þ
44

� �
þ c1 C

eð Þ
44 � C

mð Þ
44

� � ; ð8:53Þ

and for the multiferroic composite, we have

CM
44 ¼ CE

44 þ
4c1 1� c1ð Þ C

eð Þ
44

2
q

mð Þ
15 2eκ eð Þ

11 þ C
eð Þ
44

2
e

eð Þ
15

2eμ eð Þ
11 þ e

eð Þ
15

2
q

eð Þ
15

2eC eð Þ
44

� �
eC eð Þ
44

eC eð Þ
44 eκ eð Þ

11 eμ eð Þ
11 þ 1þ c1ð Þ2e eð Þ

15
2eμ eð Þ

11 þ 1� c1ð Þ2q eð Þ
15

2eμ eð Þ
11

h i ;

ð8:54Þ

where

eC eð Þ
44 ¼ C

eð Þ
44 þ C

mð Þ
44 þ c1 C

eð Þ
44 � C

mð Þ
44

� �
;

eκ eð Þ
11 ¼ κ eð Þ

11 þ κ mð Þ
11 þ c1 κ eð Þ

11 � κ mð Þ
11

� �
; ð8:55Þ

eμ eð Þ
11 ¼ μ eð Þ

11 þ μ mð Þ
11 þ c1 μ eð Þ

11 � μ mð Þ
11

� �
:

On the other hand with the piezomagnetic CFO as the matrix, we have

CE
44 ¼

C
mð Þ
44 C

mð Þ
44 þ C

eð Þ
44

� �
� c1 C

mð Þ
44 � C

eð Þ
44

� �h i
C

mð Þ
44 þ C

eð Þ
44

� �
þ c1 C

mð Þ
44 � C

eð Þ
44

� � ; ð8:56Þ
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and for the multiferroic composite, we find

CM
44 ¼ CE

44 þ
4c1 1� c1ð Þ C

eð Þ
44

2
q

eð Þ
15

2eκ mð Þ
11 þ C

eð Þ
44

2
e

eð Þ
15

2eμ mð Þ
11 þ e

eð Þ
15

2
q

mð Þ
15

2eC mð Þ
44

� �
eC mð Þ
44

eC mð Þ
44 eκ mð Þ

11 eμ mð Þ
11 þ 1þ c1ð Þ2q mð Þ

15 2eκ mð Þ
11 þ 1� c1ð Þ2e eð Þ

15 2eμ mð Þ
11

h i ;
ð8:57Þ

where

eC mð Þ
44 ¼ C

mð Þ
44 þ C

eð Þ
44 þ c1 C

mð Þ
44 � C

eð Þ
44

� �
;

eκ mð Þ
11 ¼ κ mð Þ

11 þ κ eð Þ
11 þ c1 κ mð Þ

11 � κ eð Þ
11

� �
; ð8:58Þ

eμ mð Þ
11 ¼ μ mð Þ

11 þ μ eð Þ
11 þ c1 μ mð Þ

11 � μ eð Þ
11

� �
:

This set of results also gives rise to the outcome of CM
44 	 CE

44, regardless of the

particular phase serving as the matrix.
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Chapter 9

Snap-Through Buckling of Micro/
Nanobeams in Bistable Micro/
Nanoelectromechanical Systems

Xue Chen and Shaker A. Meguid

Abstract In this chapter, we investigate the instability behavior of an initially

curved micro/nanobeam subject to an electrostatic force. The general governing

equations of the curved beam are developed using Euler-Bernoulli beam theory and

are solved using the Galerkin decomposition method. Firstly, the size effect on the

symmetric snap-through buckling of the microbeam is studied. The size effect is

accounted for in the beam model using the modified couple stress theory. The

fringing field effect and the intermolecular effects, such as van der Waals and

Casimir forces, are also included in the snap-through formulations. The model

simulations reveal the significant effect of the beam size, and to a much lesser

extent the effect of fringing field and intermolecular forces, upon the snap-through

criterion for the curved microbeam. Secondly, the surface effects on the asymmetric

bifurcation of the nanobeam are studied. The surface effects, including the surface

elasticity and the residual surface tension, are accounted for in the model formula-

tion. The results reveal the significant size effect due to the surface elasticity and the

residual surface tension on the symmetry-breaking criterion for the considered

nanobeam.

9.1 Introduction

Micro/nano-electro-mechanical systems (MEMS/NEMS) have aroused great inter-

est for their unique advantages such as small size, high precision, and low power

consumption. One benchmark of MEMS/NEMS is the initially straight micro/

nanobeam system driven by electrostatic force, whose static and dynamic behaviors

have been largely investigated in the literature (Carr et al. 1999; Dequesnes

et al. 2002; Jia et al. 2011; Ke et al. 2005; Kinaret et al., 2003; Li et al., 2013;

Ruzziconi et al., 2013; Tilmans and Legtenberg, 1994; Verbridge et al., 2007
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among many others). Recently, the bistable MEMS/NEMS based on initially

curved micro/nanobeams have drawn more and more attention from the scientific

community for their various potential applications such as optical switches, micro-

valves, and non-volatile memories (Charlot et al., 2008; Goll et al., 1996;

Intaraprasonk and Fan (2011); Roodenburg et al., 2009).

The initially curved beam (arch) under transverse forces may exhibit two main

instabilities: symmetric snap-through buckling and asymmetric bifurcation. The

symmetric snap-through buckling is the transition between two stable states

(Medina et al. 2012). After the snap-though, the arch shape is symmetric, as

depicted in Fig. 9.1a. However, for the asymmetric bifurcation, the arch may

exhibit one of the asymmetric deformations shown in Fig. 9.1b.

The existence of snap-through buckling and asymmetric bifurcation depends on

various factors, e.g., initial arch rise and beam thickness. Pippard (1990) conducted

experiments to develop a phase diagram of instability in terms of the arch span and

the initial angle at the clamped ends. This work was followed by Patricio

et al. (1998) in which they developed theoretical model simulations to derive a

similar phase diagram. As a result of the earlier experiments and model simulations,

Krylov et al. (2008) revealed that the symmetric snap-through buckling occurs at

large initial deflections. Pane and Asano (2008) conducted energy analysis and

further found that the existence of bistable states in an initially curved beam

depends on the ratio of its initial deflection to its thickness. Park and Hah (2008)

conducted theoretical investigations and showed that the existence of bistable states

also depends on the residual axial stress in the beam. Das and Batra (2009a)

developed a finite element model to study the transient snap-through behavior of

the initially curved beam, and found that at high loading rates (i.e., voltage is

applied at a high rate), the snap-through buckling is suppressed. Moghimi Zand

(2012) also developed a finite element model and found the significant inertia effect

on the dynamic snap-through behavior. Medina et al. (2012, 2014a) examined the

symmetric snap-through buckling and the asymmetric bifurcation of an electrostat-

ically actuated mircobeam with/without residual stress. They derived the criteria of

symmetric snap-through and symmetry breaking for quasi-static loading

conditions.

Careful literature review indicates that many studies consider a uniform mechan-

ical force as the applied load. However, the electrostatic force applied on the curved

micro/nanobeam is highly nonuniform and strongly depends on the beam deflec-

tion. Several studies consider the electrostatic force, but they fail to examine the

Fig. 9.1 Schematics of instability behaviors of arch under transverse force
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fringing field effect and/or the influence of the intermolecular forces such as

Casimir and van der Waals forces. Furthermore, the size effect at the microscale

and the surface effects at the nanoscale are neglected in almost all the existing

studies.

For the microstructures, the size effect on deformation behaviors has already

been observed experimentally (Fleck et al. 1994; Lam et al. 2003; Ma and Clarke

1995; McFarland and Colton 2005), and such size dependency is attributed to the

non-local effects, which cannot be described by the classical continuum theories of

local character. Various nonclassical continuum theories with additional material

length scale parameters have been proposed (Eringen 1983; Fleck and Hutchinson

2001; Lam et al. 2003; Mindlin 1965; Toupin 1962; Yang et al. 2002). Among

them, the modified couple stress theory developed by Yang et al. (2002) with a

length scale parameter is one of the most used. Determining the microstructure-

dependent length scale parameters is difficult, so it is desirable to use the theories

with only one length scale parameter (Reddy 2011). Based on the nonclassical

continuum theories, the size effect on various behaviors of microbeams has been

theoretically studied, including bending, buckling, free vibration, and pull-in insta-

bility (Belardinelli et al. 2014; Farokhi et al. 2013; Kong 2013; Ma et al. 2008).

For the nanostructures, experiments have shown that their elastic properties are

size dependent (Cuenot et al. 2004; Jing et al. 2006; Li et al. 2003; Poncharal

et al. 1999; Sadeghian et al. 2009; Salvetat et al. 1999; Shin et al. 2006), and such

size dependency can be explained by the associated surface effects (Cuenot

et al. 2004; Dingreville et al. 2005; Jing et al. 2006; Miller and Shenoy 2000;

Sadeghian et al. 2011; Zhu 2010). The surface elasticity theory of Gurtin and

Murdoch (1975, 1978) can predict the size-dependent effective elastic properties

of the nanostructures, which has been extensively validated by experiments

(Asthana et al. 2011; Fu et al. 2010; He and Lilley 2008; Xu et al. 2010). Based

on this theory, the surface effects on various deformation behaviors of nanobeams

have been investigated, such as bending, buckling, free vibration, and pull-in

instability (Fu and Zhang 2011; He and Lilley 2008; Wang and Feng 2007, 2009).

In this chapter, we extend the earlier studies to investigate the size effect and the

surface effects on the instability behaviors of the initially curved micro- and

nanobeams under electrostatic force. Section 9.2 is devoted to the size effect on

the symmetric snap-through buckling of microbeam. The beam model is developed

considering the modified couple stress theory (Yang et al. 2002). The fringing field

effect is taken into account by Meijs-Fokkema formula (van der Meijs and

Fokkema 1984), and the influence of the intermolecular forces is also examined.

In Sect. 9.3, the surface effects on the asymmetric bifurcation of nanobeam are

studied. The surface elasticity and the residual surface tension are accounted for in

the beammodel by using the surface elasticity theory of Gurtin and Murdoch (1975,

1978) and the generalized Young–Laplace equation (Chen et al. 2006; Gurtin

et al. 1998). Based on the models and simulation results, the criteria for the

existence of snap-through buckling and asymmetric bifurcation are derived,

which can be used for the design of the bistable MEMS/NEMS.
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9.2 Size Effect on Symmetric Snap-Through Buckling
of Microbeam

9.2.1 Formulation

9.2.1.1 Governing Equations

Consider an initially curved rectangular microbeam of span L, width b, and

thickness h undergoing in-plane bending (x� z plane in Fig. 9.2). The respective

displacements ux, uy, and uz along x-, y-, and z-coordinates are assumed to

be dependent only on x and z. uy is further assumed to be 0. For a thin beam

(h<< L ), the Euler-Bernoulli beam theory is applied:

ux x; zð Þ ¼ u xð Þ � zw
0
xð Þ ð9:1aÞ

uz x; zð Þ ¼ w xð Þ ð9:1bÞ

where u(x) and w(x) are, respectively, the axial (along x-coordinate) and transverse

(along z) displacements of a point on the midplane of the beam; a superimposed

apostrophe denotes a derivative with respect to x. During the snap-through buck-

ling, the midplane stretching can be important. To consider this effect, the von

Karman nonlinear strain is used. With the aid of Eq. (9.1a, b), the nonzero strain

component (i.e., axial strain ε�xx) can be obtained as (Reddy 2011)

ε*xx ¼ u
0 � zw

00 þ 1

2
w

0
� �2

ð9:2Þ

Considering the initial strain ε0xx related to the initial deflection w0(x) by

ε0xx ¼ �zw
00
0 þ w

0
0

� �2
=2, we calculate the axial strain change εxx from Eq. (9.2) as

Fig. 9.2 Initially curved double-clamped micro/nanobeam under electrostatic force. The direc-

tions of electrostatic and intermolecular forces are indicated by arrows
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εxx ¼ ε∗xx � ε0xx ¼ u
0 � z w

0 0 � w
0 0
0

� �
þ 1

2
w

0
� �2

� w
0
0

� �2� �
ð9:3Þ

The symmetric curvature tensor χ conjugated to the deviatoric couple stress tensor

ψ in the modified couple stress theory is (Yang et al. 2002)

χ ¼ 1

2
∇ωþ ∇ω

� �T� �
ð9:4Þ

where ω ¼ ∇� u
� �

=2
� �

is the rotation vector, with u ¼ ux; uy; uz
� �T� �

being the

displacement vector; the superimposed T denotes the transpose of thematrix.With the

aid of Eq. (9.1a, b), the nonzero curvature components in Eq. (9.4) are calculated as

χ*xy ¼ χ*yx ¼ �1

2
w

00 ð9:5Þ

Considering the initial nonzero curvature χ0xy ¼ χ0yx ¼ �w
0 0
0=2 due to the initial

deflection w0, we obtain the curvature change χxy and χyx from Eq. (9.5) as

χxy ¼ χyx ¼ χ*xy � χ0xy ¼ �1

2
w

00 � w
00
0

� �
ð9:6Þ

To derive the governing equations, the theorem of minimum potential energy is

used:

δUelas � δWext ¼ 0 ð9:7Þ

where δUelas and δWext are, respectively, the variations of the elastic strain energy,

and the work done by the external forces. Considering the nonzero strain compo-

nent εxx and the nonzero curvature components χxy and χyx, we can calculate δUelas

as (Yang et al. 2002)

δUelas ¼
ð L
0

ð
S

σ : δε þ ψ : δχÞds dx ¼
ð L
0

ð
S

σxxδεxx þ 2ψ xyδχxy
� �

ds dx

�
ð9:8Þ

where

ð
S

ds is the integral over the cross section (y–z plane in Fig. 9.2). Introduce

Eqs. (9.3) and (9.6) into Eq. (9.8), integrate the resulting equation by parts with

respect to x, and we obtain
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δUelas ¼ �
ð L
0

N
0
δudx�

ð L
0

M
0 0 þ C

0 0 þ Nw
0

� �0� �
δwdx

� Nð0Þδuð0Þ þ NðLÞδuðLÞ � ðM0 ð0Þ þ C
0 ð0Þ þ Nð0Þw0 ð0ÞÞδwð0Þ

þ ðM0 ðLÞ þ C
0 ðLÞ þ NðLÞw0 ðLÞÞδwðLÞ þ ðMð0Þ þ Cð0ÞÞδw0 ð0Þ

� ðMðLÞ þ CðLÞÞδw0 ðLÞ
ð9:9Þ

where the stress resultants N, M, and C are defined as

N ¼
ð
S

σxx ds ð9:10aÞ

M ¼
ð
S

zσxx ds ð9:10bÞ

C ¼
ð
S

ψ xy ds ð9:10cÞ

Neglecting the gravity, we can calculate the variation δWext of the work done by the

external forces as

δWext ¼
ð L
0

f z xð Þδw dx ð9:11Þ

where the distributed transverse load fz is composed of

f z ¼ f elec þ f casi þ f VDW ð9:12Þ

felec, fcasi, and fVDW are, respectively, the electrostatic force, Casimir force, and van

der Waals force per unit length.

The electrostatic force felec per unit length can be calculated using (Batra

et al. 2006; Dequesnes et al. 2002)

f elec ¼
1

2
V2 dCcap

dg
ð9:13Þ

where the sign of the force depends on the coordinate system, V is the applied

voltage between the beam and the rigid electrode, Ccap is the capacitance per unit

length of the capacitor composed of the beam and the electrode, and g is the gap

between the beam and the electrode as being

g xð Þ ¼ g0 þ w xð Þ ð9:14Þ

with g0 being the initial gap (i.e., distance between the clamped beam ends and the

rigid electrode (see Fig. 9.2)). For a small gap g (<< beam length), the beam with

240 X. Chen and S.A. Meguid



the electrode can be regarded as a parallel-plate capacitor. To further take into

account the fringing fields at the edges of the microbeam, the capacitance Ccap is

estimated using the Meijs-Fokkema formula (van der Meijs and Fokkema 1984):

C gð Þ ¼ ε0
b

g
þ 0:77þ 1:06

b

g

� �0:25

þ 1:06
h

g

� �0:5
 !

ð9:15Þ

where ε0 is the vacuum permittivity. It is noted that the error of the estimated

capacitance using Eq. (9.15) is within 6% for the microbeam systems satisfying

beam-width-to-gap ratio (b/g) larger than 0.3 and beam-thickness-to-gap ratio (h/g)
smaller than 10 (van der Meijs and Fokkema 1984). So to ensure the proper

application of Eq. (9.15), this chapter only studies the microbeam systems with

the width-to-initial-gap ratio (b/g0) larger than 0.5 (considering wmax¼ 0.5 g0 in

Eq. (9.14)) and the thickness-to-initial-gap ratio (h/g0) smaller than 5 (considering

wmin¼�0.5 g0). Introduce Eqs. (9.14) and (9.15) into Eq. (9.13), and after several

calculations we obtain (Krylov et al. 2008)

f elec¼�1

2

ε0bV
2

g0þwð Þ2 1þ0:265
b

h

� ��0:75 g0þw

h

� �0:75
þ0:53

b

h

� ��1 g0þw

h

� �0:5 !

ð9:16Þ

The intermolecular forces can be described by Casimir and van der Waals forces.

The former force is attributed to the attraction between two closely spaced

conducting surfaces, and the latter one is due to the electrostatic interactions

among dipoles at the atomic scale (Batra et al. 2007; Lifshitz 1956). For a small

gap (<< beam length), the parallel-plate approximation is applied (Casimir 1948;

Israelachvili 2011):

f casi ¼ � π2hcb

240 g0 þ wð Þ4 ð9:17aÞ

fVDM ¼ � Ab

6π g0 þ wð Þ3 ð9:17bÞ

where h is the reduced Planck constant; c is the speed of light; A is the Hamaker

constant.

Introducing Eqs. (9.9) and (9.11) into Eq. (9.7), we arrive at

ð L
0

N
0
δudxþ

ð L
0

M
0 0 þ C

0 0 þ Nw
0

� �0

þ f z

� �
δwdxþ Nð0Þδuð0Þ � NðLÞδuðLÞ

þðM0 ð0Þ þ C
0 ð0Þ þ Nð0Þw0 ð0ÞÞδwð0Þ � ðM0 ðLÞ þ C

0 ðLÞ þ NðLÞw0 ðLÞÞδwðLÞ
�ðMð0Þ þ Cð0ÞÞδw0 ð0Þ þ ðMðLÞ þ CðLÞÞδw0 ðLÞ ¼ 0

ð9:18Þ
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To satisfy Eq. (9.18) with arbitrary variations of displacements δu and δw, we
obtain the following governing equations:

δu : N
0 ¼ 0 ð9:19aÞ

δw : M
0 0 þ C

0 0 þ Nw
0

� �0

þ f z ¼ 0 ð9:19bÞ

With Eq. (9.19a), Eq. (9.19b) can be reduced to

M
00 þ C

00 þ Nw
00 þ f z ¼ 0 ð9:20Þ

Suppose the beam material is elastically isotropic with Young’s modulus E and

Poisson’s ratio ν. For an Euler-Bernoulli beam undergoing in-plane bending, the 1D

constitutive relation is

σxx ¼ Eεxx ð9:21Þ

The deviatoric couple stress ψxy is related to the symmetric curvature χxy by (Yang

et al. 2002):

ψ xy ¼
El2

1þ νð Þ χxy ð9:22Þ

where l is a length scale parameter. With Eqs. (9.3), (9.6), (9.21), and (9.22),

Eq. (9.10a, b, c) is changed to

N xð Þ ¼ ES u
0 þ 1

2
w

0
� �2

� 1

2
w

0
0

� �2� �
ð9:23aÞ

M xð Þ ¼ �EI w
00 � w

00
0

� �
ð9:23bÞ

C xð Þ ¼ � ESl2

2 1þ νð Þ w
00 � w

00
0

� �
ð9:23cÞ

where S (¼bh) is the cross-sectional area (y–z plane in Fig. 9.2); I (¼bh3/12) is the
second moment of area. Introduce Eq. (9.23a, b, c) into Eq. (9.20), and we have

EI 1þ 6

1þ νð Þ
l

h

� �2
 !

w0000 � w0
0000ð Þ

� ES u
0 þ 1

2
w

0
� �2

� 1

2
w

0
0

� �2� �
w

0
� �0

� f z ¼ 0

ð9:24Þ

Equation (9.19a) shows that the axial force N is constant. So N can be

estimated as the average value calculated from Eq. (9.23a):
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ES

L

ð L
0

u
0 þ 1

2
w

0
� �2

� 1

2
w

0
0

� �2� �
dx

� �
. In Eq. (9.24), replace N with the average

value, consider the boundary conditions of double-clamped beam, and we obtain

EI 1þ 6

1þ νð Þ
l

h

� �2
 !

w0000 � w0
0000ð Þ

� ES

2L

ð L
0

w
0

� �2
� w

0
0

� �2� �
dx

� �
w

00 � f z ¼ 0

ð9:25Þ

Introducing Eqs. (9.12), (9.16), and (9.17a, b) into Eq. (9.25), and we have

EI 1þ 6

1þ νð Þ
l

h

� �2
 !

w0000 � w0
0000ð Þ � ES

2L

ð L
0

w
0

� �2
� w

0
0

� �2� �
dx

� �
w

00

þ 1

2

ε0bV
2

g0 þ wð Þ2 1þ 0:265
b

h

� ��0:75 g0 þ w

h

� �0:75
þ 0:53

b

h

� ��1 g0 þ w

h

� �0:5 !

þ π2hcb

240 g0 þ wð Þ4 þ
Ab

6π g0 þ wð Þ3 ¼ 0

ð9:26Þ

It is seen from Eq. (9.26) that the length scale parameter l has the effect of

increasing the effective Young’s modulus (E)eff for bending, being

Eð Þeff ¼ E 1þ 6

1þ νð Þ
l

h

� �2
 !

ð9:27Þ

For thin beams (beam thickness h close to l ), the effective Young’s modulus for

bending can be as large as 1þ 6
1þνð Þ

� �
(�5.7 at ν¼ 0.27) times the conventional

Young’s modulus (E), while for thick beams (h� l ) the effective Young’s modulus

is nearly equal to the conventional one, indicating that the size effect is negligible.

Rewrite Eq. (9.26) in the following non-dimensional form:

w0000 � w0
0000ð Þ � α

ð1
0

w0ð Þ2 � w0
0ð Þ2

� �
dx

� �
w00 þ λVDW

1

1þ wð Þ3 þ λcasi
1

1þ wð Þ4

¼ � βv
1þ wð Þ2 1þ 0:265

b

h

� ��0:75
1þ w

h

� �0:75

þ 0:53
b

h

� ��1
1þ w

h

� �0:5
 !

ð9:28Þ

where the non-dimensional quantities are defined in Table 9.1; a superimposed

apostrophe in the non-dimensional equations denotes a derivative with respect to
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the normalized coordinate x. The non-dimensional boundary conditions of double-

clamped beam are

δw : w 0ð Þ ¼ 0, w 1ð Þ ¼ 0 ð9:29aÞ
δw

0
: w

0 ð0Þ ¼ 0, w
0 ð1Þ ¼ 0 ð9:29bÞ

9.2.1.2 Influence of Intermolecular Forces

In the non-dimensional governing equation (Eq. (9.28)), we can identify the

dimensionless van der Waals force fVDW, Casimir force f casi , and electrostatic

force f elec as

fVDW ¼ �λVDW
1

1þ wð Þ3 ð9:30aÞ

f casi ¼ �λcasi
1

1þ wð Þ4 ð9:30bÞ

f elec ¼ � βv
1þ wð Þ2 1þ 0:265

b

h

� ��0:75
1þ w

h

� �0:75

þ 0:53
b

h

� ��1
1þ w

h

� �0:5
 !

ð9:30cÞ

Table 9.1 Non-dimensional quantities adopted in this chapter

Quantity Expression Meaning

h h/g0 Dimensionless thickness

q0 r/g0 Dimensionless initial arch rise

w w/g0 Dimensionless deflection

w0 w0/g0 Dimensionless initial deflection

x x/L Normalized coordinate

α
6= h

g0

� �2
= 1þ 6

1þνð Þ
l
h

� �2� �
Stretching parameter (size effect considered)

α*
6 1þ 2 Es

E*
1
h

� �
= h

g0

� �2
= 1þ 6 Es

E*
1
h

� �
Stretching parameter (surface effects

considered)

βv ε0bL
4V2= 2EIg30

� �
= 1þ 6

1þνð Þ
l
h

� �2� �
Voltage parameter (size effect considered)

β�v ε0bL
4V2= 2E*Ig30

� �
= 1þ 6 Es

E*
1
h

� �
Voltage parameter (surface effects

considered)

λcasi π2hcbL4= 240EIg50
� �

= 1þ 6
1þνð Þ

l
h

� �2� �
Casimir force parameter

λs 2bL2τ0=E*I= 1þ 6 Es

E*
1
h

� �
Dimensionless residual surface tension

λVDW AbL4= 6πEIg40
� �

= 1þ 6
1þνð Þ

l
h

� �2� �
van der Waals force parameter
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where λVDW, λcasi, and βv are, respectively, the van der Waals force parameter, the

Casimir force parameter, and the voltage parameter. With the aid of Table 9.1, we

can compare λVDW and λcasi with βv as follows:

λVDW
βv

¼ A

3πε0

1

g0V
2

ð9:31aÞ

λcasi
βv

¼ π2hc
120ε0

1

g20V
2

ð9:31bÞ

Consider g0 � 10�6m for the microscale systems and V � 101V for the order of

applied voltage, and with the values of the constants in Table 9.2 we calculate

Eq. (9.31a, b) as

λVDW
βv

� 10�5 ð9:32aÞ

λcasi
βv

� 3� 10�6 ð9:32bÞ

With Eqs. (9.30a, b, c) and (9.32a, b), the force ratios can be estimated as

fVDW=f elec
�� �� < 10�5 1

1þ w
ð9:33aÞ

f casi=f elec
�� �� < 3� 10�6 1

1þ wð Þ2 ð9:33bÞ

The maximum force ratios are determined by the minimum stable deflection, i.e.,

deflection at pull-in instability, which is roughly half gap (w ¼ �0:5) (Ballestra
et al. 2010; Dequesnes et al. 2002; Hu et al. 2004). Then Eq. (9.33a, b) leads to

max fVDW=f elec
�� �� � 2� 10�5 ð9:34aÞ

max f casi=f elec
�� �� � 1� 10�5 ð9:34bÞ

Table 9.2 Values of constants

Constant Meaning Value

A Hamaker

constant
10�19 J (Hamaker constants of condensed phases are about 10�19

J for interactions in vacuum (Israelachvili 2011))

c Speed of light 3� 108 m � s�1

h Reduced Planck

constant
1:0546� 10�34 J � s

ε0 Vacuum

permittivity
8:8542� 10�12 F �m�1
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Equation (9.34a, b) shows that the intermolecular forces (van der Waals and

Casimir forces) are negligible with respect to the electrostatic force when studying

the snap-through buckling of microbeams.

9.2.1.3 One Degree of Freedom Reduced-Order Model

In the previous subsection, we have proved that the intermolecular forces can be

neglected in the study of snap-through buckling of microbeams. So the governing

equation (Eq. (9.28)) can be further reduced to

w0000 � w0
0000ð Þ � α

ð1
0

w0ð Þ2 � w0
0ð Þ2

� �
dx

� �
w00

¼ � βv
1þ wð Þ2 1þ 0:265

b

h

� ��0:75
1þ w

h

� �0:75

þ 0:53
b

h

� ��1
1þ w

h

� �0:5
 !

ð9:35Þ

Equation (9.35) with the boundary conditions expressed in Eq. (9.29a, b) can be

solved using the Galerkin decomposition of the dimensionless deflection w xð Þ (Das
and Batra 2009b; Krylov et al. 2008; Medina et al. 2012):

w xð Þ �
Xn
k¼1

qkϕk xð Þ ð9:36Þ

where ϕk (k¼ 1, 2, . . ., n) is the kth eigenmode of the straight beam, and qk is its
generalized coordinate. The buckling eigenmodes are taken here, which have been

foundmore suitable for the studies on the buckling behaviors (Medina et al. 2014a, b):

ϕk xð Þ ¼ Ak
cos λkð Þ � 1

sin λkð Þ � λk
sin λkxð Þ � cos λkxð Þ � λk

cos λkð Þ � 1

sin λkð Þ � λk
xþ 1

� �
ð9:37Þ

where Ak is a constant satisfying max
x20;1½ �

ϕk xð Þj j ¼ 1, and λk is the eigenvalue satisfy-

ing λk sin λkð Þ þ 2 cos λkð Þ ¼ 2.

It is shown by Das and Batra (2009b) that the numerical simulations using n	 6

in Eq. (9.36) are indistinguishable from each other. They also found that a reason-

ably accurate prediction of the symmetric snap-through behavior can be given by

considering only the first mode, which indicates that the first mode approximation

of the deflection can capture the characteristics of the symmetric snap-through
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behavior. So in order to simplify our study for an analytical snap-through criterion,

we decided to make the first mode approximation here. Suppose that the dimen-

sionless initial deflection w0 xð Þ is also in the first mode, then we have

w xð Þ ¼ q1ϕ1 xð Þ ð9:38aÞ
w0 xð Þ ¼ q0ϕ1 xð Þ ð9:38bÞ

where q1 is the dimensionless midpoint deflection; q0 (¼ r/g0) is the dimensionless

initial arch rise, with r being the initial arch rise (i.e., initial deflection at the

midpoint). Introduce Eq. (9.38a, b) into Eq. (9.35), multiply the result by ϕ1, and

then integrate over the domain [0, 1]. Further integrate by parts with respect to x and
consider the boundary conditions (Eq. (9.29a, b)); we obtain the following reduced-

order model with one degree of freedom:

βv ¼ � αs211
I1 q1ð Þ q

3
1 �

b11 � αs211q
2
0

I1 q1ð Þ q1 þ
b11q0
I1 q1ð Þ ð9:39Þ

where the values of b11 and s11 are given in Table 9.3, and the expression of I1 is

I1 q1ð Þ ¼
ð1
0

ϕ1

1þ q1ϕ1ð Þ2 1þ 0:265
b

h

� ��0:75
1þ q1ϕ1

h

� �0:75
 

þ0:53
b

h

� ��1
1þ q1ϕ1

h

� �0:5
!

dx

ð9:40Þ

Table 9.3 Values of

coefficients related to first and

second buckling eigenmodes

Coefficient Expression Value

b11
ð1
0

ðϕ0 0
1Þ2dx

194.8182

b22
ð1
0

ðϕ0 0
2Þ2dx

1667.9624

f1
ð1
0

ϕ1dx
0.5000

m11
ð1
0

ϕ2
1dx

0.3750

m22
ð1
0

ϕ2
2dx

0.4262

s11
ð1
0

ðϕ0
1Þ2dx

4.9348

s22
ð1
0

ðϕ0
2Þ2dx

20.6529
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9.2.2 Results and Discussions

9.2.2.1 Influence of Initial Arch Rise on Snap-Through Behavior

Let us consider an electrostatically actuated microbeam system described by the

dimensional quantities in Table 9.4, which is obtained from Krylov et al. (2008) for

the experiments, and Zhang et al. (2007) for the material properties. Taking the

material length scale parameter l¼ 10�1 μm for silicon (Rokni et al. 2013), and with

the aid of Tables 9.1 and 9.4, we calculate the corresponding dimensionless

quantities, and introduce them into Eq. (9.39). The obtained equation is plotted in

Fig. 9.3 at different levels of q0 (0 ~ 0.5). The experimental results from Krylov

et al. (2008) are also shown. It is seen that the model (Eq. (9.39)) can approximately

describe the snap-through behavior observed from the experiments. The difference

in the critical voltages (i.e., voltage parameters at the extreme points) is possibly

due to the non-ideal clamping conditions, residual stresses, initial imperfections in

the beam shape, and variations of beam geometry due to the low fabrication

tolerances (Krylov et al. 2008).

Figure 9.3 shows that the existence of the snap-through buckling depends on the

level of the dimensionless initial arch rise q0. For very small q0 (e.g., q0¼ 0 in

Fig. 9.3a), there is only one extreme point qp on the βv�q1 curve. With the increase

of the voltage (βv increases), the microbeam bends towards the rigid electrode due

to the electrostatic force. The equilibrium position of the beam can be determined

by the balance of the elastic and electrostatic forces. Therefore, the beam deflection

decreases gradually (see the loading path A! qp in Fig. 9.3a). When the critical

point qp is reached, the microbeam becomes unstable (i.e., the elastic force can no

longer resist the electrostatic force), so it collapses onto the rigid electrode

(qp!B). This behavior is called pull-in instability.

For a larger value of q0 (e.g., 0.35 in Fig. 9.3b), two more extreme points qs and
qr appear, which correspond, respectively, to the snap-through buckling and the

release (snap-back). With the increase of βv, the beam deflection decreases gradu-

ally (C! qs in Fig. 9.3b) until reaching the critical point qs where two stable states

(qs and D) coexist. A slight increase in βv makes the state at qs unstable, which

Table 9.4 Dimensional quantities of electrostatically actuated microbeam system obtained from

Krylov et al. (2008) and Zhang et al. (2007)

Quantity Meaning Value

b Beam width 30 μm
E Young’s modulus of silicon 160 GPa

g0 Gap between beam ends and rigid electrode 10 μm
h Beam thickness 2.5 μm
L Span of arch 1000 μm
r Initial arch rise 0–5 μm
V Applied voltage 0–120 V

ν Poisson’s ratio of silicon 0.27
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results in a sudden transition from qs to the second stable state D. Such transition is

called snap-through buckling. After the snap-through buckling, the beam deflection

continues to decrease gradually with βv (D! qp) until reaching the pull-in insta-

bility where the beam collapses onto the rigid electrode (qp!E).

9.2.2.2 Size and Fringing Field Effects on Necessary Snap-Through

Criterion

The extreme points qs, qr, and qp on βv� q1 curve (refer to Fig. 9.3) can be obtained
by solving the following equation with the aid of Eq. (9.39):

dβv
dq1

¼ 0

) αs211I2q
3
1 � 3αs211I1q

2
1 þ I2 b11 � αs211q

2
0

� �
q1 � b11 � αs211q

2
0

� �
I1

� b11I2q0
¼ 0 ð9:41Þ

where I2 is calculated from Eq. (9.40) as

Fig. 9.3 Evolution of voltage parameter βv with dimensionless midpoint deflection q1 at different
levels of dimensionless initial arch rise q0. The extreme points qs, qr, and qp correspond,

respectively, to the critical points of the snap-through buckling, the release (snap-back), and the

pull-in instability. The insets show the evolutions of the deformed beam
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I2 ¼ dI1
dq1

¼
ð1
0

�2ϕ2
1

1þ q1ϕ1ð Þ3 1þ 0:165625
b

h

� ��0:75
1þ q1ϕ1

h

� �0:75
 

þ0:3975
b

h

� ��1
1þ q1ϕ1

h

� �0:5
!
dx

ð9:42Þ

Equation (9.41) containing integrals (I1, I2) cannot be solved analytically. So we

solve the equation numerically, and show the typical results in Fig. 9.4. It is seen

that q0 must be larger than a critical value qmin
0 for the existence of the snap-through

points qs and qr. At q0¼ qmin
0 , both qs and qr are near 0. So for a first approximation,

we take q1¼ 0 in Eq. (9.41) and find

qmin
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b11
αs211

þ b11m*
11

αs211f
*
1

 !2
vuut � b11m

*
11

αs211f
*
1

ð9:43Þ

where the values of b11 and s11 are given in Table 9.3; f�1 and m�
11 are

Fig. 9.4 Evolutions of the extreme points (qs, qr, qp) with the dimensionless initial arch rise q0 at
different levels of stretching parameter α and width-to-thickness ratio b/h
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f *1 ¼ 1þ 0:265
b

h

� ��0:75

h
� ��0:75 þ 0:53

b

h

� ��1

h
� ��0:5

 !ð1
0

ϕ1dx ð9:44aÞ

m*
11 ¼ 1þ 0:165625

b

h

� ��0:75

h
� ��0:75 þ 0:3975

b

h

� ��1

h
� ��0:5

 !ð1
0

ϕ2
1dx

ð9:44bÞ

Introducing Eq. (9.44a, b) into Eq. (9.43) and replacing the non-dimensional

quantities (α, q0) with the expressions in Table 9.1, we obtain the following

necessary criterion for the existence of snap-through buckling:

r

h

� �
min

¼

b11
6s211

1þ 6

1þνð Þ
l

h

� �2
 !

þ b11m11

6s211f 1
h

� �2

1þ 6

1þνð Þ
l

h

� �2
 !2

1þ0:165625 b
h

� ��0:75
h
� ��0:75þ0:3975 b

h

� ��1
h
� ��0:5

1þ0:265 b
h

� ��0:75
h
� ��0:75þ0:53 b

h

� ��1
h
� ��0:5

 !2
vuut

�b11m11

6s211f 1
h 1þ 6

1þνð Þ
l

h

� �2
 !

1þ0:165625 b
h

� ��0:75
h
� ��0:75þ0:3975 b

h

� ��1
h
� ��0:5

1þ0:265 b
h

� ��0:75
h
� ��0:75þ0:53 b

h

� ��1
h
� ��0:5

 !

ð9:45Þ

where the values of b11, s11, f1, and m11 are given in Table 9.3. Eq. (9.45) is plotted

in Fig. 9.5 to show the size effect (by introducing the length scale parameter l,
normalized as l/h) and the fringing field effect (considering the finite beam width b,
normalized as b/h) on the minimum allowable ratio (r/h)min. It is seen that both

effects increase (r/h)min and the size effect is much more significant. Eq. (9.27)

shows that the size effect (l/h) increases the effective Young’s modulus for bending,

so the microbeam becomes stiffer and more difficult to exhibit snap-through

buckling. As a result, the minimum allowable ratio (r/h)min increases.

Fig. 9.5 (a) Size effect (l/h) on the minimum allowable ratio (r/h)min at b/h¼þ1. No size effect

at l/h¼ 0 (i.e., beam thickness h� l ). (b) Fringing field effect (b/h) on the minimum allowable

ratio (r/h)min at l/h¼ 0. No fringing field effect at b/h¼þ1 (infinitely wide beam)
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9.3 Surface Effects on Asymmetric Bifurcation
of Nanobeam

9.3.1 Formulation

9.3.1.1 Surface Effects

In the surface elasticity theory of Gurtin and Murdoch (1975, 1978), the surface

layer is regarded as a thin film of negligible thickness. In the surface layer, there

exists a surface stressσ s N=mð Þ, which is related to the surface energy density γ (J/m2)

by (Cammarata 1994)

σ s ¼ γδ þ ∂γ
∂εs

ð9:46Þ

where δ is the Kronecker delta; εs is the strain tensor in the surface layer. Assuming

an elastic surface, we can derive a linear constitutive equation from Eq. (9.46) as

(Miller and Shenoy 2000)

σ s ¼ τ0 þ C s : εs ð9:47Þ

where τ0 is the residual surface stress tensor; C s N=mð Þ is the surface elasticity

tensor. Both τ0 and C s can be calculated by atomistic simulations, and they can be

either positive or negative depending on the crystallographic structures of the

materials (Miller and Shenoy 2000; Wang and Feng 2009). We only consider the

axial stress here. Then Eq. (9.47) can be reduced to the following 1D form (He and

Lilley 2008; Wang and Feng 2009):

σs ¼ τ0 þ Esεs ð9:48Þ

where τ0 is the residual surface tension; Es (N/m) is the surface elastic modulus,

which is related to the surface Lame constants μs and λs by Es¼ 2μsþ λs in 1D

condition.

It is seen from Eq. (9.48) that there are two contributions to the surface effects:

the residual surface tension (τ0) and the surface elasticity (Es). The surface elasticity

(Es) introduces an additional axial elastic stress σ* being

σ∗ ¼ Esεs ð9:49Þ

And the residual surface tension τ0 results in a distributed transverse load f s, which
can be determined by the generalized Laplace-Young equation (Chen et al. 2006;
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Gurtin et al. 1998). This equation relates the stress jump [σ] across an interface to

the curvature κ and the surface stress σ s of that interface, from which we have (Chen

et al. 2006; Miller and Shenoy 2000; Wang and Feng 2007)

n : σ : n ¼ σ s : κ ð9:50Þ

where n is the interface unit normal. By only considering the axial stress, we can

simplify the right-hand side of Eq. (9.50) to σsκ, where κ is the beam curvature.

Suppose that the slope of the beam is small compared with the unity; then κ can be

approximated as w00, with w being the beam deflection (transverse displacement).

Considering a rectangular beam of width b, we can obtain the distributed transverse
load f s from Eq. (9.50) as (He and Lilley 2008; Wang and Feng 2007, 2009)

f s ¼ 2τ0bw
00 ð9:51Þ

9.3.1.2 Governing Equations

Consider an initially curved rectangular nanobeam subjected to an electrostatic

force (Fig. 9.2). For a thin beam (h
 L ), the axial strain change εxx is given in

Eq. (9.3). Then the variation δUelas of the elastic strain energy including the surface

elasticity can be calculated as

δUelas ¼
ð L
0

 ð
S

σxxδεxxdsþ
ð
∂S
σ∗δεxxdl

!
dx

¼ �
ð L
0

N
0
δudx�

ð L
0

ðM0 0 þ ðNw0 Þ0 Þδwdx

� Nð0Þδuð0Þ þ NðLÞδuðLÞ � ðM0 ð0Þ þ Nð0Þw0 ð0ÞÞδwð0Þ
þ ðM0 ðLÞ þ NðLÞw0 ðLÞÞδwðLÞ þMð0Þδw0 ð0Þ �MðLÞδw0 ðLÞ

ð9:52Þ

where stress resultants N and M are defined as

N ¼
ð
S

σxxdsþ
ð
∂S
σ∗dl ð9:53aÞ
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M ¼
ð
S

zσxxdsþ
ð
∂S
zσ∗dl ð9:53bÞ

σ* is the additional axial stress from surface elasticity (Eq. (9.49)), and

ð
∂S
dl is the

integral over the boundary of the cross section. Neglecting the gravity and the

intermolecular forces, we can calculate the variation δWext of the work done by the

external forces as

δWext ¼
ð L
0

ð f elec þ f sÞδwdx ð9:54Þ

where f s is the distributed load due to the residual surface tension (Eq. (9.51)); felec
is the distributed electrostatic force. Suppose that the beam is infinitely wide (width

b� thickness h); then the fringing field can be neglected, and Eq. (9.16) can be

reduced to

f elec ¼ �1

2

ε0bV
2

g0 þ wð Þ2 ð9:55Þ

Introducing Eqs. (9.52) and (9.54) into the theorem of minimum potential energy

given in Eq. (9.7), we obtain the following governing equations:

δu : N
0 ¼ 0 ð9:56aÞ

δw : M
0 0 þ ðNw0 Þ0 þ f elec þ f s ¼ 0 ð9:56bÞ

With Eq. (9.56a), Eq. (9.56b) can be rewritten as

M
00 þ Nw

00 þ f elec þ f s ¼ 0 ð9:57Þ

Suppose that the beam material is elastically isotropic with Young’s modulus

E and Poisson’s ratio ν. Then the 1D constitutive equation for an infinitely wide

beam becomes

σxx ¼ E*εxx ð9:58Þ

where the effective elastic modulus E* is

E* ¼ E

1� ν2
ð9:59Þ

Introduce Eqs. (9.3), (9.49), and (9.58) into Eq. (9.53a, b), and consider b� h; we have
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N xð Þ ¼ E*S 1þ 2
Es

E*

1

h

� �
u

0 þ 1

2
w

0
� �2

� 1

2
w

0
0

� �2� �
ð9:60aÞ

M xð Þ ¼ �E*I 1þ 6
Es

E*

1

h

� �
w

00 � w
00
0

� �
ð9:60bÞ

The effective axial stiffness (ES)eff can be derived from Eq. (9.60a) as

ESð Þeff ¼ E*bhþ 2Esb ð9:61Þ

And the effective Young’s modulus (E)eff for bending can be derived from

Eq. (9.60b) as

Eð Þeff ¼ E* 1þ 6
Es

E*

1

h

� �
ð9:62Þ

It is seen that the surface elasticity (Es) has the effect of increasing or decreasing

(E)eff, depending on the sign of Es.

Introduce Eqs. (9.51), (9.55), and (9.60b) into Eq. (9.57), replace the axial force

by the average value calculated from Eq. (9.60a), and we obtain the following

governing equation:

E∗I 1þ 6
Es

E∗

1

h

� �
ðw0 0 0 0 � w0

0 0 0 0 Þ � E∗S

2L
1þ 2

Es

E∗

1

h

� ��ð L
0

ððw0 Þ2 � ðw0
0Þ2Þdx

�
� w0 0 � 2τ0bw

0 0 ¼ �1

2

ε0bV
2

ðg0 þ wÞ2
ð9:63Þ

Rewrite Eq. (9.63) in the non-dimensional form as

ðw0 0 0 0 � w0
0000Þ �

�
λs þ α∗

�ð1
0

ððw0 Þ2 � ðw0
0Þ2Þd x

��
w

0 0 ¼ � β∗v
ð1þ wÞ2 ð9:64Þ

with the non-dimensional quantities given in Table 9.1, and the non-dimensional

boundary conditions given in Eq. (9.29a, b).

9.3.1.3 Two Degrees of Freedom Reduced-Order Model

Equations (9.64) and (9.29a, b) can be solved using the Galerkin decomposition

method (see Eq. (9.36)). For the asymmetric deformations, the participation of the

second mode is more than that of the fourth and sixth modes (Das and Batra 2009b).
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So we decided to focus on the first two modes (i.e., n¼ 2 in Eq. (9.36)).

The dimensionless initial deflection w0 xð Þ is assumed to be in the first mode

state; then we have

w xð Þ ¼ q1ϕ1 xð Þ þ q2ϕ2 xð Þ ð9:65aÞ
w0 xð Þ ¼ q0ϕ1 xð Þ ð9:65bÞ

where q1 is the dimensionless midpoint deflection (sinceϕ1 0:5ð Þ ¼ 1,ϕ2 0:5ð Þ ¼ 0);

q0 (¼ r/g0) is the dimensionless initial arch rise, with r being the initial arch rise

(deflection at the midpoint). Introduce Eq. (9.65a, b) into Eq. (9.64), multiply the

result by ϕ1 and ϕ2, respectively, and then integrate over the domain [0, 1]. Further

integrate by parts and take into account the orthogonality of ϕ1 and ϕ2; we obtain

the reduced-order model with two degrees of freedom:

ϕ1 : α*s211q
3
1 þ b11 � α*s211q

2
0 þ λss11

� �
q1 þ α*s11s22q1q

2
2 � b11q0 ¼ �β*vI

*
1 q1; q2ð Þ
ð9:66aÞ

ϕ2 : α*s222q
3
2 þ b22 � α*s11s22q

2
0 þ λss22

� �
q2 þ α*s11s22q

2
1q2 ¼ �β*vI

*
2 q1; q2ð Þ

ð9:66bÞ

where b11, b22, s11, s22, and f1 are given in Table 9.3; the integrals I
�
1 and I

�
2 are given

below:

I*1 q1; q2ð Þ ¼
ð1
0

ϕ1

1þ q1ϕ1 þ q2ϕ2ð Þ2 dx ð9:67aÞ

I*2 q1; q2ð Þ ¼
ð1
0

ϕ2

1þ q1ϕ1 þ q2ϕ2ð Þ2 dx ð9:67bÞ

9.3.2 Results and Discussions

9.3.2.1 Influence of Initial Arch Rise on Asymmetric Bifurcation

Behavior

Introducing α*¼ 600 and λs¼ 2 into Eq. (9.66a, b), we plot the obtained equation in

Fig. 9.6 at different levels of the dimensionless initial arch rise q0. The dimension-

less residual surface tension λs is calculated using the expression in Table 9.1 with

the surface parameters τ0 ¼ 0:6056 N �m�1 andEs ¼ �10:036 N �m�1 fromMiller

and Shenoy (2000), and the beam dimensions and bulk material properties

L¼ 15 μm, b¼ 400 nm, h¼ 200 nm, E¼ 185 GPa, and ν¼ 0.28 from Intaraprasonk

and Fan (2011).
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It is seen from Fig. 9.6 that when q0 is small (e.g., 0.1 in Fig. 9.6a), the solution

of the asymmetric deformation doesn’t exist (i.e., q2� 0), so the beam always

deforms symmetrically. When q0 is large enough (0.3 in Fig. 9.6b), the solution

of the asymmetric deformation exists. With the decrease of the midpoint deflection

(q1 decreases), the beam deforms symmetrically (①!② in Fig. 9.6b) until

reaching the bifurcation point ② where there are two asymmetric deformations

given by Eq. (9.66a, b). By following one of the asymmetric deformations, the

beam deforms asymmetrically (②!③) until reaching another bifurcation point

③. After ③, the beam returns to deform symmetrically with the decrease of the

midpoint deflection.

9.3.2.2 Surface Effects on Necessary Symmetry-Breaking Criterion

Near the asymmetric bifurcation points (② and③ in Fig. 9.6b), q2 is about 0. So we
linearize the governing equations (Eq. (9.66a, b)) around q2¼ 0 as (Medina

et al. 2014a)

ϕ1 : α*s211q
3
1 þ b11 � α*s211q

2
0 þ λss11

� �
q1 � b11q0 ¼ �β*vI

*
1 q1; 0ð Þ ð9:68aÞ

ϕ2 : b22 � α*s11s22q
2
0 þ λss22 þ α*s11s22q

2
1

� �
q2 ¼ 2βvI

*
3 q1ð Þq2 ð9:68bÞ

with I�3 being

Fig. 9.6 Bifurcation diagram of nanobeam actuated by electrostatic force. ② and ③ are bifurca-

tion points. The insets show the evolutions of the deformed beam
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I*3 q1ð Þ ¼
ð1
0

ϕ2
2

1þ q1ϕ1ð Þ3 dx ð9:69Þ

To obtain Eq. (9.68a, b), the following relations are used:

ð1
0

ϕ1ϕ2

1þ q1ϕ1ð Þ3 dx ¼ 0,ð1
0

ϕ2

1þ q1ϕ1ð Þ2 dx ¼ 0. For the asymmetric deformations (q2 6¼ 0), Eq. (9.68b) can

be further reduced to

ϕ2 : b22 � α*s11s22q
2
0 þ λss22 þ α*s11s22q

2
1 ¼ 2β*vI

*
3 q1ð Þ ð9:70Þ

Express β�v , respectively, from Eqs. (9.68a) and (9.70), equilibrate these expres-

sions, and we obtain the following equation for the asymmetric bifurcation points:

2α*s211I
*
3q

3
1 þ α*s11s22I

*
1 q1; 0ð Þq21 þ 2 b11 � α*s211q

2
0 þ λss11

� �
I*3q1

þ b22 þ λss22ð ÞI*1 q1; 0ð Þ � 2b11I
*
3q0 � α*s11s22I

*
1 q1; 0ð Þq20 ¼ 0

ð9:71Þ

Taking λs¼ 2 in Eq. (9.71), we solve the obtained equation numerically and

show the results in Fig. 9.7. It is seen that the dimensionless initial arch rise q0
should be larger than a critical value qmin

0 for the existence of the asymmetric

bifurcation points. It is also seen that at qmin
0 , q1 is near 0. So as a first approximation

of qmin
0 , we take q1¼ 0 in Eq. (9.71) and find

Fig. 9.7 Evolutions of asymmetric bifurcation points (② and ③) with dimensionless initial arch

rise at different levels of the stretching parameter α*
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qmin
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 þ λss22
α*s11s22

þ b11m22

α*s11s22f 1

� �2
s

� b11m22

α*s11s22f 1
ð9:72Þ

where b11, b22, s11, s22, f1, and m22 are given in Table 9.3. In Eq. (9.72), replace the

non-dimensional quantities (q0, α
*, λs) with the expressions in Table 9.1, and we

obtain the necessary symmetry-breaking criterion as follows:

r

h

� �
min

¼


b22

6s11s22
1þ4

1

h

Es=E*
þ2

0
BB@

1
CCAþ 4

s11

L

h

� �2
1

h

Es=E*
þ2

0
BB@

1
CCAτ0

Esþ
b11m22

6s11s22f 1
1þ4

1
h

Es=E*þ2

 ! !2
h

g0

� �2

vuuuuut

� b11m22

6s11s22f 1
1þ4

1

h

Es=E*
þ2

0
BB@

1
CCA h

g0

ð9:73Þ

Equation (9.73) is plotted in Fig. 9.8, from which it is found that the positive

residual surface tension (τ0/Es> 0 in Fig. 9.8a, τ0/Es< 0 in Fig. 9.8b) increases

(r/h)min, while the negative one decreases it. The positive surface tension (traction)

Fig. 9.8 Minimum allowable ratio (r/h)min between the initial arch rise r and the beam thickness

h for the asymmetric bifurcation at different levels of beam thickness h (normalized as h/(Es/E*))

and residual surface tension τ0 (normalized as τ0/Es). The beam length-to-thickness ratio L/h¼ 25
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reduces the arch rise, so larger initial arch rise (larger (r/h)min) is required for the

existence of asymmetric bifurcation, and vice versa for the negative surface tension

(compression).

It is also found from Fig. 9.8 that the beam size (thickness h, normalized as h/(Es/

E*)) affects (r/h)min. Such size dependency of (r/h)min can be explained by the

influences of the effective Young’s modulus (E)eff and the residual surface tension τ
0.

In the case of positive surface Young’s modulus Es (refer to Fig. 9.8a), the

effective Young’s modulus (E)eff increases with the decrease of h (see

Eq. (9.62)), so the nanobeam becomes stiffer, which will lead to an increase of

(r/h)min. On the other hand, since the effective axial stiffness decreases when

decreasing h (see Eq. 9.61), the negative surface tension τ0 will induce more arch

rise, so the required initial arch rise ((r/h)min) for asymmetric bifurcation is

reduced. When τ0 is small (i.e., negative residual surface tension is large enough),

the influence of τ0 is dominant, so (r/h)min appears to decrease when reducing

h (see the curve at τ0/Es¼�0.04 in Fig. 9.8a). When τ0 is large, (E)eff is dominant,

so (r/h)min increases when reducing h (see the curve at τ0/Es¼�0.01). Both

positive τ0 and (E)eff have the effect of increasing (r/h)min when reducing

h (see the curves at τ0/Es¼ 0.02 and 0.04). The size effect on (r/h)min in the

case of negative surface Young’s modulus (refer to Fig. 9.8b) can be explained in

the similar way.

It is noted that in Fig. 9.8, (r/h)min is plotted in the range (i.e., h/(Es/E*)��6

and	 0) where the effective Young’s modulus (Eq. (9.62)) is nonnegative. More-

over, if (r/h)min is negative or an imaginary number, the asymmetric bifurcation

may take place in an initially straight beam. In this case, (r/h)min is taken to be 0 in

the figure.

9.4 Conclusions

In this chapter, we examine the instability behaviors of the electrostatically actuated

micro/nanobeam. The governing equations are developed with the aid of Euler-

Bernoulli beam theory and are solved using Galerkin decomposition method. The

symmetric snap-through of the microbeam is studied first. The fringing field effect,

the beam size effect, and the intermolecular forces are accounted for in the model

formulation. Our results, which are based on the first mode approximation, reveal

that the size of the microbeam plays a major role in dictating the existence of the

snap-through behavior of the beam, while the fringing field and intermolecular

forces play an insignificant role. In the second part, the asymmetric bifurcation of

the nanobeam is investigated. The surface effects at nanoscale are accounted for in

the beam model. Our results, which are based on the reduced-order model of two

degrees of freedom, show that the beam size and the residual surface tension play

significant roles in the symmetry-breaking criterion.
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