
Chapter 1
New Analytical Solutions of Selected
Electromagnetic Problems in Wave
Diffraction Theory

Leonid Pazynin

Abstract The chapter presents explicit analytical solutions for some sophisticated
electromagnetic problems. The analysis of these solutions made it possible, in
particular, to explain the physics of a cycle slipping phenomenon when very long
electromagnetic waves propagate in the Earth-ionosphere waveguide, to establish
the rigorous criterion of the boundary ‘sharpness’ for transient radiation and to
show that the well-known negative refraction phenomenon in isotropic double-
negative media is a direct consequence of the energy conservation law and
Maxwell’s equations.

1.1 Introduction

Exact analytical solutions of the basic problems of physics—boundary value and
initial boundary value—are important not only as a reference for verifying numerical
results but also as an effective tool for a deeper understanding of the nature of the
model under study. To obtain such solutions for new physical problems, one should
invoke, as a rule, new mathematical methods or significantly modify the available
ones. Thus, for example, in quantum mechanics, novel approaches have resulted in a
sharp increase in the number of exactly solvable problems and raised interest in the
subject in the recent years [1]. In theoretical radio physics, this was the case in
mid-twentieth century, after publishing of the book by Wiener and Hopf [2]. This
work has been of vital importance, which is why themethod presented therein takes its
name from the authors—theWiener-Hopf method. As applied to diffraction problems,
it wasfirst used in [3–5]. In the review [6] the authors attempted to describe the areas of
application and discussed the future development of this method.

Mention should be made of the detailed study of the integral convolution
equations in the book by Gakhov and Cherskiy [7], which although not mentioned
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in [6] can be considered as part of the development of this method. In the first two
sections of this chapter, we apply their methodology of solving integral convolution
equations to the new problems on wave propagation near a plane surface of varying
conductivity, thereby reducing those problems to exactly solvable boundary value
ones. Thus, in Sect. 1.2 of this chapter, using the technique suggested in [7] for
solving the so-called smooth transition equation, we obtain analytical solutions for
two two-dimensional problems, namely, we find analytical expressions for the field
generated by a linear current above a plane surface whose impedance varies con-
tinuously from Z1 to Z2 in a given direction, and for the field generated by the same
source in a planar waveguide with a wall of the same impedance distribution. These
solutions generalize the known ones in which the surface impedance changes
stepwise. In Sect. 1.3 we investigate a model of a ring waveguide of constant
cross-section with variable in azimuth impedance of one of the walls. We have
found a class of distributions of these impedances, for which the analytical solution
of the excitation problem for this waveguide had been obtained. This result is used
for simulation of the known cycle slipping phenomenon occurring when very long
electromagnetic waves propagate in the Earth-ionosphere waveguide. A possible
cause of this phenomenon is discussed.

The remaining sections of the chapter are not associated with the Wiener-Hopf
method. In Sect. 1.4 a novel technique is suggested for the analysis of a transient
electromagnetic field generated by a pulsed line current that is located near a planar
interface between two dielectric nonabsorbing and nondispersive media. As distinct
from the Cagniard-de Hoop method, which is widely used for the study of transient
fields both in electrodynamics and in the theory of acoustic and seismic waves, our
approach is based on the transformation of the domain of integration in the integral
expression for the field in the space of two complex variables. As a result, it will
suffice to use the standard procedure of finding the roots of the algebraic equation
rather than construct auxiliary Carniard’s contours. A new representation for the
field has been derived in the form of an integral along a finite contour.

In Sect. 1.5 we discuss the transient radiation of a moving longitudinal magnetic
dipole whose trajectory crosses a soft boundary between two media. The obtained
analytical representation for the dipole field ensures a rigorous criterion of the
boundary ‘sharpness’ thus significantly improving the now known approximate
version.

In Sect. 1.6 the isotropic Epstein transition layer was generalized to the case of a
biisotropic plane stratified medium. An explicit analytical solution to the problem of
normal incidence of a linearly polarized electromagnetic plane wave onto the Epstein
layer was obtained for this extension. The derived transmission and reflection coef-
ficients are indicative of the presence of the total transmission mode in such media.

In Sect. 1.7 we suggest a model for a smoothly inhomogeneous isotropic
flat-layered medium that includes domains with double-positive and double-nega-
tive media. The analytical solution derived for a plane wave propagating through
this medium shows that the well-known negative refraction phenomenon in the
isotropic double-negative medium is a direct consequence of Maxwell’s equations
and of the energy conservation law.
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In Sect. 1.8, using as an example a perfectly conducting sphere, we rigorously
prove the possibility of drastic distortion of its radar image by applying a meta-
material coating on the sphere surface. We have found such radial distributions of
the coating dielectric and magnetic permeabilities that the scattered field every-
where outside the object coincides with the field scattered by a perfectly conducting
sphere of any given smaller radius. Requirements on the material parameters of
such distorting coating are smaller than they are in the case of a masking coating.

1.2 Wave Propagation Near an Irregular Impedance
Structure

One of the problems solved at the early stage of the development of the
Wiener-Hopf method was related to the electromagnetic wave propagation above a
plane whose impedance changed step-wise from Z1 to Z2 in a given direction [8].
A waveguide analog of this problem was studied in [9] for acoustic waves and in
[10] for electromagnetic waves. The electromagnetic model presented in [8] was
given the name ‘the coastal refraction problem’ since it was used for calculation of
a radar error arising when the radar crosses a shoreline.

It is well known that in the case of the stratified medium, whose permittivity is
given by the hyperbolic tangent or by hyperbolic secant, the solution of the wave
propagation problem can be written in explicit form. These two media have been
named asymmetric and symmetric Epstein layers, respectively. In this section we will
show that the problem of wave propagation near a plane surface, whose impedance is
given by the hyperbolic tangent, is also explicitly resolvable. At the same time,
attempts to obtain similar results for an impedance analog of the symmetric Epstein
layer (the permittivity is given by the hyperbolic secant) were unsuccessful, because in
this case we are led to three-element Carleman’s problem whose solution is unknown.

1.2.1 Wave Propagation Over a Plane Surface of Variable
Conductivity

Electrical properties of real underlying surfaces vary smoothly and the assumption
as to their step-wise change (for example, when crossing the boundary land/sea) can
only be justified for sufficiently large values of the wavelength k. However, the
discontinuity of the function ZðxÞ; which characterizes the surface impedance
distribution on the plane z ¼ 0 in classical two-dimensional (@=@y � 0Þ problems,
is incompatible with a mere concept of the surface impedance.

The question arises as to the existence of such continuous and reasonable (from
the physical point of view) surface impedance distributions that they allow an exact
analytical solution of the problems like those discussed in [8–10].
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It has been shown [11] that such a distribution does exist. It is the impedance
version of the Epstein transition layer [12]

ZðxÞ ¼ Z2 þ Z1expð�sxÞ
1þ expð�sxÞ ; �1\x\1; ð1:1Þ

where Z1 ¼ Zð�1Þ and Z2 ¼ Zðþ1Þ are the limiting values of impedance. The
parameter 0\s\1 determines the width of the transition region in the impedance
distribution. The Grinberg-Fock model of the step-wise change in impedance [8]
represents the limiting case s ! 1.

Let us consider the following two-dimensional problem: a field generated by a
filament of linear magnetic current ~JðmÞ ¼ IðmÞd g� g0ð Þ exp �ixtð Þ~y; which is
parallel to the impedance plane z ¼ 0; is to be found. Here, dð. . .Þ is the d-Dirac
function; g ¼ fx; zg and g0 ¼ x0; z0f g are the points of the space R2;~x;~y; and~z are
the Cartesian basis vectors. The current self-field can be represented as

~E0 ¼ ixll0 rot P
!ðmÞ

, where PðmÞ
y ¼ �IðmÞ 4xll0ð Þ�1Hð1Þ

0 k g� g0j jð Þ and PðmÞ
x ¼

PðmÞ
z ¼ 0 are the components of the magnetic Hertz potential; Hð1Þ

0 ð. . .Þ is the
Hankel function; k ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ee0ll0

p
; e and l are the relative dielectric permittivity and

magnetic permeability of the medium. The surface impedance is given by relation
(1.1).

Basing, as in [8], on the integral Green formula and using the impedance
boundary condition @Ez gð Þ=@z ¼ �ik ZðxÞEzðgÞjz¼0 [13, 14], we arrive at the fol-
lowing 1-D integral equation:

f ðxÞ ¼ qðxÞ � k
2
ZðxÞ

Z1
�1

f ~xð ÞHð1Þ
0 k x� ~xj jð Þd~x; ð1:2Þ

where f ðxÞ ¼ ZðxÞEzðx; 0Þ; qðxÞ ¼ 2ZðxÞE0
z ðx; 0Þ; E0

z ðx; zÞ and Ezðx; zÞ are the
vertical components of the primary and total electrical fields, respectively.

Equation (1.2) belongs to the class of the so-called smooth transition equations
introduced by Cherskiy [7]:

f ðxÞþ 1ffiffiffiffiffiffi
2p

p
Z1
�1

K1 x� ~xð Þf ~xð Þd~x� q xð Þ

þ e�x f ðxÞþ 1ffiffiffiffiffiffi
2p

p
Z1
�1

K2 x� ~xð Þf ~xð Þd~x� qðxÞ
8<:

9=; ¼ 0; �1\x\1:

ð1:3Þ
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For this equation to be normally solvable in the space L2ð�1;1Þ and have a
finite index it is necessary and sufficient to have 1þ ~Kj nð Þ 6¼ 0; j ¼ 1; 2; where
~Kj nð Þ is the Fourier transform of KjðxÞ: In our case, we have

~KjðnÞ ¼ jZj

Z1
0

Hð1Þ
0 ðjsÞ cos nsds ¼jZj j

2 � n2
� ��1=2

;

where j ¼ k=s, and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � n2

p
! in with n ! þ1.

In [7], the authors prove the solvability in quadratures of (1.3) in the space
L2 �1;1ð Þ with the complementary condition that qðxÞ 2 L2 �1;1ð Þ:

Let us apply the Fourier transform to (1.2), following [7]. Then we are led to
Carleman’s two-element boundary value problem for a strip 0\Imn\1: Later on,
with the use of some conformal mapping t ¼ expð2pnÞ; we will rearrange this
problem to yield the Riemann problem, which is as follows: on the real axis of the
complex plane of variable t ¼ t0 þ it00 two functions, D t0ð Þ and H t0ð Þ; are given; it
is required to find two functions F�ðtÞ; which are analytic in the upper complex
half-plane t00 [ 0ð Þ and in the lower complex half-plane t00\0ð Þ; respectively, and
which also satisfy the boundary condition F þ t0ð Þ ¼ D t0ð ÞF� t0ð Þ þH t0ð Þ: The
value v ¼ ð2piÞ�1 ln D t0ð Þ½ �j1�1 is known as the index of the Riemann problem. For
the two problems considered in this section, we have v ¼ 0: Using the well-known
solution of this problem [7], we can write the solution of (1.2) in the following
form:

f ðxÞ ¼ � i
4
IðmÞ

1ffiffiffiffiffiffi
2p

p
Z1
�1

sQ nð Þþ epnxþ e2pn
� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j2 � n2
p

� e�i�xnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � n2

p
þ jZ1

dn; ð1:4Þ

where �x ¼ xs, �z ¼ zs, and

Q nð Þ ¼
ffiffiffi
2
p

r
@

@�x0

Z1
�1

Z2 þ Z1e�g

1þ e�g
H 1ð Þ

0 j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g� �x0ð Þ2 þ�z20

q� �
eingdg;

xþ e2pn
� � ¼ �isX þ e2pn

� �
j Z1 � Z2ð Þ

Z1
�1

Q 1ð Þep1d1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � 12

p
þ jZ2

	 

X þ e2p1ð Þ e2p1 � e2pnð Þ

;

X� e2p1
� � ¼ exp 1� ie2p1

� � Z1
�1

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � r2

p
þ jZ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j2 � r2
p

þ jZ2

e2prdr
e2pr þ ið Þ e2pr � e2p1ð Þ

8<:
9=;:

The contour of integration passes below the pole for the functions marked by ‘+’
and above the pole for the functions marked by ‘−’.
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These relations represent an explicit expression for the vertical component of the
electric field on an impedance plane considered without any restriction on the
parameters of the model.

In the case of grazing propagation of a plane wave (x0 ! �1) and for Z1 ¼ 0;
the integral in the representation of the function xþ exp 2pnð Þ½ � can be calculated.
To do this, let us transform the formula for QðnÞ using the Parseval equality for
Fourier integrals and then apply the saddle-point technique. As a result we get the
following asymptotic estimate for k x0j j � 1:

Q nð Þ ¼ 2 exp �ip=4ð Þ exp ik x0j jð Þffiffiffiffiffiffiffiffiffi
k x0j jp 1

sh p jþ nð Þ½ � 1þO
1

k x0j j
� �� �

:

Hence, for the vertical component of the total electric field we have

Ez x; 0ð Þ ¼ 2eikx � ijZ2
X� exp 2p �jþ ið Þð Þ½ �

Z1
�1

X þ exp 2pnð Þ½ �exp �i�xnð Þdnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � n2

p
sh p jþ nð Þ½ �

; ð1:5Þ

where the integration contour passes above the pole n ¼ �j. The representation in
the form of (1.5) is convenient for x\0: The first term represents the plane wave on
a perfectly conducting planar surface, while the integral term describes the field
scattered by the impedance inhomogeneity.

Taking into account characteristics of the factorization function X� exp 2pnð Þ½ �;
we obtain the representation, which is convenient for the area x[ 0:

Ez x; 0ð Þ ¼ � ijZ2
X� exp 2p �jþ ið Þð Þ½ �

Z1
�1

X� exp 2p nþ ið Þð Þ½ �exp �i�xnð Þdnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � n2

p
þ jZ2

	 

sh p jþ nð Þ½ �

; ð1:6Þ

where the integration contour passes below the pole n ¼ �j. Using the following
decomposition

1
sh p jþ nð Þ½ � ¼

1
p

X1
n¼�1

�1ð Þn
nþ jþ in

;

it is easy to show that (1.6) transforms for s ! 1 into the well-known formula [8]
for Ez x; 0ð Þ on the plane whose impedance equals Z2 for x[ 0 and is zero for x\0:

Notice that the solution obtained in [8] represents the dominant term of the
long-wave asymptotic of the solution to the problem considered by us. This is
the case, where the wavelength of the source is much grater than the width of the
transition region on the impedance surface (2k � s).
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1.2.2 A Field of Linear Magnetic Current in a Plane
Waveguide with Smoothly Varying Impedance of Its
Walls

In this section, we construct the exact Green function of the Helmholtz equation for
a band with the non-homogeneous boundary condition of the third kind on one of
its boundaries. The coefficient Z xð Þ in this boundary condition is an impedance
analogue for the permittivity of the known Epstein transition layer [12]. We use this
Green function below for analyzing the electromagnetic field induced by a linear
magnetic current in a gradient junction between two regular impedance waveg-
uides. This solution comprises the stepped impedance distribution as a limiting case
[10]. In [15], we considered a related problem of the electromagnetic TM-wave
propagation in a planar waveguide with the perfectly conducting upper wall and the
lower wall with conductivity changing as thsx:

In Sect. 1.2.2.1, the boundary value problem is reduced to the integral equation
of the second kind. In the next section, we derive the analytical solution by reducing
this equation to the Riemann problem of the linear conjugation of two analytical
functions on the real axis. For this purpose we invoke the Fourier transform and the
conforming mapping. In Sect. 1.2.2.3, the Green function is expressed as the
double Fourier integral, which is transformed further, by employing the Cauchy-
Poincaré theorem, into series in residues. Section 1.2.2.4 is devoted to the analysis
of these series as applied to the transformation of the eigenwaves of the regular
section of the waveguide junction. We also rigorously estimate the adiabatic
approximation for the considered waveguides.

1.2.2.1 Reduction of the Problem to an Integral Equation

A Solution to the Following Two-Dimensional Boundary Value Problem

@2

@x2
þ @2

@z2
þx2ee0ll0

� �
Gt ¼ �d g� g0ð Þ; ð1:7aÞ

@

@z
Gt ¼ 0 for z ¼ 0; ð1:7bÞ

@

@z
Gt þ ixee0ZðxÞGt ¼ 0 for z ¼ d ð1:7cÞ

is to be found in the band 0\z\d;�1\x\1f g (see Fig. 1.1). Here g ¼ x; zf g;
g0 ¼ x0; z0f g; and the function
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ZðxÞ ¼ Z2 þ Z1exp �sxð Þ
Zþ exp �sxð Þ ; s[ 0; Z ¼ exp iuð Þ; �p\u\p ð1:8Þ

is the complex-valued function describing the gradient transition from Z �1ð Þ ¼
Z1 ¼ Zl to Z þ1ð Þ ¼ Z2=Z ¼ Zr. Its hodograph represents a circular arc having
the angular size of 2uj j and joining the points Zl and Zr. In the course of solution,
the imaginary part of the wave number k ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ee0ll0

p
is assumed to be positive,

whereas in the final formulas we put it equal to zero.
We seek the solution to the problem (1.7a, 1.7b, 1.7c) in the form of a sum

Gt g; g0ð Þ ¼ G0 g; g0ð ÞþG g; g0ð Þ; ð1:9Þ

where

G0 g; g0ð Þ ¼ � 1
2p

Z1
�1

d g; z; z0ð Þ
Rl gð Þ exp �i �x� �x0ð Þg½ �dg

is the solution to (1.7a, 1.7b, 1.7c) with the fixed Z xð Þ ¼ Zl, and

G g; g0ð Þ ¼
Z1
�1

F0 g; �g0ð Þ cos m�zð Þexp �i �x� �x0ð Þg½ �dg ð1:10Þ

is the solution of the homogeneous equation (1.7a) with condition (1.7b). Here,
d g; z; z0ð Þ ¼ cos m�z\ð Þ cos m d� �z[ð Þð Þ½ � i�Zl sin m d� �z[ð Þð Þ=m�;
Ra gð Þ ¼ m sin mdþ i�Za cos md, m ¼ m gð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � g2

p
, �Za ¼ Zaxe=s; a ¼ l or r; j ¼ k=s;

d ¼ ds, �z\ ¼ min �z;�z0ð Þ; �z[ ¼ max �z;�z0ð Þ; �x ¼ xs, �z ¼ zs, and d is the waveguide
height. With this representation of the functionGt, the requirements (1.7a), (1.7b) are
satisfied automatically. The condition (1.7c) leads to the following integral equation

Z1
�1

F gð Þ e2imd � 1� �Z �xð Þ e2imd þ 1
� ��

m
� �

exp �i�xgð Þdg ¼ �
ffiffiffiffiffiffi
2p

p
Q �xð Þ;

Q �xð Þ ¼ i 2pð Þ�3=2 �Zl � �Z �xð Þð Þ
Z1
�1

cos m�z0ð Þ
Rl gð Þ exp �i �x� �x0ð Þg½ �dg; �1\�x\1

ð1:11Þ

Fig. 1.1 The geometry of the
problem
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with respect to the unknown function

F gð Þ ¼ 1
2i
m exp �i md� g�x0ð Þ½ �F0 g; �g0ð Þ: ð1:12Þ

By using the known formula [16]

2exp imdð Þ ¼ m
Z1
�1

Hð1Þ
0 j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ d2

q� �
exp ignð Þdn;

we can easily go from (1.11) to the equation of the second kind

f �xð Þþ
Z1
�1

~K �x;�x� nð Þf nð Þdn ¼ Q �xð Þ; �1\�x\1 ð1:13Þ

with respect to the Fourier transform of F gð Þ

f �xð Þ ¼ 1ffiffiffiffiffiffi
2p

p
Z1
�1

F gð Þexp �ig�xð Þdg: ð1:14Þ

The kernel looks like

~K �x;�x� nð Þ ¼ 1
2
�Zð�xÞH 1ð Þ

0 j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x� nð Þ2 þ 2dð Þ2

q� 
þ 1

2
�Zð�xÞHð1Þ

0 j �x� nj jð Þ

� 1
4i

@

@d
Hð1Þ

0 j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x� nð Þ2 þ 2dð Þ2

q� 
:

Rewrite finally (1.13) in the form

Zf �xð Þþ 1ffiffiffiffiffiffi
2p

p
Z1
�1

K2 �x� nð Þf nð Þdn� ZQ �xð Þ

þ exp ��xð Þ f �xð Þþ 1ffiffiffiffiffiffi
2p

p
Z1
�1

K1 �x� nð Þf nð Þdn� Q �xð Þ
8<:

9=; ¼ 0; �1\�x\1;

ð1:15Þ
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where

1ffiffiffiffiffiffi
2p

p Kj �x� nð Þ ¼ 1
2
�Zj H 1ð Þ

0 j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x� nð Þ2 þ 2dð Þ2

q� �
þHð1Þ

0 j �x� nj jð Þ
i
� 1
4i
Zj�1 @

@d
Hð1Þ

0 j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x� nð Þ2 þ 2dð Þ2

q� 
; j ¼ 1; 2:

1.2.2.2 Solution of the Integral Equation

For Z ¼ 1; a similar equation was discussed in [17], where a method of obtaining
its analytical solution was proposed. Following the basic ideas introduced in this
work, let us find the analytical solution of the more general equation (1.15) by
reducing it to the Riemann conjugation problem. To this end, we introduce a new
unknown function

U �xð Þ ¼ f �xð Þþ 1ffiffiffiffiffiffi
2p

p
Z1
�1

K1 �x� nð Þf nð Þdt � Q �xð Þ; �1\�x\1: ð1:16Þ

By subjecting (1.15) and (1.16) to the Fourier transform, we obtain a system of
functional equations

ZF �n
� �þ ~K2

�n
� �

F �n
� �� Z ~Q �n

� �þ ~U �nþ i
� � ¼ 0

~U �n
� � ¼ F �n

� �þ ~K1
�n
� �

F �n
� �� ~Q �n

� �
;

(
ð1:17Þ

where ~K1
�n
� �

; ~K2
�n
� �

; eU �n
� �

; and ~Q �n
� �

are the Fourier transforms of the functions
K1 �xð Þ; K2 �xð Þ; U �xð Þ; and Q �xð Þ; respectively. Eliminating F �n

� �
; we arrive at the

equation

~U �n
� � ¼ �D �n

� �
~U �nþ i
� �þH �n

� �
; �1\�n\1; ð1:18Þ

where

D �n
� � ¼ Rl

�n
� ��

ZRr
�n
� �� �

and H �n
� � ¼ i �Zl � �Zrð Þcos mdð Þ~Q �n

� ��
Rr

�n
� �

:

This is the Carleman problem: to find the analytical function eU �f
� �

in the band
0\Im�f\1 of the complex plane �f ¼ �nþ i�1 from the condition (1.18) on the band
boundary. Applying the conformal mapping f ¼ exp 2p�f

� �
to (1.18), we pass to the

new unknown function xðfÞ ¼ f�1=2U ln f=2pð Þ: Then this problem is transformed
into the Riemann problem of finding two analytical functions x� fð Þ (in the upper
and lower half-planes of the complex plane f ¼ nþ i1) from the boundary condi-
tion on the real axis n

10 L. Pazynin



xþ nð Þ ¼ �D nð Þx� nð Þþ �H nð Þ; �1\n\1 ð1:19Þ

with the discontinuous coefficient

�D nð Þ ¼ D �n
� �

for n[ 0; 1 for n\0
� �

and

�H nð Þ ¼ e�p�nH �n
� �

for n[ 0; 0 for n\0
n o

; �n ¼ ln n=2p:
ð1:20Þ

The branches of the functions ln f and
ffiffiffi
f

p
are determined by the value arg f ¼ 0

on the upper edge of the cut made along the ray n	 0:
The analytical solution to the homogeneous Riemann problem

xþ nð Þ ¼ �D nð Þx� nð Þ; �1\n\1 ð1:21Þ

in the case where the function �D nð Þ is continuous along the whole of the real axis,
including the infinitely distant point, is well known [7]. The function in (1.20) is
discontinuous at the points n ¼ 0 and n ¼ 1. Represent it as a product

�D nð Þ ¼ �D1 nð Þ�D2 nð Þ

of the continuous function

�D1 nð Þ ¼ Rl
�n
� ��

Rr
�n
� �

for n[ 0; 1 for n\0
� � ð1:22Þ

and the discontinuous function

�D2 nð Þ ¼ Z�1for n[ 0; 1 for n\0
� �

:

Obviously, if the solutions xj fð Þ of the problems

xþ
j nð Þ ¼ �Dj nð Þx�

j nð Þ; j ¼ 1; 2; �1\n\1 ð1:23Þ

are known, then x fð Þ ¼ x1 fð Þx2 fð Þ is a solution to the problem in (1.21). Let us
find x2 fð Þ: Since

lnxþ
2 nð Þ ¼ lnx�

2 nð Þ � iu 1 for n[ 0; 0 for n\0f g; �1\n\1;

then the desired function is analytical in the plane f containing a cut along the real
positive semiaxis; the discontinuity value on it is �iu ¼ � ln Z: We take for such a
function the function

x2 fð Þ ¼ exp
u
2p

� ln f
n o

:
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The solution of the problem in (1.23) forx1 fð Þ can be derived by using the known
mathematical technique of factorizing the Riemann problem coefficient [7, 17]

xþ
1 fð Þ ¼ exp Cþ fð Þf g;

where

Cþ fð Þ ¼ 1
2pi

Z1
�1

ln �D1 nð Þ fþ ið Þdn
n� fð Þ nþ ið Þ; Imf[ 0:

Let us introduce a function

X þ �f
� � ¼ xþ

1 exp 2p�f
� �� � ¼ exp Cþ exp 2p�f

� �� �� �
;

Cþ exp 2p�f
� �� � ¼ 1

2i

Z1
�1

ln
RlðgÞ
RrðgÞ �

ch p �f� i=4
� �� �

dg

ch p g� i=4ð Þ½ �sh p g� �f
� �� �; Im�f[ 0:

With the representation

Rl gð Þ
Rr gð Þ ¼

Y1
n¼0

g2 � gln
� �2

g2 � grn
� �2

;

it can be shown that

X þ �f
� � ¼Y1

n¼0

c �f; gln; g
r
n

� �
c �f; grn; g

l
n

� �; ð1:24Þ

where c g; g1n; g
2
n

� � ¼ C 1� i g1n � g
� �� � � C �i g2n þ g

� �� �
;Cð. . .Þ is the

gamma-function [16], and gan ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � man

� �2q
, Im gan 	 0; where man are the roots of

the following dispersion equation for a regular waveguide with the impedance �Za of
one of the waveguide walls:

mantg mand
� �þ i�Za ¼ 0; a ¼ l or r: ð1:25Þ

The expression for X� �f
� �

is evident from (1.23), (1.24).
The coefficient of problem (1.19) can be written now as

�D nð Þ ¼ xþ
1 nð Þxþ

2 nð Þ
x�

1 nð Þx�
2 nð Þ ;
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whereas (1.19) takes the form

xþ nð Þ
xþ

1 nð Þxþ
2 nð Þ ¼

x� nð Þ
x�

1 nð Þx�
2 nð Þ þ

�H nð Þ
xþ

1 nð Þxþ
2 nð Þ ; �1\n\1:

The solution of this problem on the discontinuity [7] is the Cauchy integral

Wþ fð Þ � xþ fð Þ
xþ

1 fð Þxþ
2 fð Þ ¼

1
2pi

Z1
0

H �n
� �

exp �p�n
� �

xþ
1 f0ð Þxþ

2 f0ð Þ f0 � fð Þ df
0;

�n ¼ ln f0=2p; Imf[ 0:

Hence,

exp p�f
� �

Wþ exp 2p�f
� �� � ¼ 1

2i

Z1
�1

H �n0
� �

exp �u�n0
� �

X �n0
� �

sh p �n0 � �f
� �� � d�n0; Im�f[ 0; ð1:26Þ

where X �n
� � ¼ x1 exp 2p�n

� �� �
and

H �n
� � ¼ �i �Zl � �Zrð Þ2exp u�n

� �
cos m �n

� �
d

� �
4pRr

�n
� � Z1

�1

cos m gð Þ�z0½ �exp i�x0gð Þdg
Rl gð Þexp ugð Þsh p �n� g

� �� �:
The pole at the point g ¼ �n lies above the integration contour. Since according to

(1.22) we have xþ
1 nð Þ ¼ x�

1 nð Þ for n\0; therefore the functions x�
1 fð Þ represent a

unified analytical function x1 fð Þ: Hence in what follows, we will not use the
superscripts ‘�’.

When calculating the function in (1.26), the following integral arises

U g; �n
� � ¼ Z1

�1

cos m �n0
� �

d
� �

d�n0

Rr
�n0
� �

X �n0
� �

sh p �n0 � g
� �� �

sh p �n0 � �n
� �� �;

in which the integration contour passes above the pole �n0 ¼ g and below the pole
�n0 ¼ �n: Let us consider the auxiliary integral ~U g; �n

� �
along the boundary of the

band 0\Im�f\1: From the above we have

~U g; �n
� � ¼ Z d�n0

X �n0
� �

sh p �n0 � g
� �� �

sh p �n0 � �n
� �� �

¼
Z1
�1

1� X �n0
� �

X �n0 þ i
� �" #

d�n0

X �n0
� �

sh p �n0 � g
� �� �

sh p �n0 � �n
� �� � ¼ i �Zr � �Zlð ÞU g; �n

� �
:
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Here we have used the equality X �n
� �

Rr
�n
� � ¼ X �nþ i

� �
Rl

�n
� �

following from
(1.24). At the same time, the integral ~U g; �n

� �
equals to a sum of residues at the

points �n0 ¼ gþ i and �n0 ¼ �n; and hence

U g; �n
� � ¼ 2 �Zr � �Zlð Þ�1

sh p �n� g
� �� � 1

X �n
� �� 1

X �nþ i
� �" #

:

If we substitute this formula into (1.26) and take into consideration that the
solution of the Carleman’s boundary value problem (1.18) is

eU �f
� � ¼ exp p�f

� �
W exp 2p�f

� �� �
X �f
� �

exp u�f
� �

; 0
 Im�f
 1;

we derive from (1.14), (1.17) the desired solution of the integral (1.15):

f �xð Þ ¼ i �Zl � �Zrð Þ
4 2pð Þ3=2

Z1
�1

exp �i�xg0ð ÞX g0ð Þm g0ð Þdg0
exp �ug0ð Þexp im g0ð Þd½ �Rl g0ð Þ

�
Z1
�1

cos m gð Þ�z0½ �exp i�x0gð Þdg
Rl gð Þexp ugð ÞX gð Þsh p g� g0ð Þ½ �:

1.2.2.3 Residue Series Representation

Having regard to the equality X gð ÞX �gð Þ ¼ Rl gð Þ=Rr gð Þ following from (1.24), we
obtain from (1.10), (1.12), and (1.14) that

G g; g0ð Þ ¼
�Zl � �Zrð Þ
4p

Z1�a1

�1�a1

cos m x1ð Þ�z½ �exp i�xx1ð Þdx1
X x1ð ÞRr x1ð Þ

�
Z1
�1

X x2ð Þ cos m x2ð Þ�z0½ �exp �i�x0x2ð Þexp u x2 � x1ð Þ½ �dx2
Rl x2ð Þ shp x2 � x1ð Þ½ � ;

ð1:27Þ

where a1 is a small positive value. In view of equalities (1.9), (1.10), we get the
expression for the Green function Gt g; g0ð Þ:

Let us transform the integral representation of G g; g0ð Þ in (1.27) into residue
series. To do this, let us deform the integration surface S ¼ z1; z2 : zj ¼ xj þ iyj

�
; j ¼ 1; 2; xj 2 R1; y1 ¼ �a1; y2 ¼ 0g in the space C�C of two complex variables z1
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and z2 into the Leray coboundary [18] enclosing the analytical set A of the singu-
larities of the integrand. We rewrite (1.27) in the form

G g; g0ð Þ ¼ 1
4p

�Zl � �Zrð Þ
Z
S

x; ð1:28Þ

where the differential form is given by

x ¼ f z1ð Þq z2ð Þh z2 � z1ð Þ exp i�xz1 � i�x0z2ð Þdz1 ^ dz2;

f z1ð Þ ¼ cos m z1ð Þ�z½ �
Rr z1ð ÞX z1ð Þ ; q z2ð Þ ¼ X z2ð Þ cos m z2ð Þ�z0½ �

Rl z2ð Þ ;

h zð Þ ¼ exp uzð Þ=sh pzð Þ:

The set A comprises the following families of planes z1 ¼ �glnk, z1 ¼ grnk,
z2 ¼ glnk, z2 ¼ �grnk, z2 � z1 ¼ �im; n; k;m ¼ 0; 1; 2; . . ., where gank ¼ gan þ ik and
a ¼ l or rf g: The behavior of the integrand in (1.28) at infinity is governed by the
sign of Re i�xz1 � i�x0z2ð Þ ¼ ��xy1 þ�x0y2. Consequently, let us introduce the fol-
lowing three-dimensional chains:

C�
1 ¼ z1; z2 : x1;2 2 R1;

y1 [ � a1

y1\� a1

 !
; y2 ¼ 0

( )
;

C�
2 ¼ z1; z2 : x1;2 2 R1; y1 ¼ �a1;

y2 [ 0

y2\0

 !( )
;

for which the integration surface S is a common boundary. If one of four
inequalities �x[ 0; �x\0; �x0 [ 0 or �x0\0 is satisfied, then we can use the Cauchy-
Poincare theorem [18] in Cþ

1 , C�
1 , C

�
2 or Cþ

2 , respectively, and deform S into the
Leray coboundary enclosing the polar straight lines, along which the analytical
planes A and the chains C�

j intersect.
It suffices to restrict ourselves to the case of �x0\0: In Cþ

2 , the equations for
polar straight lines are

Pnk ¼ z1 ¼ s; z2 ¼ glnk
� �

; Qm ¼ z1 ¼ s; z2 ¼ sþ imf g;
�1\s\1; n; k ¼ 0; 1; 2; . . .; m ¼ 1; 2; 3; . . .;

whereas the equations for their coboundaries are as follows:

dPnk ¼ z1 ¼ s; z2 ¼ Dexp ihð Þþ glnk
� �

and

dQm ¼ z1 ¼ s�
ffiffiffi
2

p
D cos h

	 
.
2; z2 ¼ sþ

ffiffiffi
2

p
D cos h

	 

þ iD sin hþ im

n o
;

0\D � 1; 0
 h
 2p:
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Therefore, the double integral in (1.28) can be represented as a sum of two single
integrals

G g; g0ð Þ ¼ 1
4p

�Zl � �Zrð Þ
X1
n;k¼0

Ink þ
X1
m¼1

Im

" #
;

where

Ink ¼ lim
d!0

Z
dPnk

x ¼ 2pi �1ð Þkexp iku� i�x0g
l
nk

� �
cos m glnk

� �
�z0

� �
w�1
nk J

1
n �xð Þ;

Im ¼ lim
d!0

Z
dQm

x ¼ 2i �1ð Þmexp imuþm�x0ð ÞJ2m �x� �x0ð Þ

with

wnk ¼
d Rl gð Þ=X gð Þ½ �

dg

����
g¼glnk

; J1n �xð Þ ¼
Z1
�1

f fð Þh g1n � f
� �

exp i�xfð Þdf;

J2m �xð Þ ¼
Z1
�1

f fð Þq fþ imð Þ exp i �x� �x0ð Þf½ �df:

With allowance made for the asymptotics of X fð Þ for fj j � 1 and the fact that
f fð Þ and q fð Þ are meromorphic functions, the above integrals can be reduced to
residue series. As a result, we obtain the following representation for the Green
function of problem (1.7a, 1.7b, 1.7c) in the form of the expansion in a
two-parameter family of inhomogeneous plane waves:

Gt g; g0ð Þ ¼

P1
n;k¼0

gþ
nk �g0ð Þ cos mrnk�z

� �
exp igrnk�x
� �

; �x[ 0P1
n;k¼0

g�nk �g0ð Þ cos mlnk�z
� �

exp �iglnk�x
� �

þ P1
n;k¼0

qþ
nk �g0ð Þ cos mln;�k�z

	 

exp igln;�k�x
	 


; �x0\�x\0P1
n;k¼0

g�nk �g0ð Þ cos mlnk�z
� �

exp �iglnk�x
� �

þ P1
n;k¼0

q�nk �g0ð Þ cos mlnk�z
� �

exp �iglnk�x
� �

; �x\�x0:

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
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Here,

gþ
nk �g0ð Þ ¼ p �Zr � �Zlð Þu�1

nk

X1
p;q¼0

�1ð Þq�kw�1
pq exp iu q� kð Þ½ �

exp u glp � grn

	 
h i
sh p glp � grn

	 
h i
8<:
� cos mlpq�z0

	 

exp �iglpq�x0
	 
o

;

ð1:29aÞ

g�nk �g0ð Þ ¼ p �Zr � �Zlð Þw�1
nk

X1
p;q¼0

�1ð Þq�kw�1
pq exp iu qþ kð Þ½ �

exp u glp þ gln

	 
h i
sh p glp þ gln

	 
h i
8<:
� cos mlpq�z0

	 

exp �iglpq�x0
	 
o

;

ð1:29bÞ

qþ
nk �g0ð Þ ¼ �Zr � �Zlð Þ Rr gln;�k

	 

X gln;�k

	 
h i�1X1
q¼0

�1ð Þq�kw�1
nq exp iu qþ kð Þ½ �

n
� cos mlnq�z0

	 

exp �iglnq�x0
	 
o

;

ð1:29cÞ

q�nk �g0ð Þ ¼ �Zr � �Zlð Þw�1
nk

X1
q¼0

�1ð Þq�k Rr gln;�q

	 

X gln;�q

	 
h i�1
exp iu qþ kð Þ½ �

�
� cos mln;�q�z0

	 

exp igln;�q�x0
	 
o

ð1:29dÞ

with unk ¼ d Rr gð ÞX gð Þ½ �=dgjg¼grnk
.

Direct substitution of (1.29a, 1.29b, 1.29c, 1.29d) and (1.27) into (1.7a, 1.7b,
1.7c) assures that we have found the desired solutions.

1.2.2.4 Transformation of Eigenmodes on the Waveguide Junction

The Obtained Green Function Determines the Electromagnetic Field

Hy ¼ ixee0I
mð ÞGt; Ex ¼ I mð Þ @

@z
Hy; Ez ¼ �I mð Þ @

@x
Hy;

generated by a linear magnetic current of density~J mð Þ ¼ I mð Þd g� g0ð Þ exp �ixtð Þ~y
in a plane waveguide whose bottom wall is perfectly conducting, while the surface
impedance distribution of the top wall is defined by (1.8).
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If the source and the observation point are well off the irregular section of the
impedance distribution Z xð Þ; x0j j[ xj j � 1=s; then the functions in (1.29a, 1.29b,
1.29c, 1.29d) become expansions in terms of eigenmodes of the regular
waveguides:

Ha
n gð Þ ¼ aan cos mansz

� �
exp �igansx
� �

; a ¼ l or r; n ¼ 0; 1; 2; . . . ð1:30Þ

Here, the normalization aan ¼ i R0
a gan
� �

cos mansd
� �� �1=2 has been chosen such that

the energy transported by each mode (1.30) does not depend on the indices n and a.
Taking into account that the modes are orthogonal in these systems, we deduce that
in the irregular segment the m-th mode of the left waveguide transforms into the n-
th modes of the right and left regular waveguides with the transmission coefficient

Tmn ¼ �p
Rr glm
� �

Rl grn
� �

R0
r grn
� �

R0
l g

l
m

� �" #1=2
X glm
� �

exp ðglm � grnÞu
� �

X grn
� �

sh p glm � grn
� �� � ; n;m ¼ 0; 1; 2; . . .

ð1:31Þ

and the reflection coefficient

Rmn ¼ p
Rr glm
� �

Rr gln
� �

R0
l g

l
n

� �
R0
l g

l
m

� �" #1=2
X gln
� �

X glm
� � exp glm þ grn

� �
u

� �
sh p glm þ grn

� �� � ; n;m ¼ 0; 1; 2; . . .;

ð1:32Þ

where

Ra gbm
� � ¼ i �Za � �Zb

� �
cos mbmsd
� �

for a 6¼ b;

R0
a gan
� � ¼ �ganc

a
n man
� ��2

cos mansd
� �

; and can ¼ sd man
� �2��Z2

a

h i
� i�Za;

a; b ¼ l or r:

It is not hard to prove the invariance of Rmn with respect to a permutation of
subscripts and the invariance of Tmn with respect to a simultaneous permutation of
subscripts and impedances Zl $ Zr, or, in other words, to prove the reciprocity
theorem for the waveguide under study.

Let us estimate the error of adiabatic approximation with the use of (1.31). This
approximate description of wave processes in slightly irregular waveguides with no
regard for the mode interconversion [19] is named by analogy with the
Born-Oppenheimer method in solid-state physics. Up to now, the error for this
approach has not been estimated. For ease of estimation, let us restrict ourselves to
the case of purely imaginary limiting values Zl ¼ iQl; and Zr ¼ iQr, which is the

18 L. Pazynin



same to the absence of absorption in the walls of the regular sections of the
waveguide. Hodographs for the complex-valued surface impedance functions
Z x;uð Þ (�p\u\0 for Ql\Qr and 0
u\p for Ql [Qr) represent a family
of circular arcs of radius Q�=sinu centered at iQþ � Q�ctgu, 2Q� ¼ Ql � Qr (for
u ¼ 0 it is a straight line) and connecting the points iQl and iQr in the right
half-plane of physically realizable impedances. In this case, the following equalities
for the propagation constants are valid:

Im gas ¼ 0 for 0
 s
 sa and Re gas ¼ 0 for sa\s; ð1:33Þ

where sa is the maximum number of the mode (1.30) propagating in the a -regular
waveguide without attenuation.

Since, by hypothesis, the waveguide properties vary slowly over the distance of
a wavelength, then gas

�� �� ¼ hass
�1

�� ��� 1; where has is the longitudinal wavenumber
of the s-mode and s�1 is the characteristic dimension of the irregular section of
Z xð Þ: Then, with the asymptotic Stirling formula for gamma functions, we obtain
from (1.31)

Tmn �
erm �glm
� �

eln �grn
� �

elm �glm
� �

erm glm
� �

eln grn
� �

ern �grn
� � � exp u glm � grn

� �� �
2sh p glm � grn

� �� � �Pm glm
� �

Pn grn
� � ; ð1:34Þ

where eam gð Þ ¼ exp �i gam � g
� �

ln �i gam � g
� �� �� �

, the principal branch of ln z with
a cut joining the points z ¼ 0 and z ¼ �1 has been chosen, and

Pm gð Þ ¼
Y1
s ¼ 0
s 6¼ m

els gð Þers �gð Þ
els �gð Þers gð Þ:

In view of (1.33), we derive from (1.34) the following expression (with a finite
number of multipliers) for absolute values of the transmission coefficients for the
undumped mode Hl

m gð Þ, 0
m
 sl incoming from the left waveguide and trans-
formed into undumped modes Hr

n gð Þ; 0
 n
 sr of the right waveguide:

Tmnj j �
Yn�1

s¼m

exp p glsþ 1 � grs
� �� �

for m\n; 1 for m ¼ n;

(
and

exp 2p glm � grn
� �� �Ym�1

s¼n

exp p grs � glsþ 1

� �� �
for m[ n

)
exp u glm � grn

� �� �
;

Ql\Qr

ð1:35Þ
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and

Tmnj j � exp 2p grn � glm
� �� �Yn�1

s¼m

exp p gls � grsþ 1

� �� �
for m\n; 1 for m ¼ n; and

(
Ym�1

s¼n

exp p grsþ 1 � gls
� �� �

for m[ n

)
exp u glm � grn

� �� �
; Ql [Qr:

ð1:36Þ

In particular, in the case of two-mode operation (sl ¼ sr ¼ 1Þ, as zero mode
Hl

0 gð Þ runs against the inhomogeneity, we can write

T01j j � exp � p gr0 � gl1
� �þ uj j gl0 � gr1

� �� �� �
\1; �p\u
 0; Ql\Qr

ð1:37Þ

and

T01j j � exp u� pð Þ gl0 � gr1
� �� �

\1; 0
u\p; Ql [Qr: ð1:38Þ

An interesting feature is exhibited when comparing the amplitudes of zero
(principal) mode Hr

0 gð Þ and the first mode Hr
1 gð Þ travelling into the right

waveguide:

T01
T00

���� ���� � exp � p gr0 � gl1
� �þ uj j gr0 � gr1

� �� �� �
\1; �p\u
 0; Ql\Qr

ð1:39Þ

and

T01
T00

���� ���� � exp � p gl0 � gr1
� �� u gr0 � gr1

� �� �� �
; 0
u\p; Ql [Qr: ð1:40Þ

In the latter case we have T01=T00j j\1 with small u, whereas for u ! p this
value tends to exp p gr0 � gl0

� �� �
and is greater than unity. That is, for Ql [Qr,

starting with the hodograph Z xð Þ of sufficiently large radius, the efficiency of
transformation (when passing the irregular segment) of the zeroth mode into the
first mode (Hl

0 ! Hr
1) is greater than into the zeroth one (Hl

0 ! Hr
0).

This effect is caused by the familiar phenomenon of the interconversion of two
adjacent modes in the vicinity of the degeneracy regime. Among the wave struc-
tures with mode degeneracy is a regular impedance waveguide. It is known [20]
that in such a waveguide, for each two adjacent modes Ha

j and H
a
jþ 1, the impedance

value Zdeg
j;jþ 1 exists such that the solutions maj and majþ 1 of the dispersion equation in

(1.25) coincide. The analysis of the behavior of these roots on the trajectories
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passing around the point Zdeg
j;jþ 1 reveals [21] that the complete mode interconversion

Ha
j $ Ha

jþ 1 occurs as a result of this bypass.
In the above case of the two-mode operation (1.40), as u increases, the arc of the

hodograph Z xð Þ occupies increasingly more space in the right half-plane of phys-
ically realizable impedances, into which the point Zdeg

01 falls starting with some
value u0. It is then that the transformation Hl

0 ! Hr
1 becomes dominant, by virtue

of the mode interconversion Ha
0 $ Ha

1 . These phenomena are of great interest for
clarifying the effects of abnormal propagation of radio waves in the
Earth-ionosphere waveguide along the paths intersecting the terminator [22]. It is
interesting to note that in the case of Ql\Qr, the asymptotics in (1.39) do not show
the effect at all, as well as in the case of a linear hodograph (u ¼ 0Þ.

As obvious from the asymptotics in (1.35), (1.36), the adiabatic approximation

error is defined by products of the exponentials exp �p gai � gbj

��� ���	 

; where a; b ¼

l or rf g; i ¼ 0; 1; . . .; sa, j ¼ 0; 1; . . .; sb. If the arguments of these exponentials are
of the order of unity, the adiabatic approximation is impossible. For example, for
large positive Ql and large negative Qr, the value of gl0 � gr1 is small and T01j j in
(1.38) is of the order of unity as u � p.

Finally note that rigorous error estimates are also lacking for the main theoretical
approach used in the study of irregular waveguides with slowly varying parameters,
namely, for the cross-section method [23] suggested by Stevenson [24]. The exact
Green function derived in the present section provides such estimates as applied to
the irregular impedance waveguides of fixed cross-section. In particular, it is seen
from (1.29a, 1.29b, 1.29c, 1.29d) that for these structures the fields should be
expanded in terms of two-parameter set of functions, whereas the cross-section
method is based on the expansion in one-parameter set, namely, in the eigen-
functions of an auxiliary regular waveguide.

1.3 The Cycle Slipping Phenomenon and the Degeneracy
of Waveguide Modes

1.3.1 Introduction

Electromagnetic wave propagation in the Earth-ionosphere waveguide has been
studied intensively in the last five decades [25–28]. General formulation of the
problems arising in the analysis of such waveguide processes is very complicated
since it requires the inclusion of both the inhomogeneity of the Earth and the
inhomogeneity and anisotropy of the ionosphere. In this section we restrict our
analysis by the case of very low-frequency (VLF) waves, i.e. the electromagnetic
oscillations whose frequency varies from 1:0 to 60 kHz: The main advantage of the
waves of this range is their high stability against random variation of the
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ionospheric parameters. In particular, the analysis of peculiarities of the wave
processes inherent in this range is of importance in developing global navigation
systems.

We will examine the diurnal variations of the VLF field occurring when the
‘transmitter-receiver’ path crosses the dividing ‘day-night’ line. The propagation
conditions vary significantly along this path during 24 h period. The decrease of the
electron density in the lower ionosphere at night increases the effective height of
the Earth-ionosphere waveguide and changes the properties of the upper wall of the
waveguide, which in the modeling are usually characterized by the surface impe-
dance. As a consequence, there is a marked increase in the field amplitude at night;
the phase of the received signal changes as well. The standard view of these
relationships, which has become known as the amplitude and phase of trapezoids,
is shown in [29], Fig. 1.1. It is well explained by the simple single-mode propa-
gation model.

However, a significant distinction from the specified standard form of the
amplitude and phase dependencies of VLF signals can be observed on long paths
[29, 30]. This difference consists in that the initial and final phases of the signal
differ by �2pm (as a rule, m ¼ 1Þ in diurnal phase records. This kind of abnormal
diurnal field dependency at the point of reception is called a cycle slipping
(CS) phenomenon.

From Fig. 1.2, which shows typical abnormal diurnal field variations, we notice
that the CS phenomenon corresponds to an extremely deep fading of the received
signal. This phenomenon can be explained qualitatively by assuming [22] that not

Fig. 1.2 (from paper [29]). Typical diurnal phase and signal level variations in NLK signals
received at Smithfield (South Australia). Path length is equal to 13,420 km, f = 18.6 kHz. The
broken line shows the phase record when cycle slipping occurs
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only the principal (first) mode arrives at the observation point but also do the
second mode and the higher-order modes resulting from the transformation of
the principal mode on a waveguide discontinuity at the intersection of the path and
the terminator (i.e. the sunrise or sunset line).

It is not difficult to see [27] that to observe the cycle slipping phenomenon, first
of all, the field of the second mode should be greater at some moment of time than
the field of the fundamental mode. Indeed, let at the point of reception two oscil-
lations with the complex amplitudes r1 exp iu1ð Þ and r2 exp iu2ð Þ be added up. In
order for the diurnal variation in the argument of the amplitude of the total signal
r1 exp iu1ð Þ 1þ r2=r1ð Þ exp i u2 � u1ð Þð Þ½ � be equal to 2p, the variation in the argu-
ment of the second factor must be 2p as well. (The phase variation of the first factor
is zero, because during 24 h period it makes a symmetric trapezoidal oscillation.)
Consequently, it is necessary that the ratio r2=r1 is greater than unity, at least, when
u2 � u1 ¼ p. It is just the fact that the ratio should be greater than unity, when the
first and the second modes are in antiphase, which leads to that the cycle slipping
phenomenon is usually accompanied by an abnormally deep minimum of the
amplitude (Fig. 1.2). The most important here is the requirement of the large
coefficient of conversion of the fundamental mode into the second mode.

A number of different modifications of irregular waveguides have been inves-
tigated by employing numerical simulation of the CS phenomenon. For example,
the coefficient of conversion from the first into the second mode has been calculated
by the method of partial domains for a number of two-dimensional impedance
waveguides without considering the reflection from the discontinuity [30, 31]. Even
for a stepwise change in the waveguide height, it did not exceed 0.5. In [32], to
estimate this coefficient, the authors invoked the method of cross sections [23]
developed for waveguide structures with slowly varying parameters over a wave-
length distance. A two-dimensional model was used to represent a coaxial
waveguide whose cross section and the surface impedance Z of one wall vary in
azimuth. The coefficient of conversion reached 1.2, which, as the authors noted,
was also too small to explain the CS phenomenon occurring mostly away from the
terminator. The approach developed in [31] was extended in a number of papers to
the waveguides whose top wall is a flat-layered anisotropic medium [33].

Only in one study [34], in contrast to all the above mentioned papers, the authors
provide different qualitative explanation for this phenomenon in terms of the crude
adiabatic approximation, by linking it with the degeneracy of the fundamental
modes.

These investigations have cast doubt on the statement that the CS phenomenon
can be explained solely by the conversion of the fundamental mode into the
higher-order modes in the waveguide of variable cross section. In regular waveg-
uides with walls of finite conductivity, which is constant along the structure, a more
efficient mode-interconversion mechanism takes place. It is well known [35] that
there exist values of the normalized surface impedance of the walls gdegi;iþ 1 such that
the propagation constants mi and miþ 1 of two adjacent (i and i + 1) waveguide
modes coincide. Here g ¼ Z=g0; where g0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
l0=e0

p
is the wave resistance of
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vacuum. These modes and the associated impedance values are said to be degen-
erate. Mode interconversion occurs in the neighborhood of the degeneracy regime
[21]. For example, by varying the complex-valued impedance g zð Þ of the wall of a
regular waveguide such that it draws a closed curve around the degeneracy point
gdegi;iþ 1, we get a complete interconversion of the i and i + 1 modes. In particular, the
degeneracy of two VLF modes in a natural waveguide has been discussed in [36].

Our purpose is to clear up the role of the mode interconversion taking place in
the neighborhood of the degeneracy regime in the occurrence of CS [37]. In
Sect. 1.3.2, we present a model of the irregular waveguide with a constant cross
section and the impedance varying in azimuth, which is a simplified version of the
model given in [32]. This model allows us to exclude from consideration
the diffraction effect of wave transformation on spatial inhomogeneities of the
waveguide walls and to obtain the analytical solution of the associated boundary
value problem for some class of surface impedance distributions. In the next sec-
tion, with the help of the well-known Watson method, the solution will be trans-
formed into a rapidly converging series for large wave sizes of the model. In
Sect. 1.3.4 we present results of a numerical experiment.

1.3.2 Problem Formulation and Solution

Consider in the cylindrical coordinates q, /, z a coaxial waveguide whose inner
wall, q ¼ a; is perfectly conducting and the outer wall, q ¼ b; has variable surface
impedance (Fig. 1.3). A filament of linear magnetic current with the time depen-
dence exp �ixtð Þ disposed at g0 ¼ q0;/0f g such that it is parallel to the z-axis,
generates a field ~E ¼ ixl0 @U=q@/;�@U=@q; 0f g; ~H ¼ k2 0; 0;Uf g: The Hertz
potential U is a solution of the equation

Fig. 1.3 The waveguide
cross-section geometry
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@q
þ 1
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@/2 þ k2
� 

U g; g0ð Þ ¼ � iI mð Þ

xl0

1
q
d g� g0ð Þ;

a\q;q0\b; �p
/;/0 
 p

ð1:41Þ

with the boundary conditions

@U
@q

����
q¼a

¼ 0;
@U
@q

� ikg /ð ÞU
� ����

q¼b

¼ 0; ð1:42Þ

where k ¼ x
ffiffiffiffiffiffiffiffiffi
e0l0

p
is the wavenumber and I mð Þ is the linear magnetic current

density.
Let the normalized surface impedance of the wall q ¼ b be given in the form

g /ð Þ ¼ g3
ei/ þ g1
ei/ þ g2

ð1:43Þ

with the arbitrary complex parameters gj, j ¼ 1; 2; 3: Then the values of the func-
tion g /ð Þ form in the plane of the complex variable g a circle (the hodograph curve)

of radius rimp ¼ g3 g1 � g2ð Þj j
.

1� g2j j2�� �� centered at the point

gimp ¼ g3 1� g1g

2

� �.
1� g2j j2
	 


:

In order to find the function U, we will use the Green formula

U g; g0ð Þ ¼ U0 g; g0ð Þþ
Z
S

U g1; g0ð Þ @

@~n
G g1; gð Þ � @

@~n
U g1; g0ð ÞG g1; gð Þ

� 
ds1;

ð1:44Þ

where ~n is the outer normal to the boundary S of the ring domain
a\q1\b;�p\/1\pf g: By choosing as the function G g1; gð Þ the Green function

of the space containing a perfectly conducting cylinder of radius a

G g1; gð Þ ¼ � i
8

X1
n¼�1

exp in /1 � /ð Þ½ �H 1;0ð Þ
n ka; kq\ð ÞH

1ð Þ
n kq[ð Þ
H 1ð Þ0

n kað Þ
¼ G q1; q;/1 � /ð Þ ð1:45Þ

and as the function U0 g; g0ð Þ the Hertz potential of the field generated by a linear
magnetic current in the presence of the conducting cylinder q ¼ a

U0 g; g0ð Þ ¼ � iI mð Þ

k
G q0; q;/0 � /ð Þ ¼ U0 q0; q;/0 � /ð Þ; ð1:46Þ
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we satisfy (1.41) and the first of the boundary conditions (1.42). In (1.45), the
following notation is used:

H j1;j2ð Þ
n x1; x2ð Þ ¼ @j1

@xj11

@j2

@xj22
H 1ð Þ

n x1ð ÞH 2ð Þ
n x2ð Þ � H 2ð Þ

n x1ð ÞH 1ð Þ
n x2ð Þ

h i
; j1; j2 ¼ 0; 1;

H jð Þ
n . . .ð Þ stands for the Hankel functions, q\ ¼ min q; q1ð Þ; q[ ¼ max q; q1ð Þ:

In order to satisfy the remained boundary condition from (1.42), one can make in
(1.44) the passage q ! b and then substitute the value of @U=@q on the boundary
q ¼ b: Then the equality (1.44) turns into an integral equation of the second kind
with a strong kernel singularity [38]. To avoid this, let us consider formula (1.44)
on the circle q ¼ b� D; where D is a small positive value. Then we have:

U b� D; q0;/;/0ð Þ ¼ U0 q0; b� D;/0 � /ð Þ

þ b
Zp
�p

@

@q
G q; b� D; ~/� /
	 
����

q¼b
�ikg ~/

	 

G b; b� D; ~/� /
	 
" #

U b; q0; ~/;/0

	 

d~/:

ð1:47Þ

Let us denote the direct and inverse Fourier transform operators as

W/ an½ � ¼ A /ð Þ ¼
X1

n¼�1
an exp in/ð Þ;

W�1
n A /ð Þ½ � ¼ an ¼ 1

2p

Zp
�p

A /ð Þ exp �in/ð Þd/:

For the inverse Fourier transform the following relationships are valid:

W�1
n

1
2p

Zp
�p

A ~/� /
	 


B /ð Þd/
24 35 ¼ a�nbn; W�1

n exp ip/ð ÞA /ð Þ½ � ¼ an�p:

ð1:48Þ

Applying the operator W�1
n to (1.47), we obtain in view of (1.48):

W�1
n�1

U b� D; q0;/;/0ð Þ
exp i/ð Þþ g2

� 
þ g2W

�1
n

U b� D; q0;/;/0ð Þ
exp i/ð Þþ g2

� 
¼ W�1

n U0 q0; b� D;/0 � /ð Þ½ �

þ 2pbW�1
�n

@G q; b� D;/ð Þ
@q

����
q¼b

" #
W�1

n�1
U b; q0;/;/0ð Þ
exp i/ð Þþ g2

� 
þ g2W

�1
n

U b; q0;/;/0ð Þ
exp i/ð Þþ g2

� � �
� 2pbikg3W

�1
�n G b; b� D;/ð Þ½ � W�1

n�1
U b; q0;/;/0ð Þ
exp i/ð Þþ g2

� 
þ g1W

�1
n

U b; q0;/;/0ð Þ
exp i/ð Þþ g2

� � �
;

ð1:49Þ
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where

W�1
n U0 q0; b� D;/0 � /ð Þ½ � ¼ � IðmÞ

8k
exp �in/0ð ÞH

ð1;0Þ
n x; kq0ð Þ
Hð1Þ0

n ðxÞ
Hð1Þ

n kðb� DÞ½ �;

W�1
�n G b; b� D;/ð Þ½ � ¼ � i

8
Hð1;0Þ

n x; kðb� DÞð Þ
Hð1Þ0

n ðxÞ
Hð1Þ

n ðyÞ;

W�1
�n

@G q; b� D;/ð Þ
@q

����
q¼b

" #
¼ � ik

8
Hð1;0Þ

n x; k b� Dð Þð Þ
Hð1Þ0

n ðxÞ
Hð1Þ0

n ðyÞ; �1\n\1;

and HðjÞ0
n ðxÞ ¼ dHðjÞ

n ðxÞ=dx. One can pass to the limit D ! 0 in these relationships.
Considering that H jð Þ

�nðxÞ ¼ �1ð ÞnH jð Þ
n ðxÞ; we obtain the following finite-difference

equation [7]

un ¼ �g�1
2 1þ snð Þun�1 þ gn; �1\n\1: ð1:50Þ

Here

1þ snð Þ ¼ H 1;1ð Þ 1;0ð Þ
n;1 x; yð Þ

H 1;1ð Þ 1;0ð Þ
n;d x; yð Þ

; gn ¼ � I mð Þ exp �in/0ð Þ
2pikyg2

H 1;0ð Þ
n x; kq0ð Þ

H 1;1ð Þ 1;0ð Þ
n;d x; yð Þ

ð1:51Þ

and H 1;1ð Þ 1;0ð Þ
n;d x; yð Þ ¼ H 1;1ð Þ

n x; yð Þ � ig3dH
1;0ð Þ
n x; yð Þ, H 1;1ð Þ 1;0ð Þ

n;1 x; yð Þ ¼ H 1;1ð Þ 1;0ð Þ
n;d

x; yð Þjd¼1, un ¼ W�1
n U b;q0;/;/0ð Þ= exp i/ð Þþ g2½ �½ �; s�n ¼ sn, x ¼ ka; y ¼ kb;

d ¼ g1=g2:
Let us apply the factorization method [7] to solve (1.50). Represent the multi-

plier in (1.50) in the following form:

1þ snð Þ ¼ xn
xcn�1

; ð1:52Þ

where the exponent c[ 1 is an auxiliary parameter. Taking the logarithm of (1.52)
and then applying the operators W and W�1, we can easily show that

ln xn ¼ W�1
n Wh ln 1þ snð Þ½ �= 1� c exp ihð Þ½ �½ � ¼ �cn

X1
m¼nþ 1

ln 1þ smð Þc�m: ð1:53Þ

Estimate the convergence of this series. Using the known asymptotics

Jm zð Þ � 2pmð Þ�1=2 ez
2m

	 
m
; H 1ð Þ

m zð Þ � �2i 2pmð Þ�1=2 ez
2m

	 
�m
; ð1:54Þ
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for fixed z and mj j � 1; arg mj j\p=2; one can show that ln 1þ snð Þ ¼
ig3 d� 1ð Þyn�1 þO n�2ð Þ: In other words, the convergence of the series in (1.53) is
too weak to pass to the limit c ! 1 under the sum sign. The elements of the
factorization sequence xn are defined up to an arbitrary factor without violating the
equality (1.52). This allows us to solve the problem of convergence of the series in
(1.53). Let us take the logarithm of the right-hand side of (1.52) and rearrange it in
the following way:

ln xn � c ln xn�1 ¼ �cn
X1

m¼nþ 1

c�m ln 1þ smð Þþ cn
X1
m¼n

c�m ln 1þ smð Þ

þ cn
X1
m¼0

c�m ln 1þ smð Þ � cn
X1
m¼0

c�m ln 1þ smð Þ

¼ cn
Xn
m¼0

c�m ln 1þ smð Þ � cn
Xn�1

m¼0

c�m ln 1þ smð Þ; n	 1;

ln x0 � c ln x�1 ¼ �
X1
m¼1

c�m ln 1þ smð Þþ
X1
m¼0

c�m ln 1þ smð Þ

þ
X1
m¼0

c�m ln 1þ smð Þ �
X1
m¼0

c�m ln 1þ smð Þ ¼ ln 1þ s0ð Þ � 0; n ¼ 0;

ln x�1 � c ln x�2 ¼ � c�1
X1
m¼0

c�m ln 1þ smð Þþ c�1
X1
m¼�1

c�m ln 1þ smð Þ

þ c�1
X1
m¼0

c�m ln 1þ smð Þ � c�1
X1
m¼0

c�m ln 1þ smð Þ ¼ 0� ln 1þ s�1ð Þ�1; n ¼ �1;

and

ln xn � c ln xn�1 ¼ �cn
Xnþ 1

m¼�1

c�m ln 1þ smð Þþ cn
Xn
m¼�1

c�m ln 1þ smð Þ; n
 � 2:

So we can pass to the limit c ! 1 and get

xn ¼
Yn
m¼0

1þ smð Þ for n	 0; 1 for n ¼ �1;
Ynþ 1

m¼�1

1þ smð Þ�1for n
 2

( )
: ð1:55Þ

It is easy to verify that this sequence satisfies (1.52) with c ¼ 1: By substituting
(1.52) with c ¼ 1 into (1.50), we arrive at the equation

un
xn

¼ �g�1
2

un�1

xn�1
þ gn

xn
; �1\n\1:

The solution of this equation is similar to that of the equation for ln xn, which can
be derived by taking the logarithm of (1.52), and is as follows
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un
xn

¼ W�1
n

Wh gn=xnð Þ
1þ g�1

2 exp ihð Þ
� 

¼ 1
2p

Zp
�p

X1
m¼�1

gm
xm

exp i m� nð Þh½ �
1þ g�1

2 exp ihð Þ dh: ð1:56Þ

The integrand here has no singularities on the path of integration as far as its
denominator coincides with the denominator of the function gð/Þ; while the surface
impedance distribution of the waveguide is naturally assumed to be a limited
function. Equations (1.44)–(1.46), (1.51), (1.55), and (1.56) allows us to obtain a
closed expression for the Hertz potential U. One should distinguish two cases:
g2j j\1 and g2j j[ 1: Let us do the relevant calculations for the first case.
The calculation of the integral in (1.56), by substituting exp ihð Þ ¼ z; is reduced

to the calculation of residues at the points z ¼ 0 and z ¼ �g2. As a result we have

un
xn

¼ �
X1

m¼nþ 1

gm
xm

�g2ð Þm�n:

Then we find the Hertz potential distribution on the impedance wall q ¼ b:

U b; q0;/;/0ð Þ ¼ exp i/ð Þþ g2½ �W/ un½ �
¼ � exp i/ð Þþ g2½ �

X1
n¼�1

xn
X1

m¼nþ 1

gm
xm

�g2ð Þm�nexp in/ð Þ:

The potential inside the waveguide, as follows from (1.44), is

U q;q0;/;/0ð Þ ¼ U0 q0; q;/0 � /ð Þþ b
Zp
�p

H /1;/ð ÞU b; q0;/1;/0ð Þd/1;

ð1:57Þ

where

H /1;/ð Þ ¼ � ik
8

X1
l¼�1

exp il /1 � /ð Þ½ �H 1;0ð Þ
l x; kqð Þ H 1ð Þ0

l yð Þ � ig /ð ÞH 1ð Þ
l yð Þ

h i.
H 1ð Þ0

l xð Þ:

The integration in (1.57) results in the following expression for the potential

U g; g0ð Þ ¼ � I mð Þ

8k
U0 g; g0ð ÞþU1 g; g0ð Þ½ �; ð1:58Þ

where (see formulas (1.45), (1.46))
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U0 g; g0ð Þ ¼
X1
n¼�1

exp in /0 � /ð Þ½ �H 1;0ð Þ
n x; kq\ð ÞH 1ð Þ

n kq[ð Þ
.
H 1ð Þ0

n ðxÞ

and

U1 g; g0ð Þ ¼ �
X1

n¼�1
exp in/ð Þ

X1
m¼nþ 1

xn
xm

H 1;0ð Þ
m x; kq0ð Þ

H 1;1ð Þ 1;0ð Þ
m;d x; yð Þ

exp �im/0ð Þ �g2ð Þm�n�1;

� g2
H 1;0ð Þ

n ðx; kqÞ
H 1ð Þ0

n ðxÞ
Hd

nðyÞþ expði/ÞH
ð1;0Þ
nþ 1ðx; kqÞ
H 1ð Þ0

nþ 1ðxÞ
H1

nþ 1ðyÞ
" #

;

Hd
nðyÞ ¼ Hð1Þ0

n ðyÞ � ig3dH
ð1Þ
n ðyÞ, H1

n yð Þ ¼ Hd
n yð Þ��

d¼1, q\ ¼ minðq0; qÞ; q[ ¼
maxðq0; qÞ; and xn is given by (1.55).

In a similar way, transformations are made for g2j j[ 1: It would be convenient
to separate the regular and irregular parts of the potential in (1.58). After lengthy
transformations, we arrive at the following expression for the Hertz potential

U g; g0ð Þ ¼ IðmÞ

8k
Ureg g; g0ð ÞþUireg g; g0ð Þ� �

; ð1:59Þ

where its regular part with the simple angular dependence in the form of /� /0 is

Ureg g; g0ð Þ ¼
X1
n¼�1

exp in /� /0ð Þ½ � H
ð1;0Þ
n x; kq\ð Þ

Hð1;1Þð1;0Þ
n;a x; yð Þ

Hð1;0Þð0;0Þ
n;a y; kq[ð Þ; ð1:60Þ

a ¼ 1 if g2j j\1; d if g2j j[ 1f g; q\ ¼ min q0; q1ð Þ; q[ ¼ max q0; q1ð Þ;

while its irregular part is

Uireg g; g0ð Þ ¼ �4
g3ð1� dÞ

py

X1
n¼�1

exp in /� /0ð Þ½ � Hð1;0Þ
n ðx; kqÞ

Hð1;1Þð1;0Þ
n;1 ðx; yÞ

Un g0ð Þ; ð1:61Þ

Un g0ð Þ ¼
X1
m¼1

exp �im/0ð Þ �g2ð Þm
Ym
j¼1

Hð1;1Þð1;0Þ
nþ j;d ðx; yÞ

Hð1;1Þð1;0Þ
nþ j;1 ðx; yÞ

H 1;0ð Þ
nþm x; kq0ð Þ

H 1;1ð Þ 1;0ð Þ
nþm;d x; yð Þ

; g2j j\1;

ð1:62Þ

Un g0ð Þ ¼ �
X1
m¼1

exp im/0ð Þ �g2ð Þ�m
Ym�1

j¼0

Hð1;1Þð1;0Þ
n�j;1 ðx; yÞ

Hð1;1Þð1;0Þ
n�j;d ðx; yÞ

Hð1;0Þ
n�m x; kq0ð Þ

Hð1;1Þð1;0Þ
n�m;d ðx; yÞ

; g2j j[ 1:

ð1:63Þ

30 L. Pazynin



The first term in (1.59) coincides with the solution to the problem where the
source excites the regular coaxial waveguide whose reduced surface impedance of
the wall q ¼ b equals g3a.

It is easy to show the uniform convergence of the series, which determines the
second term in (1.59), within the interval a
 q, q0 
 b: Hence in this region the
function Uireg g; g0ð Þ is analytic and satisfies the homogeneous Helmholtz equation.

Following the methodology in [39], one can make certain that the function
U g; g0ð Þ in (1.59) is really the desired Green function of the Helmholtz (1.41) in the
ring region with irregular boundary conditions (1.42).

1.3.3 The Watson Transformation

The series in n in (1.60), (1.61) represent expansions in terms of radially propa-
gating waves. Since the number of the terms contributing significantly to the field
are of the order of OðkaÞ [20, 40], (1.59) is convenient for analysis only for ka � 1:

For the applications considered in the present section, the range of interest is
ka � 1; where the expansions in terms of azimuthally propagating ‘creeping’
waves (alternative to the series in (1.60), (1.61)), obtainable from (1.59) by using
the so called Watson transformation [20, 39, 41], are rapidly convergent.

The method leading to the Watson transformation was proposed in the early
twentieth century in the works of H. Poincare and J.W. Nicholson and was first used
in the electromagnetic theory by G.N. Watson [42]. This mathematical apparatus is
also used in quantum mechanics, in the theory of potential scattering [42].

As applied to series like in (1.60), (1.61), the initial statement of this method is
as follows: if the function of complex variable BðmÞ is analytic in the neighborhood
of the real axis, then the equality is valid

X1
n¼�1

expðin/ÞBðnÞ ¼ i
2

Z
C

exp imð/� pÞ½ �
sin pm

BðmÞdm; ð1:64Þ

, where C is the contour formed by two straight lines Imm ¼ �a, a � 1 and
bypassing the real axis in a clockwise direction. Let us first consider the regular part
of the field:

Ureg g; g0ð Þ ¼
X1
n¼�1

expðinD/ÞBregðnÞ; ð1:65Þ

BregðnÞ ¼ Hð1;0Þ
n x; kq\ð Þ

Hð1;1Þð1;0Þ
n;a ðx; yÞ

Hð1;0Þð0;0Þ
n;a y; kq[ð Þ; D/ ¼ /� /0 [ 0: ð1:66Þ

1 New Analytical Solutions of Selected Electromagnetic Problems … 31



If the analytical properties of the function BregðmÞ allow the contour of inte-
gration C to be deformed to infinity, then the integral in (1.64) can be represented as
a series of residues at the poles BregðmÞ: This series is just the Watson transform of
the initial series.

Consider the function BregðmÞ: Since for the Hankel functions with complex

index the following relationships are valid: Hð1Þ
�m ðzÞ ¼ expðipmÞHð1Þ

m ðzÞ; Hð2Þ
�m ðzÞ ¼

expð�ipmÞHð2Þ
m ðzÞ; then we have Bregð�mÞ ¼ BregðmÞ; hence it is sufficient to clear

up the properties of this function in the half-plane Rem[ 0: Using the asymptotics
(1.54) we find:

BregðmÞ � 2i
pm

q\
q[

� �m

for mj j � 1; arg mj j\p=2:

Hence, the integral in (1.64) is reduced to a sum of the residues at the poles ms
obtainable from the formula

Hð1;1Þð1;0Þ
m;a ðx; yÞ � Hð1Þ0

m ðxÞHð2Þ0
m ðyÞ � Hð2Þ0

m ðxÞHð1Þ0
m ðyÞ

h i
� ig3a Hð1Þ0

m ðxÞHð2Þ
m ðyÞ � Hð2Þ0

m ðxÞHð1Þ
m ðyÞ

h i
¼ 0; 0\x\y:

ð1:67Þ

Let us determine the location of zeros of this equation in the v-plane. Following
the paper [43], on the assumption that x and y are fixed and mj j � 1þ y2, we obtain
the following approximation:

m�1 � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ig3ay=ln y=xð Þ

p
; ms � g3ay

pðs� 1Þ þ
ipðs� 1Þ
ln y=xð Þ for s ¼ 2; 3; . . .

and

ms � g3ay
pðsþ 1Þ þ

ipðsþ 1Þ
ln y=xð Þ for s ¼ �2;�3; . . .

Thus the roots of (1.67) are located symmetrically in the first (s ¼ 1; 2; 3; . . .)
and the third (s ¼ �1;�2;�3; . . .) quadrants of the v-plane.

By finding the residues at these points, we arrive at the representation

Ureg g; g0ð Þ ¼ �2p
X1
s¼1

cos ms p� D/ð Þ½ �Hð1;0Þ
ms x; kq\ð Þ

sin pmsð Þ~Hð1;1Þð1;0Þ
ms;a ðx; yÞ

Hð1;0Þð0;0Þ
ms;a y; kq[ð Þ; ð1:68Þ

where the following notation is used: ~Hð1;1Þð1;0Þ
ms;a ðx; yÞ ¼ @Hð1;1Þð1;0Þ

m;a ðx; yÞ
.
@m
���
m¼ms

.
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For the irregular part of the field, the manipulations are similar though more
cumbersome:

Uireg g; g0ð Þ ¼ 4g3ð1� dÞ
pkb

X1
n¼�1

expðinD/ÞBiregðnÞ;

where

BiregðmÞ ¼ �
X1
l¼1

exp �il/0ð Þ �g2ð Þl H
ð1;0Þ
m ðx; kqÞ

Hð1;1Þð1;0Þ
m;d ðx; yÞ

PlðmÞ
Hð1;0Þ

mþ l x; kq0ð Þ
Hð1;1Þð1;0Þ

mþ l;d ðx; yÞ
;

PlðmÞ ¼ P
l

j¼0

Hð1;1Þð1;0Þ
mþ j;d ðx; yÞ

Hð1;1Þð1;0Þ
mþ j;1 ðx; yÞ

for g2j j\1

and

BiregðmÞ ¼
X1
l¼1

exp il/0ð Þ �g2ð Þl H
ð1;0Þ
m x; kqð Þ

Hð1;1Þð1;0Þ
m;1 ðx; yÞ

~PlðmÞ Hð1;0Þ
m�l x; kq0ð Þ

H 1;1ð Þ 1;0ð Þ
m�l;1 ðx; yÞ

;

~PlðmÞ ¼ P
l

j¼0

Hð1;1Þð1;0Þ
m�j;1 ðx; yÞ

Hð1;1Þð1;0Þ
m�j;d ðx; yÞ

for g2j j[ 1:

The poles of the function BiregðmÞ for g2j j\1 are located at the points ms � j;
where ms are the roots of the equation (1.67) with a ¼ 1: For g2j j[ 1; they are
located at the points ms þ j; where ms are the roots of the equation (1.67) with a ¼ d.
By finding the residues at these points, we arrive at the following expressions:

Uireg g; g0ð Þ ¼ 4i
y
g23ð1� dÞ2

X1
s¼1

Hð1;0Þ
ms ðx; yÞ

sin pmsð Þ~Hð1;1Þð1;0Þ
ms;a ðx; yÞ

� exp ims D/� pð Þ½ �U g; g0; msð Þþ exp �ims D/� pð Þ½ �U g; g0;�msð Þ½ �;
ð1:69Þ

where

U g; g0; msð Þ ¼
X1
m¼1

exp �im/0ð Þ �g2ð Þm
Xm
l¼0

exp �ilD/ð ÞPðlÞ
m ms � lð Þ

� Hð1;0Þ
ms�l x; kqð ÞHð1;0Þ

ms�lþm x; kq0ð Þ
Hð1;1Þð1;0Þ

ms�l;d ðx; yÞHð1;1Þð1;0Þ
ms�lþm;dðx; yÞ

for g2j j\1;

ð1:70Þ
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U g; g0; msð Þ ¼
X1
m¼1

exp im/0ð Þ �g2ð Þ�m
Xm
l¼0

exp ilD/ð Þ ~PðlÞ
m ms þ lð Þ

� Hð1;0Þ
ms þ lðx; kqÞHð1;0Þ

ms þ l�m x; kq0ð Þ
Hð1;1Þð1;0Þ

ms þ l;1 ðx; yÞHð1;1Þð1;0Þ
ms þ l�m;1ðx; yÞ

for g2j j[ 1;

ð1:71Þ

PðlÞ
m ðmÞ ¼

Ym
j¼0
j 6¼l

Hð1;1Þð1;0Þ
mþ j;d ðx; yÞ

Hð1;1Þð1;0Þ
mþ j;1 ðx; yÞ

; ~P
ðlÞ
m ðmÞ ¼

Ym
j¼0
j 6¼l

Hð1;1Þð1;0Þ
m�j;1 ðx; yÞ

Hð1;1Þð1;0Þ
m�j;d ðx; yÞ

;

~Hð1;1Þð1;0Þ
ms;a ðx; yÞ ¼ d

dmH
ð1;1Þð1;0Þ
m;a ðx; yÞ

���
m¼ms

; D/ ¼ /� /0 [ 0;

ð1:72Þ

and ms are the roots of the equation (1.67).
In the analysis which follows, we restrict ourselves to the case of g2j j\1: The CS

phenomenon has been detected for the waves coming to the receiver by the shortest
route. Therefore, separating them out in (1.68)–(1.72) and placing the receiver and
the source onto the boundary q ¼ a at the points with angular coordinates / and /0,
respectively, we arrive at the following expression for the Hertz vector

4k
IðmÞ

U g; g0ð Þjq¼q0¼a¼ � 4
x

X1
s¼1

exp imsD/ð Þ
~Hð1;1Þð1;0Þ
ms;1 ðx; yÞ

Vs /;/0ð Þ; ð1:73Þ

Vs /;/0ð Þ ¼ Vreg msð ÞþVireg /;/0; msð Þ; ð1:74Þ

Vreg msð Þ ¼ Hð1;0Þð0;0Þ
ms;1 ðy; xÞ; ð1:75Þ

ireg /;/0; msð Þ ¼ �16ig3
p2xy

ð1� dÞ uþ
s /0ð Þþ 1þ ig3ð1� dÞHð1;0Þ

ms ðx; yÞuþ
s /0ð Þ

h i
u�s ð/Þ

n o
;

ð1:76Þ

u�s ð/Þ ¼
X1
m¼1

exp �im/ð Þ �g2ð Þm
Ym
j¼1

Hð1;1Þð1;0Þ
ms�j;d ðx; yÞ

Hð1;1Þð1;0Þ
ms�j;1 ðx; yÞ

� 1

Hð1;1Þð1;0Þ
ms�m;d ðx; yÞ

: ð1:77Þ

To simulate the CS phenomenon let us fix the angular distance D/ between the
receiver and the source. In this case, the function

~Uð/Þ ¼ 4k
.
IðmÞ

h i
U g; g0ð Þj q ¼ q0 ¼ a

/0 ¼ /� D/

; 0
/
 2p

may be considered as the ‘diurnal dependence’ of the received signal. To ensure a
nonzero diurnal phase change, the curve Vs /;/0ð Þ in the complex plane must
enclose the origin of coordinates. Since the regular term Vreg in (1.75) does not
depend on /, while the irregular term Vireg is proportional to exp �i/ð Þ for
/0 ¼ /� D/, the inequality
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Vreg msð Þ�� ��\ Vireg /;/0; msð Þ�� �� ð1:78Þ

is the necessary condition for the CS to occur in the model considered.

1.3.4 A Numerical Experiment

Let us calculate the Hertz potential ~Uð/Þ from (1.73)–(1.77) for the frequency
f ¼ 10kHz and waveguide dimensions a ¼ 6370 km and b� a ¼ 60 km: Since
x ¼ ka ¼ 1335:06 � 1; we will use Olver’s uniform asymptotic representation

[44] to calculate the Hankel functions HðjÞ
m ðxÞ along with their derivatives with

respect to the argument and the index. The roots of the transcendental equation in
(1.67) for a ¼ 1 can be found by the Newton-Raphson method [45]. For better
understanding of the peculiarities that characterize the waveguide mode intercon-
version, one should analyze the location of several first roots of the equation (1.67)
as a function of the complex parameter g3.

Figure 1.4 illustrates typical trajectories of the first two roots ms, s ¼ 1; 2 in the
complex v-plane for several fixed values of arg g3 as g3j j increases. The real values
m01 and m

0
2 correspond to zero impedance. The sign ‘+’ indicates the degenerate value

mdeg12 of these two roots corresponding to the impedance gdeg12 � 0:1826� i0:1127
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Fig. 1.4 The trajectories of the first two roots, v1 and v2, of (1.67) in the complex v-plane for
several fixed values of arg η3 with increasing g3j j; 0
 g3j j 
 0:5 : arg ðig3Þ equals (1) 63.43°,
(2) 60.94°, (3) 58.39°, (4) 58.21°, (5) 55.83°, (6) 53.37°
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(see [21, 46]). It is easily seen that an abrupt change in the behavior of the
eigenvalues of waveguide modes occurs when crossing the ray arg g3 ¼ arg gdeg12 .

Let us first consider the case of weakly irregular waveguides (d � 1Þ. Then for
g2j j � 1 we have from (1.76)

Vireg /;/0; msð Þ ¼ g1 � g2ð ÞV0 /;/0; msð Þ; ð1:79Þ

V0 /;/0; msð Þ ¼ � 16
p2

ig3
xy

exp �i/0ð Þ 1

Hð1;1Þð1;0Þ
ms þ 1;1 ðx; yÞ

þ expð�iD/Þ
Hð1;1Þð1;0Þ

ms�1;1 ðx; yÞ

" #
þOð1� dÞ:

ð1:80Þ

In Fig. 1.5, the level curves of the function V0 /;/0; mð Þj j (for /0 ¼ /� D/) are
shown in the complex v-plane for the most interesting domain of variation of the

eigenvalues of the first and the second modes for the impedance ig3 ¼
Hð1;1Þ

m ðx; yÞ
.
Hð1;0Þ

m ðx; yÞ satisfying (1.67).

The angular distance between the receiver and the transmitter is D/ ¼ 114:6�,
therefore, as it follows from numerical estimations, the contribution of the third and
higher modes can be neglected. Minimal values of V0 /;/0; mð Þj j are located in the
vicinity of the points m01 and m02, while the maximum is close to mdeg12 . By comparing
these results with the level curves of VregðmÞ

�� �� from Fig. 1.6, we can conclude that
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Fig. 1.5 The level curves of the function V0ð/0 þD/;/0; vÞj j for D/ ¼ 114:6�: maxv V0ð/0 þj
D/;/0; vÞj ¼ 3:0517; vmax ¼ 1325:5þ i21:75; V0ð/0 þD/;/0; v

0
1Þ

�� �� ¼ 1:2593 � 10�4, V0ð/0 þj
D/;/0; v

0
2Þj ¼ 4:5397 � 10�5
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for small g3, for which rimp � 1 and m1;2 ! m01;2, the inequality

VregðmÞ
�� ��[ V0 /;/0; mð Þj j holds, and hence, CS is impossible in view of (1.78),

(1.79). Let g3 be increasing and approaching gdeg12 . At the same time, the center rimp

of the impedance circle gimp ! gdeg12 increases too, while the eigenvalues of the first

and second modes approach the point mdeg12 , in the vicinity of which the amplitude of
the irregular part of V0 /;/0; mð Þj j is maximal.

Then for not too small values of g1 � g2j j; the inequality (1.78) holds. In other
words, it follows from the foregoing numerical estimates for the functions VregðmÞ

�� ��
and V0 /;/0; mð Þj j for weakly irregular waveguides that there exists a threshold
value of the hodograph radius rcsimp of the impedance g /ð Þ (1.43) such that the CS
phenomenon is impossible for rimp\rcsimp, while for rimp [ rcsimp it occurs at least for

the hodographs located in the vicinity of gdeg12 . As the angular distance D/ increases,
the probability that the phenomenon in question will occur is growing too, all
factors being equal. A similar situation holds when a degree of the waveguide
irregularity grows, i.e. with increasing rimp.

Let us now turn back to the general case of arbitrary index of a waveguide irreg-
ularity d. Figure 1.7 present the simulated diurnal record of the received signal or, in
other words, the /-dependencies, D/
/
 2pþD/, of the normalized value

Wð/Þ ¼ lg max
0
/
 2p

~Uð/Þ�� ��� �
~Uð/Þ

� �
lg ~Uð/Þ�� ��� �

~Uð/Þ�� ��� �
;

for the fixed angular distance D/ ¼ 114:6� between the source and the receiver. On
the curves three following values of the received signal are marked: ‘0’ corresponds
to the initial moment of the record (/ ¼ 0Þ, ‘r’ (‘t’) corresponds to the moment of
time when the receiver (the transmitter) is passing through the waveguide cross
section / ¼ /cr, where the surface impedance is closest to gdeg12 (see Fig. 1.8).

Fig. 1.6 The level curves of
the function Vreg mð Þ�� ��;
maxv Vreg mð Þ�� �� ¼ 0:1561;
vmax ¼ 1328:25
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(a) (b)

(e) (f)

(h)(g)

(d)(c)

Fig. 1.7 The normalized diurnal records of the received signalWð/Þ: g3 ¼ 0:1455� i0:03638;
g2 ¼ 0:0001; D/ ¼ 114:6�
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The number of lost phase cycles are shown in the figures in square brackets [m];
ddegimp is the distance from the impedance circle to the point gdeg12 . The numerical
experiment has shown that the CS phenomenon does not occur for the hodographs

of the impedance gð/Þ remote from the segment lcs ¼ 0\ gj j 
 gdeg12 ;
n

argg ¼
arg gdeg12 g (Fig. 1.7a, b, c). As rimp increases, Wð/Þ behavior becomes more com-
plex; when the circle gð/Þ intersects lcs, CS occurs (Fig. 1.7d) for g3 ¼ 0:1455�
i0:03638 and rimp � 0:0484435: At the same time, the signal amplitude decreases
within a small variation interval of / (of the order of 0:01�).

As rimp grows, at rimp � 0:0533546 (Fig. 1.7f), the CS phenomenon for two
cycles, at rimp � 0:0546966 (Fig. 1.7h) for three cycles, and so forth is observable.
A similar situation holds for the circle g /ð Þ; whose center is located in the vicinity
of lcs (Fig. 1.8); however, the CS occurs at lesser values of rimp. Each CS phe-
nomenon is accompanied by a sharp decrease in signal amplitude, which is typical
for a CS in a natural waveguide [22, 32]. In the context of the given model, the role
played by the segment lcs in the initiation of the CS phenomenon can be explained
as follows: only for the impedances in the vicinity of this segment, the eigenvalues
m1 and m2 have closely spaced imaginary parts, and consequently, the amplitudes of
the first and the second modes are nearly equal. In addition, when g3 is moving
along lcs towards the point gdeg12 , the real parts of m1 and m2 come close together
(curves 3 or 4 in Fig. 1.4), and consequently, the phase velocities of these modes
approach each other.

Of some interest is a localization of the domains in the complex g-plane, for
which the CS phenomenon takes place at the given radius rimp and angle D/. In
Fig. 1.8 dots indicate center positions of the hodographs of radiuses 0.001, 0.005
and 0.01, for which CS occurs at D/ ¼ 114:6�. It is seen that with increasing rimp

the CS phenomenon develops initially in the immediate vicinity of the point gdeg12 ,
and then, as rimp grows, this area is extending occupying a constantly increasing

Fig. 1.8 The domains in the
complex plane of the
impedance g, where the CS
occurs with the given radius
rimp and the angle
D/ ¼ 114:6�
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part of the segment lcs. For the hodographs with fixed centers, the CS phenomenon
having developed at some rimp, persists for larger values of the radius.

In conclusion note the following. We have proposed a model of the ring
waveguide of a fixed cross section whose irregularity is caused only by the behavior
of the surface impedance of its wall. Hence we have excluded from consideration
the diffraction effect of wave transformation on a spatial inhomogeneity of the wall;
only the mode degeneracy effect being inherent in the waveguides with finite
absorption is analyzed. We have obtained the analytical solution of the corre-
sponding boundary value problem for a class of circular hodographs of surface
impedance. It is the first problem of the excitation of a finite irregular waveguide
with continuously varying properties, for which the analytical solution is found.

The results of the numerical experiment for widely separated (1
D/
 p)
transmitter and receiver have shown that the CS phenomenon here is directly
related to the degeneracy of the first and the second modes. This phenomenon is
threshold-like and it occurs in waveguides with sufficiently high irregularity of the
walls whose impedance is distributed in the neighborhood of the degenerate value
gdeg12 . Once the phenomenon is developed, it persists as the radius of the impedance
hodograph increases. At the same time, the domain of the complex plane of the
impedance, where the CS takes place, is extending occupying a constantly
increasing part of the segment joining the origin of coordinates and the point gdeg12 .

It has been demonstrated with a waveguide of fixed cross section that the CS in
irregular lossy waveguides may be caused by the interconversion of two dominant
waveguide modes in the neighborhood of their degeneracy rather than by the
diffraction effect of rescattering of the principal mode into the higher modes on a
spatial inhomogeneity of the waveguide wall, as it is customary to assume.

1.4 Pulsed Radiation from a Line Electric Current Near
a Planar Interface

The classical problem of transient electromagnetic fields generated by pulsed cur-
rents located near a planar boundary between layered media are the subject of
constant theoretical research starting with the B. van der Pol paper [47]. The
approaches based on the Cagniard method [48, 49] is the most efficient tool in this
study. A.T. de Hoop [50] has suggested a modification of Cagniard’s method with
the help of which exact solutions have been obtained for a number of problems of a
dipole or a line source near an interface [51–54]. Various modifications of
Cagniard’s technique have found wide application in the study of transient acoustic
and seismic wave propagation. Following paper [50], the modifications of de
Hoop’s technique [55, 56] as well as the alternative approaches free from some
drawbacks to this method [57, 58] have been suggested.
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In this section, following the paper [59], we use the approach alternative to
Cagniard’s technique to study the transient field generated by line sources located in
a flat-layered media. The suggested approach is applied to the already solved
problem, namely, the problem of finding the electromagnetic field generated by a
pulsed line source located near a planar interface between two nonabsorbing and
nondispersive media. The most complete solution to this problem have been
obtained and discussed in considerable detail by A.T. de Hoop in [54]. In this
paper, were applied the one-sided Laplace transform with respect to time and
two-sided Laplace transform with respect to a horizontal spatial variable. The
electromagnetic field is represented in the form of a double integral. This integral
can be efficiently calculated by the Cagniard-de Hoop method (CHM). The essence
of the method is as follows. The original path of integration for one of two integrals
forming the double integral is deformed into a so-called modified Cagniard con-
tour. It is chosen such that upon the corresponding change of the integration
variable in the integral along the modified contour, the original double integral turns
into a composition of the direct and inverse Laplace transform for the known
function. The central problem with this method is to find, generally speaking,
numerically, the modified Cagniard contour. It should be noted that the shape of
this contour changes as the observation point changes.

The key point of the approach proposed here consists in the following. To
calculate the double integral efficiently, we suggest deforming its domain of inte-
gration (the real plane) in the C × C-space of two complex variables rather than to
deform one contour in the complex C-plane, as has been done in CHM. It is shown
that in this case the integral reduces to a sum of residues. The use of powerful
apparatus of the residue theory instead of somewhat artificial way used in CHM is a
reason to hope that this new approach can be efficient in the situations where the
CHM is failed, for example, for anisotropic media. Our method can be extended to
multilayered media and arbitrary dipole sources.

1.4.1 Problem Formulation

The field generated by a pulsed line electric current

~JðeÞ ¼ IðeÞdðxÞd z� z0ð ÞdðtÞ~y; z0 [ 0; ð1:81Þ

which is located near a planar interface (Fig. 1.9), is to be found. The source excites
the E-polarized field

Ey 6¼ 0; Ex ¼ Ez ¼ Hy ¼ 0;
@Hx

@t
¼ 1

ll0

@Ey

@z
;

@Hz

@t
¼ � 1

ll0

@Ey

@x
: ð1:82Þ
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The function Ey is the solution of the wave equation

@2

@x2
þ @2

@z2
� ee0ll0

@2

@t2

� �
Ey ¼ l1l0

@J eð Þ
y

@t
ð1:83Þ

that satisfies the conditions of continuity of Ey- and Hx-components on the interface
z ¼ 0 and the causality principle. Here, e ¼ e1, l ¼ l1 for z[ 0 and e ¼ e2, l ¼ l2
for z\0:

The Fourier transform in time

Fðx; z;xÞ ¼ 1
2p

Z1
�1

Eyðx; z; tÞeixtdt; Eyðx; z; tÞ ¼
Z1
�1

Fðx; z;xÞe�ixtdx ð1:84Þ

applied to the boundary value problem in (1.83) results in the following problem

@2

@x2 þ @2

@z2 þx2e1e0l1l0
	 


F1 ¼ �I0dðxÞd z� z0ð Þ; z[ 0

@2

@x2 þ @2

@z2 þx2e2e0l2l0
	 


F2 ¼ 0; z\0

8<: ð1:85Þ

with the boundary conditions on z ¼ 0

F1 ¼ F2; l2
@F1

@z
¼ l1

@F2

@z
; ð1:86Þ

where I0 ¼ ixl1l0I
ðeÞ�2p: The solution of the equations in (1.85) is conveniently

represented in the form [41]

F1 ¼ I0 F0 þF1
s

� �
for z[ 0 and F2 ¼ I0F

2
s for z\0; ð1:87Þ

Fig. 1.9 A pulsed line source
near the interface between
two semi-infinite media
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where

F0 ¼ i
4p

Z1
�1

exp inxþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � n2

q
z� z0j j

� 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � n2

q dn ¼ 1
4
Hð1Þ

0 k1R�ð Þ; ð1:88Þ

F1
s ¼ i

4p

Z1
�1

exp inxþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � n2

q
zþ z0ð Þ

� 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � n2

q C1ðn;xÞdn; ð1:89Þ

F2
s ¼ i

4p

Z1
�1

exp inx� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 � n2

q
zþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � n2

q
z0

� 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � n2

q C2ðn;xÞdn; ð1:90Þ

Cjðn;xÞ are the unknown functions, Im
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2j � n2

q
	 0; k2j ¼ x2n2j , n2j ¼ eje0

�ljl0, j ¼ 1; 2; R2
� ¼ x2 þ z� z0ð Þ2. From the boundary conditions in (1.86), we

have:

1þC1 ¼ C2; �l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � n2

q
þ l1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � n2

q
C1 ¼ �l1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 � n2

q
C2;

or

C1ðn;xÞ ¼
l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � n2

q
� l1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 � n2

q
l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � n2

q
þ l1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 � n2

q ; ð1:91Þ

C2ðn;xÞ ¼
2l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � n2

q
l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � n2

q
þ l1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 � n2

q : ð1:92Þ

Thus we obtain the required field in the form of the following double integrals
taken over the plane P of real variables x and n:

E j
yðx; z; tÞ ¼ E0

@

@t
G jðx; z; tÞ; j ¼ 0; 1; 2; ð1:93Þ

G0ðx; z; tÞ ¼ 1
4pi

ZZ
P
exp inxþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n21 � n2

q
z� z0j j � ixt

� 
dxdnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n21 � n2

q ; z[ 0;

ð1:94Þ
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G1 x; z; tð Þ ¼ 1
4pi

ZZ
P
exp inxþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n21 � n2

q
zþ z0ð Þ � ixt

� 
C1 n;xð Þdxdnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2n21 � n2
q ;

z[ 0;

ð1:95Þ

G2ðx; z; tÞ ¼ 1
4pi

ZZ
P
exp inx� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n22 � n2

q
zþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n21 � n2

q
z0 � ixt

� 
� C2 n;xð Þdxdnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2n21 � n2
q ; z\0;

ð1:96Þ

where E0 ¼ IðeÞl1l0
�
2p and Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n2j � n2

q
	 0; j = 1, 2.

1.4.2 Reduction to Single Integrals

In formulas (1.94)–(1.96), the integrands allow analytic continuation from the real
plane P ¼ x; n : x00 ¼ n00 ¼ 0f g into the C × C-space of two complex variables
x ¼ x0 þ ix00 and n ¼ n0 þ in00. As the previous analysis has shown, there is no
need to operate with the whole of real four-dimensional space C × C. To calculate
the integrals in (1.94)–(1.96), it is sufficient to restrict our consideration to a
three-dimensional space R3 ¼ x; n : n00 ¼ 0f g � C� C containing P. In R3, one
should choose the single-valued branches of two square roots in the integrands.

Consider a function jðx; nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n2 � n2

p
in R3 assuming that the refractive

index n ¼ n0 þ in00 (n0; n00 [ 0Þ is complex-valued.
The surface

Rej2 ¼ n02 � n002
� �

x02 � n02 � n002
� �

x002 � 4n0n00x0x00 � n02 ¼ 0 ð1:97Þ

has the following invariants [60]: I ¼ �1; J ¼ � nj j4, D ¼ �J; A ¼ 0; A0 ¼ D:
Therefore it represents a two-pole elliptic cone, which is symmetrical with respect
to the plane n0 ¼ 0; with its vertex at the origin of coordinates. Let us locate the axis
of the cone. The lines of intersection of the cone with the symmetry plane n0 ¼ 0 are
two mutually orthogonal straight lines n0 � n00ð Þx00 � n0 � n00ð Þx0 ¼ 0 with the
bisecting lines n0x00 þ n00x0 ¼ 0 and n0x0 � n00x00 ¼ 0: Consequently, the cone axis
is determined by the equations n0x00 þ n00x0 ¼ 0 and n0 ¼ 0:

The surface

Imj2 ¼ n0n00 x02 � x002� �þx0x00 n02 � n002
� � ¼ 0 ð1:98Þ
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has the following invariants: I ¼ 0; D ¼ � nj j4
.
4; A ¼ 0: Therefore it represents

two mutually orthogonal planes intersecting along the n0-axis and determined by the
equations n0x00 þ n00x0 ¼ 0 and n00x00 � n0x0 ¼ 0: The first plane contains the axis
of the cone (1.97) being its another symmetry plane. From (1.97) and (1.98), we
derive the following equations for the branch lines of j x; nð Þ:

n0x0 � n00x00 � n0 ¼ 0; n0x00 þ n00x0 ¼ 0:

In Fig. 1.10, the distribution of signs for Rej2 and Imj2in R3 is shown. In
(1.94)–(1.96), a single-valued branch of the function j x; nð Þ; for which
Imj x; nð Þ	 0; is determined on the real plane P ¼ n0;x0f g: The above mentioned
inequality is hold everywhere in R3, if the following condition is satisfied:
0
 arg j2\2p. In other words, the cut S in R3 that separates this branch should be
determined by the conditions Rej2 	 0; Imj2 ¼ 0: As is seen from Fig. 1.10, this
takes place for a double sector formed by the intersection of the inner part of the
cone (1.97) with its symmetry plane n0x00 þ n00x0 ¼ 0: In R3, with the cut of this
kind (Fig. 1.11), we have Imj x; nð Þ	 0:

A similar approach to choose a branch of the square root is given in [61] for the
case of a single variable. When passing to the lossless medium a ¼ 0; the cut
surface S is shifted into the plane x00 ¼ 0 representing the double sector, which
contains the x0-axis and is bounded by the straight branch lines n0x0 � n0 ¼ 0:

Thus we have shown that for a lossless media the cut surface ensuring a choice

of the branch, for which we have Im
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2n2j � n2

q
	 0 in R3, is a double sector Sj

(Fig. 1.11), which lies in the plane x00 ¼ 0; contains the x0-axis, and is bounded by
the branch lines njx0 � n0 ¼ 0; j ¼ 1; 2: The root is positive on the upper side of the
right-hand sector x0 [ 0; x00 ¼ 0þ 0f g and on the bottom side of the left-hand

Fig. 1.10 The sign
distribution for Re j2 and Im
j2 in the plane n0 ¼ 0:
Straight lines indicate the
lines of intersection with the
plane n0 ¼ 0: the bold lines—
for the cone Re j2 = 0, the
dashed lines—for the planes
Im j2 = 0. Symbols (±)
specify the sign of Re j2,
while [±] specify the sign of
Im j2; sin a ¼ �n00= nj j; l0 is
the axis of the cone (1.97)

1 New Analytical Solutions of Selected Electromagnetic Problems … 45



sector x0\0; x00 ¼ 0� 0f g; while it is negative on the other sides. Since the
integrands in (1.94)–(1.96) are uniquely defined in the R3-space with the specified
cuts, one can apply the Cauchy-Poincare theorem [18] to deform the surface of
integration P in R3n S1 [ S2ð Þ:

In accordance with the causality principle, the cut surfaces S1 and S2 have to
adjoin the real plane P from the bottom (x00 ¼ 0� 0Þ. Then, the integrands have no
singularities in the half-space x00 [ 0; and we have Eyðx; z; tÞ � 0 for all t\0;
according to the mentioned theorem.

For the positive values of t, the P-plane can be deformed to a half-space x00\0:
Then we have for E0

y an integral over the surface Pc1, while for E1
y , E

2
y we have

integrals over the surface Pc ¼ Pc1 [ Pc2. Here Pcj stands for the closed surface
enveloping the cut Sj.

Using the function G1 x; z; tð Þ as an example, let us demonstrate how the integrals
describing the secondary field in (1.95), (1.96) can be simplified. Denoting the
integrand in (1.95) by f x; n0ð Þ; consider the following integral over the surface Pc:ZZ

Pc
f x; n0ð Þds ¼ I1 þ I2; ð1:99Þ

where Ij ¼
RR

Pcj
f x; n0ð Þds . Let Pþ

cj and P�cj be the right-hand (x0 [ 0Þ and the

left-hand (x0\0Þ cavities of the surface Pcj; Lx0j is the closed contour generated by
the intersection of the surface Pcj with the coordinate plane x0 ¼ const: Then we
have

I1 ¼
X
�

ZZ
P�c1

f x; n0ð Þds ¼
Z1
0

dx0
Z

Lx01

dl f x; n0ð Þþ
Z0
�1

dx0
Z

Lx01

dl f x; n0ð Þ

¼
Z1
0

dx0
Z

Lx01

dl f x; n0ð Þ �
Z

Lx01

dl f �x;�n0ð Þ

264
375:

ð1:100Þ

Fig. 1.11 The location of the
branch lines l± and the cut
surface S ensuring the choice
of the branch for which
Im kðx; nÞ	 0 in R3-space; l0
is the axis of the cone (1.97)
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In the second integral, we made the following change of variables x ! �x,
n0 ! �n0: Taking into account the evenness of the chosen branches of the square
roots entering the function f x; n0ð Þ with respect to this change of variables and
performing another change of variables n0 ¼ xg, we arrive at the following
expression for the integral in (1.95):

I1 ¼
Z1
0

dx
Z
L1

dg exp ix gxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

q
zþ z0ð Þ � t

� � ��

� exp ix �gxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

q
zþ z0ð Þþ t

� � ��
~C1ðgÞ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

q
;

ð1:101Þ

where

~C1ðgÞ ¼ l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p
� l1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � g2

p
l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p
þ l1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � g2

p : ð1:102Þ

The contour L1 envelopes the segment �n1; n1ð Þ in the complex g-plane. Let us
introduce the accessory parameter d[ 0 for the sake of convergence acceleration,
then rewrite (1.101) in the form

I1 ¼ lim
d!0

Z1
0

dx
Z
L1

dg exp ix idþ gxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

q
zþ z0ð Þ � t

� � ��

� exp ix id� gxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

q
zþ z0ð Þþ t

� � ��
~C1ðgÞ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

q
¼ i lim

d!0

Z
L1

1

gxþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p
zþ z0ð Þ � tþ id

"

� 1

�gxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p
zþ z0ð Þþ tþ id

#
~C1ðgÞdgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p :

ð1:103Þ

For the second integral in (1.99), I2, we obtain a representation similar to (1.103)
with L1 replaced by L2, where L2 is the contour enveloping the segment �n2; n2ð Þ:
Thus, for the function given by (1.95), which determines the secondary field in the
first medium (see (1.93)), we arrive at the following expression

G1ðx; z; tÞ ¼ 1
4p

lim
d!0

Z
L

1

gxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p
zþ z0ð Þ � t�

"

� 1

�gxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p
zþ z0ð Þþ tþ

#
~C1ðgÞdgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p ;

ð1:104Þ
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where t� ¼ t � id, L is the contour enveloping the segment �nmax; nmaxð Þ; nmax ¼
max n1; n2ð Þ: The root branches are determined by the inequalities

�p\ arg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2j � g2

q
\p with zero argument on the bottom side of the cut along the

segment �nj; nj
� �

:

Similarly, for the function G2, describing the field in the second medium, we
obtain from (1.96):

G2ðx; z; tÞ ¼ 1
4p

lim
d!0

Z
L

1

gxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p
z0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � g2

p
z� t�

"

� 1

�gxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p
z0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � g2

p
zþ tþ

#
~C2ðgÞdgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p ;

ð1:105Þ

where ~C2ðgÞ ¼ 1þ ~C1ðgÞ: The integrands in (1.104) and (1.105) are analytic in the
plane of complex variable g with the specified cut and decreasing at infinity as g�2.
Therefore, these integrals can be reduced to the residues determined by zeros of the
denominators in the square brackets:

gxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

q
zþ z0ð Þ � t� ¼ 0; �gxþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

q
zþ z0ð Þþ tþ ¼ 0 for

ð1:104Þ;
ð1:106Þ

gxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

q
z0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � g2

q
z� t� ¼ 0;

� gxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

q
z0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � g2

q
zþ tþ ¼ 0 for ð1:105Þ:

ð1:107Þ

1.4.3 The Field in the First Medium

The roots of (1.106) are readily determined and can be written as

g�1 ¼ xt� � zþ z0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21R

2þ � t2�
q� �

R�2
þ and

gþ
1 ¼ xtþ þ zþ z0ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21R

2þ � t2þ
q� �

R�2
þ ;

ð1:108Þ

where R2
þ ¼ x2 þ zþ z0ð Þ2. For the square root

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21R

2þ � t2
p

, we determined the

same branch in the complex plane of variable t as for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2j � g2

q
in the g-plane. By

calculating the corresponding residues, we get from (1.104):
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G1ðx; z; tÞ ¼ i
2
lim
d!0

~C1ðgÞ
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p
� zþ z0ð Þg

�����
g¼g�1

8<: þ
~C1ðgÞ

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p
þ zþ z0ð Þg

�����
g¼gþ

1

9=;
¼ i

2
lim
d!0

~C1 g�1
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n21R
2þ � t2�

p þ
~C1 gþ

1

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21R

2þ � t2þ
p( )

:

ð1:109Þ

Here we used the equality

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g�1

� �2q
¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21R

2þ � t�ð Þ2
q

� zþ z0ð Þt�
� 

R�2
þ : ð1:110Þ

It is easy to verify that the following relationships are hold for the chosen
branches of the square roots:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n21R
2þ � tð Þ2

q
¼ exp ipð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21R

2þ � t2
q� �

;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2j � gð Þ2

q
¼ exp ipð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2j � g2

q	 
 ð1:111Þ

(the asterisk stands for a complex conjugation). Therefore,

g�1 ¼ xtþ � zþ z0ð Þ exp ipð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21R

2þ � t2þ
q� �� 

R�2
þ

¼ xtþ þ zþ z0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21R

2þ � t2þ
q� 

R�2
þ ¼ gþ

1

� �
;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2j � g�1
� �2q

¼ expðipÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2j � g�1

� �� �2q� �
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2j � gþ

1

� �2q� 
;

~C1 g�1
� � ¼ ~C1 gþ

1

� �� �
:

ð1:112Þ

The wave reflected from the interface comes at some point in the first medium at
time tref ¼ n1Rþ . For the time interval 0\ t\ tref , in view of (1.112), we obtain

G1ðx; z; tÞ ¼ i
2
lim
d!0

~C

1 gþ

1

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21R

2þ � t2�
p þ

~C1 gþ
1

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21R

2þ � t2þ
p" #

¼ i
2
lim
d!0

~C

1 gþ

1

� �� ~C1 gþ
1

� �h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21R

2þ � t2
p

¼ Im~C1 g\1
� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n21R
2þ � t2

q
;

ð1:113Þ

where g\1 ¼ gþ
1

��
d¼0¼ xt � zþ z0ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21R

2þ � t2
ph i

R�2
þ .
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For the time interval tref\t; we have

G1ðx; z; tÞ ¼ i
2
lim
d!0

~C

1 gþ

1

� �
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � n21R

2þ
p þ

~C1 gþ
1

� �
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � n21R

2þ
p" #

¼ Re~C1 g[
1

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � n21R

2þ
p ; ð1:114Þ

where g[
1 ¼ gþ

1

��
d¼0¼ xtþ i zþ z0ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � n21R

2þ
ph i

R�2
þ .

The behavior of the secondary field in the first medium for the times 0\t\tref
essentially depends on the relation between the refractive indices for the first (n1)
and second (n2) media.

For an arbitrary point in the first medium, both of the roots entering ~C1 g\1
� �

are

real (see (1.110)) if n1\n2. Consequently, we have Im~C1 g\1
� � ¼ 0; and the sec-

ondary field given by (1.113) is zero (G1 x; z; tð Þ � 0Þ up to the moment of arrival of
the reflected wave.

In the case that n1 [ n2, a more detailed analysis of the function n22 � g\1
� �2

is
required. Let us use the following notation: x=Rþ ¼ sin h; zþ z0ð Þ=Rþ ¼cos h,
n2=n1 ¼ sin htot; where htot stands for the angle of total internal reflection [41, 62].
Let us also introduce the parameter s ¼ arccos t=trefð Þ such that cos s ¼ t=tref and
the principal branch 0\s\p of this function is chosen. Then we arrive at

n22 � g\1
� �2 ¼ n21

x
Rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t

n1Rþ

� �2
s

þ zþ z0ð Þ
Rþ

t
n1Rþ

24 352

� 1� n22
n21

� �8<:
9=;

¼ n21 cos2 s� hð Þ � cos2htot
� � ¼ n21sin htot � hþ sð Þsin htot þ h� sð Þ:

ð1:115Þ

Since we have 0\h; htot; s\p=2 for the space-time domain considered, then the
arguments of the sine functions in (1.115) find themselves within the interval
�p=2; pð Þ: Therefore, the function given by (1.115) has two roots, s1 ¼ h� htot
and s2 ¼ hþ htot, corresponding to the time points t1 ¼ trefcos h� htotð Þ and t2 ¼
tref cos hþ htotð Þ: There is no difficulty to show (the trajectory z0x1x2A in Fig. 1.12)
that

t1 ¼ n1z0=cos htot þ n2 x� zþ z0ð Þtghtot½ � þ n1z=cos htot ¼ tdif ;

where tdif is the time of arrival of the so-called side wave [41] (or diffraction wave
[62]) at the observation point located in the first medium in the region h[ htot. For
h\htot, the variable s1 goes to the unphysical sheet of the function arccos t=trefð Þ;
and the side wave does not occur in this region. By virtue of the causality principle,
for the times t\tdif , there is no secondary field and so the other zero (s2) is of no
importance (t2\t1).
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Let us find the value of sign n22 � g\1
� �2h i

for tdif \ t\ tref in the region

h[ htot. Here the following relationships for the arguments of the sine functions in
(1.113) are valid:

� p=2\htot � h\htot � hþ s\htot � hþ s1 ¼ 0;

0\2htot ¼ htot þ h� s1\htot þ h� s\htot þ h\p;

which means that n22 � g\1
� �2\ 0: Considering that Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g\1

� �2q
¼ 0; we have

Im~C1 g\1
� � 6¼ 0:

Thus for n1 [ n2 and tdif\t\tref , in the region h[ htot, the side wave is gen-
erated, which is given by the function in (1.113).

From (1.113), (1.114), through the substitutions ~C1 ! 1; zþ z0 ! z� z0, we
arrive at the following expression for the function G0 characterizing the primary
field:

G0ðx; z; tÞ ¼ 0 for 0\t\t0; 1
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � t20

q
for t0\t

� 
; ð1:116Þ

where t0 ¼ n1R� is the time of arrival of the primary wave at the observation point
in the first medium.

1.4.4 The Field in the Second Medium

Denote the roots of the equation (1.107) by g�2 and gþ
2 . Then the integral in (1.105)

takes the form

Fig. 1.12 The wave fronts of
the field generated by a pulsed
line current located near a
planar interface for n1 > n2:
the primary (I), reflected (II),
transmitted (III), and side
(IV) waves; z0 x1 x2 A is the
trajectory determining the
time of arrival of the side
wave at the point A, htot is the
angle of total internal
reflection
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G2ðx; z; tÞ ¼ i
2
lim
d!0

Res
g¼g�2

~C
~ 2
ðgÞ

xgþ z0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p
� z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � g2

p
� t�

24
� Res

g¼gþ
2

~C� 2
ðgÞ

�xgþ z0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p
� z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � g2

p
þ tþ

35 ¼ i
2
lim
d!0

~C� 2
g�2
� �

x� Z g�2
� � þ ~C� 2

gþ
2

� �
xþ Z gþ

2

� �
24 35;

ð1:117Þ

where

ZðgÞ ¼ z0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p � zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � g2

p" #
g and ~C� 2

ðgÞ ¼
~C2ðgÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p : ð1:118Þ

The roots g�2 can be written explicitly, in the form of the solutions of the
associated algebraic quartic equations. However, they are too lengthy because of six
parameters entering (1.107) and will not be used. In view of the causality principle,
we have G2 x; z; tð Þ � 0 for t\ttr, where ttr is the time of arrival of the transmitted
wave at the observation point in the second medium. For t[ ttr , the roots g�2 are
complex and, as evident from (1.107), in terms of (1.111), we have g�2 ¼ gþ

2

� �
.

Therefore, taking into account formulas in (1.112), we obtain for t[ ttr

G2ðx; z; tÞ ¼ i
2
lim
d!0

~C� 2
gþ
2

� �
xþZ gþ

2

� �� ~C� 2
gþ
2

� �
x� Z gþ

2

� �
24 35 ¼ i

2
lim
d!0

~C� 2
gþ
2

� �
xþ Z gþ

2

� �
24 35�

~C� 2
gþ
2

� �
xþ Z gþ

2

� �
24 358<:

9=;
¼ � lim

d!0
Im

~C� 2
gþ
2

� �
xþ Z gþ

2

� � ¼ �Im
~C� 2

g[
2

� �
xþ Z g[

2

� � ;
ð1:119Þ

where g[
2 ¼ gþ

2

��
d¼0.

1.4.5 Discussion and Conclusion

Formulas (1.93) and (1.116) for the primary field, formulas (1.113) and (1.114) for
the secondary field in the first medium, as well as formula (1.119) for the secondary
field in the second medium coincide with the corresponding expressions derived
with the help of CHM in [54].

The main result of our study is a new representation for the field generated by a
pulsed line current in a two-media configuration in the form of the integrals along
finite contours (1.104), (1.105). This method, like the CHM, is applicable to the
problems of pulsed electromagnetic radiation from linear sources in the medium
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formed by an arbitrary finite number N of homogeneous parallel layers with per-
mittivity ej and permeability lj, j ¼ 1; 2; . . .;N: In this case, for the field in the
layers, the integrals along the contour enveloping the interval �nmax; nmaxð Þ; where
nmax ¼ max n1; n2; . . .; nNf g; are similar to representations (1.104), (1.105). Two
methods for calculating these integrals are possible.

The first way is to reduce them, by the Cauchy theorem, to a sum of residues at
the poles of the integrand. These poles are determined by the roots of algebraic
equations that coincide with the equations for the modified Cagniard contours [54].
Therefore this technique, being alternative to the CHM in an analytical sense, is
equivalent to it in a calculating sense.

Another way is to estimate numerically the integrals in (1.104), (1.105). It is
easy to show that they can be reduced to the integrals over the interval 0; nmaxð Þ: For
example, the field in the first medium (1.104) can be represented for n2 [ n1,
t[ tref in the following form:

G1ðx; z; tÞ ¼ � 2
p
t
Zn1
0

f ðgÞ ~C� 1
ðgÞdg

24 þ 2
n22 � n21

Zn2
n1

f ðgÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n22 � g2

q
dg

35;
where

f gð Þ ¼ x2g2 þ n21 � g2
� �

zþ z0ð Þ2�t2

x2g2 � n21 � g2
� �

zþ z0ð Þ2 þ t2
h i2

�4x2t2g2
; ~C� 1

gð Þ ¼
~C1 gð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n21 � g2

p :

We can use a standard integration procedure of any mathematical package to
calculate G1 by this formula. Comparison of the data obtained by this way with the
explicit expression given by (1.114) has demonstrated high efficiency and accuracy
of the approach.

The key point of the CHM is the solution of the algebraic equation determining
the modified Cagniard contour. To do this, the iterative numerical methods are
used. The greatest difficulty inherent in these methods is to choose the initial value
that is close enough to the required zero of the equation [63]. In the paper [54], such
an initial approximation has been proposed for the medium consisting of N isotropic
layers. The efficiency of the iterative method has been demonstrated for N ¼ 2: For
more complex structures containing anisotropic layers, the initial approximation of
this kind is unknown. (The CHM allows us to study as yet the simplest situation
where the source and the observation point are located on the boundary of an
anisotropic medium [64].)

Our approach, being free from such complications, reduces the calculation of the
field generated by a line dipole in a multilayered medium to the standard procedure
of numerical integration along a finite interval.
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1.5 Transition Radiation of a Longitudinal Magnetic
Dipole in the Case of Diffuse Interface

In the overwhelming number of studies on transition radiation (see reviews [65, 66])
the medium models are used in which spatial properties change abruptly. The tran-
sition radiation that occurs when an electric charge moves across the diffuse interface
of two media was first discussed in the paper [67]. The authors used the asymmetric
Epstein layer of relative permittivity eðzÞ ¼ 1þ a= 1þ expð�dzÞ½ �: This model
problem is of particular value since its exact solution, if it were obtained, would allow
one to determine the conditions under which the transition radiation on the diffuse
boundary can be considered approximately the same as in the case of the sharp
boundary. This problem in [67] is reduced to the solution of the one-dimensional
scalar Helmholtz equation with the coefficient involving

ffiffi
e

p
1=

ffiffi
e

pð Þ00 instead of eðzÞ:
Since the analytic solution of this equation is not known, the authors were forced to
make an additional assumption about smallness of grad eðzÞ: Furthermore, the vari-
ation of the function eðzÞ is supposed to be also small since the authors of [67] limited
themselves by the case of the radiation from an ultrarelativistic charge at frequencies
larger than optical frequencies. These assumptions, weakening the initial rigorous
formulation, do not allow one to establish a reliable criterion of the interface
‘sharpness’, which is free from those restrictions.

In this section, for the medium like an asymmetric Epstein layer, we will show
the possibility to solve rigorously the problem of the transition radiation of a
longitudinal magnetic dipole [68].

1.5.1 Problem Formulation and Solution

We assume that a longitudinal magnetic dipole with moment ~m ¼ mz~z is moving
with constant velocity ~V ¼ Vz~z; Vz [ 0 in an isotropic layered medium with con-
stant relative permeability l and relative permittivity

eðzÞ ¼ e1 þ e2 � e1
1þ exp �szð Þ ; s[ 0: ð1:120Þ

For simplicity, we assume that the condition of Vavilov-Cherenkov radiation is
not satisfied. The initial equations are [67]:

rot~H ¼ @~D
@t

þ~JðmÞ; rot~E ¼ � @~B
@t

; ~D ¼ ee0~E; ~B ¼ ll0~H;

~JðmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

z

�
c2

q
mz rt �~z½ �d ~r?ð Þd z� Vztð Þ; c ¼ ffiffiffiffiffiffiffiffiffi

e0l0
p� ��1

;rt ¼ @

@x
~xþ @

@y
~y;

~r? ¼ x~xþ y~y:
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For a plane-layered isotropic medium, these equations with a harmonic time
dependence can be reduced [41] to two scalar equations

e
@

@z
1
e
@

@z
þ k2 þr2

t

� �
rt �~z½ � � ~Ht

x

� � ¼ e
@

@z
1
e

rt �~JðmÞx

	 

;

@2

@z2
þ k2 þr2

t

� �
rt �~z½ � �~Et

x

� � ¼ �ixll0 rt �~z½ � �~JðmÞx

	 

;

where k2 ¼ k20el, k0 ¼ x
ffiffiffiffiffiffiffiffiffi
e0l0

p
, and ~Et

x; ~Ht
x are the projections of the corre-

sponding vectors on the plane x0y: In this case,

rt �~Et
x

� � ¼ 1
ixee0

rt �~JðmÞx

	 

� @

@z
rt �~z½ � � Ht

x

� �� �
;

rt � ~Ht
x

� � ¼ 1
ixll0

@

@z
rt �~z½ � �~Et

x

� �
; Ezx ¼ 1

ixe
rt �~z½ � � ~Ht

x

� �
;

Hzx ¼ � 1
ixll0

rt �~z½ � �~Et
x

� �
:

Since the problem is homogeneous in time and in the direction perpendicular to
the velocity of the dipole, we represent all the functions in Maxwell’s equations in
the form of the Fourier integrals

~Fð~r; tÞ ¼
Z

~Fx;~jðzÞ exp i ~j �~r?ð Þ � ix t½ �dx d~j; ~j ¼ jx~xþ jy~y; ~r ¼~r? þ z~z

with

~JðmÞx;~jðzÞ ¼
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

z

�
c2

q
2pð Þ3Vz

mz exp ix z=Vzð Þ~j�~z½ �:

Then, by introducing the scalar function uðzÞ ¼ ~j�~z½ � �~Et
x;~j

	 

; we arrive at the

equation

d2

dz2
þ k20eðzÞl� j2

� 
uðzÞ ¼ A exp ixz=Vzð Þ;

A ¼
ffiffiffiffiffiffiffiffiffi
4pe0

p
xll0

2pð Þ3Vz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

z

�
c2

q
mzj

2:

ð1:121Þ

The spectral components of the field can be recovered from the solution of this
equation by the formulas
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~Et
x;~j ¼ � i

j2
~j�~z½ �uðzÞ; Ez;x;~j ¼ 0; ~Ht

x;~j ¼ � iffiffiffiffiffiffiffiffiffi
4pe0

p
xll0j2

~j
d
dz

uðzÞ;

Hz;x;~j ¼ � 1ffiffiffiffiffiffiffiffiffi
4pe0

p
xll0

uðzÞ:

The magnetic field vector lies in the radiation plane, which passes through the
vectors ~j and ~V ; that is, the field is an H-polarized wave [69].

We now seek the solution of homogeneous (1.121). By introducing a new
independent variable x ¼ � expð�s zÞ and a new function yðxÞ ¼ ð�xÞ�muðzÞ [12,
67], we pass from (1.121) to the following hypergeometric equation

xð1� xÞy00ðxÞþ s� aþ bþ 1ð Þx½ �y0ðxÞ � abyðxÞ ¼ 0 ð1:122Þ

with the parameters a ¼ mþ k, b ¼ m� k ; s ¼ 1þ 2m,
m ¼ ðsÞ�1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j2 � x2e2e0ll0
p

, k ¼ ðsÞ�1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � x2e1e0ll0

p
,

Re
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � x2e1;2e0ll0

p 	 0:
Let us choose two linearly independent solutions of (1.122) that are regular at

zero [70]:

y1ðxÞ ¼ Fða; b; s; xÞ; y5ðxÞ ¼ x1�sFðaþ 1� s; bþ 1� s; 2� s; xÞ;

where Fð. . .Þ is the hypergeometric function. The corresponding solutions of
homogeneous (1.121) are

u1ðzÞ ¼ expð�mszÞF mþ k; m� k; 1þ 2m;� expð�szÞð Þ;
u5ðzÞ ¼ exp mszð ÞFðk� m;�k� m; 1� 2m;� expð�szÞÞ:

The general solution of inhomogeneous (1.121) is given by

W
A
uðzÞ ¼ � u1ðzÞ

Z
u5ðzÞ exp ixz=Vzð Þdzþ u5ðzÞ

Z
u1ðzÞ exp ixz=Vzð Þdz

þ C1u1 zð ÞþC2u5 zð Þ
ð1:123Þ

with the Wronskian W ¼ lim
z!1 u1u05 � u01u5

� � ¼ 2sm. To calculate these integrals we

use the Barnes representation [70]

Fða; b; s; nÞ ¼ 1
2pi

CðsÞ
CðaÞCðb)

Zcþ i1

c�i1

Cðaþ tÞCðbþ tÞCð � t)
Cðsþ tÞ ð�nÞtdt;

where argð�nÞj j\p, c[ 0 and all the poles of Cð�tÞ are located to the right of the
contour of integration. Let us introduce the notation r ¼ ix=Vzs; f ¼ sz and con-
sider the case where z\0: Then,
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I1 ¼
Z

u5ðzÞexp ixz=Vzð Þdz

¼ 1
s

Z
Fðk� m;�k� m; 1� 2m;� expð�1ÞÞexp[(rþ mÞ1�d1

¼ 1
2pis

Cð1� 2m)exp[(rþ mÞ1�
Cðk� mÞCð � k� m)

Zcþ i1

c�i1

Cðk� mþ tÞCð � k� mþ tÞCð � t)
Cð1� 2mþ tÞðrþ m� tÞ exp(� 1 tÞdt:

The integrand allows us to close the integration contour in the left half-plane
Re t\c. Upon calculating the residues at the poles tn ¼ �n� kþ m,
t0m ¼ �mþ kþ m, n;m ¼ 0; 1; 2; . . . and tþ ¼ rþ m ; we obtain

I1 ¼ 1
s

expðr1ÞCð1� 2m)
Cðk� mÞCð�k� mÞ expðk1Þ

X1
n¼0

ð�1ÞnCð � 2k� nÞCð � mþ kþ n)
n!Cð1� m� k� nÞðrþ kþ nÞ expðn1Þ

(

þ exp �k1ð Þ
X1
n¼0

�1ð ÞnC 2k� nð ÞC �m� kþ nð Þ
n!C 1� mþ k� nð Þ r� kþ nð Þ exp n1ð Þ

�Cðkþ rÞCð � kþ rÞCð � r� m)
Cð1þr� mÞ expð�r1Þ

�
:

Similarly,

I2 ¼
Z

u1ðzÞexp ixz=Vzð Þdz ¼ 1
s

Z
F mþ k; m� k; 1þ 2m;�expð�1Þð Þexp ðr� mÞ1½ �d1

¼ 1
2pis

Cð1þ 2m)exp ðr� mÞ1½ �
Cðmþ kÞCðm� kÞ

Zcþ i1

c�i1

Cðmþ kþ tÞCðm� kþ tÞCð�tÞ
Cð1þ 2mþ t)(r� m� t)

expð�1tÞdt:

Upon calculating the residues at the poles tn ¼ �n� k� m, t0m ¼ �mþ k� m,
n;m ¼ 0; 1; 2; . . ., and t� ¼ r� m in the half-plane Ret\c, we obtain

I2 ¼ 1
s

exp(r1ÞCð1þ 2m)
Cðmþ kÞCðm� kÞ expðk1Þ

X1
n¼0

ð�1ÞnCð � 2k� nÞCðmþ kþ n)
n!Cð1þ m� k� nÞðrþ kþ nÞ exp(n1Þ

(

þ expð�k1Þ
X1
n¼0

ð�1ÞnCð2k� nÞCðm� kþ n)
n!Cð1þ mþ k� n)ðr� kþ nÞ exp(n1Þ

�Cðkþ rÞCðr� kÞCð � rþ m)
Cð1þ rþ mÞ exp(� r1Þ

�
:

Applying the formula pð�1Þnþ 1 ¼ sinðpaÞCðaþ 1� nÞCð�aþ nÞ [70], we
find that
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W
A
uðzÞ ¼ � u1ðzÞexp(r1Þ Cð1� 2m)

s Cðk� mÞCð�k� mÞ �exp(k1ÞS1ð1Þ sin pðmþ kÞ½ �
sinð2pkÞ

�
þ expð�k1ÞS2ð1Þ sin pðm� kÞ½ �

sinð2pkÞ � Cðkþ rÞCð�kþ rÞCð�r� mÞ
Cð1þ r� mÞ exp(� r1Þ

�
þ u5ðzÞexp(r1Þ C 1þ 2mð Þ

s Cðmþ kÞCðm� k)
�exp(k1ÞS1ð1Þ sin pðk� mÞ½ �

sinð2pkÞ
�

� exp(� k1ÞS2ð1Þ sin pðkþ mÞ½ �
sin(2pkÞ � Cðkþ rÞCð � kþ rÞCð � rþ m)

Cð1þ rþ m)
exp(� r1Þ

�
þ C1u1ðzÞþC2u5ðzÞ;

ð1:124Þ

where

S1ð1Þ ¼
X1
n¼0

ð�1ÞnCð�mþ kþ nÞCðmþ kþ nÞ
n!Cð1þ 2kþ n)(rþ kþ n)

expðn1Þ and

S2ð1Þ ¼
X1
n¼0

ð�1ÞnCðm� kþ nÞCð � m� kþ n)
n!Cð1� 2kþ n)ðr� kþ nÞ exp(n1Þ:

The linearly independent solutions u1 and u5 are regular for positive z. We are
interested in z\0; therefore, let us continue these solutions analytically into this
domain [70]: u1 ¼ C13u3 þC14u4; u5 ¼ C53u3 þC54u4: Here

C13 ¼ Cð1þ 2mÞCð � 2k)
Cðm� kþ 1ÞCðm� k)

; C14 ¼ Cð1þ 2mÞCð2k)
Cðmþ kþ 1ÞCðmþ k)

;

C53 ¼ Cð1� 2mÞCð � 2k)
Cð � m� kþ 1ÞCð � m� k)

; C54 ¼ Cð1� 2mÞCð2k)
Cð � mþ kþ 1ÞCð � mþ k)

:

By substituting the above expressions into (1.124), we obtain for z\0

uðzÞ ¼ umðzÞþ urðzÞ; ð1:125Þ

where

W
A
umðzÞ ¼ m

sk
exp(r1Þ �u4ðzÞexp(k1ÞS1ð1Þ Cð1þ 2k)

Cðk� mÞCðmþ k)

�
þ u3ðzÞexpð�k1ÞS2ð1Þ Cð1� 2k)

C �k� mð ÞCðm� kÞ
�
;

W
A
urðzÞ ¼ 1

s
u3ðzÞ C13 Cðr; k;�m)þ sC1½ � � C53 Cðr; k; m)� sC2½ �f g

þ 1
s
u4ðzÞ C14 Cðr; k;�mÞþ sC1½ � � C54 Cðr; k; mÞ � sC2½ �f g;

Cðr; k; m) ¼ Cð1þ 2mÞCðrþ kÞCðr� kÞCð�rþ mÞ
Cðmþ kÞCðm� kÞCð1þ rþ m)

:
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With z ! �1 we have u3ðzÞ � expðk1Þ; u4ðzÞ � expð�k1Þ; consequently

umðzÞ � �
ffiffiffiffiffiffiffiffiffi
4pe0

p
xll0mz

ð2pÞ3Vz

j2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

z

�
c2

q exp ixz=Vzð Þ
j2 � x2e1e0ll0 þx2

�
V2
z

;

i.e. for z ! �1 the term umðzÞ changes into the self field of the longitudinal
magnetic dipole [69]. The term urðzÞ represents the radiation field. For propagating
waves, the inequality k20e1;2l[ j2 holds; choosing the root branch

arg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � k20e1;2l

p
¼ �p=2; we have

m ¼ � i
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2e2e0ll0 � j2

p
; k ¼ � i

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2e1e0ll0 � j2

p
:

Consequently, for z ! �1, u3ðzÞ is the wave outgoing to �1, while u4ðzÞ is
the wave incoming from �1. Since the latter should not exist, the coefficient at
u4ðzÞ must be zero:

C14 Cðr; k;�mÞþ sC1½ � ¼ C54 Cðr; k; mÞ � sC2½ �: ð1:126Þ

Another condition for the constants C1 and C2 we obtain from the representation
(1.123) for the total field for z[ 0: In this case, exp �1ð Þ\1 in the integral I1,
which allows us to close the contour of integration in the half-plane Ret[ c, where
the poles tn ¼ n; n ¼ 0; 1; 2; . . . are located. As a result we have for z[ 0

W
A
uðzÞ ¼ �u1ðzÞ exp rþ mð Þ1½ �C 1� 2mð Þ

C k� mð ÞC �k� mð Þs
X1
n¼0

�1ð ÞnC k� mþ nð ÞC �k� mþ nð Þ
n!C 1� 2mþ nð Þ rþ m� nð Þ e�n1

þ u5ðzÞ exp r� mð Þ1½ �C 1þ 2mð Þ
C mþ kð ÞC m� kð Þs

X1
n¼0

�1ð ÞnC mþ kþ nð ÞC m� kþ nð Þ
n!C 1þ 2mþ nð Þ r� m� nð Þ

þ C1u1ðzÞþC2u5ðzÞ:

With z ! 1, u1 � exp �m1ð Þ is the wave outgoing to þ1, while u5 � exp m1ð Þ
is the wave incoming from þ1. That is why the coefficient at u5 zð Þ must be zero,
C2 ¼ 0; and (1.126) turns into

C1 ¼ C54C r; k; mð Þ � C14C r; k;�mð Þ½ � 1
C14s

¼ �C 1þ mþ kð ÞC rþ kð ÞC �rþ mð ÞC �r� mð Þ
s C 2mð ÞC k� mð ÞC 1� rþ kð Þ :

If we introduce, by analogy with [67], the function
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t m; k; r; exp �1ð Þð Þ ¼ F �mþ k;�m� k; 1� 2m;� exp �1ð Þð Þ

� C 1þ 2mð Þ
C m� kð ÞC mþ kð Þ

X1
n¼0

�1ð ÞnC m� kþ nð ÞC mþ kþ nð Þ
n!C 1þ 2mþ nð Þ �rþ mþ nð Þ exp �n1ð Þ;

then, for z[ 0 the field can be written as

uðzÞ ¼ A
2s2m

exp r1ð Þ �t m;�k; r; exp �1ð Þ½ � þ t �m;�k; r; exp �1ð Þ½ �f g

� A
s2
C mþ kð ÞC 1þ mþ kð Þ
C 1þ 2mð ÞC 1þ 2kð Þ C �r;�m; kð Þu1 zð Þ;

ð1:127Þ

while for z\0 it is

u zð Þ ¼ A
2s2k

exp r1ð Þ �t k; m;�r; exp 1ð Þ½ � þ t �k; m;�r; exp 1ð Þ½ �f g

� A
s2
C mþ kð ÞC 1þ mþ kð Þ
C 1þ 2mð ÞC 1þ 2kð Þ C r;�k; mð Þu3 zð Þ:

ð1:128Þ

In what follows, we will be interested only in the radiation field away from the
boundary ( zj j � 1=sÞ. From (1.128) we obtain for this field

urad zð Þ ¼ � A
s2

� C r; k; mð Þ exp k1ð Þ; z\0

C �r; m; kð Þ exp �m1ð Þ; z[ 0;

(
ð1:129Þ

where

C r; k; mð Þ ¼ C 1þ mþ kð ÞC rþ kð ÞC r� kð ÞC �rþ mð Þ
C 1þ 2kð ÞC m� kð ÞC 1þ mþ rð Þ :

The energy of the forward radiation into the half-space z[ 0 is [69]

Wr
2 ¼

m2
z 1� V2

z

�
c2

� �
ll0

4p2V2
z s

4

Z1
0

dx
Z1
0

xj2 C �r; v; kð Þj j2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2e2e0ll0 � j2

p
dj2;

ð1:130Þ

where the integration is performed over the domain j2 \x2e2e0ll0, which cor-
responds to the waves propagating in the right half-space away from the boundary.
For such j, complex conjugation of the parameters v and l gives m ¼ �m,
k ¼ �k. Taking into account the properties of the gamma function C zð Þ ¼ C zð Þ;
C zð ÞC 1� zð Þ ¼ p=sin pzð Þ; we obtain
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C �r; m; kð Þj j2 ¼ p
2m

k2 � m2
� �

sin 2pmð Þ sin p k� mð Þ½ � sin p r� kð Þ½ �
r2 � m2ð Þ r2 � k2

� �
sin p mþ kð Þ½ � sin p rþ kð Þ½ �

� 1
sin p r� mð Þ½ � sin p rþ mð Þ½ � :

ð1:131Þ

Formulas (1.127)–(1.131) are valid for arbitrary values of the parameter s, which
characterizes the degree of boundary diffusiveness.

1.5.2 The Criterion of the Interface ‘Sharpness’

Let us consider the transition to the sharp interface: s ! 1. The expansion of
(1.131) in the power series in the small parameter 1=s requires the smallness of the
absolute values of 2m, k� m, r� k, rþ k, r� m, rþ m, kþ m, which can be
expressed via four independent values: r� m, r� k. Denote

L�1 ¼ 2p
s r� kj j ¼

2p
x
Vz
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20e1l� j2
p�� �� ; L�2 ¼ 2p

s r� mj j ¼
2p

x
Vz
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20e2l� j2
p�� ��

and suppose the following inequalities hold:

2p=s � L�1 ; 2p=s � L�2 : ð1:132Þ

Then we have

sin 2pmð Þ sin p k� mð Þ½ � sin p r� kð Þ½ �
sin p mþ kð Þ½ � sin p rþ kð Þ½ � sin p r� mð Þ½ � sin p rþ mð Þ½ �
¼ 2m r� kð Þ k� mð Þ

p mþ kð Þ rþ kð Þ r2 � m2ð Þ 1þ 1
3
p2 rþ mð Þ r� mþ 2kð Þþ . . .

� 
and for s ! 1

Cð�r; m; kÞj j2¼ k� mð Þ2
rþ kð Þ2 r2 � m2ð Þ2 : ð1:133Þ

Substituting this formula into (1.130), we obtain the expression for the radiation
energy, which coincides exactly with the results given in [69] for the case of a sharp
boundary.

In evaluating the sharpness of the interface between two media an important role
is played by the notion of the radiation-forming region. In the case of a diffuse
interface, the radiation can be considered approximately the same as in the case of a
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sharp interface if the characteristic width of the transition boundary layer Dz is
much smaller than the length of the radiation-forming region. During the qualitative
evaluation [69] based on the determination of the distance at which the field of a
moving source and the radiation field, moving away from the boundary, are sep-
arated, the following conditions were obtained

Dz � L�1 ; Dz � Lþ
2 : ð1:134Þ

They are equivalent to the conditions in (1.132) (s ¼ 2p=DzÞ. Here, L�1 and Lþ
2

are the lengths of the radiation-forming regions for the radiation moving away from
the interface in the first and second media, respectively.

These two conditions are not enough to transfer from the general solution (1.131)
to the solution (1.133) for a sharp boundary. Two additional conditions in (1.132)
estimate the distance from the boundary, at which the field of the source and the
radiation field incoming on the boundary are separated. Since Lþ

1;2 [ L�1;2, the con-
ditions under which the interface between two media can be considered sharp, are:

Dz � L�1 ; Dz � L�2 : ð1:135Þ

The error of the condition (1.134), as compared with the exact condition (1.135),
shows itself in the situation where the source moves from a less dense into a more
dense medium.

In the paper [67], the following two inequalities were chosen as a criterion of the
interface sharpness:

Dz � Lþ
1 ; Dz � Lþ

2 ; ð1:136Þ

which were less restrictive than those in (1.135). Within the frequency range x2 �
x2

pe ¼ 4pNee2
�
me; considered in [67], where Ne is the electron density of the

material and me is the electron mass, the conditions in (1.136) are sufficient for
passing to the case of a sharp interface in the general relationships for the spectral
density of the radiation, produced at small angles by an ultrarelativistic charge in
the medium with a diffuse boundary.

Thus, we have formulated the problem of transition radiation for a medium with
a diffuse boundary. For the first time, we obtained the rigorous analytical solution of
this problem, without imposing any restrictions on the parameters of the model. By
analyzing the passage to the limiting case of a sharp boundary in this solution, we
have found an exact criterion of the interface ‘sharpness’ in the form of two
inequalities (1.135). It substantially improves the well-known criterion (1.134) and,
in contrast to another version of this criterion (1.136), does not require any
restrictions on the frequency range, the charge velocity and the change in the
permittivity e2 � e1.
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1.6 The Biisotropic Epstein Transition Layer

The isotropic linear media having the properties of chirality and nonreciprocity are
referred to as biisotropic. Chirality leads to circular dichroism and optical activity—
the rotation of the polarization vector as in the Faraday effect, but regardless of the
direction of propagation. If a medium has the property of nonreciprocity, the
electric and magnetic field vectors are not orthogonal, and the phase velocity
depends on the nonreciprocity index [71]. These effects may be important for new
microwave applications [72, 73], if such a medium is realized.

Analysis of electromagnetic waves in inhomogeneous biisotropic media began
from the works [74, 75]. The authors of these papers considered diffraction of a
plane electromagnetic wave on a boundary of the half-space filled with a chiral
medium. In [76] a similar problem was solved for the general case of an arbitrary
biisotropic medium. In a number of works, a similar problem for homogeneous
biisotropic layers has been studied in detail [77]. The papers [78, 79], which use
numerical and analytical methods, are devoted to the investigation of the electro-
magnetic scattering in biisotropic stratified media with continuously varying
parameters. Within the class of inhomogeneous biisotropic media, we proposed in
[80] a model of the medium, for which one can write the analytical solution to the
problem of the plane electromagnetic wave that propagates in this medium along
the normal to the layers. Such a medium is a generalization to the biisotropic case of
the known [12] isotropic Epstein transition layer, which describes a smooth tran-
sition in a plane-layered isotropic medium between the regions with different
refractive indices n1 and n2. In this section, we discuss in detail the methodology for
obtaining this solution. The solution can be expressed in terms of the known
hypergeometric series, as well as for the isotropic Epstein layer. The analytical
expressions for the reflection and transmission coefficients have been derived, from
which it follows that in such a medium the total transmission may occur.

1.6.1 Equations for the Electromagnetic Field
in a Biisotropic Medium

It is well known that biisotropic media are marked by the magnetoelectric coupling,
in which both electric and magnetic excitation leads simultaneously both to the
electric and magnetic polarization. To describe the most general form of such a
medium, in addition to the relative permittivity e and the permeability l, the
nonreciprocity parameter v and the chirality parameter j are used. The constitutive
equations for this medium, on the assumption of harmonic excitation (time
dependence is defined by exp �ixtð ÞÞ, are as follows [71]:
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~D ¼ ee0~Eþ ffiffiffiffiffiffiffiffiffi
e0l0

p
vþ ijð Þ~H; ~B ¼ ffiffiffiffiffiffiffiffiffi

e0l0
p

v� ijð Þ~Eþ ll0~H; ð1:137Þ

where e0, l0 are the permittivities of free space. For lossless media, the dimen-
sionless parameters e, l, v, and j are the real functions of coordinates.

The Maxwell’s equations, in view of (1.137), can be written as

rot~E ¼ ik0g0l~Hþ k0 jþ ivð Þ~E; rot~H ¼ �ik0g
�1
0 e~Eþ k0 j� ivð Þ~H; ð1:138Þ

where k0 ¼ x
ffiffiffiffiffiffiffiffiffi
e0l0

p
, g0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
l0=e0

p
. By eliminating ~H from (1.138), we arrive at

the vector Helmholtz equation

1
k0

rot
1
l
rot~E � rot

jþ iv
l

~E � j� iv
l

rot~Eþ k0
j2 þ v2

l
� e

� �
~E ¼ 0: ð1:139Þ

The parameters e, v, j of the plane-parallel medium depend only on the coor-
dinate z; the magnetic permeability l is considered constant in the whole space. The
electromagnetic wave that propagates in such a medium perpendicularly to the
layers, does not depend on the transversal coordinates x; y: Therefore, (1.139) is
transformed into the system:

d2Ex

dz2
� 2k0j

dEy

dz
� k20 j2 þ v2 � el

� �
Ex � k0

d jþ ivð Þ
dz

Ey ¼ 0

d2Ey

dz2
þ 2k0j

dEx

dz
þ k0

d jþ ivð Þ
dz

Ex � k20 j2 þ v2 � el
� �

Ey ¼ 0

Ez ¼ 0:

8>>>>><>>>>>:
ð1:140Þ

Hence, introducing the auxiliary functions E� ¼ Ex � iEy, we obtain two
independent equations

d2E�
d ~z2

� 2ij
dE�
d ~z

þ n2 � j2 � v2
� �� i j0 þ iv0ð Þ� �

E� ¼ 0; ð1:141Þ

where ~z ¼ k0z; n ¼ ffiffiffiffiffi
el

p
, j0 þ iv0 ¼ d jþ ivð Þ=d~z: Removing the term with the first

derivative by the substitution

E� ¼ ~E� zð Þe� ~zð Þ; e� ~zð Þ ¼ exp �i
Z

j ~zð Þd~z
� 

; ð1:142Þ

we arrive at the following equation for the function ~E� ~zð Þ:

d2~E�
d ~z2

þ n2 � v2 � v0
� �

~E� ¼ 0: ð1:143Þ
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1.6.2 Problem Formulation and Solution

Consider the following version of the plane-layered medium

n2 ~zð Þ ¼ e ~zð Þ ¼ 0:5 1þ ~n2
� �þ 0:5 1� ~n2

� �
th ~s~zð Þ; v ~zð Þ ¼ 0:5~v 1� th ~s~zð Þ½ �;

j ~zð Þ ¼ 0:5~j 1� th ~s~zð Þ½ �; l ¼ 1; ~vj j 
 ~n; ~s ¼ s=k0;

ð1:144Þ

which is the generalization of the known isotropic Epstein transition layer on the
biisotropic case [12]. For ~z ¼ �1, the inhomogeneous biisotropic medium (1.144)
smoothly transits into a homogeneous biisotropic medium with the parameters ~n2,
~v; ~j; while for ~z ¼ þ1 it transits into the isotropic medium with e ¼ l ¼ 1;
v ¼ j ¼ 0: The value D ¼ 2k0=s can be considered an effective width of the
transition layer (1.144), which describes the degree of diffusiveness of the boundary
between the isotropic and biisotropic media.

In view of (1.144), (1.143) takes the form

d2~E�
d ~z2

þ n2� ~zð Þ~E� ¼ 0; ð1:145Þ

where

n2� ~zð Þ ¼ 1� N
exp �2~s~zð Þ

1þ exp �2~s~zð Þ � 4M�
exp �2~s~zð Þ

1þ exp �2~s~zð Þ½ �2 ;

N ¼ 1� ~n2 þ ~v2; 4M� ¼ �~v ~v� 2~sð Þ:

Let a plane linearly polarized electromagnetic wave of unit amplitude be incident
from ~z ¼ þ1 on the biisotropic medium (1.144). The resulting electromagnetic
field is to be found.

It is known [12] that solutions of the equations like the one in (1.145) can be
represented as

~E� ~zð Þ ¼ f0ð Þ�1=2fc=2 1� fð Þ aþb�cþ 1ð Þ=2u fð Þ; ð1:146Þ

where f ¼ � exp �2~s~zð Þ; while the function u fð Þ is the general solution to the
hypergeometric Gauss equation

f 1� fð Þ d
2u

df2
� aþ bþ 1ð Þf� c½ � du

df
� abu ¼ 0: ð1:147Þ

The parameters a, b, c are representable through the parameters ~s; N; M� of the
model:
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a� ¼ 1
2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M�~s�2

p
þ i

2~s
1�

ffiffiffiffiffiffiffiffiffiffiffiffi
1� N

p	 

;

b� ¼ 1
2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M�~s�2

p
þ i

2~s
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� N

p	 

:

Substituting N and M�, we obtain

a� ¼ 1þ 1
2~s

�~vþ i 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 
h i
; b� ¼ 1þ 1

2~s
�~vþ i 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 
h i
;

c ¼ 1þ i
~s
;

ð1:148Þ

where the imaginary parts of the roots is nonnegative.
Equation (1.147) has three proper critical points f ¼ 0; 1;1, in the vicinity of

which the two linearly independent solutions of this equation can be represented in
the form of the converging hypergeometric series ui, i ¼ 1; 2; 3; 4; 5; 6 [70].

The transmitted wave should be outgoing as ~z ! �1, i.e. for f ! �1. In the
vicinity of an infinitely distant point of the complex plane f, the linearly inde-
pendent solutions of (1.147) are

u3 ¼ �fð Þ�aF a; a� cþ 1; a� bþ 1; f�1� �
;

u4 ¼ �fð Þ�bF b; b� cþ 1; b� aþ 1; f�1� �
;

ð1:149Þ

where �f ¼ f exp ipð Þ and F a; b; c; fð Þ � 2F1 a; b; c; fð Þ is a hypergeometric series
[70].

The asymptotics as ~z ! �1 of the functions in (1.146)

~E� zð Þ ¼ exp 1� cð Þ~s~z½ � 1þ exp �2~s~zð Þ½ � a� þ b��cþ 1ð Þ=2u fð Þ

that correspond to the solutions (1.149) are

~E 3ð Þ
� ~zð Þ � exp a� � b�ð Þ~s~z½ �; ~E 4ð Þ

� ~zð Þ � exp b� � a�ð Þ~s~z½ �:

Since a� � b� ¼ �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p .
~s and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p
[ 0; then ~E 3ð Þ

� corresponds to

the waves outgoing to ~z ¼ �1, while ~E 4ð Þ
� corresponds to the ones incoming from

~z ¼ �1. Consequently, one should take as solutions the functions

~E 3ð Þ
� zð Þ ¼ exp 1� cð Þ~s~z½ � 1þ exp �2~s~zð Þ½ � a� þb��cþ 1ð Þ=2u3 fð Þ;

whose behavior at ~z ! þ1 (f ! 0Þ is determined by the following Kummer’s
formula [70]:
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u3 ¼ C 1� cð ÞC a� þ 1� b�ð Þ
C 1� b�ð ÞC a� þ 1� cð Þ u1 �

C cð ÞC 1� cð ÞC a� þ 1� b�ð Þ
C 2� cð ÞC c� b�ð ÞC a�ð Þ u5; ð1:150Þ

where

u1 ¼ F a; b; c; fð Þ; u5 ¼ f1�cF a� cþ 1; b� cþ 1; 2� c; fð Þ;

and C . . .ð Þ is the gamma function. The asymptotics of the solutions of (1.145) that
correspond to the functions u1, u5 are

~E 1ð Þ
� ~zð Þ � exp 1� cð Þ~s~z½ � ¼ exp �i~zð Þ; ~E 5ð Þ

� ~zð Þ � exp 1� cð Þ~s~z½ �
� � exp �2~s~zð Þ½ �1�c¼ �1ð Þ1�cexp � 1� cð Þ~s~z½ � ¼ �1ð Þ1�cexp i~zð Þ:

ð1:151Þ

i.e. ~E 1ð Þ
� corresponds to the wave incoming from ~z ¼ þ1, while ~E 5ð Þ

� corresponds
to the wave outgoing to ~z ¼ þ1. It follows from (1.150) that

C 1� b�ð ÞC a� þ 1� cð Þ
C 1� cð ÞC a� þ 1� b�ð Þ

~E 3ð Þ
� ~zð Þ

¼ ~E 1ð Þ
� ~zð Þ � C cð ÞC 1� b�ð ÞC a� þ 1� cð Þ

C 2� cð ÞC c� b�ð ÞC a�ð Þ �1ð Þc�1~E 5ð Þ
� ~zð Þ:

ð1:152Þ

Since for ~z ! þ1 the behavior of the functions ~E 1ð Þ
� ~zð Þ and �1ð Þc�1~E 5ð Þ

� ~zð Þ are
determined by the asymptotics (1.151) and for ~z ! �1 we have ~E 3ð Þ

� ~zð Þ �
exp �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p
~z

	 

; then these functions define the primary, reflected, and trans-

mitted waves, respectively, while the factors in (1.152) are the transmission
coefficients

T� ¼ C 1� b�ð ÞC a� þ 1� cð Þ
C 1� cð ÞC a� þ 1� b�ð Þ ð1:153Þ

and the reflection coefficients

R� ¼ C c� 1ð ÞC 1� b�ð ÞC a� þ 1� cð Þ
C 1� cð ÞC c� b�ð ÞC a�ð Þ : ð1:154Þ

The left and right parts of the equation (1.152) are two representations of the
solutions of (1.145) ~E� ~zð Þ for ~z\0 and for ~z[ 0; respectively.
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1.6.3 Analysis of the Reflected and Transmitted Fields

As evident from (1.142) and (1.144), the electromagnetic field components can be
written in the form

Ex ¼ 1
2
~Eþ e� þ ~E�eþ
� �

; Ey ¼ 1
2i

~Eþ e� � ~E�eþ
� �

;

where

e� ~zð Þ ¼ exp � i
2
~j ~z� ~s�1 ln exp ~s~zð Þþ exp �~s~zð Þð Þ� �n o

:

Let us consider the field structure away from the region, whose dimensions are
determined by the effective width of the layer, ~zj j � D:

In the region ~z � D, where the medium differs little from the isotropic one, we
have

e� ~zð Þ ¼ 1þO exp �2~s~zð Þ½ �; ~E� � exp �i~zð ÞþR� exp i~zð Þ;
Ex � exp �i~zð Þþ 1

2
Rþ þR�ð Þ exp i~zð Þ; Ey � 1

2i
Rþ � R�ð Þ exp i~zð Þ:

In other words, the primary wave is linearly polarized along the x-axis, while the
reflected wave is

~Eref ¼ 1
2
Rþ þR�ð Þ~x� i

2
Rþ � R�ð Þ~y

h i
exp i~zð Þ ¼ ~Er

ref þ~El
ref ;

where ~Er;l
ref ¼ 0:5Rr;l ~x� i~yð Þ exp i~zð Þ (the upper sign is associated with the super-

script r, the bottom sign is associated with l), ~Er
ref is the right-hand circularly

polarized wave, ~El
ref is the left-hand circularly polarized wave. The reflection

coefficients of these two waves can be represented in the form

Rr;l ¼ R� ¼
~v� i 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 

~v� i 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 
C c� 1ð Þ
C 1� cð ÞR; ð1:155Þ

where

R ¼
C D ~v� i 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 
h i	 

C D �~v� i 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 
h i	 

C D ~vþ i 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 
h i	 

C D �~vþ i 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 
h i	 
 : ð1:156Þ
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The reflected wave takes the form

~Eref ¼ R

1� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p
þ ~n2

C 2iDð Þ
C �2iDð Þ ~n2 � 1

� �
~x� 2~v~y

� �
exp i~zð Þ: ð1:157Þ

When passing to the sharp boundary (D ¼ 0Þ, we get

~Eref ¼ 1� ~n2
� �

~xþ 2~v~y
� �

1þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p
þ ~n2

	 
�1
exp i~zð Þ: ð1:158Þ

As seen from (1.157) and regardless of the width of the layer, when a plane
linearly polarized wave is reflected from a biisotropic half-space with n2 ¼ e ¼
~n2 [ 1; v ¼ ~v[ 0 (v ¼ ~v\0Þ, the plane of polarization rotates anticlockwise
(clockwise) by the angle of

uref ¼ arctg
2~v

1� ~n2
; ð1:159Þ

if viewed in the direction of the reflected wave.
Expressions (1.158) and (1.159) differ from those obtained in [76] by the sign of

~v: It is interesting to note that the reflection from the biisotropic transition layer
(1.144), in contrast to the isotropic layer, may disappear completely. Indeed, if the
following conditions on the non-reciprocity parameter ~v ¼ ~v0, the refraction index
~n ¼ ~n0, and the layer width D ¼ D0 are satisfied:

~v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
~n20 � 1

q
; ~v0D0 ¼ m; m ¼ 1; 2; . . .; ð1:160Þ

then the coefficients Rr;l (1.155) vanish due to the second gamma function in the
denominator (1.156).

With the increase in the width of the transition layer, the coefficients Rr;l decay
exponentially to zero. Using the known formulas for gamma functions, we obtain
from (1.155)

Rr;l
�� �� � exp �2pDð Þfor ~vj j\~v0; exp �2pD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 

for ~vj j[ ~v0

n o
; D � 1;

ð1:161Þ

where ~v0 is defined by (1.160).
Consider the field transmitted into the biisotropic media, away from the transi-

tion layer. For ~z � �D we have
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e� ~zð Þ ¼ exp �i~j~zð Þ 1þO exp 2~s~zð Þð Þ½ �; ~E� ¼ T�~E
3ð Þ
� � T� exp �i~z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 

;

Ex � 1
2
Tþ exp �i~z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p
� i~j~z

	 

þ T� exp �i~z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p
þ i~j~z

	 
h i
;

Ey � 1
2i

Tþ exp �i~z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p
� i~j~z

	 

� T� exp �i~z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p
þ i~j~z

	 
h i
:

Hence, the wave transmitted through the transition layer is

~Etr ¼ ~Er
tr þ~El

tr; ð1:162Þ

where ~Er
tr ¼ 0:5Tr ~x� i~yð Þ exp �ikþ~zð Þ is the right-hand circularly polarized wave,

while~El
tr ¼ 0:5Tl ~xþ i~yð Þ exp �ik�~zð Þ is the left-hand circularly polarized wave with

the propagation constants k� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p
� ~j; Tr ¼ Tþ , Tl ¼ T�. It is easy to

verify that

Tr

Tl
¼

1þ ~n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~v

~

2
r

þ i ~v
~

 !

1þ ~n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~v

~

2
r

� i ~v
~

 ! ¼ 1þ ~n exp ihð Þ
1þ ~n exp �ihð Þ ¼ exp iwtrð Þ; ð1:163Þ

where ~v
~
¼ ~v=~n ¼ sin h, hj j 
 p=2; and

wtr ¼ arctg
2~n sin hþ ~n2 sin 2h

1þ 2~n cos hþ ~n2 cos 2h
; wtrj j 
 p� arctg

2~n
~n2 � 1

: ð1:164Þ

Thus, regardless of the width of the transition layer D; the two waves,~Er
tr and~E

l
tr,

into which the primary wave is split (when transmitting into the biisotropic med-
ium), have the amplitudes equal in absolute values and shifted in phase by wtr . By
representing Tl in the form

Tl ¼
C D ~v� i 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 
h i	 

C D ~vþ i 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 
h i	 
 C 2iD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 

C �2iDð Þ

sin 2piD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 

sin pD ~vþ i 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 
h in o ;

ð1:165Þ

we find that

Trj j ¼ Tl
�� �� ¼ C 2iD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 

C �2iDð Þ

������
������ �

sin 2piD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 

sin pD ~vþ i 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~n2 � ~v2

p	 
h in o
������

������; ð1:166Þ
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and with no reflection (see (1.160)) we get Trj j ¼ Tl
�� �� ¼ 1: From notions of ~Er

tr and
~El
tr , we can see that in this case all the energy of the primary wave is distributed

between these two waves.
Thus, the isotropic Epstein transition layer has been generalized to the case of

biisotropic medium. We have also found the explicit analytical solution to the
problem of a linearly polarized wave normally incident onto the Epstein layer. The
main results are as follows.

• The reflected wave does not depend on the chirality of the medium and has,
regardless of the width D; the polarization shifted by an angle of uref as com-
pared to the case of the isotropic half-space with the same refraction index
n ¼ ~n:

• In a biisotropic half-space, the transmitted wave is split into the right-hand and
the left-hand circularly polarized waves that are equal in amplitude and shifted
in phase by an angle of wtr .

• Regimes with zero reflection coefficients, which occur only in the case of the
nonreciprocal medium (v 6¼ 0Þ with a diffuse boundary (D 6¼ 0Þ, have been
revealed. They are determined by the following relationships between the
nonreciprocity index ~v ¼ ~v0, the refraction index ~n ¼ ~n0, and the effective width
of the transition layer D ¼ D0 : ~v0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
~n20 � 1

p
, ~v0D0 ¼ m; m ¼ 1; 2; . . .

1.7 Negative Refraction in Isotropic Double-Negative
Media

1.7.1 Negative Refraction Phenomenon in Homogeneous
Double-Negative Media

In recent years, a growing number of publications have analyzed the unusual effects
in the propagation of electromagnetic waves in the isotropic media with negative
relative permittivity e and permeability l—the so-called double negative (DNG) or
left-handed media. One such effect is the so-called negative refraction (NR), in
which the beam refracted in a DNG medium lies in the plane of incidence on the
same side of the normal to the interface, as the incident beam. At the same time, the
wave vector of the transmitted wave is directed towards the interface. Since there is
no isotropic media with e\0; l\0 in the natural environment, then, in the
experiments, the artificial composite materials in the form of three-dimensional
periodic structures [81] are used as DNG media. As is well known [82], when an
electromagnetic wave, whose wavelength is comparable to the period, is propa-
gating through a periodic medium, the NR effect may also occur. In this case, it is
impossible to introduce the effective permeabilities of the medium. Since in the
experiments [83, 84] revealed the NR, the values of e and l, as well as the
wavelength inside the material, were not determined directly and were assessed
implicitly, the authors of some works expressed doubt [85] about that this effect is
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inherent in a continuous isotropic medium with negative permittivity rather that it is
caused by the periodicity of the material.

In this section, following the approach outlined in [86], we explore the possi-
bility that the NR effect occurs in isotropic media. A model is suggested of an
inhomogeneous isotropic flat-layered lossless medium comprising spatial regions
with conventional and DNG media and smooth, monotonic transition between
them. The analytical description of the plane electromagnetic wave propagating
through such a medium is found, which demonstrates the NR effect in the region
occupied by a DNG isotropic medium. For the first time, this is shown without any
additional assumptions, as a direct consequence of Maxwell’s equations and the
energy conservation law. In addition, letting the size of the transition region to zero,
we verify the conditions on a sharp interface between the conventional and
the DNG homogeneous media. The proposed model has allowed us to obtain for the
first time the accurate description for the electromagnetic field distribution in the
vicinity of the point at which the medium permeabilities e and l are zero.

When an electromagnetic wave is passing from a conventional medium to a
DNG medium, the NR effect can be seen from the standard Fresnel formulas, if we
assume that they remain valid in the case where one of the media is DNG. If the

E�polarized wave ~Ei ¼ exp i~k2~r � ixt
	 


~y; ~k2 ¼ k2 sin h0; 0;�k2 cos h0f g; ~r ¼
x~xþ y~yþ z~z is incident from the half-space z[ 0 with the relative permeabilities
e2 [ 0 and l2 [ 0 at an angle h0, the wave transmitted into the half-space z\0
with the relative permeabilities e1 [ e2, l1 [ l2 has the form [87]

~Et ¼ 2l1k2 cos h0

l1k2 cos h0 þ l2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � k22 sin

2 h0
q exp i~k1~r � ixt

	 

~y: ð1:167Þ

Its wave vector is

~k1 ¼ k2 sin h0; 0;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � k22 sin

2 h0

q� �
; k2j ¼ x2e0l0ejlj; j ¼ 1; 2; ð1:168Þ

while the average energy flux is

~P1 ¼ ~Et
�� ��2~k1.2l1l0x: ð1:169Þ

In the denominator of (1.167) we have the sum of two positive values.
Let us pass to the case where e1\0 and l1\0: Then the first term in the

denominator in (1.167) will be negative; and for the denominator not to be zero, we

should choose the second branch of the square root, that is replace
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � k22 sin

2 h0
q

by �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � k22 sin

2 h0
q

. At the same time, as it seen from (1.168), (1.169), the signs

of the longitudinal component of~k1 and the transversal component of ~P1 change.

72 L. Pazynin



Thus, assuming that the Fresnel formulas for DNG media are valid, we arrive at
the NR effect. However, this assumption is not obvious, since the boundary con-
ditions for a pair of conventional media and the radiation condition suggesting that
the wave vector of the transmitted wave is directed away from the interface are used
in the derivation of these formulas from Maxwell’s equations.

To avoid any suggestion, one should consider a medium without sharp
boundaries, with the permeabilities being smooth (analytic) functions of the spatial
variable and changing from positive to negative values.

1.7.2 A Model of Smoothly Inhomogeneous Flat-Layered
Double Negative Medium. Solution of the Problem
of Transmission of a Plane Wave

The propagation of electromagnetic waves in an inhomogeneous isotropic stratified
lossless medium with the permeabilities e zð Þ and l zð Þ is described for E-polariza-
tion by the equations:

@2Ey

@x2
þ @2Ey

@z2
þ l

d
dz

1
l

� �
@Ey

@z
þx2ee0ll0Ey ¼ 0;

@Ey

@z
¼ �ixll0Hx;

@Ey

@x
¼ ixll0Hz; Ex ¼ Ez ¼ Hy ¼ 0:

ð1:170Þ

The substitutions ~E ! ~H; ~H ! �~E; ee0 ! ll0, ll0 ! ee0 in (1.170) yield the
corresponding equations for H-polarization.

A plane E-polarized wave in such a medium can be represented as

Ey ¼ Z zð Þ exp ij1x� ixtð Þ: ð1:171Þ

It follows from (1.170) that the unknown amplitude function Z zð Þ is the solution
of the following equation

d2Z
dz2

� 1
l
dl
dz

dZ
dz

þ x2ee0ll0 � j21
� �

Z ¼ 0; �1\z\1; ð1:172Þ

with the evident condition z ! þ1. Here j1 ¼ k1 sin h, k1 ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1e0l1l0

p
, h

is the angle of incidence of the primary wave, e1 ¼ e 1ð Þ [ 0; l1 ¼ l 1ð Þ [ 0:
In order to describe a smooth transition from the conventional medium (e [ 0;

l[ 0 for z [ 0Þ to the DNG medium (e\ 0; l\0 for z\ 0Þ, consider the
following distribution of the permeabilities:

e ¼ e1a zð Þ; l ¼ l1a zð Þ; a zð Þ ¼ th z=Dð Þ; ð1:173Þ

where the parameter D[ 0 defines the width of the transition region in the vicinity
of the point z ¼ 0: With the help of the substitution
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Z zð Þ ¼ nqu nð Þ; n ¼ ch�2 z=Dð Þ; q ¼ 1
2
ik1D cos h; ð1:174Þ

(1.172) is rearranged to the hypergeometric equation

n 1� nð Þ d
2u

dn2
þ c� aþ bþ 1ð Þn½ � du

dn
� abu ¼ 0 ð1:175Þ

with the parameters

a ¼ 1
2
ik1D 1þ cos hð Þ; b ¼ � 1

2
ik1D 1� cos hð Þ; c ¼ 1þ ik1D cos h:

ð1:176Þ

The function n zð Þ maps the strip Imzj j\pD=2 of the complex plane z onto a
double-sheeted Riemann surface of the complex variable n with the branch points
n ¼ 0 and n ¼ 1: At the same time, the real semiaxis (�1\z\0Þ is mapped onto a
segment 0\n\1; arg 1� nð Þ ¼ 2pð Þ of the first sheet, while the semiaxis 0\z\1
is mapped onto a segment 1[ n[ 0; arg 1� nð Þ ¼ 0ð Þ of the second sheet.

Following the general theory of hypergeometric equations [70], we find the
desired solution of (1.175). It is known that the points n ¼ 0; 1;1 are the singular
points of this equation, in the vicinity of which the standard pairs of its linearly
independent solutions are determined: u1 and u5, u2 and u6, u3 and u4, respectively.

Let us choose as a solution of (1.175) in the vicinity of the point n ¼ 0 of the
first sheet of the Riemann surface (this point corresponds to the value
z ¼ �Dln 1þ ffiffiffiffiffiffiffiffiffiffiffi

1� n
p� �� ffiffiffi

n
p� ���

n¼0¼ �1) the function [70]

u1 ¼ F a; b; c; nð Þ ¼
X1
n¼0

að Þn bð Þn
cð Þnn!

nn; nj j 
 1: ð1:177Þ

The alternative, with a choice of the function u5 as a solution of (1.175) in the
vicinity of the point n ¼ 0 will be discussed below.

To obtain the solution of (1.175), and, therefore, in view of (1.174), of (1.172) as
well, on the entire axis �1\z\1, one should perform the following steps: (i) to
continue analytically, on the first sheet of the Riemann surface, the function u1ðnÞ
from the neighborhood of the point n ¼ 0 to the neighborhood of the point n ¼ 1;
(ii) to go onto the second sheet in this neighborhood; (iii) to perform the analytic
continuation on this sheet into a vicinity of the point n ¼ 0:

Since for z ! �1 we have n � 4 exp 2z=Dð Þ � 0; u1 � 1; then the function

Z � nq � 4q exp ik1z cos hð Þ ð1:178Þ
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in view of (1.171), will describe the field that is a plane wave, whose phase velocity
is directed towards positive z as z ! �1. For the analysis of the field at small zj j;
as seen from (1.174), the function u1 nð Þ must be analytically continued into a
neighborhood of the point n ¼ 1: Given that the parameters (1.176) are related by
the equation c� a� b ¼ 1; to do this, one should use the equality [70]

F a; b; aþ bþ 1; nð Þ ¼ C cð Þ
C aþ 1ð ÞC bþ 1ð Þ �

C cð Þ
C að ÞC bð Þ 1� nð Þ

X1
n¼0

aþ 1ð Þn bþ 1ð Þn
nþ 1ð Þnn!

� h00n � ln 1� nð Þ� �
1� nð Þn; 1� nj j\1;

ð1:179Þ

where h00n ¼ w nþ 1ð Þþw nþ 2ð Þ � w aþ nþ 1ð Þ � w bþ nþ 1ð Þ; C . . .ð Þ is the
gamma function and w xð Þ is the logarithmic derivative of the gamma function.
Hence, it follows that when the point n ¼ 1 is passed around once in the negative
direction 1� nð Þ ! 1� nð Þ exp �2pið Þ; the following transformation occurs:

u1 nð Þ ! ~u1 nð Þ ¼ u1 nð Þ � 2piabu0u6 nð Þ; 1� nj j\1; ð1:180Þ

where ~u1 nð Þ stands for the values of the solution u1 nð Þ on the second sheet,

u0 ¼ C cð Þ
C aþ 1ð ÞC bþ 1ð Þ ; and u6 nð Þ ¼ 1� nð ÞF aþ 1; bþ 1; 2; 1� nð Þ:

Now continue the function ~u1 nð Þ from the vicinity of the point n ¼ 1 on the
second sheet into the vicinity of the point n ¼ 0; using the following Kummer’s
relationship [70]

u6 ¼ C61u1 þC65u5; ð1:181Þ

where

C61 ¼ C cþ 1� a� bð ÞC 1� cð Þ
C 1� að ÞC 1� bð Þ ; C65 ¼ C cþ 1� a� bð ÞC c� 1ð Þ

C c� að ÞC c� bð Þ :

Upon the substitution of (1.181) into (1.180) we obtain for nj j\1 on the second
sheet of the Riemann surface:

~u1 ¼ B11u1 þB15u5; ð1:182Þ

where

1 New Analytical Solutions of Selected Electromagnetic Problems … 75



u5 ¼ n1�cF �a;�b; 2� c; nð Þ; B11 ¼ ch pk1Dð Þ � exp �pk1D cos hð Þ
sh pk1D cos hð Þ ;

B15 ¼ 2pi
ik1D cos hð ÞC2 ik1D cos hð Þ

0:5ik1D sin hð Þ2C2 0:5ik1D cos hþ 1ð Þ½ �C2 0:5ik1D cos h� 1ð Þ½ � :

Taking into account that n� 4 exp �2z=Dð Þ� 0 as z ! þ1, from equalities
(1.174) and (1.182) we get

Z ¼ nq B11u1 þB15u5ð Þ � 4qB11 exp �ik1z cos hð Þþ 41�cþ qB15 exp ik1z cos hð Þ:
ð1:183Þ

Since for z ! þ1 the medium (1.173) goes into a conventional medium with
constant permeabilities e1 and l1, then the first term in (1.183) describes the wave
incoming on the transition region while the second term describes the reflected
wave. Expressions (1.178) and (1.183) are the principal terms in the expansions for
large zj j of the function Z zð Þ for z\0 and z[ 0; respectively. Normalizing this
function by the factor at the first exponent in (1.183), we obtain the coefficients of
reflection and transmission for the plane wave (1.171) propagating through the
transition layer (1.173):

R ¼ 41�cB15B
�1
11 ; T ¼ B�1

11 : ð1:184Þ

In view of the known formula C iyð Þj j2¼ p=y sin pyð Þ; we find their absolute
values:

Rj j ¼ ch pk1Dð Þ � ch pk1D cos hð Þ
ch pk1Dð Þ � exp �pk1D cos hð Þ ; Tj j ¼ sh pk1D cos hð Þ

ch pk1Dð Þ � exp �pk1D cos hð Þ :

ð1:185Þ

1.7.3 Analysis of the Expressions for Fields

In going to a sharp boundary (D ! 0Þ, the coefficients behave, as they must [81], like
Rj j ! 0; Tj j ! 1: As seen from (1.178), (1.183) and (1.184), the field components
and the Poynting vector away from the transition region ( zj j � D) are as follows:

Ey ¼ exp ik1 �z cos hþ x sin hð Þ � ixt½ �; Hx ¼ g1 cos hEy; Hz ¼ g1 sin hEy;

~P ¼ 1
2
g1 sin h; 0;� cos hf g; g1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1=l1

p
ð1:186Þ

for the incident wave,
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Ey ¼ R exp ik1 z cos hþ x sin hð Þ � ixt½ �; Hx ¼ �g1 cos hEy; Hz ¼ g1 sin hEy;

~P ¼ 1
2
g1 Rj j2 sin h; 0; cos hf g

ð1:187Þ

for the reflected wave, and

Ey ¼ T exp ik1 z cos hþ x sin hð Þ � ixt½ �; Hx ¼ g1 cos hEy; Hz ¼ �g1 sin hEy;

~P ¼ 1
2
g1 Tj j2 � sin h; 0;� cos hf g

ð1:188Þ

for the transmitted wave.
It is easy to verify that the NR occurs for the wave transmitted into the region

with negative e and l. The above relations are also valid for all z in the limiting case
D ! 0 of a sharp interface between the conventional and DNG homogeneous
media. It follows from (1.186), (1.187) and (1.188) that the well-known continuity
conditions are fulfilled on this boundary for the tangential components of ~E and ~H
and for the normal components of ~D and ~B:

Now find, using (1.179), the field in the transition region between two media for
small zj j: Since for zj j � D we have:

n ¼ 1� z=Dð Þ2 þO z=Dð Þ4
h i

;

u1 nð Þ ¼ u0 1� ab h000 � ln 1� nð Þ� �
1� nð ÞþO 1� nð Þ2ln 1� nð Þ

h in o
;

ln 1� nð Þ ¼ ln z=Dð Þ2 þ 2pi 0 for z[ 0; 1 for z\0f gþO z=Dð Þ2
h i

:

Then we arrive at the following representations for the field components:

Ey ¼ u0 1� abh� þ q� ab ln z2
� � z

D

	 
2
þO

z
D

	 
4
ln

z
D

	 
� � �
� exp ij1x� ixtð Þ;

Hx ¼ 2u0
ixl1D

abh� þ q� ab ln z2
� �þO

z
D

	 
2
ln

z
D

	 
� � �
� exp ij1x� ixtð Þ;

Hz ¼ g1D
u0 sin h

z
1� abh� þ q� 1

3
� ab ln z2

� 
z
D

	 
2
þO

z
D

	 
4
ln

z
D

	 
� � �
� exp ij1x� ixtð Þ;

ð1:189Þ

where
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h� ¼ h000 þ 2 lnD� 2pi
0 for z[ 0

1 for z\0

( )
:

As seen from these expansions, the components of the magnetic field intensity
have singularities at z ¼ 0 : Hx � ln z; Hz � 1=z: It is interesting that in the case of
oblique incidence of the H-polarized wave onto the conventional flat-layered
medium ðe zð Þ; l ¼ const[ 0Þ in a neighborhood of zero of its dielectric permit-
tivity, the respective components of the electric field have the same singularities, as
has been shown in [88–90]. These singularities disappear at normal incidence, as
well as for all angles h when passing to a sharp interface. For arbitrary values of the
model parameters, this is the case when taking into account the absorption in the
medium.

Returning to formula (1.177), we would like to note that if the function u5,
instead of u1, is chosen as a solution in the vicinity of the point n ¼ 0; the we get
the usual refraction law for a plane wave transmitted into a medium with negative e
and l. As this takes place, we have the following expressions for absolute values of
the reflection and transmission coefficients:

Rj j ¼ ch pk1Dð Þ � exp pk1D cos hð Þj j
ch pk1Dð Þ � ch pk1D cos hð Þ ; Tj j ¼ sh pk1D cos hð Þ

ch pk1Dð Þ � ch pk1D cos hð Þ :

The nonphysical nature of these formulas is evident: at normal incidence, the
coefficients become infinite. That is, the selection of the function u5 results in the
usual refraction law, but violates the energy conservation law.

Thus, we have shown the following. There exist two formal solutions of
Maxwell’s equations that describe the transmission of a plane wave from a con-
ventional to a DNG media. One of them, which corresponds to the conventional
refraction of a plane wave, is inconsistent with the energy conservation law and
should be disregarded. The other, correct, solution obeying this law corresponds to
the NR in the considered medium.

1.8 Distorting Coatings as an Alternative to Masking
Coatings

1.8.1 Transformation Optics, Masking Coatings, Distorting
Coatings

One of urgent problems in the applied radio physics is the radar camouflage with
the help of special electromagnetic materials. In recent years, there was a con-
ceptual and methodological breakthrough in this field [91]. A novel approach to this
problem based on the idea of ‘wave flow’ was presented in 2006, in the works [92,
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93]. Its physical meaning is that a masking coating has to bend the propagation
direction of the electromagnetic radiation incident on it and cause the wave to pass
round the masked region, after which the initial direction of propagation is restored
maintaining the desired phase. Thus, the electromagnetic waves cannot penetrate
into the area bounded by this coating; and any object being placed inside it becomes
invisible. To find the parameters of such a coating, the method of coordinate
transformations is used, which is based on the fact that Maxwell’s equations are
invariant with respect to arbitrary coordinate transformations, if the permittivity and
the permeability are properly redefined. This approach received the name trans-
formation optics (TO) [94]. With the help of the TO, a wide range of masking
coatings has been studied [91]. The overwhelming majority of the works listed in
the review [91] are based on numerical experiments; for three-dimensional models
only the case of spherical surfaces has been studied analytically [95–98]. It has been
shown that all these coatings are anisotropic gradient materials, whose permittivity
and permeability tensor elements are less than unity. The problem of practical
realization of such materials is extremely complex and far from being solved [99].
In addition to the inhomogeneity and anisotropy, for a number of important types of
coatings, including spherical, the vanishing of the permittivity and permeability
components on its inner surface is also required. That is, the surface consists
entirely of critical points, which greatly complicates both the analysis of the cor-
responding electrodynamic problem and the practical implementation of such
coatings.

In this section, we investigate the alternative way of the object masking—the
distortion of its image, instead of using masking coatings [100].

1.8.2 Radical Distortion of Radar Image by Applying
a Special Coating on the Metamaterial Surface

The geometry of the problem is shown in Fig. 1.13. In the spherical coordinate
system r; #, /, a horizontal electric dipole is located at the point r; #;/f g ¼
b; 0; 0f g; b[R3; the time dependence is given by exp �ixtð Þ:
Suppose one should construct the coating in the form of a spherical layer

R2\r\R3 on a perfectly conducting sphere of radius r ¼ R2. Following the TO
methodology, let us consider the coordinate transformation

~r ¼ R3 � R1

R3 � R2
r � R2ð ÞþR1 ¼ f rð Þ; ~# ¼ #; ~/ ¼ /; ð1:190Þ

which maps the spherical layer 0\R1\R2 
 r
R3 onto the spherical layer
R1 
~r
R3. Under this transformation, Maxwell’s equations for a homogeneous
isotropic medium with permittivity e0 and permeability l0 pass into Maxwell’s
equations for the inhomogeneous anisotropic medium, whose relative permittivity
and permeability are defined by the following diagonal tensors [101]:
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e ¼ l ¼ diag Q ~#Q~/

.
Q~r;Q~rQ~/

.
Q ~#;Q~rQ ~#

.
Q~/

n o
; ð1:191Þ

where

Q~r ¼ h~r
hr

@~r
@r

; Q ~# ¼ h ~#

h#

@ ~#

@#
; Q~/ ¼ h~/

h/

@~/
@/

;

and hr ¼ 1; h# ¼ r; h/ ¼ r sin#, h~r ¼ 1; h ~# ¼ ~r; h~/ ¼ ~r sin ~#:

Thus we get for the permittivity and the permeability:

e ¼ l ¼ diag arr; a##; a//
� �

;

arr ¼ R3 � R1

R3 � R2
1� R2 � R1

R3 � R1

R3

r

� �2

; a## ¼ a// ¼ R3 � R1

R3 � R2
:

ð1:192Þ

It is easily seen that e and l do not vanish in the layer R2 
 r
R3.

Now we use the expansion in vector spherical harmonics ~Y jð Þ
lm #;/ð Þ; where

j ¼ �1; 0; 1; to find the fields [102]. In the region R3\r; the total electromagnetic
field is equal to the sum of the field of a horizontal electric dipole

~Ei ¼ J eð Þ

4
ffiffiffi
p

p
br

ffiffiffiffiffi
l0
e0

r X1
l¼1

X
m¼�1

ffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
mfð1Þ0l k0bð Þ
n

w0
l k0rð Þ~Y 1ð Þ

lm #;/ð Þ
h

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þp
k0r

wl k0rð Þ~Y �1ð Þ
lm #;/ð Þ

#
� f 1ð Þ

l k0bð Þwl k0rð Þ~Y 0ð Þ
lm #;/ð Þ

)
;

ð1:193Þ

Fig. 1.13 Geometry of the
problem
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~Hi ¼ � J eð Þ

4
ffiffiffi
p

p
br

X1
l¼1

X
m¼�1

ffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
mf 1ð Þ0

l k0bð Þwl k0rð Þ~Y 0ð Þ
lm #;/ð Þ

n
þ f 1ð Þ

l k0bð Þ w0
l k0rð Þ~Y 1ð Þ

lm #;/ð Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þp
k0r

wl k0rð Þ~Y �1ð Þ
lm #;/ð Þ

" #) ð1:194Þ

and the scattered field

~Es ¼ 1
r

X1
l¼1

X
m¼�1

~Elmf
1ð Þ
l k0rð Þ~Y 0ð Þ

lm #;/ð Þ
n

� ~Hlm

ffiffiffiffiffi
l0
e0

r
f 1ð Þ0
l k0rð Þ~Y 1ð Þ

lm #;/ð Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þp
xe0r

f 1ð Þ
l k0rð Þ~Y �1ð Þ

lm #;/ð Þ
" #)

;

ð1:195Þ

~Hs ¼ 1
r

X1
l¼1

X
m¼�1

~Hlmf
1ð Þ
l k0rð Þ~Y 0ð Þ

lm #;/ð Þ
n

þ ~Elm

ffiffiffiffiffi
e0
l0

r
f 1ð Þ0
l k0rð Þ~Y 1ð Þ

lm #;/ð Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l lþ 1ð Þp
xl0r

f 1ð Þ
l k0rð Þ~Y �1ð Þ

lm #;/ð Þ
" #)

:

ð1:196Þ

Here, k0 ¼ x
ffiffiffiffiffiffiffiffiffi
e0l0

p
, J eð Þ is the amplitude of the elementary electric current,

f 1ð Þ0
l k0bð Þ ¼ df 1ð Þ

l xð Þ
.
dx
���
x¼k0b

, w0
l k0rð Þ ¼ dwl xð Þ=dxjx¼k0r. The Riccati-Bessel

functions [103] can be expressed in terms of the cylindrical functions as

wl xð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
px=2

p
Jlþ 1=2 xð Þ; f 1ð Þ

l xð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
px=2

p
H 1ð Þ

lþ 1=2 xð Þ:

Formulas (1.193) and (1.194) are given for r\b: For b\r; one should substitute

f 1ð Þ
l $ wl.
In the anisotropic layer R2\r\R3, the total field can be represented as the

expansion [104]:

~E ¼ 1
r

X1
l¼1

X
m¼�1

E
_ð1Þ
lm f ð1Þl ðrÞþE

_ð2Þ
lm f ð2Þl ðrÞ

� �
~Y ð0Þ
lm ð#;/Þ

� 1
xet

H
_ ð1Þ
lm gð1Þ0l ðrÞþH

_ ð2Þ
lm gð2Þ0l ðrÞ

� 
~Y ð1Þ
lm ð#;/Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp
xerr

H
_ ð1Þ
lm gð1Þl ðrÞþH

_ ð2Þ
lm gð2Þl ðrÞ

� 
~Y ð�1Þ
lm ð#;/Þ

)
;

ð1:197Þ
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X
m¼�1

H
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� 
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)
;

ð1:198Þ

where f jð Þ
l rð Þ are the independent solutions of the equation

lr
d
dr

1
lt

dfl
dr

þ x2etlr �
l lþ 1ð Þ

r2

� 
fl ¼ 0; ð1:199Þ

while g jð Þ
l rð Þ are the independent solutions of the equation

er
d
dr

1
et

dgl
dr

þ x2erlt �
l lþ 1ð Þ

r2

� 
gl ¼ 0;

er ¼ e0arr; et ¼ e0a## ¼ e0a//; lr ¼ l0arr; lt ¼ l0a## ¼ l0a//;

ð1:200Þ

and g jð Þ0
l rð Þ ¼ dg jð Þ

l rð Þ
.
dr; f jð Þ0

l rð Þ ¼ df jð Þ
l rð Þ

.
dr: Taking into account (1.192), one

can easily obtain the independent solutions of (1.199) and (1.200):

f 1ð Þ
l ¼ g 1ð Þ

l ¼ f 2ð Þ
l k0r

_
	 


; f 2ð Þ
l ¼ g 2ð Þ

l ¼ f 1ð Þ
l k0r

_
	 


;

r_ ¼ R3 � R1

R3 � R2
r � R3

R2 � R1

R3 � R2
:

ð1:201Þ

The continuity conditions for the tangential components of the total field on the
boundary r ¼ R3 yield:
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:

While the conditions on the perfectly conducting sphere r ¼ R2 yield:
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E
_ð1Þ
lm f ð1Þl R2ð ÞþE

_ð2Þ
lm f ð2Þl R2ð Þ ¼ 0; H

_ ð1Þ
lm gð1Þ

0

l R2ð ÞþH
_ ð2Þ
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0

l R2ð Þ ¼ 0:

Solving the system of all these equations with respect to the unknown values

E
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_ 2ð Þ
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_ 1ð Þ
lm , H

_ 2ð Þ
lm , and ~Elm, ~Hlm we obtain, in particular,
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Substituting these values into (1.195), (1.196) gives the expression for the
scattered field that results from the interaction of a horizontal electric dipole with a
perfectly conducting sphere of radius R2, coated with a layer of a magneto-dielectric
material of thickness R3 � R2 and with the permittivity and permeability given by
(1.192). It is easy to see that outside the layer (that is for r[R3), this field is
exactly the same as the field generated by the same source and scattered by the
perfectly conducting sphere of radius R1\R2 [105].

Thus, by using a perfectly conducting sphere as an example, we have rigorously
proved that the application of some special coating onto its surface allows one to
obtain the scattered electromagnetic field that will be exactly the same as the field
scattered by the perfectly conducting sphere of any smaller radius. At the same
time, it is much easier to make such a distorting coating, since it does not require
the vanishing of certain components of its permittivity and permeability, as in the
case of a masking coating.

In [106], the authors demonstrate the possibility of a complete replacement of the
image of the real object with the image of any other object without using the wave
flow method (the so-called illusion optics). However, this complex procedure, based
on the double application of the TO method, can be simulated only numerically.

1.9 Conclusion

In this chapter, analytical solutions have been obtained for the following electro-
magnetic problems associated with wave propagation.

• Wave Propagation in a Homogeneous Medium Bounded by a Surface with
Variable Impedance. We proposed a more realistic compared to the known [8]
model of electromagnetic wave propagation over a plane surface with impe-
dance that varies smoothly in the given direction; we found the analytic rep-
resentation for the field generated by a line current located above this plane; the
case of rapidly varying impedance function Z xð Þ (see (1.1)) has been considered
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(s � 2kÞ; it is shown that the principal term in the asymptotic approximation for
the obtained electromagnetic field coincides with the known expression derived
in [8] for the case, where the surface impedance changes step-wise.
We constructed the exact Green’s function of the Helmholtz equation for a plane
waveguide with smoothly varying impedance of its wall. As in the previous
problem, the coefficient Z xð Þ in the boundary condition is an impedance ana-
logue of the permittivity of the Epstein ‘transition’ layer. The obtained solution
was used for the analysis of the field induced by a linear magnetic current in the
gradient junction between two regular impedance waveguides. In the limiting
case, this solution goes to a well-known expression for the field in the
waveguide with the stepped impedance distribution. The error of adiabatic
approximation for smoothly irregular waveguides has been estimated. It has
been also revealed that there exists a regime with the abnormally efficient
transformation of zero fundamental mode into the first mode. The asymptotics,
for large dimensions of the transition region, makes it possible to estimate the
error of the well-known heuristic approach to the study of the waveguides with
slowly varying parameters (the cross-section method).
A model of the irregular circular waveguide of constant cross-section, with
variable in azimuth impedance of its wall, has been proposed; it has been found
the class of the impedance functions, for which the analytical solution of the
excitation problem for such a waveguide is obtained; this solution allowed us to
find the cause of the well-known cycle slipping phenomenon, which occurs
when VLF electromagnetic waves propagate in the Earth-ionosphere waveg-
uide; it is the first exact analytical solution of the excitation problem for the
finite irregular waveguide, whose properties vary continuously.

• Wave Propagation in Inhomogeneous Media. The problem of the transition
radiation in a medium with a diffuse boundary has been formulated; for this
problem, a rigorous analytical solution has been obtained for the first time
without imposing any restrictions on the model parameters. The limiting tran-
sition to the sharp boundary in this solution allowed us to find the precise
criterion of boundary sharpness in the form of two inequalities, which essen-
tially clarify the known criterion.
The known isotropic Epstein transition layer, describing a smooth transition
between the regions with different refractive indices n1 and n2 in a flat-layered
isotropic medium, is extended to the case of biisotropic media. An analytical
solution to the problem of a plane electromagnetic wave propagating in such a
medium in the normal-to-layer direction has been obtained. The analytical
expressions for the reflection and transmission coefficients, which suggest the
existence of the total transition mode, are derived.
A model of a smoothly inhomogeneous isotropic flat-layered medium that
involves domains of conventional and double-negative media is proposed. The
analytical solution derived for a plane wave travelling through this medium
shows that the well-known negative refraction phenomenon in isotropic
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double-negative medium is a direct consequence of Maxwell’s equations and the
energy conservation law.

• Pulsed Radiation from a Line Electric Current near a Planar Interface: a Novel
Technique. A novel technique has been proposed for the analysis of a transient
electromagnetic field generated by a pulsed line current that is located near a
planar interface between two dielectric nonabsorbing and nondispersive media.
As distinct from the Cagniard-de Hoop method, which is widely used for the
study of transient fields both in electrodynamics and in the theory of acoustic
and seismic waves, our approach is based on the transformation of the domain
of integration in the integral expression for the field in the space of two complex
variables. As a result, it will suffice to use the standard procedure of finding the
roots of the algebraic equation rather than construct auxiliary Carniard’s con-
tours. We have represented the field in the form of an integral along a finite
contour. The algorithm based on such representation may work as the most
effective tool for calculating fields in multilayered media. The suggested method
allows extension to the case of arbitrary dipole sources.

• Radical Distortion of Radar Image Caused by a Special Coating Applied on the
Surface of Metamaterial. We have rigorously proved, by the example of a
perfectly conducting sphere, that by applying a special coating on it one can
ensure that the scattered electromagnetic field will be exactly the same as the
field scattered by a perfectly conducting sphere of any given smaller radius. At
the same time, it is much easier to make such a distorting coating, since it does
not require vanishing of certain components of its permittivity and permeability,
as in the case of a masking coating.
Another two papers need to be mentioned. In [107], for a quasi-homogeneous
random medium with the dispersion varying in some direction as hyperbolic
tangent, the average Green’s function is obtained as an exact solution of
Dyson’s equation in the bilocal approximation. The coherent part of the plane
wave, which is incident on a bounded, randomly fluctuating medium with a
diffuse boundary, is studied in detail. It is shown that in the case of small-scale
fluctuations such a medium is a random analogue of the transient Epstein layer.
Paper [108] is devoted to the study of the radiation from a uniformly moving
charge in the nonstationary medium, whose time dependence of the permittivity
is given by the formula similar to that for the symmetric Epstein layer:
e tð Þ ¼ e0 1þ a

�
ch2 t=Dtð Þ � a
� �� �

:
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