
Chapter 6
Examples of Constitutive Equations
for Various Materials

In Chaps. 3 and 5 various constitutive equations to characterize behavior of materials
at high temperature are presented. These equations include a number of material
dependent parameters like Young’s modulus, creep exponent, hardening modulus
etc., to be identified from experimental data. Furthermore functions of stress, strain
rate and temperature (sometimes called response functions) are unknown in advance
and should be formulated according to available experimental data for given ranges
of loading and specific material.

This chapter presents several examples of constitutive equations, response func-
tions of stress and temperature aswell asmaterial parameters for selected engineering
materials. In order to find a set of material parameters, uni-axial tests under constant
temperature leading to homogeneous stress and deformation states are required. The
majority of available experimental data is presented as tensile curves (stress-strain
curves) and creep curves (creep strain vs. time curves) obtained from standard uni-
axial tests. Based on such curves the response functions and material parameters are
identified.

Section6.1 provides an overview of approaches to calibrate constitutive mod-
els against experimental data of high-temperature material behavior. In Sect. 6.2
constitutive equations of isotropic high-temperature plasticity of several alloys are
presented. The objective of Sect. 6.3 is to discuss anisotropic inelastic behavior. Two
examples of initially anisotropic materials including a forged aluminium alloy and
a multi-pass weld metal from an advanced steel are presented.

6.1 Basic Approaches of Identification

The problem to identify the material parameters (also known as the inverse problem)
can be solved with the following steps
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• Formulate the functional with respect to the unknown material parameters by the
use of the (weighted) least squares method,

• Minimize the functional by specifying appropriate guess for the material parame-
ters.

For simplified constitutive equations, e.g. power law creep or deformation plasticity,
the above steps are enough to fit the deformation response with a desired accuracy.
Various examples for applications of least square methods to compute material para-
meters in constitutive equations of creep are presented in Boyle and Spence (1983).
Mathematical and numerical aspects of identification procedures are discussed in
Mahnken and Stein (1996, 1997), among others.

In contrast, the identification of material properties in unified constitutive models
to capture several phenomena of inelastic deformation like hardening/recovery, soft-
ening and damage under different loading paths can be ill-posed for the following
reasons

• The unified model should be calibrated for wide strain rate, stress and temperature
ranges to capture both creep and LCF regimes. For example, for cast ironmaterials
the inelastic strain rate ranges from 10−7 to 10 1/h (Längler et al. 2014). There-
fore, not only the material parameters but also functions of strain rate, stress and
temperature are unknown in advance and should be found during the identification
process,

• The resolution of experimental data is usually not fine enough to perform a stable
minimization. For example, inelastic strain rates at the beginning of the creep
process after the loading are usually not well defined,

• Experimental data may show a large scatter generated by testing a series of spec-
imens removed from the same material. The origins of scatter in creep tests are
discussed, for example, in Dyson (1996),

• Inelastic behaviormay significantly dependon thekindof processingof specimens,
e.g. the heat treatment. As a result, different data sets for the material with the
same chemical composition may be found in the literature. For example, one may
compare experimental data for 9Cr1Mo (P91) ferritic steel obtained in different
laboratories (Abe 2001; Choudhary et al. 2001; Eggeler et al. 1994; Kloc et al.
2001; Orlová et al. 1998; Wu et al. 2004).

An alternative approach is to develop a step-by-step identification procedure. For
example, one may develop the identification procedure based on the following steps

• Experimental creep curves (creep strain versus time curves) are smoothed and
transformed to the creep rate versus creep strain curves,

• Initial and minimum inelastic strain rates as functions of stress and temperature
are processed from experimental data for creep and tensile regimes,

• Response functions of stress and temperature are identified from experimental data
on initial and steady strain rates,

• Evolution equations for softening, ageing and damage are calibrated against exper-
imental creep rate versus creep strain curves within the tertiary creep range
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Step-by-step identification procedures are presented in Samir et al. (2005), Kostenko
et al. (2006, 2009a), Längler et al. (2014), Naumenko and Gariboldi (2014), among
others. An example will be presented in Sect. 6.2.3.

6.2 Isotropic Materials

In this section examples of constitutive equations for isotropic high-temperature
behavior of several alloys are presented. Sections 6.2.1 and 6.2.2 provide simplified
creep-damage constitutive equations. Here the hardening processes are ignored and
the tertiary creep is described by a single damage variable. In Sects. 6.2.3 and 6.2.4
mechanisms-based models are discussed in detail. Examples of evolution equations
for hardening/recovery, softening and ageing are presented. In all examples response
functions of stress and temperature as well as values of material parameters are
presented.

6.2.1 Type 316 Steel

Thefirst example is type 316 stainless steel at 650 ◦C. InLiu et al. (1994) the following
creep equations are applied

ε̇εεpl = 3

2
f1(σvM)g1(ω)

sss

σvM
, ω̇ = f2

[
σω
eq(σσσ)

]
g2(ω),

εεεpl|t=0 = 000, ω|t=0 = 0, 0 ≤ ω ≤ ω∗,

sss = σσσ − 1

3
tr σσσ III , σvM =

√
3

2
sss······sss

(6.2.1)

Here εεεpl is the creep strain tensor,σσσ is the stress tensor,ω is the scalar-valued damage
parameter and σω

eq is the damage equivalent stress (see Sect. 5.7.1.1). The response
functions f1, f2, g1, and g2 are

f1(σ ) = aσ n, g1(ω) = (1 − ω)−n,

f2(σ ) = bσ k, g2(ω) = (1 − ω)−k (6.2.2)

The material parameters are presented in Liu et al. (1994) as follows

a = 2.13 · 10−13 MPa−n/h, b = 9.1 · 10−10 MPa−k/h,
n = 3.5, k = 2.8

(6.2.3)

Note, that the constants a and b in Eqs. (6.2.2) are identified for the constant tem-
perature. In the general case they must be replaced by functions of temperature. It

http://dx.doi.org/10.1007/978-3-319-31629-1_5
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is assumed that the damage evolution is controlled by the maximum tensile stress.
Therefore the damage equivalent stress takes the form

σω
eq(σσσ) = σI + |σI |

2
,

where σI is the first principal stress. The elastic material behavior is characterized
by the following values of the Young’s modulus E and the Poisson’s ratio ν

E = 1.44 · 105 MPa, ν = 0.314 (6.2.4)

Equations (6.2.1) can be applied for the analysis of creep under constant or pro-
portional slowly varying loading. Response functions and material parameters in
Eqs. (6.2.1) can be found in the literature for numerous metals and alloys. Exam-
ples are presented in the monographs by Boyle and Spence (1983), Lemaitre and
Chaboche (1990),Malinin (1981), Penny andMariott (1995), Podgorny et al. (1984),
Rabotnov (1969), Skrzypek and Ganczarski (1998), Hyde et al. (2013). Experimen-
tal data from long-term creep tests are usually limited and the scatter is unavoid-
able. Therefore, robust equations (6.2.1) are widely used in modeling creep behavior
and in structural analysis. Examples of material parameters as well as structural
mechanics applications can be found in Altenbach et al. (1997b), Altenbach and
Naumenko (1997), Altenbach et al. (2000, 2001), Bodnar and Chrzanowski (1991),
Hayhurst (2001), Hyde et al. (1997, 1999, 2000), Konkin andMorachkovskij (1987),
Kowalewski (1996), among others.

6.2.2 Steel 13CrMo4-5

In Segle et al. (1996) the creep behavior of steel 13CrMo4-5 at 550 ◦C is described
by (6.2.1) with the following response functions

f1(σ ) = aσ n, g1(ω) = 1 − ζ + ζ(1 − ω)−n,

f2(σ ) = bσ k, g2(ω) = (1 − ω)−l (6.2.5)

The material parameters are

a = 1.94 · 10−15 MPa−n/h, b = 3.302 · 10−13 MPa−k/h,
n = 4.354, k = 3.955, l = 1.423, ζ = 0.393

(6.2.6)

The damage equivalent stress is assumed in the form

σω
eq(σσσ) = α

σI + |σI |
2

+ (1 − α)σvM
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with α = 0.43. The Young’ modulus and Poisson’s ratio are E = 1.6 · 105 MPa and
ν = 0.3, respectively. Equations (6.2.1) with response functions (6.2.5) are applied
in Naumenko and Altenbach (2007) for the long-term strength analysis of a steam
transfer line, see also Sect. 1.2.1.2.

6.2.3 Steel X20CrMoV12-1

In this section we present a set of constitutive and evolution equations to describe
the inelastic behavior of advanced 9–12%Cr heat resistant steels. These materials
are designed for the use at steam temperatures up to 650 ◦C (Mayer and Masuyama
2008). If compared to the low alloy steels, they have a rather complex composition
and show complicated inelastic behavior (see Chap. 1). The main features are

• The uni-axial creep curves do not exhibit a secondary (steady-state) stage. The
dependence of the minimum creep rate on the stress essentially deviates from the
power law (Kloc and Sklenička 2004; Kimura et al. 2009; Kostenko et al. 2009a).

• The transition from the primary to the tertiary creep stage is controlled by softening
processes, e.g. the coarsening of the subgrain microstructure (Straub 1995; Polcik
et al. 1998).

• The final part of the tertiary creep is influenced by damage processes, e.g. the
formation and growth of voids and micro-cracks (Straub 1995; Rauch et al. 2004;
Simon 2007).

• The damage and softening processes are more or less dominant for different stress
ranges. As a result the slope of the creep term strength curve (stress versus time
to rupture in a double logarithmic scale) continuously decreases with a decrease
of the stress level (Naumenko and Kostenko 2009).

• The stress-strain curves show descending (softening) branches, Fig. 1.2.

The conventional approach in the creep continuum damagemechanics is to introduce
damage parameter(s) and to calibrate the damage evolution equation(s) against the
tertiary stage of the creep curve. As proposed by Rabotnov (1963) a single damage
parameter can be used to describe tertiary creep and long term strength in the range
of “brittle” creep rupture, see Sect. 3.6.1. On the other hand, the Hoff’s kinematical
model of ductile creep predicts tertiary creep as a result of the shrinkage of the
specimens cross section (Hoff 1953), see Sect. 3.3. The combination of Rabotnov’s
and Hoff’s models provides the two-slope long term strength curve including both
the ductile and the brittle creep regimes (Rabotnov 1963; Odqvist 1974). Further
developments of this approach were related to quantification of different damage
mechanisms, e.g. creep constrained or continuum cavity nucleation and growth (Lin
et al. 2005) as well as processes that accompany and influence the damage evolution,
e.g. the coarsening of carbide precipitates (Dyson and McLean 2001). The resulting
models include several independent internal state variables that account for different
deterioration processes and characterize tertiary creep in a more precise manner
(Hayhurst 1999).

http://dx.doi.org/10.1007/978-3-319-31629-1_1
http://dx.doi.org/10.1007/978-3-319-31629-1_1
http://dx.doi.org/10.1007/978-3-319-31629-1_1
http://dx.doi.org/10.1007/978-3-319-31629-1_3
http://dx.doi.org/10.1007/978-3-319-31629-1_3
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Below we extend the conventional approach by quantifying hardening/recovery,
softening, and damage processes. For the sake of simplicity we introduce a single
damage parameter to characterize creep cavitation. The influence of ageing processes
like coarsening of carbide precipitates will be ignored. We focus on the modeling
of softening associated with the evolution of subgrain structure usually observed
in advanced heat resistant steels. In particular, we show that a combined model
including hardening, softening, and damage variables describes well the inelastic
response under constant and variable loading. Furthermore, such a model allows us
to reproduce the long term strength behavior in a wide stress range.

To describe hardening and softening phenomena we apply a phase mixture model
discussed in Sects. 3.5.3 and 5.6.3. The response functions of stress and temper-
ature as well as material parameters are calibrated against experimental data for
X20CrMoV12-1 steel presented in Straub (1995). Creep tests under tension and com-
pressionwere performed for a rangeof stresses and temperatures. For the compressive
true stress the tertiary creep is primarily determined by the softening processes. Based
on the corresponding creep curves the phase mixture model will be calibrated. For
the tensile stress, additional rapid increase of the creep rate is controlled by damage
evolution. This fact is confirmed by microstructural observations presented in Straub
(1995), where voids and micro-cracks were detected only for tension specimen. To
describe the final part of the creep curve the scalar-valued damage variable and the
damage evolution equation will be utilized.

Toverify the developedmodel, creep curves under stress changeswill be simulated
and the results will be compared with experimental data. To validate the coupled
softening and damage evolution equations time to fracture will be simulated for
different uni-axial stress levels. To discuss the applicability range of the model we
simulate the inelastic behavior under strain controlled tension.

6.2.3.1 Hardening and Softening

The constitutive model for the inelastic deformation considering hardening/recovery
and softening processes is presented in Sect. 5.6.3. The model includes the constitu-
tive equation for the inelastic strain rate tensor (5.6.274), the evolution equation for
the backstress deviator (5.6.273) and the evolution equation for the softening vari-
able (5.6.277). For isothermal conditions the constitutive model can be formulated
as follows

ε̇pl = 3

2
f (σ̄vM)g(T )

s̄ss

σ̄vM
− d

dt

(
βββΓ

2μ

)
,

β̇ = 2μ

ch

(
ε̇pl − 3

2
ε̇
pl
vM

β

β∗

)
,

Γ̇ = As
[
Γ∗(σvM) − Γ

]
ε̇
pl
vM,

(6.2.7)

where the active stress deviator s̄ss and the corresponding von Mises equivalent stress
σ̄vM are defined as follows

http://dx.doi.org/10.1007/978-3-319-31629-1_3
http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
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s̄ss = s − βΓ, σ̄vM =
√
3

2
s̄······s̄ (6.2.8)

The underlined term in Eq. (6.2.7)1 has minor influence on the inelastic strain rates
and can be neglected, as proposed in Naumenko et al. (2011a, b), Kostenko et al.
(2013). For the uni-axial stress state the stress deviator sss and the backstress deviator
βββ take the following forms

sss = σ(eee ⊗ eee − 1

3
III ), βββ = β(eee ⊗ eee − 1

3
III ), (6.2.9)

where σ is the uni-axial stress, β is the uni-axial backstress and the unit vector eee
stands for the loading direction. The constitutive model (6.2.7) takes the following
form

ε̇pl = f (|σ − βΓ |)g(T )
σ − βΓ

|σ − βΓ | ,

β̇ = 3μ

ch

(
ε̇pl − |ε̇pl| β

β∗

)
,

Γ̇ = As
[
Γ∗(|σ |) − Γ

]|ε̇pl|

(6.2.10)

Assuming a constant stress value σ = const and with a new variable H = β/σ0

Eqs. (6.2.10) can be simplified as follows

ε̇pl = f [|σ |(1 − HΓ )]g(T )sgnσ,

Ḣ = 3μ

chσ

(
1 − H

H∗

)
ε̇pl, H∗ = β∗

|σ |
Γ̇ = As

[
Γ∗(|σ |) − Γ

]
ε̇plsgnσ

(6.2.11)

With the initial condition H(0) = 0 the hardening evolution equation in (6.2.11)2
can be integrated leading to

H(σ, εpl) = H∗
[
1 − exp

(
− 3μ

ch H∗
εpl

σ

)]
(6.2.12)

Neglecting the softening, i.e. setting in (6.2.11)3 As = 0 andwith the initial condition
Γ (0) = 1 the creep constitutive equation (6.2.11)1 takes now the form

ε̇pl = f

{
|σ |

[
1 − H∗ + H∗ exp

(
− 3μ

ch H∗
εpl

σ

)]}
g(T )sgnσ (6.2.13)

Equation (6.2.13) describes the primary stage of a creep curve, i.e. the decrease of
the creep rate towards a steady-state value ε̇

pl
ss = f [|σ |(1 − H∗)]g(T )sgnσ with an

increase of the creep strain. Constitutive and evolution Eqs. (6.2.11)1 and (6.2.11)2
withΓ = 1were used inDyson andMcLean (2001),Kowalewski et al. (1994), Perrin
andHayhurst (1994) to describe primary creep of variousmaterials, see Sects. 5.7.1.3

http://dx.doi.org/10.1007/978-3-319-31629-1_5
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and 6.2.4. We observe, that Eqs. (6.2.11)1 and (6.2.11)2 are only applicable for the
constant stress value.

For the constant stress value σ and with the initial condition Γ (0) = 1 the
softening evolution equation (6.2.11)3 can be integrated providing the softening
variable as the following function of stress and inelastic strain

Γ (σ, εpl) = Γ∗(|σ |) + [1 − Γ∗(|σ |)] exp(−Asε
plsgnσ) (6.2.14)

With Eqs. (6.2.12) and (6.2.14) the inelastic strain rate (6.2.10)1 is the function of
the inelastic strain and the applied stress.

Figure6.1 shows the experimental data for X20CrMoV12-1 steel at 873K pre-
sented in Straub (1995). Creep tests were performed under constant compressive
true stress. From the absolute strain values the creep rate was evaluated and plotted
against the logarithmic creep strain. The resulting creep rate versus creep strain curves
clearly show the hardening and softening regimes, Fig. 6.1. The experimental data
is used to identify the material parameters and response functions in Eqs. (6.2.10)1,
(6.2.12) and (6.2.14). To calibrate a constitutive model a family of creep curves in
wide stress and temperature ranges is usually required. Creep curves presented in
Fig. 6.1 are given for one temperature level and for a narrow stress range. Therefore
additional experimental data onminimum creep rates is applied for the identification.
Figure6.1 shows the minimum creep rate as a function of stress for three temperature
levels. The experimental data is collected by Straub (1995) from several publications
and based on own creep tests. To fit the data various response functions of stress and
temperature, which are more or less physically motivated, can be applied. Overviews
are presented in Sect. 5.4.4. One example is the hyperbolic sine law

Fig. 6.1 Normalized creep rate versus creep strain curves for X20CrMoV12-1 steel at 873K and
different stress levels

http://dx.doi.org/10.1007/978-3-319-31629-1_5
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ε̇min = g(T ) sinh(Bσ), (6.2.15)

where B is a constant and g(T ) is the Arrhenius function of the absolute temperature
T . Equation (6.2.15) is applied in Dyson and McLean (2001), Kowalewski et al.
(1994), Perrin and Hayhurst (1994). Another way is to assume that the minimum
creep rate is the sum of the linear and the power law stress functions. As pointed
out in Frost and Ashby (1982) power law and diffusion creep mechanisms involve
different defects and may be assumed independent such that the corresponding creep
rates add. The constitutive equation can be formulated as follows

ε̇min = ε̇0(T )
σ

σ0(T )
+ ε̇0(T )

(
σ

σ0(T )

)n

, (6.2.16)

where n is a constant and ε̇0(T ), σ0(T ) are Arrhenius functions of the temperature.
The response function (6.2.16) is applied in Kloc and Sklenička (2004), Rieth et al.
(2004), Naumenko and Kostenko (2009), Naumenko et al. (2009) to describe the
minimum creep rate for various advanced steels. The results of fitting by the use
of Eqs. (6.2.15) and (6.2.16) are presented in Fig. 6.2. In what follows let us apply
the hyperbolic sine law. The identified response functions in Eqs. (6.2.10) can be
summarized as follows

f (x) = sinh (Bx) , g(T ) = a0 exp
(
− α

T

)
,

Γ∗ (x) = aΓ

1 + bΓ e− x
cΓ

, β∗ (x) = H∗x
(6.2.17)

Fig. 6.2 Minimum creep rate versus stress curves for X20CrMoV12-1 steel at three temperature
levels
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with B = 7.74 · 10−2 1/MPa, a0 = 4.64 · 10231/h, α = 6.12 · 1041/K, aΓ = 0.42,
bΓ = 9.12 · 106, cΓ = 9.46 MPa, H∗ = 0.46. The additional material parameters in
Eqs. (6.2.10) are identified as ch = 8.84 and As = 7.21. The Young’s modulus E and
the shear modulus μ are functions of temperature. The corresponding temperature
dependencies are given in Straub (1995) as follows

E(T ) = −aE + bE T, μ(T ) = −aμ + bμT (6.2.18)

with
aE = 95.597 MPa/K, bE = 252334.26 MPa,

aμ = 38.773 MPa/K, bμ = 97398.16 MPa

6.2.3.2 Damage Processes and Creep Strength

Damage processes are usually associated with nucleation, growth and coalescence of
voids on grain or subgrain boundaries as well as nucleation of voids and microcracks
around carbide precipitates. For low-alloy steels the damage evolution equations
are usually calibrated against the tertiary stage of the creep curve. For advanced
steels the essential part of the tertiary creep is related to softening processes (e.g.
coarsening of subgrain structure) as documented in Polcik et al. (1999), Kimura
(2006), Kostenko and Naumenko (2008), see also Fig. 1.9. For 9%Cr steels the voids
on former austenite grain boundaries and/or carbides can be observed after prolonged
test durations and essentially higher values of the creep strain if compared to the low
alloy steels, e.g. Rauch et al. (2004), Maile and Scheck (2008). Let us describe the
uni-axial creep curves for X20CrMoV12-1 steel presented in Straub (1995). To this
end we introduce the Kachanov-Rabotnov damage parameter (Rabotnov 1963) and
apply the strain equivalence principle as proposed in Lemaitre and Chaboche (1990),
see Sects. 3.6.1 and 5.7.1.1. The constitutive equation (6.2.10)1 can be modified as
follows

ε̇pl = f

( |σ − βΓ |
1 − ω

)
σ − βΓ

|σ − βΓ | (6.2.19)

For the damage parameter ω the evolution (3.6.135) equation is applied

ω̇ = hω(ω)
1 + sgnσ

2

|ε̇pl|
ε
pl
∗ (|σ |) , (6.2.20)

where hω(ω) and ε
pl
∗ (|σ |) are response functions. Figure6.3 shows creep curves for

X20CrMoV12-1 steel obtained from tension tests under constant true stress levels.
For the comparison the creep curves under compression for the same stress levels
are presented. The results of metallographic analysis presented in Straub (1995)
show that the increase in the creep rate under tension is primarily connected with
the nucleation and growth of voids. Therefore the continuum damage mechanics can
be applied to describe the whole creep process including the final part before the

http://dx.doi.org/10.1007/978-3-319-31629-1_1
http://dx.doi.org/10.1007/978-3-319-31629-1_3
http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_3
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Fig. 6.3 Normalized creep rate versus creep strain curves for X20CrMoV12-1 steel at 873K and
different stress levels

fracture. Let us summarize all constitutive and evolution equations for the uni-axial
stress state as follows

ε̇pl = f (|σ − βΓ |)g(T )
σ − βΓ

|σ − βΓ | ,

β̇ = 3μ

ch

(
ε̇pl − |ε̇pl| β

β∗

)
, (6.2.21)

Γ̇ = As
[
Γ∗(|σ |) − Γ

]|ε̇pl|,
ω̇ = hω(ω)

1 + sgnσ

2

|ε̇pl|
ε
pl
∗ (|σ |) ,

The response functions in the damage evolution equation are identified as follows

hω(ω) = lω
l−1

l , εpl∗ (|σ |) = εbr + aε

1 + bε exp
(
−|σ |

cε

) (6.2.22)

with l = 8, εbr = 0.09, aε = 0.2, bε = 8.39 · 105, cε = 12.67 MPa.
Numerical integration of Eqs. (6.2.21) over time provides the relation between

the applied stress and the time to rupture. Figure6.4 shows the results of integration
according to three different model assumptions. The model of ductile creep rupture
proposed by Hoff (1953) ignores softening and damage processes. The the tertiary
creep stage is the result of the specimens cross section shrinkage only, see Sect. 3.4.
This approach provides a rough estimation of the time to creep rupture, Fig. 6.4. If
softening processes are taken into account then the long term strength curve shifts

http://dx.doi.org/10.1007/978-3-319-31629-1_3
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Fig. 6.4 Engineering stress versus time to rupture for X20CrMoV12-1 steel at 873 K

down along the stress axis. Furthermore, a sigmoidal inflection of the creep strength
curve can be observed, Fig. 6.4. Such sigmoidal inflection is documented in many
experimental studies related to advanced 9–12%Cr steels (Abe 2004; Kimura et al.
1997; Sklenička et al. 2003).

If we consider both the softening and the damage processes an additional decrease
of the slope of the long term strength curve can be described. Let us note that hard-
ening, softening and damage evolution equations are calibrated against the creep
curves in a narrow stress range (identification range). To check the quality of life-
time prediction in the wide stress range let us compare the results with experimental
data plotted by dots in Fig. 6.4 after Gandy (2006). Despite a relatively large scatter
of the data, we may conclude that the Hoff’s model overestimates the rupture life in
the range of moderate and low stress levels. The softening model leads to the result
closer to experimental data while the additional consideration of damage provides a
conservative estimation of the lifetime.

Voids and microcracks usually nucleate and grow on those planes which are
perpendicular to the direction of the maximum tensile stress, e.g. Naumenko and
Altenbach (2007), Betten (2008). The microstructural observations and the analy-
sis of void size distributions in crept specimen from steels X20CrMoV12-1 and
X22CrMoV12-1 are presented in Straub (1995). The biggest voidswere foundwithin
the angles 60◦–90◦ to the stress axis. The topology of the directional damage state
can be characterized by damage tensors of different rank, see Sect. 5.7.2. To estab-
lish the influence of the directional damage on the creep rate, creep tests under
non-proportional loading conditions are required. Examples include creep tests on
thin-walled tubes under combined tension and torsion (Murakami and Sanomura
1985) and biaxial creep tests on cruciform specimens (Sakane and Tokura 2002).
The results of such tests can be applied to calibrate the tensor-valued damage evolu-

http://dx.doi.org/10.1007/978-3-319-31629-1_5
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tion equations. Multi-axial test data for 9–12%Cr steels are currently not published.
Here we neglect the directional nature of damage. The damage evolution equation
(6.2.20) can be generalized as follows

ω̇ = hω(ω)
1

2

(σI + |σI |)
σvM

ε̇
pl
vM

ε
pl
∗ (σvM)

, (6.2.23)

where σI is the first principal stress. Applying the strain equivalence principle
(Lemaitre and Chaboche 1990; Lemaitre 1996) the constitutive equation (6.2.7)1
can be generalized as follows

ε̇pl = 3

2
f

(
σ̄vM

1 − ω

)
g(T )

s̄ss

σ̄vM
(6.2.24)

6.2.3.3 Creep Under Stress Changes

To verify the constitutive model let us simulate creep behavior under variable load-
ing conditions. Figure6.5 shows the experimental creep curve under compressive
stress changes obtained in Straub (1995). During the test the specimen was initially
subjected to the constant compressive true stress with the value of 196MPa. After
a certain hold time the stress was rapidly reduced to the value of 150MPa. Several
loading/unloading cycles with hold time were performed up to the reaching of the
creep strain value of 25%. As Fig. 6.5 shows the stress changes were performed
within the tertiary creep stage.

Fig. 6.5 Normalized creep rate versus creep strain for X20CrMoV 12-1 steel at T = 600 ◦C and
variable compressive stress
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The inelastic strain rate versus inelastic strain curve predicted by Eqs. (6.2.21) is
presented in Fig. 6.5 by the solid line. For the comparison, two creep curves under
the constant upper and lower stress values are shown. We observe that the model
underestimates the creep rates after the rapid loading reduction. This slight disagree-
ment may be related to the deficiency of the assumed constitutive equation for the
inelastic-hard constituent in the phase mixture model, see Sect. 5.6.3. Despite this
inaccuracy, the creep behavior under stress changes is well represented by the com-
posite model with the varying volume fraction. One feature of the softening process
is well reproduced by the model. After the stress decrease the creep rate remains
lower, while after the stress increase remains higher than the corresponding creep
rates under the constant stress levels.

6.2.3.4 Tensile Behavior Under Constant Strain Rate

The next verification test is to simulate tensile behavior under a constant strain rate.
To compute the stress response we integrate the equation

ε̇ = σ̇

E
+ ε̇pl = const (6.2.25)

together with the constitutive model (6.2.21). Figure6.6 shows the experimental
stress-strain diagram obtained with ε̇ = 2.63 · 10−4 s−1 and 803 K (Röttger 1997).
The results of the model prediction are presented by the solid line. In addition, a
zoom of the transition from the linear-elastic to the inelastic behavior is given in the
left smaller diagram. The right smaller diagram shows the backstress variable β as a
function of the strain. The elastic behavior up to 300MPa is almost exactly described.
The beginning of the inelastic behavior is observed at the strain value ε ≈ 0.0015.
Up to this value the backstress remains almost zero. It is obvious that there is no
kink in the progress of the global stress-strain curve, although the change of the
slope is too abrupt if compared to the experimental data. The too strict transition
from the linear-elastic to the inelastic behavior and a low slope of the curve at the
beginning of the inelastic range may again be related to the the deficiency of the
assumed constitutive equation for the inelastic-hard constituent in the phase mixture
model, see Sect. 5.6.3. Nevertheless, the maximum stress value and the softening
behavior are well reproduced by the model. For strains higher than 16% the model
overestimates the stress values. This may be caused by the start of necking of the
specimen, which is not taken into account in the uni-axial model.

6.2.3.5 Summary of Constitutive and Evolution Equations

The proposed constitutive model includes three state variables: the backstress devia-
torβββ, the softening variable Γ and the damage variable ω. The inelastic strain tensor
and the internal state variables are defined by the following equations

http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
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Fig. 6.6 Stress-strain diagram for X20CrMoV12-1 steel with ε̇ = 2.63 · 10−4 s−1 at 803 K

ε̇pl = 3

2
f

(
σ̄vM

1 − ω

)
g(T )

s̄ss

σ̄vM
,

β̇ = 2μ

ch

[
ε̇pl − 3

2
ε̇
pl
vM

β

β∗(σvM)

]
, (6.2.26)

Γ̇ = As
[
Γ∗(σvM) − Γ

]
ε̇
pl
vM,

ω̇ = hω(ω)
1

2

(σI + |σI |)
σvM

ε̇
pl
vM

ε
pl
∗ (σvM)

with the active stress deviator s̄ss and the corresponding von Mises equivalent stress
σ̄vM

s̄ss = s − βΓ, σ̄vM =
√
3

2
s̄······s̄ (6.2.27)

The response functions f , g, β∗, Γ∗, hω and ε
pl
∗ and the material parameters ch, As

must be identified from families of creep and tensile curves for a range of stresses,
temperatures and strain rates. For 12%Cr steel X20CrMoV12-1 these functions are
calibrated from experimental data on creep as follows
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f (x) = sinh (Bx) , g(T ) = a0 exp
(
− α

T

)
,

Γ∗ (x) = aΓ

1 + bΓ exp
(
− x

cΓ

) , β∗ (x) = H∗x,

hω(ω) = lω
l−1

l , εpl∗ (|σ |) = εbr + aε

1 + bε exp
(
−|σ |

cε

)
(6.2.28)

with the material parameters

B = 7.74 · 10−2 1/MPa, a0 = 4.64 · 1023 1/h, α = 6.12 · 104 1/K,

ch = 8.84, H∗ = 0.46,

As = 7.21, aΓ = 0.42, bΓ = 9.12 · 106, cΓ = 9.46 MPa

(6.2.29)

The Young’s modulus E and the shear modulus μ are identified in Straub (1995) as
follows

E(T ) = −aE + bE T, μ(T ) = −aμ + bμT (6.2.30)

with

aE = 95.597 MPa/K, bE = 252334.26 MPa,

aμ = 38.773 MPa/K, bμ = 97398.16 MPa

In a slightly modified form Eqs. (6.2.26) are applied in Kostenko and Naumenko
(2008), Kostenko et al. (2009a, b), Naumenko et al. (2011b), Kostenko et al. (2013)
to describe inelastic behavior of 10%Cr steels.

The advantageof the phasemixturemodel is the possibility to describe the inelastic
behavior with a minimum number of response functions and material parameters.
The developed model is compatible with the standard structural mechanics and can
be implemented inside any finite element code. Since the model incorporates both
the softening and damage variables and reproduces the descending branch of the
stress-strain curve, regularization techniques (de Borst 2004) might be necessary to
avoid spurious mesh dependence.

To improve the model, in particular for the better description of inelastic tran-
sients under rapid loading changes, the constitutive equation for the inelastic hard
constituent should be refined. Another possibility is to consider a phase mixture
with three or more constituents. This would lead to several backstress variables and
increase the number of material parameters.
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6.2.4 Aluminium Alloy BS 1472

The experimental data for aluminium alloy BS 1472 at 150 ± 0.5 ◦C (Al, Cu, Fe, Ni,
Mg and Si alloy) are published in Kowalewski et al. (1994). The authors proposed to
describe the uni-axial creep curves (loading conditions 227.53, 241.3 and 262 MPa)
by use of two constitutive models. The first model is based on Eqs. (6.2.1) and the
time hardening function

ε̇εεpl = 3

2

aσ n−1
vM

(1 − ω)n
ssstm, ω̇ = b(σω

eq)
k

(1 − ω)l
tm (6.2.31)

with σω
eq = σvM. The material parameters in Eqs. (6.2.31) are identified as follows

(Kowalewski et al. 1994)

a = 3.511 · 10−31 MPa−n/hm+1, b = 1.960 · 10−23 MPa−k/hm+1,

n = 11.034, k = 8.220, l = 12.107, m = −0.3099
(6.2.32)

The Young’s modulus and Poisson’s ratio are E = 0.71 · 105 MPa and ν = 0.3.
Equations (6.2.31) include the time hardening function. One shortcoming of the
time hardening model is that the creep behavior depends on the choice of the time
scale (see Sect. 5.6.1).

Alternatively the experimental data presented in Kowalewski et al. (1994) can be
described by the following equations

ε̇εεpl = 3

2

aσ n−1
vM

(1 − ω)m
sss, ω̇ = b(σω

eq)
k

(1 − ω)l
(6.2.33)

with the following set of material parameters

a = 1.35 · 10−39 MPa−n/h, b = 3.029 · 10−35 MPa−k/h,
n = 14.37, k = 12.895, l = 12.5, m = 10

(6.2.34)

In the above equations the primary creep effect is neglected. Figure6.7 presents the
experimental results and the predictions by Eqs. (6.2.31) and (6.2.33).

The second approach applied in Kowalewski et al. (1994) is based on the
mechanism-based model (see Sect. 5.7.1.3). The constitutive model can be sum-
marized as follows

http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
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Fig. 6.7 Experimental data andmodel predictions for the aluminium alloyBS 1472 at 150± 0.5 ◦C,
after Kowalewski et al. (1994)

ε̇εεpl = 3
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ω̇ = D A

(1 − ω)n

(
σI

σvM

)υ

N sinh

[
BσvM(1 − H)

1 − Φ

]
,

n = BσvM(1 − H)

1 − Φ
coth

[
BσvM(1 − H)

1 − Φ

]
,

N = 1 for σI > 0, N = 0 for σI ≤ 0,

0 ≤ ω < 0.3, 0 ≤ Φ < 1, 0 ≤ H ≤ H∗

The set of equations (6.2.35) includes the creep constitutive equation and evolution
equations with respect to three internal state variables. The hardening variable H
is introduced to describe primary creep. The variable Φ characterizes the ageing
process. The variable ω is responsible for the grain boundary creep constrained
cavitation.

The material parameters in Eqs. (6.2.35) may be divided into three groups: the
constants hc and H∗ must be obtained from the primary creep stage; A and B char-
acterize the secondary creep (minimum creep rate versus stress); and Kc and D must
be found from the tertiary creep stage. The parameter υ is the so-called stress state
index, which characterizes the stress state dependence of the damage evolution. The
material constants are identified in Kowalewski et al. (1994) as follows



6.2 Isotropic Materials 301

Fig. 6.8 Experimental data and simulations for the aluminium alloy BS 1472 at 150± 0.5 ◦C, after
Kowalewski et al. (1994)

A = 2.960 · 10−11 h−1, B = 7.167 · 10−2 MPa−1,

hc = 1.370 · 105 MPa, H∗ = 0.2032,
Kc = 19.310 · 10−5 h−1, D = 6.630

(6.2.36)

Figure6.8 presents the experimental creep curves and predictions based on Eqs.
(6.2.35). To identify the stress state index υ experimental data from multi-axial
creep tests up to creep rupture are required. The isochronous rupture loci obtained
according to Eqs. (6.2.35) for different values of υ in the range 0 ≤ υ ≤ 12 are
presented in Kowalewski et al. (1994).

This example illustrates that the same experimental data can be described by
different relations (6.2.31), (6.2.33) and (6.2.35). The model (6.2.35) seems to be
more preferable since it is based on material science foundations. One feature of
Eqs. (6.2.35) is the use of a hyperbolic function for the dependence of the minimum
creep rate on the stress instead of the power function in Eqs. (6.2.33). Let us compare
how the models (6.2.33) and (6.2.35) describe the secondary creep rate for a wide
stress range. For this purpose we assume ω � 1 in Eqs. (6.2.33) leading to the
Norton-Bailey creep equation ε̇crmin = aσ n . In Eq. (6.2.35) we set H = H∗, ω � 1
and Φ � 1 resulting in ε̇crmin = A sinh[Bσ(1− H∗)]. Figure6.9 shows the minimum
creep rate as a function of stress calculated by the use of material parameters (6.2.34)
and (6.2.36). We observe that within the stress range 227–262MPa the minimum
creep rate versus stress curves almost coincide. The coincidence of curves is not
surprising since the material parameters in both models were identified from creep
tests carried out within the stress range 227–262MPa. This stress range is marked
in Fig. 6.9 as the identification range. Furthermore, a wider stress range exist, for
which the power law and the hyperbolic sine functions provide nearly the same
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Fig. 6.9 Minimum creep rate versus stress by use of the power law and sinh functions

inelastic strain rates, Fig. 6.9. If a structure is loaded in such a way that the vonMises
equivalent stress lies within this range, then both the models would lead to similar
results of structural analysis, e.g. time dependent deformation, stress redistribution
etc.

However, in most applications one has to analyze statically indeterminate struc-
tures. In this case, if the external loads are constant, the stresses may rapidly relax
down at the beginning of the creep process. Therefore, the range of moderate
and small stress values is important in the structural analysis. For this range the
two applied models lead to quite different predictions, Fig. 6.9. In Altenbach et al.
(1997a, c) we utilized the models (6.2.33) and (6.2.35) for the structural analysis of
pressurized cylindrical shells and transversely loaded rectangular plates. The max-
imum values of the von Mises equivalent stress in the reference elastic state of
structures were within the identification range. The results of creep analysis based
on the models (6.2.33) and (6.2.35) qualitatively agree only at the beginning of the
creep process as long as the maximum values of the von Mises equivalent stress lay
within the range of the same prediction. With the relaxation and redistribution of
stresses, the discrepancy between the results increases leading to quite different long
term predictions. The differences in estimated life times were of up to a factor 5.

6.3 Initially Anisotropic Materials

Many materials exhibit anisotropic inelastic behavior as a result of processing. This
Section presents examples of constitutive equations for initially-anisotropic materi-
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als. The first one is related to the forged aluminium alloy AA2014. Microstructural
observations and experimental data suggest that the anisotropy of inelastic behavior
is primarily caused by elongated grains and grain boundaries as a result of mate-
rial processing. The second example deals with a multi-pass weld metal. Here the
arrangement of weld beads and microstructural zones is the reason for anisotropic
creep.

6.3.1 Forged Al-Cu-Mg-Si Alloy

Age-hardenable alloys based on the aluminum-copper system (known as AA2xxx
alloys) exhibit superior creep strength and are widely used in structural components
operating at elevated temperatures (Polmear 1996, 2004). Complex shape parts pro-
duced from these alloys usually exhibit microstructural anisotropy as a result of
processing (Gariboldi and Conte 2013). Furthermore, the creep properties of age-
hardenable alloys strongly depend on the heat treatment and ageing conditions (Gari-
boldi and Casaro 2007). Origins of anisotropic creep include elongated grains, crys-
tallographic texture, non-uniform distribution of particles, oriented grain boundary
cavities, etc. One approach to formulate a constitutive equation for anisotropic creep
is based on the theory of symmetries and representation of tensor-valued functions,
see Sect. 5.4.3. For the assumed symmetry class, e.g. a transverse isotropy, a creep
potential is formulated as a function of appropriate invariants of the stress tensor.
The resulting creep constitutive equation includes a number ofmaterial parameters to
be identified from experimental creep curves for different stress states and different
loading directions. This approach provides a general form of a constitutive equation.
However, the identification of all required parameters is usually not feasible since
the required experimental creep curves are rarely available.

6.3.1.1 Basic Features of Microstructure

Al-Cu-Mg-Si alloy forging had displayed anisotropic effects in longitudinal (L),
transverse (T) and radial (R) sampling directions (Gariboldi et al. 2016). Two sets of
20×20×100 mm3 bars were sampled from the as supplied forging with their longer
side in L, T and R directions, respectively. Tensile tests were performed at tempera-
tures within the range 20–170 ◦C. Creep tests were conducted under constant load at
130, 150 and 170 ◦C (homologous temperature range 0.44–0.49) under stresses that
led to a range of times to rupture t∗ from several hours to more than 10,000h. Crept
specimens were diametrally cut in order to investigate microstructure features along
the gauge length.

The investigated forging was characterized by grains elongated in the main plastic
flow path experienced during the processing. Their mean size of grains was about
300, 80 and 50 µm along the L, T and R directions, respectively. Figure6.10 shows
light optical microscope micrographs of the microstructure of the forged part in

http://dx.doi.org/10.1007/978-3-319-31629-1_5
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Fig. 6.10 Light optical microscope micrographs of the forged part from AA2014 in different
metallographic sections, after Gariboldi et al. (2016)

2014 alloy in different metallographic sections. Two kinds of coarse intermetallic
particles were present in the microstructure: globular Al2Cu (θ ) particles (bright
particles in Fig. 6.10) and blocky shaped clustered particles containing Fe, Mn, Si
andCu (darker particles in Fig. 6.10). These latter secondary phase clustered particles
are elongated in the L direction. In most of the volume of the forging, macrographic
analyzes revealed the large intermetallic particles longitudinally oriented, suggesting
the same direction of the plastic flow during the processing.

In addition, transmission electron microscopy images published in Angella et al.
(2008) illustrate the presence of θ ′ phase, in the formof plate-like precipitates in {100}
crystallographic planes of the α-Al matrix. These precipitates play an important role
in strengthening of the alloy. The forging was supplied in the T6 condition, that is
the solution treatment at 778 K and aging at 433K for 16h. During the subsequent
creep overageing processes take place leading to the increase of particles size and
distance between particles with time.

6.3.1.2 Minimum Creep Rates

Creep curves of the material sampled in L and T direction are presented and analyzed
in Naumenko and Gariboldi (2014). Figure6.11 shows minimum creep rate vs stress
curves. To normalize the data the reference stress σ0 = 320MPa, the reference strain
rate ε̇0 = 1.026 1/h and the Arrhenius function of the temperature

g(T ) = exp

(
− Q

RT

)
(6.3.37)
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Fig. 6.11 Normalized minimum creep rate versus normalized stress for longitudinal, transverse
and radial creep tests of AA2014 at 150 ◦C, after Gariboldi et al. (2016)

with apparent activation energy Q, the universal gas constant R and absolute tem-
perature T is applied. The value Q = 175.42 kJ/mol is used as given in Gariboldi
and Casaro (2007), Naumenko and Gariboldi (2014). The reference stress σ0 is intro-
duced to split the ranges of power law creep and power law breakdown, as shown
in Fig. 6.11. According to experimental data presented in Fig. 6.11 the anisotropy is
primarily observable in the power law range. The following relation

ε̇
pl
Tmin

= αε̇
pl
Lmin

, α = 2.43

indicates that the creep rate in the T direction is 2.43 times higher that the creep rate
in the L direction for the same stress level. In the power law breakdown range the
difference between L and T data is not significant, if compared to the usual scatter
of experimental data in the creep range, and can be neglected. The minimum creep
rates for T-specimen can be described by the following equation

ε̇
pl
Tmin

= ε̇0g(T )

(
σ

σ0

)n

with n = 9.94. Two additional creep tests at 150 ◦C for specimens sampled in
R direction were performed in Gariboldi et al. (2016). The results indicate that
the difference in creep rates for T and R directions is not significant, Fig. 6.11.
This supports the assumption of transversely-isotropic creep made in Naumenko
and Gariboldi (2014).
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6.3.1.3 Constitutive Model

In what follows let us assume that the minimum creep rates in R and T directions
are approximately the same and the plane spanned on R and T directions to be the
isotropy plane. Constitutive equations of transversely-isotropic steady-state creep
were applied in Betten (2008) to modeling deep drawing sheets and in Naumenko
and Altenbach (2005) to characterize multi-pass weld metals, for example. Let eeeL
be the unit vector that designates the direction L, III the second rank unit tensor and
PPP = III −eeeL ⊗eeeL the projector onto the RT plane. For anisotropic materials different
parts of the stress state cause different creep responses. Therefore let us decompose
the stress state characterized by the stress tensor σσσ into the three parts including
the tension (compression) along L σLL, the plane stress state in the RT-plane σσσ p

and the out of plane shear characterized by the shear stress vector τττL. Figure6.12
illustrates the corresponding components of the stress tensor. The decomposition has
the following form

σσσ = σLLeeeL ⊗ eeeL + σσσ p + τττL ⊗ eeeL + eeeL ⊗ τττL (6.3.38)

By subtracting the hydrostatic stress state the stress deviator sss can be given as follows

sss = sssL + sssp + τττL ⊗ eeeL + eeeL ⊗ τττL, (6.3.39)

where

sssL =
(

σLL − 1

2
tr σσσ p

)(
eeeL ⊗ eeeL − 1

3
III

)
, sssp = σσσ p−1

2
trσσσ p(III −eeeL⊗eeeL) (6.3.40)

eeeL

eeeR

eee

σLL

τLT

τLT

τLR
τLR

σRR

τRT

τRT

σTT

Longitudinal direction: eeeL,

Transverse direction: eeeT,

Radial direction: eeeR,

Normal stress along L:σLL

Plane stress state:

σσσp = σRReeeR ⊗ eeeR +σTTeeeT ⊗ eeeT
+τRT(eeeT ⊗ eeeR + eeeR ⊗ eeeT)

Out-of-plane shear stress vector:

τττ L = τLTeeeT + τLReeeR

Fig. 6.12 Stress state in a forged material with elongated grains and preference (forging) direction
mmm = eeeL, after Naumenko and Gariboldi (2014)
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With the decomposition (6.3.39), the creep potential hypothesis and the assumption
that the volumetric creep rate is negligible, the constitutive equation can be formu-
lated as follows, see Sect. 5.4.3.1

ε̇εεpl = 3

2
ε̇0g(T )

(
σeq

σ0

)n 1

σeq

[
α1sssL + α2sssp + α3(τττL ⊗ eeeL + eeeL ⊗ τττL)

]
, (6.3.41)

where εεεpl is the tensor of inelastic strains, ε̇0, σ0, n and αi , i = 1, 2, 3 are material
parameters. The equivalent stress σeq is defined as follows

σ 2
eq = 3

2

(
α1tr sss2L + α2tr sss2p + 2α3τττL···τττL

)
(6.3.42)

To identify the material parameters families of creep curves for different stress levels
for three independent kinds of loading are required. These include the loading in L
and T directions, respectively as well as any kind of loading that leads to non-zero
out-of-plane shear stress. For α1 = α2 = α3 = 1 the von Mises equivalent stress
follows from Eq. (6.3.42). Equation (6.3.41) reduces to the Norton-Bailey-Odqvist
equation of isotropic creep in the power law range (5.4.107).

For the tensile stress σLL the longitudinal creep rate ε̇
pl
TT can be computed from

Eq. (6.3.41) as follows

ε̇
pl
LL = ε̇0g(T )

(
σL L

σ0

)n

α
n+1
2

1 (6.3.43)

The creep rate in the transverse direction for the applied stress σTT is

ε̇
pl
TT = ε̇0g(T )

(
σT T

σ0

)n (
α1 + 3α2

4

) n+1
2

(6.3.44)

The function g(T ) and the parameter ε̇0 can be identified from minimum creep rate
versus stress data generated from transverse creep curves, Fig. 6.11. In this case the
parameter α2 can be set to one. To identify the parameter α1 the ratio of creep rates α

for the same stress level can be computed from Eqs. (6.3.43) and (6.3.44) as follows

α = ε̇
pl
TT

ε̇c
LL

=
(

α1 + 3

4α1

) n+1
2

(6.3.45)

For the given values of α and n the solution of Eq. (6.3.45) is α1 = 0.81.

http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
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6.3.2 Multi-pass Weld Metal

For many structures designed for high-temperature applications, e.g., piping sys-
tems and pressure vessels, an important problem is the assessment of creep strength
of welded joints. The lifetime of the welded structure is primarily determined by
the behavior in the local zones of welds, where time-dependent creep and damage
processes dominate. Different types of creep failure that have occurred in recent
years are discussed in Shibli (2002), for example. The design of welded structures
and their residual life estimations require engineering mechanics models that would
be able to characterize creep strains, stress redistributions, and damage evolution in
the zones of welds.

A weld is usually considered as a metallurgical notch. The reason for this is the
complex microstructure in the weld metal itself and in the neighboring heat-affected
zone. Many research activities have been directed to the study of welded joints.
First, theoretical and experimental studies have addressed the welding process with
the aim of predicting the formation of the microstructure of the welds and analyzing
residual stresses (Aurich et al. 1999). Second, the behavior of welded joints under
the mechanical and thermal loadings was investigated (Hyde et al. 2003b). Here one
must consider that the stress-strain response at room temperature is quite different
for the weld metal, the heat-affected zone, and the base metal (parent material),
particularly if they are loaded beyond the yield limit. At elevated temperatures quite
different inelastic strain versus time curves can be obtained in different zones even
in the case of a constant moderate load. Figure1.52 illustrates zones with different
microstructures and the variation in material behavior within the weld.

The results of creep tests of cross-weld specimens (Hyde et al. 1997, 1999),
and specimens with a simulated microstructure (Lundin et al. 2001; Matsui et al.
2001; Wohlfahrt and Brinkmann 2001; Wu et al. 2004) show significant variation
in creep properties in different material zones within the weld. Furthermore, they
illustrate that the intercritical region of the heat-affected zone is the weakest part of
the weld with respect to the creep properties. The material with the heat-affected
zone microstructure usually exhibits the highest creep rate and the shortest time to
failure if compared to other material zones within the weld for the same load and
temperature.

For thick and moderately thick cross sections, multi-pass welding is usually pre-
ferred, where many stringer beads are deposited in a defined sequence. As a result
of heating and cooling cycles during the welding process, the complex bead-type
microstructure of the weld metal is formed, where every single bead consists of
columnar, coarse-grained, and fine-grained regions (Hyde et al. 2003b). The results
of uni-axial creep tests for the weld metal 9CrMoNbV are reported in Hyde et al.
(2003a). They show that the creep strain versus time curves significantly differ for
specimens removed from the weld metal in the longitudinal (welding) direction and
the transverse direction. Furthermore, different types of damage were observed for
the longitudinal and the transverse specimens.

http://dx.doi.org/10.1007/978-3-319-31629-1_1
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One possibility for studying the creep behavior in structures is the use of con-
tinuum damage mechanics (Altenbach and Naumenko 2002; Altenbach et al. 2001;
Hayhurst 1994). The application of this approach to welded joints is discussed in
Hall and Hayhurst (1991), Hayhurst et al. (2002), Hyde et al. (2003b), for example.
Here the weld is considered as a heterogeneous structure composed of at least three
constituents—the weld metal, the heat-affected zone, and the parent material with
different creep properties. Constitutive and evolution equations that are able to reflect
experimental data of primary, secondary, and tertiary creep in different zones of the
welded joint are presented in Eggeler et al. (1994), Hall and Hayhurst (1991), Hay-
hurst et al. (2002), Hyde et al. (2003b), Wohlfahrt and Brinkmann (2001), among
others. The results of finite element simulations illustrate stress redistributions, creep
strains, and damage evolution in different zones of the weld (Eggeler et al. 1994; Hall
and Hayhurst 1991; Hayhurst et al. 2002; Hyde et al. 2003b). Furthermore, they are
useful to analyze the influence of numerous factors like weld dimensions, types of
external loading, and material properties on the creep behavior of welded structures
(Hyde et al. 2003b).

6.3.2.1 Basic Features of Microstructure

A weld bead produced by a single pass welding has a columnar solidification
microstructure. During the multi-pass welding many weld beads are deposited in
the groove by a defined sequence. As a subsequent weld bead is laid, the part of the
metal produced in previous cycles is subjected to the local reheating and cooling.
As a result, the weld beads consist of columnar, coarse-grained and fine-grained
microstructural zones (Hyde et al. 2003a, b). A sketch for the typical microstructure
of a multi-pass weld metal is presented in Fig. 6.13. This microstructure depends on
many factors of the welding process like bead size, travel speed, buildup sequence,
interpass temperature, and type of postweld heat treatment (Hyde et al. 2003a). The
resulting inelastic material behavior will be apparently determined by the distribu-
tion and size of columnar, coarse-grained, and fine-grained zones as well as residual
stresses in the weld metal. It is well established that creep behavior is very sensi-
tive to the type of microstructure and, in particular, to grain size. Experimental data
illustrating the significant influence of grain size on creep behavior are presented for
copper in Kowalewski (1992) and for various types of steel in Lundin et al. (2001),
Wohlfahrt and Brinkmann (2001), Wu et al. (2004). The grain size dependence is
explained in materials science by two creep mechanisms: grain boundary sliding and
grain boundary diffusion. These mechanisms operate under moderate loading and
within a temperature range of 0.5 < T/Tm < 0.7, where Tm is the melting temper-
ature (see Sect. 1.3). The principal damage mechanism is the nucleation and growth
of voids on grain boundaries. Many experimental observations show that the finer
the grain structure, the higher the secondary creep rate and the higher the damage
rate for the same loading and temperature conditions.

http://dx.doi.org/10.1007/978-3-319-31629-1_1
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Fig. 6.13 Microstructure of the weld metal, after Naumenko and Altenbach (2005)

6.3.2.2 Elementary Micromechanics Model

To discuss the origins of the anisotropic creep in a weld metal let us consider a
uni-axial model of a binary structure composed of constituents with different creep
properties. In what follows let us term the first constituent “fine-grained” or “creep-
weak” and the second one “coarse-grained” or “creep-strong.” Let us describe the
creep behavior of the constituents by use of the Kachanov-Rabotnov model (see
Sect. 3.6.1)

ε̇pl = aσ n

(1 − ω)n
, ω̇ = bσ k

(1 − ω)l
(6.3.46)

In what follows we use the subscripts f and c for the fine-grained and coarse-grained
constituents, respectively. For the sake of simplicity we assume that the constituents
have the same value of Young’s modulus E and the same values of parameters n, k
and l in (6.3.46). Let us introduce the dimensionless quantities

s = σ

σ0
, ε = ε

ε0
, εpl = εpl

ε0
, τ = t

t∗f
, (6.3.47)

where t∗f is the time to fracture of the fine-grained constituent, σ0 is the reference
stress and ε0 is the elastic strain at σ0, i.e. ε0 = σ0/E . Equations (6.3.46) can be
formulated for two constituents as follows

http://dx.doi.org/10.1007/978-3-319-31629-1_3
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Fig. 6.14 Creep curves for constituents
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dε
pl
c

dτ
= αã

sn

(1 − ωc)n

dωc

dτ
= βb̃

sk

(1 − ωc)l

, (6.3.48)

where

ã = ε∗f

(
1 − n

l + 1

)
, b̃ = 1

l + 1
, α = ε̇

pl
minc

ε̇
pl
minf

, β = t∗f
t∗c

Figure6.14 illustrates creep curves obtained after integration of Eqs. (6.3.48) for the
cases n = 3, k = n + 1, l = n + 2, ε∗ f = 5, α = 0.15, β = 0.25, s = 1.

Let us consider a connection of constituents in parallel, as it usually assumed for
composite materials (Altenbach et al. 2004; Chawla 1987). The strains and the strain
rates can be assumed to be the same (iso-strain concept)

ε = εf = εc, ε̇ = ε̇f = ε̇c (6.3.49)

We assume that a constant load F = σ0 A, Fig. 6.15, is applied to the composite,
where A is the cross section area. Specifying by Nf and Nc the internal forces in the
constituents such that Nf + Nc = F we can write

σf Af + σcAc = σ0 A, ηfσf + (1 − ηf)σc = σ0, ηfsf + (1 − ηf)sc = 1 (6.3.50)
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Fig. 6.15 Normalized stresses versus normalized time for connection of constituents in parallel

where ηf = Af/A is the volume fraction of the fine-grained constituent. For the
stresses we apply the following constitutive equations

σf = E(ε − ε
pl
f ), σc = E(ε − εplc ) (6.3.51)

Based on Eqs. (6.3.48)–(6.3.51) one can formulate a system of ordinary differential
equations describing the stress redistribution between constituents. With respect to
the stress in the fine-grained constituent the following equation can be obtained

dsf
dτ

= ā(1 − ηf)

[
α

(1 − ηf)n

(1 − ηfsf)n

(1 − ωc)n
− sn

f

(1 − ωf)n

]
(6.3.52)

Equation (6.3.52) is numerically solved together with the evolution equations for the
damage parameters (6.3.48) and initial conditions sf = 1, ωf = ωc = 0 providing
time variation of the stress sf . The stress sc can be then computed from Eqs. (6.3.50).
The results are shown in Fig. 6.15 for the case ηf = 0.3. In addition, Fig. 6.16
presents creep strains and the damage parameters in the constituents as well as the
creep strain of the mixture εpl = ε − 1. At the beginning of the creep process the
creep rate is higher in the fine-grained constituent, Fig. 6.16a. Therefore, the stress
in the fine-grained constituent relaxes down while the stress in the coarse-grained
constituent increases, Fig. 6.15. If we neglect the influence of damage on the creep
process, i.e. set ωf = ωc = 0 in (6.3.52), we obtain the steady-state creep solution.
The corresponding results are plotted in Fig. 6.15 by dotted lines.We observe that the
maximumvalue of sc and theminimumvalue of sf in the case of creep-damage almost
coincide with the corresponding steady-state values. The steady-state solution for sf
follows from Eqs. (6.3.52) by setting ωf = ωc = 0 and dsf

dτ
= 0. The corresponding
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(a) (b)

Fig. 6.16 Connection of constituents in parallel. a Normalized creep strains versus normalized
time, b damage parameters versus normalized time

value for sc is obtained from (6.3.50). The results are

sfmin = α
1
n

1 − ηf(1 − α
1
n )

, scmax = 1

1 − ηf(1 − α
1
n )

Weobserve that these stress values are determined by the volume fraction of the “fine-
grained” constituent ηf and the ratio of minimum creep rates α. The stress value sc
is higher than sf after the initial stress redistribution. Therefore, the coarse-grained
constituent exhibits the higher creep rate and the higher damage rate in the final stage
of the creep process, Fig. 6.16. The simulation predicts the failure initiation in the
coarse-grained constituent.

In the case of a connection of constituents in series (iso-stress approach) we
assume

σ0 = σf = σc, εpl = ηfε
pl
f + (1 − ηf)ε

pl
c

The results can be obtained by integration (6.3.48) for sf = sc = 1. The correspond-
ing plots of normalized creep strains are presented in Fig. 6.14. The maximum creep
and damage rates are now in the fine-grained constituent. The lifetime of the binary
structure is determined by the lifetime of the fine-grained constituent for the given
constant stress.

Figure6.17 shows the creep curves obtained for the two considered cases of the
binary structure under the same constant load. The results of the presented model
provide an analogy to the creep behavior of a weld metal loaded in the longitudinal
(welding) and the transverse directions. The experimental creep curves for the spec-
imen removed from the weld metal in two directions are presented in Hyde et al.
(2003a). They show, that the transverse specimens exhibit higher minimum creep
rate. Furthermore, the creep curves for transverse specimens have a much shorter
tertiary stage and lower values of fracture strain if compared to curves for specimens
removed in the welding direction. The times to fracture for the transverse speci-
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Fig. 6.17 Creep curves for the binary structure in the cases of parallel and series connections of
constituents

mens are much shorter than those for the longitudinal specimens. From the results
in Fig. 6.17 we observe that these effects are predicted by the mechanical model of
the binary structure. Furthermore, our results for the damage evolution qualitatively
agreewith the results ofmicrostructural damage observations presented inHyde et al.
(2003a). For the longitudinal specimens extensive voids and cracks were observed
in columnar and coarse-grained regions along the entire specimen length. For the
transverse specimens voids and cracks are localized near the fracture surface. The
fracture surface has fine-grained structure and the failure propagated through the
fine-grained regions of the specimen.

Based on the presented results we may conclude that among many different creep
and damage mechanisms which may operate and interact during the creep process
an essential role plays the stress redistribution between the creep-weak and creep-
strong constituents. For longitudinal specimens this mechanism leads to a prolonged
tertiary creep stage. The material behaves like a “more ductile” material, although
the damage and failure occur in the “more brittle” creep-strong constituent.

In Hyde and Sun (2005), Lvov et al. (2014) micromechanical models of multi-
pass weld are presented by taking into account realistic distributions of weld beads
and microstructural zones. Finite element simulations of the weld metal sample are
performed for different strass states including tension in welding and transverse
directions as well a longitudinal and transverse shear.
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6.3.2.3 Constitutive Model

For the analysis ofwelded structures amodelwhich is able to reflect anisotropic creep
in aweldmetal undermulti-axial stress states has to be developed. Three-dimensional
models for mixtures are discussed within the framework of continuum mechanics,
e.g.Altenbach et al. (2003).Ageneralization of the compositemodel developed in the
previous section to themulti-axial stress states would however require the knowledge
of creep properties of constituents under multi-axial stress states. Furthermore, creep
mechanisms of interaction between constituents, like frictional sliding should be
taken into account.

In what follows we assume the weld metal to be a quasi-homogeneous anisotropic
material. For a description of creep we prefer the engineering creep mechanics
approach, where the creep potential hypothesis, the representation of tensor functions
and internal state variables are applied (see Sect. 5.4.3). The resulting constitutive
equations can be utilized in standard finite element codes for structural analysis
purposes.

Examples for anisotropic creepbehavior and related constitutive equations are pre-
sented for a single-crystal alloy in Bertram andOlschewski (2001), a fiber-reinforced
material in Robinson et al. (2003) and a forged aluminium alloy in Sect. 6.3.1. One
problem of anisotropic creep modeling is that the assumed material symmetries
(microstructure symmetries) are difficult to verify in creep tests due to the relatively
large scatter of experimental data. Furthermore, the material may lose some or even
all symmetries during the creep as a consequence of hardening and damage processes.

In our case the material symmetries can be established according to the arrange-
ment of the weld beads in the weld metal. For the structure presented in Fig. 6.13 one
can assume the reflection QQQ1 = III − 2mmm ⊗ mmm, the rotation QQQ2 = 2lll ⊗ lll − III and the
reflection QQQ3 = QQQ1···QQQ2 = III − 2kkk ⊗ kkk to be the elements of the material symmetry
group, where III is the second rank unit tensor and kkk, lll and mmm are orthogonal unit
vectors.

However, this material symmetry group is poor for the modeling of creep. Indeed,
based on the model discussed in the previous section we can assume that the same
creep mechanisms will operate by loading the weld metal in kkk- or lll-directions.
Although the experimental data presented in Hyde et al. (2003a) are available only
for specimen removed in mmm- and kkk-directions, one may assume that that the differ-
ence between the experimental creep curves by loading in kkk- and lll-directions will be
not essential with respect to the usual scatter of experimental data. Here we assume
transversely isotropic creep, where the plane spanned on the vectors kkk and lll is the
quasi-isotropy plane.

The models of steady-state creep under the assumption of transverse isotropy are
derived in Sects. 5.4.3.1 and 5.4.3.2. Here we apply the constitutive Eq. (5.4.139). In
the equivalent stress expression (5.4.137) the αi ’s play the role of dimensionless fac-
tors. Three independent uniform stress states should be realized in order to determine
αi . The relevant stress states are

http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
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• Uni-axial tension in the direction mmm (longitudinal tension test). In this case the
stress tensor isσσσ = σ0mmm ⊗mmm, where σ0 > 0 is the magnitude of the applied stress.
From Eqs. (5.4.137) and (5.4.139) follows

Jm = σ0, I3m = I4m = 0, σeq = σ0
√

α1,

ε̇εεpl = √
α1ε̇eq

[
mmm ⊗ mmm − 1

2
(III − mmm ⊗ mmm)

]
(6.3.53)

• Uni-axial tension in the direction kkk (transverse tension test), i.e. σσσ = σ0kkk ⊗ kkk,
σ0 > 0. From Eqs. (5.4.137) and (5.4.139) we obtain

sss p = 1

2
σ0(kkk ⊗ kkk − lll ⊗ lll), Jm = −1

2
σ0,

I3m = 1

4
σ 2
0 , I4m = 0, σeq = 1

2
σ0

√
α1 + 3α2,

ε̇εεpl = ε̇eq

2
√

α1 + 3α2
[(α1 + 3α2)kkk ⊗ kkk + (α1 − 3α2)lll ⊗ lll − 2α1mmm ⊗ mmm]

(6.3.54)

• Uniform shear in the plane spanned on mmm and kkk, i.e. σσσ = τ0(mmm ⊗ kkk + kkk ⊗ mmm),
τ0 > 0. From Eqs. (5.4.137) and (5.4.139)

Jm = I3m = 0, I4m = τ 2
0 , ε̇εεpl =

√
3α3

2
ε̇eq(mmm ⊗ kkk + kkk ⊗ mmm) (6.3.55)

The next step is the form of the creep potential W (σeq) or the form of the creep
rate versus stress dependence in the steady-state range. The criteria for the choice
of a suitable function are the type of the deformation mechanisms operating for the
given stress and temperature range as well as the best fitting of the experimentally
obtained strain versus time curves. Experimental data for the weld metal 9CrMoNbV
are presented in Hyde et al. (2003a) for the stress range 87–100MPa and the constant
temperature 650 ◦C. The authors used a power law in order to fit the experimental
data for secondary creep of longitudinal and transverse specimens. In this case the
Norton-Bailey-Odqvist creep potential can be applied (Odqvist and Hult 1962)

W (σeq) = a

n + 1
σ n+1
eq , ε̇eq = aσ n

eq, (6.3.56)

where a and n are material parameters. For the longitudinal direction from
Eqs. (6.3.53) and (6.3.56) it follows

ε̇
pl
L ≡ mmm ··· ε̇εεplmmm = aLσ

n
0 , aL ≡ aα

n+1
2

1 (6.3.57)

Taking the longitudinal direction to be the “reference”directionwe set inEqs. (6.3.57)
α1 = 1. From Eqs. (6.3.54) and (6.3.56) we obtain for the transverse direction

http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
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ε̇
pl
T ≡ kkk ··· ε̇εεpl ···kkk = aTσ

n
0 , aT ≡ a

(
1 + 3α2

4

) n+1
2

(6.3.58)

In Hyde et al. (2003a) the values for the material parameters are presented. However,
the exponent n is found to be different for the longitudinal and the transverse direc-
tions. Different values for n contradict to the creep potential hypothesis employed
in the previous section. Here we compute the values for aL, aT and n based on the
following functional

F(ãL, ãT, n) =
k∑

i=1

(ãL + nσ̃i − ˜̇εLi )
2 +

k∑
i=1

(ãT + nσ̃i − ˜̇εTi )
2,

ãL ≡ log aL, ãT ≡ log aT, σ̃ ≡ log σ0,
˜̇εL ≡ log ε̇L, ˜̇εT ≡ log ε̇T,

(6.3.59)

where k is the number of experimental data points. Setting the first variation of F to
zero leads to the system of three algebraic equations with respect to ãL, ãT and n. As
the result we obtain the following set of material constants

aL = 1.377 · 10−21 MPa−n/h, aT = 2.023 · 10−21 MPa−n/h, (6.3.60)

n = 8.12

Figure6.18 shows the experimental data presented in Hyde et al. (2003a) and the
numerical predictions by use of Eqs. (6.3.57), (6.3.58) and (6.3.60).

Fig. 6.18 Minimum creep rates versus stress, experimental data after Hyde et al. (2003a)
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Finally let us summarize the constitutive equation for secondary creep and the set
of identified material constants as follows

ε̇εεpl = 3

2
aσ n−1

eq

[
Jm

(
mmm ⊗ mmm − 1

3
III

)
+ α2sss p + α3(τττm ⊗ mmm + mmm ⊗ τττm)

]
,

σ 2
eq =

(
mmm ···σσσ ···mmm − 1

2
tr σσσ p

)2

+ 3

2
α2tr sss2p + 3α3τ

2
mmm,

a = 1.377 · 10−21 MPa−n/h, n = 8.12, α2 = 1.117
(6.3.61)

The weighting factor α3, which stands for the influence of the transverse shear stress,
remains undetermined in Eqs. (6.3.61) since experimental data of creep under trans-
verse shear stress state are not available. In Lvov et al. (2014) results of microme-
chanics simulations of a weld metal samples subjected to different stress states are
presented. The obtained creep rates indicate that one may set α2 ≈ α3.

Model (6.3.61) is limited only to secondary creep behavior and can be used to
reproduce only the secondary part of the creep curves presented inHyde et al. (2003a).
For the description of thewhole creep process including the primary and tertiary creep
stages, model (6.3.61) can be modified by use of hardening, softening and damage
variables.
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SkleničkaV,KuchařováK, SvobodaM,Kloc L, Buršı J, KroupaA (2003) Long-term creep behavior
of 9–12% Cr power plant steels. Mater Charact 51(1):35–48

Skrzypek J,GanczarskiA (1998)Modelling ofmaterial damage and failure of structures. Foundation
of Engineering Mechanics, Springer, Berlin

Straub S (1995) Verformungsverhalten und Mikrostruktur warmfester martensitischer 12%-
Chromstähle. Dissertation, Universität Erlangen-Nürnberg, VDI Reihe 5, Nr. 405, Düsseldorf

Wohlfahrt H, Brinkmann D (2001) Consideration of inhomogeneties in application of deforma-
tion models, describing the inelastic behaviour of welded joints. In: Steck E, Ritter R, Peil U,
Ziegenbein A (eds) Plasticity of metals: experiments, models, computation. Final Report of the
Collaborative Research Centre 319, Wiley-VCH, Weinheim, pp 361–382

Wu R, Sandström R, Seitisleam F (2004) Influence of extra coarse grains on the creep properties
of 9 percent CrMoV (P91) steel weldment. J Eng Mater Technol 26:87–94

http://www.ommi.co.uk

	6 Examples of Constitutive Equations  for Various Materials
	6.1 Basic Approaches of Identification
	6.2 Isotropic Materials
	6.2.1 Type 316 Steel
	6.2.2 Steel 13CrMo4-5
	6.2.3 Steel X20CrMoV12-1
	6.2.4 Aluminium Alloy BS 1472

	6.3 Initially Anisotropic Materials
	6.3.1 Forged Al-Cu-Mg-Si Alloy
	6.3.2 Multi-pass Weld Metal

	References


