
Chapter 4
Three-Dimensional Continuum Mechanics

The objective of continuummechanics is to develop mathematical models to analyze
the behavior of idealized three-dimensional bodies. The idealization is related to the
hypothesis of a continuum, that is the matter is continuously distributed and fills
the entire region of a body, e.g. Haupt (2002). The continuum mechanics is based
on balance equations and assumptions regarding the kinematics of deformation and
motion. Inelastic behavior is described by means of constitutive equations which
relate multi-axial deformation and stress states. Topological details of microstructure
are not considered. Processes associatedwithmicrostructural changes like hardening,
recovery, ageing and damage can be taken into account bymeans of hidden or internal
state variables and corresponding evolution equations. Various models developed
within the continuum mechanics of solids can be applied to the structural analysis in
the inelastic range.

The classical continuummechanics of solids takes into account only translational
degrees of freedom for motion of material points. The local mechanical interactions
between material points are characterized by forces. Moment interactions are not
considered. Furthermore, it is assumed that the stress state at a point in the solid
depends only on the deformations and state variables of a vanishingly small vol-
ume element surrounding the point. To account for the heterogeneous deformation
various extensions to the classical continuum mechanics were proposed. Micropolar
theories assume that a material point behaves like a rigid body, i.e. it has translation
and rotation degrees of freedom. The mechanical interactions are due to forces and
moments. Constitutive equations are formulated for force andmoment stress tensors.
Micropolar theories of plasticity are presented in Forest et al. (1997), Altenbach and
Eremeyev (2012), Eremeyev et al. (2012), Altenbach and Eremeyev (2014), among
others. Inelastic deformation process is highly heterogeneous at the microscale and
several effects cannot be described by the classical continuummechanics accurately.
For example, the dependence of the yield strength on the mean grain size and on
the mean size of precipitates, see Sect. 1.3, are not considered within the classical
theories since they do not possess intrinsic length scales. To analyze such effects,
phase mixture, non-local and gradient-enhanced continuum theories are developed.

© Springer International Publishing Switzerland 2016
K. Naumenko and H. Altenbach, Modeling High Temperature
Materials Behavior for Structural Analysis, Advanced Structured Materials 28,
DOI 10.1007/978-3-319-31629-1_4

141

http://dx.doi.org/10.1007/978-3-319-31629-1_1


142 4 Three-Dimensional Continuum Mechanics

Examples for phase mixture models of inelastic deformation are presented in Nau-
menko and Gariboldi (2014), Naumenko et al. (2011). Strain gradient andmicromor-
phic theories are discussed in Fleck and Hutchinson (1997), Gao et al. (1999), Forest
(2009). Here a gradient or the rotation (curl) of the inelastic strain are considered
as additional degrees of freedom. Non-local and phase field theories of damage and
fracture were recently advanced to capture initiation and propagation of cracks in
solids (Miehe et al. 2010; Schmitt et al. 2013).

This chapter provides basic equations of the classical three-dimensional con-
tinuum mechanics. To keep the presentation brief and transparent many details of
mathematical derivations are omitted. Several rules of the direct tensor calculus, ten-
sor analysis and special topics related to the theory of tensor functions and invariants
are presented in Appendices A–B.5.

With regard to non-linear continuum mechanics there is a number of textbooks,
for example Altenbach (2015), Bertram (2012), Eglit and Hodges (1996), Haupt
(2002), Lai et al. (1993), Maugin (2013), Smith (1993), Truesdell and Noll (1992).

4.1 Motion, Derivatives and Deformation

4.1.1 Motion and Derivatives

LetR be the position vector for a point P in a reference state of a solid, Fig. 4.1 and rrr
be the position vector of this point (designated by P ′) in the actual configuration. The
displacement vector uuu connects the points P and P ′, Fig. 4.1. The position vectorR
can be parameterizedwith theCartesian coordinate system including the orthonormal
basis iii , jjj , kkk and the coordinates X , Y , Z , i.e.

R(X, Y, Z) = Xiii + Y jjj + Zkkk

Fig. 4.1 Position vectors and displacement vector
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In many cases it is more convenient to use curvilinear coordinates, for example
cylindrical, spherical, skew etc. Specifying the curvilinear coordinates by X1 =
q1, X2 = q2, X3 = q3, see Appendix B.1 the position vector is parameterized as
follows

R(X1, X2, X3) = X (X1, X2, X3)iii +Y (X1, X2, X3) jjj + Z(X1, X2, X3)kkk, (4.1.1)

The directed line element in a differential neighborhood of P is

dR = RidXi , dXi = dR ··· Ri , Ri = ∂R
∂ Xi

, i = 1, 2, 3, (4.1.2)

where Ri is the local basis and Ri is the dual basis, Appendix B.1. The motion of
the continuum is defined by the following mapping

rrr = ΦΦΦ(R, t) (4.1.3)

The basic problem of continuum mechanics is to compute the function ΦΦΦ for all
vectorsR within the body in the reference configuration, for the given time interval
t0 ≤ t ≤ tn as well as for given external loads and temperature. It is obvious that
R = ΦΦΦ(R, t). The displacement vector uuu is defined as follows (Fig. 4.1)

uuu = rrr − R (4.1.4)

The vector rrr can be specified with the basis iii, jjj,kkk as follows

rrr(X1, X2, X3, t) = x(X1, X2, X3, t)iii + y(X1, X2, X3, t) jjj + z(X1, X2, X3, t)kkk

with the actual Cartesian coordinates x, y, z. The directed line element in a differ-
ential neighborhood of P ′ in the actual configuration is

drrr = rrr idXi , dXi = drrr ··· rrr i , rrr i = ∂rrr

∂ Xi
, i = 1, 2, 3 (4.1.5)

where rrr i is the local basis and rrr i is the dual basis in the actual configuration.
To analyze themotion it is useful to introduce the rates of change of functions with

respect to the coordinates Xi and time t . Consider a tensor-valued function fff (Xi , t).
The total differential of fff for the fixed time variable is

d fff = dX1 ∂ fff

∂ X1
+ dX2 ∂ fff

∂ X2
+ dX3 ∂ fff

∂ X3
= dXk ∂ fff

∂ Xk

From Eq. (4.1.2)2 we obtain

d fff = dR ··· Rk ⊗ ∂ fff

∂ Xk
= dR··· 0∇∇∇ fff (4.1.6)
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The operator
0∇∇∇ is the Hamilton (nabla) operator with dual basis vectors of the refer-

ence configuration
0∇∇∇= Rk ⊗ ∂

∂ Xk
(4.1.7)

With fff = R Eq. (4.1.6) yields

dR = dR··· 0∇∇∇ R,
0∇∇∇ R = Rk ⊗ Rk = III (4.1.8)

Alternatively, one may use the spatial description by considering fff to be the function
of rrr and t . For the fixed time variable we may compute the total differential of fff as
follows

d fff = dXk ∂ fff

∂ Xk
= drrr ··· rrrk ⊗ ∂ fff

∂ Xk
= drrr ··· ∇∇∇ fff , (4.1.9)

where

∇∇∇ = rrrk ⊗ ∂

∂ Xk
(4.1.10)

is the Hamilton (nabla) operator with the dual basis of the actual configuration.
The velocity field vvv is defined as follows

vvv = ∂ΦΦΦ

∂t
= u̇uu = ṙrr (4.1.11)

The description where fff is a function of RRR and t is sometimes called Lagrangian
or material. On the other hand if fff is a function of rrr and t , the description is called
Eulerian or spatial. As the mapping ΦΦΦ is assumed invertible

R = ΦΦΦ−1(rrr , t), (4.1.12)

both the descriptions are equivalent in the sense that if fff is known as a function of
R and t , one may use the transformation (4.1.12) to get

fff (R, t) = ggg(rrr , t)

Assuming that both vvv and fff are functions of rrr and t the material time derivative is
defined as follows

d

dt
fff = ∂

∂t
fff + vvv ··· ∇∇∇ fff (4.1.13)

4.1.2 Deformation Gradient and Strain Tensors

Setting fff = rrr into Eq. (4.1.6) we obtain
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drrr = dR··· 0∇∇∇ rrr ,
0∇∇∇ rrr = Rk ⊗ rrrk (4.1.14)

The second rank tensor

FFF = (
0∇∇∇ rrr)T = rrrk ⊗ Rk (4.1.15)

is called deformation gradient. With uuu = rrr −R and (4.1.8) the deformation gradient
can be expressed trough the displacement gradient as follows

FFF = III+ 0∇∇∇ uuu (4.1.16)

Once the deformation gradient is given, one may find the line element drrr in the
differential neighborhood of the point P ′ of the actual configuration for the given
line element dR of the reference configuration. Consider three line elements dRa ,
dRb and dRc in the neighborhood of P such that

(dRa × dRb) ··· dRc = dV0 > 0,

where dV0 is the elementary volume of the parallelepiped spanned on dRa , dRb

and dRc. With Eqs. (4.1.15) and (A.4.7) we can compute the elementary volume of
the actual configuration

dV = (drrra × drrrb) ··· drrrc = [(FFF ··· dRa) × (FFF ··· dRRRb)] ··· FFF ··· dRc

= det FFF(dRa × dRb) ··· dRRRc

= det FFFdV0

Hence

J = det FFF = dV

dV0
> 0 (4.1.17)

The condition det FFF > 0 guarantees that the inverse FFF−1 exists. It can be computed
as follows

FFF−1 = Rk ⊗ rrrk

Indeed

FFF−1 ··· FFF = Rk ⊗ rrrk ··· rrr i ⊗ Ri = δk
i Rk ⊗ Ri = Rk ⊗ Rk = III
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Consider two line elements dRa , dRb, dRa × dRb �= 000 in the neighborhood of P .
Let

NNNdA0 = dRa × dRb

be the infinitesimal oriented area element including the area of the parallelogram
dA0 having dRa and dRb as sides and the unit normal NNN . With the identity (A.4.8)1
one may compute the corresponding area element in the deformed configuration

J FFF−T ··· (dRa × dRb) = (FFF ··· dRa) × (FFF ··· dRb)

or

J FFF−T ··· (NNNdA0) = nnndA (4.1.18)

With the deformation gradient the following relations between nabla operators
(4.1.7) and (4.1.10) can be derived

0∇∇∇ (. . .) = Rk ⊗ ∂(. . .)

∂ Xk
= Ri ⊗ rrr i ··· rrrk ⊗ ∂(. . .)

∂ Xk
= FFF T ··· ∇∇∇(. . .) (4.1.19)

As a result we obtain

∇∇∇(. . .) = FFF−T ··· 0∇∇∇ (. . .),
0∇∇∇ (. . .) = FFF T ··· ∇∇∇(. . .) (4.1.20)

Once FFF is given, one may compute the local strains. To this end consider a line
element dRa = MMMdla0 in the neighborhood of the point P , where the unit vector
MMM is the direction of the element (direction of the strain measurement) and dla0 is
the corresponding length. In the actual configuration drrra = mmmdla . In the course of
deformation both the orientation and the length of the element are changing. The
local stretch and the local normal strain can be computed as follows

λM M = dla

dla0

, εM M = dla − dla0

dla0

(4.1.21)

With the given deformation gradient and

drrra = Ra ··· FFF T = FFF ··· dRa

one may compute

dl2a = drrra ··· drrra = dRa ··· FFF T ··· FFF ··· dRa = (dla0)
2MMM ··· FFF T ··· FFF ··· MMM (4.1.22)
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Hence
λ2

M M = (1 + εM M)2 = MMM ··· CCC ··· MMM, CCC = FFF T ··· FFF, (4.1.23)

where CCC is the right Cauchy-Green tensor. For three orthogonal directions specified
by the unit vectors eeeX , eeeY and eeeZ Eq. (4.1.23) provides the corresponding stretches

λ2
X X = eeeX ··· CCC ··· eeeX , λ2

Y Y = eeeY ··· CCC ··· eeeY , λ2
Z Z = eeeZ ··· CCC ··· eeeZ

These equations provide three components of the tensorCCC with respect to the ortho-
normal basis. To define the remaining components consider two orthogonal line
elements given by the vectors dRa = MMMdla0 and dRb = NNNdlb0 in the neighborhood
of the point P , where NNN and MMM , NNN ···MMM = 0 are unit vectors. dla0 and dlb0 are reference
lengths of the elements. The corresponding line elements in the actual configuration
are drrra = mmmdla and drrrb = nnndlb. Let αM N be the angle between the vectors drrra and
drrrb. The local shear strain is defined as γM N = π

2 − αM N . The scalar product of the
vectors drrra and drrrb yields

drrra ··· drrrb = dladlb cosαM N = dladlb sin γM N

= (1 + εM M)(1 + εN N ) sin γnpdla0dlb0

(4.1.24)

For the given deformation gradient FFF

drrra = dRa ··· FFF T = dla0MMM ··· FFF T , drrrb = FFF ··· dRb = dlb0 FFF ··· NNN (4.1.25)

The scalar product yields

drrra ··· drrrb = MMM ··· FFF T ··· FFF ··· NNNdla0dlb0

With Eq. (4.1.24) we obtain

λM MλN N sin γM N = (1 + εM M)(1 + εN N ) sin γM N = MMM ··· CCC ··· NNN (4.1.26)

Equation (4.1.26) provides the M N -component of the tensorCCC . Since MMM and NNN are
two arbitrary orthogonal unit vectors, one,may compute six components of the tensor
CCC by taking the orthogonal unit vectors eeeX , eeeY and eeeZ as directions of the shear strain
measurement. Since the tensor CCC is symmetric only three of them are independent,
i.e.

λX XλY Y sin γXY = eeeX ··· CCC ··· eeeY ,

λX XλZ Z sin γX Z = eeeX ··· CCC ··· eeeZ ,

λY Y λZ Z sin γY Z = eeeY ··· CCC ··· eeeZ

The Cauchy-Green tensor is one example of many strain tensors that can be intro-
duced in the non-linear continuum mechanics. To present several examples let us
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apply the polar decomposition theorem (see Appendix A.4.18) to the deformation
gradient

FFF = RRR ··· UUU = VVV ··· RRR, (4.1.27)

where RRR is the rotation tensor.UUU andVVV are right and left stretch tensors respectively.
These positive definite symmetric tensors have the following spectral representations

UUU =
3∑

i=1

λi

UUU

NNN i ⊗ UUU

NNN i , VVV =
3∑

i=1

λi
VVV

nnni ⊗ VVV

nnni , (4.1.28)

where λi > 0 are principal stretches. The orthonormal unit vectors
UUU

NNN i and
VVV

nnni are
principal directions of the tensorsUUU andVVV , respectively. From (4.1.27) the following
relations can be obtained

VVV

nnni = RRR ··· UUU

NNN i , RRR =
3∑

i=1

VVV

nnni ⊗ UUU

NNN i (4.1.29)

Examples of strain tensors related to UUU (sometimes called material strain tensors)
are the Cauchy-Green strain tensor

GGG = 1

2
(CCC − III ) = 1

2

(
UUU 2 − III

) = 1

2

3∑

i=1

(
λ2

i − 1
) UUU

NNN i ⊗ UUU

NNN i (4.1.30)

the material Biot strain tensor

EEEB = UUU − III =
3∑

i=1

(λi − 1)
UUU

NNN i ⊗ UUU

NNN i (4.1.31)

and the material Hencky strain tensor

HHH = lnUUU =
3∑

i=1

ln λi

UUU

NNN i ⊗ UUU

NNN i (4.1.32)

Examples of strain tensors related to VVV (spatial strain tensors) are the Almansi strain
tensor

EEEA = 1

2

(
III − BBB−1

) = 1

2

(
III − VVV −2

) = 1

2

3∑

i=1

(1 − λ−2
i )

VVV

nnni ⊗ VVV

nnni , (4.1.33)

where BBB = VVV 2 = FFF ··· FFF T is the left Cauchy-Green tensor. Further examples are the
spacial Biot strain tensor
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EEEb = III − VVV −1 =
3∑

i=1

(1 − λ−1
i )

VVV

nnni ⊗ VVV

nnni (4.1.34)

and the spacial Hencky strain tensor

hhh = lnVVV =
3∑

i=1

ln λi
VVV

nnni ⊗ VVV

nnni (4.1.35)

For many structural analysis applications the local strains can be assumed small.
With εM M � 1 and γM N � 1 the left hand side of Eqs. (4.1.23) and (4.1.26) can be
linearized as follows

λ2
M M = (εM M + 1)2 ≈ 2εM M + 1,

λM MλN N sin γM N = (εM M + 1)(εN N + 1) sin γM N ≈ γM N

(4.1.36)

With Eqs. (4.1.23) and (4.1.36) the normal strain in the direction MMM is

εM M = 1

2
MMM ··· FFF T ··· FFF ··· MMM − 1

2

= 1

2
MMM ··· (CCC − III ) ··· MMM

The shear strain can be computed as follows

γM N = MMM ··· FFF T ··· FFF ··· NNN

With the Green-Lagrange strain tensor

GGG = 1

2
(FFF T ··· FFF − III ),

the strains can be given as follows

εM M = MMM ··· GGG ··· MMM, γM N = 2MMM ··· GGG ··· NNN

For the given tensor GGG one may compute the strains with respect to any direction.
For three orthogonal directions specified by the unit vectors eeeX , eeeY and eeeZ the six
components can be computed as follows

εX X = eeeX ··· GGG ··· eeeX , εY Y = eeeY ··· GGG ··· eeeY , εZ Z = eeeZ ··· GGG ··· eeeZ ,

εXY = eeeX ··· GGG ··· eeeY , εX Z = eeeX ··· GGG ··· eeeZ , εY Z = eeeY ··· GGG ··· eeeZ
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Although the normal and shear strains are assumed small, the difference between
the unit vectors like MMM andmmm defined in the initial and actual configurations may be
essential. To formulate geometrically-linear theory we have additionally to assume
infinitesimal rotations.1 The linearized rotation tensor RRR can be given as follows

RRR = III + ϕϕϕ × III ,

where ϕϕϕ is the vector of infinitesimal rotations. Then with Eqs. (4.1.27) and (4.1.16)
the following linearized relations can be established

FFF = III + εεε + ϕϕϕ × III ,
0∇∇∇ uuu = ∇∇∇uuu = εεε + ϕϕϕ × III ,

εεε = 1

2

[∇∇∇uuu + (∇∇∇uuu)T
]
, ϕϕϕ = −1

2
∇∇∇ × uuu

(4.1.37)

The tensor εεε is called tensor of infinitesimal strains.

4.1.3 Velocity Gradient, Deformation Rate, and Spin Tensors

The time derivative of the deformation gradient. can be computed with (4.1.15) as
follows

ḞFF = (
0∇∇∇ ṙrr)T = ṙrr k ⊗ Rk (4.1.38)

With (4.1.11)
∂vvv

∂ Xk
= ṙrr k (4.1.39)

Hence

ḞFF = (
0∇∇∇ vvv)T,

0∇∇∇ vvv = Rk ⊗ ∂vvv

∂ Xk
(4.1.40)

With the relation between nabla operators (4.1.20)2 Eq. (4.1.40) takes the form

ḞFF = (∇∇∇vvv)T ··· FFF (4.1.41)

1In many cases strains can be infinitesimal, but rotations finite. One example is a thin plate strip
which can be bent into a ring such that the strains remain infinitesimal but cross section rotations
are large.
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The spatial velocity gradient LLL = (∇∇∇vvv)T can be computed as follows

LLL = (∇∇∇vvv)T = ḞFF ··· FFF−1 = ∂vvv

∂ Xk
⊗ rrrk (4.1.42)

The tensor LLL can be additively decomposed into the symmetric and skew sym-
metric parts (see Appendix A.4.10)

LLL = DDD + ωωω × III , (4.1.43)

where the symmetric part

DDD = 1

2

[∇∇∇vvv + (∇∇∇vvv)T
]

is called the deformation rate tensor2 while

ωωω = −1

2
∇∇∇ × vvv

is called vorticity vector.
The time derivative of J = det FFF can be computed as follows

dJ

dt
= dFFF

dt
······

(
∂ J

∂FFF

)T

With (B.4.13) we obtain
∂ J

∂FFF
= det FFFFFF−T

Consequently
J̇ = J ḞFF ······ FFF−1 (4.1.44)

Taking the trace of Eq. (4.1.42)

tr LLL = ∇∇∇ ··· vvv = ḞFF ······ FFF−1

With Eq. (4.1.44) we obtain

J̇

J
= d ln J

dt
= ∇∇∇ ··· vvv = ḞFF ······ FFF−1 (4.1.45)

2The tensor DDD is in general not a time derivative of a strain tensor.



152 4 Three-Dimensional Continuum Mechanics

Applying the polar decomposition (4.1.27) and the relations

FFF = RRR ··· UUU ⇒ ḞFF = ṘRR ··· UUU + U̇UU ··· RRR and FFF−1 = UUU−1 ··· RRRT

the velocity gradient can be computed as follows

LLL = ḞFF ··· FFF−1 = ṘRR ··· RRRT + RRR ··· U̇UU ··· UUU−1 ··· RRRT (4.1.46)

For the rotation tensor RRR let us introduce the angular velocity vectorΩΩΩRRR and the spin
tensor ΩΩΩRRR × III as follows. According to the definition of the orthogonal tensor, see
Appendix A.4.17, we obtain

RRR ··· RRRT = III ⇒ ṘRR ··· RRRT + RRR ··· ṘRR
T = 000 ⇒ ṘRR ··· RRRT = −(ṘRR ··· RRRT)T

The skew-symmetric tensor ṘRR ··· RRRT is called the left spin tensor or simply spin tensor.
With the associated vectorΩΩΩRRR we obtain

ṘRR ··· RRRT = ΩΩΩRRR × III , ΩΩΩRRR = −1

2
(ṘRR ··· RRRT)×, (4.1.47)

where (. . .)× denotes the vector invariant orGibbs cross of the second rank tensor, see
Appendix A.4.15. The vectorΩΩΩRRR is called the left angular velocity vector of rotation
or simply angular velocity of rotation. This vector is widely used in the mechanics
of rigid bodies, e.g. Altenbach et al. (2007, 2009), Zhilin (1996). Equation (4.1.46)
can be given as follows

DDD + ωωω × III = ΩΩΩRRR × III + RRR ··· U̇UU ··· UUU−1 ··· RRRT (4.1.48)

Taking the vector invariant of Eq. (4.1.48) the vorticity vector can be computed as
follows

ωωω = ΩΩΩRRR − 1

2
(RRR ··· U̇UU ··· UUU−1 ··· RRRT)× (4.1.49)

The symmetric part of Eq. (4.1.48) is

DDD = 1

2
RRR ··· UUU−1 ··· U̇UU ··· RRRT = 1

2
RRR ··· (U̇UU ··· UUU−1 + UUU−1 ··· U̇UU ) ··· RRRT (4.1.50)

Equation (4.1.50) can be put in the following form

RRRT ··· DDD ··· RRR = 1

2
(U̇UU ··· UUU−1 + UUU−1 ··· U̇UU )
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or

FFFT ··· DDD ··· FFF = 1

2

d

dt
(UUU 2) = 1

2
ĊCC = ĠGG (4.1.51)

Let us take the time derivatives of stretch tensors applying spectral representations
(4.1.28)

U̇UU =
3∑

i=1

(
λ̇i

UUU

NNN i ⊗ UUU

NNN i + λi
d

dt

UUU

NNN i ⊗ UUU

NNN i + λi

UUU

NNN i ⊗ d

dt

UUU

NNN i

)
,

V̇VV =
3∑

i=1

(
λ̇i

VVV

nnni ⊗ VVV

nnni + λi
d

dt

VVV

nnni ⊗ VVV

nnni + λi
VVV

nnni ⊗ d

dt

VVV

nnni

) (4.1.52)

Consider a triple of fixed orthogonal unit vectors eeei and the rotation tensor PPPUUU such
that

UUU

NNN i = PPPUUU ··· eeei

Hence
VVV

nnni = RRR ··· PPPUUU ··· eeei

or
VVV

nnni = PPPVVV ··· eeei , PPPVVV = RRR ··· PPPUUU (4.1.53)

For the rotation tensors PPPUUU and PPPVVV the spin tensors and the angular velocity vectors
can be introduced as follows

ṖPPUUU ··· PPPT
UUU = ΩΩΩUUU × III , ṖPPUUU = ΩΩΩUUU × PPPUUU ,

ṖPPVVV ··· PPPT
VVV = ΩΩΩVVV × III , ṖPPVVV = ΩΩΩVVV × PPPVVV

(4.1.54)

The time derivative of Eq. (4.1.53)2 yields

ṖPPVVV = ṘRR ··· PPPUUU + RRR ··· ṖPPUUU

= ΩΩΩRRR × RRR ··· PPPUUU + RRR ··· (ΩΩΩUUU × III ) ··· RRRT ··· RRR ··· PPPUUU

= (ΩΩΩRRR + RRR ··· ΩΩΩUUU ) × PPPVVV

Hence the following relationship between the angular velocity vectors can be estab-
lished

ΩΩΩVVV = ΩΩΩRRR + RRR ··· ΩΩΩUUU (4.1.55)
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With Eqs. (4.1.54) the rates of change of principal directions can be computed as
follows

d

dt

UUU

NNN i = ΩΩΩUUU × UUU

NNN i ,
d

dt

VVV

nnni = ΩΩΩVVV × VVV

nnni

Consequently the rates of change of stretch tensors (4.1.52) take the following form

U̇UU =
3∑

i=1

λ̇i

UUU

NNN i ⊗ UUU

NNN i + ΩΩΩUUU × UUU − UUU × ΩΩΩUUU ,

V̇VV =
3∑

i=1

λ̇i
VVV

nnni ⊗ VVV

nnni + ΩΩΩVVV × VVV − VVV × ΩΩΩVVV

(4.1.56)

With equation (4.1.56) and

UUU−1 =
3∑

i=1

1

λi

UUU

NNN i ⊗ UUU

NNN i ,

one may compute

RRR ··· U̇UU ··· UUU−1 ··· RRRT = RRR ···
[

3∑

i=1

λ̇iλ
−1
i

UUU

NNN i ⊗ UUU

NNN i + ΩΩΩUUU × III − (UUU × ΩΩΩUUU ) ··· UUU

]
··· RRRT

Applying Eqs. (4.1.53), (4.1.55) it can be simplified as follows

RRR ··· U̇UU ··· UUU−1 ··· RRRT =
3∑

i=1

λ̇iλ
−1
i

VVV

nnni ⊗ VVV

nnni

+ (ΩΩΩVVV − ΩΩΩRRR) × III − VVV ··· [(ΩΩΩVVV − ΩΩΩRRR) × III ] ··· VVV −1

(4.1.57)

Taking the vector invariant of Eq. (4.1.57) and applying the identities (A.4.15) and
(A.4.16) we obtain

(RRR ··· U̇UU ··· UUU−1 ··· RRRT)× = −2(ΩΩΩVVV − ΩΩΩRRR) − AAAVVV ··· (ΩΩΩVVV − ΩΩΩRRR), (4.1.58)

where

AAAVVV =
3∑

i1

λi
VVV

nnni × VVV −1 × VVV

nnni =
3∑

i=1

3∑

j=1

λi

λ j

VVV

nnni × VVV

nnn j ⊗ VVV

nnn j × VVV

nnni

According to (A.4.16) and the Cayley-Hamilton theorem the tensor AAAVVV has the
following representations

AAAVVV = J−1VVV ··· [VVV 2 − (tr VVV 2)III ] = III + J2VVV − J 2
1VVV

J
VVV + J1VVV

J
VVV 2,
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where J1VVV , J2VVV and J = J3VVV are principal invariants of the tensor VVV as defined by
Eqs. (A.4.11). The spectral form of the tensor AAAVVV is

− AAAVVV = λ2
2 + λ2

3

λ2λ3

VVV

nnn1 ⊗ VVV

nnn1 + λ2
3 + λ2

1

λ3λ1

VVV

nnn2 ⊗ VVV

nnn2 + λ2
1 + λ2

2

λ1λ2

VVV

nnn3 ⊗ VVV

nnn3 (4.1.59)

With Eqs. (4.1.49) and (4.1.58) the following relationship between the angular veloc-
ities can be obtained

ωωω = ΩΩΩVVV + 1

2
AAAVVV ··· (ΩΩΩVVV − ΩΩΩRRR) (4.1.60)

The relationship (4.1.60) can also be derived with the following decomposition

FFF = VVV · RRR ⇒ FFF−1 = RRRT · VVV −1

Therefore the velocity gradient is

LLL = ḞFF ··· FFF−1 = V̇VV ··· VVV −1 + VVV ··· ṘRR ··· RRRT ··· VVV −1 (4.1.61)

With Eqs. (4.1.28), (4.1.47) and (4.1.56), Eq. (4.1.61) takes the form

LLL =
3∑

i=1

λ̇iλ
−1
i

VVV

nnni ⊗ VVV

nnni + ΩΩΩVVV × III + LLLΩΩΩ, (4.1.62)

where
LLLΩΩΩ = VVV ··· (Ω̃ΩΩ × III ) ··· VVV −1, Ω̃ΩΩ = ΩΩΩRRR − ΩΩΩVVV

Taking the vector invariant of Eq. (4.1.62) provides the relationship (4.1.60).
With the identity (A.4.8)2 the tensor LLLΩΩΩ can be represented as follows

LLLΩΩΩ = aaa × VVV −2 = VVV 2 × bbb,

aaa = JVVV −1 ··· Ω̃ΩΩ, bbb = J−1VVV ··· Ω̃ΩΩ
(4.1.63)

The right dot product of Eq. (4.1.62) with VVV 2 yields

LLL ··· VVV 2 =
3∑

i=1

λ̇iλi
VVV

nnni ⊗ VVV

nnni + ΩΩΩVVV × VVV 2 + aaa × III , (4.1.64)

With the decomposition of the velocity gradient (4.1.43), Eq. (4.1.64) takes the
following form

DDD ··· VVV 2 =
3∑

i=1

λ̇iλi
VVV

nnni ⊗ VVV

nnni + (ΩΩΩVVV − ωωω) × VVV 2 + aaa × III (4.1.65)
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Taking the vector invariant of Eq. (4.1.65) yields

1

2J
VVV ··· (DDD ··· VVV 2)× =

(
III + 1

2
AAAVVV

)
··· ΩΩΩVVV − 1

2
AAAVVV ··· ωωω − ΩΩΩRRR (4.1.66)

From Eqs. (4.1.60) and (4.1.66) we obtain

1

2J
VVV ··· (DDD ··· VVV 2)× =

(
III − 1

2
AAAVVV

)
··· (ωωω − ΩΩΩRRR)

With Eq. (4.1.59) one may verify the tensor III − 1/2AAAVVV is non-singular. Hence

ωωω − ΩΩΩRRR = KKK VVV ··· (DDD ··· VVV 2)×, KKK VVV = 1

2J

(
III − 1

2
AAAVVV

)−1

··· VVV (4.1.67)

Applying Eq. (4.1.59) the following spectral representation of the tensor KKK VVV can be
established

KKK VVV = 1

(λ2 + λ3)2
VVV

nnn1 ⊗ VVV

nnn1 + 1

(λ3 + λ1)2
VVV

nnn2 ⊗ VVV

nnn2 + 1

(λ1 + λ2)2
VVV

nnn3 ⊗ VVV

nnn3

(4.1.68)

Let us relate the tensor DDD to the time derivative of the Hencky strain tensor hhh. To
this end consider the symmetric part of Eq. (4.1.62)

DDD =
3∑

i=1

λ̇iλ
−1
i

VVV

nnni ⊗ VVV

nnni + 1

2
(VVV 2 × bbb − bbb × VVV 2) (4.1.69)

The time derivative of the Hencky strain tensor (4.1.35) can be computed as follows

ḣhh =
3∑

i=1

λ̇iλ
−1
i

VVV

nnni ⊗ VVV

nnni + ΩΩΩVVV × hhh − hhh × ΩΩΩVVV (4.1.70)

Inserting into Eq. (4.1.69) yields

DDD = ḣhh − ΩΩΩVVV × hhh + hhh × ΩΩΩVVV + 1

2
(VVV 2 × bbb − bbb × VVV 2) (4.1.71)

The tensor

DDDΩΩΩ = 1

2
(VVV 2 × bbb − bbb × VVV 2)



4.1 Motion, Derivatives and Deformation 157

has the following representation

2DDDΩΩΩ =
3∑

i=1

3∑

j=1

(λ2
i − λ2

j )bbb ··· (
VVV

nnni × VVV

nnn j )(
VVV

nnni ⊗ VVV

nnn j + VVV

nnn j ⊗ VVV

nnni ) (4.1.72)

Assuming that the tensor VVV has distinct principal values λi let us consider the fol-
lowing identity

2DDDΩΩΩ =
3∑

i=1

3∑

j=1

(ln λi − ln λ j )
λ2

i − λ2
j

(ln λi − ln λ j )
bbb ··· (

VVV

nnni × VVV

nnn j )(
VVV

nnni ⊗ VVV

nnn j + VVV

nnn j ⊗ VVV

nnni )

=
3∑

i=1

3∑

j=1

(ln λi − ln λ j )ccc ··· (
VVV

nnni × VVV

nnn j )(
VVV

nnni ⊗ VVV

nnn j + VVV

nnn j ⊗ VVV

nnni )

= hhh × ccc − ccc × hhh, i �= j
(4.1.73)

where the components of vectorccc are related to the components of vectorbbb as follows

ccc ··· (
VVV

nnni × VVV

nnn j ) = λ2
i − λ2

j

(ln λi − ln λ j )
bbb ··· (

VVV

nnni × VVV

nnn j ), i �= j

Hence

ccc ···
3∑

i=1

3∑

j=1

VVV

nnni × VVV

nnn j ⊗ VVV

nnn j × VVV

nnni

= bbb ···
3∑

i=1

3∑

j=1

λ2
i − λ2

j

(ln λi − ln λ j )

VVV

nnni × VVV

nnn j ⊗ VVV

nnn j × VVV

nnni , i �= j

Applying the identity (A.4.14) we obtain

3∑

i=1

3∑

j=1

VVV

nnni × VVV

nnn j ⊗ VVV

nnn j × VVV

nnni =
3∑

i=1

VVV

nnni × III × VVV

nnni =
3∑

i=1

(
VVV

nnni ⊗ VVV

nnni − VVV

nnni ··· VVV

nnni III ) = −2III

Consequently

2ccc = −bbb ···
3∑

i=1

3∑

j=1

λ2
i − λ2

j

(ln λi − ln λ j )

VVV

nnni × VVV

nnn j ⊗ VVV

nnn j × VVV

nnni , i �= j (4.1.74)
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With Eqs. (4.1.63), (4.1.71), (4.1.73) and (4.1.74) the tensor DDD is related to the rate
of the Hencky strain tensor hhh as follows

DDD = ḣhh − ΩΩΩhhh × hhh + hhh × ΩΩΩhhh, ΩΩΩhhh = ΩΩΩVVV + AAAhhh ··· (ΩΩΩRRR − ΩΩΩVVV ) (4.1.75)

where

AAAhhh = − 1

4J
VVV ···

3∑

i=1

3∑

j=1

λ2
i − λ2

j

(ln λi − ln λ j )

VVV

nnni × VVV

nnn j ⊗ VVV

nnn j × VVV

nnni , i �= j

The tensor AAAhhh has the following spectral representation

2AAAhhh = λ2
2 − λ2

3

λ2λ3 ln
λ2
λ3

VVV

nnn1 ⊗ VVV

nnn1 + λ2
3 − λ2

1

λ3λ1 ln
λ3
λ1

VVV

nnn2 ⊗ VVV

nnn2 + λ2
1 − λ2

2

λ1λ2 ln
λ1
λ2

VVV

nnn3 ⊗ VVV

nnn3

In Xiao et al. (1997) the tensorΩΩΩhhh × III is called logarithmic spin. With Eqs. (4.1.55),
(4.1.67) and (4.1.75) the vectorΩΩΩhhh can be computed as follows

ΩΩΩhhh = ωωω + KKK hhh ··· (DDD ··· VVV 2)×, (4.1.76)

where

2KKK hhh =
3∑

i=1

3∑

j=1

1

λ2
i − λ2

j

(
λ2

i + λ2
j

λ2
i − λ2

j

− 1

ln λi
λ j

)
VVV

nnni × VVV

nnn j ⊗ VVV

nnn j × VVV

nnni , i �= j

Equation (4.1.76) is firstly derived by Xiao et al. (1997) in a different notation. The
tensor KKK hhh has the following spectral representation

KKK hhh = 1

λ2
2 − λ2

3

(
1

ln λ2
λ3

− λ2
2 + λ2

3

λ2
2 − λ2

3

)
VVV

nnn1 ⊗ VVV

nnn1

+ 1

λ2
3 − λ2

1

(
1

ln λ3
λ1

− λ2
3 + λ2

1

λ2
3 − λ2

1

)
VVV

nnn2 ⊗ VVV

nnn2

+ 1

λ2
3 − λ2

1

(
1

ln λ1
λ2

− λ2
1 + λ2

2

λ2
1 − λ2

2

)
VVV

nnn3 ⊗ VVV

nnn3
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4.2 Conservation of Mass

The mass of an infinitesimal part of the body is

dm = ρdV = ρ0dV0, (4.2.77)

where ρ and ρ0 is the density in the actual and the reference configurations, respec-
tively. With Eq. (4.1.17) the conservation of mass (4.2.77) takes the form

ρ0

ρ
= J (4.2.78)

4.3 Balance of Momentum

The momentum of an infinitesimal part of the solid is defined as follows

dppp = vvvdm = vvvρdV

The momentum for a part of the solid with the volume Vp in the in the actual config-
uration is

pppp =
∫

Vp

vvvρdV (4.3.79)

The balance of momentum or the first law of dynamics states that the rate of change
of momentum of a body is equal to the total force acting on the body.

4.3.1 Stress Vector

Figure4.2 illustrates a body under the given external loads. To visualize the internal
forces let us cut the body in the actual configuration by a plane. The orientation of the
plane is given by the unit normal vector nnn. In the differential neighborhood of a point
P consider an infinitesimal area element dA. To characterize the mechanical action
of the part II on the part I of the body let us introduce the force vector dTTT II−I = dTTT (nnn)

as shown in Fig. 4.2. On the other hand the force vector dTTT I−II = dTTT (−nnn) models
the mechanical action of the part I on the part II. The intensity of these mechanical
actions can be characterized by the stress vectorsσσσ (nnn) andσσσ (−nnn). Both the magnitude
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Fig. 4.2 Stress vector for the plane with the normal vector nnn

and the direction of the stress vector depend on the position within the body. Within
the infinitesimal area element dA the stress vector is assumed constant such that

dTTT (nnn) = σσσ (nnn)dA, dTTT (−nnn) = σσσ (−nnn)dA

One may prove that

dTTT (nnn) = −dTTT (−nnn) ⇒ σσσ (nnn) = −σσσ (−nnn) (4.3.80)

4.3.2 Integral Form

Let us cut a part with the volume Vp and the surface area Ap from the body, as shown
in Fig. 4.3. Themechanical actions on the part of the body can be classified as follows

• body forces, for example force of gravity, electric or magnetic forces acting on a
part of the mass dm = ρdV . This type of action is described with the force density
vector fff such that the elementary body force is dG = fff dm = fff ρdV

• surface forces dTTT (nnn) = σσσ (nnn)dA acting on the surface elements dA of Ap. These
forces characterize the mechanical action of the environment (remainder of the
body) on the given part Vp.
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Fig. 4.3 Forces acting on a part of the body with the volume Vp

The resultant force vector is

Fp =
∫

Ap

σσσ (nnn)dA +
∫

Vp

fff ρdV

The balance of momentum for the part of the solid can be formulated as follows

d

dt

∫

Vp

vvvρdV =
∫

Ap

σσσ (nnn)dA +
∫

Vp

fff ρdV (4.3.81)

4.3.3 Stress Tensor and Cauchy Formula

The balance of momentum (4.3.81) can be applied for any part of the body. Consider
an infinitesimal tetrahedron (Ap → 0, Vp → 0) as a part of the body, Fig. 4.4.
The orthonormal vectors eee1, eee2 and eee3 are introduced to fix the orientation of the
tetrahedron. The mechanical action of the environment on the tetrahedron cut from
the body is characterized by forces and corresponding stress vectors. The cut planes,
the corresponding areas as well as stress and force vectors are given in the Table4.1.
For the infinitesimal tetrahedron the volume integrals in Eq. (4.3.81) have lower order
of magnitude compared to the surface integral such that

∫

Ap

σσσ (nnn)dA = 000 (4.3.82)
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Fig. 4.4 Infinitesimal tetrahedron cut from the body

Table 4.1 Summary of formulae for the infinitesimal tetrahedron

Plane Area Stress vector Force vector

nnn1 = −eee1 dA1 σσσ (nnn1) = −σσσ (eee1) TTT (nnn1) = σσσ (nnn1)dA1

nnn2 = −eee2 dA2 σσσ (nnn2) = −σσσ (eee2) TTT (nnn2) = σσσ (nnn2)dA2

nnn3 = −eee3 dA3 σσσ (nnn3) = −σσσ (eee3) TTT (nnn3) = σσσ (nnn3)dA3

nnn dA σσσ (nnn) TTT (nnn) = σσσ (nnn)dA

Hence
σσσ (nnn1)dA1 + σσσ (nnn2)dA2 + σσσ (nnn3)dA3 + σσσ (nnn)dA = 000

Taking into account (4.3.80)

− σσσ (eee1)dA1 − σσσ (eee2)dA2 − σσσ (eee3)dA3 + σσσ (nnn)dA = 000 (4.3.83)

or
σσσ (nnn)dA = σσσ (eee1)dA1 + σσσ (eee2)dA2 + σσσ (eee3)dA3 (4.3.84)
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In addition the following equation is valid for any part of the volume3

∫

Ap

nnndA = 000 (4.3.85)

Applying (4.3.85) to the tetrahedron yields

nnn1dA1 + nnn2dA2 + nnn3dA3 + nnndA = 000 (4.3.86)

Therefore

nnndA = eee1dA1 + eee2dA2 + eee3dA3,

nnn ··· eee1dA = dA1, nnn ··· eee2dA = dA2, nnn ··· eee3dA = dA3

(4.3.87)

Inserting dAi (i = 1, 2, 3) into Eq. (4.3.84) we obtain

σσσ (nnn)dA = dA1σσσ (eee1) + dA2σσσ (eee2) + dA3σσσ (eee3)

= nnn ··· eee1dAσσσ (eee1) + nnn ··· eee2dAσσσ (eee2) + nnn ··· eee3dAσσσ (eee3)

This can be simplified as follows

σσσ (nnn) = nnn ··· eee1σσσ (eee1) + nnn ··· eee2σσσ (eee2) + nnn ··· eee3σσσ (eee3)

= nnn ··· [eee1 ⊗ σσσ (eee1) + eee2 ⊗ σσσ (eee2) + eee3 ⊗ σσσ (eee3)]
(4.3.88)

With the tensor
σσσ = eee1 ⊗ σσσ (eee1) + eee2 ⊗ σσσ (eee2) + eee3 ⊗ σσσ (eee3) (4.3.89)

Eq. (4.3.88) takes the following form

σσσ (nnn) = nnn ···σσσ (4.3.90)

Equation (4.3.90) is the Cauchy formula4 that allows one to compute the stress vector
for any plane with the unit normal nnn if the Cauchy stress tensor σσσ is given.

3This can be verified applying the integral theorem (B.3.4)1 with ϕ = 1.
4In some books of continuum mechanics and applied mathematics the stress tensor is defined as
σσσ = σσσ (eee1) ⊗ eee1 +σσσ (eee2) ⊗ eee2 +σσσ (eee3) ⊗ eee3 such that the Cauchy formula is σσσ (nnn) = σσσ ···nnn. Formally
this definition differs from (4.3.89) by transpose. It might be more convenient, as it is closer to the
matrix algebra. For engineers dealing with internal forces it is more natural to use (4.3.89). Indeed,
to analyze a stress state we need to cut the body first and to specify the normal to the cut plane.
Only after that we can introduce the internal force. The sequence of these operations is clearly seen
in (4.3.89).
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4.3.4 Local Forms

With the Cauchy formula (4.3.90) and the integral theorem (B.3.5)2 the surface
integral in (4.3.81) is transformed as follows

∫

Ap

σσσ (nnn)dA =
∫

Ap

nnn ··· σσσdA =
∫

Vp

∇∇∇ ··· σσσdV (4.3.91)

Now the balance of momentum takes the form
∫

Vp

(ρv̇vv − ∇∇∇ ··· σσσ − ρ fff )dV = 000 (4.3.92)

Since Eq. (4.3.92) is valid for any part of the solid, the following local form of the
balance of momentum can be established

ρv̇vv = ∇∇∇ ··· σσσ + ρ fff (4.3.93)

With the identity (4.1.18) the surface integral (4.3.91) can be transformed as
follows

∫

Ap

σσσ (nnn)dA =
∫

Ap

nnn ··· σσσdA =
∫

Ap0

NNN ··· PPPdA0

∫

Vp0

0∇∇∇ ···PPPdV0, (4.3.94)

where

PPP = J FFF−1 ··· σσσ (4.3.95)

is the Piola-Kirchhoff stress tensor. With Eqs. (4.3.94) and (4.2.78) the balance of
momentum can be formulated as follows

∫

Vp0

(ρ0v̇vv− 0∇∇∇ ···PPP − ρ fff )dV0 = 000 (4.3.96)

The corresponding local form is

ρ0v̇vv = 0∇∇∇ ···PPP + ρ0 fff (4.3.97)
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4.4 Balance of Angular Momentum

With respect to the point O the angular momentum and the resultant moment vectors
for a part of the body are defined as follows5

qqqpO =
∫

Vp

rrr × vvvρdV, MpO =
∫

Ap

rrr × σσσ (nnn)dA +
∫

Vp

rrr × fff ρdV (4.4.98)

The balance of angular momentum or the second law of dynamics states that the rate
of change of angular momentum of a body is equal to the resultant moment acting on
the body. The surface integral in Eq. (4.4.98) can be transformed applying (B.3.5)2
as follows

∫

Ap

rrr × (nnn ··· σσσ)dA = −
∫

Ap

nnn ··· σσσ × rrrdA = −
∫

Vp

∇∇∇ ··· (σσσ × rrr)dV (4.4.99)

Applying the identity (B.2.3) we obtain

∇∇∇ ··· (σσσ × rrr) = (∇∇∇ ··· σσσ) × rrr − σσσ×

The balance of angular momentum can be formulated as follows

q̇qqpO =
∫

Vp

rrr × v̇vvρdV =
∫

Vp

[rrr × (∇∇∇ ··· σσσ + ρρρ f ) + σσσ×]dV

or ∫

Vp

rrr × (v̇vvρ − ∇∇∇ ··· σσσ + ρρρ f )dV =
∫

Vp

σσσ×dV

Taking into account the balance of momentum (4.3.93) this results in

σσσ× = 000 ⇒ σσσ = σσσ T (4.4.100)

5With regard to structural analysis applications discussed in this book it is enough to identify the
angular momentum as themoment of momentum and the resultant moment as themoment of forces.
In contrast, within the micropolar theories material points are equipped by tensor of inertia. The
resultant moment includes surface and body moments which are not related to moment of forces,
e.g. Altenbach et al. (2003), Eringen (1999), Nowacki (1986).
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4.5 Balance of Energy

The total energy Ep of the part of the body, is defined as a sum of the kinetic energy
Kp and the internal energy Up as follows

Ep = Kp + Up,

Kp =
∫

Vp

ρKdV, Up =
∫

Vp

ρUdV, K = 1

2
vvv ··· vvv,

(4.5.101)

where K and U are densities of the kinetic and the internal energy, respectively. The
energy balance equation or the first law of thermodynamics states that the rate of
change of the energy of a body is equal to the mechanical power plus the rate of
change of non-mechanical energy, for example heat, supplied into the body. The
energy balance equation is

d

dt
Ep = Lp + Qp, (4.5.102)

where Lp is the mechanical power and Qp is the rate of change of non-mechanical
energy supply. The mechanical power of forces introduced in Sect. 4.3.2 is defined
as follows

Lp =
∫

Ap

σσσ (nnn) ··· vvvdA +
∫

Vp

fff ··· vvvρdV (4.5.103)

With Eqs. (4.3.90) and (B.3.5)2 the surface integral in (4.5.103) is transformed to

∫

Ap

σσσ (nnn) ··· vvvdA
∫

Ap

nnn ··· σσσ ··· vvvdA =
∫

Vp

∇∇∇ ··· (σσσ ··· vvv)dV (4.5.104)

With the identity (B.2.2) we obtain

∇∇∇ ··· (σσσ ··· vvv) = (∇∇∇ ··· σσσ) ··· vvv + σσσ ······ (∇∇∇ ⊗ vvv)T

The mechanical power can be now given as follows

Lp =
∫

Vp

[(∇∇∇ ··· σσσ + ρ fff ) ··· vvv + σσσ ······ (∇∇∇ ⊗ vvv)T]dV (4.5.105)
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The energy balance equation (4.5.102) takes the form

∫

Vp

ρ(v̇vv ···vvv + U̇)dV =
∫

Vp

[(∇∇∇ ···σσσ + ρ fff ) ···vvv +σσσ ······ (∇∇∇ ⊗vvv)T]dV +Qp (4.5.106)

With the balance of momentum (4.3.93), Eq. (4.5.106) simplifies to

∫

Vp

ρU̇dV =
∫

Vp

σσσ ······ (∇∇∇ ⊗ vvv)TdV + Qp (4.5.107)

The rate of change of the energy supply includes the contributions through the outer
surface and within the volume of the part p

Qp =
∫

Ap

q(nnn)dA +
∫

Vp

rρdV (4.5.108)

Equation (4.5.107) takes the following form

∫

Vp

[ρU̇ − σσσ ······ (∇∇∇ ⊗ vvv)T − ρr ]dV =
∫

Ap

q(nnn)dA (4.5.109)

Equation (4.5.109) is valid for any part of the body. Considering an infinitesimal
tetrahedron the energy balance reduces to

∫

Ap

q(nnn)dA = 0

Applying the procedures discussed in Sect. 4.3.3 one may derive the following equa-
tion

q(nnn) = −nnn ··· qqq, (4.5.110)

where qqq is the heat flow vector. With (B.3.5)1 and (4.5.110) the surface integral can
be transformed into the volume one as follows

∫

Ap

q(nnn)dA = −
∫

Vp

∇∇∇ ··· qqqdV (4.5.111)

Equation (4.5.108) takes the form

∫

Vp

[ρU̇ − σσσ ······ (∇∇∇ ⊗ vvv)T + ∇∇∇ ··· qqq − ρr ]dV = 0 (4.5.112)
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Equation (4.5.112) is valid for any part of the deformed body. Hence

ρU̇ = σσσ ······ (∇∇∇ ⊗ vvv)T − ∇∇∇ ··· qqq + ρr (4.5.113)

With the identity (4.1.18) the surface integral (4.5.111) can be transformed as
follows

∫

Ap

q(nnn)dA = −
∫

Ap

nnn ··· qqqdA = −
∫

Ap0

NNN ··· q̂qqdA0 −
∫

Vp0

0∇∇∇ ··· q̂qqdV0, (4.5.114)

where by analogy to the Piola-Kirchhoff stress tensor the following heat flow vector
can be introduced

q̂qq = J FFF−1 ··· qqq (4.5.115)

Now it is not difficult to derive the local form of the energy balance per unit volume
of the body in the reference configuration

ρ0U̇ = PPP ······ (
0∇∇∇ ⊗vvv)T− 0∇∇∇ ··· q̂qq + ρ0r (4.5.116)

4.6 Entropy and Dissipation Inequalities

The second law of thermodynamics states that the entropy production of a body is
non-negative. This statement is given as the Clausius-Planck inequality

d

dt
Sp −

(
Q

T

)

p

≥ 0, (4.6.117)

where S is the entropy and T is the absolute temperature. The entropy of the part of
the body is defined as follows

Sp =
∫

Vp

ρSdV, (4.6.118)
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where S is the entropy density. For the part of the body we define

(
Q

T

)

p

=
∫

Ap

q(nnn)

T
dA +

∫

Vp

r

T
ρdV (4.6.119)

Applying Eqs. (4.5.110) and (B.3.5)1 we obtain

(
Q

T

)

p

=
∫

Vp

[
−∇ ···

( qqq

T

)
+ r

T
ρ
]
dV (4.6.120)

With Eqs. (4.6.118) and (4.6.120) the entropy inequality (4.6.117) can be formulated
as follows ∫

Vp

[
ρṠ + ∇ ···

( qqq

T

)
− r

T
ρ
]
dV ≥ 0 (4.6.121)

Since (4.6.121) is valid for anypart of the body the local formof the entropy inequality
is

ρṠ ≥ −∇ ···
( qqq

T

)
+ ρr

T
(4.6.122)

With the identity (B.2.1)

∇ ···
( qqq

T

)
= ∇∇∇ ··· qqq

T
− qqq ··· ∇∇∇T

T 2

Multiplying both sides of (4.6.122) by T yields the Clausius-Duhem inequality

ρṠT ≥ −∇∇∇ ··· qqq + qqq ··· ∇∇∇T

T
+ rρ (4.6.123)

The energy balance equation (4.5.113) can be formulated as follows

ρr − ∇∇∇ ··· qqq = ρU̇ − σσσ ······ (∇∇∇ ⊗ vvv)T (4.6.124)

Inserting into the entropy inequality (4.6.123) yields the dissipation inequality

σσσ ······ (∇∇∇ ⊗ vvv)T − ρU̇ + ρṠT − qqq ··· ∇∇∇T

T
≥ 0 (4.6.125)
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Introducing theHelmholtz free energy densityΦ = U−ST the dissipation inequality
(4.6.125) can be put into the following form

σσσ ······ (∇∇∇ ⊗ vvv)T − ρΦ̇ − ρS Ṫ − qqq ··· ∇∇∇T

T
≥ 0 (4.6.126)

With Eqs. (4.2.78), (4.3.95) and (4.5.115) as well as the relationships between the
gradients (4.1.20) the dissipation inequality (4.6.126) can be given with respect to
the reference configuration as follows

PPP ······ (
0∇∇∇ ⊗vvv)T − ρ0Φ̇ − ρ0S Ṫ − q̂qq··· 0∇∇∇ T

T
≥ 0 (4.6.127)
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