
Chapter 3
Elementary Uni-axial Constitutive Models

Basic information on the material behavior is usually obtained from a uni-axial test.
The development of a constitutive model for a uni-axial stress state is the first step to
the general structural analysis. This is a motivation to apply equations discussed in
this chapter to develop constitutive models and to analyze restrictions to the response
functions and material properties.

Materials are often subjected to complex thermo-mechanical loading condi-
tions. To analyze material behavior under such conditions a combined model for
thermo(visco)elasto-plasticity considering hardening, softening, damage and other
processes is required. Such models are proposed and discussed in the literature. The
idea of this chapter is to introduce elementary constitutive models, useful for the
analysis of material behavior at high temperature.

3.1 Heat Transfer

Assume that the rod is mechanically isolated such that the local power of the internal
force σ Ḟ F−1 in (2.6.50) is zero. This can be accomplished by keeping the deforma-
tion constant, for example, by setting F = 1. The internal force N and consequently
the stress σ are not zeros and arise as reactions on the kinematical constraint. The
inequality (2.6.50) simplifies to

− ρΦ̇ − ρS Ṫ − q
T ′

T
≥ 0 (3.1.1)

The independent variables in Eq. (3.1.1) are ρ, T and T ′. Instead of the density ρ

one may take the change in volume J = ρ0/ρ as the independent variable. The
conjugate variables (sometimes called thermodynamic forces) are S and q. These
can be assumed to be the functions of the independent variables, i.e.
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92 3 Elementary Uni-axial Constitutive Models

S = S(J, T, T ′), q = q(J, T, T ′)

Consequently, the free energy Φ has the same arguments

Φ = Φ(J, T, T ′)

Φ̇ = ∂Φ

∂ J
J̇ + ∂Φ

∂T
Ṫ + ∂Φ

∂T ′ Ṫ ′ (3.1.2)

With Eq. (3.1.2) the inequality (3.1.1) takes the form

− ρ
∂Φ

∂ J
J̇ − ρ

(
∂Φ

∂T
+ S

)
Ṫ − ρ

∂Φ

∂T ′ Ṫ ′ − q
T ′

T
≥ 0 (3.1.3)

Inequality (3.1.3) can be formulated as follows

AJ̇ + BṪ + CṪ ′ + D ≥ 0, (3.1.4)

where the coefficients

A = −ρ
∂Φ

∂ J
, B = −ρ

(
∂Φ

∂T
+ S

)
, C = −ρ

∂Φ

∂T ′ , D = −q
T ′

T
(3.1.5)

do not depend on the rates of independent variables. For arbitrary J̇ , Ṫ and Ṫ ′ the
inequality is only satisfied if A = 0, B = 0, C = 0 and D ≥ 0. From

ρ
∂Φ

∂ J
= 0, ρ

∂Φ

∂T ′ = 0

it follows, that the free energy depends on the temperature only. Furthermore we
obtain the constitutive equation for the entropy

S = −∂Φ

∂T
(3.1.6)

and the inequality

− q
T ′

T
≥ 0 (3.1.7)

The inequality (3.1.7) is satisfied with the Fourier law of heat conduction

q = −κT ′, (3.1.8)

where κ(T ) > 0 is the thermal conductivity. The functions κ(T ) and S(T ) must
be identified experimentally. To discuss the identification procedure let us derive the
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heat transfer equation. Neglecting the mechanical power the local energy balance
(2.4.38) takes the form

ρ AU̇ = −Q′ + ρ Ar (3.1.9)

With U = Φ + ST and Eq. (3.1.6) the internal energy is the function of the temper-
ature only. For the heat supply r assume the following constitutive equation

ρr = h(Te − T ), (3.1.10)

where h(T ) > 0 and Te is the temperature of the environment. Equation (3.1.10)
is known as the Newton law of cooling. With Eqs. (3.1.8) and (3.1.10) the energy
balance equation (3.1.9) takes the form

ρc(T )Ṫ = 1

A
(k AT ′)′ + h(Te − T ), c(T ) = dU

dT
, (3.1.11)

where c(T ) is the heat capacity. For a rod with the constant cross section area this
simplifies to

ρc(T )Ṫ = (kT ′)′ + h(Te − T ) (3.1.12)

Furthermore, assuming that the expected temperature difference is small, one may
linearize the temperature functions c, k and h about a reference temperature T0

leading to the linear differential equation

ρc0Ṫ = k0T ′′ + h0(Te − T ), (3.1.13)

where c0 = c(T0), k0 = k(T0) and h0 = h(T0). Equation (3.1.13) is known as the
heat equation or diffusion equation. The solution for the given initial condition and
the boundary conditions with respect to the heat flux or the temperature provides the
time-dependent temperature field in the rod. Several methods exist to identify the
functions c, k and h, which are based on temperature measurements and solutions
of the heat equation (3.1.13). For details the reader may consult textbooks on heat
transfer and thermodynamics, for example, Granger (1994), Müller (2007), Nellis
and Klein (2009).

Once the heat capacity c(T ) is identified the constitutive equation (3.1.6) allows
us to compute the entropy as follows

S(T ) =
T∫

T0

c(ξ)

ξ
dξ

http://dx.doi.org/10.1007/978-3-319-31629-1_2
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3.2 Thermo-elasticity

Within the framework of elasticity the basic assumption is that the stress is a function
of the strain. This can be related to experimental observations from the tensile test,
Sect. 1.1. After the loading and subsequent unloading within the elastic range the
specimen takes the original length. The elastic behavior is reversible—no hysteresis
loop is observable if the specimen is subjected to a closed cycle of strain under
adiabatic or isothermal conditions.

Let us assume that the stress and consequently the free energy are functions of
the following arguments

σ = σ(F, J, T, T ′) ⇒ Φ = Φ(F, J, T, T ′)

Then the inequality (2.6.50) takes the following form

(
σ F−1 − ρ

∂Φ

∂ F

)
Ḟ − ρ

∂Φ

∂ J
J̇ − ρ

(
∂Φ

∂T
+ S

)
Ṫ − ρ

∂Φ

∂T ′ Ṫ ′ − q
T ′

T
≥ 0

(3.2.14)

The left hand side of the inequality (3.2.14) is a linear function of rates of independent
variables. Therefore the inequality is satisfied if the following conditions are met (see
Sect. 3.1 for a more detailed analysis)

σ = ρF
∂Φ

∂ F
,

∂Φ

∂ J
= 0, S = −∂Φ

∂T
,

∂Φ

∂T ′ = 0, −q
T ′

T
≥ 0 (3.2.15)

The first condition in Eq. (3.2.15) is the constitutive equation for the stress. With

F
∂Φ(F)

∂ F
= ∂Φ(εH)

∂εH
, εH = ln F = ln λ,

where εH is the Hencky strain (sometimes called true strain) and Eq. (2.2.19) it can
be formulated as follows

σ = ρ
∂Φ

∂εH
= ρ

ρ0

∂ρ0Φ

∂εH
= 1

J

∂ρ0Φ

∂εH
(3.2.16)

From Eqs. (3.2.15) and (3.2.16) it follows that the free energy density must be
formulated as a function of the Hencky strain and the temperature. For isothermal
conditions, i.e. for T (x, t) = T0 the work done by the stress Jσ on the infinitesimal
change of the Hencky strain is the total differential of the strain energy density
function

JσdεH = d(ρ0Φ) (3.2.17)

http://dx.doi.org/10.1007/978-3-319-31629-1_1
http://dx.doi.org/10.1007/978-3-319-31629-1_2
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The stress measure Jσ is called Kirchhoff stress. For adiabatic processes, i.e. for
processes without heat transfer with the environment, one may use the local energy
balance equation (2.4.38) to show that

JσdεH = d(ρ0U) (3.2.18)

Equations (3.2.17) and (3.2.18) arewidely used in the theory of elasticity (Hahn 1985;
Lurie 2010; Timoshenko and Goodier 1951) and structural mechanics (Altenbach
et al. 1998; Gould 1988; Reddy 1997; Szilard 1974; Timoshenko and Woinowsky-
Krieger 1959) for the formulation of variational principles.

The starting point for the analysis was the inequality (2.6.50). One may use the
dissipation inequality (2.6.54) defined with respect to the reference configuration to
find the relationship between the engineering stress P and the corresponding strain
measure. Here we use the first equation in (3.2.15) and the relationship between the
stress measures (2.6.55) to derive the following equation

P = ∂ρ0Φ(F)

∂ F
(3.2.19)

To find a particular form of the strain energy density a constitutive equation for
the stress is required. For many structural materials, for example steel, the elastic
range is observed for small values of strain ε such that ε2 � ε < 1. Furthermore, in
this range the stress is proportional to the strain. In this case it follows εH ≈ ε and
Eq. (3.2.15) can be linearized leading to

σ = ∂ρ0Φ(ε)

∂ε
(3.2.20)

Furthermore since λ = 1+ε onemay use Eq. (3.2.19) to derive the linearized relation
for the engineering stress P . Within the linear elasticity the difference between the
stress measures is negligible. To find an expression for the free energy density we
use the following linear constitutive equation

σ = E(ε − εth), εth = αth�, � = T − T0, (3.2.21)

where E is the Young’s modulus and αth is the thermal expansion coefficient. With
Eq. (3.2.20)

ρ0Φ = 1

2
Eε2 − Eαth�ε + f (T ) (3.2.22)

To determine the function f (T ) compute

∂U
∂T

= T
∂S
∂T

= −T
∂2⊕
∂T 2

(3.2.23)

http://dx.doi.org/10.1007/978-3-319-31629-1_2
http://dx.doi.org/10.1007/978-3-319-31629-1_2
http://dx.doi.org/10.1007/978-3-319-31629-1_2
http://dx.doi.org/10.1007/978-3-319-31629-1_2
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With Eq. (3.2.22) this results in

∂U
∂T

= − 1

ρ0
T
d2 f

dT 2
− 1

2ρ0
T ε2

d2E

dT 2
− 1

ρ0
T ε

d2

dT 2
(Eαth�)

The underlined term is the heat capacity without deformation, as defined by
Eq. (3.1.11). Therefore the function f can be found from the following equation

− 1

ρ0
T
d2 f

dT 2
= c(T )

With Eqs. (3.1.10), (3.2.22) and (3.2.23) the energy balance equation (2.4.38) takes
the following form

− ∂2(ρ0Φ)

∂T 2
Ṫ − ∂2(ρ0Φ)

∂T ∂ε
ε̇ = 1

A
(k AT ′)′ + h(Te − T ) (3.2.24)

Assuming that the expected temperature difference is small one may linearize the
functions E(T ), αth(T ), c(T ) and h(T ) about the reference temperature T0. The heat
transfer equation (3.2.24) simplifies to

c0Ṫ + E0αth0 ε̇ = 1

A
(k0 AT ′)′ + h0(Te − T ), (3.2.25)

where E0 = E(T0) and αth0 = αth(T0). The second term in the left-hand side of
Eq. (3.2.25) is usually small and can be neglected (Landau et al. 1986). Therefore,
within the linearized theory the deformation has minor influence on the heat transfer
such that the heat equation can be solved independently providing the temperature
T (x, t). The balance of momentum (2.3.26) with the constitutive equation (3.2.21)
yields

ρ Aü = [E A(u′ − αth�)]′

3.3 Non-linear Viscosity, Viscoplasticity,
and Rigid Plasticity

Assume that the stress σ is the function of the deformation rate Ḟ F−1 = ε̇H and
the temperature. Furthermore, assume that the mechanical power σ Ḟ F−1 does not
influence the free energy directly. The free energy and the entropy are then the
functions of the temperature only. Then the inequality (2.6.50) takes the following
form

− ρ

(
∂Φ

∂T
+ S

)
Ṫ + σ ε̇H − q

T ′

T
≥ 0 (3.3.26)

http://dx.doi.org/10.1007/978-3-319-31629-1_2
http://dx.doi.org/10.1007/978-3-319-31629-1_2
http://dx.doi.org/10.1007/978-3-319-31629-1_2


3.3 Non-linear Viscosity, Viscoplasticity, and Rigid Plasticity 97

The inequality (3.3.26) has the form A(T )Ṫ + B(T, ε̇H) ≥ 0. For arbitrary (positive
and negative) rates of temperature it can only be satisfied if A = 0 and B ≥ 0. This
leads to the constitutive equation for the entropy

S = −∂Φ

∂T
(3.3.27)

and the dissipation inequality

σ ε̇H − q
T ′

T
≥ 0 (3.3.28)

Assuming that the heat flux q does not depend on the strain rate results in two
inequalities

σ ε̇H ≥ 0, −q
T ′

T
≥ 0 (3.3.29)

For the stress one may assume the constitutive equation in the form

σ(ε̇H, T ) = gε̇H(|ε̇H|)sgn(ε̇H)gT (T ), (3.3.30)

where gε̇H(|ε̇H|) ≥ 0 is a function of strain rate with gε̇H(0) = 0 and gT (T ) > 0
is a function of temperature. Both the functions can be identified from stress-strain
diagrams in the saturation (steady state) regime, Fig. 1.2 by taking experimental data
for the stress σss as a function of the strain rate and the temperature. By inverting
Eq. (3.3.31) the constitutive equation for the strain rate can be formulated as follows

ε̇H = fσ (|σ |)sgn(σ ) fT (T ), (3.3.31)

where fσ (|σ |) ≥ 0 is a function of stress with fσ (0) = 0 and fT (T ) is a function of
temperature. These functions can be identified from experimental data of secondary
(steady-state) creep, Fig. 1.5. To this end the minimum creep rates should be taken
from experimental creep curves for different stress and temperature levels. Examples
for stress and temperature functions include the power-law function of stress and the
Arrhenius function of temperature

fσ (σ ) = ε̇0

(
σ

σ0

)n

, fT (T ) = exp

(
− Q

RT

)
, (3.3.32)

where ε0, σ0, n and Q are constants to be identified from experimental data and R is
the universal gas constant. Examples for experimental data are shown in Fig. 1.8 for
steels. With functions (3.3.32) the constitutive equation for the strain rate is

ε̇H = ε̇0 exp

(
− Q

RT

)( |σ |
σ0

)n

sgn(σ ) (3.3.33)

http://dx.doi.org/10.1007/978-3-319-31629-1_1
http://dx.doi.org/10.1007/978-3-319-31629-1_1
http://dx.doi.org/10.1007/978-3-319-31629-1_1
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or in the inverse form

σ = σ0 exp

(
Q

n RT

)( |ε̇H|
ε̇0

) 1
n

sgn(ε̇H) (3.3.34)

Let us note that constitutive equations (3.3.33) and/or (3.3.34) are applicable for
narrow ranges of stress, strain rate and temperature. For example, for metals the
activation energy decreases and the power exponent n increases with a decrease
of temperature. To capture wide stress and temperature ranges advanced functions
are required. Functions of stress (strain rate) and temperature will be discussed in
Sect. 5.4.4.

For n = 1 the model of a linear viscous fluid follows from Eq. (3.3.34). For large
values of n the strain rate sensitivity of stress according to Eq. (3.3.34) becomes
negligible. For n → ∞ the constitutive equation of rate-independent plasticity
(St. Venant model) with the yield stress σy = σ0 follows from Eq. (3.3.34)

{ |σ | − σy ≤ 0, if ε̇H = 0,
σ = σysgnε̇H, if ε̇H 
= 0

(3.3.35)

The inverse form of the rigid plasticity model is

ε̇H = λ̇sgnσ

{
λ̇ = 0, if |σ | − σy < 0,
λ̇ ≥ 0, if |σ | − σy = 0

(3.3.36)

In rheology and theory ofmaterials Eq. (3.3.30) is classified as a constitutive equation
for non-linear viscous fluid, or non-linear viscous element, see for example Giesekus
(1994), Krawietz (1986), Palmov (1998), Reiner (1969). On the other hand, for large
values of n the model (3.3.34) is close to the model of rate-independent plasticity.
Functions fσ and fT can be formulated such that experimental data including viscous
flow and plasticity can be described. Therefore a model like (3.3.30) can be classified
as viscoplasticity model. For example, viscoplasticity models proposed by Krempl
(1996, 1999) do not contain the yield condition and are based on functions like
(3.3.30). This definition of viscoplasticity may contradict again the classification
in the rheology, where the viscoplastic model is a connection of viscous and rigid
plastic elements.

The inelastic deformation of crystalline materials can be explained by dislocation
glide and dislocation climb (Frost and Ashby 1982; Nabarro and de Villiers 1995).
The glide motion of dislocations dominates at lower homologous temperatures and
higher stress levels, while the climb of dislocations over obstacles is important in
high-temperature regimes and moderate stress levels. From this point of view, the
model like (3.3.30) can be classified as a model of high-temperature plasticity, as
preferred in the materials science, see for example Ilschner (1973). In this book we
classify the model like (3.3.30) as a model for high-temperature plasticity.

http://dx.doi.org/10.1007/978-3-319-31629-1_5
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Multi-axial versions of the Eq. (3.3.30) are used in the analysis of hot deformation
processes of metals, for example, friction welding (Schmicker et al. 2013, 2015).
Constitutive equation (3.3.31) is used for the structural analysis in the steady-state
creep range (Altenbach et al. 2008a; Boyle 2012; Naumenko et al. 2009).

3.4 Elasto-plasticity

Assume that the mechanical power L = σ Ḟ F−1 can be additively decomposed in
two parts L = Ls + Ld with

Ls = σs ḞsF
−1
s , Ld = σd ḞdF−1

d ,

where σs and σd are stress-like variables and Fs and Fd are deformation-like variables.
Assume that σs depends only on the deformation-like variables and the temperature,
while σd depends on the deformation rates and the temperature.1 This decomposition
is used to define a part of the mechanical power which is dissipated as heat, i.e. Ld

and can affect the free energy by means of temperature and the remaining part Ls

which directly affects the free energy and under certain conditions can be stored.
For example, this is the case when Ḟd = 0 and T (x, t) = T0, i.e. for isothermal
elasticity, as discussed in Sect. 3.2. In Ziegler (1983) Ls is called quasi-conservative
and Ld—dissipated parts of mechanical power, respectively. Several approaches to
define the corresponding stress and deformation parts are discussed in the litera-
ture. For example, one may consider various connections of rheological elements
including a spring, a viscous element and a friction element (Krawietz 1986; Palmov
1998). A more general approach is to consider a mixture with several constituents
having different properties and volume fractions (Besseling and van der Giessen
1994; Naumenko et al. 2011a). Alternatively, one may assume decompositions for
the deformation gradient, rate of strain and/or stress (Besseling and van der Giessen
1994; Khan and Huang 1995; Maugin 1992).

In this section let us apply the so-called iso-stress approach with the following
constitutive assumption

σs = σd = σ

The mechanical power can be given as follows

L = σ Ḟ F−1 = σ(ḞsF
−1
s + ḞdF−1

d ) (3.4.37)

1In general, σd may also depend on the deformation-like variables. Here we do not consider such
a dependence, for the sake of brevity.
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It is obvious, that in the uni-axial case the additive split of power with the iso-stress
concept is equivalent to following splits of the deformation-like variables

Ḟ F−1 = ḞsF
−1
s + ḞdF−1

d ⇒ d

dt
ln F = d

dt
ln Fs + d

dt
ln Fd ⇒ F = FsFd

(3.4.38)

Viceversa, ifwe assume themultiplicative decompositionof the deformationgradient
F = FsFd, then the additive split of the deformation rates and the additive split of the
mechanical power (3.4.37) follow. In rheology this corresponds to theMaxwellmodel
of viscoelasticity or Prandtl model of elastoplasticity, where a spring is connected
with a dashpot or a friction element in series. For general multi-axial deformation
states the multiplicative decomposition of the deformation gradient does not provide
the additive decomposition of the deformation rates and the mechanical power, see
for example, Besseling and van der Giessen (1994), Khan and Huang (1995), Xiao
et al. (2006). Multi-axial constitutive assumptions will be discussed in Chap. 5. To
illustrate basic ideas let us skip (3.4.38) and start with the iso-stress constitutive
assumption which can be given in the following form

σ = σs(F, Fs, Fd, T ) = σd(Ḟ, Ḟs, Ḟd, T ) (3.4.39)

If constitutive equations for σs and σd are specified then Eq. (3.4.39) can be used to
eliminate one of the kinematic variables, for example Fs. Indeed, assume that F , Fd

and T are given as functions of time. Then Eq. (3.4.39) is the first-order ordinary
differential equation with respect to Fs. It can be solved providing Fs as a function of
remaining variables and time. Therefore the mechanical power can be decomposed
as follows

L = Ls + Ld,

Ls = σ(F, Fd, T )Ḟ F−1 − σ(F, Fd, T )ḞdF−1
d ,

Ld = σ(Ḟ, Ḟd, T )ḞdF−1
d

(3.4.40)

Therefore we can assume that the free energy is now a function of three variables F ,
Fd and T . The inequality (2.6.50) can be written as follows

(
σ F−1 − ρ

∂Φ

∂ F

)
Ḟ −

(
σ F−1

d + ρ
∂Φ

∂ Fd

)
Ḟd − ρ

(
∂Φ

∂T
+ S

)
Ṫ

+σ ḞdF−1
d − q

T ′

T
≥ 0

(3.4.41)

The first line in Eq. (3.4.41) is a linear function of rates of the assumed independent
variables. Therefore with procedures discussed in Sects. 3.1 and 3.2 the inequality
(3.4.41) can be satisfied with

σ F−1 = ρ
∂Φ

∂ F
, σ F−1

d = −ρ
∂Φ

∂ Fd
, S = −∂Φ

∂T
(3.4.42)

http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_2
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and

σ ḞdF−1
d ≥ 0, −q

T ′

T
≥ 0 (3.4.43)

From the first and the second equation in (3.4.42) it follows

σ = ρ
∂Φ

∂ F
F = −ρ

∂Φ

∂ Fd
Fd (3.4.44)

or

∂Φ

∂ F
F + ∂Φ

∂ Fd
Fd = 0 (3.4.45)

Equation (3.4.45) provides a restriction to the free energy and can be solved by
the method of characteristics (Courant and Hilbert 1989). Indeed, the characteristic
system of (3.4.45) is

dF

ds
= F,

dFd

ds
= −Fd, (3.4.46)

where s is a time-like variable. Two ordinary differential equations (3.4.46) possess
one integral. To formulate it rewrite the second equation in Eqs. (3.4.46) as follows

dF−1
d

ds
= − 1

F2
d

dFd

ds
= F−1

d , (3.4.47)

Nowmultiply the first equation in (3.4.46) with F−1
d and the Eq. (3.4.47) with F and

subtract leading to

d

ds
(F F−1

d ) = 0 ⇒ F F−1
d = C,

where C is an integration constant. Therefore F F−1
d is the integral curve of the free

energy and

Φ(F, Fd) = Φ(F F−1
d )

With Eq. (3.4.44) the stress is given as follows

σ = ρ
∂Φ

∂ F
F = ρ

∂Φ

∂ F F−1
d

F F−1
d (3.4.48)

By specifying Fel = F F−1
d we can formulate the thermoelasticity constitutive equa-

tions as it made in Sect. 3.2
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σ = ρ
∂Φ(Fel)

∂ Fel
Fel = ρ

∂Φ(εelH)

∂εelH
, S = −∂Φ

∂T
, (3.4.49)

where εelH = ln Fel is the elastic strain. Note the strain in the continuum mechanics
is usually understood as a quantity that can be related to the deformation gradient,
for example εH = ln F . In this sense the “elastic strain” can only be identified as a
strain if Fd = 1. Nevertheless, “elastic strain” is convenient to analyze and identify
experimental data, for example initial strain in a strain versus time curve or elastic
strain part in a stress-strain hysteresis loop, see examples presented in Sect. 1.1.1.

Fd can also be defined as a “plastic transformation” (Bertram 2012). The quantity
ε
pl
H = ln(Fpl) canbe called the “plastic strain”, i.e. a strain upon an artificial unloading
such that Fel = 1. Again “plastic strain”, “creep strain” or “inelastic strain” are
useful to identify constitutive models, response functions and material properties
from various tests, see Sect. 1.1.1. To define the plastic (inelastic) strain a kinetic
equation is required. For example, one may use Eq. (3.3.31)

ε̇
pl
H = fσ (|σ |)sgn(σ ) fT (T ) (3.4.50)

Let us note, that a multiplicative decomposition of the deformation gradient or the
additive decomposition of the deformation rates are not used in the presented deriva-
tions. However, to visualize the quantity like Fel = F F−1

d one may use the notion
of an intermediate or relaxed configuration. For discussions related to controversial
meanings of such configurations in the case of general three-dimensional deforma-
tion we refer to Bertram (2012), Naghdi (1990), Xiao et al. (2006), among others.

As an example let us consider an elastic-non-linear-viscous material behavior
under isothermal loading conditions. To simplify the model assume that the elastic
strain is small (εel)2 � εel < 1. Small elastic strains are usually observed for metals.
Furthermore assume that the inelastic deformation does not produce a significant
change in volume such that

J = J el = (1 + εel)(1 − νεel)2 ≈ 1 + (1 − 2ν)εel, σ J ≈ σ, (3.4.51)

where ν is the Poisson ratio. The constitutive equation for the stress has the following
form2

σ = ∂ρ0Φ(εelH)

∂εelH
= ∂ρ0Φ(εH − ε

pl
H )

∂(εH − ε
pl
H )

= E(εH − ε
pl
H ) (3.4.52)

For the inelastic strain rate let us apply the power law type constitutive equation, as
discussed in Sect. 3.2

ε̇
pl
H = ε̇0

( |σ |
σ0

)n

sgn(σ ) (3.4.53)

2The linear thermal expansion is neglected for the sake of brevity.

http://dx.doi.org/10.1007/978-3-319-31629-1_1
http://dx.doi.org/10.1007/978-3-319-31629-1_1
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Assume that the rod is fixed at the cross section X = 0, i.e. x(0, t) = 0, and loaded
at x =  by the forceF(t). Furthermore assume that the load is quasi-static such that
the balance of momentum (2.3.25) can be reduced to the balance of internal force
providing σ(x, t)A(t) = F(t). First let us subject the rod to the time-dependent
elongation (strain-controlled test) such that

εH(t) = ln
(t)

0
= ε̇H0 t, (3.4.54)

where ε̇H0 is a given constant strain rate. Let us compute the stresses σ(x, t) and
P(x, t). To this end take the time derivative of Eq. (3.4.52) and apply the constitutive
equation (3.4.53) to eliminate the inelastic strain rate. As a result the following
differential equation for the stress σ can be derived

σ̇ + E ε̇0

( |σ |
σ0

)n

sgn(σ ) = E ε̇H (3.4.55)

For the loading defined by Eq. (3.4.54) the Eq. (3.4.55) can be put into the following
normalized form

d�

dε
+ 1

γ
(�)n = 1, � = σ

σ0
, ε = E

σ0
εH, γ = ε̇H0

ε̇0
(3.4.56)

Equation (3.4.56) can be solved numerically with the initial condition �(0) = 0
providing the stress-strain curve. Figure3.1a illustrates the results of the numerical
integration for n = 3 and three different strain rates. The strain rate sensitivity of the
inelastic range can be clearly observed. The flow stress in the steady state regime
can be computed from Eq. (3.4.56) as follows

d�

dε
= 0 ⇒ �ss = γ

1
n

or

σss = σ0

(
ε̇H0

ε̇0

) 1
n

(3.4.57)

Equation (3.4.57) can be used to identify the material properties ε̇0, σ0 and n from
stress-strain diagrams. Once the true stress σ is given the engineering stress P can
be computed with Eqs. (2.6.55) and (3.4.51) as follows

P = σ F−1 = σ exp
(
−σ0

E
ε
)

Furthermore the engineering strain defined by Eq. (2.1.5) can be related to the true
strain as follows

ε = 1 − exp(εH)

http://dx.doi.org/10.1007/978-3-319-31629-1_2
http://dx.doi.org/10.1007/978-3-319-31629-1_2
http://dx.doi.org/10.1007/978-3-319-31629-1_2


104 3 Elementary Uni-axial Constitutive Models

Fig. 3.1 Strain rate
sensitivity of stress-strain
diagrams for n = 3 and
E/σ0 = 10. a Normalized
true stress versus normalized
true strain. b Normalized
engineering stress versus
normalized engineering
strain

(a)

(b)

Figure3.1b shows the engineering stress as a function of the engineering strain for
E/σ0 = 10 and different strain rates. The engineering stress-strain curve exhibits a
descending branch as a result of the cross section shrinkage. Note, that we assumed
uniform elongation and consequently uniform cross section change. For the analysis
of strain localization and necking instability the cross section shrinkage and its gra-
dient are required as additional degrees of freedom, e.g. Antman (1973), Coleman
(1986).

Besides the strain rate sensitivity the exponent n controls the transition from the
elastic to the inelastic regime. To discuss this Fig. 3.2 shows the true stress-strain
curves for the strain rate ε̇H = ε̇0 and different values of n. With an increase of n the
curves approach the elastic-ideal plastic rate-independent regime.

In the next example assume that the rod is subjected to the constant tensile force
F . The rate of strain follows from Eq. (3.4.55)

ε̇H

(
1 − P

E
exp(εH)

)
= ε̇0

(
P

σ0

)n

exp (nεH) , P = F
A0

(3.4.58)
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Fig. 3.2 Normalized true
stress versus normalized true
strain for the constant strain
rate ε̇H = ε̇0 and different
values of the exponent n

Equation (3.4.55) can be solved in a closed analytical form providing the relation
between the strain and the time. To simplify this relation assume that

P

E
exp(εHmax) � 1

This can be well satisfied if the initial elastic strain after the loading is small, i.e.
P/E � 1 and the maximum creep strain (strain before creep fracture) is εHmax < 1.
In this case Eq. (3.4.55) takes the form

ε̇H = ε̇0

(
P

σ0

)n

exp (nεH) (3.4.59)

The solution of Eq. (3.4.59) can be presented as follows

εH(t) = εelH + ε
pl
H , ε

pl
H = −1

n
ln

(
1 − t

t∗

)
, t∗ = 1

ε̇0n

(σ0

P

)n
, (3.4.60)

where εelH is the initial elastic strain and t∗ is the Hoff’s time to ductile creep rupture
(Hoff 1953). Figure3.3 illustrates the creep curves according to Eqs. (3.4.60) for
different values of the stress exponent. The introduced elasto-(visco)plastic model
can capture the secondary creep stage and the tertiary creep stage due to the cross
section shrinkage. Having a family of experimental creep curves for several stress
levels one may identify the material properties ε̇0, σ0 and n from creep curves. The
value of σ0 can be set arbitrarily, so that only two material constants in the power
law creep are independent. Let us note that the power law creep is observed for
narrow stress range. To capture creep behavior in a wide stress range advanced
functions of stress are required (Altenbach et al. 2008b; Boyle 2012; Hosseini et al.
2013; Naumenko et al. 2009). Cross section shrinkage and the resulting tertiary
creep were frequently observed in metals and alloys, for example Dünnwald and
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Fig. 3.3 Inelastic true strain
versus normalized time for
the constant force and
different values of the
exponent n

El-Magd (1996), El-Magd and Kranz (2000), Längler et al. (2014), Naumenko and
Kostenko (2009). However, tertiary creep in metals and alloys may be controlled by
additional material deterioration processes, see Sect. 1.2.1.2. Therefore Eq. (3.4.60)
should be supplemented by additional kinetic equations to reflect softening, ageing
and damage processes.

3.5 Hardening, Softening, and Ageing

Let us analyze several hardening mechanisms and present approaches to model
macroscopic hardening phenomena. For the sake of brevity let us assume small
strains such that the difference between true and engineering strain and stress mea-
sures is not essential and the geometrically-linear theory can be applied.

3.5.1 Strain Hardening

Inelastic flowofmetals and alloys is accompanied by several hardening processes.An
example is the dislocation generation as a result of inelastic strain accumulation.With
the increase in dislocation density, the dislocation movement becomes more difficult
such that the inelastic deformation rate decreases. At high temperature hardening
effects may be reversed by annihilation processes that reduce the dislocation density.
Therefore, the inelastic strain rate does not decrease towards zero, but attains a
certainminimumor in somecases saturationvalue, seeSect. 1.1.1.A simple empirical
approach is to introduce a strain hardening function h and to generalize a constitutive
equation, for example a power law (3.4.53), as follows

http://dx.doi.org/10.1007/978-3-319-31629-1_1
http://dx.doi.org/10.1007/978-3-319-31629-1_1
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ε̇pl = ε̇0

( |σ |
σ0

)n

sgn(σ )h(εpl) (3.5.61)

A popular choice for h is a power function

h(εpl) = |εpl|l,

where the power l, −1 < l < 0 has to be identified from experimental data. Lim-
itations of the empirical approach will be discussed in Sect. 5.3.1. Alternatively,
hardening can be considered as a process and described by an independent rate-type
equation. In the materials science a mean dislocation density variable � is introduced
to capture a hardening state of the material. Following Estrin (1996) the power law
(3.4.53) can be generalized as follows

ε̇pl = ε̇0

( |σ |
σ̂

)n

sgnσ, (3.5.62)

where σ̂ is called drag stress and defined as follows

σ̂ = MGb
√

�, (3.5.63)

where M is the Taylor factor and b is the magnitude of the Burgers vector. Equa-
tion (3.5.63) assumes a simple, linear relationship between the drag stress and the
dislocation density. As the latter increases in the course of inelastic deformation,
the strain rate decreases, according to Eq. (3.5.62). In the continuum mechanics
variables like mean dislocation density do not appear in the balance equations, and
are not introduced at the beginning together with displacement, strain, density and
others. However, as the dislocation density variable affects the inelastic strain rate
and the stress, one may apply a concept of internal state or hidden state variables as
proposed by Coleman and Gurtin (1967).3 To explain this concept let us introduce a
dimensionless hardening parameter

H =
√

�

�0
, (3.5.64)

where �0 is a reference dislocation density. The constitutive equation (3.5.62) takes
the form

ε̇pl = ε̇0

( |σ |
σ0H

)n

sgnσ, σ0 = MGb
√

�0 (3.5.65)

3A historical essay on the development of theories with internal state variables is presented in
Maugin (2015).

http://dx.doi.org/10.1007/978-3-319-31629-1_5
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Under the assumption of small strains the inequality (2.6.50) takes the following
form

σ ε̇ − ρΦ̇ − ρS Ṫ − q
T ′

T
≥ 0 (3.5.66)

Let us postulate the following split of the mechanical power

L = σ ε̇ = Ls + Ld,

Ls = σs(ε
el, T )ε̇el,

Ld = σd(ε̇
pl, H, T )ε̇pl

(3.5.67)

According to (3.5.67) the stored part is a function of the elastic strain and the temper-
ature, while the dissipated part involves the new variable H to capture the influence
of hardening on the inelastic process. As in the Sect. 3.5 let us use the iso-stress
approach such that

σ = σs(ε
el, T ) = σd(ε̇

pl, H, T )

Furthermore, assume that the free energy now is a function of the elastic strain, the
hardening and the temperature. The inequality (3.5.66) takes the form

(
σ − ρ

∂Φ

∂εel

)
ε̇el − ρ

(
∂Φ

∂T
+ S

)
Ṫ + σ ε̇pl − ρ

∂Φ

∂ H
Ḣ − q

T ′

T
≥ 0 (3.5.68)

To resolve the inequality assume that the internal state variable H is defined by the
following evolution equation

Ḣ = fH (εel, T, H, ε̇pl) (3.5.69)

Then, for ε̇el and Ṫ that can be positive or negative the inequality is satisfied for

σ = ρ
∂Φ

∂εel
, S = −∂Φ

∂T
, −q

T ′

T
≥ 0, σ ε̇pl − ρ

∂Φ

∂ H
Ḣ ≥ 0 (3.5.70)

The last inequality provides a restriction on thematerial properties and/oder response
functions that enter the model. As an example let us assume that the hardening part
of the free energy is proportional to (H∞ − H)2, where H∞ is the saturation value of
the hardening variable, which may depend on the stress or minimum inelastic strain
rate. Then

− ρ
∂Φ

∂ H
= Ah(H∞ − H), (3.5.71)

http://dx.doi.org/10.1007/978-3-319-31629-1_2
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where Ah is a positive constant. For the hardening rate let us apply the following
equation

Ḣ = B (H∞ − H) |ε̇pl|, (3.5.72)

where B is a positive constant. Equation (3.5.72) assumes that the “driving force”
for the hardening process is (H∞ − H), as given by Eq. (3.5.71), and that the kinetics
of hardening is related to the inelastic strain rate magnitude. Equations like (3.5.71)
are applied in Estrin (1996), Blum (2008), Naumenko and Gariboldi (2014), among
others, for modeling hardening in several alloys. With the constitutive equations
(3.5.62) and (3.5.71) as well as the evolution equation (3.5.71) we obtain

σ ε̇pl − ρ
∂Φ

∂ H
Ḣ = [|σ | + AhB (H∞ − H)2

] |ε̇pl| ≥ 0 (3.5.73)

With the proposed constitutive Eq. (3.5.71) and evolution Eq. (3.5.72) the inequality
(3.5.73) is satisfied.

As an example consider a small strain creep regime with σ = const > 0. For the
constant stress Eq. (3.5.72) can be integrated providing the hardening variable as a
function of the inelastic strain. As a result we obtain

H = H∞ − (H∞ − 1) exp
(−Bεpl

)
(3.5.74)

After inserting in the constitutive equation (3.5.65) we obtain

ε̇pl = ε̇0

(
σ

σ0H∞

)n [
1 −

(
1 − 1

H∞

)
exp

(−Bεpl
)]−n

(3.5.75)

Obviously, for the constant stress the model with the internal state variable provides
the creep model with the exponential type strain hardening function. The material
properties can be identified from a family of creep curves. As H∞ is a function
of stress, it is not possible to solve Eq. (3.5.72) in terms of elementary functions
for other cases of loading, for example for the tensile regime. Standard numerical
solution techniques for ordinary differential equations can be applied for the solution
in a general case of loading.

Let us go back to the mean dislocation density model. With Eq. (3.5.64) the
evolution equation (3.5.72) takes the following form

�̇ = (
k1

√
� − k2�

) |ε̇pl|, k1 = 2B
√

�∞, k2 = 2B (3.5.76)

Similar equation is derived in Estrin (1996), where the term k1
√

� is associated with
the storage of dislocations and k2�—with recovery of dislocations.
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3.5.2 Kinematic Hardening

Another mechanism of hardening can be related to the micro-stress fields generated
during the plastic flow, as a result of heterogeneous deformation on the micro-scale.
Several microstructural zones, for example slip planes, grains with certain crystal-
lographic orientations or certain regions within subgrains may exhibit higher levels
of inelastic strain rate. The remaining part of microstructure behaves more or less
elastically. This leads to changes of micro-stress states and to formation of residual
stresses upon unloading. Residual micro-stress fields affect the overall deformation
rate and provide an additional hardening.

To derive a robust phenomenological model by taking into account micro-stress
fields consider again the following split of the mechanical power4

L = σ ε̇ = σ ε̇el + σ ε̇pl

Now assume that a part of the mechanical power σ ε̇pl is stored in the course of
inelastic deformation. To this end let us consider the following decomposition

σ = σa + β, εpl = εrec + εpm, σ ε̇pl = σa ε̇
pl + βε̇rec + βε̇pm, (3.5.77)

where σa is the active stress and β is the backstress. εrec is the recoverable inelastic
strain while εpm is the permanent inelastic strain. These strain components are illus-
trated in Fig. 1.11b. Now define the quasi-conservative and dissipated parts of the
mechanical power as follows

Ls = σ(εel, T )ε̇el + β(εrec, T )ε̇rec,

Ld = σa(ε̇
pl, T )ε̇pl + β(ε̇pm, T )ε̇pm

(3.5.78)

Furthermore assume that the free energy depends on the elastic strain, the recoverable
inelastic strain and the temperature. With these assumptions the inequality (3.5.66)
takes the form

(
σ − ρ

∂Φ

∂εel

)
ε̇el +

(
β − ρ

∂Φ

∂εrec

)
ε̇rec − ρ

(
∂Φ

∂T
+ S

)
Ṫ

+σa ε̇
pl + βε̇pm − q

T ′

T
≥ 0

(3.5.79)

The first line in (3.5.79) is a linear function of three independent rates ε̇el, ε̇rec and T .
Since these rates may be positive or negative, the inequality (3.5.79) can be resolved
as follows

σ = ρ
∂Φ

∂εel
, β = ρ

∂Φ

∂εrec
, S = −∂Φ

∂T
,

−q
T ′

T
≥ 0, σa ε̇

pl + βε̇pm ≥ 0
(3.5.80)

4Here we assume again small strains for the sake of brevity.

http://dx.doi.org/10.1007/978-3-319-31629-1_1
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For the stress and the backstress let us assume the following constitutive equations

σ = ρ
∂Φ

∂εel
= Eεel , β = ρ

∂Φ

∂εrec
= Ehε

rec, (3.5.81)

where Eh is the temperature-dependent hardeningmodulus. For the rate of the plastic
strain let us apply Eq. (3.4.50) with respect to the active part of the stress

ε̇pl = fσ (|σa|)sgn(σa) fT (T ) = fσ (|σ − β|)sgn(σ − β) fT (T ), (3.5.82)

For the rate of the permanent strain let us apply the following equation

ε̇pm = gσ (|β|)sgn(β)gT (T ) (3.5.83)

For fσ and gσ one may apply, for example, power law functions. For fT (T ) and
gT (T ) Arrhenius type functions of temperature can be used. Response functions
of stress and temperature will be discussed in Sect. 5.4.4. Alternatively, one may
assume that the rate of the permanent strain is related to the rate of plastic strain and
the backstress as follows

ε̇pm = β

β∗
|ε̇pl|, (3.5.84)

where β∗ can be a function of stress and temperature. One may verify that with
Eqs. (3.5.82) and (3.5.83) or (3.5.84) the last inequality in (3.5.80) is satisfied. Let
us derive the rate equation for the backstress. To this end take the time derivative of
the constitutive equation (3.5.81)2

β̇ = dEh

dT
Ṫ εrec + Ehε̇

rec = 1

Eh

dEh

dT
β Ṫ + Eh(ε̇

pl − ε̇pm) (3.5.85)

With the Eq. (3.5.83) we obtain

β̇ = 1

Eh

dEh

dT
β Ṫ + Eh[ε̇pl − gσ (|β|)sgn(β)gT (T )] (3.5.86)

Assuming isothermal loading conditions Ṫ = 0, Eq. (3.5.86) simplifies to

β̇ = Eh[ε̇pl − gσ (|β|)sgn(β)gT (T )] (3.5.87)

Equation (3.5.87) was postulated by Malinin and Khadjinsky (1972) without the
analysis of the thermodynamic process and splitting the mechanical power. The
constitutive equation (3.5.82) and the evolution equation (3.5.87) is an example of
the hardeningmodelwith the backstress.As shown inMalinin andKhadjinsky (1972)
such a model can describe various effects of inelastic deformation including creep
recovery, cyclic hardening, etc. A more detailed analysis will be given in Sect. 5.3.2.

http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
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Applying the constitutive assumption (3.5.84) and with Eq. (3.5.85) we obtain

β̇ = 1

Eh

d Eh

dT
β Ṫ + Eh

(
ε̇pl − β

β∗
|ε̇pl|

)
(3.5.88)

For isothermal loading conditions this simplifies to

β̇ = Eh

(
ε̇pl − β

β∗
|ε̇pl|

)
(3.5.89)

Equation (3.5.89) was proposed by Frederick and Armstrong (2007).5 It is obvious,
that different versions for a model with a backstress can be obtained by specifying
the constitutive equation for the rate of permanent inelastic strain. A simplest version
can be obtained assuming

β = Ehε
pl

This linear hardening rule was proposed by Prager (1956). Instead the constitu-
tive equation (3.4.50) one may use a rate-independent plasticity model of the type
(3.3.36). The yield condition is then formulated with respect to the active stress i.e.

|σ − β| − σy = 0

For the given accumulated value of the backstress the actual yield condition is shifted
or translated if compared to the original one with the zero backstress. Therefore this
approach was called kinematic hardening. For different versions of the kinematic
hardening rules we refer to Chaboche (1989, 2008), Lemaitre and Chaboche (1990),
Lemaitre et al. (2009).

Let us analyze the constitutive equation for the plastic strain rate (3.5.82) and the
evolution equation (3.5.89) for different loading cases. To this end let us specify the
constitutive Eq. (3.5.82) assuming a power function of stress

ε̇pl = ε̇0

( |σ − β|
σ0

)n

sgn(σ − β), (3.5.90)

where ε̇0, σ0 and n are material properties. First consider a creep regime for the
constant tensile stress. In this case the evolution equation (3.5.89) can be integrated
in elementary functions. With the initial condition β(0) = 0 the result is

β = β∗
[
1 − exp

(
− Eh

β∗
εpl

)]
(3.5.91)

5The model was firs published in 1966 in a CEGB report, see Frederick and Armstrong (2007) for
historical remarks.
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With (3.5.90) the following expression for the inelastic strain rate can be obtained

ε̇pl = ε̇0

(
σ

σ0

)n [
1 − β∗

σ
+ β∗

σ
exp

(
− Eh

β∗
εpl

)]n

(3.5.92)

Equation (3.5.92) describes the primary stage of the creep curve. It is obvious that
for the loading with constant stress the exponential type strain hardening function
follows from the backstress model. The material parameters and the function β∗ in
Eq. (3.5.92) can be identified from a family of creep curves considering the primary
creep stage.

To simulate strain and/or stress responses under timely varying loading
Eqs. (3.5.82) and (3.5.89) can be solved numerically. Let us introduce new variables:
the normalized time τ = ε̇0t , the normalized stress � = σ/σ0 and the following
dimensionless constants

Ẽh = Ẽh

σ0
, Ẽ = Ẽ

σ0

Equations (3.5.82) and (3.5.89) take the following form

dεpl

dτ
= |� − Ẽhε

rec|nsgn(� − Ẽhε
rec),

dεrec

dτ
= dεpl

dτ
− εrec

εrec∗

∣∣∣∣dε
pl

dτ

∣∣∣∣ ,
(3.5.93)

where

εrec∗ = β∗
Ẽh

�

For the simulations let us assume the following values

n = 3, Ẽh = 100, Ẽ = 1000, B∗ = 0.9 (3.5.94)

Figure3.4a shows two normalized stress versus normalized time profiles. Here three
loading steps are assumed as follows. During the first step the stress is kept constant
over a period of time. Then the stress value is reduced to the half of the value in the first
cycle and kept constant for the same period of time. After that the stress is increased
up to the original value and kept constant. Figure3.4b illustrates the corresponding
creep strain versus time responses. The first loading step provides a typical primary
creep regime. After the unloading a creep recovery during the second loading step
is observed. The loading to the same stress value leads again to the primary creep
regime with a decrease of the inelastic strain rate over the time. However, the starting
creep rate after the second loading is lower that the corresponding creep rate at the
beginning of the loading sequence.
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Fig. 3.4 Simulation of creep
response under variable
loading with Eqs. (3.5.93)
and parameters (3.5.94).
a Loading profiles.
b Inelastic strain versus
normalized time

(a)

(b)

Let us analyze stress responses under the strain control. Taking the time derivative
of stress we obtain

σ̇ = E(ε̇ − ε̇pl)

With the introduced normalized variables this equation reads

d�

dτ
= Ẽ

(
ε̇

ε̇0
− dεpl

dτ

)
(3.5.95)

For a given strain profile ε(τ ), Eq. (3.5.95) can be integrated numerically together
with Eqs. (3.5.93). Figure3.5a shows two strain versus time profiles corresponding
to LCF loading regimes. The stress-strain hysteresis loops are presented in Fig. 3.5b.
We observe that the Frederick-Armstrong type kinematic hardening model is able to
reproduce several phenomena observed in LCF tests. They include the Bauschinger
effect: in the first loading cycle the absolute value of the apparent yield point under
compression is lower than the corresponding value under tension, the cyclic hard-
ening: the stress amplitude increases in the course of cyclic loading, and the strain
rate sensitivity: the stress-strain loop depends on the rate of loading. The Frederick-
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Fig. 3.5 Simulation of stress
response under cyclic strain
with Eq. (3.5.95) and
parameters (3.5.94).
a Loading profiles.
b Normalized stress versus
strain

(a)

(b)

Armstrong model was calibrated and applied to describe inelastic behavior of many
materials. Examples are presented in Altenbach et al. (2013), Chaboche (2008), Län-
gler et al. (2014), among others. In describing material behavior over many loading
cycles modifications may be required. For example the model can lead to an over-
estimation of cyclic strain accumulation in the creep ratchetting regime (Altenbach
et al. 2013; Ohno et al. 1998; Ohno 1998). As discussed in Ohno et al. (1998) the
deficiency is primarily related to the constitutive assumption (3.5.84). Various mod-
ifications of the Frederick-Armstrong model to capture the material behavior under
cyclic loading are discussed by Ohno et al. (1998).

3.5.3 Phase Mixture Models for Hardening and Softening

Many materials contain relatively high dislocation density at the initial (virgin) state
after the processing. Examples include 9–12% Cr ferritic steels, where a high den-
sity of dislocations is induced after martensitic transformation. High dislocation
density, fine subgrain structure and different types of precipitates are examples of
microstructural features that improve creep strength and high-temperature resistance
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Abe (2009), Dyson andMcLean (1998), Blum (2008), Straub (1995). For thesemate-
rials the inelastic deformation is accompanied by softening processes such as recov-
ery of dislocation substructures and coarsening of subgrains (Blum 2008). Stress-
strain curves of softening materials show descending (softening) branch, Fig. 1.2 and
creep curves exhibit accelerated regime immediately after the primary creep stage,
Fig. 1.9.

To characterize hardening and softening processes a phase mixture model (or
composite model) can be applied. The basic idea is to idealize the heterogeneous
inelastic deformation in a volume element by considering a mixture with two or
more constituentswith different, but homogeneous inelastic properties.Assuming the
total deformation of constituents to be the same, redistribution of stresses would take
place, leading to the decrease of the overall inelastic strain rate. For example, in Straub
(1995), Polcik et al. (1998), Polcik (1999), Barkar and Ågren (2005) two phases are
introduced including the inelastic hard phase for subgrain boundarieswith a relatively
high dislocation density and the inelastic soft one for subgrain interiors. Two different
sets of constitutive equations for inelastic strains are formulated. Furthermore, the
volume fraction of the hard constituent is assumed to decrease over time to capture
the coarsening process.

Let us explain the phase mixture approach by assuming two constituents with
different inelastic behavior. For the sake of brevity, let us assume that constituents
have the same elastic properties. Furthermore, as in the previous subsections we
assume small strains, to keep the derivations brief and transparent. To designate the
properties of the constituents the subscripts s (for inelastic-soft) and h (for inelastic
hard) will be used. Let εs and εh be the strains of the constituents and σs and σh

the corresponding effective stresses. For the stress of the composite the following
mixture rule can be applied

σ = (1 − ηh)σs + ηhσh (3.5.96)

where ηh is the volume fraction of the inelastic-hard constituent. With respect to the
total strains let us postulate the following rule

ε = εh = εs (3.5.97)

For the effective stress components the following constitutive equations can be
assumed

σs = E(ε − εpls ), σh = E(ε − ε
pl
h ) (3.5.98)

With Eq. (3.5.96) the stress of the mixture is computed as follows

σ = E(ε − εpl), εpl = (1 − ηh)ε
pl
s + ηhε

pl
h (3.5.99)

http://dx.doi.org/10.1007/978-3-319-31629-1_1
http://dx.doi.org/10.1007/978-3-319-31629-1_1
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For the inelastic strain rates one may assume the following constitutive equations

ε̇pls = fs(|σs|)sgnσs, ε̇
pl
h = fh(|σh|)sgnσh, (3.5.100)

where fs and fh are response functions of stress, for example power laws. Instead
of Eq. (3.5.100) one may apply more advanced constitutive and evolution equations
with dislocation type hardening or/and backstress as discussed in Sects. 3.5.1 and
3.5.2. Examples are presented in Straub (1995), Polcik et al. (1998), Polcik (1999),
Barkar andÅgren (2005), Raj et al. (1996). Let us note that if the volume fractions are
kept constant, then Eqs. (3.5.97)–(3.5.100) is nothing else as a connection of hard and
soft elements in parallel, where both hard and soft elements is a series connection of
an elastic spring and non-linear dashpots. Such connections in various combinations
are discussed in rheology (Reiner 1969; Giesekus 1994; Palmov 1998). Rheological
models, equipped with constant volume fractions were firstly applied in Besseling
(1958), Besseling and van der Giessen (1994) to model inelastic material behavior
and, in particular to motivate kinematic hardening rules. A more general approach
is to introduce kinetic equations for the volume fractions. For example, assuming
that the volume fraction of the hard constituent is decreasing over time, softening
process associated with change of the microstructure can be described. In Straub
(1995), Polcik et al. (1998), Polcik (1999), Barkar and Ågren (2005) the volume
fraction ηh is related to the mean subgrain size. The increase in the subgrain size, or
decrease of ηh is described with an exponential-type kinetic equation. It is calibrated
against experimental data of substructure evolution based on in situ transmission
electron microscope observations.

Equations (3.5.97)–(3.5.100) and a kinetic equation for the volume fraction can
be used to simulate macroscopic material response for different types of loading.
Such a simulation is feasible if material parameters in constitutive and evolution
equations for constituents are well defined either from tests or from simulations
at the microscale. An alternative approach is to reduce Eqs. (3.5.97)–(3.5.100) to
obtain a macroscopic model with internal state variables. Then all response functions
and material properties can be identified from macroscopic tests. As an example
consider an approach presented in Naumenko et al. (2011a) to model hardening and
softening in advanced steel. Instead of (3.5.100) the following constitutive equations
are assumed

ε̇pls = fs(|σs|)sgnσs, ε̇
pl
h = σh − σ

σh∗ − σ
|ε̇pl|, (3.5.101)

where σh∗ is the saturation stress in the hard constituent. In Eqs. (3.5.101) the inelastic
part of the soft constituent is determined by the non-linear viscosity function fs. The
inelastic strain rate of the hard constituent is proportional to the magnitude of the
overall creep rate and the overstress σov = σh − σ . As the elastic properties of
constituents are assumed the same, after the loading in elastic range σh = σ , σov = 0
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and the inelastic strain rate of the hard constituent is zero. When σh → σh∗ , where
σh∗ is the saturation stress, the inelastic strain rate of the hard constituent in tensile
regime approaches to the inelastic strain rate of the composite. Then ε̇pls = ε̇

pl
h and

the stresses in both constituents approach the asymptotic values. For the sake of
brevity let us assume isothermal loading. Taking the time derivative of Eq. (3.5.98)
and applying Eq. (3.5.101) we obtain

ε̇s = σ̇s

E
+ f (|σs|)sgnσs, ε̇h = σ̇h

E
+ σh − σ

σh∗ − σ
|ε̇pl| (3.5.102)

The strain rate of the mixture can be computed applying Eq. (3.5.99)1 as follows

ε̇ = σ̇

E
+ ε̇pl (3.5.103)

For the identification it is convenient to introduce the following new variables

β = ηh0

1 − ηh0
(σh − σ), 0 ≤ β ≤ β∗, β∗ = ηh0

1 − ηh0
(σh∗ − σ),

Γ = ηh

1 − ηh

1 − ηh0

ηh0
, Γ∗ ≤ Γ ≤ 1, Γ∗ = ηh∗

1 − ηh∗

1 − ηh0

ηh0
,

where ηh0 is the reference value of ηh. Equations (3.5.97)–(3.5.100) and
(3.5.101)–(3.5.103) can be transformed to

ε̇pl = f (|σ − βΓ |) σ − βΓ

|σ − βΓ | − 1

E

d

dt
(βΓ ),

β̇ = E

ch

(
ε̇pl − |ε̇pl| β

β∗

)
, ch = 1 − ηh0

ηh0

(3.5.104)

In Eq. (3.5.104) β and Γ play now the role of internal state variables. If the fraction
is kept constant then by setting Γ = 1 we obtain

ε̇pl = f (|σ − β|) σ − β

|σ − β| − 1

E

d

dt
(β),

β̇ = E

ch

(
ε̇pl − |ε̇pl| β

β∗

) (3.5.105)

The underlined term influences the creep rate only at the beginning of the inelas-
tic process. One may verify that if ch  1 then this term can be neglected. Then
we obtain the kinematic hardening/recovery model proposed in Frederick and Arm-
strong (2007), see Sect. 3.5.2. Therefore, the variable β can be termed backstress or
kinematic stress.
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Fig. 3.6 Simulation of creep
response under constant
stress with Eqs. (3.5.104)
and (3.5.106).
a Qualitative variation of
inelastic strain rate versus
inelastic strain. b Qualitative
variation of backstress versus
inelastic strain

(a)

(b)

For the variable Γ an additional evolution equation is required. Let us assume that
Γ evolves by the exponential lawwith the increase of themean inelastic strain towards
the saturation value Γ∗(σ ), i.e.

Γ̇ = As(Γ∗ − Γ )|ε̇pl|, (3.5.106)

where As is a constant. Then the set of Eqs. (3.5.104) and (3.5.106) describes the
decrease of the inelastic strain rate as a result of stress redistribution between the
constituents and the increase of the inelastic strain rate as a consequence of softening
processes (decrease of the volume fraction of the hard constituent). As an example,
consider a creep regime under the constant stress. Figure3.6a illustrates the time
variation of the inelastic strain rate as a function of the inelastic strain. Equations
(3.5.104) and (3.5.106) describe the primary and the tertiary creep stages as a result
of hardening and softening processes. If the volume fraction ηh is kept constant,
and consequently Γ = 1, only the primary and the secondary creep stages can be
described. In this case the backstress βΓ attains a saturation value, Fig. 3.6b. If the
volume fraction of the hard constituent is assumed to decrease, then Γ decreases and
the backstress βΓ decreases providing a possibility to describe the softening process.
Equations (3.5.104) and (3.5.106) were identified in Naumenko et al. (2011a, b)
based on creep data for severalmartensitic steels. Verification examples are presented
illustrating a good performance of the model in describing hardening and softening
for different loading paths.
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3.5.4 Ageing

Strength characteristics of many materials is determined by precipitation and dis-
persion hardening. Heat-resistant steels contain several kinds of precipitate particles
in the matrix and at grain boundaries including carbonitrides and intermetallic com-
pounds (Abe 2008). Age-hardened aluminium alloys for high temperature appli-
cations, for example AA2014 alloy includes the θ ′ phase, in the form of rod-like
precipitates aligned along the <001> crystallographic directions of the α-Al matrix
(Naumenko andGariboldi 2014). Dispersed fine precipitates are obstacles for mobile
dislocations. Several mechanisms for interaction between mobile dislocations and
particles are reviewed in Ilschner (1973), Kassner and Pérez-Prado (2004), Roesler
et al. (2007) among others. An example is the Orowan bypassing mechanism, that
predicts the yield stress to be inversely proportional to the mean spacing between
particles ormean particle size, see Sect. 1.3. A decrease of the particle sizewould pro-
vide an increase of the yield stress. On the other hand, small particles can be sheared
by dislocation. This shearing mechanism suggests the yield stress to decrease with
a decrease in the particle size. The optimum strengthening can be achieved when
an alloy contains precipitates that small enough to be bypassed and large enough to
resist against shearing Roesler et al. (2007), Polmear (1996, 2004). The microstruc-
tural stability of many materials depends essentially on the precipitation sequences.
For example, for age-hardenable Al alloys the high temperature exposure leads to the
completion of precipitation and to coarsening of θ ′ particles (Gariboldi and Casaro
2007). Coarsening of carbide precipitates for steels is documented in (Abe 2008;
Blum 2008; Straub 1995). The driving force of the coarsening process is the decrease
in the mean surface energy. For example, for spherical particles the surface to the
volume ratio is proportional to 1/D, where D is the mean particle diameter. The
increase of D would lead to a decrease of the surface energy. The process occurs by
the growth of large particles at the expense of smaller ones which dissolve and is
related to the diffusive mass transport. For example, the coarsening mechanism of θ ′
particles is governed by the diffusion of Cu in Al.

To describe the increase of themean particle size the following equation is applied
in Abe (2008), Blum (2008), Straub (1995), Gariboldi and Casaro (2007)

Dm = Dm
0 + K (T )t, K (T ) = K0 exp

(−Qc

RT

)
, (3.5.107)

where K0 is a material property and Qc is the activation energy for the coarsen-
ing process. For spherical particles the exponent m takes the value 3, which is in
accordance with the coarsening theories of Lifshitz and Slyozov (1961), Wagner
(1961). For rod-like and plate-like particles m can take the value 2, as documented
in Zhang et al. (2013), Gariboldi and Casaro (2007) for aluminum alloys. According
to Eq. (3.5.107) the coarsening process is only related to the exposure time at high
temperature. In several papers, for example, Nakajima et al. (2004) experimental
data are presented, illustrating that inelastic deformation may affect the diffusion,
and as a consequence the coarsening rate.

http://dx.doi.org/10.1007/978-3-319-31629-1_1
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Though the evolution of the mean particle size can be examined by transmission
electron microscopy, experimental analysis of how the mean particle size affects the
inelastic strain rate is more challenging. Indeed, particles may affect the inelastic
process directly and indirectly, as discussed by Ilschner (1973). The strain rate can
be directly influenced by the mean particle spacing if the Orowan-type bypassing
mechanism is assumed. As the particle volume fraction remains constant, the particle
size is proportional to the particle spacing, see Sect. 1.3. Following Estrin (1996) the
drag stress σ̄ can be assumed as a superposition of the dislocation density and the
particle hardening contributions as follows

σ̂ = MGb

(
ζ
√

� + χ
1

D

)
, (3.5.108)

where ζ and χ are weighting factors characterizing the contribution of the Taylor-
type hardening due to dislocations and the Orowan-type hardening due to particles.
With Eqs. (3.5.62) and (3.5.108) the increase in particle size leads to a decrease in
the drag stress and increase in the creep rate. The particle hardening drag stress value
is usually lower than the Orowan stress. This is explained by a variety of dislocation-
particle interaction mechanisms operating in the creep range, e.g. dislocation climb
over particles (Kassner and Pérez-Prado 2004).

Furthermore, the spacing or size of particles may affect the rates of hardening,
recovery and softening. This constitutes an indirect influence on the inelastic strain
rate, as pointed out by Ilschner (1973). For example, in the creep range, particles
immobilize dislocations leading to formation of dislocation substructures. The stor-
age/immobilization of dislocations can be related to the mean particle spacing.

Let us include the particle coarsening process into the constitutive equation for
the inelastic strain rate and into the evolution equation for the dislocation density-
type hardening variable given in Sect. 3.5.1. To this end let us modify the evolution
equation for the mean dislocation density (3.5.76) as follows

�̇ = (
k1

√
� − k2�

) |ε̇pl|, (3.5.109)

where

k1 = 2B
√

�∗, k2 = 2B,
√

�∗ = √
�∞

D0

D
,

where D0 is the mean particle size in the reference state. To describe the coarsen-
ing mechanism within the framework of continuum mechanics let us introduce the
internal state variable Φ = D0/D as proposed by Dyson and McLean (1998). From
Eq. (3.5.107) the following kinetic equation can be derived

Φ̇ = − As

m
Φm+1, As(T ) = A0 exp

(−Qc

RT

)
, A0 = K0

Dm
0

(3.5.110)

http://dx.doi.org/10.1007/978-3-319-31629-1_1
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Furthermore let us introduce a hardening variable H as follows

H = ζ D
√

ρ + χ

ζ D0
√

ρ0 + χ
(3.5.111)

With the introduced state variables Φ and H and with Eq. (3.5.108) the constitutive
equation (3.5.62) takes the following form

ε̇pl = ε̇0

( |σ |
σ0HΦ

)n

sgn(σ ) (3.5.112)

with

σ0 = MGb

(
ζ
√

�0 + χ

D0

)

The evolution equation (3.5.109) can be formulated as follows

Ḣ = B (H∞ − H) |ε̇pl| + (H − HD∗)
d

dt
lnΦ, (3.5.113)

with

H∞ = ζ D0
√

�∞ + χ

ζ D0
√

ρ0 + χ
, HD∗ = χ

ζ D0
√

�0 + χ

The variable H can be considered as a modified hardening variable since it includes
the influence of particles in addition to the mean dislocation density. Let us note that
processes associatedwith change in dislocation density and coarsening of precipitates
have usually quite different characteristic time. Therefore, two rate terms in the
right-hand side of Eq. (3.5.113) may have different orders of magnitudes since the
coarsening is much slower if compared to the hardening/recovery. In Dyson and
McLean (2001), Kowalewski et al. (1994), Naumenko and Gariboldi (2014), Perrin
and Hayhurst (1994) instead of Eq. (3.5.113) the following simplified equation for
the hardening variable is used

Ḣ = B (H∞ − H) |ε̇pl| (3.5.114)

Assuming the creep regime with the constant tensile stress, Eqs. (3.5.110) and
(3.5.114) can be integrated providing the values of internal state variables in a closed
analytical form. Then with Eq. (3.5.112) the inelastic strain rate follows

ε̇pl = ε̇0

(
σ

σ0

)n
(1 + Ast)

n
m[

H∞ − (H∞ − 1) exp
(−Bεpl

)]n (3.5.115)
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Equation (3.5.115) can be used to identify the material parameters As , B and σ0

as well as the functions H∞ and ε̇0 from families of creep curves. An example of
identification for forged AA2014 alloy is presented in Naumenko and Gariboldi
(2014).

Advanced high-temperature materials, for example, high-chromium steel contain
different types of precipitates having different coarsening rates. Furthermore, change
in precipitation structures at grain or subgrain boundaries may promote strain soft-
ening and damage processes. For example, coarsening of precipitates at subgrain
boundaries increase the rate at which subgrains coarsen. Kinetic equations for coars-
ening of different types of precipitates are discussed in the literature, a review pre-
sented by Straub (1995).

3.6 Damage

Softening and ageing phenomena discussed in Sects. 3.5.3 and 3.5.4 lead to a decrease
of resistance against inelastic flow. As the inelastic strain rate increases and a spec-
imen may fail as a result of necking, softening and ageing may be classified as
material degradation processes. Inelastic deformation is often accompanied by dam-
age processes—phenomena that can lead directly to macroscopic fracture. Examples
include the formation, growth and coalescence of voids on grain boundaries, micro-
cracks in particles of the second phase, decohesion at particle/matrix interfaces and
surface relief. Defects in microstructure like voids and cracks may exist after the
material processing, may nucleate in the early stages of loading, for example, during
primary creep stage or even under spontaneous deformation in elastic range. The ini-
tially existing micro-defects have negligible influence on the macroscopic response
such as inelastic strain rate. As their number and size increase, they weaken themate-
rial providing the decrease in the load-bearing capacity. The coalescence of cavities
or propagation of micro-cracks lead to the final fracture. Damage mechanisms and
damage processes are reviewed and classified in Ashby et al. (1979), François et al.
(2012).

A micromechanics approach to damage modeling requires the analysis of many
different mechanisms that may operate and interact in a specific material under spe-
cific loading conditions. As an example, consider different physical models related
to grain boundary cavitation in the creep range, as discussed and reviewed in Kassner
and Hayes (2003), Riedel (1987), François et al. (2012), Ozhoga-Maslovskaja et al.
(2015).

A pragmatic approach is to introduce internal state variables to capture damage
process in a phenomenological sense. For example, the tertiary creep stage is partly
determined by the damage processes, Sect. 1.1.1.2. Therefore, one may develop and
calibrate a damage evolution equation to describe the final stage of the creep curve.
The idea of continuum damage mechanics is to formulate such damage laws to
capture material behavior under various loading paths (Krajcinovic 1996; Lemaitre
and Desmorat 2005; Murakami 2012).

http://dx.doi.org/10.1007/978-3-319-31629-1_1
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3.6.1 Kachanov-Rabotnov Model

The phenomenological damage equations were firstly proposed by Kachanov (1958)
and Rabotnov (1959) in order to characterize creep damage evolution. A new internal
variable has been introduced to characterize “continuity” or “damage” of thematerial.
The geometrical interpretation of the continuity variable starts from changes in the
cross-section area of a uni-axial specimen. Specifying the initial cross-section area
of a specimen by A0 and the area of voids, cavities, micro-cracks, etc. by AD , the
Kachanov’s continuity is defined as follows (Kachanov 1986),

ψ = A0 − AD

A0

The value ψ = 1 means the virgin, fully undamaged state, the condition ψ = 0
corresponds to the fracture (completely damaged cross-section).

Rabotnov (1959, 1963, 1969) introduced the dual damage variableω. InRabotnov
(1963) he pointed out that the damage state variable ω “may be associated with the
area fraction of cracks, but such an interpretation is connected with a rough scheme
and is therefore not necessary”. Rabotnov assumed that the creep rate is additionally
dependent on the current damage state. The constitutive equation should have the
form

ε̇pl = f (σ, ω) (3.6.116)

Furthermore, the damage processes can be reflected in the evolution equation

ω̇ = g(σ, ω), ω|t=0 = 0, ω < ω∗, (3.6.117)

where ω∗ is the critical value of the damage parameter for which the material fails.
With the power functions of stress and damage the constitutive equation may be
formulated as follows

ε̇pl = a|σ |n
(1 − ω)m

sgnσ (3.6.118)

Similarly, the damage rate can be expressed by

ω̇ = b

(1 − ω)l

(
σ + |σ |

2

)k

(3.6.119)

The material dependent parameters a, b, n, m, l and k should be identified from
families of creep curves. It is easy to prove that for the damage free state (ω = 0),
the first equation results in the power law creep constitutive equation.
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(a) (b) (c)

Fig. 3.7 Strain and damage of a bar. a Initial state. b Damaged state. c Fictitious undamaged state

Setting m = n the first equation can be written as

ε̇pl = a|σ̃ |n, (3.6.120)

where σ̃ = σ/(1−ω) is the so-called net-stress or effective stress. With the effective
stress Eq. (3.6.120) provides a way to generalize a secondary creep law for the
description of tertiary creep process. Lemaitre and Chaboche (1990) proposed the
effective stress concept to formulate constitutive equations for damaged materials
based on available constitutive equation for “virgin” materials. An interpretation can
be given for a tension bar, Fig. 3.7. Here A0 denotes the initial cross-section area
of the bar, Fig. 3.7a. From the given tensile force F the stress can be computed as
σ = F/A0. The axial strain for the loaded bar ε = (−0)/0 can be expressed as a
function of the stress and the actual damage ε = f (σ, ω), Fig. 3.7b. For the effective
cross-section Ã = A0(1 − ω) the effective stress is

σ̃ = F
Ã

= σ

1 − ω
(3.6.121)

Now a fictitious undamaged bar with a cross-section area Ã, Fig. 3.7c, having the
same axial strain response as the actual damaged bar ε = f (σ̃ ) = f (σ, ω) is
introduced. The strain equivalence principle (Lemaitre 1996) states that any strain
constitutive equation for a damaged material may be derived in the same way as for
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a virgin material except that the usual stress is replaced by the effective stress. Thus
the constitutive equation for the creep rate (3.6.120) is the power law generalized for
a damaged material. Note that the effective cross section area is not just understood
as the initial area minus the area occupied by defects. This quantity and the effective
stress are introduced to account for stress concentrations produced by cavities and/or
microckracks in a phenomenological sense.

Equations (3.6.118) and (3.6.119) can be generalized to the non-isothermal condi-
tions by replacing the parameters a and b by the functions of temperature. Assuming
Arrhenius type temperature dependence the following relations can be applied

a(T ) = a0 exp

(
− Qa

RT

)
, b(T ) = b0 exp

(
− Qb

RT

)
, (3.6.122)

where Qa and Qb are the activation energies of creep and damage processes, respec-
tively.

To identify the material parameters in Eqs. (3.6.118), (3.6.119) and (3.6.122)
experimental data of uni-axial creep up to rupture for certain stress and temperature
ranges are required. To illustrate the idea of identification let us ignore hardening,
softening and ageing processes. Furthermore let us assume m = n in Eq. (3.6.118)
for the sake of brevity. Then the uni-axial creep model for σ > 0 takes the following
form

ε̇pl = a

(
σ

1 − ω

)n

, ω̇ = bσ k

(1 − ω)l
(3.6.123)

With ω = 0 the first equation describes the secondary creep. The minimum (steady-
state) creep rate is defined by the power law function of the applied stress

ε̇
pl
min = aσ n (3.6.124)

In the steady-state creep range the creep curves are approximated by straight lines,
Fig. 3.8a. From the family of creep curves the minimum creep rate versus stress
curve can be obtained. A sketch for such a curve in a double logarithmic scale is
presented in Fig. 3.8b. For a certain stress range log ε̇

pl
min can be approximated by a

linear function of log σ . The parameters a and n can be determined from the steady-
state creep. Let ε̇

pl
min1 and ε̇

pl
min2 be minimum creep rates for the constant stresses σ1

and σ2, respectively. Then the material parameters can be estimated as follows

n = log(ε̇plmin1/ε̇
pl
min2)

log(σ1/σ2)
, a = ε̇

pl
min1

σ n
1

= ε̇
pl
min2

σ n
2

(3.6.125)
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(a) (b)

Fig. 3.8 Phenomenological description of uni-axial creep. aCreep strain versus time curves.bMin-
imum creep rate versus stress curve

For a constant stress σ the damage evolution equation in Eq. (3.6.123) can be
integrated as follows

ω∗∫
0

(1 − ω)ldω =
t∗∫

0

bσ kdt,

where t∗ is the time to fracture of the specimen. Setting ω∗ = 1 and performing the
integration one can obtain

t∗ = 1

(l + 1)bσ k
(3.6.126)

This equation describes the time to creep fracture versus applied stress relation. For a
number ofmetals and alloys experimental data for creep strength canbe approximated
by a straight line in a double logarithmic scale for a certain stress range. From
Eq. (3.6.126) it follows

log t∗ = −(logC + k log σ), C = b(l + 1) (3.6.127)

A typical creep strength curve is sketched in Fig. 3.9. The linear approximation
(3.6.127) is only valid for a specific stress range, Fig. 3.9. Based on Eq. (3.6.127)
and the creep strength curve the following relations can be obtained

k = log(t∗2/t∗1)
log(σ1/σ2)

, b(l + 1) = 1

t∗1σ k
1

= 1

t∗2σ k
2

,

where t∗1 and t∗2 are values of time to fracture corresponding to the applied stresses
σ1 and σ2, respectively. Integration of the second Eq. (3.6.123) by use of Eq. (3.6.126)
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Fig. 3.9 Creep strength
curve

provides the damage parameter as a function of time

ω(t) = 1 −
(
1 − t

t∗

) 1
l+1

(3.6.128)

With Eq. (3.6.128) the creep rate equation (3.6.123) can be integrated leading to the
creep strain versus time dependence

εpl(t) = aσ n−k

b(l + 1 − n)

[
1 −

(
1 − t

t∗

) l+1−n
l+1

]
(3.6.129)

From Eq. (3.6.129) it follows that the constant l must satisfy the condition l > n − 1
providing the positive strain for the positive stress values. By setting t = t∗ the creep
strain before the fracture, i.e. εpl∗ = εpl(t∗), can be calculated as

εpl∗ = aσ n−k

b(l + 1 − n)
(3.6.130)

For n > k the fracture strain increases with an increase in the stress value. Such
a dependence is usually observed for many alloys in the case of moderate stresses.
From Eqs. (3.6.124), (3.6.127) and (3.6.130) the following relations can be obtained

εpl∗ = ε̇
pl
mint∗

1 − n
l+1

, ε̇
pl
mint∗ = a

b(l + 1)
σ n−k (3.6.131)

In the special case n = k the second equation in (3.6.131) reads

ε̇
pl
mint∗ = a

b(l + 1)
= const
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This is the Monkman-Grant relationship which states, that for a given material the
product of the minimum creep rate and the time to fracture is a material constant. We
observe, that theMonkman-Grant relationship follows from theKachanov-Rabotnov
model if the slopes of the minimum creep rate versus stress and the stress versus time
to fracture dependencies coincide in the double logarithmic scale. In this case the
strain before the creep fracture (creep ductility) should be stress independent, as it
follows from the first equation in (3.6.131).

With Eq. (3.6.131) the creep strain versus time dependence (3.6.129) takes the
form

εpl(t) = ε̇
pl
mint∗

1 − n
l+1

[
1 −

(
1 − t

t∗

)1− n
l+1

]
(3.6.132)

We observe that the constant l controls the shape of the tertiary creep stage. For
n/(l + 1) � 1 Eq. (3.6.132) can be approximated by

εpl(t) = ε̇
pl
mint, 0 ≤ t ≤ t∗

In this case the tertiary creep stage is not observable. Instead of Eq. (3.6.123) one
may apply the simplified constitutive model, where the influence of creep damage
on the creep rate is ignored, i.e.

ε̇pl = aσ n, ω̇ = bσ k

(1 − ω)l
(3.6.133)

In a slightly different form Eq. (3.6.133) were originally proposed by Kachanov
(1958) under assumption that for brittle materials the damage processes have negli-
gible influence on the creep rate.

Figure3.10 provides the plots of Eq. (3.6.132) with respect to the normalized
creep strain and normalized time for different values of r ≡ n/(l + 1). We observe
that even for r = 0.2 the creep rate is almost constant. The increase of r leads to the
increase of tertiary creep rate, the increase of the “duration” of the tertiary stage and
increase of the fracture strain.

The phenomenological model (3.6.123) characterizes the effect of damage evo-
lution and describes the tertiary creep in a uni-axial test. For a number of metals and
alloys material parameters are available, see e.g. Altenbach et al. (1997), Altenbach
and Naumenko (1997), Altenbach et al. (2000, 2001), Bodnar and Chrzanowski
(1991), Boyle and Spence (1983), Hayhurst (1972), Hyde et al. (2003, 2000, 1997,
1999), Konkin and Morachkovskij (1987), Kowalewski (1996), Lemaitre (2001),
Lemaitre and Chaboche (1990), Lemaitre et al. (2009), Murakami and Liu (1995).
Instead of the power law functions of stress or damage it is possible to use another
kind of functions, e.g. the hyperbolic sine functions in both the creep and damage
evolution equations. In addition, by the introduction of suitable hardening, softening
and ageing variables, the model can be extended to consider all creep stages. Exam-
ples are presented in Altenbach et al. (2013), Kowalewski et al. (1994), Naumenko
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Fig. 3.10 Creep curves for
different values of
r = n/(l + 1)

and Kostenko (2009), Naumenko et al. (2011a, b), Naumenko and Altenbach (2005),
Perrin and Hayhurst (1994).

In applying Eq. (3.6.123) to the analysis of structures one should bear in mind
that the material parameters are usually estimated from experimental creep curves,
available for a narrow range of stresses. The linear dependencies between log ε̇crmin
and log σ or between log t∗ and log σ do not hold for wide stress ranges. For example,
it is known from materials science that for higher stresses the damage mode may
change from inter-granular to trans-granular, e.g. Ashby et al. (1979). Furthermore,
for higher values of the engineering stress the true stress increases due to the cross
section shrinkage. This should be considered in calibrating the damage evolution
equation based on experimental data on creep and/or creep strength. Onemay assume
that the volume of the specimen does not change during the creep process providing
the relation between the change in the cross section and the elongation, Sect. 3.4.
With the relation between the true stress and the engineering stress the damage
evolution equation (3.6.123) can be integrated providing a two-stage creep strength
curve, Fig. 3.10. The related analysis is presented in Rabotnov (1963, 1969).

The damage evolution equationmay be put in a different form,which is sometimes
more convenient for the identification. To this end let us specify Eqs. (3.6.116) and
(3.6.117) as follows

ε̇pl = fσ (|σ |) fω(ω)sgnσ, ω̇ = gσ (|σ |)gω(ω)
1 + sgnσ

2
, (3.6.134)

where fσ (|σ |), fω(ω), gσ (|σ |) and gω(ω) are functions to be identified from experi-
mental data. With the constitutive equation for the inelastic strain rate (3.6.134)1 the
damage evolution equation (3.6.134)2 can be put in the following form
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ω̇ = hω(ω)
1 + sgnσ

2

|ε̇pl|
ε
pl
∗ (|σ |) , (3.6.135)

where

hω(ω) = gω(ω)

fω(ω)
r(ω∗), r(ω∗) =

ω∗∫
0

fω(x)

gω(x)
dx, ε∗(|σ |) = fσ (|σ |)

gσ (|σ |)

Integrating (3.6.135) for the constant positive true stress provides the relationship
between the damage parameter and the inelastic strain

Ψ (ω) = εpl

ε
pl
∗ (|σ |) , (3.6.136)

where

Ψ (ω) =
ω∫

0

dx

hω(x)

Since Ψ (ω∗) = 1, the function ε
pl
∗ (|σ |) is the strain before the creep fracture under

the constant true stress.

3.6.2 Continuum Damage Mechanics

Let us discuss how to introduce a damage parameter into the one-dimensional contin-
uummechanics framework. For the sake of brevity let us ignore hardening, softening
and ageing. The dissipation inequality (2.6.50) with Ḟ F−1 = ε̇H has the following
form (3.5.66)

σ ε̇H − ρΦ̇ − ρS Ṫ − q
T ′

T
≥ 0 (3.6.137)

Let us assume the following split of the mechanical power

L = σ ε̇H = Ls + Ld,

Ls = σs(ε
el
H, ω, T )ε̇elH,

Ld = σd(ε̇
pl
H , ω, T )ε̇

pl
H

(3.6.138)

As in the Sect. 3.5 let us assume the iso-stress approach such that

σ = σs(ε
el
H, ω, T ) = σd(ε̇

pl
H , ω, T )

http://dx.doi.org/10.1007/978-3-319-31629-1_2
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Therefore, the free energy is nowa function of the elastic strain, the damageparameter
and the temperature. The inequality (3.5.66) takes the form

(
σ − ρ

∂Φ

∂εelH

)
ε̇elH − ρ

(
∂Φ

∂T
+ S

)
Ṫ + σ ε̇pl − ρ

∂Φ

∂ω
ω̇ − q

T ′

T
≥ 0 (3.6.139)

To resolve the inequality assume that the internal state variable ω is defined by the
following evolution equation

ω̇ = g(εelH, T, ω, ε̇
pl
H ) (3.6.140)

Furthermore, assume that the thermal conductivity is not affected by damage, for
the sake of brevity.6 Then, for arbitrary ε̇el and Ṫ the inequality (3.6.139) is satisfied
with

σ = ρ
∂Φ

∂εelH
, S = −∂Φ

∂T
, −q

T ′

T
≥ 0, σ ε̇

pl
H − ρ

∂Φ

∂ω
ω̇ ≥ 0 (3.6.141)

For the stress let us assume the following constitutive equation

Jσ = ∂ρ0Φ

∂εelH
=

{
EgωT(ω)εelH, εelH ≥ 0,

EgωC(ω)εelH, εelH < 0,
(3.6.142)

where the functions gωT(ω) and gωC(ω) have the following properties

gωi (0) = 1, gωi (ω∗) = g∗i , 0 < g∗i � 1,
dgωi

dω
≤ 0, i = T,C

These functions characterize the degradation of stiffness with progressive damage.
As different damage mechanisms under tension and compression operate, different
functionswith subscripts T andC for tensile and compressive regimes are introduced.
The material parameters g∗T and g∗C are introduced to evaluate the material stiffness
under the critical damage state. Equation (3.6.142) can also be formulated as follows

Jσ = EgωT(ω)
εelH + |εelH|

2
+ EgωC(ω)

εelH − |εelH |
2

(3.6.143)

With the constitutive equation (3.6.142), Eq. (3.6.141) can be integrated providing
the following expression for the free energy

6The influence of damage on the heat transfer is analyzed in Skrzypek and Ganczarski (1998),
Ganczarski and Skrzypek (2000).
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ρ0Φ =

⎧⎪⎨
⎪⎩

1

2
EgωT(ω)εel

2

H , εelH ≥ 0

1

2
EgωC(ω)εel

2

H , εelH < 0

⎫⎪⎬
⎪⎭ + ρ0Φω(ω) + ρ0Φ0, (3.6.144)

where ρ0Φω(ω) is the energy required to damage an infinitesimal volume element
up to the valueω. It can be interpreted, as the energy required to form cavities of given
radius and distribution, energy to form microcracks of given length and distribution,
etc. With (3.6.144) the last inequality in (3.6.141) takes the following form

Jσ ε̇
pl
H + R(εelH, ω)ω̇ ≥ 0, R(εelH, ω) = Y (εelH, ω) − h(ω), (3.6.145)

where

Y = −1

2
Eεel

2

H

⎧⎪⎨
⎪⎩

dgωT

dω
, εelH ≥ 0,

dgωC

dω
, εelH < 0,

h(ω) = dρ0Φω

dω
, (3.6.146)

The degradation functions gωT , gωC , the resistance function h(ω) as well as the dam-
age evolution equation should be specified according to mechanisms of damage evo-
lution for the given material, loading conditions and results of material testing. Many
formulations related to brittle damage, ductule damage, creep damage, fatigue dam-
age are discussed within the framework of continuum damagemechanics (Murakami
2012; Lemaitre andDesmorat 2005; Skrzypek andGanczarski 1998). Let us consider
some elementary examples.

With the strain equivalence principle, Sect. 3.6.1 the degradation functions can be
given as follows, e.g. Lemaitre and Desmorat (2005)

gωT = 1 − ω, gωC = 1 − κω, 0 ≤ ω ≤ ω∗, 0 ≤ κ ≤ 1 (3.6.147)

where ω∗ < 1 is a critical value of the damage parameter, and the constant κ controls
the tension-compression difference caused by damage. For κ = 0, damage does not
affect the strain energy density under compression while for κ = 1 the behavior
under tension and compression is the same. Let us assume h(ω) = h0, where h0 is a
constant. Furthermore, let us neglect the inelastic behavior and consider small elastic
strains. Then the inequality (3.6.145) takes the following form

R(ε)ω̇ ≥ 0, R(ε) =

⎧⎪⎨
⎪⎩

1

2
Eε2 − h0, ε ≥ 0,

1

2
κ Eε2 − h0, ε < 0

(3.6.148)

Assume that ω̇ ≥ 0, i.e. damage healing processes are excluded. Then the dissipation
inequality (3.6.148) can be satisfied with the following damage evolution equation

ω̇ = Ω(< R(ε) >), (3.6.149)
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where Ω(x) is a monotonic function with Ω(x) ≥ 0 and Ω(0) = 0. The Macaulay
brackets <> are defined as follows

< x >= x + |x |
2

The function R(ε) plays a role of a damage driving force similarly to the concept of
crack driving force in the fracture mechanics (Rice 1978). An example for Ω is a
power law-type function

ω̇ = a0

(
< R(ε) >

R0

)p

, (3.6.150)

where a0, R0 and p are material parameters. Instead of (3.6.150) one may apply
a rate-independent formulation which includes the condition of the non-negative
damage rate, i.e. ω̇ ≥ 0 and the admissibility condition for the diving force, i.e.
R(ε) ≤ 0. Furthermore it is assumed that ω̇ = 0 if R(ε) < 0 and ω̇ > 0 is only
possible if R(ε) = 0. The rate-independent formulation can be given as follows

ω̇ ≥ 0, R(ε) ≤ 0, ω̇R(ε) = 0 (3.6.151)

With Eq. (3.6.143) one can compute the stress as follows

σ = E(1 − ω)
ε + |ε|

2
+ E(1 − κω)

ε − |ε|
2

(3.6.152)

Equations (3.6.148)–(3.6.152) can be used to model elasticity with damage based
on the strain energy density criterion for damage evolution. Instead of the strain
energy density one may apply the complementary energy density. The inverse of Eg.
(3.6.152) provides

ε = σ + |σ |
2E(1 − ω)

+ σ − |σ |
2E(1 − κω)

(3.6.153)

Inserting into Eq. (3.6.148) yields the following stress based formulation

Rσ (σ, ω)ω̇ ≥ 0, Rσ (σ, ω) =

⎧⎪⎪⎨
⎪⎪⎩

σ 2

2E(1 − ω)2
− h0, σ ≥ 0,

κσ 2

2E(1 − κω)2
− h0, σ < 0

(3.6.154)

The damage driving force Rσ (σ, ω) can also be given as follows

Rσ (σ, ω) = σ 2

2E(1 − ω)2

[
1 + sgnσ

2
+ κ

1 − sgnσ

2

(
1 − ω

1 − κω

)2
]

− h0 (3.6.155)
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With Eq. (3.6.155) the damage evolution equation can be formulated with respect to
the stress.Depending on the type ofmaterial behavior and available experimental data
different forms of damage evolution equations for brittle materials are proposed. The
difference is in the type of the degradation functions, the type of damage resistance
functions and the type of the damage driving force (Murakami 2012; Lemaitre and
Desmorat 2005; Skrzypek and Ganczarski 1998).

To present examples of damage evolution equations for materials that exhibit
inelastic material behavior let us apply the stress-based formulation. To this end we
apply the inverse form of the constitutive equation (3.6.143)

εelH(σ, ω) = J
σ + |σ |
2EgωT(ω)

+ J
σ − |σ |
2EgωC(ω)

(3.6.156)

For the sake of brevity let us assume that under compression the effect of damage is
negligible and set gωC(ω) = 1.With Eq. (3.6.156) the dissipation inequality (3.6.145)
can be formulated as follows

Jσ ε̇
pl
H + Rσ (σ, ω)ω̇ ≥ 0, Rσ (σ, ω) = Yσ (σ, ω) − h(ω), (3.6.157)

where

Yσ (σ, ω) = − 1

2E

(
Jσ

gωT

)2 dgωT

dω

(
1 + sgnσ

2

)
(3.6.158)

Many constitutive models of inelastic behavior coupled with damage that satisfy
(3.6.157) were proposed, e.g. Murakami (2012), Lemaitre and Desmorat (2005),
Skrzypek and Ganczarski (1998). One example is the following formulation

ε̇pl = fσ (|σ |) fω(ω)sgnσ, ω̇ = Ω(< Rσ >)|ε̇pl| (3.6.159)

To specify the response functions fσ , fω,Ω , gωT and h experimental data are required.
As an example consider the following functions

fσ (x) = a

(
x

σ0

)n

, fω(x) = (1 − x)−m,

Ω(x) = b

(
x

R0

)k

, gωT(x) = (1 − x), h(x) = h0,

where a, b, σ0, R0, h0, n and k are material parameters. Equations (3.6.159) take the
following form

ε̇pl = a

( |σ |
σ0

)n 1

(1 − ω)m
sgnσ,

ω̇ = b

(
< Rσ >

R0

)k

|ε̇pl|, Rσ = 1

2E

(
Jσ

1 − ω

)2

− h0

(3.6.160)
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