
Chapter 2
Continuum Mechanics in One Dimension

This chapter gives a short introduction to the continuum mechanics applied to the
uni-axial stress state. Here we consider a rod to illustrate main ideas of continuum
mechanics in a simple, transparent manner, without jungles of tensors. However, to
show parallels to the three-dimensional theory we apply the notation of continuum
mechanics. For example, we use F to designate the “deformation gradient”, P to
designate thePiola-Kirchhoff or engineering stress, etc. Three-dimensional equations
will be discussed in Chap. 4.

The present chapter deals with basic equations of continuum mechanics applied
to the theory of rods. A rod is a structural member with cross-section dimensions
much less than the axial length. Rods can be subjected to different types of loadings
including tension (compression), bending and torsion. A deformed configuration of
a rod can be described by specifying the deformed rod axis, the actual cross-section
area and triads of unit vectors to characterize the actual orientation of cross-sections.
To define the deformed line only one coordinate is required. The problem to compute
a deformed configuration for given loads is therefore one-dimensional.

Two approaches can be applied to formulate the theory of rods. The first one—
called direct—considers a rod as a deformable line. The basic assumption is that
every cross section behaves like a rigid body in the sense that translations and cross-
section rotations are basic degrees of freedom for every point of the line. Themechan-
ical interactions between two neighboring cross sections are (normal and/or shear)
forces and (bending and/or twisting) moments. Basic balance equations of contin-
uum mechanics are applied directly to the deformable line. Direct theories of rods
are discussed in Altenbach et al. (2005, 2013), Antman (1995), Green et al. (1974b),
Zhilin (2006) among others.

The second approach is based on equations of the three-dimensional continuum
mechanics.With cross-section assumptions to the components of displacement vector
and/or stress tensor, approximate one-dimensional equations for a rod can be derived,
e.g. Green et al. (1974a).
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(a)

(b)

Fig. 2.1 A rod subjected to a tensile force. a Reference configuration, b actual configuration

In this section we assume that the rod is subjected to tensile (compressive) loading
only. Figure2.1 provides a sketch of a straight rod subjected to a tensile force. Let
iii be the unit vector designating the direction of the rod axis, Fig. 2.1a. To describe
the positions of cross sections of the rod in the reference configuration the vector
RRR = Xiii with the coordinate coordinate X is introduced. The corresponding position
in the actual configuration is defined by the vector rrr = xiii with the coordinate x .

2.1 Motion, Derivatives, and Deformation

The motion of the rod is defined by the following mapping

x = Φ(X, t) (2.1.1)

The basic problem of continuum mechanics is to find the function Φ for all of
0 ≤ X ≤ �0, for the given time interval t0 ≤ t ≤ tn as well as for defined external
loads and temperature. It is obvious that X = Φ(X, t0). The displacement u is defined
as it follows (Fig. 2.1b)

u = x − X (2.1.2)
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To analyze the motion it is useful to introduce the rates of change of Φ with respect
to the reference coordinate X and time t . The deformation gradient F is defined as
follows1

F = ∂Φ

∂ X
(2.1.3)

The velocity field v is defined as follows

v = ∂Φ

∂t
= u̇ (2.1.4)

Within the one-dimensional theory the deformation gradient F is identical with the
local stretch λ which is defined as

λ = dx

dX

dX and dx are line elements defined in the infinitesimal neighborhood of a cross
section in the reference and actual configurations, respectively. The local strain ε can
be defined as follows

ε = dx − dX

dX
= λ − 1 = ∂u

∂ X
(2.1.5)

If the material properties and the cross section area do not depend on X then the rod
is called homogeneous. The stretch and the strain can be computed as follows

λ = �

�0
, ε = � − �0

�0
(2.1.6)

The formulas (2.1.6) are applied to evaluate strains from experimental data of uni-
axial tests. If a rod is non-homogeneous than local strains should be evaluated. In
this case a strain gauge should be placed in a position along the rod to provide the
local strain value. The length of the strain gauge should be small such that the mea-
sured strain could be assumed constant. Otherwise themeasured strain would depend
on the length of the strain gauge. A similar assumption can be applied to motivate
Eq. (2.1.5)—the value of the tested line element dX should be “small enough” such
that the strain over dX is constant. This is the basic idea behind the classical con-
tinuum mechanics—the notions of infinitesimal volume, area and line elements are
introduced such that the quantities like density, stress, strain etc. can be assumed
uniform over the considered elements.

Assuming the mapping Φ to be invertible one may introduce the inverse of the
deformation gradient as follows

F−1 = dX

dx
(2.1.7)

1The deformation gradient is usually not introduced within the one-dimensional theory of rods.
Here we introduce this and other quantities to explain basic ideas of continuum mechanics.
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Let f be a field like density, displacement, stress, etc. f can be considered as a func-
tion of the coordinate X and time t . This is sometimes called Lagrangian description.
Alternatively, one may refer f to the actual coordinate x and time. This kind of
description is called spatial or Eulerian. The derivatives of a function f with respect
to X and x can be specified as follows

∂ f

∂ X
≡ f ′0,

∂ f

∂x
≡ f ′ (2.1.8)

Between the derivatives the obvious relation exists

∂ f

∂ X
= F

∂ f

∂x
⇒ f ′0 = F f ′ (2.1.9)

As the motion Φ is assumed invertible

X = Φ−1(x, t), (2.1.10)

the material and the spacial descriptions are equivalent in the sense that if f is known
as a function of X and t , one may use the transformation (2.1.10) to find

f (X, t) = g(x, t)

For example the density ρ can be as a function of the reference coordinate and time
or the actual coordinate and time

ρ = f (X, t) = g(x, t)

With Eqs. (2.1.3) and (2.1.4) the derivative of the velocity with respect to the
reference coordinate can be computed as follows

v′0 = Ḟ (2.1.11)

With (2.1.9) the derivative of the velocity with respect to the actual coordinate is

v′ = Ḟ F−1 (2.1.12)

Assuming that f (x) is continuous for a ≤ x ≤ b the fundamental theorem of integral
calculus provides

b∫

a

f ′(x)dx = f (b) − f (a) (2.1.13)
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If f (x) has n jumps at points xk, k = 1, 2, . . . , n within a ≤ x ≤ b and f ′(x) is
continuous between the jump points then

b∫

a

f ′(x)dx = f (b) − f (a) +
n∑

k=1

� f (xk)�, � f (xk)� ≡ f (x+
k ) − f (x−

k )

(2.1.14)

Assume that the velocity field is given as a function of the spatial coordinate and the
time, i.e. v(x, t). The material time derivative of a field f (x, t) is

d

dt
f = ∂

∂t
f + v f ′ (2.1.15)

2.2 Conservation of Mass

The mass of an infinitesimal part of the rod is

dm = ρ Adx = ρ0 A0dX, (2.2.16)

where ρ and ρ0 is the density in the actual and the reference configurations, respec-
tively. With Eq. (2.1.7) the conservation of mass (2.2.16) takes the form

Fρ A = ρ0 A0 (2.2.17)

Introducing the change in the volume

J = dV

dV0
= Adx

A0dX
= A

A0
F, (2.2.18)

where dV and dV0 are infinitesimal volume elements of the rod in the actual and
reference configurations, respectively, the conservation of mass (2.2.16) yields

ρ0

ρ
= J (2.2.19)

It is obvious that J > 0 and if ρ = ρ0 one obtains J = 1.

2.3 Balance of Momentum

The momentum of an infinitesimal part of the rod is

dp = vdm = vρ Adx
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(a)

(b)

Fig. 2.2 Internal forces in a rod. a Rod in the actual configuration and two cutting planes, b free-
body diagrams visualizing internal forces

Consider a part of the rod, for example, part II, Fig. 2.2b. The momentum for this
part in the actual configuration is

pII =
x2∫

x1

vρ Adx (2.3.20)

The balance of momentum or the first law of dynamics states that the rate of change
of momentum of a body is equal to the total force acting on the body. To introduce
the forces acting on the part II of the rod let us cut it by two cross sections with the
coordinates x1 and x2. The parts I and III belong to the environment of the part II
and the corresponding mechanical actions can be modeled by two forces: NNN I−II—the
action of the part I on the part II and NNN III−II the action of the part III on the part II.
Similarly, the actions on the parts I and III can be introduced. For example, NNN II−I is
the action of the part II on the part I. The following abbreviations can be introduced

NNN II−I = NNN (iii)(x1) = N (x1)iii,
NNN I−II = NNN (−iii)(x1) = −N (x1)iii,
NNN III−II = NNN (iii)(x2) = N (x2)iii,
NNN II−III = NNN (−iii)(x2) = −N (x2)iii

(2.3.21)

With the free-body diagram presented in Fig. 2.2 the balance of momentum for the
part II is2

d

dt

x2∫

x1

vρ Adx = N (x2) − N (x1) (2.3.22)

2Body forces like the force of gravity are not included here for the sake of brevity.
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With the fundamental theorem of integral calculus (2.1.13)3

N (x2) − N (x1) =
x2∫

x1

N ′dx (2.3.23)

Applying themass conservation equation (2.2.16) onemay evaluate the rate of change
of momentum as follows

d

dt

x2∫

x1

vρ Adx = d

dt

X2∫

X1

vρ0 A0dX =
x2∫

x1

v̇ρ Adx (2.3.24)

With Eqs. (2.3.23) and (2.3.24) the integral form of the balance of momentum is

x2∫

x1

(v̇ρ A − N ′)dx = 0 (2.3.25)

Equation (2.3.25) is valid for any part of the rod. Since x1 and x2 are arbitrary, the
integral (2.3.25) is zero if

ρ Av̇ = N ′ (2.3.26)

Multiplying both parts of Eq. (2.3.26) by F yields

Fρ Av̇ = F N ′ (2.3.27)

With the conservation of mass (2.2.17) and the relation between the derivatives
(2.1.9), Eq. (2.3.27) takes the following form

ρ0 A0v̇ = N ′0 (2.3.28)

2.4 Balance of Energy

The total energy E for any part of the rod is defined as the sum of the kinetic energy
K and the internal energy U as follows

E = K + U, K =
x2∫

x1

ρKAdx, U =
x2∫

x1

ρU Adx, K = 1

2
v2, (2.4.29)

3Here and in the following derivations we assume that N and other field variables are smooth
functions. In the case of finite jumps one should applyEq. (2.1.14) and introduce the jumpconditions.



86 2 Continuum Mechanics in One Dimension

where K and U are densities of the kinetic and the internal energy, respectively. The
energy balance equation or the first law of thermodynamics states that the rate of
change of the energy of a body is equal to the mechanical power plus the rate of
change of non-mechanical energy, for example heat, supplied into the body. The
energy balance equation is

d

dt
E = L + Q, (2.4.30)

whereL is themechanical power andQ is the rate of changeof non-mechanical energy
supply. The mechanical power of internal forces (2.3.21) is defined as follows

L = N (x2)v(x2) − N (x1)v(x1) =
x2∫

x1

(Nv)′dx (2.4.31)

The rate of change of energy supply through the cross sections of the parts I, II and
III of the rod can be defined by analogy to Eqs. (2.3.21)

QII−I = Q(iii)(x1) = −Q(x1),
QI−II = Q(−iii)(x1) = Q(x1),
QIII−II = Q(iii)(x2) = −Q(x2),
QII−III = Q(−iii)(x2) = Q(x2)

(2.4.32)

The rate of change of the energy supply through the volume of the part II is

QVII =
x2∫

x1

ρr Adx,

where r is the density of the energy supply. The total rate of energy supply into the
part II is

Q(x1) − Q(x2) +
x2∫

x1

ρr Adx =
x2∫

x1

(−Q′ + ρr A)dx (2.4.33)

With Eqs. (2.4.29), (2.4.31) and (2.4.33) the energy balance equation (2.4.30) takes
the form

d

dt

x2∫

x1

(ρ
1

2
v2 + ρU)Adx =

x2∫

x1

(N ′v + Nv′ − Q′ + ρr A)dx (2.4.34)

With the mass conservation equation (2.2.16) the rate of change of the total energy
can be evaluated as follows
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d

dt

x2∫

x1

(ρ
1

2
v2 + ρU)Adx = d

dt

X2∫

X1

(ρ0
1

2
v2 + ρ0U)A0dX

=
X2∫

X1

(
v̇v + U̇)

ρ0 A0dX =
x2∫

x1

(
v̇v + U̇)

ρ Adx

(2.4.35)

The energy balance equation (2.4.34) takes the following form

x2∫

x1

[
(ρ Av̇ − N ′)v + ρ AU̇ − Nv′ + Q′ − ρr A

]
dx = 0 (2.4.36)

With the balance of momentum (2.3.26), Eq. (2.4.34) is simplified to

x2∫

x1

(
ρ AU̇ − Nv′ + Q′ − ρr A

)
dx = 0 (2.4.37)

As x1 and x2 > x1 are arbitrary coordinates, the local (per unit length of the rod)
form of the energy balance is

ρ AU̇ = Nv′ − Q′ + ρ Ar (2.4.38)

Multiplying both sides of (2.4.38) by F and using the conservation of mass (2.2.17)
as well as the relation between the derivatives (2.1.9) provides the local form of the
energy balance per unit length of the rod in the reference configuration

ρ0 A0U̇ = Nv′0 − Q′0 + ρ0 A0r (2.4.39)

2.5 Entropy Inequality

For historical overview of thermodynamics principles we refer to Ericksen (1998),
Truesdell (1984), Müller (2007). The second law of thermodynamics states that the
entropy production of a body is non-negative. This statement is given as the Clausius-
Planck inequality

d

dt
S − Q

T
≥ 0, (2.5.40)

where S is the entropy and T is the absolute temperature. The entropy of the part II
of the rod (Fig. 2.2) is defined as follows
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S =
x2∫

x1

ρSAdx, (2.5.41)

where S is the entropy density. With Eqs. (2.4.32) and (2.1.13)

(
Q

T

)
I I

= − Q(x2)

T (x2)
+ Q(x1)

T (x1)
+

x2∫

x1

ρ Ar

T
dx = −

x2∫

x1

[(
Q

T

)′
− ρ Ar

T

]
dx

(2.5.42)

Inserting (2.5.41) and (2.5.42) into (2.5.40) provides the integral form of the entropy
inequality

x2∫

x1

[
ρṠA +

(
Q

T

)′
− ρ Ar

T

]
dx ≥ 0 (2.5.43)

Since x1 and x2 > x1 are arbitrary the local form of the entropy inequality can be
given as follows

ρṠA ≥ −
(

Q

T

)′
+ ρr A

T
(2.5.44)

This is a one-dimensional version of the Clausius-Duhem inequality. Multiplying
the both sides of (2.5.44) by T it can be formulated as follows

ρṠT A ≥ −Q′ + Q
T ′

T
+ ρr A (2.5.45)

2.6 Dissipation Inequality, Free Energy, and Stress

From the energy balance Eq. (2.4.38) it follows

ρ Ar − Q′ = ρ AU̇ − Nv′ (2.6.46)

Inserting Eq. (2.6.46) into the entropy inequality (2.5.45) yields the dissipation
inequality

Nv′ − ρ AU̇ + ρṠT A − Q
T ′

T
≥ 0 (2.6.47)

Dividing (2.6.47) by the cross section area provides the following local form of the
dissipation inequality

σv′ − ρU̇ + ρṠT − q
T ′

T
≥ 0, σ = N

A
, q = Q

A
, (2.6.48)
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where σ is called stress or true stress and q is the heat supply through the infinitesimal
cross section. Introducing the Helmholtz free energy density Φ = U − ST the
dissipation inequality (2.6.48) takes the following form

σv′ − ρΦ̇ − ρS Ṫ − q
T ′

T
≥ 0 (2.6.49)

With Eq. (2.1.12) it follows that

σ Ḟ F−1 − ρΦ̇ − ρS Ṫ − q
T ′

T
≥ 0 (2.6.50)

Multiplyingboth sides of (2.6.47) by F andusing the conservationofmass (2.2.17)
aswell as the relation between the derivatives (2.1.9), the local form of the dissipation
inequality per unit length of the rod in the reference configuration can be obtained

Nv′0 − ρ0 A0U̇ + ρ0 A0ṠT − Q
T ′0

T
≥ 0 (2.6.51)

Dividing by A0 yields

Pv′0 − ρ0U̇ + ρ0ṠT − q̃
T ′0

T
≥ 0, P = N

A0
, q̃ = Q

A0
(2.6.52)

where P is the engineering stress and q̃ is the heat flow through the infinitesimal cross
section of the rod in the reference state. In terms of the free energy the inequality
takes the following form

Pv′0 − ρ0Φ̇ − ρ0S Ṫ − q̃
T ′0

T
≥ 0 (2.6.53)

WithEq. (2.1.11) the velocity derivative can be replaced by the rate of the deformation
gradient leading to

P Ḟ − ρ0Φ̇ − ρ0S Ṫ − q̃
T ′0

T
≥ 0 (2.6.54)

Taking into account that the normal force is N = P A0 = σ A the following relation
between the stress measures can be established

P A0 = σ J A0F−1 ⇒ P = σ J F−1 (2.6.55)

Similarly, with the heat flux Q = q A = q̃ A0

q̃ = q J F−1 (2.6.56)
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