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Preface

Many engineering structures are subjected to high temperature environment and
mechanical loadings over a long period of time. Examples include components of
power plants, chemical refineries, and heat engines. Design procedures and residual
life assessments for pipework systems, rotors, turbine blades, etc., require to take
into account inelastic deformation and damage processes. The aim of “modeling
materials behavior at high temperature for structural analysis” is the development of
methods to simulate and analyze time-dependent changes of stress and strain states
in engineering structures up to the critical stage of rupture.

The scope of this book is related to the fields “creep mechanics” (Betten 2008;
Hyde et al. 2013; Naumenko and Altenbach 2007; Odqvist 1981), “continuum
creep and damage mechanics” (Hayhurst 2001; Murakami 2012), “mechanics of
high-temperature plasticity” (Ilschner 1973) or in a broader sense to “behavior of
materials and structures at high temperature.” The objectives are the formulation of
constitutive equations describing the mechanical behavior of structural materials
under multi-axial stress states; the application of structural mechanics models of
beams, plates, shells, and three-dimensional solids; and the utilization of solution
procedures of nonlinear initial-boundary value problems. They have become tra-
ditional since the pioneering texts written in the 1950s by Prager (1959) and in the
1960s by Odqvist and Hult (1962), Hult (1966), and Rabotnov (1969), among
others. These classical books provide a first collection of solutions to plasticity and
creep problems for elementary structures such as rods, beams, and circular plates
based on simple constitutive models like the Norton-Bailey equation. The results
illustrate the basic features of inelastic behavior of materials and structures:
time-dependent deformations, relaxation and redistribution of stresses, and creep
buckling. Furthermore, the introduction of internal or hidden state variables to
characterize processes accompanying inelastic deformation has been established.
The monographs by Penny and Mariott (1995) (first edition in 1971) and
Viswanathan (1989) concentrate on robust methods and empirical relationships,
which are useful for the design procedures. The monographs by Kraus (1980),
Malinin (1981), and Boyle and Spence (1983), published in the 1980s introduce
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new constitutive models with hardening/recovery and damage variables and initiate
the use of advanced numerical methods for structural analysis. The monographs
published by Lemaitre and Chaboche (1990) (3rd French edition Lemaitre et al.
2009) and Skrzypek and Ganczarski (1998) in 1990s designate the framework of
continuum thermodynamics to derive constitutive models, present the advanced
techniques for testing materials under multi-axial non-proportional loading condi-
tions, and overview the developments of continuum damage mechanics. Recent
monographs (Besson et al. 2009; Kassner and Pérez-Prado 2004; Yagi et al. 2004;
François et al. 2012a, b) and collections of papers (Altenbach and Kruch 2013;
Altenbach and Brünig 2015; Altenbach et al. 2015) present constitutive models at
different length scales, and provide new methods of homogenization and local-
ization with interlinks to materials science and physics.

Creep problems in materials and structures are widely discussed at various
conferences and in scientific papers. The International Union of Theoretical and
Applied Mechanics (IUTAM) organizes once in every ten years the symposium
“Creep in Structures”: 1960—Stanford (Hoff 1962), 1970—Gothenburg (Hult
1972), 1980—Leicester (Ponter and Hayhurst 1981), 1990—Cracow (Zyczkowski
1991), and 2000—Nagoya (Murakami and Ohno 2001). The aim of these symposia
was to establish new and fundamental topics on creep and bring together scientists
and engineers from fundamental research and applications. The proceedings show
developments in modeling and understanding creep phenomena starting from the
physical and microstructural aspects of creep and creep-damage up to the structural
design procedures. The IUTAM symposium “Advanced Materials Modelling for
Structures,” held in Paris during April 23–27, 2012, was a continuation and a new
version of the previous IUTAM symposia “Creep in Structures” with a focus on
new materials and on generalized and unified models of inelastic deformation
(Altenbach and Kruch 2013). Materials science foundations of high-temperature
plasticity including deformation and damage mechanisms, materials design for
high-temperature applications, experimental data on creep and plasticity as well as
constitutive models are discussed in International Conferences of Creep and
Fracture of Engineering Materials and Structures (CREEP), first organized in 1981
and held from 1981 to 1993 in Swansea on a triennial basis. Since 1993 this
conference has been held in London (1995), Irvine (1997), Tsukuba (1999),
Swansea (2001), Pittsburgh (2005), Bad Berneck (2008), Kyoto (2012), and
Toulouse (2015). The European Creep Collaborative Committee (ECCC) organized
the International Conference on Creep and Fracture in High Temperature
Components: 2005 in London, 2009 in Zurich, and 2014 in Rome.

During the past decade many advances and new results in the field of
high-temperature inelasticity were presented at conference proceedings and in sci-
entific papers. Examples include: the interlinks with materials science in formulation
of constitutive equations to consider different deformation and damage mechanisms
over a wide range of stresses and temperature; the application of tensor-valued state
variables to account for stress state effects and deformation/damage-induced ani-
sotropy; the assessment of models for beams, plates, and shells in structural analysis
considering inelastic deformation and damage; the development and verification of
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material subroutines for use in general-purpose finite element codes; the application
of the finite element method to the inelastic analysis of engineering structures under
complex thermo-mechanical loading profiles; the consideration of processing con-
ditions, such as welding or induction bending of pipes, and their influence on the
subsequent behavior in structures.

The objective of this book is to review some of the classical and recently
proposed approaches to modeling of high-temperature inelasticity of materials for
structural analysis as well as to extend the collection of available solutions of
inelastic problems by new, more sophisticated examples.

In Chap. 1 we discuss the basic features of the inelastic behavior of materials and
structures and present an overview of various experimental and theoretical
approaches to modeling of inelastic behavior. Typical material responses for vari-
ous loading paths are presented and classified. Microstructural features and
microstructural changes in the course of inelastic deformation at high temperature
are discussed. Furthermore, the state of the art on material modeling and structural
analysis in the inelastic range at high temperature is presented.

Chapter 2 gives a short introduction to the basics of Continuum Mechanics in
one dimension. Here we consider a rod subjected to uniaxial stress state to illustrate
the main ideas of continuum mechanics in a simple, transparent manner. Motion,
deformation, conservation of mass, balance of momentum, balance of energy,
entropy inequality, and the dissipation inequality are introduced and some conse-
quences for material modeling are presented.

Chapter 3 collects elementary constitutive models that describe material
behavior under uniaxial stress state. Constitutive equations for elasto-plasticity as
well as evolution equations to characterize hardening, softening, aging, and damage
processes are presented.

Chapter 4 gives an introduction to the basics of three-dimensional Continuum
Mechanics. Equations describing kinematics motion, deformation as well as bal-
ance laws are now extended to the three-dimensional case. The consequences for
material modeling are discussed.

Chapter 5 is devoted to constitutive modeling of materials subjected to multi-axial
stress states. To analyze material behavior under complex thermo-mechanical load-
ing a combined model for thermo(visco)elasto-plasticity considering hardening,
softening, damage, and other processes is required. The idea of this chapter is to
introduce basic ingredients, useful for the formulation of such unified material
models. They include heat transfer modeling, modeling of elasto-plastic deforma-
tions, hardening and softening rules as well as aging and damage evolution equations.
To formulate a constitutive model for a multi-axial stress state several assumptions
must be introduced. Appropriate stress and deformation measures must be considered
to capture complex local loadings. Constitutive and evolution equations must be
defined such that invariance requirements with respect to the choice of reference
frame, laws of continuum thermodynamics, and other principles are fulfilled. To
specialize the constitutive equation, results of basic tests of the material behavior,
such as tensile test, creep test, relaxation test, etc., should be systematically analyzed.
On the other hand, basic features of materials microstructure in the reference state and

Preface vii

http://dx.doi.org/10.1007/978-3-319-31629-1_1
http://dx.doi.org/10.1007/978-3-319-31629-1_2
http://dx.doi.org/10.1007/978-3-319-31629-1_3
http://dx.doi.org/10.1007/978-3-319-31629-1_4
http://dx.doi.org/10.1007/978-3-319-31629-1_5


after a course of inelastic deformation process should be established. Microstructural
analysis and appropriate assumptions with regard to symmetries of microstructure
would essentially reduce the identification effort. Different types of material sym-
metries and appropriate forms of constitutive laws are discussed.

Chapter 6 deals with the application of constitutive models to the description of
inelastic behavior of several structural materials. Basic approaches to calibrate
constitutive models against experimental data of high-temperature material
behavior are discussed. Constitutive models of isotropic high-temperature plasticity
of several alloys including identified response functions and material parameters are
introduced. Two examples of initially anisotropic materials including a forged
aluminum alloy and a multi-pass weld metal are presented.

Appendices A and B are a summary of the direct tensor notation and basic tensor
operations used throughout the text. This notation has the advantage of a clear,
compact, and coordinate free representation of constitutive models and
initial-boundary value problems. The theory of anisotropic tensor functions and
invariants is discussed in detail. Approaches to derive basic sets of functionally
independent invariants for vectors and second rank tensors for the given symmetry
group is presented. The invariants are found as integrals of a generic partial dif-
ferential equation (basic equation for invariants).

Several chapters of this book have grown out of our lectures and lecture notes on
fundamentals of continuum mechanics, mechanics of materials, and finite element
modeling for graduate level students and Ph.D. students held at the Martin-
Luther-Universität Halle-Wittenberg, Otto-von-Guericke-Universität Magdeburg,
Fraunhofer Institut für Werkstoffmechanik, Politechnico Milano, Nagoya
University, Politechnika Lubelska and National Technical University “Kharkiv
Polytechnical Institute.” Many results presented originate from scientific and aca-
demic exchange projects. We wish to acknowledge financial support from the
German Research Foundation (DFG), German Academic Exchange Service
(DAAD), the State Saxony-Anhalt, and European Commission (ERASMUS). This
book is partly based on the Habilitation thesis of the first author (Naumenko 2006)
and the book Modeling of Creep for Structural Analysis (Naumenko and Altenbach
2007). The extensions are made with regard to the description of the inelastic
behavior in a unified manner to include creep, rate-dependent plasticity,
hardening/recovery, softening, aging, and damage. New examples are included to
illustrate structural behavior under complex, thermo-mechanical loadings.

We acknowledge Professors J. Betten, O.T. Bruhns, E. Gariboldi, T. Hyde,
R. Kienzler, Z.L. Kowalewski, E. Krempl, O.K. Morachkowski, N. Ohno,
J. Skrzypek, and P.A. Zhilin for many fruitful discussions which stimulated our
research in mechanics of inelastic material behavior. For the careful reading of the
manuscript we thank Mr. Helal Chowdhury. We thank Dr. Christoph Baumann from
Springer Publisher for the assistance and support during the preparation of the book.

Magdeburg Konstantin Naumenko
Autumn 2015 Holm Altenbach
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Chapter 1
Introduction

The objective of this chapter is to give an overview of experimental and
theoretical approaches to analyze the behavior of materials and structures subjected
to mechanical loading and “high-temperature” environment. The definition of “high-
temperature materials” and “high-temperature structures” can be related to the value
of the homologous temperature, that is T/Tm, where T is the absolute temperature
and Tm is themelting point of the consideredmaterial.Materials that can be efficiently
used within the temperature range 0.3 < T/Tm < 0.7 are called high-temperature
materials. Examples include heat resistant steels, nickel-bases alloys, age-hardened
aluminum alloys, cast iron materials and metal matrix composites. Structures that
operate in the same temperature range over a long period of time are called high-
temperature structures. Examples include turbine blades, turbine housings, rotors,
turbochargers, steam pipework, microelectronics components, etc. This book deals
with high-temperature material behavior with the emphasis on modeling, analysis
and design of structures.

Despite the structural analysis one has often to analyze hot deformation processes.
Examples include friction stir welding and hot forming. Here materials are sub-
jected to higher temperatures but still below the melting point, usually in the range
0.7 < T/Tm < 0.9. The material behaviors under the condition of long-term high-
temperature service and hot working operations appear to be closely related, since
they share similar temperature properties and thermally activated deformation mech-
anisms. However, materials under hot working conditions are subjected to much
higher strain rates and strains.

In this chapter we are going to discuss basic features of the inelastic behavior of
materials and structures at high temperatures. Typical responses for various load-
ing paths are presented and classified. Microstructural features and microstructural
changes in the course of inelastic deformation at high temperature are discussed.
Furthermore the state of the art on material modeling and structural analysis in the
inelastic range at high temperature is presented.

© Springer International Publishing Switzerland 2016
K. Naumenko and H. Altenbach, Modeling High Temperature
Materials Behavior for Structural Analysis, Advanced Structured Materials 28,
DOI 10.1007/978-3-319-31629-1_1
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2 1 Introduction

1.1 High-Temperature Inelasticity in Structural Materials

Material behavior can be examined with different experimental observations, for
example, macroscopic and microscopic. The engineering approach is related to the
analysis of stress and strain states in structures and mostly based on the standard
mechanical tests. In this section we discuss basic features of inelastic material behav-
ior according to published results of material testing under uni-axial and multi-axial
stress states.

1.1.1 Uni-axial Stress State

Uni-axil stress state is usually realized in experiments like tension tests, creep tests,
relaxation tests, low cycle fatigue tests, etc. In Sect. 1.1.1.1 basic experimental fea-
tures are discussed.

1.1.1.1 Tensile Behavior

Uni-axial tensile tests are basic experiments of the material behavior evaluation.
A standard tension specimen is subjected to the uniform elongation with a constant
rate. From the measured force and the given elongation the stress and the strain
are computed. Figure1.1 shows a sketch of a typical stress-strain diagram for a
steel at room temperature. Many materials exhibits a linear stress-strain relationship
up to a yield point, Fig. 1.1a. The linear portion of the curve is the elastic region
and the slope is the modulus of elasticity or Young’s modulus. After the loading
and subsequent unloading within the elastic range the specimen takes the original
length. The loading and unloading paths coincide, and the work done to deform the
specimen is stored as the elastic energy. Beyond the yield point the strain increases
for almost constant stress, Fig. 1.1b. Here the material is undergoing a rearrangement
of microstructure, such that atoms are being moved to new equilibrium positions.
In crystalline materials the plastic flow is explained by motion of dislocations—line
defects of the crystal structure. Within the hardening regime the stress-strain curve
goes up such that the material supports the additional increasing load, Fig. 1.1c. The
hardening is usually explained as an increasing resistance against the plastic flow in
the course of deformation. For example, the plastic straining generates dislocations.
With the increase in dislocation density, the dislocation movement becomes more
difficult. Another example is the micro-stress fields generated during the plastic flow,
as a result of heterogeneous deformation on the micro-scale. Several microstructural
zones, for example slip planes or grains with certain crystallographic orientations,
exhibit higher levels of inelastic strain rate. The remaining part of microstructure
behaves more or less elastically. This leads to changes of micro-stress states and to
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(a) (b)

(c) (d)

Fig. 1.1 Stress-strain diagram at room temperature. a Elastic regime, b inelastic regime, c inelastic
regime with hardening, d inelastic regime with necking

formation of residual stresses upon unloading. Residual micro-stress fields affect the
overall deformation rate and provide an additional hardening.

In the course of deformation the cross section of the specimen shrinks, start-
ing from the Poisson effect in the elastic regime. For many materials the inelastic
deformation does not produce an essential change in volume, such that the uniform
change in the cross section can be easily related to the elongation. As deformation
proceeds, the geometric instability causes strain to localize in a small region until
the final stage of rupture. This phenomenon is called necking, Fig. 1.1d. Within the
inelastic regime an essential part of the work done to deform the material dissipates
(usually as heat). After the removing the force the specimen does not return to its
original shape—after the elastic springback the permanent plastic strain remains.
From a stress-strain diagram several material characteristics, important for design of
structures, can be identified. They include the Young’s modulus E , the yield limit σy

and the ultimate tensile strength σu. The yield limit is often not well defined from the
shape of the stress-strain curve. Instead of yield point the upper and the lower yield
points as well as an offset yield point Rp0.2 are usually introduced. The latter is the
stress value, for which the permanent plastic strain is 0.2%.
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Fig. 1.2 Stress-strain
diagrams for materials with
hardening and softening at
high temperature

hardening/recovery materials
softening materials

Tension tests are often performed at elevated temperature. The standard
specimen is uniformly heated up to a certain temperature, usually in the range
T = (0.3−0.7)Tm and then subjected to elongation, to examine material prop-
erties for high-temperature applications. Let us discuss basic features of hot defor-
mation observed from tensile tests. Figure1.2 shows schematically stress-strain dia-
grams obtained at high temperature. Here the yield point cannot be defined, the
Rp0.2 stress is used instead in most cases. Hardening is usually accompanied by
recovery. For example the increase of dislocation density with inelastic straining—a
hardening phenomenon—is accompanied by annihilation of dislocations—a recov-
ery phenomenon observed at high temperature. Internal stresses, being generated
due to heterogeneous inelastic deformation, get relaxed as a result of microstructure
rearrangements at high temperature—for example diffusion of vacancies. Therefore,
the stress-strain diagram of several materials shows a well-defined horizontal shape,
the so-called saturation or steady-state flow regime, for which the hardening and
recovery processes are in equilibrium. An important material characteristic is the
steady-state (saturated) stress level σss, Fig. 1.2. Examples for hardening/recovery
materials include pure metals, solid solution alloys with a relatively low initial den-
sity of dislocations and 300-series austenitic steels. Experimental data for 304 and
316 steels are presented in Gorash et al. (2012), Kawai (1989), among others.

Many materials contain relatively high dislocation density at the initial (virgin)
state after the processing. Examples include 9–12% Cr ferritic steels, where a high
density of dislocations is induced after martensitic transformation. For these materi-
als the inelastic deformation is accompanied by the recovery of dislocation substruc-
tures such as coarsening of subgrains (Blum 2008). The stress-strain curve shows
a descending (softening) branch, Fig. 1.2. Experimental data for 9–12% Cr steels
are presented in Naumenko et al. (2011a), Röttger (1997), Yaguchi and Takahashi
(2005), among others.
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Fig. 1.3 Stress-strain
diagrams for
X20CrMoV12-1
steel under strain rate
ε̇ = 2.63 · 10−4 s−1 and
different temperature levels,
after Röttger (1997)

Material properties like Young’s modulus and yield limit as well as, hardening,
recovery and softening processes strongly depend on the temperature level. As an
example, Fig. 1.3 shows stress-strain diagrams for 12% Cr steel X20CrMoV12-
1 steel for different values of the absolute temperature (Röttger 1997). At room
temperature the material shows a typical tensile behavior with the elastic range
followed by hardening and necking regimes up to final fracture. In contrast, at 600 ◦C
after a relatively short hardening range the stress strain curve showsa clear descending
branch. This softening regime is observed for small strains (lower than 2%) and is
related to coarsening of dislocation substructures.

Inelastic response depends on the rate of the applied loading. For many materials
the rate dependence becomes essential for high temperatures, i.e. for T/Tm > 0.3.As
an example, Fig. 1.4 shows stress-strain curves for modified 9Cr-1Mo steel at 550 ◦C
and different strain rates (Yaguchi and Takahashi 2005). Increase of the strain rate
leads to an increase in the saturation stress value. The corresponding dependency of
σss on ε̇ is called strain rate sensitivity of the tensile response and is an important
characteristic for design and analysis of structures and processes.

1.1.1.2 Creep and Relaxation

The uni-axial creep test is another experiment to examine material behavior at high
temperature. A standard cylindrical tension specimen is heated up to the temperature
T = (0.3−0.5)Tm and loaded by a tensile force F . The value of the normal stress in
the specimen σ is usually less than the yield point σy or offset yield point Rp0.2 of the
material at the given temperature. The instantaneous material response is therefore
elastic. The load and the temperature are kept constant during the test and the axial
engineering strain ε is plotted versus time t . A typical creep curve for a metal is
schematically shown in Fig. 1.5. The instantaneous response can be characterized by
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Fig. 1.4 Stress-strain diagrams for modified 9Cr-1Mo steel at T = 550 ◦C and different strain
rates, after Yaguchi and Takahashi (2005)

t

ε

nnn

F

F

F = const, T = const,
σσσ =σnnn ⊗ nnn, σ = F/A0

σ <σy, 0.3Tm < T < 0.5Tm

T

minimum creep rateI

II

III

fracture

instantaneous elastic strain εel

Fig. 1.5 Strain versus time curve under constant load F and temperature T . I Primary creep, II
secondary creep, III tertiary creep

the strain value εel. The time-dependent response is the slow increase of the strain
ε with a variable rate. Following da Andrade (1910), three stages can be considered
in a typical creep curve: the first stage (primary or reduced creep), the second stage
(secondary or stationary creep) and the third stage (tertiary or accelerated creep).
During the primary creep stage the creep rate decreases to a certain value (minimum
creep rate). The secondary stage is characterized by the approximately constant creep
rate. During the tertiary stage the strain rate increases. At the end of the tertiary stage
creep rupture of the specimen occurs. A number of properties, important for design
of structures, can be deduced from the uni-axial creep curve. These are the duration
of the stages, the value of minimum creep rate, the time to fracture and the strain
value before fracture.
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(a) (b)

Fig. 1.6 Influence of stress and temperature on the creep behavior. a Stress dependence, b temper-
ature dependence

Fig. 1.7 Creep rate versus creep strain curves with and without steady state creep regime

The shape of the creep curve, the duration of the creep stages the creep rate and
the time to fracture depend strongly on the stress and temperature values, Fig. 1.6.
For the analysis of creep behavior it is convenient to introduce the inelastic (creep)
strain εpl as the difference between the measured strain ε and the calculated elastic
strain εel = σ/E , where E is the Young’s modulus. From the original strain versus
time curve the creep rates can be computed and plotted as a functions of creep strain
and/or time. Two examples of creep rate versus creep strain curves are presented
schematically in Fig. 1.7. For several materials, for example puremetals, the classical
creep with three creep stages are observed. Here the creep rate is nearly constant over
a certain range of creep strain values. The secondary creep stage is characterized by
the steady state creep rate ε̇

pl
ss , Fig. 1.7. For a range of temperatures and stress levels

an important deformation regime is the dislocation creep. Here the deformation is
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controlled by the movement of mobile dislocations (Ilschner 1973; Blum 2001; Frost
and Ashby 1982). The creep rate is related to the velocity of mobile dislocations.
The dislocation velocity decreases with increasing overall dislocation density (Blum
2001). The creep deformation produces dislocations and the creep rate is expected
to decrease with an increase in dislocation density. On the other hand, annihilation
of dislocations at high temperature, for example due to diffusion of vacancies takes
place leading to a decrease (recovery) of dislocation density. In a steady state creep
regime the dislocation density does not change, that is, the rate of production and
the rate of annihilation are the same (Blum 2001). For many structural materials,
for example advanced heat resistant steel, a pronounced secondary creep stage is not
observable. The creep rate decreases at the beginning of the creep process, attains the
minimumvalue at a certain value of the transition strain ε

pl
tr and immediately increases

after that. The corresponding characteristic is the minimum creep rate ε̇
pl
min, Fig. 1.7.

The dependencies of creep rate on stress and temperature are of primary interest
to an engineer in designing some structure or machine. In order to obtain mechanical
properties of the material, series of creep tests are usually performed for different
stress and temperature values. From the resulting families of creep curves one can
obtain the minimum creep rate versus stress curve, the minimum creep rate versus
temperature curve, the creep rate versus time curve and the stress versus time to
fracture curve (long term strength curve). The ranges of stress and temperature should
be specified according to the ranges expected in the structure during the service.

Figure1.8a illustrates experimental data for minimum creep rate as a function of
stress for steel 316 for the temperature 600 ◦C (Rieth et al. 2004). To generate reliable
data for the minimum (secondary) creep rate for the stress values less than 100 MPa
creep tests with the long duration (approx. 10years) are required. The data for this
range of moderate and low stress levels are of interest for the analysis of power plant
components operating in high-temperature range over long period of time. Special
uni-axial specimen with an increased gauge length were designed in Rieth et al.
(2004) to improve the resolution of creep strain measurements for low stress levels.
In Kloc and Sklenička (1997), Kloc and Sklenička (2004), Kloc et al. (2001) the
testing facilities and experimental data for a 9% Cr steel are presented. Creep tests
for the stress levels below 20 MPa were performed by the use of helical springs
while for the stress levels over approx. 100 MPa standard uni-axial specimen were
applied. Figure1.8b shows the experimental data for the temperature 600 ◦C. Exam-
ples for minimum creep rate versus stress curves for various materials can be found
in Altenbach et al. (2008a), Boyle and Spence (1983), Hyde et al. (2013), Ilschner
(1973), Kassner and Pérez-Prado (2004), Kraus (1980), Malinin (1981), Odqvist and
Hult (1962), Odqvist (1974), Penny and Mariott (1995) and many papers related to
the experimental analysis of creep, e.g. Altenbach et al. (2013), Gariboldi and Casaro
(2007), El-Magd et al. (1996), Hyde et al. (1997), Hyde et al. (1999), Kimura et al.
(2009), Naumenko et al. (2009), Längler et al. (2014). To discuss basic features of
tertiary creep consider a sketch of the creep rate versus creep strain curves usually
observed for 9–12%Cr steels, Fig. 1.9. Experimental creep curves are published in
Kimura et al. (2009), Naumenko et al. (2011a), Straub (1995). The secondary or
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(a)

(b)

Fig. 1.8 Normalized minimum creep rate versus normalized stress. a Type 316 steel at 600 ◦C,
b 9% Cr steel at 600 ◦C

the steady state creep stage is usually not observable. The creep strain at which the
transition from primary to the tertiary creep takes place is dependent on the stress
level. The tertiary creep rate is primarily controlled by the softening processes. Two
important examples are the coarsening of the subgrain microstructure and coars-
ening of carbide precipitates (Abe 2009; Blum 2008; Dyson and McLean 1998;
Straub 1995). An additional factor is the cross-section shrinkage of the specimen
as a result of essential creep deformation. As the force is kept constant during the
test the cross section reduction leads to an increase in the true stress value. The
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Fig. 1.9 Mechanisms of tertiary creep in advanced steel

essential non-linearity of the creep rate with respect to the true stress leads to an
additional acceleration of creep. The final stage of the creep curve is affected by
damage processes. The principal damage mechanism is the formation and growth of
cavities on grain boundaries, subgrain boundaries or carbides. This mechanism of
creep cavitation is common for many polycrystalline materials. Processes including
softening, damage and cross-section shrinkage are more or less dominant depending
on the stress level and temperature. To explain the influence of these mechanisms
let us consider a typical long term strength (creep rupture strength) curve, Fig. 1.10.
Here the value of the applied engineering stress is plotted as a function of creep life t∗
deduced from uni-axial creep tests. For high stress values the fracture mode is ductile
and the uni-axial specimen necks down after a certain time as a result of excessive
deformation. For lower stress values the necking is still observed, but the slope of the
curve decreases. The origin of this decrease is the microstructure degradation like
coarsening of subgrains or coarsening of precipitates. Within the transition range
the fracture mode is of the mixed type. Here the nucleation and growth of cavities
and microcracks may have an influence on the creep process. The curve changes the
slope from the ductile to the brittle regime. For low stresses the brittle damage and
fracture modes are usually observed. Experimental creep rupture strength curves are
collected in Yagi et al. (2004) for many high temperature materials.

Figure1.11 illustrates various forms of time-dependent material behavior includ-
ing creep, Fig. 1.11a, creep, Fig. 1.11b, and stress relaxation, Fig. 1.11c. Creep recov-
ery is usually observed, when after a certain period of time the load is spontaneously
removed, Fig. 1.11b. After unloading the strain drops about the value εel (recovery of
the elastic strain). Then the strain slowly decreases down the permanent (irrecover-
able) value εpm, whereas εrec is the recovered inelastic strain. A typical stress relax-
ation curve is shown in Fig. 1.11c. Stress relaxation is observed when the strain is
held constant in time (ε = const). A uni-axial specimen is instantaneously deformed
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Fig. 1.10 Sketch for a long term strength curve for advanced heat resistant steel (Naumenko and
Kostenko 2009)

(a) (b) (c)

Fig. 1.11 Different forms of time-dependent stress-strain behavior under constant temperature.
aCreep at constant stress,b creep recovery (H(t) denotes theHeaviside function), c stress relaxation
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to the strain value εel = σ/E , where E is the Young’s modulus. During the test
the load is continuously decreased in such a way that the initial strain remains con-
stant. A threshold of the initial stress (strain) exists below which the relaxation is not
observable.

In the case of relaxation it is usually assumed, e.g. Malinin (1981), Stouffer and
Dame (1996), that the total zero strain rate is the sum of the elastic and the creep
strain rates

ε̇ = σ̇

E
+ ε̇pl = 0 (1.1.1)

With this assumption the creep strain increases with a decaying rate during the
relaxation test, Fig. 1.11c. According to Eq. (1.1.1) the stress rate in the course of
relaxation can be computed from data concerning creep rates. As the stress level
decreases accurate creep data for low and moderate stress levels are required to
predict stress relaxation (Altenbach et al. 2008b).

Creep behavior is highly sensitive to the type of material processing (e.g. plastic
forming, heat treatment). As an example, let us illustrate the effect of spontaneous
plastic pre-strain on the subsequent creep behavior, Fig. 1.12. The creep curve shown
by solid line is obtained under the constant stress σ0. The dotted lines present the
second and the third creep curves after spontaneous loading to the stresses σ1 and
σ2 > σ1 leading to small plastic strains ε

pl
1 and ε

pl
2 > ε

pl
1 , respectively, and subsequent

unloading to the stress σ0. The creep rate after the loading in the inelastic range is
significantly lower compared to the creep rate of the “virgin” material. The effect of

Fig. 1.12 Effect of initial plastic strain on creep behavior, after Kawai (1989)
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reduction in creep rate becomes stronger with the increase of the prior plastic strain.
Effects of this type are sometimes called “plasticity-creep” or “creep-plasticity”
interactions, e.g. Inoue (1988), Krausz and Krausz (1996), Krempl (1999), Miller
(1987).

Many materials exhibit anisotropic creep behavior. Examples are: directionally
solidified nickel-based superalloys, e.g. Winstone (1998), fiber reinforced materials,
e.g.Robinson et al. (2003a, b), deepdrawing sheets, e.g.Betten (1976),Betten (2001),
forgings (Naumenko and Gariboldi 2014; Gariboldi et al. 2016) and multi-pass weld
metals (Hyde et al. 2003a). In these cases series of uni-axial creep tests for specific
loading directions are performed in order to establish the material behavior. The
number of the required tests and the corresponding loading directions are dictated
according to the assumed symmetries of the material microstructure.

1.1.1.3 Creep Under Varying Load and Cyclic Creep

To investigate transient creep effects tests under non-stationary loading under con-
stant high temperature are performed. Creep curves under stepwise loading are pre-
sented in Faruque et al. (1996), Malinin (1981), for example. The creep test starts
under a certain value of the load. After reaching steady-state creep the load is rapidly
increased or decreased and kept constant over a period of time (hold time). Such
tests are useful to analyze hardening, recovery and softening processes after the
rapid changes of loading. Figure1.13 shows experimental data from creep test under
compressive stress changes published in Straub (1995). During the test the specimen
was initially subjected to the constant compressive true stress with the value of 196
MPa. After a certain hold time the stress was rapidly reduced to the value of 150
MPa. Several hold and loading/unloading phaseswere performed.As Fig. 1.13 shows
the first unloading was performed after the reaching the tertiary creep stage. For the
loading with the constant compressive true stress the main mechanism for acceler-
ated creep is the softening process, associated with coarsening of subgrain structure
(Straub 1995). One additional feature influenced by the softening is observed for
variable loading conditions. After the stress decrease the creep rate remains lower,
while after the stress increase it becomes higher than the corresponding creep rate
under the constant stress level, Fig. 1.13.

Components are often subjected to cyclic loading at high temperature. To analyze
the structural behavior material tests for cyclic force or displacement controls are
required. Periodically varied force causes cyclic creep response. The applied periodic
stress can be characterized by the amplitude σa, the period τc and the mean stress
σm. The following stress ratios are used to indicate the kind of cyclic loading

Â = σa

σm
, R = σmax

σmin
, (1.1.2)

where σmax = σm + σa and σmin = σm − σa. Two cases of the periodic loading
are presented in Fig. 1.14a, b. Let us assume that the value of the maximum stress
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Fig. 1.13 Normalized creep rate versus creep strain for X20CrMoV 12-1 steel at T = 600 ◦C and
variable compressive stress, after Straub (1995)

σmax is lower than the yield point (yield offset) of the material at the testing tem-
perature. Creep behavior for the case of periodic loading with hold time is schemat-
ically illustrated in Fig. 1.14c. Here the mean stress σm, the amplitude σa, the rate
of loading/unloading and the hold time influence the creep response. The case of
harmonic loading is shown in Fig. 1.14b. Such loading is important in those engi-
neering applications, where technological or operational conditions (non-stationary
flow, combustion, acoustic action, etc.) cause the development of forced vibrations.
The harmonic stress variation can be described as follows

σ = σm(1 + Â sinΩt), Ω = 2π

τc
= 2π, (1.1.3)

Creep behavior under harmonic loading (1.1.3) with frequencies f > 1 . . . 2 Hz has
been studied in Bernhardt andHanemann (1938), Taira (1962), Taira andKoterazawa
(1962). For this cyclic loading condition primary, secondary and tertiary stages can be
observed similarly to the static case, Fig. 1.14d. Furthermore, the shape of the cyclic
creep curve is geometrically similar to the static one caused by the stress σ = σm,
but the creep rate is rather higher and the time to fracture is essentially smaller. It
was found that creep under fast cyclic loading is not sensitive to the frequency of
stress variation, e.g. Taira and Ohtani (1986). In contrast, the stress cycle asymmetry
parameter Â has significant influence on the creep rate. For a number of investigated
materials a material property Â∗ has been found which is termed as the critical
value of the stress cycle asymmetry parameter. For Â < Â∗ the high cyclic creep
process is similar to the static one with increased creep rate and decreased time to
fracture. For Â > Â∗ such a behavior is not observable, and fracture takes place
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(a) (b)

(c) (d)

Fig. 1.14 Types of loading and corresponding cyclic creep curves. a Cyclic loading with hold
time, b harmonic loading with high frequency, c creep response for cyclic loading with hold time,
d different responses for loading with high frequency

as a consequence of creep-fatigue interaction. Following Lazan (1949), Rabotnov
(1969), Taira and Ohtani (1986), the processes of high-frequency cyclic creep are
classified as: dynamic creep for Â < Â∗ and high cyclic creep for Â > Â∗. Creep
curves for both cases are schematically presented in Fig. 1.14d.

The cycle by cycle accumulation of inelastic strain under the applied cyclic force is
called ratchetting. Experimental data show that the ratchetting deformation depends
on the mean stress, the stress ratio as well as on the loading rate and hold time
(Altenbach et al. 2013; Ohno et al. 1998; Ohno 1998). For advanced 9–12%Cr steels
anomalous ratchetting behavior is documented—in cyclic force controlled tests with
zeromean force progressive deformation in the tensile direction is observed (Yaguchi
and Takahashi 2005; Röttger 1997; Bunch and McEvily 1987).
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1.1.1.4 Low Cycle Fatigue, Creep Fatigue, and Thermo-Mechanical
Fatigue

Figure1.15a shows basic parameters of the strain controlled low cycle fatigue (LCF)
test. The loading is characterized by the strain amplitude εa, strain range �ε = 2εa,
and the mean strain εm. Similarly to the stress controlled tests the following ratios
can be introduced

Âε = εa

εm
, Rε = εmax

εmin
, (1.1.4)

where εmax = εm + εa and εmin = εm − εa. During the test the stress as a function of
time is recorded. The basic stress response parameters are the stress amplitude σa and
the mean stress σm. From a hysteresis loop for a certain loading cycle, Fig. 1.15b one
may also compute the elastic strain range�εel and the plastic strain rage�εpl. Typical
stress responses obtained from LCF tests with Rε = −1 are schematically shown in
Fig. 1.16. Here the stress amplitude is presented as a function of the cycle number.
For a class of materials, for example 300-series austenitic steels, the cyclic hardening
followed by the stabilized response is observed. The stress amplitude increases over
a number of cycles (cyclic hardening stage), attains a steady-state value (stabilized
response stage) and decreases rapidly at the final stage of fatigue failure. On contrary,
many materials, for example 9–12% Cr steels, exhibit cyclic softening, that is the
decrease of the stress amplitude starting from the first loading cycles over the whole
fatigue life. Figure1.17 shows the dependence of stress amplitudes on the number of
cycles for X 20 CrMoV 12 1 steel T = 530 ◦C and different strain amplitudes. Strain
controlled tests with Rε = −1 and the loading frequency f = 5 Hz were performed
by Röttger (1997). The cyclic softening regime is clearly observed. The number of
cycles to fatigue failure decreases with an increase of the strain amplitude. In strain
controlled fatigue tests with Rε = −1 at low homologous temperature the strain
amplitude is the important loading input parameter that determines the fatigue life.
Strain amplitude versus cycles to failure diagrams are widely used to characterize
fatigue strength of materials.

Fatigue damage evolution is a sequence of several microstructural events. The
total fatigue life can be separated into the stage of macrocrack initiation and the
stage of macrocrack growth until reaching the critical crack length and final failure.
The first initiation stage can include processes of increase in dislocation density,
formation of dislocation substructures, localization of inelastic strain along persistent
slip bands, surface relief evolution, formation and early growth stage of surface
microcracks (Mughrabi 2009; Polák 2003). This early stage is mostly controlled by
the non-homogeneous cycle by cycle inelastic deformation. The accumulation of
irreversible slip steps on the surface leads to the surface roughening, with sites of
local stress concentrations at which microcracks can form (Mughrabi 2009). Short
cracks usually grow by the slidingmode (mode II in the sense of fracture mechanics).
Progressively, after crossing several grains the main crack propagates, usually in the
plane orthogonal to the loading axis.
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(a) (b)

Fig. 1.15 Loading and stress response parameters in LCF regime. a Triangular strain waveform,
b hysteresis loop

Fig. 1.16 Stress amplitude
versus number of cycles
curves with different cyclic
regimes for Rε = −1

Fig. 1.17 Stress amplitude
versus number of cycles for
X20CrMoV12-1 steel at
T = 530 ◦C, Rε = −1 and
different strain amplitudes,
after Röttger (1997)
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The inelastic response at high temperature depends essentially on the rate of
loading, cp. Sect. 1.1.1.1. For static and cyclic tests under low strain rates creep
regime becomes essential. Decrease in the strain rate by keeping the total strain
range fixed leads to an increase in the inelastic strain range and the dissipated work
within the cycle. Fatigue life usually decreases with a decrease of the strain rate
(loading frequency) for constant strain range, e.g. Skelton (2003).

Test performed under cyclic strain with hold times at high temperature are usu-
ally performed to examine creep-fatigue (relaxation-fatigue) behavior. Figure1.18a
provides a sketch of a cyclic strain control with hold phases under tension and com-
pression. The stress response over time, Fig. 1.18b and the hysteresis loop, Fig. 1.18c
illustrate the stress relaxation regimes during hold phases. Various controls of creep-
fatigue tests can be applied to analyze material behavior. Examples include cycles
with tension-compression holds, Fig. 1.18, cycles with tensile holds, cycles with
compressive holds, etc. Tensile and compressive holds with the same duration have
usually different influence on the creep-fatigue life for many materials. For exam-
ple 9–12% Cr steels compressive hold phases more detrimental than tensile ones,
in the sense that the fatigue life is more severely reduced under compressive holds
than under tensile holds (Aktaa and Petersen 2009; Fournier et al. 2008). This effect
might be surprising as one expects creep damage evolution under tension rather

(a)

(b) (c)

Fig. 1.18 Low cycle fatigue with hold time. a Loading, b stress response, c hysteresis loop
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than under compression hold phases. However, analysis of the deformation process
and changes in the hysteresis loop from cycle to cycle as a result of softening and
relaxation provide explanation as how the fatigue life is affected by tensile and/or
compressive holds. Tensile holds reduce tensile stress peaks in the cycle as observed
for a half of the fatigue life. Therefore, cycling with compressive holds lead to higher
peaks in tensile stress if compared to loading with tensile holds. Assuming that ten-
sile peaks promote fatigue damage from cycle to cycle, the shortening of fatigue life
can be explained (Aktaa and Petersen 2009).

Many components operate under changing temperature environment and
mechanical loading over a long period. Critical positions may be subjected to fatigue
damage due to thermal transients and/or creep damage during exposure at high tem-
perature.Generally, the structural integrity of a component is ensured through reliable
design, precise manufacturing, definition of allowable operational modes, and timely
inspection. However, permanently changing economic situations and environmental
conditions require more flexible operation modes in service, e.g. daily start-up and
shut-down and/or increase of steam pressure and temperature. An important step
in the life-time assessment is to analyze material behavior for service-type loading
and temperature profiles. To this end an inelastic structural analysis that takes into
account both the slow changes in the stress and strain states during hold (running)
phases and transient behavior during start-ups and shut-downs is required. Hystere-
sis loops obtained from structural analysis of results of real components provide an
input to generate service-type thermo-mechanical fatigue (TMF) loading profiles for
laboratory testing of materials. For example, strain and temperature variations on the
surface of real components were used for TMF testing of uni-axial specimens in Cui
et al. (2009), Holdsworth et al. (2007). Examples for analysis of structures subjected
to thermal cycling will be presented in Sect. 1.2.2.

Figure1.19 illustrates schematically strain and temperature profiles and the stress
response over one cycle of TMF loading. Experimental data for such strain and
temperature controls are presented in Cui et al. (2009), Kostenko et al. (2013), Cui
and Wang (2014) for uni-axial specimens from 10% Cr steel and in Samir et al.
(2005) for cruciform specimens from 1%Cr steel under biaxial loading. Following
the classification by Berger et al. (2008) the loading profile presented in Fig. 1.19
corresponds to the hot start situation. Further examples include cold and warm start
profileswith higher differences in themaximumandminimumabsolute temperatures
within the cycles (Holdsworth et al. 2007).

In Längler et al. (2014), Nagode et al. (2011a, b) results of TMF tests for a D5S
cast iron material are discussed. A series of in-phase TMF tests with the temperature
variation within the range from 230 to 680 ◦Cwere performed. Figure1.20 illustrates
the strain and the temperature variations within one cycle of loadingwith the duration
of 600 s. TMF tests were performed for two different loading profiles. The first one
called direct is presented in Fig. 1.20. The second one has the same temperature con-
trol but the direction of the strain path is reversed, that is the specimen is subjected to
the compressive strain with the same magnitude. Temperature induced axial thermal
strain is measured prior to the start of cycle sequence in strain control mode to enable



20 1 Introduction

Fig. 1.19 Loading profiles and stress response for one cycle of TMF loading, after Naumenko et al.
(2011b)

Fig. 1.20 Loading profile for one cycle of TMF loading for D5S cast iron material, after Längler
et al. (2014)

thermal strain compensation. Total and thermal strains as well as stress responses
were recorded in the course of cyclic loading up to failure of specimens.

Figure1.21 shows normalized stress responses in a stabilized loading cycle for
both the direct and reversed loading profiles. The slight difference in stress response
under tension and compression may be caused by asymmetric slip, hardening, dam-
age and other processes, e.g. Naumenko and Altenbach (2007).

Lifetime of specimens or components under TMF loading conditions is limited
by fatigue damage, creep damage, environmental damage or in many cases by com-
plex interaction of different damage mechanisms. In Holdsworth et al. (2007) results
of uni-axial TMF tests for 1CrMoV forged steel under service-type loading condi-



1.1 High-Temperature Inelasticity in Structural Materials 21

Fig. 1.21 Stress response
for a stabilized cycle of TMF
loading for D5S cast iron
material, after Längler et al.
(2014)

tions are discussed. Specimens were subjected to three heat profiles with the same
maximum temperature but different temperatures at the beginning and the end of the
cycles. All three types of tests were conducted under the samemechanical strain con-
trol that corresponds to the start-up situation. Post test inspection has been employed
to characterize the associated damage mechanisms. It was observed that the increase
of the temperature differencewithin the cycle leads to reduction in cycles to crack ini-
tiation endurance. Two dominant types of damage are usually observed in TMF tests
of the considered low-alloy steel. Fatigue damage develops as a relatively uniform
distribution of short transgranular cracks at the surface along and around the gauge
section. Creep damage evolution is the nucleation and coalescence of cavities at grain
boundaries and propagation of intergranular cracks across the specimen section. In
tests with low difference between the minimum and the maximum temperatures in
a cycle fatigue-dominated damage evolution was observed. Surface fatigue cracks
were initiated and a main crack propagated towards the cross section of the speci-
men, where creep cavitation was also observed. Damage development in tests with
moderate difference in temperature levels was creep dominated. At the end of test
there was a high intensity of relatively fine intergranular microcracks in the gauge
section. In tests with high temperature differences, the extent of surface oxidation and
spallation was high due to the high thermal transient and the rate of metal removal
at the surface appeared to be greater than the rate of crack development.

Several elementary rules are available to estimate theLCF life based on the loading
characteristics within the cycle. An example is the Coffin-Manson equation (Coffin
1954; Manson 1953) that relates the plastic strain amplitude within a cycle with the
number of cycles to fatigue failure. More advanced rules were developed to account
for strain rate and hold time dependencies under isothermal loading conditions.
They use data from stress-strain loops within a characteristic cycle, for example, the
steady state stress and/or strain rate values at the end of the hold phase, strain range,
the dissipated mechanical work together with experimental data, for example creep
strength and fatigue endurance. For reviews we refer to Viswanathan (1989), Penny
and Mariott (1995); Berger et al. (2008). These approaches are mostly applicable to
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situations, where stabilized stress-strain behavior after a certain number of loading
cycles is expected. For materials with cyclic softening the shape of the stress-strain
loop changes continuously from cycle to cycle such that the whole deformation
process should be analyzed.

Alternatively, advanced constitutive equations for inelastic deformation and
kinetic laws for hardening/recovery, softening and damage can be developed to cap-
ture the whole cycle by cycle material behavior (Aktaa and Petersen 2009; Chaboche
2008; Kostenko et al. 2013). Development of kinetic laws for interaction of different
damage mechanisms and efficient numerical methods to solve kinetic equations over
many loading cycles are still challenging problems.

1.1.2 Multi-axial Effects

Experimental data obtained from uni-axial tests allow us to establish basic features
of inelastic behavior and to find relations between strain rate, stress, temperature and
time. However, most structural members are subjected to multi-axial stress condi-
tions. In order to analyze the influence of the stress state on the material behavior,
multi-axial tests are required.

Various techniques have beendeveloped to testmaterials undermulti-axial loading
conditions. Examples are: thin-walled tubes subjected to axial force and torque, e.g.
Kowalewski (1995), Kawai (1989), two- and three-dimensional cruciform specimens
subjected to axial forces, e.g. Sakane and Hosokawa (2001), Sakane and Tokura
(2002), Samir et al. (2005), circumferentially notched specimens subjected to axial
force, e.g. Hyde et al. (1996), Perrin and Hayhurst (1994), Simon (2007), Cui et al.
(2009) and three-dimensional component-like test pieces (Colombo et al. 2008).

Figure1.22 shows a thin-walled tube under the axial force and torque with the
magnitudes F and M , respectively. Let rm be the mean radius of the cross section, h
the wall thickness and L the gauge length. With the local cylindrical basis eeer , eeeϕ and
kkk, as shown in Fig. 1.22, the stress state can be characterized by the following tensor

σσσ = σkkk ⊗ kkk + τ(eeeϕ ⊗ kkk + kkk ⊗ eeeϕ), σ = F

2πrmh
, τ = M

2πr2mh
(1.1.5)

The deviatoric part of the stress tensor is1

sss = σ

(
kkk ⊗ kkk − 1

3
III

)
+ τ(eeeϕ ⊗ kkk + kkk ⊗ eeeϕ), (1.1.6)

where III is the second rank unit tensor, see Sect. A.4. One possible stress measure
which can be used to compare different multi-axial tests is the von Mises equivalent
stress σvM which is defined as follows

1Basic rules of the direct tensor calculus are presented in Sect.A.4.
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Fig. 1.22 Thin-walled tube for multi-axial creep tests

σvM =
√
3

2
sss ······ sss =

√
σ 2 + 3τ 2

From the measured elongation �L and the angle of twist φT the axial strain εL and
the shear strain γ can be computed

εL = �L

L
, γ = rmφT

L

Assuming that the material behavior is isotropic, the strain state in a tube can be
characterized by the following tensor

εεε = εLkkk ⊗ kkk + εQ(III − kkk ⊗ kkk) + 1

2
γ (eeeϕ ⊗ kkk + kkk ⊗ eeeϕ),

where εQ = �rm/rm is the transverse normal strain.
Inwhat follows let us limit to the stress controlled tests and analyze creep behavior

under multi-axial stress states. The inelastic (creep) strain tensor is defined as the
difference between the strain tensor εεε which includes the measurable quantities and
the tensor of initial elastic strains which can be calculated from Hooke’s law. As a
result we obtain

εεεpl =
(

εL + 2εQ − 1 − 2ν

E
σ

)
1

3
III +

(
εL − εQ − (1 + ν)

E
σ

)(
kkk ⊗ kkk − 1

3
III

)

(1.1.7)

+ 1

2

(
γ − 2(1 + ν)

E
τ

)
(kkk ⊗ eeeϕ + eeeϕ ⊗ kkk),

where ν is the Poisson’s ratio. The basic assumption related to the multi-axial creep
behavior is the volume constancy during the creep deformation, e.g. Odqvist (1974),
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Odqvist and Hult (1962). In this case the following relations should be satisfied

tr εεε = tr εεεel ⇒ εL + 2εQ = 1 − 2ν

E
σ

From (1.1.7) it follows

εεεpl = 3

2

(
εL − 1

E
σ

)(
kkk ⊗ kkk − 1

3
III

)
+ 1

2

(
γ − 2(1 + ν)

E
τ

)
(kkk ⊗ eeeϕ + eeeϕ ⊗ kkk)

Under the condition of stationary loading the creep rate tensor is

ε̇εε = ε̇εεpl = 3

2
ε̇L

(
kkk ⊗ kkk − 1

3
III

)
+ 1

2
γ̇ (kkk ⊗ eeeϕ + eeeϕ ⊗ kkk) (1.1.8)

The von Mises equivalent creep rate is defined by

ε̇vM =
√
2

3
ε̇εε ······ ε̇εε =

√
ε̇2L + 1

3
γ̇ 2

The results of creep tests on tubes are usually presented as: strains εL and γ versus
time curves, e.g. Hayhurst and Leckie (1990), Inoue (1988), Kawai (1989), creep
strains

εcrL = εL − σ

E
, γ cr = γ − 2(1 + ν)

E
τ

versus time curves, e.g. Murakami and Sanomura (1985), Penkalla et al. (1988),
Ohno et al. (1990), von Mises equivalent creep strain

ε
pl
vM =

√
2

3
εεεpl ······ εεεpl =

√(
ε
pl
L

)2 + 1

3

(
γ pl

)2

versus time curves, e.g. Kowalewski (1995), Kowalewski (2001), and the so-called
specific dissipation work

q(t̄) =
t̄∫

0

ε̇εε······ sss dt =
t̄∫

0

(ε̇Lσ + γ̇ τ )dt

versus time curves (Sosnin 1974; Sosnin et al. 1986).
Figure1.23 illustrates typical results of creep testing under constant von Mises

stress σvM. Sketches of creep curves are presented for the case of tension under the
normal stress σ = σvM and torsion under the shear stress τ = σvM/

√
3. For many

structural materials the kind of the stress state (e.g. tension or torsion) has negligible
influence on the primary and secondary creep behavior. However, this is not the
case for the tertiary creep and the long term strength. Tubular specimen subjected
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Fig. 1.23 Stress state effect of tertiary creep

(a) (b)

Fig. 1.24 Creep response under combined tension-torsion loading. a Plane stress state, b strain
trajectory

to tension usually exhibit much shorter lifetime and lower ductility if compared
to the case of pure torsion. This stress state effect has been observed for copper
in Kowalewski (1995) and for austenitic steels in Niu et al. (2002), Trivaudey and
Delobelle (1993), for example.

Tests under combined tension-torsion loading are useful to formulate and to verify
constitutive models. Figure1.24a shows the plot of the equation

σ 2 + 3τ 2 = σ 2
vM = const

with respect to coordinates σ and
√
3τ . Different stress states leading to the same

fixed value of the von Mises stress can be conveniently characterized by the angle
α (stress state angle). The corresponding values for the normal and the shear stress
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can be then calculated as follows

σ = σvM cosα, τ = σvM
sin α√

3

For example, α = 0 corresponds to the case of tension and α = π/2 to the case
of torsion. 0 < α < π/2 characterizes the combined loading case. The loading
conditions realized in creep tests can be classified as follows

(a) stationary σvM and α,
(b) time-varying (e.g. stepwise or cyclic) σvM under fixed α,
(c) time-varying α under fixed σvM and
(d) both σvM and α are time-varying.

The loading cases (a) and (b) are called simple or proportional loadings, while the
cases (c) and (d) are classified as non-proportional loadings. The results of creep
tests under the combined loading can be conveniently presented as γ cr/

√
3 versus εcr

curves (so-called strain trajectories), e.g.Murakami and Sanomura (1985), Nikitenko
(1984). A sketch of such a curve for the loading case (a) is presented in Fig. 1.24b. For
manymetals and alloys the direction of the strain trajectory characterized by the angel
β, Fig. 1.24b, coincides with the direction of the applied stress state characterized
by the angle α. Experimental data are discussed in Murakami and Sanomura (1985),
Nikitenko (1984), Oytana et al. (1982). According to this one can assume that the
creep rate tensor is coaxial and collinear with the stress deviator, i.e. ε̇εε = λsss. Taking
into account Eqs. (1.1.6) and (1.1.8) the following relations can be obtained

3

2
ε̇L = λσ,

1

2
γ̇ = λτ ⇒ ε̇L

γ̇ /
√
3

= σ√
3τ

For many materials, experimental results show that the above relations are well sat-
isfied, e.g. Hayhurst and Leckie (1990), Murakami and Sanomura (1985), Nikitenko
(1984), Oytana et al. (1982).

Non-coincidence of the strain-trajectory and the stress state angles indicates the
anisotropy of inelastic behavior and/or dependency of the inelastic strain rate on
the kind of the stress state. Anisotropic creep may be caused either by the initial
anisotropy of the material microstructure as a result of material processing or by
the anisotropy induced in the course of inelastic deformation. Examples for tension-
torsion creep of initially anisotropic materials are presented for a directionally solid-
ified nickel-based superalloy in Ohno and Takeuchi (1994) and for a fiber-reinforced
material in Robinson et al. (2003a, b).

The trajectories of creep strains presented in Kawai (1989) for austenitic steel
tubes demonstrate that initial small plastic pre-strain causes the stress state depen-
dence of subsequent creep behavior. Figure1.25 provides a sketch of experimental
results discussed in Kawai (1989). Here the creep curve of the “virgin” material
recorded after the uni-axial loading up to σ0 is compared with creep curves obtained
after the uni-axial loading to σ1 and subsequent multi-axial loadings with σvM = σ0.
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Fig. 1.25 Effect of initial tensile plastic strain on subsequent creep behavior under combined
tension and torsion, after Kawai (1989)

Different creep curves under tension, compression, torsion as well as combined
tension-torsion and compression-torsion are obtained. This stress state effect of creep
is related to the anisotropic hardening induced during the plastic pre-strain. Creep
curves illustrating different behavior under tensile and compressive loadings are pre-
sented for several alloys in El-Magd and Nicolini (1999), Lucas and Pelloux (1981),
Stouffer and Dame (1996), Zolochevskij (1988) and for ceramics in Pintschovius
et al. (1989).

The origins of induced anisotropy for polycrystals may be related to hardening
due to directed residual stress state in grains, crystallographic texture, formation and
growth of cavities and microcracks on grain boundaries. For short fiber reinforced
polymers fibers may change the orientation state as a result of creeping flow of the
matrix material (Altenbach et al. 2003, 2007). Several methods exist to detect defor-
mation and/or damage induced anisotropy. For example, one may interrupt the test
after a certain creep exposure, cut specimen in different directions and perform sub-
sequent creep tests to establish the effect of the induced anisotropy. Such tests are
discussed in Betten et al. (1995), El-Magd et al. (1996). Another approach is to sub-
ject the specimen to the non-proportional loading with varying principal directions,
or in other words to rotate the loading with respect to the material without interrupt-
ing the test. To illustrate this consider the stress state (1.1.5) for combined tension
(compression) and torsion. The stress tensor σσσ can also be given in the spectral form
as follows

σσσ = σInnnI ⊗ nnnI + σI I InnnI I I ⊗ nnnI I I ,
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where

σI = σ + √
σ 2 + 4τ 2

2
, σI I I = σ − √

σ 2 + 4τ 2

2

are principal stress values and the unit vectors

nnnI = cosϑkkk + sin ϑeeeϕ, nnnI I I = sin ϑkkk − cosϑeeeϕ, tan ϑ = τ

σI

define the principal directions. Figure1.26 illustrates the stress state for the combined
tension (compression) and torsion. The stress tensor can be defined with respect to
the axial and circumferential directions, Fig. 1.26a as well as principal directions,
Fig. 1.26b. By changing the values of σ and/or τ during the test, the angle ϑ can be
manipulated. Results of creep tests under non-proportional loading with changing
principal directions are published by Trampczynski et al. (1981) and Murakami and
Sanomura (1985). Tubular copper specimens were subjected to combined tension
and torsion with varying loading amplitudes of σ and τ , correspondingly, Fig. 1.27a.
The reversal of torque at time t1 leads to the change of the angle θ characterizing
the first principal direction of the stress tensor. As the absolute value of the shear
stress remains the same, the value of the von Mises equivalent stress is not affected
by the reversal. Therefore, one expects no changes in creep responses if the material
is isotropic. In Murakami and Sanomura (1985) creep responses after shear stress
reversals leading to different values of the angle ϑ are systematically analyzed. A
sketch of a typical creep response is presented in Fig. 1.27b. Normal and shear creep
strain versus time curves for stationary stress values as well as corresponding creep
curves after the reversal of shear stress are given. As a result of shear stress reversal
two effects can be recognized. After the shear stress reversal both the rate of the
normal strain and the rate of the shear strain are significantly affected. This indicates
on the anisotropic nature of hardening, induced during the first loading phase before
the reversal. Furthermore, the creep life of the specimen after the shear stress reversal
is significantly longer than the corresponding life under the stationary loading. This
effect can be explained by the anisotropic damage evolution. The principal creep
damage mechanism in copper is the nucleation, growth and coalescence of cavities
at grain boundaries. The cavitation is found to take place mainly on those grain
boundaries, which are orthogonal to the first principal direction of the stress tensor.
After the shear stress reversal, former cavities stop to grow and new cavities nucleate
and grow on new grain boundaries closely orthogonal to the rotated first principal
direction. Cavitated grain boundaries before and after the stress reversal are shown
schematically in Fig. 1.27b.

Examples discussed in this section are limited to force (torque) controlled tests.
Engineering structures may be subjected to varying external loadings and thermal
environment resulting in local non-proportional changes in stress and strain states.
Stress and/or strain controlled tests on cruciform specimen with various bi-axial
loading and temperature profiles are presented in Zhang et al. (2007), Berger et al.
(2008), Wang et al. (2014), Cui et al. (2013).
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(a) (b)

Fig. 1.26 Stress state for combined tension and torsion. a Normal and shear stress components,
b principal stresses and principal directions

(a)

(b)

Fig. 1.27 Creep tests at combined tension and torsion. a Loading history, b creep responses, after
Murakami and Sanomura (1985)
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1.2 High-Temperature Inelasticity in Structures

Analysis of the structural behavior at high temperature is crucial for understanding
time-dependent changes in stress and strain states as a result of constant or variable
external loading. Local increase of strains, relaxation and redistribution of stresses
are examples for such changes. For adequate experimental analysis of the material
behavior a specimen should be subjected to realistic stress, strain and temperature
profiles. Such local profiles can be generated by heat transfer and structural analysis
of a component. The aim of this section is to present simulation results for several
structures. Academic examples from elementary engineering mechanics are selected
to illustrate basic features of structural behavior at high temperature. Furthermore
examples for real high-temperature components are presented.

1.2.1 Examples for Creep in Structures

Creep in structures is a variety of time-dependent changes of strain and stress states
including progressive deformations, relaxation and redistribution of stresses and local
reduction of the material strength as a result of softening and damage. In this section
basic features of creep in structures are discussed based on two examples for a beam
and a steam transfer line.

1.2.1.1 Beam

Let us consider a beam with a rectangular cross section. We assume that the beam is
heated up to a certain temperature, clamped at the ends and subjected to the uniformly
distributed lateral load q as shown in Fig. 1.28a. The loading is moderate leading to
spontaneous elastic deformation of the beam. Let the maximum deflection of the
beam in the reference “elastic” state be w0 and the maximum bending stress be σ0.
The maximum deflection and the maximum normal stress (bending stress) in the
reference state can be computed according to the elementary beam theory as follows

wmax0 = ql4

384E I
, σmax0 = ql2h

24I
, I = bh3

12

Furthermore, let us assume that creep curves of the material under uni-axial tension
and compression are as sketched in Fig. 1.28b. Here the time to fracture of a uni-
axial specimen loaded by the tensile stress with the magnitude σ0 (the magnitude
of maximum reference bending stress in the beam) is specified by tf . The tertiary
creep stage is stress state dependent, i.e. for the same stressmagnitudes in tension and
compression the creep rate value under tension ismuch higher than the corresponding
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(a)

(b)

Fig. 1.28 Uniformly loaded clamped beam. a Geometry and loading, b sketch of the assumed
creep curves under tension and compression

absolute value under compression. The dotted line in Fig. 1.28b shows the idealized
creep curve having only the stress state independent secondary stage.

Creep processes in a beam under the constant load q and the assumed material
behavior are the progressive deformation which may be characterized by the maxi-
mum deflection versus time curve, Fig. 1.29a, the relaxation of the bending stresses,
Fig. 1.29b, and the stress redistributions, Fig. 1.30. The results illustrated in Figs. 1.29
and 1.30 are obtained from the finite element analysis (Naumenko 2000). Here let
us discuss some basic features of creep in the case of the non-homogeneous stress
and strain states. First let us explain origins of the simultaneous increase of defor-
mations and the relaxation of stresses. For this purpose we assume that the beam
deforms in such a manner that every cross section behaves like a rigid plane, i.e.
it may only translate and rotate about the axis which is orthogonal to the plane of
bending. Furthermore, we assume that mechanical interactions between the cross
sections are only due to forces and moments. The above assumptions are the basis
of various theories of beams. Let us note that the results presented in Figs. 1.29 and
1.30 are obtained without these assumptions. However, one may show that they are
well satisfied (Naumenko 2000; Altenbach and Naumenko 2002).
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Fig. 1.29 Creep of a
uniformly loaded clamped
beam. a Normalized
maximum deflection versus
normalized time, b
normalized maximum
bending stress versus time

(a)

(b)

Figure1.31a is a sketch of the elastic deformation of the beam in the reference
state. In Fig. 1.31b the clamped edges are replaced by the pin supports and the
moments M0. These moments must be applied in order to fix the zero cross section
rotations at the ends. As a result of creep, the deformations of the beam increase
in time. If the moments M0 are kept constant then, after a period of time the beam
would have a deformed shape as sketched in Fig. 1.31c. In this case the angles of
cross section rotations at the ends increase in time. In order to keep the zero cross
section rotations the moments must be relaxed, Fig. 1.31d. If the material behaves as
shown in Fig. 1.28b by the dotted line, a steady state exists, for which themoments do
not depend on time and the deflection increases with a constant rate. The steady-state
solutions for the maximum deflection and bending stress are presented in Fig. 1.29
by dotted lines. The rate of maximum deflection, the maximum bending moment and
the maximum bending stress in the steady state can be estimated according to the
elementary beam theory (Boyle and Spence 1983; Malinin 1981; Odqvist 1974).
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Fig. 1.30 Distributions of the normalized bending stress at different time steps

(a) (b)

(c) (d)

Fig. 1.31 Relaxation of bending moments in clamped edges. a Deformed elastic beam in the
reference state, b equivalent elastic beam with simple supports and edge moments, c “crept” beam
under constant edge moments, d “crept” beam under relaxed edge moments

The next feature is the redistribution of bendingmoments during the creep process.
The origin can be explained based on equilibrium conditions. As an example let us
formulate the equilibrium condition for the moments considering a half of the beam
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Pipe diameter: 168 mm
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Life-time: 77000 h

Fig. 1.32 Creep failure in a steam transfer line, after Le May et al. (1994)

M(t) + Mm(t) = ql2

8
⇒ Ṁm = −Ṁ,

where M(t) is the edge bending moment, Fig. 1.31c, and Mm(t) is the bending
moment in themiddle cross section. Themoment M relaxes downas a consequence of
creep process. The above equilibrium condition states that themoment Mm increases.
The rate of increase is equal to the rate of relaxation.

Similar considerations explain the redistribution of bending stresses. For the sake
of brevity assume that the beam is simply supported, i.e. M(t) = M0 = 0. In this
statically determined case the bending moments in all cross sections remain con-
stant during the creep process. However, the stresses in the points of cross sections
redistribute essentially. The outer tensile and compressive layers exhibit the highest
creep rates due to the maximum stress values in the reference state. Therefore they
exhibit the highest relaxation rates at the beginning of the creep process. The redis-
tribution of stresses over the cross section is enhanced by the essential non-linearity
of the creep rate with respect to the stress magnitude. Steady state creep solutions for
bending stresses are discussed in Boyle and Spence (1983), Malinin (1981), Odqvist
(1974).

Results presented in Fig. 1.30 show that the distributions of absolute values of
the bending stresses are non-symmetrical with respect to the beam centerline. This
is the consequence of the assumed stress state dependent tertiary creep behavior,
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Fig. 1.28. Tensile layers of the beam cross section “creep”with higher rates compared
to compressive layers.

Creep fracture originates in outer tensile layers of the clamped cross sections
(Altenbach et al. 2000b; Naumenko 2000). These layers exhibit, however, the lowest
values of stresses at the final stage of creep process, Figs. 1.29b and 1.30. This
result can be explained by material damage processes (e.g. grain boundary cavitation
and ageing of microstructure) accompanying creep deformation. These processes
develop over time with the rates determined not only by the reference stress values
but also by the complete loading history. A damaged material has lower ultimate
stress compared to the virgin one. Outer tensile layers of the clamped cross sections
are places with the highest “damage grade”.

The above discussed features of creep are common for many structures oper-
ating under high-temperature conditions. Examples are structural components of
power plants, chemical refineries or heat engines, e.g. Gooch (2003). Design of
pipework systems, rotors, turbine blades, etc. requires the consideration of creep.
Creep processes may cause excessive deformations, damage, buckling, crack initia-
tion and growth.

Different types of creep failure are documented in the literature. Examples of
critical structural members include pipe bends (Le May et al. 1994), welds (Shibli
2002), turbine blade root fixings (Gooch 2003), etc. The possibilities to analyze a
structural prototype in the laboratory are limited by the long duration of tests and
related costs. Furthermore, examinations of creep and damage states in a structure
during the service (e.g. replicas) can be only made at specific outer surface posi-
tions and after certain periods of time. The modeling of creep processes in structures
is therefore an essential contribution to optimal design and residual life assessment.
Furthermore it contributes to understanding and analysis of time-dependent deforma-
tions, stress redistributions and damage growth under given temperature and loading
conditions.

1.2.1.2 Steam Transfer Line

An example for a steam transfer line between a header and a desuperheater of a boiler
is presented in LeMay et al. (1994). The pipeline from steel 1Cr0.5Mo (13CrMo4-5)
had operated under the temperature in the range 500–550 ◦C and the internal pressure
11.8 MPa. After a service life of 77,000h rupture occurred along the outer radius of
a pipe bend. Metallographic analysis of a section cut from the bend close to the main
crack has shown typical creep damage due to microvoids and microcracks on grain
boundaries, Fig. 1.32.

Several incidents of pipe bend failures in different power plants are reported in
Hald (1998). Inspection techniques were developed to examine the state of creep
damage during the service. However, as noted in Le May et al. (1994) any inspec-
tion must be conducted at exactly the critical position, or the presence of damage
may not be detected. Many investigations have addressed the analysis of mechanical
behavior of pressurized curved tubes. Results of studies on elastic and elasto-plastic
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Fig. 1.33 Pipeline: geometry and finite element mesh

deformation and stability are reviewed in Bielski and Skrzypek (1989), Libai and
Simmonds (1998). Creep and damage processes in curved tubes were discussed
in Altenbach et al. (2001), Boyle and Spence (1983), Hyde et al. (2002). These
studies were concerned with the analysis of a single pipe bend subjected to special
loading conditions, i.e. in-plane bending moments and internal pressure. In the fol-
lowing example we analyze the behavior of pipe bends in a real spatial pipeline.
Figure1.33 shows the reference geometry of the structure which includes three
straight pipe segments (I, III and V) and two pipe bends (II and IV). The lengths
of the pipe segments, the mean diameter of the cross section and the wall thick-
ness correspond to the data given in Le May et al. (1994). In addition, we take
into account the non-uniformity of the wall thickness in the pipe bends as a result
of processing by induction bending. The flanges of the pipeline are clamped. The
internal pressure p = 11.8 MPa and the temperature T = 550 ◦C are assumed
to be constant. The following constitutive model for the creep-damage process is
applied

ε̇εεpl = 3

2
f1(σvM)g1(ω)

sss

σvM
, ω̇ = f2(σeq)g2(ω),

εεεpl|t=0 = 000, ω|t=0 = 0, 0 ≤ ω ≤ ω∗,

sss = σσσ − 1

3
tr σσσ III , σvM =

√
3

2
sss ······ sss

(1.2.9)

Here εεεpl is the creep strain tensor,σσσ is the stress tensor,ω is the scalar valued damage
parameter and σω

eq is the damage equivalent stress. The response functions f1, f2, g1,
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and g2 as well as the material constants are taken from Segle et al. (1996) for steel
1Cr0.5Mo at 550 ◦C as follows

f1(σ ) = aσ n, g1(ω) = 1 − ζ + ζ(1 − ω)−n,

f2(σ ) = bσ k, g2(ω) = (1 − ω)−l ,

a = 1.94 · 10−15 MPa−n/h, b = 3.302 · 10−13 MPa−k/h,
n = 4.354, k = 3.955, l = 1.423, ζ = 0.393, ω∗ = 0.74

(1.2.10)

The damage equivalent stress is assumed in the form

σeq = α
σI + |σI |

2
+ (1 − α)σvM,

where σI is the first principal stress and α = 0.43. The elastic material constants
are E = 1.6 · 105 MPa and ν = 0.3. Figure1.34 illustrates the deformed shape
and the distribution of the magnitude of the displacement vector in the reference
state.

Figure1.35a shows the distribution of the vonMises equivalent stress in the refer-
ence state. From the results we may conclude that both the pipe bends are subjected
to complex spatial loading and deformation conditions as a result of internal pressure
and uniform heating. In addition, the values of the vonMises equivalent stress in three
points of the pipe bend IV are plotted as functions of time. According to the results
the creep process of the pipeline may be divided into three stages. During the first

Fig. 1.34 Deformed shape and magnitude of the displacement vector in the reference elastic state
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(a)

(b)

Fig. 1.35 Distribution of the vonMises equivalent stress and corresponding time variations in three
points of the pipe bend. a Reference elastic state, b t = 2000h
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stage (approximately 50% of the total life) significant stress redistributions occur
leading to quite different stress state in the pipeline (cp. Figs. 1.35 and 1.36). The
second stage (approximately 45% of the total life) is characterized by slow changes
in the stress state. In the final stage (approximately 5% of the total life) we observe
additional stress redistributions, Fig. 1.36b. The distribution of damage parameter at
the final time step is shown in Fig. 1.37. According to the results the critical position
of possible creep failure is the point A of the pipe bend IV. This result agrees well
with the data presented in Le May et al. (1994), where the creep failure has been
detected at the same position. The processes of time dependent deformation, stress
relaxation and redistribution have been illustrated in the literature based on different
examples for beams, plates and shells (Altenbach et al. 1997, 2000b, 2001, 2002,
2004; Altenbach and Naumenko 1997). One feature of the example considered here
is that the final creep stage is not only the result of the local material deterioration
but is additionally governed by the flattening (ovalisation) of the pipe bend cross
section.

Let us note that some parameters of the reference pipe bend geometries were
not given in Le May et al. (1994) and have been assumed in the presented calcu-
lation. Many additional details of geometry including the initial out of roundness
of the cross section, inhomogeneous material properties as a result of processing,
shutdowns and startups during the service, are not included in the presented model.
The influence of hot bending on the subsequent creep behavior in advanced high-
chromium steel is discussed in Sklenička et al. (2015). The utilized material model
(1.2.9) does not take into account primary creep. Tertiary creep is described by the
single damage parameter and the corresponding kinetic equation does not distinguish
between processes leading to the accelerated creep, for example coarsening of pre-
cipitates and cavitation. Therefore the obtained numerical result for the failure time
(49,000h) “slightly” differs from the value 77,000h given in Le May et al. (1994).
Nevertheless, the results demonstrate the ability of the modeling to represent basic
features of the creep process in a structure and to predict critical zones of possible
creep failure.

1.2.2 Examples for Thermo-mechanical Cycling

Engineering structures are often subjected to non-stationary and non-uniform thermal
environment, for example during start-up and shut-down phases. The aim of this
section is to present examples illustrating local changes in stress and strain states as
a result of thermo-mechanical cycles.

1.2.2.1 Two-Bar System

To discuss basic features of the thermo-mechanical cyclic loading let us consider two
pipes, rigidly connected as shown in Fig. 1.38a. For the sake of simplicity assume
that the diameter of each pipe is much less than the length, such that the stress state is
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(a)

(b)

Fig. 1.36 Distribution of the vonMises equivalent stress and corresponding time variations in three
points of the pipe bend. a t =20,000h, b last time step
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Fig. 1.37 Distribution of the damage parameter at the last time step and corresponding time vari-
ations

(a) (b)

Fig. 1.38 Two bar system. a Geometry, b temperature profiles
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(a) (b) (c)

Fig. 1.39 Stress state in a two bar system during heat-up stage. a Reference state, b free thermal
expansion during heat-up with TB > TA, c stresses (compressive for a and tensile for b) required
to keep elongations the same

uni-axial and a two-bar model can be used to analyze the structural behavior. Fur-
thermore, assume that the pipes have the same cross section area and are made
from the same material. First assume that the pipes are uniformly heated such that
�TA = �TB, where �TA = TA − T0, �TB = TB − T0. TA and TB are absolute
temperatures in the actual state and T0 is the reference temperature. As a result of
such a uniform heating the two-bar system will freely expand without stresses since
the materials and cross section areas are the same. Now assume that the tempera-
tures of the pipes are different such that TB > TA. Such a temperature difference
may arise during the heat-up stage as a result of hot steam flow through the pipe
B. The non-uniform temperature state will cause the non-uniform stress state in the
system such that the pipe B will be subjected to compression while the pipe A to
tension. To illustrate this remove the rigid connection as shown in Fig. 1.39b. Due
to the assumed difference in temperatures, the pipe B is longer than the pipe A in
the actual state as a result of thermal expansion. To keep the elongation of the pipes
the same, or in other words, to provide the strain compatibility of the structure the
forces must be applied, as shown in Fig. 1.39c—the compressive force to the pipe
B and tensile force to the bar A. This elementary example explains why the heated
surface of a component is usually subjected to compressive stress state.

To illustrate changes in a stress state during a thermal cycle, consider an idealized
temperature profile as shown in Fig. 1.38b. Assume that the temperature of the pipe
B rapidly increases from T0 up to TBmax over a time interval 0 − t2. As the heat
flows towards the pipe A the temperature TA increases with a delay over the time
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interval t1 − t2. The greatest difference in temperatures is observed at the time point
t2. This is sometimes called “upshock” (Skelton 2003), the pipe B is subjected to the
compression with the maximum stress magnitude. During the time interval t2− t3 the
temperature difference between the pipes decreases while the absolute temperature
of the pipe A increases. The time interval t3 − t4 is the steady operation period.
The time interval t4 − t7 is the cool-down stage, the steam temperature and the
temperature of the pipe B decrease. During the time interval t5 − t7 the temperature
difference increases again. However, the temperature of the pipe B is now lower that
the temperature of the pipe A. During this “downshock” stage the pipe B is subjected
to tension with the maximum stress value at the time point t7.

Let us analyze stress and strain states in the pipes during the whole thermal
cycle. For the sake of brevity assume that the Young’s modulus E and the thermal
expansion coefficient αT are constant within the temperature interval T0 − TBmax . In
general, the material properties are functions of the absolute temperature. However,
the temperature dependence of E and αT is usually much weaker in comparison
to the temperature dependence of the inelastic strain rates. Let NA and NB be the
internal forces in the bars. The obvious equilibrium condition for the forces yields
NA = −NB. Since the cross section areas are assumed the same the relation between
the stresses is σA = −σB. The constitutive equations for the bars can be formulated
as follows

εA = σA

E
+ ε

pl
A + αT �TA, εB = σB

E
+ ε

pl
B + αT �TB, (1.2.11)

where ε
pl
A and ε

pl
B are plastic strain components in the bars A and B, respectively. The

compatibility condition is εA = εB = ε. Subtracting Eqs. (1.2.11)2 from (1.2.11)1
provides the stress in the bar B

σB = E

2

(
ε
pl
A − ε

pl
B

)
+ EαT

2
(TA − TB) (1.2.12)

If the inelastic strains are negligible, then the stress in the bar B is related to the
difference in absolute temperatures between the bars A and B. As a result the bar
B is subjected to compression during warm-up stage and tension during the cool-
down stage. After the adding Eqs. (1.2.11) the mean strain of the bar system can be
computed

ε = 1

2

(
ε
pl
A + ε

pl
B

)
+ αT

2
(�TA + �TB) (1.2.13)

Figure1.40 shows the stress in the pipe B as a function of time. The results are
normalized with the minimum stress value during the warm-up stage computed as
follows

σBmin = EαT

2
[TA(t2) − TB(t2)]
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Fig. 1.40 Normalized stress
in the pipe B versus time

Two stress peaks are observed—the compressive one during the warm up stage with
the maximum temperature difference TB − TA at the time point t2 and the tensile
peak during the cool-down stage with the minimum temperature difference at the
time point t7. To analyze the inelastic response a constitutive model is required that
is able to reflect the material behavior during the relatively fast start-up and shut-
down stages and the slow regime during the stationary operation. Unified models
of inelastic deformation were developed and utilized to capture both plasticity and
creep deformation mechanisms under both rapid and slow loadings at high temper-
atures (Chaboche 2008). A challenging problem is to describe complex interaction
of damage processes including the cyclic fatigue damage accumulation and slow
creep damage evolution. To simplify the analysis of structures it is suggested to dis-
tinguish between different thermo-mechanical loading profiles such as cold starts,
warm starts and hot starts (Berger et al. 2008). Figure1.40 illustrates qualitatively
the stress variation for a hot start loading cycle. During the time period 0 − t1 the
stress distributions based on elasticity solution and the inelastic response coincide.
With the increase of absolute temperature and in the stress magnitude compressive
inelastic strain starts to accumulate. This leads to the decrease in the stress level for
the inelastic solution and the residual tensile stress at the beginning of the stationary
stage. This tensile stress relaxes down as a result of creep processes during the sta-
tionary operation period. During the cool-down stage an additional tensile inelastic
strain accumulation has to be taken into account.
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1.2.2.2 Rotor with a Groove

Variations in stress and strain states presented in Sect. 1.2.2.1 for a two-bar system are
typical for many components subjected to variable thermal environment. Examples
include turbine rotors (Naumenko et al. 2011b; Kostenko et al. 2013; Holdsworth
et al. 2007; Colombo et al. 2008), turbocharger casings (Laengler et al. 2010; Nagode
et al. 2011a), and many other structures.

In what follows we present results of the thermo-mechanical analysis for a turbine
rotor. Figure1.41 shows a sketch of geometry and the steam temperature profile
on the surface of the rotor. To compute the temperature field in the rotor transient
heat transfer analysis is performed. The temperature distributions are applied for
the subsequent mechanical analysis using a constitutive model for inelastic material
behavior. To illustrate the local loading changes over the whole cycle, appropriate
values of stresses and strains are presented. Further examples including the analysis
of the rotor with a first blade stage groove are presented in Kostenko et al. (2013).

Figure1.41 shows the time variation of the steam temperature on the surface of
the rotor. The maximum steam temperature T2 in the notched area is increased from
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Fig. 1.41 Geometry of a rotor and steam temperature profile. a Finite element model, b qualitative
distribution of steam temperature and heat transfer coefficient along the axial coordinate, c steam
temperature at different positions of the surface versus time, after Naumenko et al. (2011b)
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Fig. 1.42 Temperature distribution in a rotor during warm-up at t = 4.5h, after Naumenko et al.
(2011b)
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Fig. 1.43 Temperature distribution in a rotor during cool-down at t = 32h, after Naumenko et al.
(2011b)

400 to 600 ◦C, kept at 600 ◦C and decreased down 400 ◦C (Fig. 1.41). The changes in
the steam parameters during warm-up and cool-down stages are taken into account
by the timely varying heat transfer coefficients hi .

The results of the heat transfer analysis are presented in Figs. 1.42 and 1.43,
where the temperature distributions and time variations of the temperature in two
points A and B of the rotor are given as functions of time. At t = 4.5 h during
the warm-up stage the greatest difference between the temperatures at A and B
can be observed (Fig. 1.42). During hold time (steady running stage) this difference
decreases and attains a constant value of approximately 25 ◦C (Fig. 1.43). During the
cool-down stage the temperature difference decreases such that the temperature of the
surface point A becomes lower that the temperature of the core point B (Fig. 1.43).
The maximum absolute value of this difference is observed at t = 32 h during the
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Fig. 1.44 Geometry of a rotor and qualitative profiles of mechanical loadings, after Naumenko
et al. (2011b)

cool-down stage (Fig. 1.43). At the end of the cycle the temperature attains the steady-
state. The obtained temperature field as well as primary loads (steam pressure on the
surface of the rotor and the centrifugal force), Fig. 1.44 are applied for the subsequent
structural analysis. To this end the constitutive equation for inelasticmaterial behavior
of a high-chromium steel is developed and utilized (Naumenko et al. 2011a, b).
Figure1.45a illustrates time variations of the mechanical strain tensor ε̃εε = εεε −
αT �T III in the point A of the surface,whereαT is the coefficient of thermal expansion.
εεε is the total strain tensor and III is the second rank unit tensor. The corresponding
time variation of the stress state is presented in Fig. 1.45b. Both the stress and the
strain tensors are presented with respect to the triad of unit orthogonal vectors nnn,
ttt and eeeϕ . Let us note that the normal nnn, the tangential ttt and the circumferential eeeϕ

directions on the surface are the principal directions of both the stress and the strain
tensors. The corresponding components of stress andmechanical strain including the
normal σnn , ε̃nn , the tangential σt t , ε̃t t and the circumferential σϕϕ , ε̃ϕϕ ones are the
principal values. The normal strain component in A can be computed from Hooke’s
law as follows

ε̃nn = 1

3K
tr σσσ − (ε̃t t + ε̃ϕϕ)

The normal stress component is determined as σnn = −p, where p is the steam
pressure. Based on time variations of ε̃t t , ε̃ϕϕ, σt t and σϕϕ one may recognize the
local compression during warm-up with the maximum at t = 4.5 h, the creep range
characterized by an increase in strain, the stress relaxation during the steady running
and the local tensile regime during cool-down with the peak at t = 32 h.

Figure1.46a shows the normalized tangential components as functions of time.
The corresponding hysteresis loop is shown in Fig. 1.46b. The part I–II of the loop
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(a)

(b)

Fig. 1.45 Local loading versus time at point A. a Mechanical strain tensor, b stress tensor, after
Naumenko et al. (2011b)

is the response during the warm-up stage with the increasing temperature difference
between the surface and the core point of the rotor. Here the tangential stress and
strain decrease down the minimum (negative) values. The part II–III corresponds
to the warm up stage with the decreasing temperature difference. At point III the
tensile stress and the compressive mechanical strain are observed. This is primarily
due to the residual stress accumulated during the warm-up stage. Similar response
is usually observed in uni-axial TMF tests, Fig. 1.19, where after unloading from
the compressive to the zero strain the stress remains tensile. Experimental data for
such TMF responses are presented in Cui et al. (2009), Cui and Wang (2014). The
part III–IV corresponds to the steady running stage with a slow increase in the
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(a)

(b)

Fig. 1.46 Local loading at point A during first cycle. a Tangential stress and tangential mechanical
strain versus time, b tangential stress versus tangential mechanical strain, after Naumenko et al.
(2011b)

strain and decrease in the stress (creep regime). The part IV–V is the tensile regime
during the cool-down stage with a decreasing temperature difference. The part V–VI
characterizes the cool-down and hold time stages with a low temperature gradient.

Figure1.47a shows the hysteresis loops for the components of the mechanical
strain tensor. One can observe that the local loading path is non-proportional. Note
that only the principal values of the strain tensor are non-proportionally changing
during the cycle while the corresponding principal directions nnn, ttt and eeeϕ are fixed.
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Fig. 1.47 Local loading
profiles at point A. a Strain
paths, b hysteresis loops,
after Naumenko et al.
(2011b)

(a)

(b)

Figure1.47b shows two hysteresis loops for tangential and circumferential compo-
nents of stress and strain tensors. To evaluate themechanical work dissipated through
the cycle the circumferential components are essential and cannot be ignored.

Figure1.48a shows time variations of the tangential strain and stress compo-
nents over several start-up, steady running and shut-down sequences with the same
temperature and external loading profiles. The corresponding stress-strain loops are
presented in Fig. 1.48b. The shape of the loops remains approximately the same over
many cycles, but the loops shift along both the stress and the strain axes towards the
compressive state.
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(a)

(b)

Fig. 1.48 Local loading at point A during several cycles. a Tangential stress and tangential mechan-
ical strain versus time, b tangential stress versus tangential mechanical strain, after Naumenko et al.
(2011b)

The aim of this section was to analyze inelastic behavior in components under
non-isothermal loading profiles at high temperature. To generate the local multi-
axial stress-strain loops over one or several cycles under realistic external loading
conditions a constitutive model is required. The constitutive model must reflects
basic features of deformation behavior in structural materials at high tempera-
ture including hardening/recovery, softening, ratcheting and other processes for
both stress and strain controlled loading paths. The hysteresis loops obtained from
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the structural analysis qualitatively agree with the test results for cruciform and
notched specimens under TMF loading (Cui et al. 2009; Samir et al. 2005). Struc-
tural analysis and laboratory testing provide an important input for the fatigue life
estimations. The stress and strain states during the steady running stage corre-
spond to the typical creep regime. Estimation of creep damage and creep life in
a structure under stationary loading and temperature must be provided by the con-
stitutive model. Although unified constitutive models discussed in the literature,
e.g. Chaboche (2008), Naumenko et al. (2011b), are able to reflect local deformation
behavior and creep damage, surface induced fatigue damage processes, e.g. forma-
tion of micro-extrusions, oxidation effects and growth of micro-cracks are currently
not accounted for. Based on generated multi-axial TMF loops and related material
testing, further investigations to elaborate driving force(s) and kinetics for fatigue
damage processes should be performed.

1.3 Microstructural Features and Length Scale Effects

Macroscopic inelastic properties ofmaterials are strongly affected bymicrostructure.
Limiting to the analysis of high temperature inelastic behavior and crystalline mate-
rials let us discuss basic microstructural features. For polycrystals the mean grain
size is found to influence the macroscopic response. For low homologous tempera-
tures and for a certain range of the mean grain size, the grain boundary strengthening
(Hall-Petch) effect (Hall 1951; Petch 1953) is usually observed. The lattice structure
of adjacent grains differs in orientation. An additional energy is required to change
directions of moving dislocations. Impeding the dislocationmovement through grain
boundaries will hinder the onset of plasticity and hence increase the yield strength
of the material. The decrease of mean grain size by an appropriate material process-
ing leads to an increase in the yield strength. Based on the experimental data the
following relation can be established (see, for example, Roesler et al. 2007)

σy = σ0 + k√
d

,

where σ0 and k are constants and d is the mean grain size.
In contrary, several mechanisms may operate leading to the weakening effect of

grain boundaries, if the material is loaded at elevated temperature. For moderate
stress levels and temperatures over 0.5 Tm diffusion of vacancies may control the
deformation process. Different theories of diffusion creep provide the following
relationship between the inelastic strain rate and the mean grain size

ε̇pl ∼ 1

dk
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The exponent k takes the value 2 according to the theory of lattice diffusion as
discussed by Nabarro (1948, 2002) and Herring (1950) and 3 according to the theory
of grain boundary diffusion as proposed by Coble (1963). An additional mechanism
leading to the weakening effect of grain boundaries is the grain boundary sliding.
Experimental works devoted to the analysis of grain boundary sliding are reviewed in
Nabarro and de Villiers (1995), Nørbygaard (2002), Langdon (2006). An elementary
model of creep considering both the deformation of grains and sliding of grain
boundaries can be based on the mixture rule (Ilschner 1973). Here the total strain
is a sum of strains due to grain interiors and grain boundaries weighted by the
corresponding volume fractions.Materials with smaller grains exhibit higher volume
fractions of grain boundaries and consequently have more essential contribution of
grain boundary sliding to the overall deformation. Again the grain boundary sliding
is one of the mechanisms leading to the weakening effect of grain boundaries. To
establish the influence of mean grain size on the overall creep rate several additional
effects should be considered.

Stress concentrations in the regions of grain intersections lead to the non-uniform
creep deformation along grain boundaries. Furthermore, the effect of grain bound-
ary deformation depends essentially on the stress level. For lower stress values grain
boundary sliding and diffusion of vacancies have an essential influence on the defor-
mation while for high stresses levels grain the deformation is primarily controlled by
glide processes inside the grains. For many polycrystalline materials the dominant
creep damage mechanism is the formation, growth and coalescence of cavities on
grain boundaries. As an example, Fig. 1.49 shows a micrograph of copper speci-
men subjected to uni-axial load at high temperature. Cavities are formed on grain
boundaries orthogonal to the stress axis. This kind of damage leads again to the
weakening effect of grain boundaries. Therefore, one may expect that a material
with finer grains would exhibit a shorter lifetime. Summing up, the grain bound-
aries may have hardening and/or weakening influence on the inelastic deformation
and lifetime depending on the loading and temperature levels. Therefore the optimal
grain size for a given material depends on the conditions under which it is to be used
(Nabarro and de Villiers 1995). The overlapping of several deformation and damage
mechanisms makes it difficult to derive a relationship between the deformation rate
and the grain size. Recently simulations of three-dimensional polycrystalline aggre-
gates were performed illustrating several deformation and damage mechanisms like
grain boundary sliding and cavitation as they influence the overall behavior (Ozhoga-
Maslovskaja et al. 2015).

Apart from grains there are several microstructural features at lower length scales
that affect inelastic deformation. Examples include cells and subgrains, that are
dislocation substructures formed as a result of clustering of uniformly distributed
dislocations (Raj et al. 1996). Cells consist of broad diffused walls containing dislo-
cation tangles while boundaries of subgrains are narrow and formed by dislocation
networks. Cell walls and subgrain boundaries separate the crystal into the regions
with slightly different crystallographic orientations. Subgrain boundaries have larger
misorientation than cell walls. Cells and subgrains may form in the course of inelas-
tic deformation process for materials with relatively low dislocation density. At the
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Fig. 1.49 Micrograph of copper specimen tested 20h under constant stress of 10 MPa (stress
direction horizontal) and temperature level of 550 ◦C (Ozhoga-Maslovskaja 2014)

macroscale the formation of substructures is observed as hardening, for example the
decrease in the creep rate during the primary creep.Many high temperaturematerials,
for example high-chromium steels possess fine subgrain structure. Lower mean sub-
grain size provides lower inelastic strain rate and higher creep resistance. To describe
this mean subgrain size effect composite (phase mixture) model can be applied. Here
a composite with two constituents having different initial dislocation densities and
as a result different inelastic properties is assumed (Raj et al. 1996; Blum 2001,
2008). The inelastic soft constituent is the zone of cell or subgrain interiors with
relatively low dislocation density. The inelastic hard regions include cell or subgrain
boundaries with high dislocation density. The deformation process in such a com-
posite is accompanied by a stress redistribution between the constituents—the stress
level in the inelastic hard regions increases while the stress level within the inelastic
soft regions increases. Lower size of subgrains leads to higher volume fraction of
the hard regions and as a result to the lover overall deformation rate. The subgrain
microstructure is not stable and subgrain coarsening usually takes place where the
average size increases while the number of subgrains decreases. This leads to the
overall softening under stationary or cyclic loadings (Fournier et al. 2011; Kimura
et al. 2006; Qin et al. 2003).

Additional strengthening mechanisms for high temperature materials are precip-
itation and dispersion hardening. For example heat-resistant steels usually contain
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several kinds of precipitate particles in the matrix and at grain boundaries includ-
ing carbonitrides and intermetallic compounds (Abe 2008). An important role in
strengthening of aluminium alloys for high temperature applications plays the θ ′
phase, in the form of rod-like precipitates aligned along the 〈001〉 crystallographic
directions of the α-Al matrix (Naumenko and Gariboldi 2014). Dispersed fine pre-
cipitates are obstacles for mobile dislocations. Several mechanisms for interaction
between mobile dislocations and particles are reviewed in Ilschner (1973), Kassner
and Pérez-Prado (2004), Roesler et al. (2007) among others. Both theoretical and
experimental results show that the inelastic strain rate primarily depends on the mean
spacing between particles. The mean particle spacing can also be related to the mean
particle size. As an example let us consider regular arrangement of spheres with the
diameter d, spacing between centers l, the volume fraction ηp and the number of
particles Np in a unit volume. In this case the following relation can be derived

l = 1

N 1/3
p

= π

6

d

η
1/3
p

,

Experimental data suggest that strength of alloys is determined by spacing and diam-
eter of precipitates. The greatest impedance to dislocation motion and hence the
maximum potential for strengthening will occur when an alloy contains precipitates
that are large enough to resist shearing by dislocations and too finely spaced to be by-
passed by moving dislocations (Polmear 2004). Furthermore precipitates stabilize
dislocations in the matrix and subgrain boundaries. This enhances strain harden-
ing, for example primary creep. To capture these phenomena kinetic equations for
dislocation density are developed, see, for example, Estrin (1996), Naumenko and
Gariboldi (2014). One feature of the proposed constitutive and evolution equations
is the dependence of the inelastic strain rate as well as rate of change of hardening
variables on size parameters, such asmean spacing (ormean diameter) of precipitates
(Estrin 1996; Roesler et al. 2007). At high temperature the microstructure of precipi-
tates is not stable and evolves over time as a result of diffusion processes. Coarsening
of precipitates in steels (Abe 2008) and aluminum alloys (Naumenko and Gariboldi
2014) leads to loss of the strength. To account for coarsening processes equationswith
respect to the size parameter—the mean particle diameter are required. Examples
are presented by Kowalewski et al. (1994), Naumenko and Gariboldi (2014) for alu-
minum alloys and Dyson and McLean (2001), Blum (2008) for steels. Figure1.50
provides a summary of several microstructural features discussed in this section,
where size parameters, length scales and associated deformation or damage mecha-
nisms are presented.

Microstructural features and microstructural size parameters may have differ-
ent kinds of influences on the behavior of components at high temperature. For
large structural components, for example power plant components, the local inelas-
tic behavior is usually determined by the local stress state and the current state of
microstructure defined in terms of mean quantities like dislocation density, mean
diameter of precipitates, damage parameter etc. Such a description is possible since
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Fig. 1.50 Basic microstructure features of heat resistant materials, length scales, size parameters
and mechanisms of changes in microstructure

a material point in the sense of continuum mechanics contains a huge number of
microstructural elements, for example grains. An exception for large structural com-
ponents is the behavior in the zones of stress concentrations, for example in the vicin-
ity of notches. Here the macroscopic quantities like stress or strain may vary rapidly
over a certain direction and the characteristic length of this change may be compara-
ble withmicrostructural size quantities, for example the grain size. Figure1.51 shows
a sketch of a stress variation in the vicinity of the notch root. Far from the notch root,
where stresses vary slowly a sample with a large number of microstructural features,
for example grains can be used to identify the material response. In zones with higher
stress gradients smaller samples are required to analyze the material behavior. For
smaller samples microstructure features must be taken into account to capture the
material behavior. Such a smaller volume element with microstructure, if subjected
to a uniform elongation on the boundary would exhibit highly non-uniform stress
distribution such that higher moments of the stress tensor might be required to cap-
ture the averaged stress state. Furthermore the local response in a material point at
the macroscopic scale may be affected not only by the local stress state and the local
state of the microstructure but also by the neighborhood.

In many cases variations of microstructure with respect to coordinates must be
taken into account. Examples include gradient materials and welds. Figure1.52
shows the microstructure of a multi-pass weld metal and the heat affected zone.
Depending on the welding process the microstructure of the base metal will be
changed in the heat affected zone. Major process parameters of welding that have
an influence on the microstructure are the heating rate of the weld thermal cycle, the
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Fig. 1.51 Qualitative stress distribution in the vicinity of the notch root. To identify the behavior
in zones with higher stress gradients smaller material samples are required

peak temperature, the dwell time and the cooling rate (Hyde et al. 2003b; Cerjak and
Mayr 2008). The heat affected zone can be divided into a number of sub-zones with
different microstructural features including the grain size, the distribution and size
of precipitates, etc. There are no sharp boundaries between the different microstruc-
tural regions. The microstructure exhibits a continuous gradient from the fusion line
between the deposited weld metal to the unaffected base material. Here one must
consider that the stress-strain diagrams at room temperature are quite different for the
weld metal, the heat-affected zone, and the base metal (parent material), in particular
beyond the yield limit. At elevated temperature quite different inelastic strain versus
time curves can be obtained in different zones even in the case of a constant moderate
load. The results of creep tests of cross-weld specimens (Hyde et al. 1997, 1999),
and specimens with a simulated microstructure (Lundin et al. 2001; Matsui et al.
2001; Wohlfahrt and Brinkmann 2001; Wu et al. 2004; Eggeler et al. 1994) show
significant variation in creep properties in different material zones within the weld.
Furthermore, they illustrate that the intercritical region of the heat-affected zone is
the weakest part of the weld with respect to the creep properties. The specimen with
the heat-affected zone microstructure usually exhibits the highest creep rate and the
shortest time to failure if compared to other material zones within the weld for the
same load and temperature.

For thick and moderately thick cross sections, multi-pass welding is usually pre-
ferred, where many stringer beads are deposited in a defined sequence. As a result
of heating and cooling cycles during the welding process, the complex bead-type
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Fig. 1.52 Microstructure and inelastic behavior of welds after Naumenko and Altenbach (2005)

microstructure of the weld metal is formed, where every single bead consists of
columnar, coarse-grained, and fine-grained regions, e.g., Hyde et al. (2003b).

In general, the coupling between different size dependencies that determines the
properties of a material should be analyzed (Arzt 1998). To this end one has to deal
with the interaction of the following two length scales. The first one is responsible
for the phenomenon involved, for example variation of the stress state in the vicin-
ity of a notch, and is usually called the characteristic length. The second one is a
microstructural dimension, denoted as the size parameter.

Analysis of different length scale effects ant their interactions is required in par-
ticular for small structures, such as components of microelectronics, thin films and
coatings. Miniaturized components are frequently subjected to complex thermal and
mechanical loading cycles. The dimension of such a part, for example, the diam-
eter of a bondwire may be of several micrometers such that grain size and grain
boundary effects should be taken into account in analysis of inelastic behavior. For
thin films and thin layers the deformation or damage mechanism “feel” the pres-
ence of the surface or an interface (Arzt 1998; Kraft et al. 2010). As a result, the
inelastic response of microcomponents and solder joints depends essentially on their
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dimensions (Wiese et al. 2008;Wiese 2010). Experimental results on inelastic behav-
ior of thin films and micropillars are reviewed in Kraft et al. (2010).

1.4 Temporal Scale Effects

Engineering structures are frequently subjected to complex loading conditions.
Examples include thermo-mechanical loading profiles discussed in Sect. 1.1.1.4.
Analysis of material behavior over many cycles of loading is crucial for life time
estimations of components. Phenomena like cyclic hardening, cyclic softening, creep
ratcheting, fatigue damage evolution, etc. are usually observable with respect to the
global time scale after a certain number of loading cycles. On the other hand, the
type of loading and the response within one loading cycle can be related to the local
time scale. At elevated temperature not only the amplitudes of stresses/strains within
a cycle, but also loading rates, hold times and many other factors have an influence
on the component life. Simulations of components in inelastic range for many cycles
of loading is time consuming, if ever possible. For an efficient analysis it is conve-
nient to introduce two or more time scales (Altenbach et al. 2000a; Devulder et al.
2010; Fish et al. 2012). A “slow or macroscopic” time scale can be used to capture
the global cyclic behavior like cyclic hardening, softening or creep ratcheting. For
the structural analysis within one loading cycle “fast or microscopic” time scales
are useful. As an example, Fig. 1.53 illustrates the accumulation of the inelastic
strain as a result of cyclic force with hold times. Two regimes are clearly seen, the
global one with the growth in the strain amplitude as a function of the “slow” time
or cycle number and the rapid change of the inelastic strain within several cycles

Fig. 1.53 Accumulation of inelastic strain for a 12% Cr steel at 600 ◦C under cyclic force with
hold times (simulation)
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of loading. In Sect. 1.2.2.2 structural analysis results of a component subjected to
thermo-mechanical cyclic loading are presented. Figure1.48a illustrates the local
changes of normalized strain and the normalized stress components over two cycles
of thermo-mechanical loading. This “fast” time behavior determines to the structural
response overmany cycles. Figure1.48b shows how the local hysteresis loop changes
with respect to the cycle number. In particular, a shift towards the compressive stress
and strain axes can be observed. Prediction of such “slow” stress and stress changes
over the cycle number is crucial in the structural analysis of many components.

Inelastic behavior of structural materials at high temperature is controlled by
several microstructural processes having different characteristic times. The inelastic
deformation of crystalline materials can be explained by dislocation glide and dislo-
cation climb (Frost andAshby 1982; Nabarro and deVilliers 1995). The glidemotion
of dislocations dominates at lower homologous temperatures and higher stress levels,
while the climb of dislocations over obstacles—a nonconservative motion controlled
by the diffusion of lattice vacancies, becomes important in high-temperature regimes
and moderate stress levels. As a thermally activated process, the diffusion of vacan-
cies occurs over time scales that are much longer than the times required for glide
steps. The difference in the time scales may be of many orders of magnitude depend-
ing on the stress and temperature levels.

1.5 Modeling Approaches and Objectives

Diverse approaches to the description of inelastic behavior are discussed in the liter-
ature. They can be classified with respect to pursued aims, involved assumptions and
solution methods. In this section we review basic modeling approaches and discuss
objectives of the book.

1.5.1 Modeling Approaches

The basic approaches to the description of inelastic behavior can be classified as
follows. The empirical modeling is the study of correlations between the inelastic
strain rate, stress, temperature and time. In addition, extrapolationmethods are devel-
oped to predict time-dependent deformations and life time of a structure based on
experimental data from short-term uni-axial creep tests. The aim of this approach is
to derive simple formulae for an estimation of the structural behavior under creep
conditions. An example is the Monkman-Grant relationship which states that the
product of the minimum creep rate and the time to fracture is a constant (Monkman
and Grant 1956).

ε̇mintf = const, (1.5.14)
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where ε̇min is the minimum creep rate and tf is the time to fracture. Once the constant
is identified from a short-term creep test, Eq. (1.5.14) can be used to estimate the time
to fracture for lower stress levels. To this end only the minimum creep rate versus
stress dependence is required.

Another example is the linear damage summation rule for the life time assessment
of components. Following Taira (1962)

L = L f + Lc,

where the damage L in the creep-fatigue range is defined as a sum of pure fatigue
damage L f and creep damage Lc. A component failure is expected from this rule if
the relative fatigue damage and the relative creep damage reach in the sum a critical
value.Within the empirical approach themeaning of damage is related to the life time
fraction. The fatigue damage is defined by the empirical rules of Palmgren (1924)
and Miner (1945)

L f =
k∑

i=1

Ni

NAi

where Ni and NAi are the number of cycles experienced and the number of cycles to
failure at the constant strain amplitude, respectively. The sum over k loading cycles
provides the relative fatigue life L f . A similar rule to estimate creep damage was
proposed by Robinson (1952)

Lc =
k∑

i=1

ti
t∗i

,

where ti is the time spent at constant stress and temperature levels and t∗i is the time
to fracture for the same loading conditions.

Many different empirical relations of this type are reviewed in Penny and Mariott
(1995), Viswanathan (1989). Empirical models are useful in early stages of design
for a rapid estimation of the components operation life. It should be noted that
the empirical approach provides one-dimensional relations. The dependencies of
inelastic behavior on the type of stress state are not discussed. Furthermore, stress
redistributions, creep-plasticity interactions, cyclic strain accumulations and many
other effects cannot be considered.

Within the materials science modeling, the inelastic deformation process is char-
acterized by a variety of microstructural rearrangements. According to assumed
scenarios of transport processes in the microscale (diffusion of vacancies, climb and
glide of dislocations, etc.) equations for the inelastic strain rate are derived. The form
of the specific rate equation depends on the assumed deformation and damage mech-
anisms for specific stress and temperature regimes, e.g. (Frost and Ashby 1982). As
an example consider the equation for the inelastic strain rate as proposed by Estrin
(1996)

ε̇pl = ε̇0

(σ

σ̂

)n
, (1.5.15)
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where ε̇0 and n are constants, and the drag stress σ̂ can be defined as a sum of
dislocation and particle hardening contributions

σ̂ = MαGb
√

� + MχGb
1

l
, (1.5.16)

where G is the shear modulus, M is the Taylor factor, b is the magnitude of the
Burgers vector, � is the dislocation density, l is the mean spacing between particles.
α and χ are empirical constants. Equation (1.5.16) is based on the Taylor mecha-
nism (dislocation-dislocation interactions) and the Orowan bowing mechanism (by-
passing of dislocation over particles).

Mechanism based equations of this type are reviewed in François et al. (2012),
Frost and Ashby (1982), Ilschner (1973), Kassner and Pérez-Prado (2004), Nabarro
and de Villiers (1995), among others. In addition, kinetic equations for internal state
variables are introduced. Examples for these variables include dislocation density
(Estrin 1996) internal (back) stress, e.g. François et al. (2012), and various dam-
age parameters associated with ageing and cavitation processes (Dyson andMcLean
1998). The aim of the materials science models is to provide explicit correlations
between quantities characterizing the type of microstructure and processing (grain
size, types of alloying and hardening, etc.) and quantities characterizing the material
behavior, e.g. the creep rate. Furthermore, themechanisms based classification of dif-
ferent forms of creep equations including different stress and temperature functions
is helpful in the structural analysis. However, the majority of models proposed within
the materials science are one-dimensional and operate with scalar-valued quantities
like magnitudes of stress and strain rates.

The objective of continuum mechanics modeling is to investigate inelastic behav-
ior in idealized three-dimensional solids. The idealization is related to the hypothesis
of a continuum, e.g. Haupt (2002). The approach is based on balance equations and
assumptions regarding the kinematics of deformation and motion. Inelastic behavior
is described by means of constitutive equations which relate multi-axial deformation
and stress states. Topological details of microstructure are not considered. Processes
associated with the microstructural changes like hardening, recovery, ageing and
damage can be taken into account by means of hidden or internal state variables
and corresponding evolution equations (Betten 2008; Chaboche 2008; Lemaitre and
Desmorat 2005; Maugin 1992; Rabotnov 1969; Skrzypek and Ganczarski 1998).
Various models and methods developed within the solid mechanics can be applied
to the structural analysis in the inelastic range. Examples are theories of rods,
plates shells and three-dimensional solids as well as direct variational methods, e.g.
Altenbach et al. (1998), Betten (2008), Boyle and Spence (1983), Hyde et al. (2013),
Malinin (1981), Podgorny et al. (1984), Skrzypek (1993). Numerical solution tech-
niques, for example the finite element method, can be combined with various time
step integration techniques to simulate time dependent structural behavior up to crit-
ical state of failure.

The classical continuummechanics of solids takes into account only translational
degrees of freedom for motion of material points. The local mechanical interactions
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between the material points are characterized by forces. Moment interactions are
not considered. Furthermore, it is assumed that the stress state at a point in the solid
depends only on the deformations and state variables of a vanishingly small vol-
ume element surrounding the point. To account for the heterogeneous deformation
various extensions to the classical continuum mechanics were proposed. Micropolar
theories assume that a material point behaves like a rigid body, i.e. it has translation
and rotation degrees of freedom. The mechanical interactions are due to forces and
moments. Constitutive equations are formulated for force and moment stress ten-
sors. An example, where the micropolar theory should be preferred over the classical
one is the short-fiber reinforced material. Short fibers may rotate and align towards
certain orientation states as a result of non-uniform deformation or flow during the
processing. To account for the fiber orientation, rotational degrees of freedom are
required (Altenbach et al. 2003, 2007; Eringen 2001). Micropolar theories of plas-
ticity are presented in Forest et al. (1997), Altenbach and Eremeyev (2014), among
others. Inelastic deformation process is highly heterogeneous at the microscale and
several effects cannot be described by the classical continuummechanics accurately.
For example, the dependence of the yield strength on the mean grain size and on
the mean size of precipitates, see Sect. 1.3, are not considered within the classical
theories since they do not possess intrinsic length scales. To analyze such effects non-
local continuum theories are developed. Examples include strain gradient (Fleck and
Hutchinson 1993; Gao et al. 1999) and micromorphic theories (Forest 2009), where
a gradient or the rotation (curl) of the inelastic strain are considered as additional
degrees of freedom. Non-local and phase field theories of damage and fracture were
recently advanced to capture initiation and propagation of cracks in solids (Miehe
et al. 2010; Schmitt et al. 2013). One problem in the use of enhanced continuum the-
ories is related to the forces thermodynamically conjugate to the introduced degrees
of freedom. It is not easy to give a clear interpretation to the higher rank stress tensors
associated with higher deformation gradients.

Continuummechanics iswidely used for the inelastic analysis of structures. Exam-
ples of high temperature applications are presented for circumferentially notched bars
in Hayhurst (1994), pipe weldments in Hayhurst et al. (2002) and thin-walled tubes
in Krieg (1999), where qualitative agreement between the theory and experiments
carried out on model structures have been established. Constitutive equations with
internal state variables have been found to be mostly suited for the inelastic analy-
sis of structures (Hayhurst et al. 2002; Hyde et al. 2013; Naumenko and Altenbach
2007).

Classical or enhanced continuum mechanics approaches require experimental
data to calibrate constitutive equations over a wide range of stress, strain rates and
temperatures as well as for multi-axial stress states. Accurate experimental data, in
particular data related to long term creep regime are rarely available.

Themicromechanical modeling deals with discrete simulations ofmaterial behav-
ior for a representative volume element with geometrically idealized microstruc-
ture. Simplifying assumptions are made for the behavior of constituents and their
interactions, for the type of the representative volume element and for the exerted
boundary conditions. Within the continuum micromechanics classical or enhanced
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continuummodels are used to analyze constituents and interfaces. An example is the
continuum crystal viscoplasticity model. Here the discrete dislocation substructure
in a crystal is ignored, considering instead that plastic deformation occurs in the
form of smooth shearing deformations on certain planes and in certain directions—
the slip systems (Rice 1971; Hutchinson 1976). Pioneering works to the microme-
chanics modeling of high-temperature inelasticity assumed idealized, usually two-
dimensional microstructures and simplified constitutive models. Examples include
numerical simulations of void growth in a power law creeping matrix material, e.g.
Tvergaard (1990), van der Giessen et al. (1995), crack propagation through a two-
dimensional polycrystal (Onck et al. 2000; van der Giessen and Tvergaard 1995). In
the last two decades computational approaches were advanced to analyze realistic
three-dimensionalmicrostructures of polycrystals (Cailletaud et al. 2003;Roters et al.
2011). Figure1.54 shows examples for microstructural polycrystal models generated
by Voronoi tessellation. Based on such geometrical models several mechanisms of
deformation and damage at the microscale can be analyzed. Examples include grain
boundary sliding and grain boundary cavitation and—two important deformation
and damage mechanisms under high temperature (Ozhoga-Maslovskaja et al. 2015;
Ozhoga-Maslovskaja 2014).

The representative volume element (RVE) technique is widely used to analyze
microstructural behavior in a bulk material. Indeed, a stress response of a RVE can
be analyzed applying special types of deformation on the boundaries, for example
periodic boundary conditions. By this approach gradient effects related to interfaces,
free surfaces and notches cannot be captured. Recently polycrystal models with large
numbers of grains are applied to analyze structures. As an example Fig. 1.55 shows
geometrical polycrystal models for smooth and circumferentially notched cylindrical
specimen generated by Voronoi tessellation. Simulations of inelastic behavior for
such microstructural realizations and a subsequent statistical analysis contribute to
understanding free-surface and notch stress effects in inelastic range (Prygorniev and
Naumenko 2013).

(a) (b)

Fig. 1.54 Geometrical models of polycrystalline volume elements. a Zero grain boundary thick-
ness, b finite grain boundary thickness (Ozhoga-Maslovskaja 2014)
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(a) (b)

Fig. 1.55 Geometricalmodels of various polycrystalline cylindrical specimen. a Smooth specimen,
b circumferentially notched specimen, after Prygorniev and Naumenko (2013)

Continuum micromechanics models are useful for the illustration of certain
mechanisms of inelastic deformation. With respect to engineering applications the
micromechanics approach suffers, however, from significant limitations. A typical
high-temperature structural material, for example heat resistant steel, has a com-
plex composition including dislocation structures, grain boundaries, dispersion par-
ticles, precipitates, etc. A reliable micromechanical description of inelastic behavior
would therefore require a rather complex model of a multi-phase medium with many
interacting constituents. Furthermore long term deformation at high temperature
is usually accompanied by microstructural changes. For example subgrain bound-
aries may form, migrate and/or disappear. Voids form, grow and coalesce on grain
boundaries leading to initiation of cracks and failure. Carbide precipitates coarsen
during the high temperature exposure. Understanding of microstructural changes is
crucial for design of high temperature materials. Direct simulations of topological
changes in microstructure for real heat resistant alloys are time consuming, if ever
possible.

Besides the continuummicromechanics several discrete methods were developed
to analyzematerial behavior at lower length scales. The discrete dislocation dynamics
(DDD) method is suitable for the analysis of plastic deformation on the microscale
andmesoscale (i.e. the size rangeof a fractionof amicrometer to tens ofmicrometers).
Dislocations are explicitly represented as line defects embedded in an elasticmedium.
Themain idea to derive and to solve equations ofmotion for dislocation loops. To this
end driving forces (configurational forces) acting on dislocation line segments are
defined. An example is the Peach-Köhler force, the energetic force work conjugate
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to the dislocation motion in an elastic continuum (Maugin 1993, 2011). In the early
versions of DDD, the collective behavior of dislocation ensembles was determined
by interactions between infinitely long straight dislocations (Lepinoux and Kubin
1987). Simulations were two-dimensional and consisted of periodic cells containing
multiple dislocations whose behavior was governed by a set of simplified rules.
Recently, the DDDmethodology is extended to themore physical, three-dimensional
simulations (Kubin 2013).

DDD simulations give access to the dislocation patterning, interactions of dislo-
cations with obstacles, subgrain boundaries, etc. but also to the mechanical response
of a representative volume containing large number of dislocation lines. For thin
films and small scale specimen DDD simulations explain the size dependency of the
observed flow stress (Kraft et al. 2010). DDD is used for assessing the performance
of enhanced continuum mechanics models in analysis of small scale structures and
thin films (Aifantis et al. 2012) since it provides the knowledge of microscale stress
and strain patterns, which are not easy to determine experimentally.

Several limitations exist when applying this method to the analysis of high-
temperature phenomena. The inelastic strain at high temperature is mainly controlled
by dislocation glide at a rate given by thermally-activated dislocation climbdue to dif-
fusion of vacancies (Frost and Ashby 1982). Numerical analysis of the phenomenon
is challenging due to the complexity of incorporating both vacancies and disloca-
tions in a single computational framework. Only recently two-dimensional DDD
simulations are performed illustrating dislocation glide and climb such that power
law creep phenomenon can be reproduced (Keralavarma et al. 2012).

1.5.2 Objectives, Modeling Requirements, and Steps
for Structural Analysis

The objective of this book is to present current knowledge on modeling of high tem-
perature material behavior for the structural analysis. Examples for high temperature
applications include components of power plant, turbochargers, engines etc. Small
scale components of microelectronics are further examples. The requirements for
the modeling with respect to engineering applications are

• Ability to describe basic features of inelastic deformation, hardening, softening
and damage processes for a wide range of stress, strain rate and temperature levels,

• Robustness and minimum number of functions and material properties to be iden-
tified from tests,

• Compatibility with structural mechanics methods, for example, FEM.

Tomet these requirements several theoretical and experimental approaches should be
applied simultaneously. The continuummechanics provides a rational framework for
the analysis of real three-dimensional structures under complex thermo-mechanical
loading paths. Appropriate stress and deformation measures are introduced to
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capture complex local multi-axial loadings. General forms of constitutive and evo-
lution equations are defined such that invariance requirements with respect to the
choice of reference frame, laws of continuum thermodynamics and other princi-
ples are fulfilled. To specialize the constitutive equation results of basic tests of the
material behavior, such as tensile test, creep test, relaxation test, etc. should be sys-
tematically analyzed. On the other hand basic features of materials microstructure
in the reference state and after a course of inelastic deformation process should be
established. For example, to formulate a robust model it is not enough to say, that a
material exhibits anisotropic properties. Even in the case of linear elasticity 21 mate-
rial constants must be identified from tests if the kind of anisotropy is not specified.
Microstructural analysis and appropriate assumptions with regard to symmetries of
microstructure would reduce the identification effort essentially. Different types of
material symmetries and appropriate forms of constitutive laws are defined within
the continuum mechanics, while microstructural analysis is usually the subject of
the materials science.

Once a first guess to the constitutive model, for example, elasto-visco-plastic
modelwith kinematic and isotropic hardening is selected, appropriate test programme
to generate reliable databases, for example tensile tests for a range of temperatures
and strain rates must be defined. The experimental data should be used to identify the
constitutive functions, for example a function that captures the strain rate sensitiv-
ity. With the developed and identified constitutive model simulations of the material
behavior under service-like loading conditions should be performed and compared
with experimental data. For example, uni-axial tests under thermo-mechanical load-
ing profile simulating start-up, running and shut-down stages of a component can be
used for verification of the developed constitutive equation. Material testing under
multi-axial stress states, for example tests on cruciform specimen as well as mate-
rial testing under non-uniform stress states and stress concentrations, for example
notched specimen, are useful to verify the modeling assumptions. The verification
process may require to modify the model, for example to change the constitutive
functions of stress and temperature. To this end additional information regarding
deformation mechanisms is useful. Furthermore, loading profiles for laboratory test-
ing must be extended to analyze the material behavior for wide ranges of stresses,
strain rates and temperatures. Figure1.56 provides a sketch of steps required to
formulate a reliable constitutive model for structural analysis. The stress tensor is
usually related to the strain tensor, the state variables like the inelastic strain tensor,
backstress tensor, damage parameters, etc., and possibly their gradients. For the state
variables evolution equations are required to capture microstructural changes in the
course of inelastic deformation process.

In this book we focus on the continuum mechanics and continuum microme-
chanics approaches for the structural analysis applications. DDD and other discrete
methods, for example molecular dynamics methods will be not considered. We dis-
cuss approaches to develop constitutive models, discuss identification techniques
and present numerical methods in order to apply constitutive equations together
with structural mechanics methods. In particular, we discuss how to develop user
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Fig. 1.56 Basic steps of constitutive modeling for structural analysis

material subroutines inside the commercial finite element codes for the structural
analysis. Length scale and temporal scale approaches will be discussed to analyze
heterogeneous deformation and to develop efficient time integration methods for
cyclic loadings.
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Chapter 2
Continuum Mechanics in One Dimension

This chapter gives a short introduction to the continuum mechanics applied to the
uni-axial stress state. Here we consider a rod to illustrate main ideas of continuum
mechanics in a simple, transparent manner, without jungles of tensors. However, to
show parallels to the three-dimensional theory we apply the notation of continuum
mechanics. For example, we use F to designate the “deformation gradient”, P to
designate thePiola-Kirchhoff or engineering stress, etc. Three-dimensional equations
will be discussed in Chap. 4.

The present chapter deals with basic equations of continuum mechanics applied
to the theory of rods. A rod is a structural member with cross-section dimensions
much less than the axial length. Rods can be subjected to different types of loadings
including tension (compression), bending and torsion. A deformed configuration of
a rod can be described by specifying the deformed rod axis, the actual cross-section
area and triads of unit vectors to characterize the actual orientation of cross-sections.
To define the deformed line only one coordinate is required. The problem to compute
a deformed configuration for given loads is therefore one-dimensional.

Two approaches can be applied to formulate the theory of rods. The first one—
called direct—considers a rod as a deformable line. The basic assumption is that
every cross section behaves like a rigid body in the sense that translations and cross-
section rotations are basic degrees of freedom for every point of the line. Themechan-
ical interactions between two neighboring cross sections are (normal and/or shear)
forces and (bending and/or twisting) moments. Basic balance equations of contin-
uum mechanics are applied directly to the deformable line. Direct theories of rods
are discussed in Altenbach et al. (2005, 2013), Antman (1995), Green et al. (1974b),
Zhilin (2006) among others.

The second approach is based on equations of the three-dimensional continuum
mechanics.With cross-section assumptions to the components of displacement vector
and/or stress tensor, approximate one-dimensional equations for a rod can be derived,
e.g. Green et al. (1974a).
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(a)

(b)

Fig. 2.1 A rod subjected to a tensile force. a Reference configuration, b actual configuration

In this section we assume that the rod is subjected to tensile (compressive) loading
only. Figure2.1 provides a sketch of a straight rod subjected to a tensile force. Let
iii be the unit vector designating the direction of the rod axis, Fig. 2.1a. To describe
the positions of cross sections of the rod in the reference configuration the vector
RRR = Xiii with the coordinate coordinate X is introduced. The corresponding position
in the actual configuration is defined by the vector rrr = xiii with the coordinate x .

2.1 Motion, Derivatives, and Deformation

The motion of the rod is defined by the following mapping

x = Φ(X, t) (2.1.1)

The basic problem of continuum mechanics is to find the function Φ for all of
0 ≤ X ≤ �0, for the given time interval t0 ≤ t ≤ tn as well as for defined external
loads and temperature. It is obvious that X = Φ(X, t0). The displacement u is defined
as it follows (Fig. 2.1b)

u = x − X (2.1.2)



2.1 Motion, Derivatives, and Deformation 81

To analyze the motion it is useful to introduce the rates of change of Φ with respect
to the reference coordinate X and time t . The deformation gradient F is defined as
follows1

F = ∂Φ

∂ X
(2.1.3)

The velocity field v is defined as follows

v = ∂Φ

∂t
= u̇ (2.1.4)

Within the one-dimensional theory the deformation gradient F is identical with the
local stretch λ which is defined as

λ = dx

dX

dX and dx are line elements defined in the infinitesimal neighborhood of a cross
section in the reference and actual configurations, respectively. The local strain ε can
be defined as follows

ε = dx − dX

dX
= λ − 1 = ∂u

∂ X
(2.1.5)

If the material properties and the cross section area do not depend on X then the rod
is called homogeneous. The stretch and the strain can be computed as follows

λ = �

�0
, ε = � − �0

�0
(2.1.6)

The formulas (2.1.6) are applied to evaluate strains from experimental data of uni-
axial tests. If a rod is non-homogeneous than local strains should be evaluated. In
this case a strain gauge should be placed in a position along the rod to provide the
local strain value. The length of the strain gauge should be small such that the mea-
sured strain could be assumed constant. Otherwise themeasured strain would depend
on the length of the strain gauge. A similar assumption can be applied to motivate
Eq. (2.1.5)—the value of the tested line element dX should be “small enough” such
that the strain over dX is constant. This is the basic idea behind the classical con-
tinuum mechanics—the notions of infinitesimal volume, area and line elements are
introduced such that the quantities like density, stress, strain etc. can be assumed
uniform over the considered elements.

Assuming the mapping Φ to be invertible one may introduce the inverse of the
deformation gradient as follows

F−1 = dX

dx
(2.1.7)

1The deformation gradient is usually not introduced within the one-dimensional theory of rods.
Here we introduce this and other quantities to explain basic ideas of continuum mechanics.
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Let f be a field like density, displacement, stress, etc. f can be considered as a func-
tion of the coordinate X and time t . This is sometimes called Lagrangian description.
Alternatively, one may refer f to the actual coordinate x and time. This kind of
description is called spatial or Eulerian. The derivatives of a function f with respect
to X and x can be specified as follows

∂ f

∂ X
≡ f ′0,

∂ f

∂x
≡ f ′ (2.1.8)

Between the derivatives the obvious relation exists

∂ f

∂ X
= F

∂ f

∂x
⇒ f ′0 = F f ′ (2.1.9)

As the motion Φ is assumed invertible

X = Φ−1(x, t), (2.1.10)

the material and the spacial descriptions are equivalent in the sense that if f is known
as a function of X and t , one may use the transformation (2.1.10) to find

f (X, t) = g(x, t)

For example the density ρ can be as a function of the reference coordinate and time
or the actual coordinate and time

ρ = f (X, t) = g(x, t)

With Eqs. (2.1.3) and (2.1.4) the derivative of the velocity with respect to the
reference coordinate can be computed as follows

v′0 = Ḟ (2.1.11)

With (2.1.9) the derivative of the velocity with respect to the actual coordinate is

v′ = Ḟ F−1 (2.1.12)

Assuming that f (x) is continuous for a ≤ x ≤ b the fundamental theorem of integral
calculus provides

b∫
a

f ′(x)dx = f (b) − f (a) (2.1.13)



2.1 Motion, Derivatives, and Deformation 83

If f (x) has n jumps at points xk, k = 1, 2, . . . , n within a ≤ x ≤ b and f ′(x) is
continuous between the jump points then

b∫
a

f ′(x)dx = f (b) − f (a) +
n∑

k=1

� f (xk)�, � f (xk)� ≡ f (x+
k ) − f (x−

k )

(2.1.14)

Assume that the velocity field is given as a function of the spatial coordinate and the
time, i.e. v(x, t). The material time derivative of a field f (x, t) is

d

dt
f = ∂

∂t
f + v f ′ (2.1.15)

2.2 Conservation of Mass

The mass of an infinitesimal part of the rod is

dm = ρ Adx = ρ0 A0dX, (2.2.16)

where ρ and ρ0 is the density in the actual and the reference configurations, respec-
tively. With Eq. (2.1.7) the conservation of mass (2.2.16) takes the form

Fρ A = ρ0 A0 (2.2.17)

Introducing the change in the volume

J = dV

dV0
= Adx

A0dX
= A

A0
F, (2.2.18)

where dV and dV0 are infinitesimal volume elements of the rod in the actual and
reference configurations, respectively, the conservation of mass (2.2.16) yields

ρ0

ρ
= J (2.2.19)

It is obvious that J > 0 and if ρ = ρ0 one obtains J = 1.

2.3 Balance of Momentum

The momentum of an infinitesimal part of the rod is

dp = vdm = vρ Adx
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(a)

(b)

Fig. 2.2 Internal forces in a rod. a Rod in the actual configuration and two cutting planes, b free-
body diagrams visualizing internal forces

Consider a part of the rod, for example, part II, Fig. 2.2b. The momentum for this
part in the actual configuration is

pII =
x2∫

x1

vρ Adx (2.3.20)

The balance of momentum or the first law of dynamics states that the rate of change
of momentum of a body is equal to the total force acting on the body. To introduce
the forces acting on the part II of the rod let us cut it by two cross sections with the
coordinates x1 and x2. The parts I and III belong to the environment of the part II
and the corresponding mechanical actions can be modeled by two forces: NNN I−II—the
action of the part I on the part II and NNN III−II the action of the part III on the part II.
Similarly, the actions on the parts I and III can be introduced. For example, NNN II−I is
the action of the part II on the part I. The following abbreviations can be introduced

NNN II−I = NNN (iii)(x1) = N (x1)iii,
NNN I−II = NNN (−iii)(x1) = −N (x1)iii,
NNN III−II = NNN (iii)(x2) = N (x2)iii,
NNN II−III = NNN (−iii)(x2) = −N (x2)iii

(2.3.21)

With the free-body diagram presented in Fig. 2.2 the balance of momentum for the
part II is2

d

dt

x2∫
x1

vρ Adx = N (x2) − N (x1) (2.3.22)

2Body forces like the force of gravity are not included here for the sake of brevity.
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With the fundamental theorem of integral calculus (2.1.13)3

N (x2) − N (x1) =
x2∫

x1

N ′dx (2.3.23)

Applying themass conservation equation (2.2.16) onemay evaluate the rate of change
of momentum as follows

d

dt

x2∫
x1

vρ Adx = d

dt

X2∫
X1

vρ0 A0dX =
x2∫

x1

v̇ρ Adx (2.3.24)

With Eqs. (2.3.23) and (2.3.24) the integral form of the balance of momentum is

x2∫
x1

(v̇ρ A − N ′)dx = 0 (2.3.25)

Equation (2.3.25) is valid for any part of the rod. Since x1 and x2 are arbitrary, the
integral (2.3.25) is zero if

ρ Av̇ = N ′ (2.3.26)

Multiplying both parts of Eq. (2.3.26) by F yields

Fρ Av̇ = F N ′ (2.3.27)

With the conservation of mass (2.2.17) and the relation between the derivatives
(2.1.9), Eq. (2.3.27) takes the following form

ρ0 A0v̇ = N ′0 (2.3.28)

2.4 Balance of Energy

The total energy E for any part of the rod is defined as the sum of the kinetic energy
K and the internal energy U as follows

E = K + U, K =
x2∫

x1

ρKAdx, U =
x2∫

x1

ρU Adx, K = 1

2
v2, (2.4.29)

3Here and in the following derivations we assume that N and other field variables are smooth
functions. In the case of finite jumps one should applyEq. (2.1.14) and introduce the jumpconditions.
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where K and U are densities of the kinetic and the internal energy, respectively. The
energy balance equation or the first law of thermodynamics states that the rate of
change of the energy of a body is equal to the mechanical power plus the rate of
change of non-mechanical energy, for example heat, supplied into the body. The
energy balance equation is

d

dt
E = L + Q, (2.4.30)

whereL is themechanical power andQ is the rate of changeof non-mechanical energy
supply. The mechanical power of internal forces (2.3.21) is defined as follows

L = N (x2)v(x2) − N (x1)v(x1) =
x2∫

x1

(Nv)′dx (2.4.31)

The rate of change of energy supply through the cross sections of the parts I, II and
III of the rod can be defined by analogy to Eqs. (2.3.21)

QII−I = Q(iii)(x1) = −Q(x1),
QI−II = Q(−iii)(x1) = Q(x1),
QIII−II = Q(iii)(x2) = −Q(x2),
QII−III = Q(−iii)(x2) = Q(x2)

(2.4.32)

The rate of change of the energy supply through the volume of the part II is

QVII =
x2∫

x1

ρr Adx,

where r is the density of the energy supply. The total rate of energy supply into the
part II is

Q(x1) − Q(x2) +
x2∫

x1

ρr Adx =
x2∫

x1

(−Q′ + ρr A)dx (2.4.33)

With Eqs. (2.4.29), (2.4.31) and (2.4.33) the energy balance equation (2.4.30) takes
the form

d

dt

x2∫
x1

(ρ
1

2
v2 + ρU)Adx =

x2∫
x1

(N ′v + Nv′ − Q′ + ρr A)dx (2.4.34)

With the mass conservation equation (2.2.16) the rate of change of the total energy
can be evaluated as follows
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d

dt

x2∫
x1

(ρ
1

2
v2 + ρU)Adx = d

dt

X2∫
X1

(ρ0
1

2
v2 + ρ0U)A0dX

=
X2∫

X1

(
v̇v + U̇)

ρ0 A0dX =
x2∫

x1

(
v̇v + U̇)

ρ Adx

(2.4.35)

The energy balance equation (2.4.34) takes the following form

x2∫
x1

[
(ρ Av̇ − N ′)v + ρ AU̇ − Nv′ + Q′ − ρr A

]
dx = 0 (2.4.36)

With the balance of momentum (2.3.26), Eq. (2.4.34) is simplified to

x2∫
x1

(
ρ AU̇ − Nv′ + Q′ − ρr A

)
dx = 0 (2.4.37)

As x1 and x2 > x1 are arbitrary coordinates, the local (per unit length of the rod)
form of the energy balance is

ρ AU̇ = Nv′ − Q′ + ρ Ar (2.4.38)

Multiplying both sides of (2.4.38) by F and using the conservation of mass (2.2.17)
as well as the relation between the derivatives (2.1.9) provides the local form of the
energy balance per unit length of the rod in the reference configuration

ρ0 A0U̇ = Nv′0 − Q′0 + ρ0 A0r (2.4.39)

2.5 Entropy Inequality

For historical overview of thermodynamics principles we refer to Ericksen (1998),
Truesdell (1984), Müller (2007). The second law of thermodynamics states that the
entropy production of a body is non-negative. This statement is given as the Clausius-
Planck inequality

d

dt
S − Q

T
≥ 0, (2.5.40)

where S is the entropy and T is the absolute temperature. The entropy of the part II
of the rod (Fig. 2.2) is defined as follows
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S =
x2∫

x1

ρSAdx, (2.5.41)

where S is the entropy density. With Eqs. (2.4.32) and (2.1.13)

(
Q

T

)
I I

= − Q(x2)

T (x2)
+ Q(x1)

T (x1)
+

x2∫
x1

ρ Ar

T
dx = −

x2∫
x1

[(
Q

T

)′
− ρ Ar

T

]
dx

(2.5.42)

Inserting (2.5.41) and (2.5.42) into (2.5.40) provides the integral form of the entropy
inequality

x2∫
x1

[
ρṠA +

(
Q

T

)′
− ρ Ar

T

]
dx ≥ 0 (2.5.43)

Since x1 and x2 > x1 are arbitrary the local form of the entropy inequality can be
given as follows

ρṠA ≥ −
(

Q

T

)′
+ ρr A

T
(2.5.44)

This is a one-dimensional version of the Clausius-Duhem inequality. Multiplying
the both sides of (2.5.44) by T it can be formulated as follows

ρṠT A ≥ −Q′ + Q
T ′

T
+ ρr A (2.5.45)

2.6 Dissipation Inequality, Free Energy, and Stress

From the energy balance Eq. (2.4.38) it follows

ρ Ar − Q′ = ρ AU̇ − Nv′ (2.6.46)

Inserting Eq. (2.6.46) into the entropy inequality (2.5.45) yields the dissipation
inequality

Nv′ − ρ AU̇ + ρṠT A − Q
T ′

T
≥ 0 (2.6.47)

Dividing (2.6.47) by the cross section area provides the following local form of the
dissipation inequality

σv′ − ρU̇ + ρṠT − q
T ′

T
≥ 0, σ = N

A
, q = Q

A
, (2.6.48)
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where σ is called stress or true stress and q is the heat supply through the infinitesimal
cross section. Introducing the Helmholtz free energy density Φ = U − ST the
dissipation inequality (2.6.48) takes the following form

σv′ − ρΦ̇ − ρS Ṫ − q
T ′

T
≥ 0 (2.6.49)

With Eq. (2.1.12) it follows that

σ Ḟ F−1 − ρΦ̇ − ρS Ṫ − q
T ′

T
≥ 0 (2.6.50)

Multiplyingboth sides of (2.6.47) by F andusing the conservationofmass (2.2.17)
aswell as the relation between the derivatives (2.1.9), the local form of the dissipation
inequality per unit length of the rod in the reference configuration can be obtained

Nv′0 − ρ0 A0U̇ + ρ0 A0ṠT − Q
T ′0

T
≥ 0 (2.6.51)

Dividing by A0 yields

Pv′0 − ρ0U̇ + ρ0ṠT − q̃
T ′0

T
≥ 0, P = N

A0
, q̃ = Q

A0
(2.6.52)

where P is the engineering stress and q̃ is the heat flow through the infinitesimal cross
section of the rod in the reference state. In terms of the free energy the inequality
takes the following form

Pv′0 − ρ0Φ̇ − ρ0S Ṫ − q̃
T ′0

T
≥ 0 (2.6.53)

WithEq. (2.1.11) the velocity derivative can be replaced by the rate of the deformation
gradient leading to

P Ḟ − ρ0Φ̇ − ρ0S Ṫ − q̃
T ′0

T
≥ 0 (2.6.54)

Taking into account that the normal force is N = P A0 = σ A the following relation
between the stress measures can be established

P A0 = σ J A0F−1 ⇒ P = σ J F−1 (2.6.55)

Similarly, with the heat flux Q = q A = q̃ A0

q̃ = q J F−1 (2.6.56)
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Chapter 3
Elementary Uni-axial Constitutive Models

Basic information on the material behavior is usually obtained from a uni-axial test.
The development of a constitutive model for a uni-axial stress state is the first step to
the general structural analysis. This is a motivation to apply equations discussed in
this chapter to develop constitutive models and to analyze restrictions to the response
functions and material properties.

Materials are often subjected to complex thermo-mechanical loading condi-
tions. To analyze material behavior under such conditions a combined model for
thermo(visco)elasto-plasticity considering hardening, softening, damage and other
processes is required. Such models are proposed and discussed in the literature. The
idea of this chapter is to introduce elementary constitutive models, useful for the
analysis of material behavior at high temperature.

3.1 Heat Transfer

Assume that the rod is mechanically isolated such that the local power of the internal
force σ Ḟ F−1 in (2.6.50) is zero. This can be accomplished by keeping the deforma-
tion constant, for example, by setting F = 1. The internal force N and consequently
the stress σ are not zeros and arise as reactions on the kinematical constraint. The
inequality (2.6.50) simplifies to

− ρΦ̇ − ρS Ṫ − q
T ′

T
≥ 0 (3.1.1)

The independent variables in Eq. (3.1.1) are ρ, T and T ′. Instead of the density ρ

one may take the change in volume J = ρ0/ρ as the independent variable. The
conjugate variables (sometimes called thermodynamic forces) are S and q. These
can be assumed to be the functions of the independent variables, i.e.
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S = S(J, T, T ′), q = q(J, T, T ′)

Consequently, the free energy Φ has the same arguments

Φ = Φ(J, T, T ′)

Φ̇ = ∂Φ

∂ J
J̇ + ∂Φ

∂T
Ṫ + ∂Φ

∂T ′ Ṫ ′ (3.1.2)

With Eq. (3.1.2) the inequality (3.1.1) takes the form

− ρ
∂Φ

∂ J
J̇ − ρ

(
∂Φ

∂T
+ S

)
Ṫ − ρ

∂Φ

∂T ′ Ṫ ′ − q
T ′

T
≥ 0 (3.1.3)

Inequality (3.1.3) can be formulated as follows

AJ̇ + BṪ + CṪ ′ + D ≥ 0, (3.1.4)

where the coefficients

A = −ρ
∂Φ

∂ J
, B = −ρ

(
∂Φ

∂T
+ S

)
, C = −ρ

∂Φ

∂T ′ , D = −q
T ′

T
(3.1.5)

do not depend on the rates of independent variables. For arbitrary J̇ , Ṫ and Ṫ ′ the
inequality is only satisfied if A = 0, B = 0, C = 0 and D ≥ 0. From

ρ
∂Φ

∂ J
= 0, ρ

∂Φ

∂T ′ = 0

it follows, that the free energy depends on the temperature only. Furthermore we
obtain the constitutive equation for the entropy

S = −∂Φ

∂T
(3.1.6)

and the inequality

− q
T ′

T
≥ 0 (3.1.7)

The inequality (3.1.7) is satisfied with the Fourier law of heat conduction

q = −κT ′, (3.1.8)

where κ(T ) > 0 is the thermal conductivity. The functions κ(T ) and S(T ) must
be identified experimentally. To discuss the identification procedure let us derive the
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heat transfer equation. Neglecting the mechanical power the local energy balance
(2.4.38) takes the form

ρ AU̇ = −Q′ + ρ Ar (3.1.9)

With U = Φ + ST and Eq. (3.1.6) the internal energy is the function of the temper-
ature only. For the heat supply r assume the following constitutive equation

ρr = h(Te − T ), (3.1.10)

where h(T ) > 0 and Te is the temperature of the environment. Equation (3.1.10)
is known as the Newton law of cooling. With Eqs. (3.1.8) and (3.1.10) the energy
balance equation (3.1.9) takes the form

ρc(T )Ṫ = 1

A
(k AT ′)′ + h(Te − T ), c(T ) = dU

dT
, (3.1.11)

where c(T ) is the heat capacity. For a rod with the constant cross section area this
simplifies to

ρc(T )Ṫ = (kT ′)′ + h(Te − T ) (3.1.12)

Furthermore, assuming that the expected temperature difference is small, one may
linearize the temperature functions c, k and h about a reference temperature T0

leading to the linear differential equation

ρc0Ṫ = k0T ′′ + h0(Te − T ), (3.1.13)

where c0 = c(T0), k0 = k(T0) and h0 = h(T0). Equation (3.1.13) is known as the
heat equation or diffusion equation. The solution for the given initial condition and
the boundary conditions with respect to the heat flux or the temperature provides the
time-dependent temperature field in the rod. Several methods exist to identify the
functions c, k and h, which are based on temperature measurements and solutions
of the heat equation (3.1.13). For details the reader may consult textbooks on heat
transfer and thermodynamics, for example, Granger (1994), Müller (2007), Nellis
and Klein (2009).

Once the heat capacity c(T ) is identified the constitutive equation (3.1.6) allows
us to compute the entropy as follows

S(T ) =
T∫

T0

c(ξ)

ξ
dξ

http://dx.doi.org/10.1007/978-3-319-31629-1_2
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3.2 Thermo-elasticity

Within the framework of elasticity the basic assumption is that the stress is a function
of the strain. This can be related to experimental observations from the tensile test,
Sect. 1.1. After the loading and subsequent unloading within the elastic range the
specimen takes the original length. The elastic behavior is reversible—no hysteresis
loop is observable if the specimen is subjected to a closed cycle of strain under
adiabatic or isothermal conditions.

Let us assume that the stress and consequently the free energy are functions of
the following arguments

σ = σ(F, J, T, T ′) ⇒ Φ = Φ(F, J, T, T ′)

Then the inequality (2.6.50) takes the following form

(
σ F−1 − ρ

∂Φ

∂ F

)
Ḟ − ρ

∂Φ

∂ J
J̇ − ρ

(
∂Φ

∂T
+ S

)
Ṫ − ρ

∂Φ

∂T ′ Ṫ ′ − q
T ′

T
≥ 0

(3.2.14)

The left hand side of the inequality (3.2.14) is a linear function of rates of independent
variables. Therefore the inequality is satisfied if the following conditions are met (see
Sect. 3.1 for a more detailed analysis)

σ = ρF
∂Φ

∂ F
,

∂Φ

∂ J
= 0, S = −∂Φ

∂T
,

∂Φ

∂T ′ = 0, −q
T ′

T
≥ 0 (3.2.15)

The first condition in Eq. (3.2.15) is the constitutive equation for the stress. With

F
∂Φ(F)

∂ F
= ∂Φ(εH)

∂εH
, εH = ln F = ln λ,

where εH is the Hencky strain (sometimes called true strain) and Eq. (2.2.19) it can
be formulated as follows

σ = ρ
∂Φ

∂εH
= ρ

ρ0

∂ρ0Φ

∂εH
= 1

J

∂ρ0Φ

∂εH
(3.2.16)

From Eqs. (3.2.15) and (3.2.16) it follows that the free energy density must be
formulated as a function of the Hencky strain and the temperature. For isothermal
conditions, i.e. for T (x, t) = T0 the work done by the stress Jσ on the infinitesimal
change of the Hencky strain is the total differential of the strain energy density
function

JσdεH = d(ρ0Φ) (3.2.17)

http://dx.doi.org/10.1007/978-3-319-31629-1_1
http://dx.doi.org/10.1007/978-3-319-31629-1_2
http://dx.doi.org/10.1007/978-3-319-31629-1_2
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The stress measure Jσ is called Kirchhoff stress. For adiabatic processes, i.e. for
processes without heat transfer with the environment, one may use the local energy
balance equation (2.4.38) to show that

JσdεH = d(ρ0U) (3.2.18)

Equations (3.2.17) and (3.2.18) arewidely used in the theory of elasticity (Hahn 1985;
Lurie 2010; Timoshenko and Goodier 1951) and structural mechanics (Altenbach
et al. 1998; Gould 1988; Reddy 1997; Szilard 1974; Timoshenko and Woinowsky-
Krieger 1959) for the formulation of variational principles.

The starting point for the analysis was the inequality (2.6.50). One may use the
dissipation inequality (2.6.54) defined with respect to the reference configuration to
find the relationship between the engineering stress P and the corresponding strain
measure. Here we use the first equation in (3.2.15) and the relationship between the
stress measures (2.6.55) to derive the following equation

P = ∂ρ0Φ(F)

∂ F
(3.2.19)

To find a particular form of the strain energy density a constitutive equation for
the stress is required. For many structural materials, for example steel, the elastic
range is observed for small values of strain ε such that ε2 � ε < 1. Furthermore, in
this range the stress is proportional to the strain. In this case it follows εH ≈ ε and
Eq. (3.2.15) can be linearized leading to

σ = ∂ρ0Φ(ε)

∂ε
(3.2.20)

Furthermore since λ = 1+ε onemay use Eq. (3.2.19) to derive the linearized relation
for the engineering stress P . Within the linear elasticity the difference between the
stress measures is negligible. To find an expression for the free energy density we
use the following linear constitutive equation

σ = E(ε − εth), εth = αth�, � = T − T0, (3.2.21)

where E is the Young’s modulus and αth is the thermal expansion coefficient. With
Eq. (3.2.20)

ρ0Φ = 1

2
Eε2 − Eαth�ε + f (T ) (3.2.22)

To determine the function f (T ) compute

∂U
∂T

= T
∂S
∂T

= −T
∂2⊕
∂T 2

(3.2.23)

http://dx.doi.org/10.1007/978-3-319-31629-1_2
http://dx.doi.org/10.1007/978-3-319-31629-1_2
http://dx.doi.org/10.1007/978-3-319-31629-1_2
http://dx.doi.org/10.1007/978-3-319-31629-1_2
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With Eq. (3.2.22) this results in

∂U
∂T

= − 1

ρ0
T
d2 f

dT 2
− 1

2ρ0
T ε2

d2E

dT 2
− 1

ρ0
T ε

d2

dT 2
(Eαth�)

The underlined term is the heat capacity without deformation, as defined by
Eq. (3.1.11). Therefore the function f can be found from the following equation

− 1

ρ0
T
d2 f

dT 2
= c(T )

With Eqs. (3.1.10), (3.2.22) and (3.2.23) the energy balance equation (2.4.38) takes
the following form

− ∂2(ρ0Φ)

∂T 2
Ṫ − ∂2(ρ0Φ)

∂T ∂ε
ε̇ = 1

A
(k AT ′)′ + h(Te − T ) (3.2.24)

Assuming that the expected temperature difference is small one may linearize the
functions E(T ), αth(T ), c(T ) and h(T ) about the reference temperature T0. The heat
transfer equation (3.2.24) simplifies to

c0Ṫ + E0αth0 ε̇ = 1

A
(k0 AT ′)′ + h0(Te − T ), (3.2.25)

where E0 = E(T0) and αth0 = αth(T0). The second term in the left-hand side of
Eq. (3.2.25) is usually small and can be neglected (Landau et al. 1986). Therefore,
within the linearized theory the deformation has minor influence on the heat transfer
such that the heat equation can be solved independently providing the temperature
T (x, t). The balance of momentum (2.3.26) with the constitutive equation (3.2.21)
yields

ρ Aü = [E A(u′ − αth�)]′

3.3 Non-linear Viscosity, Viscoplasticity,
and Rigid Plasticity

Assume that the stress σ is the function of the deformation rate Ḟ F−1 = ε̇H and
the temperature. Furthermore, assume that the mechanical power σ Ḟ F−1 does not
influence the free energy directly. The free energy and the entropy are then the
functions of the temperature only. Then the inequality (2.6.50) takes the following
form

− ρ

(
∂Φ

∂T
+ S

)
Ṫ + σ ε̇H − q

T ′

T
≥ 0 (3.3.26)

http://dx.doi.org/10.1007/978-3-319-31629-1_2
http://dx.doi.org/10.1007/978-3-319-31629-1_2
http://dx.doi.org/10.1007/978-3-319-31629-1_2
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The inequality (3.3.26) has the form A(T )Ṫ + B(T, ε̇H) ≥ 0. For arbitrary (positive
and negative) rates of temperature it can only be satisfied if A = 0 and B ≥ 0. This
leads to the constitutive equation for the entropy

S = −∂Φ

∂T
(3.3.27)

and the dissipation inequality

σ ε̇H − q
T ′

T
≥ 0 (3.3.28)

Assuming that the heat flux q does not depend on the strain rate results in two
inequalities

σ ε̇H ≥ 0, −q
T ′

T
≥ 0 (3.3.29)

For the stress one may assume the constitutive equation in the form

σ(ε̇H, T ) = gε̇H(|ε̇H|)sgn(ε̇H)gT (T ), (3.3.30)

where gε̇H(|ε̇H|) ≥ 0 is a function of strain rate with gε̇H(0) = 0 and gT (T ) > 0
is a function of temperature. Both the functions can be identified from stress-strain
diagrams in the saturation (steady state) regime, Fig. 1.2 by taking experimental data
for the stress σss as a function of the strain rate and the temperature. By inverting
Eq. (3.3.31) the constitutive equation for the strain rate can be formulated as follows

ε̇H = fσ (|σ |)sgn(σ ) fT (T ), (3.3.31)

where fσ (|σ |) ≥ 0 is a function of stress with fσ (0) = 0 and fT (T ) is a function of
temperature. These functions can be identified from experimental data of secondary
(steady-state) creep, Fig. 1.5. To this end the minimum creep rates should be taken
from experimental creep curves for different stress and temperature levels. Examples
for stress and temperature functions include the power-law function of stress and the
Arrhenius function of temperature

fσ (σ ) = ε̇0

(
σ

σ0

)n

, fT (T ) = exp

(
− Q

RT

)
, (3.3.32)

where ε0, σ0, n and Q are constants to be identified from experimental data and R is
the universal gas constant. Examples for experimental data are shown in Fig. 1.8 for
steels. With functions (3.3.32) the constitutive equation for the strain rate is

ε̇H = ε̇0 exp

(
− Q

RT

)( |σ |
σ0

)n

sgn(σ ) (3.3.33)

http://dx.doi.org/10.1007/978-3-319-31629-1_1
http://dx.doi.org/10.1007/978-3-319-31629-1_1
http://dx.doi.org/10.1007/978-3-319-31629-1_1
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or in the inverse form

σ = σ0 exp

(
Q

n RT

)( |ε̇H|
ε̇0

) 1
n

sgn(ε̇H) (3.3.34)

Let us note that constitutive equations (3.3.33) and/or (3.3.34) are applicable for
narrow ranges of stress, strain rate and temperature. For example, for metals the
activation energy decreases and the power exponent n increases with a decrease
of temperature. To capture wide stress and temperature ranges advanced functions
are required. Functions of stress (strain rate) and temperature will be discussed in
Sect. 5.4.4.

For n = 1 the model of a linear viscous fluid follows from Eq. (3.3.34). For large
values of n the strain rate sensitivity of stress according to Eq. (3.3.34) becomes
negligible. For n → ∞ the constitutive equation of rate-independent plasticity
(St. Venant model) with the yield stress σy = σ0 follows from Eq. (3.3.34)

{ |σ | − σy ≤ 0, if ε̇H = 0,
σ = σysgnε̇H, if ε̇H 
= 0

(3.3.35)

The inverse form of the rigid plasticity model is

ε̇H = λ̇sgnσ

{
λ̇ = 0, if |σ | − σy < 0,
λ̇ ≥ 0, if |σ | − σy = 0

(3.3.36)

In rheology and theory ofmaterials Eq. (3.3.30) is classified as a constitutive equation
for non-linear viscous fluid, or non-linear viscous element, see for example Giesekus
(1994), Krawietz (1986), Palmov (1998), Reiner (1969). On the other hand, for large
values of n the model (3.3.34) is close to the model of rate-independent plasticity.
Functions fσ and fT can be formulated such that experimental data including viscous
flow and plasticity can be described. Therefore a model like (3.3.30) can be classified
as viscoplasticity model. For example, viscoplasticity models proposed by Krempl
(1996, 1999) do not contain the yield condition and are based on functions like
(3.3.30). This definition of viscoplasticity may contradict again the classification
in the rheology, where the viscoplastic model is a connection of viscous and rigid
plastic elements.

The inelastic deformation of crystalline materials can be explained by dislocation
glide and dislocation climb (Frost and Ashby 1982; Nabarro and de Villiers 1995).
The glide motion of dislocations dominates at lower homologous temperatures and
higher stress levels, while the climb of dislocations over obstacles is important in
high-temperature regimes and moderate stress levels. From this point of view, the
model like (3.3.30) can be classified as a model of high-temperature plasticity, as
preferred in the materials science, see for example Ilschner (1973). In this book we
classify the model like (3.3.30) as a model for high-temperature plasticity.

http://dx.doi.org/10.1007/978-3-319-31629-1_5
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Multi-axial versions of the Eq. (3.3.30) are used in the analysis of hot deformation
processes of metals, for example, friction welding (Schmicker et al. 2013, 2015).
Constitutive equation (3.3.31) is used for the structural analysis in the steady-state
creep range (Altenbach et al. 2008a; Boyle 2012; Naumenko et al. 2009).

3.4 Elasto-plasticity

Assume that the mechanical power L = σ Ḟ F−1 can be additively decomposed in
two parts L = Ls + Ld with

Ls = σs ḞsF
−1
s , Ld = σd ḞdF−1

d ,

where σs and σd are stress-like variables and Fs and Fd are deformation-like variables.
Assume that σs depends only on the deformation-like variables and the temperature,
while σd depends on the deformation rates and the temperature.1 This decomposition
is used to define a part of the mechanical power which is dissipated as heat, i.e. Ld

and can affect the free energy by means of temperature and the remaining part Ls

which directly affects the free energy and under certain conditions can be stored.
For example, this is the case when Ḟd = 0 and T (x, t) = T0, i.e. for isothermal
elasticity, as discussed in Sect. 3.2. In Ziegler (1983) Ls is called quasi-conservative
and Ld—dissipated parts of mechanical power, respectively. Several approaches to
define the corresponding stress and deformation parts are discussed in the litera-
ture. For example, one may consider various connections of rheological elements
including a spring, a viscous element and a friction element (Krawietz 1986; Palmov
1998). A more general approach is to consider a mixture with several constituents
having different properties and volume fractions (Besseling and van der Giessen
1994; Naumenko et al. 2011a). Alternatively, one may assume decompositions for
the deformation gradient, rate of strain and/or stress (Besseling and van der Giessen
1994; Khan and Huang 1995; Maugin 1992).

In this section let us apply the so-called iso-stress approach with the following
constitutive assumption

σs = σd = σ

The mechanical power can be given as follows

L = σ Ḟ F−1 = σ(ḞsF
−1
s + ḞdF−1

d ) (3.4.37)

1In general, σd may also depend on the deformation-like variables. Here we do not consider such
a dependence, for the sake of brevity.
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It is obvious, that in the uni-axial case the additive split of power with the iso-stress
concept is equivalent to following splits of the deformation-like variables

Ḟ F−1 = ḞsF
−1
s + ḞdF−1

d ⇒ d

dt
ln F = d

dt
ln Fs + d

dt
ln Fd ⇒ F = FsFd

(3.4.38)

Viceversa, ifwe assume themultiplicative decompositionof the deformationgradient
F = FsFd, then the additive split of the deformation rates and the additive split of the
mechanical power (3.4.37) follow. In rheology this corresponds to theMaxwellmodel
of viscoelasticity or Prandtl model of elastoplasticity, where a spring is connected
with a dashpot or a friction element in series. For general multi-axial deformation
states the multiplicative decomposition of the deformation gradient does not provide
the additive decomposition of the deformation rates and the mechanical power, see
for example, Besseling and van der Giessen (1994), Khan and Huang (1995), Xiao
et al. (2006). Multi-axial constitutive assumptions will be discussed in Chap. 5. To
illustrate basic ideas let us skip (3.4.38) and start with the iso-stress constitutive
assumption which can be given in the following form

σ = σs(F, Fs, Fd, T ) = σd(Ḟ, Ḟs, Ḟd, T ) (3.4.39)

If constitutive equations for σs and σd are specified then Eq. (3.4.39) can be used to
eliminate one of the kinematic variables, for example Fs. Indeed, assume that F , Fd

and T are given as functions of time. Then Eq. (3.4.39) is the first-order ordinary
differential equation with respect to Fs. It can be solved providing Fs as a function of
remaining variables and time. Therefore the mechanical power can be decomposed
as follows

L = Ls + Ld,

Ls = σ(F, Fd, T )Ḟ F−1 − σ(F, Fd, T )ḞdF−1
d ,

Ld = σ(Ḟ, Ḟd, T )ḞdF−1
d

(3.4.40)

Therefore we can assume that the free energy is now a function of three variables F ,
Fd and T . The inequality (2.6.50) can be written as follows

(
σ F−1 − ρ

∂Φ

∂ F

)
Ḟ −

(
σ F−1

d + ρ
∂Φ

∂ Fd

)
Ḟd − ρ

(
∂Φ

∂T
+ S

)
Ṫ

+σ ḞdF−1
d − q

T ′

T
≥ 0

(3.4.41)

The first line in Eq. (3.4.41) is a linear function of rates of the assumed independent
variables. Therefore with procedures discussed in Sects. 3.1 and 3.2 the inequality
(3.4.41) can be satisfied with

σ F−1 = ρ
∂Φ

∂ F
, σ F−1

d = −ρ
∂Φ

∂ Fd
, S = −∂Φ

∂T
(3.4.42)

http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_2
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and

σ ḞdF−1
d ≥ 0, −q

T ′

T
≥ 0 (3.4.43)

From the first and the second equation in (3.4.42) it follows

σ = ρ
∂Φ

∂ F
F = −ρ

∂Φ

∂ Fd
Fd (3.4.44)

or

∂Φ

∂ F
F + ∂Φ

∂ Fd
Fd = 0 (3.4.45)

Equation (3.4.45) provides a restriction to the free energy and can be solved by
the method of characteristics (Courant and Hilbert 1989). Indeed, the characteristic
system of (3.4.45) is

dF

ds
= F,

dFd

ds
= −Fd, (3.4.46)

where s is a time-like variable. Two ordinary differential equations (3.4.46) possess
one integral. To formulate it rewrite the second equation in Eqs. (3.4.46) as follows

dF−1
d

ds
= − 1

F2
d

dFd

ds
= F−1

d , (3.4.47)

Nowmultiply the first equation in (3.4.46) with F−1
d and the Eq. (3.4.47) with F and

subtract leading to

d

ds
(F F−1

d ) = 0 ⇒ F F−1
d = C,

where C is an integration constant. Therefore F F−1
d is the integral curve of the free

energy and

Φ(F, Fd) = Φ(F F−1
d )

With Eq. (3.4.44) the stress is given as follows

σ = ρ
∂Φ

∂ F
F = ρ

∂Φ

∂ F F−1
d

F F−1
d (3.4.48)

By specifying Fel = F F−1
d we can formulate the thermoelasticity constitutive equa-

tions as it made in Sect. 3.2
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σ = ρ
∂Φ(Fel)

∂ Fel
Fel = ρ

∂Φ(εelH)

∂εelH
, S = −∂Φ

∂T
, (3.4.49)

where εelH = ln Fel is the elastic strain. Note the strain in the continuum mechanics
is usually understood as a quantity that can be related to the deformation gradient,
for example εH = ln F . In this sense the “elastic strain” can only be identified as a
strain if Fd = 1. Nevertheless, “elastic strain” is convenient to analyze and identify
experimental data, for example initial strain in a strain versus time curve or elastic
strain part in a stress-strain hysteresis loop, see examples presented in Sect. 1.1.1.

Fd can also be defined as a “plastic transformation” (Bertram 2012). The quantity
ε
pl
H = ln(Fpl) canbe called the “plastic strain”, i.e. a strain upon an artificial unloading
such that Fel = 1. Again “plastic strain”, “creep strain” or “inelastic strain” are
useful to identify constitutive models, response functions and material properties
from various tests, see Sect. 1.1.1. To define the plastic (inelastic) strain a kinetic
equation is required. For example, one may use Eq. (3.3.31)

ε̇
pl
H = fσ (|σ |)sgn(σ ) fT (T ) (3.4.50)

Let us note, that a multiplicative decomposition of the deformation gradient or the
additive decomposition of the deformation rates are not used in the presented deriva-
tions. However, to visualize the quantity like Fel = F F−1

d one may use the notion
of an intermediate or relaxed configuration. For discussions related to controversial
meanings of such configurations in the case of general three-dimensional deforma-
tion we refer to Bertram (2012), Naghdi (1990), Xiao et al. (2006), among others.

As an example let us consider an elastic-non-linear-viscous material behavior
under isothermal loading conditions. To simplify the model assume that the elastic
strain is small (εel)2 � εel < 1. Small elastic strains are usually observed for metals.
Furthermore assume that the inelastic deformation does not produce a significant
change in volume such that

J = J el = (1 + εel)(1 − νεel)2 ≈ 1 + (1 − 2ν)εel, σ J ≈ σ, (3.4.51)

where ν is the Poisson ratio. The constitutive equation for the stress has the following
form2

σ = ∂ρ0Φ(εelH)

∂εelH
= ∂ρ0Φ(εH − ε

pl
H )

∂(εH − ε
pl
H )

= E(εH − ε
pl
H ) (3.4.52)

For the inelastic strain rate let us apply the power law type constitutive equation, as
discussed in Sect. 3.2

ε̇
pl
H = ε̇0

( |σ |
σ0

)n

sgn(σ ) (3.4.53)

2The linear thermal expansion is neglected for the sake of brevity.

http://dx.doi.org/10.1007/978-3-319-31629-1_1
http://dx.doi.org/10.1007/978-3-319-31629-1_1
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Assume that the rod is fixed at the cross section X = 0, i.e. x(0, t) = 0, and loaded
at x =  by the forceF(t). Furthermore assume that the load is quasi-static such that
the balance of momentum (2.3.25) can be reduced to the balance of internal force
providing σ(x, t)A(t) = F(t). First let us subject the rod to the time-dependent
elongation (strain-controlled test) such that

εH(t) = ln
(t)

0
= ε̇H0 t, (3.4.54)

where ε̇H0 is a given constant strain rate. Let us compute the stresses σ(x, t) and
P(x, t). To this end take the time derivative of Eq. (3.4.52) and apply the constitutive
equation (3.4.53) to eliminate the inelastic strain rate. As a result the following
differential equation for the stress σ can be derived

σ̇ + E ε̇0

( |σ |
σ0

)n

sgn(σ ) = E ε̇H (3.4.55)

For the loading defined by Eq. (3.4.54) the Eq. (3.4.55) can be put into the following
normalized form

d�

dε
+ 1

γ
(�)n = 1, � = σ

σ0
, ε = E

σ0
εH, γ = ε̇H0

ε̇0
(3.4.56)

Equation (3.4.56) can be solved numerically with the initial condition �(0) = 0
providing the stress-strain curve. Figure3.1a illustrates the results of the numerical
integration for n = 3 and three different strain rates. The strain rate sensitivity of the
inelastic range can be clearly observed. The flow stress in the steady state regime
can be computed from Eq. (3.4.56) as follows

d�

dε
= 0 ⇒ �ss = γ

1
n

or

σss = σ0

(
ε̇H0

ε̇0

) 1
n

(3.4.57)

Equation (3.4.57) can be used to identify the material properties ε̇0, σ0 and n from
stress-strain diagrams. Once the true stress σ is given the engineering stress P can
be computed with Eqs. (2.6.55) and (3.4.51) as follows

P = σ F−1 = σ exp
(
−σ0

E
ε
)

Furthermore the engineering strain defined by Eq. (2.1.5) can be related to the true
strain as follows

ε = 1 − exp(εH)

http://dx.doi.org/10.1007/978-3-319-31629-1_2
http://dx.doi.org/10.1007/978-3-319-31629-1_2
http://dx.doi.org/10.1007/978-3-319-31629-1_2
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Fig. 3.1 Strain rate
sensitivity of stress-strain
diagrams for n = 3 and
E/σ0 = 10. a Normalized
true stress versus normalized
true strain. b Normalized
engineering stress versus
normalized engineering
strain

(a)

(b)

Figure3.1b shows the engineering stress as a function of the engineering strain for
E/σ0 = 10 and different strain rates. The engineering stress-strain curve exhibits a
descending branch as a result of the cross section shrinkage. Note, that we assumed
uniform elongation and consequently uniform cross section change. For the analysis
of strain localization and necking instability the cross section shrinkage and its gra-
dient are required as additional degrees of freedom, e.g. Antman (1973), Coleman
(1986).

Besides the strain rate sensitivity the exponent n controls the transition from the
elastic to the inelastic regime. To discuss this Fig. 3.2 shows the true stress-strain
curves for the strain rate ε̇H = ε̇0 and different values of n. With an increase of n the
curves approach the elastic-ideal plastic rate-independent regime.

In the next example assume that the rod is subjected to the constant tensile force
F . The rate of strain follows from Eq. (3.4.55)

ε̇H

(
1 − P

E
exp(εH)

)
= ε̇0

(
P

σ0

)n

exp (nεH) , P = F
A0

(3.4.58)
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Fig. 3.2 Normalized true
stress versus normalized true
strain for the constant strain
rate ε̇H = ε̇0 and different
values of the exponent n

Equation (3.4.55) can be solved in a closed analytical form providing the relation
between the strain and the time. To simplify this relation assume that

P

E
exp(εHmax) � 1

This can be well satisfied if the initial elastic strain after the loading is small, i.e.
P/E � 1 and the maximum creep strain (strain before creep fracture) is εHmax < 1.
In this case Eq. (3.4.55) takes the form

ε̇H = ε̇0

(
P

σ0

)n

exp (nεH) (3.4.59)

The solution of Eq. (3.4.59) can be presented as follows

εH(t) = εelH + ε
pl
H , ε

pl
H = −1

n
ln

(
1 − t

t∗

)
, t∗ = 1

ε̇0n

(σ0

P

)n
, (3.4.60)

where εelH is the initial elastic strain and t∗ is the Hoff’s time to ductile creep rupture
(Hoff 1953). Figure3.3 illustrates the creep curves according to Eqs. (3.4.60) for
different values of the stress exponent. The introduced elasto-(visco)plastic model
can capture the secondary creep stage and the tertiary creep stage due to the cross
section shrinkage. Having a family of experimental creep curves for several stress
levels one may identify the material properties ε̇0, σ0 and n from creep curves. The
value of σ0 can be set arbitrarily, so that only two material constants in the power
law creep are independent. Let us note that the power law creep is observed for
narrow stress range. To capture creep behavior in a wide stress range advanced
functions of stress are required (Altenbach et al. 2008b; Boyle 2012; Hosseini et al.
2013; Naumenko et al. 2009). Cross section shrinkage and the resulting tertiary
creep were frequently observed in metals and alloys, for example Dünnwald and
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Fig. 3.3 Inelastic true strain
versus normalized time for
the constant force and
different values of the
exponent n

El-Magd (1996), El-Magd and Kranz (2000), Längler et al. (2014), Naumenko and
Kostenko (2009). However, tertiary creep in metals and alloys may be controlled by
additional material deterioration processes, see Sect. 1.2.1.2. Therefore Eq. (3.4.60)
should be supplemented by additional kinetic equations to reflect softening, ageing
and damage processes.

3.5 Hardening, Softening, and Ageing

Let us analyze several hardening mechanisms and present approaches to model
macroscopic hardening phenomena. For the sake of brevity let us assume small
strains such that the difference between true and engineering strain and stress mea-
sures is not essential and the geometrically-linear theory can be applied.

3.5.1 Strain Hardening

Inelastic flowofmetals and alloys is accompanied by several hardening processes.An
example is the dislocation generation as a result of inelastic strain accumulation.With
the increase in dislocation density, the dislocation movement becomes more difficult
such that the inelastic deformation rate decreases. At high temperature hardening
effects may be reversed by annihilation processes that reduce the dislocation density.
Therefore, the inelastic strain rate does not decrease towards zero, but attains a
certainminimumor in somecases saturationvalue, seeSect. 1.1.1.A simple empirical
approach is to introduce a strain hardening function h and to generalize a constitutive
equation, for example a power law (3.4.53), as follows

http://dx.doi.org/10.1007/978-3-319-31629-1_1
http://dx.doi.org/10.1007/978-3-319-31629-1_1
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ε̇pl = ε̇0

( |σ |
σ0

)n

sgn(σ )h(εpl) (3.5.61)

A popular choice for h is a power function

h(εpl) = |εpl|l,

where the power l, −1 < l < 0 has to be identified from experimental data. Lim-
itations of the empirical approach will be discussed in Sect. 5.3.1. Alternatively,
hardening can be considered as a process and described by an independent rate-type
equation. In the materials science a mean dislocation density variable � is introduced
to capture a hardening state of the material. Following Estrin (1996) the power law
(3.4.53) can be generalized as follows

ε̇pl = ε̇0

( |σ |
σ̂

)n

sgnσ, (3.5.62)

where σ̂ is called drag stress and defined as follows

σ̂ = MGb
√

�, (3.5.63)

where M is the Taylor factor and b is the magnitude of the Burgers vector. Equa-
tion (3.5.63) assumes a simple, linear relationship between the drag stress and the
dislocation density. As the latter increases in the course of inelastic deformation,
the strain rate decreases, according to Eq. (3.5.62). In the continuum mechanics
variables like mean dislocation density do not appear in the balance equations, and
are not introduced at the beginning together with displacement, strain, density and
others. However, as the dislocation density variable affects the inelastic strain rate
and the stress, one may apply a concept of internal state or hidden state variables as
proposed by Coleman and Gurtin (1967).3 To explain this concept let us introduce a
dimensionless hardening parameter

H =
√

�

�0
, (3.5.64)

where �0 is a reference dislocation density. The constitutive equation (3.5.62) takes
the form

ε̇pl = ε̇0

( |σ |
σ0H

)n

sgnσ, σ0 = MGb
√

�0 (3.5.65)

3A historical essay on the development of theories with internal state variables is presented in
Maugin (2015).

http://dx.doi.org/10.1007/978-3-319-31629-1_5
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Under the assumption of small strains the inequality (2.6.50) takes the following
form

σ ε̇ − ρΦ̇ − ρS Ṫ − q
T ′

T
≥ 0 (3.5.66)

Let us postulate the following split of the mechanical power

L = σ ε̇ = Ls + Ld,

Ls = σs(ε
el, T )ε̇el,

Ld = σd(ε̇
pl, H, T )ε̇pl

(3.5.67)

According to (3.5.67) the stored part is a function of the elastic strain and the temper-
ature, while the dissipated part involves the new variable H to capture the influence
of hardening on the inelastic process. As in the Sect. 3.5 let us use the iso-stress
approach such that

σ = σs(ε
el, T ) = σd(ε̇

pl, H, T )

Furthermore, assume that the free energy now is a function of the elastic strain, the
hardening and the temperature. The inequality (3.5.66) takes the form

(
σ − ρ

∂Φ

∂εel

)
ε̇el − ρ

(
∂Φ

∂T
+ S

)
Ṫ + σ ε̇pl − ρ

∂Φ

∂ H
Ḣ − q

T ′

T
≥ 0 (3.5.68)

To resolve the inequality assume that the internal state variable H is defined by the
following evolution equation

Ḣ = fH (εel, T, H, ε̇pl) (3.5.69)

Then, for ε̇el and Ṫ that can be positive or negative the inequality is satisfied for

σ = ρ
∂Φ

∂εel
, S = −∂Φ

∂T
, −q

T ′

T
≥ 0, σ ε̇pl − ρ

∂Φ

∂ H
Ḣ ≥ 0 (3.5.70)

The last inequality provides a restriction on thematerial properties and/oder response
functions that enter the model. As an example let us assume that the hardening part
of the free energy is proportional to (H∞ − H)2, where H∞ is the saturation value of
the hardening variable, which may depend on the stress or minimum inelastic strain
rate. Then

− ρ
∂Φ

∂ H
= Ah(H∞ − H), (3.5.71)

http://dx.doi.org/10.1007/978-3-319-31629-1_2
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where Ah is a positive constant. For the hardening rate let us apply the following
equation

Ḣ = B (H∞ − H) |ε̇pl|, (3.5.72)

where B is a positive constant. Equation (3.5.72) assumes that the “driving force”
for the hardening process is (H∞ − H), as given by Eq. (3.5.71), and that the kinetics
of hardening is related to the inelastic strain rate magnitude. Equations like (3.5.71)
are applied in Estrin (1996), Blum (2008), Naumenko and Gariboldi (2014), among
others, for modeling hardening in several alloys. With the constitutive equations
(3.5.62) and (3.5.71) as well as the evolution equation (3.5.71) we obtain

σ ε̇pl − ρ
∂Φ

∂ H
Ḣ = [|σ | + AhB (H∞ − H)2

] |ε̇pl| ≥ 0 (3.5.73)

With the proposed constitutive Eq. (3.5.71) and evolution Eq. (3.5.72) the inequality
(3.5.73) is satisfied.

As an example consider a small strain creep regime with σ = const > 0. For the
constant stress Eq. (3.5.72) can be integrated providing the hardening variable as a
function of the inelastic strain. As a result we obtain

H = H∞ − (H∞ − 1) exp
(−Bεpl

)
(3.5.74)

After inserting in the constitutive equation (3.5.65) we obtain

ε̇pl = ε̇0

(
σ

σ0H∞

)n [
1 −

(
1 − 1

H∞

)
exp

(−Bεpl
)]−n

(3.5.75)

Obviously, for the constant stress the model with the internal state variable provides
the creep model with the exponential type strain hardening function. The material
properties can be identified from a family of creep curves. As H∞ is a function
of stress, it is not possible to solve Eq. (3.5.72) in terms of elementary functions
for other cases of loading, for example for the tensile regime. Standard numerical
solution techniques for ordinary differential equations can be applied for the solution
in a general case of loading.

Let us go back to the mean dislocation density model. With Eq. (3.5.64) the
evolution equation (3.5.72) takes the following form

�̇ = (
k1

√
� − k2�

) |ε̇pl|, k1 = 2B
√

�∞, k2 = 2B (3.5.76)

Similar equation is derived in Estrin (1996), where the term k1
√

� is associated with
the storage of dislocations and k2�—with recovery of dislocations.
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3.5.2 Kinematic Hardening

Another mechanism of hardening can be related to the micro-stress fields generated
during the plastic flow, as a result of heterogeneous deformation on the micro-scale.
Several microstructural zones, for example slip planes, grains with certain crystal-
lographic orientations or certain regions within subgrains may exhibit higher levels
of inelastic strain rate. The remaining part of microstructure behaves more or less
elastically. This leads to changes of micro-stress states and to formation of residual
stresses upon unloading. Residual micro-stress fields affect the overall deformation
rate and provide an additional hardening.

To derive a robust phenomenological model by taking into account micro-stress
fields consider again the following split of the mechanical power4

L = σ ε̇ = σ ε̇el + σ ε̇pl

Now assume that a part of the mechanical power σ ε̇pl is stored in the course of
inelastic deformation. To this end let us consider the following decomposition

σ = σa + β, εpl = εrec + εpm, σ ε̇pl = σa ε̇
pl + βε̇rec + βε̇pm, (3.5.77)

where σa is the active stress and β is the backstress. εrec is the recoverable inelastic
strain while εpm is the permanent inelastic strain. These strain components are illus-
trated in Fig. 1.11b. Now define the quasi-conservative and dissipated parts of the
mechanical power as follows

Ls = σ(εel, T )ε̇el + β(εrec, T )ε̇rec,

Ld = σa(ε̇
pl, T )ε̇pl + β(ε̇pm, T )ε̇pm

(3.5.78)

Furthermore assume that the free energy depends on the elastic strain, the recoverable
inelastic strain and the temperature. With these assumptions the inequality (3.5.66)
takes the form

(
σ − ρ

∂Φ

∂εel

)
ε̇el +

(
β − ρ

∂Φ

∂εrec

)
ε̇rec − ρ

(
∂Φ

∂T
+ S

)
Ṫ

+σa ε̇
pl + βε̇pm − q

T ′

T
≥ 0

(3.5.79)

The first line in (3.5.79) is a linear function of three independent rates ε̇el, ε̇rec and T .
Since these rates may be positive or negative, the inequality (3.5.79) can be resolved
as follows

σ = ρ
∂Φ

∂εel
, β = ρ

∂Φ

∂εrec
, S = −∂Φ

∂T
,

−q
T ′

T
≥ 0, σa ε̇

pl + βε̇pm ≥ 0
(3.5.80)

4Here we assume again small strains for the sake of brevity.

http://dx.doi.org/10.1007/978-3-319-31629-1_1
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For the stress and the backstress let us assume the following constitutive equations

σ = ρ
∂Φ

∂εel
= Eεel , β = ρ

∂Φ

∂εrec
= Ehε

rec, (3.5.81)

where Eh is the temperature-dependent hardeningmodulus. For the rate of the plastic
strain let us apply Eq. (3.4.50) with respect to the active part of the stress

ε̇pl = fσ (|σa|)sgn(σa) fT (T ) = fσ (|σ − β|)sgn(σ − β) fT (T ), (3.5.82)

For the rate of the permanent strain let us apply the following equation

ε̇pm = gσ (|β|)sgn(β)gT (T ) (3.5.83)

For fσ and gσ one may apply, for example, power law functions. For fT (T ) and
gT (T ) Arrhenius type functions of temperature can be used. Response functions
of stress and temperature will be discussed in Sect. 5.4.4. Alternatively, one may
assume that the rate of the permanent strain is related to the rate of plastic strain and
the backstress as follows

ε̇pm = β

β∗
|ε̇pl|, (3.5.84)

where β∗ can be a function of stress and temperature. One may verify that with
Eqs. (3.5.82) and (3.5.83) or (3.5.84) the last inequality in (3.5.80) is satisfied. Let
us derive the rate equation for the backstress. To this end take the time derivative of
the constitutive equation (3.5.81)2

β̇ = dEh

dT
Ṫ εrec + Ehε̇

rec = 1

Eh

dEh

dT
β Ṫ + Eh(ε̇

pl − ε̇pm) (3.5.85)

With the Eq. (3.5.83) we obtain

β̇ = 1

Eh

dEh

dT
β Ṫ + Eh[ε̇pl − gσ (|β|)sgn(β)gT (T )] (3.5.86)

Assuming isothermal loading conditions Ṫ = 0, Eq. (3.5.86) simplifies to

β̇ = Eh[ε̇pl − gσ (|β|)sgn(β)gT (T )] (3.5.87)

Equation (3.5.87) was postulated by Malinin and Khadjinsky (1972) without the
analysis of the thermodynamic process and splitting the mechanical power. The
constitutive equation (3.5.82) and the evolution equation (3.5.87) is an example of
the hardeningmodelwith the backstress.As shown inMalinin andKhadjinsky (1972)
such a model can describe various effects of inelastic deformation including creep
recovery, cyclic hardening, etc. A more detailed analysis will be given in Sect. 5.3.2.

http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
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Applying the constitutive assumption (3.5.84) and with Eq. (3.5.85) we obtain

β̇ = 1

Eh

d Eh

dT
β Ṫ + Eh

(
ε̇pl − β

β∗
|ε̇pl|

)
(3.5.88)

For isothermal loading conditions this simplifies to

β̇ = Eh

(
ε̇pl − β

β∗
|ε̇pl|

)
(3.5.89)

Equation (3.5.89) was proposed by Frederick and Armstrong (2007).5 It is obvious,
that different versions for a model with a backstress can be obtained by specifying
the constitutive equation for the rate of permanent inelastic strain. A simplest version
can be obtained assuming

β = Ehε
pl

This linear hardening rule was proposed by Prager (1956). Instead the constitu-
tive equation (3.4.50) one may use a rate-independent plasticity model of the type
(3.3.36). The yield condition is then formulated with respect to the active stress i.e.

|σ − β| − σy = 0

For the given accumulated value of the backstress the actual yield condition is shifted
or translated if compared to the original one with the zero backstress. Therefore this
approach was called kinematic hardening. For different versions of the kinematic
hardening rules we refer to Chaboche (1989, 2008), Lemaitre and Chaboche (1990),
Lemaitre et al. (2009).

Let us analyze the constitutive equation for the plastic strain rate (3.5.82) and the
evolution equation (3.5.89) for different loading cases. To this end let us specify the
constitutive Eq. (3.5.82) assuming a power function of stress

ε̇pl = ε̇0

( |σ − β|
σ0

)n

sgn(σ − β), (3.5.90)

where ε̇0, σ0 and n are material properties. First consider a creep regime for the
constant tensile stress. In this case the evolution equation (3.5.89) can be integrated
in elementary functions. With the initial condition β(0) = 0 the result is

β = β∗
[
1 − exp

(
− Eh

β∗
εpl

)]
(3.5.91)

5The model was firs published in 1966 in a CEGB report, see Frederick and Armstrong (2007) for
historical remarks.
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With (3.5.90) the following expression for the inelastic strain rate can be obtained

ε̇pl = ε̇0

(
σ

σ0

)n [
1 − β∗

σ
+ β∗

σ
exp

(
− Eh

β∗
εpl

)]n

(3.5.92)

Equation (3.5.92) describes the primary stage of the creep curve. It is obvious that
for the loading with constant stress the exponential type strain hardening function
follows from the backstress model. The material parameters and the function β∗ in
Eq. (3.5.92) can be identified from a family of creep curves considering the primary
creep stage.

To simulate strain and/or stress responses under timely varying loading
Eqs. (3.5.82) and (3.5.89) can be solved numerically. Let us introduce new variables:
the normalized time τ = ε̇0t , the normalized stress � = σ/σ0 and the following
dimensionless constants

Ẽh = Ẽh

σ0
, Ẽ = Ẽ

σ0

Equations (3.5.82) and (3.5.89) take the following form

dεpl

dτ
= |� − Ẽhε

rec|nsgn(� − Ẽhε
rec),

dεrec

dτ
= dεpl

dτ
− εrec

εrec∗

∣∣∣∣dε
pl

dτ

∣∣∣∣ ,
(3.5.93)

where

εrec∗ = β∗
Ẽh

�

For the simulations let us assume the following values

n = 3, Ẽh = 100, Ẽ = 1000, B∗ = 0.9 (3.5.94)

Figure3.4a shows two normalized stress versus normalized time profiles. Here three
loading steps are assumed as follows. During the first step the stress is kept constant
over a period of time. Then the stress value is reduced to the half of the value in the first
cycle and kept constant for the same period of time. After that the stress is increased
up to the original value and kept constant. Figure3.4b illustrates the corresponding
creep strain versus time responses. The first loading step provides a typical primary
creep regime. After the unloading a creep recovery during the second loading step
is observed. The loading to the same stress value leads again to the primary creep
regime with a decrease of the inelastic strain rate over the time. However, the starting
creep rate after the second loading is lower that the corresponding creep rate at the
beginning of the loading sequence.



114 3 Elementary Uni-axial Constitutive Models

Fig. 3.4 Simulation of creep
response under variable
loading with Eqs. (3.5.93)
and parameters (3.5.94).
a Loading profiles.
b Inelastic strain versus
normalized time

(a)

(b)

Let us analyze stress responses under the strain control. Taking the time derivative
of stress we obtain

σ̇ = E(ε̇ − ε̇pl)

With the introduced normalized variables this equation reads

d�

dτ
= Ẽ

(
ε̇

ε̇0
− dεpl

dτ

)
(3.5.95)

For a given strain profile ε(τ ), Eq. (3.5.95) can be integrated numerically together
with Eqs. (3.5.93). Figure3.5a shows two strain versus time profiles corresponding
to LCF loading regimes. The stress-strain hysteresis loops are presented in Fig. 3.5b.
We observe that the Frederick-Armstrong type kinematic hardening model is able to
reproduce several phenomena observed in LCF tests. They include the Bauschinger
effect: in the first loading cycle the absolute value of the apparent yield point under
compression is lower than the corresponding value under tension, the cyclic hard-
ening: the stress amplitude increases in the course of cyclic loading, and the strain
rate sensitivity: the stress-strain loop depends on the rate of loading. The Frederick-
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Fig. 3.5 Simulation of stress
response under cyclic strain
with Eq. (3.5.95) and
parameters (3.5.94).
a Loading profiles.
b Normalized stress versus
strain

(a)

(b)

Armstrong model was calibrated and applied to describe inelastic behavior of many
materials. Examples are presented in Altenbach et al. (2013), Chaboche (2008), Län-
gler et al. (2014), among others. In describing material behavior over many loading
cycles modifications may be required. For example the model can lead to an over-
estimation of cyclic strain accumulation in the creep ratchetting regime (Altenbach
et al. 2013; Ohno et al. 1998; Ohno 1998). As discussed in Ohno et al. (1998) the
deficiency is primarily related to the constitutive assumption (3.5.84). Various mod-
ifications of the Frederick-Armstrong model to capture the material behavior under
cyclic loading are discussed by Ohno et al. (1998).

3.5.3 Phase Mixture Models for Hardening and Softening

Many materials contain relatively high dislocation density at the initial (virgin) state
after the processing. Examples include 9–12% Cr ferritic steels, where a high den-
sity of dislocations is induced after martensitic transformation. High dislocation
density, fine subgrain structure and different types of precipitates are examples of
microstructural features that improve creep strength and high-temperature resistance
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Abe (2009), Dyson andMcLean (1998), Blum (2008), Straub (1995). For thesemate-
rials the inelastic deformation is accompanied by softening processes such as recov-
ery of dislocation substructures and coarsening of subgrains (Blum 2008). Stress-
strain curves of softening materials show descending (softening) branch, Fig. 1.2 and
creep curves exhibit accelerated regime immediately after the primary creep stage,
Fig. 1.9.

To characterize hardening and softening processes a phase mixture model (or
composite model) can be applied. The basic idea is to idealize the heterogeneous
inelastic deformation in a volume element by considering a mixture with two or
more constituentswith different, but homogeneous inelastic properties.Assuming the
total deformation of constituents to be the same, redistribution of stresses would take
place, leading to the decrease of the overall inelastic strain rate. For example, in Straub
(1995), Polcik et al. (1998), Polcik (1999), Barkar and Ågren (2005) two phases are
introduced including the inelastic hard phase for subgrain boundarieswith a relatively
high dislocation density and the inelastic soft one for subgrain interiors. Two different
sets of constitutive equations for inelastic strains are formulated. Furthermore, the
volume fraction of the hard constituent is assumed to decrease over time to capture
the coarsening process.

Let us explain the phase mixture approach by assuming two constituents with
different inelastic behavior. For the sake of brevity, let us assume that constituents
have the same elastic properties. Furthermore, as in the previous subsections we
assume small strains, to keep the derivations brief and transparent. To designate the
properties of the constituents the subscripts s (for inelastic-soft) and h (for inelastic
hard) will be used. Let εs and εh be the strains of the constituents and σs and σh

the corresponding effective stresses. For the stress of the composite the following
mixture rule can be applied

σ = (1 − ηh)σs + ηhσh (3.5.96)

where ηh is the volume fraction of the inelastic-hard constituent. With respect to the
total strains let us postulate the following rule

ε = εh = εs (3.5.97)

For the effective stress components the following constitutive equations can be
assumed

σs = E(ε − εpls ), σh = E(ε − ε
pl
h ) (3.5.98)

With Eq. (3.5.96) the stress of the mixture is computed as follows

σ = E(ε − εpl), εpl = (1 − ηh)ε
pl
s + ηhε

pl
h (3.5.99)

http://dx.doi.org/10.1007/978-3-319-31629-1_1
http://dx.doi.org/10.1007/978-3-319-31629-1_1


3.5 Hardening, Softening, and Ageing 117

For the inelastic strain rates one may assume the following constitutive equations

ε̇pls = fs(|σs|)sgnσs, ε̇
pl
h = fh(|σh|)sgnσh, (3.5.100)

where fs and fh are response functions of stress, for example power laws. Instead
of Eq. (3.5.100) one may apply more advanced constitutive and evolution equations
with dislocation type hardening or/and backstress as discussed in Sects. 3.5.1 and
3.5.2. Examples are presented in Straub (1995), Polcik et al. (1998), Polcik (1999),
Barkar andÅgren (2005), Raj et al. (1996). Let us note that if the volume fractions are
kept constant, then Eqs. (3.5.97)–(3.5.100) is nothing else as a connection of hard and
soft elements in parallel, where both hard and soft elements is a series connection of
an elastic spring and non-linear dashpots. Such connections in various combinations
are discussed in rheology (Reiner 1969; Giesekus 1994; Palmov 1998). Rheological
models, equipped with constant volume fractions were firstly applied in Besseling
(1958), Besseling and van der Giessen (1994) to model inelastic material behavior
and, in particular to motivate kinematic hardening rules. A more general approach
is to introduce kinetic equations for the volume fractions. For example, assuming
that the volume fraction of the hard constituent is decreasing over time, softening
process associated with change of the microstructure can be described. In Straub
(1995), Polcik et al. (1998), Polcik (1999), Barkar and Ågren (2005) the volume
fraction ηh is related to the mean subgrain size. The increase in the subgrain size, or
decrease of ηh is described with an exponential-type kinetic equation. It is calibrated
against experimental data of substructure evolution based on in situ transmission
electron microscope observations.

Equations (3.5.97)–(3.5.100) and a kinetic equation for the volume fraction can
be used to simulate macroscopic material response for different types of loading.
Such a simulation is feasible if material parameters in constitutive and evolution
equations for constituents are well defined either from tests or from simulations
at the microscale. An alternative approach is to reduce Eqs. (3.5.97)–(3.5.100) to
obtain a macroscopic model with internal state variables. Then all response functions
and material properties can be identified from macroscopic tests. As an example
consider an approach presented in Naumenko et al. (2011a) to model hardening and
softening in advanced steel. Instead of (3.5.100) the following constitutive equations
are assumed

ε̇pls = fs(|σs|)sgnσs, ε̇
pl
h = σh − σ

σh∗ − σ
|ε̇pl|, (3.5.101)

where σh∗ is the saturation stress in the hard constituent. In Eqs. (3.5.101) the inelastic
part of the soft constituent is determined by the non-linear viscosity function fs. The
inelastic strain rate of the hard constituent is proportional to the magnitude of the
overall creep rate and the overstress σov = σh − σ . As the elastic properties of
constituents are assumed the same, after the loading in elastic range σh = σ , σov = 0
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and the inelastic strain rate of the hard constituent is zero. When σh → σh∗ , where
σh∗ is the saturation stress, the inelastic strain rate of the hard constituent in tensile
regime approaches to the inelastic strain rate of the composite. Then ε̇pls = ε̇

pl
h and

the stresses in both constituents approach the asymptotic values. For the sake of
brevity let us assume isothermal loading. Taking the time derivative of Eq. (3.5.98)
and applying Eq. (3.5.101) we obtain

ε̇s = σ̇s

E
+ f (|σs|)sgnσs, ε̇h = σ̇h

E
+ σh − σ

σh∗ − σ
|ε̇pl| (3.5.102)

The strain rate of the mixture can be computed applying Eq. (3.5.99)1 as follows

ε̇ = σ̇

E
+ ε̇pl (3.5.103)

For the identification it is convenient to introduce the following new variables

β = ηh0

1 − ηh0
(σh − σ), 0 ≤ β ≤ β∗, β∗ = ηh0

1 − ηh0
(σh∗ − σ),

Γ = ηh

1 − ηh

1 − ηh0

ηh0
, Γ∗ ≤ Γ ≤ 1, Γ∗ = ηh∗

1 − ηh∗

1 − ηh0

ηh0
,

where ηh0 is the reference value of ηh. Equations (3.5.97)–(3.5.100) and
(3.5.101)–(3.5.103) can be transformed to

ε̇pl = f (|σ − βΓ |) σ − βΓ

|σ − βΓ | − 1

E

d

dt
(βΓ ),

β̇ = E

ch

(
ε̇pl − |ε̇pl| β

β∗

)
, ch = 1 − ηh0

ηh0

(3.5.104)

In Eq. (3.5.104) β and Γ play now the role of internal state variables. If the fraction
is kept constant then by setting Γ = 1 we obtain

ε̇pl = f (|σ − β|) σ − β

|σ − β| − 1

E

d

dt
(β),

β̇ = E

ch

(
ε̇pl − |ε̇pl| β

β∗

) (3.5.105)

The underlined term influences the creep rate only at the beginning of the inelas-
tic process. One may verify that if ch  1 then this term can be neglected. Then
we obtain the kinematic hardening/recovery model proposed in Frederick and Arm-
strong (2007), see Sect. 3.5.2. Therefore, the variable β can be termed backstress or
kinematic stress.
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Fig. 3.6 Simulation of creep
response under constant
stress with Eqs. (3.5.104)
and (3.5.106).
a Qualitative variation of
inelastic strain rate versus
inelastic strain. b Qualitative
variation of backstress versus
inelastic strain

(a)

(b)

For the variable Γ an additional evolution equation is required. Let us assume that
Γ evolves by the exponential lawwith the increase of themean inelastic strain towards
the saturation value Γ∗(σ ), i.e.

Γ̇ = As(Γ∗ − Γ )|ε̇pl|, (3.5.106)

where As is a constant. Then the set of Eqs. (3.5.104) and (3.5.106) describes the
decrease of the inelastic strain rate as a result of stress redistribution between the
constituents and the increase of the inelastic strain rate as a consequence of softening
processes (decrease of the volume fraction of the hard constituent). As an example,
consider a creep regime under the constant stress. Figure3.6a illustrates the time
variation of the inelastic strain rate as a function of the inelastic strain. Equations
(3.5.104) and (3.5.106) describe the primary and the tertiary creep stages as a result
of hardening and softening processes. If the volume fraction ηh is kept constant,
and consequently Γ = 1, only the primary and the secondary creep stages can be
described. In this case the backstress βΓ attains a saturation value, Fig. 3.6b. If the
volume fraction of the hard constituent is assumed to decrease, then Γ decreases and
the backstress βΓ decreases providing a possibility to describe the softening process.
Equations (3.5.104) and (3.5.106) were identified in Naumenko et al. (2011a, b)
based on creep data for severalmartensitic steels. Verification examples are presented
illustrating a good performance of the model in describing hardening and softening
for different loading paths.
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3.5.4 Ageing

Strength characteristics of many materials is determined by precipitation and dis-
persion hardening. Heat-resistant steels contain several kinds of precipitate particles
in the matrix and at grain boundaries including carbonitrides and intermetallic com-
pounds (Abe 2008). Age-hardened aluminium alloys for high temperature appli-
cations, for example AA2014 alloy includes the θ ′ phase, in the form of rod-like
precipitates aligned along the <001> crystallographic directions of the α-Al matrix
(Naumenko andGariboldi 2014). Dispersed fine precipitates are obstacles for mobile
dislocations. Several mechanisms for interaction between mobile dislocations and
particles are reviewed in Ilschner (1973), Kassner and Pérez-Prado (2004), Roesler
et al. (2007) among others. An example is the Orowan bypassing mechanism, that
predicts the yield stress to be inversely proportional to the mean spacing between
particles ormean particle size, see Sect. 1.3. A decrease of the particle sizewould pro-
vide an increase of the yield stress. On the other hand, small particles can be sheared
by dislocation. This shearing mechanism suggests the yield stress to decrease with
a decrease in the particle size. The optimum strengthening can be achieved when
an alloy contains precipitates that small enough to be bypassed and large enough to
resist against shearing Roesler et al. (2007), Polmear (1996, 2004). The microstruc-
tural stability of many materials depends essentially on the precipitation sequences.
For example, for age-hardenable Al alloys the high temperature exposure leads to the
completion of precipitation and to coarsening of θ ′ particles (Gariboldi and Casaro
2007). Coarsening of carbide precipitates for steels is documented in (Abe 2008;
Blum 2008; Straub 1995). The driving force of the coarsening process is the decrease
in the mean surface energy. For example, for spherical particles the surface to the
volume ratio is proportional to 1/D, where D is the mean particle diameter. The
increase of D would lead to a decrease of the surface energy. The process occurs by
the growth of large particles at the expense of smaller ones which dissolve and is
related to the diffusive mass transport. For example, the coarsening mechanism of θ ′
particles is governed by the diffusion of Cu in Al.

To describe the increase of themean particle size the following equation is applied
in Abe (2008), Blum (2008), Straub (1995), Gariboldi and Casaro (2007)

Dm = Dm
0 + K (T )t, K (T ) = K0 exp

(−Qc

RT

)
, (3.5.107)

where K0 is a material property and Qc is the activation energy for the coarsen-
ing process. For spherical particles the exponent m takes the value 3, which is in
accordance with the coarsening theories of Lifshitz and Slyozov (1961), Wagner
(1961). For rod-like and plate-like particles m can take the value 2, as documented
in Zhang et al. (2013), Gariboldi and Casaro (2007) for aluminum alloys. According
to Eq. (3.5.107) the coarsening process is only related to the exposure time at high
temperature. In several papers, for example, Nakajima et al. (2004) experimental
data are presented, illustrating that inelastic deformation may affect the diffusion,
and as a consequence the coarsening rate.

http://dx.doi.org/10.1007/978-3-319-31629-1_1
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Though the evolution of the mean particle size can be examined by transmission
electron microscopy, experimental analysis of how the mean particle size affects the
inelastic strain rate is more challenging. Indeed, particles may affect the inelastic
process directly and indirectly, as discussed by Ilschner (1973). The strain rate can
be directly influenced by the mean particle spacing if the Orowan-type bypassing
mechanism is assumed. As the particle volume fraction remains constant, the particle
size is proportional to the particle spacing, see Sect. 1.3. Following Estrin (1996) the
drag stress σ̄ can be assumed as a superposition of the dislocation density and the
particle hardening contributions as follows

σ̂ = MGb

(
ζ
√

� + χ
1

D

)
, (3.5.108)

where ζ and χ are weighting factors characterizing the contribution of the Taylor-
type hardening due to dislocations and the Orowan-type hardening due to particles.
With Eqs. (3.5.62) and (3.5.108) the increase in particle size leads to a decrease in
the drag stress and increase in the creep rate. The particle hardening drag stress value
is usually lower than the Orowan stress. This is explained by a variety of dislocation-
particle interaction mechanisms operating in the creep range, e.g. dislocation climb
over particles (Kassner and Pérez-Prado 2004).

Furthermore, the spacing or size of particles may affect the rates of hardening,
recovery and softening. This constitutes an indirect influence on the inelastic strain
rate, as pointed out by Ilschner (1973). For example, in the creep range, particles
immobilize dislocations leading to formation of dislocation substructures. The stor-
age/immobilization of dislocations can be related to the mean particle spacing.

Let us include the particle coarsening process into the constitutive equation for
the inelastic strain rate and into the evolution equation for the dislocation density-
type hardening variable given in Sect. 3.5.1. To this end let us modify the evolution
equation for the mean dislocation density (3.5.76) as follows

�̇ = (
k1

√
� − k2�

) |ε̇pl|, (3.5.109)

where

k1 = 2B
√

�∗, k2 = 2B,
√

�∗ = √
�∞

D0

D
,

where D0 is the mean particle size in the reference state. To describe the coarsen-
ing mechanism within the framework of continuum mechanics let us introduce the
internal state variable Φ = D0/D as proposed by Dyson and McLean (1998). From
Eq. (3.5.107) the following kinetic equation can be derived

Φ̇ = − As

m
Φm+1, As(T ) = A0 exp

(−Qc

RT

)
, A0 = K0

Dm
0

(3.5.110)

http://dx.doi.org/10.1007/978-3-319-31629-1_1
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Furthermore let us introduce a hardening variable H as follows

H = ζ D
√

ρ + χ

ζ D0
√

ρ0 + χ
(3.5.111)

With the introduced state variables Φ and H and with Eq. (3.5.108) the constitutive
equation (3.5.62) takes the following form

ε̇pl = ε̇0

( |σ |
σ0HΦ

)n

sgn(σ ) (3.5.112)

with

σ0 = MGb

(
ζ
√

�0 + χ

D0

)

The evolution equation (3.5.109) can be formulated as follows

Ḣ = B (H∞ − H) |ε̇pl| + (H − HD∗)
d

dt
lnΦ, (3.5.113)

with

H∞ = ζ D0
√

�∞ + χ

ζ D0
√

ρ0 + χ
, HD∗ = χ

ζ D0
√

�0 + χ

The variable H can be considered as a modified hardening variable since it includes
the influence of particles in addition to the mean dislocation density. Let us note that
processes associatedwith change in dislocation density and coarsening of precipitates
have usually quite different characteristic time. Therefore, two rate terms in the
right-hand side of Eq. (3.5.113) may have different orders of magnitudes since the
coarsening is much slower if compared to the hardening/recovery. In Dyson and
McLean (2001), Kowalewski et al. (1994), Naumenko and Gariboldi (2014), Perrin
and Hayhurst (1994) instead of Eq. (3.5.113) the following simplified equation for
the hardening variable is used

Ḣ = B (H∞ − H) |ε̇pl| (3.5.114)

Assuming the creep regime with the constant tensile stress, Eqs. (3.5.110) and
(3.5.114) can be integrated providing the values of internal state variables in a closed
analytical form. Then with Eq. (3.5.112) the inelastic strain rate follows

ε̇pl = ε̇0

(
σ

σ0

)n
(1 + Ast)

n
m[

H∞ − (H∞ − 1) exp
(−Bεpl

)]n (3.5.115)



3.5 Hardening, Softening, and Ageing 123

Equation (3.5.115) can be used to identify the material parameters As , B and σ0

as well as the functions H∞ and ε̇0 from families of creep curves. An example of
identification for forged AA2014 alloy is presented in Naumenko and Gariboldi
(2014).

Advanced high-temperature materials, for example, high-chromium steel contain
different types of precipitates having different coarsening rates. Furthermore, change
in precipitation structures at grain or subgrain boundaries may promote strain soft-
ening and damage processes. For example, coarsening of precipitates at subgrain
boundaries increase the rate at which subgrains coarsen. Kinetic equations for coars-
ening of different types of precipitates are discussed in the literature, a review pre-
sented by Straub (1995).

3.6 Damage

Softening and ageing phenomena discussed in Sects. 3.5.3 and 3.5.4 lead to a decrease
of resistance against inelastic flow. As the inelastic strain rate increases and a spec-
imen may fail as a result of necking, softening and ageing may be classified as
material degradation processes. Inelastic deformation is often accompanied by dam-
age processes—phenomena that can lead directly to macroscopic fracture. Examples
include the formation, growth and coalescence of voids on grain boundaries, micro-
cracks in particles of the second phase, decohesion at particle/matrix interfaces and
surface relief. Defects in microstructure like voids and cracks may exist after the
material processing, may nucleate in the early stages of loading, for example, during
primary creep stage or even under spontaneous deformation in elastic range. The ini-
tially existing micro-defects have negligible influence on the macroscopic response
such as inelastic strain rate. As their number and size increase, they weaken themate-
rial providing the decrease in the load-bearing capacity. The coalescence of cavities
or propagation of micro-cracks lead to the final fracture. Damage mechanisms and
damage processes are reviewed and classified in Ashby et al. (1979), François et al.
(2012).

A micromechanics approach to damage modeling requires the analysis of many
different mechanisms that may operate and interact in a specific material under spe-
cific loading conditions. As an example, consider different physical models related
to grain boundary cavitation in the creep range, as discussed and reviewed in Kassner
and Hayes (2003), Riedel (1987), François et al. (2012), Ozhoga-Maslovskaja et al.
(2015).

A pragmatic approach is to introduce internal state variables to capture damage
process in a phenomenological sense. For example, the tertiary creep stage is partly
determined by the damage processes, Sect. 1.1.1.2. Therefore, one may develop and
calibrate a damage evolution equation to describe the final stage of the creep curve.
The idea of continuum damage mechanics is to formulate such damage laws to
capture material behavior under various loading paths (Krajcinovic 1996; Lemaitre
and Desmorat 2005; Murakami 2012).

http://dx.doi.org/10.1007/978-3-319-31629-1_1
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3.6.1 Kachanov-Rabotnov Model

The phenomenological damage equations were firstly proposed by Kachanov (1958)
and Rabotnov (1959) in order to characterize creep damage evolution. A new internal
variable has been introduced to characterize “continuity” or “damage” of thematerial.
The geometrical interpretation of the continuity variable starts from changes in the
cross-section area of a uni-axial specimen. Specifying the initial cross-section area
of a specimen by A0 and the area of voids, cavities, micro-cracks, etc. by AD , the
Kachanov’s continuity is defined as follows (Kachanov 1986),

ψ = A0 − AD

A0

The value ψ = 1 means the virgin, fully undamaged state, the condition ψ = 0
corresponds to the fracture (completely damaged cross-section).

Rabotnov (1959, 1963, 1969) introduced the dual damage variableω. InRabotnov
(1963) he pointed out that the damage state variable ω “may be associated with the
area fraction of cracks, but such an interpretation is connected with a rough scheme
and is therefore not necessary”. Rabotnov assumed that the creep rate is additionally
dependent on the current damage state. The constitutive equation should have the
form

ε̇pl = f (σ, ω) (3.6.116)

Furthermore, the damage processes can be reflected in the evolution equation

ω̇ = g(σ, ω), ω|t=0 = 0, ω < ω∗, (3.6.117)

where ω∗ is the critical value of the damage parameter for which the material fails.
With the power functions of stress and damage the constitutive equation may be
formulated as follows

ε̇pl = a|σ |n
(1 − ω)m

sgnσ (3.6.118)

Similarly, the damage rate can be expressed by

ω̇ = b

(1 − ω)l

(
σ + |σ |

2

)k

(3.6.119)

The material dependent parameters a, b, n, m, l and k should be identified from
families of creep curves. It is easy to prove that for the damage free state (ω = 0),
the first equation results in the power law creep constitutive equation.
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(a) (b) (c)

Fig. 3.7 Strain and damage of a bar. a Initial state. b Damaged state. c Fictitious undamaged state

Setting m = n the first equation can be written as

ε̇pl = a|σ̃ |n, (3.6.120)

where σ̃ = σ/(1−ω) is the so-called net-stress or effective stress. With the effective
stress Eq. (3.6.120) provides a way to generalize a secondary creep law for the
description of tertiary creep process. Lemaitre and Chaboche (1990) proposed the
effective stress concept to formulate constitutive equations for damaged materials
based on available constitutive equation for “virgin” materials. An interpretation can
be given for a tension bar, Fig. 3.7. Here A0 denotes the initial cross-section area
of the bar, Fig. 3.7a. From the given tensile force F the stress can be computed as
σ = F/A0. The axial strain for the loaded bar ε = (−0)/0 can be expressed as a
function of the stress and the actual damage ε = f (σ, ω), Fig. 3.7b. For the effective
cross-section Ã = A0(1 − ω) the effective stress is

σ̃ = F
Ã

= σ

1 − ω
(3.6.121)

Now a fictitious undamaged bar with a cross-section area Ã, Fig. 3.7c, having the
same axial strain response as the actual damaged bar ε = f (σ̃ ) = f (σ, ω) is
introduced. The strain equivalence principle (Lemaitre 1996) states that any strain
constitutive equation for a damaged material may be derived in the same way as for
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a virgin material except that the usual stress is replaced by the effective stress. Thus
the constitutive equation for the creep rate (3.6.120) is the power law generalized for
a damaged material. Note that the effective cross section area is not just understood
as the initial area minus the area occupied by defects. This quantity and the effective
stress are introduced to account for stress concentrations produced by cavities and/or
microckracks in a phenomenological sense.

Equations (3.6.118) and (3.6.119) can be generalized to the non-isothermal condi-
tions by replacing the parameters a and b by the functions of temperature. Assuming
Arrhenius type temperature dependence the following relations can be applied

a(T ) = a0 exp

(
− Qa

RT

)
, b(T ) = b0 exp

(
− Qb

RT

)
, (3.6.122)

where Qa and Qb are the activation energies of creep and damage processes, respec-
tively.

To identify the material parameters in Eqs. (3.6.118), (3.6.119) and (3.6.122)
experimental data of uni-axial creep up to rupture for certain stress and temperature
ranges are required. To illustrate the idea of identification let us ignore hardening,
softening and ageing processes. Furthermore let us assume m = n in Eq. (3.6.118)
for the sake of brevity. Then the uni-axial creep model for σ > 0 takes the following
form

ε̇pl = a

(
σ

1 − ω

)n

, ω̇ = bσ k

(1 − ω)l
(3.6.123)

With ω = 0 the first equation describes the secondary creep. The minimum (steady-
state) creep rate is defined by the power law function of the applied stress

ε̇
pl
min = aσ n (3.6.124)

In the steady-state creep range the creep curves are approximated by straight lines,
Fig. 3.8a. From the family of creep curves the minimum creep rate versus stress
curve can be obtained. A sketch for such a curve in a double logarithmic scale is
presented in Fig. 3.8b. For a certain stress range log ε̇

pl
min can be approximated by a

linear function of log σ . The parameters a and n can be determined from the steady-
state creep. Let ε̇

pl
min1 and ε̇

pl
min2 be minimum creep rates for the constant stresses σ1

and σ2, respectively. Then the material parameters can be estimated as follows

n = log(ε̇plmin1/ε̇
pl
min2)

log(σ1/σ2)
, a = ε̇

pl
min1

σ n
1

= ε̇
pl
min2

σ n
2

(3.6.125)
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(a) (b)

Fig. 3.8 Phenomenological description of uni-axial creep. aCreep strain versus time curves.bMin-
imum creep rate versus stress curve

For a constant stress σ the damage evolution equation in Eq. (3.6.123) can be
integrated as follows

ω∗∫
0

(1 − ω)ldω =
t∗∫

0

bσ kdt,

where t∗ is the time to fracture of the specimen. Setting ω∗ = 1 and performing the
integration one can obtain

t∗ = 1

(l + 1)bσ k
(3.6.126)

This equation describes the time to creep fracture versus applied stress relation. For a
number ofmetals and alloys experimental data for creep strength canbe approximated
by a straight line in a double logarithmic scale for a certain stress range. From
Eq. (3.6.126) it follows

log t∗ = −(logC + k log σ), C = b(l + 1) (3.6.127)

A typical creep strength curve is sketched in Fig. 3.9. The linear approximation
(3.6.127) is only valid for a specific stress range, Fig. 3.9. Based on Eq. (3.6.127)
and the creep strength curve the following relations can be obtained

k = log(t∗2/t∗1)
log(σ1/σ2)

, b(l + 1) = 1

t∗1σ k
1

= 1

t∗2σ k
2

,

where t∗1 and t∗2 are values of time to fracture corresponding to the applied stresses
σ1 and σ2, respectively. Integration of the second Eq. (3.6.123) by use of Eq. (3.6.126)
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Fig. 3.9 Creep strength
curve

provides the damage parameter as a function of time

ω(t) = 1 −
(
1 − t

t∗

) 1
l+1

(3.6.128)

With Eq. (3.6.128) the creep rate equation (3.6.123) can be integrated leading to the
creep strain versus time dependence

εpl(t) = aσ n−k

b(l + 1 − n)

[
1 −

(
1 − t

t∗

) l+1−n
l+1

]
(3.6.129)

From Eq. (3.6.129) it follows that the constant l must satisfy the condition l > n − 1
providing the positive strain for the positive stress values. By setting t = t∗ the creep
strain before the fracture, i.e. εpl∗ = εpl(t∗), can be calculated as

εpl∗ = aσ n−k

b(l + 1 − n)
(3.6.130)

For n > k the fracture strain increases with an increase in the stress value. Such
a dependence is usually observed for many alloys in the case of moderate stresses.
From Eqs. (3.6.124), (3.6.127) and (3.6.130) the following relations can be obtained

εpl∗ = ε̇
pl
mint∗

1 − n
l+1

, ε̇
pl
mint∗ = a

b(l + 1)
σ n−k (3.6.131)

In the special case n = k the second equation in (3.6.131) reads

ε̇
pl
mint∗ = a

b(l + 1)
= const
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This is the Monkman-Grant relationship which states, that for a given material the
product of the minimum creep rate and the time to fracture is a material constant. We
observe, that theMonkman-Grant relationship follows from theKachanov-Rabotnov
model if the slopes of the minimum creep rate versus stress and the stress versus time
to fracture dependencies coincide in the double logarithmic scale. In this case the
strain before the creep fracture (creep ductility) should be stress independent, as it
follows from the first equation in (3.6.131).

With Eq. (3.6.131) the creep strain versus time dependence (3.6.129) takes the
form

εpl(t) = ε̇
pl
mint∗

1 − n
l+1

[
1 −

(
1 − t

t∗

)1− n
l+1

]
(3.6.132)

We observe that the constant l controls the shape of the tertiary creep stage. For
n/(l + 1) � 1 Eq. (3.6.132) can be approximated by

εpl(t) = ε̇
pl
mint, 0 ≤ t ≤ t∗

In this case the tertiary creep stage is not observable. Instead of Eq. (3.6.123) one
may apply the simplified constitutive model, where the influence of creep damage
on the creep rate is ignored, i.e.

ε̇pl = aσ n, ω̇ = bσ k

(1 − ω)l
(3.6.133)

In a slightly different form Eq. (3.6.133) were originally proposed by Kachanov
(1958) under assumption that for brittle materials the damage processes have negli-
gible influence on the creep rate.

Figure3.10 provides the plots of Eq. (3.6.132) with respect to the normalized
creep strain and normalized time for different values of r ≡ n/(l + 1). We observe
that even for r = 0.2 the creep rate is almost constant. The increase of r leads to the
increase of tertiary creep rate, the increase of the “duration” of the tertiary stage and
increase of the fracture strain.

The phenomenological model (3.6.123) characterizes the effect of damage evo-
lution and describes the tertiary creep in a uni-axial test. For a number of metals and
alloys material parameters are available, see e.g. Altenbach et al. (1997), Altenbach
and Naumenko (1997), Altenbach et al. (2000, 2001), Bodnar and Chrzanowski
(1991), Boyle and Spence (1983), Hayhurst (1972), Hyde et al. (2003, 2000, 1997,
1999), Konkin and Morachkovskij (1987), Kowalewski (1996), Lemaitre (2001),
Lemaitre and Chaboche (1990), Lemaitre et al. (2009), Murakami and Liu (1995).
Instead of the power law functions of stress or damage it is possible to use another
kind of functions, e.g. the hyperbolic sine functions in both the creep and damage
evolution equations. In addition, by the introduction of suitable hardening, softening
and ageing variables, the model can be extended to consider all creep stages. Exam-
ples are presented in Altenbach et al. (2013), Kowalewski et al. (1994), Naumenko
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Fig. 3.10 Creep curves for
different values of
r = n/(l + 1)

and Kostenko (2009), Naumenko et al. (2011a, b), Naumenko and Altenbach (2005),
Perrin and Hayhurst (1994).

In applying Eq. (3.6.123) to the analysis of structures one should bear in mind
that the material parameters are usually estimated from experimental creep curves,
available for a narrow range of stresses. The linear dependencies between log ε̇crmin
and log σ or between log t∗ and log σ do not hold for wide stress ranges. For example,
it is known from materials science that for higher stresses the damage mode may
change from inter-granular to trans-granular, e.g. Ashby et al. (1979). Furthermore,
for higher values of the engineering stress the true stress increases due to the cross
section shrinkage. This should be considered in calibrating the damage evolution
equation based on experimental data on creep and/or creep strength. Onemay assume
that the volume of the specimen does not change during the creep process providing
the relation between the change in the cross section and the elongation, Sect. 3.4.
With the relation between the true stress and the engineering stress the damage
evolution equation (3.6.123) can be integrated providing a two-stage creep strength
curve, Fig. 3.10. The related analysis is presented in Rabotnov (1963, 1969).

The damage evolution equationmay be put in a different form,which is sometimes
more convenient for the identification. To this end let us specify Eqs. (3.6.116) and
(3.6.117) as follows

ε̇pl = fσ (|σ |) fω(ω)sgnσ, ω̇ = gσ (|σ |)gω(ω)
1 + sgnσ

2
, (3.6.134)

where fσ (|σ |), fω(ω), gσ (|σ |) and gω(ω) are functions to be identified from experi-
mental data. With the constitutive equation for the inelastic strain rate (3.6.134)1 the
damage evolution equation (3.6.134)2 can be put in the following form



3.6 Damage 131

ω̇ = hω(ω)
1 + sgnσ

2

|ε̇pl|
ε
pl
∗ (|σ |) , (3.6.135)

where

hω(ω) = gω(ω)

fω(ω)
r(ω∗), r(ω∗) =

ω∗∫
0

fω(x)

gω(x)
dx, ε∗(|σ |) = fσ (|σ |)

gσ (|σ |)

Integrating (3.6.135) for the constant positive true stress provides the relationship
between the damage parameter and the inelastic strain

Ψ (ω) = εpl

ε
pl
∗ (|σ |) , (3.6.136)

where

Ψ (ω) =
ω∫

0

dx

hω(x)

Since Ψ (ω∗) = 1, the function ε
pl
∗ (|σ |) is the strain before the creep fracture under

the constant true stress.

3.6.2 Continuum Damage Mechanics

Let us discuss how to introduce a damage parameter into the one-dimensional contin-
uummechanics framework. For the sake of brevity let us ignore hardening, softening
and ageing. The dissipation inequality (2.6.50) with Ḟ F−1 = ε̇H has the following
form (3.5.66)

σ ε̇H − ρΦ̇ − ρS Ṫ − q
T ′

T
≥ 0 (3.6.137)

Let us assume the following split of the mechanical power

L = σ ε̇H = Ls + Ld,

Ls = σs(ε
el
H, ω, T )ε̇elH,

Ld = σd(ε̇
pl
H , ω, T )ε̇

pl
H

(3.6.138)

As in the Sect. 3.5 let us assume the iso-stress approach such that

σ = σs(ε
el
H, ω, T ) = σd(ε̇

pl
H , ω, T )

http://dx.doi.org/10.1007/978-3-319-31629-1_2
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Therefore, the free energy is nowa function of the elastic strain, the damageparameter
and the temperature. The inequality (3.5.66) takes the form

(
σ − ρ

∂Φ

∂εelH

)
ε̇elH − ρ

(
∂Φ

∂T
+ S

)
Ṫ + σ ε̇pl − ρ

∂Φ

∂ω
ω̇ − q

T ′

T
≥ 0 (3.6.139)

To resolve the inequality assume that the internal state variable ω is defined by the
following evolution equation

ω̇ = g(εelH, T, ω, ε̇
pl
H ) (3.6.140)

Furthermore, assume that the thermal conductivity is not affected by damage, for
the sake of brevity.6 Then, for arbitrary ε̇el and Ṫ the inequality (3.6.139) is satisfied
with

σ = ρ
∂Φ

∂εelH
, S = −∂Φ

∂T
, −q

T ′

T
≥ 0, σ ε̇

pl
H − ρ

∂Φ

∂ω
ω̇ ≥ 0 (3.6.141)

For the stress let us assume the following constitutive equation

Jσ = ∂ρ0Φ

∂εelH
=

{
EgωT(ω)εelH, εelH ≥ 0,

EgωC(ω)εelH, εelH < 0,
(3.6.142)

where the functions gωT(ω) and gωC(ω) have the following properties

gωi (0) = 1, gωi (ω∗) = g∗i , 0 < g∗i � 1,
dgωi

dω
≤ 0, i = T,C

These functions characterize the degradation of stiffness with progressive damage.
As different damage mechanisms under tension and compression operate, different
functionswith subscripts T andC for tensile and compressive regimes are introduced.
The material parameters g∗T and g∗C are introduced to evaluate the material stiffness
under the critical damage state. Equation (3.6.142) can also be formulated as follows

Jσ = EgωT(ω)
εelH + |εelH|

2
+ EgωC(ω)

εelH − |εelH |
2

(3.6.143)

With the constitutive equation (3.6.142), Eq. (3.6.141) can be integrated providing
the following expression for the free energy

6The influence of damage on the heat transfer is analyzed in Skrzypek and Ganczarski (1998),
Ganczarski and Skrzypek (2000).
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ρ0Φ =

⎧⎪⎨
⎪⎩

1

2
EgωT(ω)εel

2

H , εelH ≥ 0

1

2
EgωC(ω)εel

2

H , εelH < 0

⎫⎪⎬
⎪⎭ + ρ0Φω(ω) + ρ0Φ0, (3.6.144)

where ρ0Φω(ω) is the energy required to damage an infinitesimal volume element
up to the valueω. It can be interpreted, as the energy required to form cavities of given
radius and distribution, energy to form microcracks of given length and distribution,
etc. With (3.6.144) the last inequality in (3.6.141) takes the following form

Jσ ε̇
pl
H + R(εelH, ω)ω̇ ≥ 0, R(εelH, ω) = Y (εelH, ω) − h(ω), (3.6.145)

where

Y = −1

2
Eεel

2

H

⎧⎪⎨
⎪⎩

dgωT

dω
, εelH ≥ 0,

dgωC

dω
, εelH < 0,

h(ω) = dρ0Φω

dω
, (3.6.146)

The degradation functions gωT , gωC , the resistance function h(ω) as well as the dam-
age evolution equation should be specified according to mechanisms of damage evo-
lution for the given material, loading conditions and results of material testing. Many
formulations related to brittle damage, ductule damage, creep damage, fatigue dam-
age are discussed within the framework of continuum damagemechanics (Murakami
2012; Lemaitre andDesmorat 2005; Skrzypek andGanczarski 1998). Let us consider
some elementary examples.

With the strain equivalence principle, Sect. 3.6.1 the degradation functions can be
given as follows, e.g. Lemaitre and Desmorat (2005)

gωT = 1 − ω, gωC = 1 − κω, 0 ≤ ω ≤ ω∗, 0 ≤ κ ≤ 1 (3.6.147)

where ω∗ < 1 is a critical value of the damage parameter, and the constant κ controls
the tension-compression difference caused by damage. For κ = 0, damage does not
affect the strain energy density under compression while for κ = 1 the behavior
under tension and compression is the same. Let us assume h(ω) = h0, where h0 is a
constant. Furthermore, let us neglect the inelastic behavior and consider small elastic
strains. Then the inequality (3.6.145) takes the following form

R(ε)ω̇ ≥ 0, R(ε) =

⎧⎪⎨
⎪⎩

1

2
Eε2 − h0, ε ≥ 0,

1

2
κ Eε2 − h0, ε < 0

(3.6.148)

Assume that ω̇ ≥ 0, i.e. damage healing processes are excluded. Then the dissipation
inequality (3.6.148) can be satisfied with the following damage evolution equation

ω̇ = Ω(< R(ε) >), (3.6.149)
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where Ω(x) is a monotonic function with Ω(x) ≥ 0 and Ω(0) = 0. The Macaulay
brackets <> are defined as follows

< x >= x + |x |
2

The function R(ε) plays a role of a damage driving force similarly to the concept of
crack driving force in the fracture mechanics (Rice 1978). An example for Ω is a
power law-type function

ω̇ = a0

(
< R(ε) >

R0

)p

, (3.6.150)

where a0, R0 and p are material parameters. Instead of (3.6.150) one may apply
a rate-independent formulation which includes the condition of the non-negative
damage rate, i.e. ω̇ ≥ 0 and the admissibility condition for the diving force, i.e.
R(ε) ≤ 0. Furthermore it is assumed that ω̇ = 0 if R(ε) < 0 and ω̇ > 0 is only
possible if R(ε) = 0. The rate-independent formulation can be given as follows

ω̇ ≥ 0, R(ε) ≤ 0, ω̇R(ε) = 0 (3.6.151)

With Eq. (3.6.143) one can compute the stress as follows

σ = E(1 − ω)
ε + |ε|

2
+ E(1 − κω)

ε − |ε|
2

(3.6.152)

Equations (3.6.148)–(3.6.152) can be used to model elasticity with damage based
on the strain energy density criterion for damage evolution. Instead of the strain
energy density one may apply the complementary energy density. The inverse of Eg.
(3.6.152) provides

ε = σ + |σ |
2E(1 − ω)

+ σ − |σ |
2E(1 − κω)

(3.6.153)

Inserting into Eq. (3.6.148) yields the following stress based formulation

Rσ (σ, ω)ω̇ ≥ 0, Rσ (σ, ω) =

⎧⎪⎪⎨
⎪⎪⎩

σ 2

2E(1 − ω)2
− h0, σ ≥ 0,

κσ 2

2E(1 − κω)2
− h0, σ < 0

(3.6.154)

The damage driving force Rσ (σ, ω) can also be given as follows

Rσ (σ, ω) = σ 2

2E(1 − ω)2

[
1 + sgnσ

2
+ κ

1 − sgnσ

2

(
1 − ω

1 − κω

)2
]

− h0 (3.6.155)
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With Eq. (3.6.155) the damage evolution equation can be formulated with respect to
the stress.Depending on the type ofmaterial behavior and available experimental data
different forms of damage evolution equations for brittle materials are proposed. The
difference is in the type of the degradation functions, the type of damage resistance
functions and the type of the damage driving force (Murakami 2012; Lemaitre and
Desmorat 2005; Skrzypek and Ganczarski 1998).

To present examples of damage evolution equations for materials that exhibit
inelastic material behavior let us apply the stress-based formulation. To this end we
apply the inverse form of the constitutive equation (3.6.143)

εelH(σ, ω) = J
σ + |σ |
2EgωT(ω)

+ J
σ − |σ |
2EgωC(ω)

(3.6.156)

For the sake of brevity let us assume that under compression the effect of damage is
negligible and set gωC(ω) = 1.With Eq. (3.6.156) the dissipation inequality (3.6.145)
can be formulated as follows

Jσ ε̇
pl
H + Rσ (σ, ω)ω̇ ≥ 0, Rσ (σ, ω) = Yσ (σ, ω) − h(ω), (3.6.157)

where

Yσ (σ, ω) = − 1

2E

(
Jσ

gωT

)2 dgωT

dω

(
1 + sgnσ

2

)
(3.6.158)

Many constitutive models of inelastic behavior coupled with damage that satisfy
(3.6.157) were proposed, e.g. Murakami (2012), Lemaitre and Desmorat (2005),
Skrzypek and Ganczarski (1998). One example is the following formulation

ε̇pl = fσ (|σ |) fω(ω)sgnσ, ω̇ = Ω(< Rσ >)|ε̇pl| (3.6.159)

To specify the response functions fσ , fω,Ω , gωT and h experimental data are required.
As an example consider the following functions

fσ (x) = a

(
x

σ0

)n

, fω(x) = (1 − x)−m,

Ω(x) = b

(
x

R0

)k

, gωT(x) = (1 − x), h(x) = h0,

where a, b, σ0, R0, h0, n and k are material parameters. Equations (3.6.159) take the
following form

ε̇pl = a

( |σ |
σ0

)n 1

(1 − ω)m
sgnσ,

ω̇ = b

(
< Rσ >

R0

)k

|ε̇pl|, Rσ = 1

2E

(
Jσ

1 − ω

)2

− h0

(3.6.160)



136 3 Elementary Uni-axial Constitutive Models

References

Abe F (2008) Strengthening mechanisms in steel for creep and creep rupture. In: Abe F, Kern TU,
Viswanathan R (eds) Creep-resistant steels. Woodhead Publishing, Cambridge, pp 279–304

Abe F (2009) Analysis of creep rates of tempered martensitic 9% Cr steel based on microstructure
evolution. Mater Sci Engi: A 510:64–69

Altenbach H, Naumenko K (1997) Creep bending of thin-walled shells and plates by consideration
of finite deflections. Comput Mech 19:490–495

Altenbach H, Morachkovsky O, Naumenko K, Sychov A (1997) Geometrically nonlinear bending
of thin-walled shells and plates under creep-damage conditions. Arch Appl Mech 67:339–352

Altenbach H, Altenbach J, Naumenko K (1998) Ebene Flächentragwerke. Springer, Berlin
Altenbach H, Kolarow G,Morachkovsky O, Naumenko K (2000) On the accuracy of creep-damage
predictions in thinwalled structures using the finite element method. Comput Mech 25:87–98

AltenbachH, Kushnevsky V, NaumenkoK (2001) On the use of solid- and shell-type finite elements
in creep-damage predictions of thinwalled structures. Arch Appl Mech 71:164–181

Altenbach H, Gorash Y, Naumenko K (2008a) Steady-state creep of a pressurized thick cylinder in
both the linear and the power law ranges. Acta Mech 195:263–274

Altenbach H, Naumenko K, Gorash Y (2008b) Creep analysis for a wide stress range based on
stress relaxation experiments. Int J Mod Phys B 22:5413–5418

Altenbach H, Kozhar S, Naumenko K (2013) Modeling creep damage of an aluminum-silicon
eutectic alloy. Int J Damage Mech 22(5):683–698

Antman SS (1973) Nonuniqueness of equilibrium states for bars in tension. J Math Anal Appl
44(2):333–349

Ashby MF, Gandhi C, Taplin DMR (1979) Fracture-mechanism maps and their construction for
f.c.c. metals and alloys. Acta Metall 27:699–729

Barkar T, Ågren J (2005) Creep simulation of 9–12%Cr steels using the composite model with
thermodynamically calculated input. Mater Sci Eng A 395:110–115

Bertram A (2012) Elasticity and plasticity of large deformations, 3rd edn. Springer, Berlin
Besseling JF (1958) A theory of elastic, plastic and creep deformation of an initially isotropic
material showing anisotropic strain hardening, creep recovery and secondary creep. Trans ASME
J Appl Mech 25(1):529–536

Besseling JF, van der Giessen E (1994) Mathematical modelling of inelastic deformation. Chapman
& Hall, London

Blum W (2008) Mechanisms of creep deformation in steel. In: Abe F, Kern TU, Viswanathan R
(eds) Creep-resistant steels. Woodhead Publishing, Cambridge, pp 365–402

Bodnar A, Chrzanowski M (1991) A non-unilateral damage in creeping plates. In: Zyczkowski M
(ed) Creep in structures. Springer, Berlin, Heidelberg, pp 287–293

Boyle JT (2012) The creep behavior of simple structures with a stress range-dependent constitutive
model. Arch Appl Mech 82(4):495–514

Boyle JT, Spence J (1983) Stress analysis for creep. Butterworth, London
Chaboche JL (1989) Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int J Plast
5:247–302

Chaboche JL (2008) A review of some plasticity and viscoplasticity constitutive equations. Int J
Plast 24:1642–1693

Coleman BD (1986) Necking and drawing in polymeric fibers under tension. The breadth and depth
of continuum mechanics. Springer, Berlin Heidelberg, pp 19–41

Coleman BD, Gurtin ME (1967) Thermodynamics with internal state variables. J Chem Phys
47(2):597–613

Courant R, Hilbert D (1989) Methods of mathematical physics, vol 2: partial differential equations.
Wiley Interscience Publication, New York

Dünnwald J, El-Magd E (1996) Description of the creep behaviour of the precipitation-hardened
material al-cu-mg alloy 2024 using finite element computations based onmicrostructure mechan-
ical models. Comput Mater Sci 7(1):200–207



References 137

Dyson BF, McLean M (1998) Microstructural evolution and its effects on the creep performance of
high temperature alloys. In: Strang A, Cawley J, Greenwood GW (eds) Microstructural stability
of creep resistant alloys for high temperature plant applications. Cambridge University Press,
Cambridge, pp 371–393

Dyson BF, McLean M (2001) Micromechanism-quantification for creep constitutive equations. In:
Murakami S, Ohno N (eds) IUTAM symposium on creep in structures. Kluwer, Dordrecht, pp
3–16

El-Magd E, Kranz A (2000) Ermittlung der inneren Rückspannung der Aluminiumlegierung
AA2024 bei Kriechbelastung. Materialwissenschaft und Werkstofftechnik 31(1):96–101

Estrin Y (1996) Dislocation-density-related constitutive modelling. In: Krausz AS, Krausz K (eds)
Unified constitutive laws of plastic deformation. Academic Press, San Diego, pp 69–104

François D, Pineau A, Zaoui A (2012) Mechanical behaviour of materials, mechanical behaviour
of materials, vol II: fracture mechanics and damage. Springer

Frederick CO, Armstrong PJ (2007) A mathematical representation of the multiaxial Bauschinger
effect. Mater High Temp 24(1):1–26

Frost HJ, Ashby MF (1982) Deformation-mechanism maps. Pergamon, Oxford
Ganczarski A, Skrzypek J (2000) Damage effect on thermo-mechanical fields in a mid-thick plate.
J Theor Appl Mech 38(2):271–284

Gariboldi E, Casaro F (2007) Intermediate temperature creep behaviour of a forged Al-Cu-Mg-Si-
Mn alloy. Mater Sci Eng: A 462(1):384–388

Giesekus H (1994) Phänomenologische Rheologie. Springer, Berlin
Gould PL (1988) Analysis of shells and plates. Springer, New York
Granger R (1994) Experiments in heat transfer and thermodynamics. Cambridge University Press,
Cambridge

Hahn HG (1985) Elastizitätstheorie. Teubner, Stuttgart, B.G
Hayhurst DR (1972) Creep rupture undermultiaxial states of stress. JMech Phys Solids 20:381–390
Hoff NJ (1953) The necking and the rupture of rods subjected to constant tensile loads. Trans ASME
J Appl Mech 20(1):105–108

Hosseini E, Holdsworth SR, Mazza E (2013) Stress regime-dependent creep constitutive model
considerations in finite element continuum damage mechanics. Int J Damage Mech. 22(8):
1186–1205

Hyde TH, Sun W, Becker AA, Williams JA (1997) Creep continuum damage constitutive equa-
tions for the base, weld and heat-affected zone materials of a service-aged 1/2Cr1/2Mo1/4V:2
1/4Cr1Mo multipass weld at 640◦C. J Strain Anal Eng Des 32(4):273–285

Hyde TH, Sun W, Williams JA (1999) Creep behaviour of parent, weld and HAZ materials of new,
service aged and repaired 1/2Cr1/2Mo1/4V: 21/4Cr1Mo pipe welds at 640◦C. Mater High Temp
16(3):117–129

Hyde TH, Sun W, Becker AA (2000) Failure prediction for multi-material creep test specimens
using steady-state creep rupture stress. Int J Mech Sci 42:401–423

Hyde TH, Sun W, Agyakwa PA, Shipeay PH, Williams JA (2003) Anisotropic creep and frac-
ture behaviour of a 9CrMoNbV weld metal at 650◦C. In: Skrzypek JJ, Ganczarski AW (eds)
Anisotropic behaviour of damaged materials. Springer, Berlin, pp 295–316

Ilschner B (1973) Hochtemperatur-Plastizität. Springer, Berlin
Kachanov LM (1958) O vremeni razrusheniya v usloviyakh polzuchesti (on the time to rupture
under creep conditions, in russ.). Izv AN SSSR Otd Tekh Nauk 8:26–31

Kachanov LM (1986) Introduction to continuum damage mechanics. Martinus Nijhoff, Dordrecht
Kassner ME, Hayes TA (2003) Creep cavitation in metals. Int J Plast 19:1715–1748
Kassner ME, Pérez-Prado MT (2004) Fundamentals of creep in melals and alloys. Elsevier,
Amsterdam

Khan AS, Huang S (1995) Continuum theory of plasticity. Wiley, New York
Konkin VN, Morachkovskij OK (1987) Polzuchest’ i dlitel’naya prochnost’ legkikh splavov,
proyavlyayushchikh anizotropnye svoistva (Creep and long-term strength of light alloys with
anisotropic properties, in Russ.). Problemy prochnosti 5:38–42



138 3 Elementary Uni-axial Constitutive Models

Kowalewski ZL (1996) Creep rupture of copper under complex stress state at elevated tempera-
ture. Design and life assessment at high temperature. Mechanical Engineering Publ, London,
pp 113–122

Kowalewski ZL, Hayhurst DR, Dyson BF (1994) Mechanisms-based creep constitutive equations
for an aluminium alloy. J Strain Anal Eng Des 29(4):309–316

Krajcinovic D (1996) Damage mechanics. Appl Math Mech 41. North-Holland, Amsterdam
Krawietz A (1986) Materialtheorie: Mathematische Beschreibung des phänomenologischen ther-
momechanischen Verhalten. Springer, Berlin

Krempl E (1996) A small-strain viscoplasticity theory based on overstress. In: Krausz AS, Krausz
K (eds) Unified constitutive laws of plastic deformation. Academic Press, San Diego, pp 281–318

Krempl E (1999) Creep-plasticity interaction. In: Altenbach H, Skrzypek J (eds) Creep and damage
in materials and structures. Springer, Wien, New York, pp 285–348, CISM Lecture Notes No.
399

Landau LD, Lifshits EM, Kosevich AM, Pitaevskii LP (1986) Theory of elasticity. Butterworth-
Heinemann, Course of theoretical physics

Längler F, Naumenko K, Altenbach H, Ievdokymov M (2014) A constitutive model for inelas-
tic behavior of casting materials under thermo-mechanical loading. J Strain Anal Eng Des 49:
421–428

Lemaitre J (1996) A course on damage mechanics. Springer, Berlin
Lemaitre J (ed) (2001) Handbook of materials behavior models. Academic Press, San Diego
Lemaitre J, Chaboche JL (1990) Mechanics of solid materials. Cambridge University Press,
Cambridge

Lemaitre J, Desmorat R (2005) Engineering damage mechanics: ductile, creep. Springer, Fatigue
and Brittle Failures

Lemaitre J, Chaboche J, BenallalA,Desmorat R (2009)Mécanique deésMatériaux Solides, 3rd edn.
Mechanics and thermodynamics, Dunod, Paris, The Addison-Wesley Series in the engineering
sciences

Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions.
J Phys Chem Solids 19:35–50

Lurie A (2010) Theory of elasticity. Springer, Foundations of Engineering Mechanics
Malinin NN, Khadjinsky GM (1972) Theory of creep with anisotropic hardening. Int J Mech Sci
14:235–246

Maugin GA (1992) The thermomechanics of plasticity and fracture. Cambridge University Press,
Cambridge

Maugin GA (2015) The saga of internal variables of state in continuum thermo-mechanics
(1893–2013). Mech Res Commun 69:79–86

Müller I (2007) A history of thermodynamics: the doctrine of energy and entropy. Springer
Murakami S (2012)Continuumdamagemechanics: a continuummechanics approach to the analysis
of damage and fracture. Springer, Solid Mechanics and Its Applications

Murakami S, Liu Y (1995) Mesh-dependence in local approach to creep fracture. Int J Damage
Mech 4:230–250

Nabarro FRN, de Villiers HL (1995) The physics of creep: creep and creep-resistant alloys. Taylor
& Francis, London

Naghdi PM (1990) A critical review of the state of finite plasticity. J Appl Math Phys (ZAMP)
41:316–394

Nakajima T, TakedaM, Endo T (2004) Accelerated coarsening of precipitates in crept Al-Cu alloys.
Mater Sci Eng: A 387:670–673

Naumenko K, Altenbach H (2005) A phenomenological model for anisotropic creep in a multi-pass
weld metal. Arch Appl Mech 74:808–819

Naumenko K, Gariboldi E (2014) A phase mixture model for anisotropic creep of forged Al-Cu-
Mg-Si alloy. Mater Sci Eng: A 618:368–376

Naumenko K, Kostenko Y (2009) Structural analysis of a power plant component using a stress-
range-dependent creep-damage constitutive model. Mater Sci Eng A510–A511:169–174



References 139

Naumenko K, Altenbach H, Gorash Y (2009) Creep analysis with a stress range dependent consti-
tutive model. Arch Appl Mech 79:619–630

Naumenko K, Altenbach H, Kutschke A (2011a) A combined model for hardening, softening and
damage processes in advanced heat resistant steels at elevated temperature. Int J Damage Mech
20:578–597

Naumenko K, Kutschke A, Kostenko Y, Rudolf T (2011b) Multi-axial thermo-mechanical analy-
sis of power plant components from 9–12%Cr steels at high temperature. Eng Fract Mech 78:
1657–1668

Nellis G, Klein S (2009) Heat transfer. Cambridge University Press, Cambridge
Ohno N (1998) Constitutive modeling of cyclic plasticity with emphasis on ratchetting. Int J Mech
Sci 40(2):251–261

Ohno N, Abdel-Karim M, Kobayashi M, Igari T (1998) Ratchetting characteristics of 316FR steel
at high temperature, Part I: strain-controlled ratchetting experiments and simulations. Int J Plast
14(4):355–372

Ozhoga-Maslovskaja O, Naumenko K, Altenbach H, Prygorniev O (2015) Micromechanical sim-
ulation of grain boundary cavitation in copper considering non-proportional loading. Comput
Mater Sci 96, Part A:178–184

Palmov V (1998) Vibrations in elasto-plastic bodies. Springer, Berlin
Perrin IJ, Hayhurst DR (1994) Creep constitutive equations for a 0.5Cr-0.5Mo-0.25V ferritic steel
in the temperature range 600–675◦C. J Strain Anal Eng Des 31(4):299–314

Polcik P (1999) Modellierung des Verformungsverhaltens der warmfesten 9–12% Chromstähle im
Temperaturbereich von 550–560◦ C. Dissertation, Universität Erlangen-Nürnberg, Shaker Verlag
Aachen

Polcik P, Straub S, Henes D, Blum W (1998) Simulation of the creep behaviour of 9–12% CrMo-
V steels on the basis of microstructural data. In: Strang A, Cawley J, Greenwood GW (eds)
Microstructural stability of creep resistant alloys for high temperature plant applications. Cam-
bridge University Press, Cambridge, pp 405–429

Polmear IJ (1996) Recent developments in light alloys. Mater Trans, Jpn Inst Met 37(1):12–31
Polmear IJ (2004) Aluminium alloys—a century of age hardening. Mater Forum 28:1–14
Prager W (1956) A new method of analyzing stresses and strains in work-hardening plastic solids.
J Appl Mech 23(4):493–496

Rabotnov YN (1959) O mechanizme dlitel’nogo razrusheniya (A mechanism of the long term
fracture, in Russ.). Voprosy prochnosti materialov i konstruktsii, AN SSSR pp 5–7

Rabotnov YN (1963) O razrushenii vsledstvie polzuchesti (On fracture as a consequence of creep,
in Russ.). Prikladnaya mekhanika i tekhnicheskaya fizika 2:113–123

Rabotnov YN (1969) Creep problems in structural members. North-Holland, Amsterdam
Raj SV, Iskovitz IS, Freed AD (1996) Modeling the role of dislocation substructure during class
M and exponential creep. In: Krausz AS, Krausz K (eds) Unified constitutive laws of plastic
deformation. Academic Press, San Diego, pp 343–439

Reddy JN (1997) Mechanics of laminated composite plates: theory and analysis. CRC Press, Boca
Raton

Reiner M (1969) Deformation and flow. an elementary introduction to rheology, 3rd edn. H.K.
Lewis & Co., London

Rice JR (1978) Thermodynamics of the quasi-static growth of griffith cracks. J Mech Phys Solids
26(2):61–78

Riedel H (1987) Fracture at high temperatures. Materials Research and Engineering. Springer,
Berlin

Roesler J, Harders H, Baeker M (2007) Mechanical behaviour of engineering materials: metals,
ceramics, polymers, and composites. Springer

SchmickerD,NaumenkoK, Strackeljan J (2013)A robust simulation of direct drive frictionwelding
with a modified carreau fluid constitutive model. Comput Methods Appl Mech Eng 265:186–194



140 3 Elementary Uni-axial Constitutive Models

Schmicker D, Paczulla S, Nitzschke S, Groschopp S, Naumenko K, Jüttner S, Strackeljan J (2015)
Experimental identification of flow properties of a S355 structural steel for hot deformation
processes. J Strain Anal Eng Des 50(2):75–83

Skrzypek J, GanczarskiA (1998)Modelling ofmaterial damage and failure of structures: foundation
of engineering mechanics. Springer, Berlin

Straub S (1995) Verformungsverhalten und Mikrostruktur warmfester martensitischer 12%-
Chromstähle. Dissertation, Universität Erlangen-Nürnberg, VDI Reihe 5, Nr. 405, Düsseldorf

Szilard R (1974) Theory and analysis of plates. Prentice-Hall, Englewood Cliffs, New Jersey
Timoshenko SP, Goodier JN (1951) Theory of elasticity. McGraw-Hill, New York
Timoshenko SP,Woinowsky-Krieger S (1959) Theory of plates and shells.McGraw-Hill, NewYork
Wagner C (1961) Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung).
Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 65
(7–8):581–591

Xiao H, Bruhns OT, Meyers A (2006) Elastoplasticity beyond small deformations. Acta Mech.
182(1–2):31–111

Zhang J, Deng Y, Zhang X (2013) Constitutive modeling for creep age forming of heat-treatable
strengthening aluminum alloys containing plate or rod shaped precipitates. Mater Sci Eng: A
563:8–15

ZieglerH (1983)An introduction to thermomechanics. North-Holland series in appliedmathematics
and mechanics, vol 21, North-Holland, Amsterdam



Chapter 4
Three-Dimensional Continuum Mechanics

The objective of continuummechanics is to develop mathematical models to analyze
the behavior of idealized three-dimensional bodies. The idealization is related to the
hypothesis of a continuum, that is the matter is continuously distributed and fills
the entire region of a body, e.g. Haupt (2002). The continuum mechanics is based
on balance equations and assumptions regarding the kinematics of deformation and
motion. Inelastic behavior is described by means of constitutive equations which
relate multi-axial deformation and stress states. Topological details of microstructure
are not considered. Processes associatedwithmicrostructural changes like hardening,
recovery, ageing and damage can be taken into account bymeans of hidden or internal
state variables and corresponding evolution equations. Various models developed
within the continuum mechanics of solids can be applied to the structural analysis in
the inelastic range.

The classical continuummechanics of solids takes into account only translational
degrees of freedom for motion of material points. The local mechanical interactions
between material points are characterized by forces. Moment interactions are not
considered. Furthermore, it is assumed that the stress state at a point in the solid
depends only on the deformations and state variables of a vanishingly small vol-
ume element surrounding the point. To account for the heterogeneous deformation
various extensions to the classical continuum mechanics were proposed. Micropolar
theories assume that a material point behaves like a rigid body, i.e. it has translation
and rotation degrees of freedom. The mechanical interactions are due to forces and
moments. Constitutive equations are formulated for force andmoment stress tensors.
Micropolar theories of plasticity are presented in Forest et al. (1997), Altenbach and
Eremeyev (2012), Eremeyev et al. (2012), Altenbach and Eremeyev (2014), among
others. Inelastic deformation process is highly heterogeneous at the microscale and
several effects cannot be described by the classical continuummechanics accurately.
For example, the dependence of the yield strength on the mean grain size and on
the mean size of precipitates, see Sect. 1.3, are not considered within the classical
theories since they do not possess intrinsic length scales. To analyze such effects,
phase mixture, non-local and gradient-enhanced continuum theories are developed.
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Examples for phase mixture models of inelastic deformation are presented in Nau-
menko and Gariboldi (2014), Naumenko et al. (2011). Strain gradient andmicromor-
phic theories are discussed in Fleck and Hutchinson (1997), Gao et al. (1999), Forest
(2009). Here a gradient or the rotation (curl) of the inelastic strain are considered
as additional degrees of freedom. Non-local and phase field theories of damage and
fracture were recently advanced to capture initiation and propagation of cracks in
solids (Miehe et al. 2010; Schmitt et al. 2013).

This chapter provides basic equations of the classical three-dimensional con-
tinuum mechanics. To keep the presentation brief and transparent many details of
mathematical derivations are omitted. Several rules of the direct tensor calculus, ten-
sor analysis and special topics related to the theory of tensor functions and invariants
are presented in Appendices A–B.5.

With regard to non-linear continuum mechanics there is a number of textbooks,
for example Altenbach (2015), Bertram (2012), Eglit and Hodges (1996), Haupt
(2002), Lai et al. (1993), Maugin (2013), Smith (1993), Truesdell and Noll (1992).

4.1 Motion, Derivatives and Deformation

4.1.1 Motion and Derivatives

LetR be the position vector for a point P in a reference state of a solid, Fig. 4.1 and rrr
be the position vector of this point (designated by P ′) in the actual configuration. The
displacement vector uuu connects the points P and P ′, Fig. 4.1. The position vectorR
can be parameterizedwith theCartesian coordinate system including the orthonormal
basis iii , jjj , kkk and the coordinates X , Y , Z , i.e.

R(X, Y, Z) = Xiii + Y jjj + Zkkk

Fig. 4.1 Position vectors and displacement vector
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In many cases it is more convenient to use curvilinear coordinates, for example
cylindrical, spherical, skew etc. Specifying the curvilinear coordinates by X1 =
q1, X2 = q2, X3 = q3, see Appendix B.1 the position vector is parameterized as
follows

R(X1, X2, X3) = X (X1, X2, X3)iii +Y (X1, X2, X3) jjj + Z(X1, X2, X3)kkk, (4.1.1)

The directed line element in a differential neighborhood of P is

dR = RidXi , dXi = dR ··· Ri , Ri = ∂R
∂ Xi

, i = 1, 2, 3, (4.1.2)

where Ri is the local basis and Ri is the dual basis, Appendix B.1. The motion of
the continuum is defined by the following mapping

rrr = ΦΦΦ(R, t) (4.1.3)

The basic problem of continuum mechanics is to compute the function ΦΦΦ for all
vectorsR within the body in the reference configuration, for the given time interval
t0 ≤ t ≤ tn as well as for given external loads and temperature. It is obvious that
R = ΦΦΦ(R, t). The displacement vector uuu is defined as follows (Fig. 4.1)

uuu = rrr − R (4.1.4)

The vector rrr can be specified with the basis iii, jjj,kkk as follows

rrr(X1, X2, X3, t) = x(X1, X2, X3, t)iii + y(X1, X2, X3, t) jjj + z(X1, X2, X3, t)kkk

with the actual Cartesian coordinates x, y, z. The directed line element in a differ-
ential neighborhood of P ′ in the actual configuration is

drrr = rrr idXi , dXi = drrr ··· rrr i , rrr i = ∂rrr

∂ Xi
, i = 1, 2, 3 (4.1.5)

where rrr i is the local basis and rrr i is the dual basis in the actual configuration.
To analyze themotion it is useful to introduce the rates of change of functions with

respect to the coordinates Xi and time t . Consider a tensor-valued function fff (Xi , t).
The total differential of fff for the fixed time variable is

d fff = dX1 ∂ fff

∂ X1
+ dX2 ∂ fff

∂ X2
+ dX3 ∂ fff

∂ X3
= dXk ∂ fff

∂ Xk

From Eq. (4.1.2)2 we obtain

d fff = dR ··· Rk ⊗ ∂ fff

∂ Xk
= dR··· 0∇∇∇ fff (4.1.6)
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The operator
0∇∇∇ is the Hamilton (nabla) operator with dual basis vectors of the refer-

ence configuration
0∇∇∇= Rk ⊗ ∂

∂ Xk
(4.1.7)

With fff = R Eq. (4.1.6) yields

dR = dR··· 0∇∇∇ R,
0∇∇∇ R = Rk ⊗ Rk = III (4.1.8)

Alternatively, one may use the spatial description by considering fff to be the function
of rrr and t . For the fixed time variable we may compute the total differential of fff as
follows

d fff = dXk ∂ fff

∂ Xk
= drrr ··· rrrk ⊗ ∂ fff

∂ Xk
= drrr ··· ∇∇∇ fff , (4.1.9)

where

∇∇∇ = rrrk ⊗ ∂

∂ Xk
(4.1.10)

is the Hamilton (nabla) operator with the dual basis of the actual configuration.
The velocity field vvv is defined as follows

vvv = ∂ΦΦΦ

∂t
= u̇uu = ṙrr (4.1.11)

The description where fff is a function of RRR and t is sometimes called Lagrangian
or material. On the other hand if fff is a function of rrr and t , the description is called
Eulerian or spatial. As the mapping ΦΦΦ is assumed invertible

R = ΦΦΦ−1(rrr , t), (4.1.12)

both the descriptions are equivalent in the sense that if fff is known as a function of
R and t , one may use the transformation (4.1.12) to get

fff (R, t) = ggg(rrr , t)

Assuming that both vvv and fff are functions of rrr and t the material time derivative is
defined as follows

d

dt
fff = ∂

∂t
fff + vvv ··· ∇∇∇ fff (4.1.13)

4.1.2 Deformation Gradient and Strain Tensors

Setting fff = rrr into Eq. (4.1.6) we obtain
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drrr = dR··· 0∇∇∇ rrr ,
0∇∇∇ rrr = Rk ⊗ rrrk (4.1.14)

The second rank tensor

FFF = (
0∇∇∇ rrr)T = rrrk ⊗ Rk (4.1.15)

is called deformation gradient. With uuu = rrr −R and (4.1.8) the deformation gradient
can be expressed trough the displacement gradient as follows

FFF = III+ 0∇∇∇ uuu (4.1.16)

Once the deformation gradient is given, one may find the line element drrr in the
differential neighborhood of the point P ′ of the actual configuration for the given
line element dR of the reference configuration. Consider three line elements dRa ,
dRb and dRc in the neighborhood of P such that

(dRa × dRb) ··· dRc = dV0 > 0,

where dV0 is the elementary volume of the parallelepiped spanned on dRa , dRb

and dRc. With Eqs. (4.1.15) and (A.4.7) we can compute the elementary volume of
the actual configuration

dV = (drrra × drrrb) ··· drrrc = [(FFF ··· dRa) × (FFF ··· dRRRb)] ··· FFF ··· dRc

= det FFF(dRa × dRb) ··· dRRRc

= det FFFdV0

Hence

J = det FFF = dV

dV0
> 0 (4.1.17)

The condition det FFF > 0 guarantees that the inverse FFF−1 exists. It can be computed
as follows

FFF−1 = Rk ⊗ rrrk

Indeed

FFF−1 ··· FFF = Rk ⊗ rrrk ··· rrr i ⊗ Ri = δk
i Rk ⊗ Ri = Rk ⊗ Rk = III
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Consider two line elements dRa , dRb, dRa × dRb �= 000 in the neighborhood of P .
Let

NNNdA0 = dRa × dRb

be the infinitesimal oriented area element including the area of the parallelogram
dA0 having dRa and dRb as sides and the unit normal NNN . With the identity (A.4.8)1
one may compute the corresponding area element in the deformed configuration

J FFF−T ··· (dRa × dRb) = (FFF ··· dRa) × (FFF ··· dRb)

or

J FFF−T ··· (NNNdA0) = nnndA (4.1.18)

With the deformation gradient the following relations between nabla operators
(4.1.7) and (4.1.10) can be derived

0∇∇∇ (. . .) = Rk ⊗ ∂(. . .)

∂ Xk
= Ri ⊗ rrr i ··· rrrk ⊗ ∂(. . .)

∂ Xk
= FFF T ··· ∇∇∇(. . .) (4.1.19)

As a result we obtain

∇∇∇(. . .) = FFF−T ··· 0∇∇∇ (. . .),
0∇∇∇ (. . .) = FFF T ··· ∇∇∇(. . .) (4.1.20)

Once FFF is given, one may compute the local strains. To this end consider a line
element dRa = MMMdla0 in the neighborhood of the point P , where the unit vector
MMM is the direction of the element (direction of the strain measurement) and dla0 is
the corresponding length. In the actual configuration drrra = mmmdla . In the course of
deformation both the orientation and the length of the element are changing. The
local stretch and the local normal strain can be computed as follows

λM M = dla

dla0

, εM M = dla − dla0

dla0

(4.1.21)

With the given deformation gradient and

drrra = Ra ··· FFF T = FFF ··· dRa

one may compute

dl2a = drrra ··· drrra = dRa ··· FFF T ··· FFF ··· dRa = (dla0)
2MMM ··· FFF T ··· FFF ··· MMM (4.1.22)



4.1 Motion, Derivatives and Deformation 147

Hence
λ2

M M = (1 + εM M)2 = MMM ··· CCC ··· MMM, CCC = FFF T ··· FFF, (4.1.23)

where CCC is the right Cauchy-Green tensor. For three orthogonal directions specified
by the unit vectors eeeX , eeeY and eeeZ Eq. (4.1.23) provides the corresponding stretches

λ2
X X = eeeX ··· CCC ··· eeeX , λ2

Y Y = eeeY ··· CCC ··· eeeY , λ2
Z Z = eeeZ ··· CCC ··· eeeZ

These equations provide three components of the tensorCCC with respect to the ortho-
normal basis. To define the remaining components consider two orthogonal line
elements given by the vectors dRa = MMMdla0 and dRb = NNNdlb0 in the neighborhood
of the point P , where NNN and MMM , NNN ···MMM = 0 are unit vectors. dla0 and dlb0 are reference
lengths of the elements. The corresponding line elements in the actual configuration
are drrra = mmmdla and drrrb = nnndlb. Let αM N be the angle between the vectors drrra and
drrrb. The local shear strain is defined as γM N = π

2 − αM N . The scalar product of the
vectors drrra and drrrb yields

drrra ··· drrrb = dladlb cosαM N = dladlb sin γM N

= (1 + εM M)(1 + εN N ) sin γnpdla0dlb0

(4.1.24)

For the given deformation gradient FFF

drrra = dRa ··· FFF T = dla0MMM ··· FFF T , drrrb = FFF ··· dRb = dlb0 FFF ··· NNN (4.1.25)

The scalar product yields

drrra ··· drrrb = MMM ··· FFF T ··· FFF ··· NNNdla0dlb0

With Eq. (4.1.24) we obtain

λM MλN N sin γM N = (1 + εM M)(1 + εN N ) sin γM N = MMM ··· CCC ··· NNN (4.1.26)

Equation (4.1.26) provides the M N -component of the tensorCCC . Since MMM and NNN are
two arbitrary orthogonal unit vectors, one,may compute six components of the tensor
CCC by taking the orthogonal unit vectors eeeX , eeeY and eeeZ as directions of the shear strain
measurement. Since the tensor CCC is symmetric only three of them are independent,
i.e.

λX XλY Y sin γXY = eeeX ··· CCC ··· eeeY ,

λX XλZ Z sin γX Z = eeeX ··· CCC ··· eeeZ ,

λY Y λZ Z sin γY Z = eeeY ··· CCC ··· eeeZ

The Cauchy-Green tensor is one example of many strain tensors that can be intro-
duced in the non-linear continuum mechanics. To present several examples let us
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apply the polar decomposition theorem (see Appendix A.4.18) to the deformation
gradient

FFF = RRR ··· UUU = VVV ··· RRR, (4.1.27)

where RRR is the rotation tensor.UUU andVVV are right and left stretch tensors respectively.
These positive definite symmetric tensors have the following spectral representations

UUU =
3∑

i=1

λi

UUU

NNN i ⊗ UUU

NNN i , VVV =
3∑

i=1

λi
VVV

nnni ⊗ VVV

nnni , (4.1.28)

where λi > 0 are principal stretches. The orthonormal unit vectors
UUU

NNN i and
VVV

nnni are
principal directions of the tensorsUUU andVVV , respectively. From (4.1.27) the following
relations can be obtained

VVV

nnni = RRR ··· UUU

NNN i , RRR =
3∑

i=1

VVV

nnni ⊗ UUU

NNN i (4.1.29)

Examples of strain tensors related to UUU (sometimes called material strain tensors)
are the Cauchy-Green strain tensor

GGG = 1

2
(CCC − III ) = 1

2

(
UUU 2 − III

) = 1

2

3∑
i=1

(
λ2

i − 1
) UUU

NNN i ⊗ UUU

NNN i (4.1.30)

the material Biot strain tensor

EEEB = UUU − III =
3∑

i=1

(λi − 1)
UUU

NNN i ⊗ UUU

NNN i (4.1.31)

and the material Hencky strain tensor

HHH = lnUUU =
3∑

i=1

ln λi

UUU

NNN i ⊗ UUU

NNN i (4.1.32)

Examples of strain tensors related to VVV (spatial strain tensors) are the Almansi strain
tensor

EEEA = 1

2

(
III − BBB−1

) = 1

2

(
III − VVV −2

) = 1

2

3∑
i=1

(1 − λ−2
i )

VVV

nnni ⊗ VVV

nnni , (4.1.33)

where BBB = VVV 2 = FFF ··· FFF T is the left Cauchy-Green tensor. Further examples are the
spacial Biot strain tensor
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EEEb = III − VVV −1 =
3∑

i=1

(1 − λ−1
i )

VVV

nnni ⊗ VVV

nnni (4.1.34)

and the spacial Hencky strain tensor

hhh = lnVVV =
3∑

i=1

ln λi
VVV

nnni ⊗ VVV

nnni (4.1.35)

For many structural analysis applications the local strains can be assumed small.
With εM M � 1 and γM N � 1 the left hand side of Eqs. (4.1.23) and (4.1.26) can be
linearized as follows

λ2
M M = (εM M + 1)2 ≈ 2εM M + 1,

λM MλN N sin γM N = (εM M + 1)(εN N + 1) sin γM N ≈ γM N

(4.1.36)

With Eqs. (4.1.23) and (4.1.36) the normal strain in the direction MMM is

εM M = 1

2
MMM ··· FFF T ··· FFF ··· MMM − 1

2

= 1

2
MMM ··· (CCC − III ) ··· MMM

The shear strain can be computed as follows

γM N = MMM ··· FFF T ··· FFF ··· NNN

With the Green-Lagrange strain tensor

GGG = 1

2
(FFF T ··· FFF − III ),

the strains can be given as follows

εM M = MMM ··· GGG ··· MMM, γM N = 2MMM ··· GGG ··· NNN

For the given tensor GGG one may compute the strains with respect to any direction.
For three orthogonal directions specified by the unit vectors eeeX , eeeY and eeeZ the six
components can be computed as follows

εX X = eeeX ··· GGG ··· eeeX , εY Y = eeeY ··· GGG ··· eeeY , εZ Z = eeeZ ··· GGG ··· eeeZ ,

εXY = eeeX ··· GGG ··· eeeY , εX Z = eeeX ··· GGG ··· eeeZ , εY Z = eeeY ··· GGG ··· eeeZ
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Although the normal and shear strains are assumed small, the difference between
the unit vectors like MMM andmmm defined in the initial and actual configurations may be
essential. To formulate geometrically-linear theory we have additionally to assume
infinitesimal rotations.1 The linearized rotation tensor RRR can be given as follows

RRR = III + ϕϕϕ × III ,

where ϕϕϕ is the vector of infinitesimal rotations. Then with Eqs. (4.1.27) and (4.1.16)
the following linearized relations can be established

FFF = III + εεε + ϕϕϕ × III ,
0∇∇∇ uuu = ∇∇∇uuu = εεε + ϕϕϕ × III ,

εεε = 1

2

[∇∇∇uuu + (∇∇∇uuu)T
]
, ϕϕϕ = −1

2
∇∇∇ × uuu

(4.1.37)

The tensor εεε is called tensor of infinitesimal strains.

4.1.3 Velocity Gradient, Deformation Rate, and Spin Tensors

The time derivative of the deformation gradient. can be computed with (4.1.15) as
follows

ḞFF = (
0∇∇∇ ṙrr)T = ṙrr k ⊗ Rk (4.1.38)

With (4.1.11)
∂vvv

∂ Xk
= ṙrr k (4.1.39)

Hence

ḞFF = (
0∇∇∇ vvv)T,

0∇∇∇ vvv = Rk ⊗ ∂vvv

∂ Xk
(4.1.40)

With the relation between nabla operators (4.1.20)2 Eq. (4.1.40) takes the form

ḞFF = (∇∇∇vvv)T ··· FFF (4.1.41)

1In many cases strains can be infinitesimal, but rotations finite. One example is a thin plate strip
which can be bent into a ring such that the strains remain infinitesimal but cross section rotations
are large.
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The spatial velocity gradient LLL = (∇∇∇vvv)T can be computed as follows

LLL = (∇∇∇vvv)T = ḞFF ··· FFF−1 = ∂vvv

∂ Xk
⊗ rrrk (4.1.42)

The tensor LLL can be additively decomposed into the symmetric and skew sym-
metric parts (see Appendix A.4.10)

LLL = DDD + ωωω × III , (4.1.43)

where the symmetric part

DDD = 1

2

[∇∇∇vvv + (∇∇∇vvv)T
]

is called the deformation rate tensor2 while

ωωω = −1

2
∇∇∇ × vvv

is called vorticity vector.
The time derivative of J = det FFF can be computed as follows

dJ

dt
= dFFF

dt
······

(
∂ J

∂FFF

)T

With (B.4.13) we obtain
∂ J

∂FFF
= det FFFFFF−T

Consequently
J̇ = J ḞFF ······ FFF−1 (4.1.44)

Taking the trace of Eq. (4.1.42)

tr LLL = ∇∇∇ ··· vvv = ḞFF ······ FFF−1

With Eq. (4.1.44) we obtain

J̇

J
= d ln J

dt
= ∇∇∇ ··· vvv = ḞFF ······ FFF−1 (4.1.45)

2The tensor DDD is in general not a time derivative of a strain tensor.
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Applying the polar decomposition (4.1.27) and the relations

FFF = RRR ··· UUU ⇒ ḞFF = ṘRR ··· UUU + U̇UU ··· RRR and FFF−1 = UUU−1 ··· RRRT

the velocity gradient can be computed as follows

LLL = ḞFF ··· FFF−1 = ṘRR ··· RRRT + RRR ··· U̇UU ··· UUU−1 ··· RRRT (4.1.46)

For the rotation tensor RRR let us introduce the angular velocity vectorΩΩΩRRR and the spin
tensor ΩΩΩRRR × III as follows. According to the definition of the orthogonal tensor, see
Appendix A.4.17, we obtain

RRR ··· RRRT = III ⇒ ṘRR ··· RRRT + RRR ··· ṘRR
T = 000 ⇒ ṘRR ··· RRRT = −(ṘRR ··· RRRT)T

The skew-symmetric tensor ṘRR ··· RRRT is called the left spin tensor or simply spin tensor.
With the associated vectorΩΩΩRRR we obtain

ṘRR ··· RRRT = ΩΩΩRRR × III , ΩΩΩRRR = −1

2
(ṘRR ··· RRRT)×, (4.1.47)

where (. . .)× denotes the vector invariant orGibbs cross of the second rank tensor, see
Appendix A.4.15. The vectorΩΩΩRRR is called the left angular velocity vector of rotation
or simply angular velocity of rotation. This vector is widely used in the mechanics
of rigid bodies, e.g. Altenbach et al. (2007, 2009), Zhilin (1996). Equation (4.1.46)
can be given as follows

DDD + ωωω × III = ΩΩΩRRR × III + RRR ··· U̇UU ··· UUU−1 ··· RRRT (4.1.48)

Taking the vector invariant of Eq. (4.1.48) the vorticity vector can be computed as
follows

ωωω = ΩΩΩRRR − 1

2
(RRR ··· U̇UU ··· UUU−1 ··· RRRT)× (4.1.49)

The symmetric part of Eq. (4.1.48) is

DDD = 1

2
RRR ··· UUU−1 ··· U̇UU ··· RRRT = 1

2
RRR ··· (U̇UU ··· UUU−1 + UUU−1 ··· U̇UU ) ··· RRRT (4.1.50)

Equation (4.1.50) can be put in the following form

RRRT ··· DDD ··· RRR = 1

2
(U̇UU ··· UUU−1 + UUU−1 ··· U̇UU )
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or

FFFT ··· DDD ··· FFF = 1

2

d

dt
(UUU 2) = 1

2
ĊCC = ĠGG (4.1.51)

Let us take the time derivatives of stretch tensors applying spectral representations
(4.1.28)

U̇UU =
3∑

i=1

(
λ̇i

UUU

NNN i ⊗ UUU

NNN i + λi
d

dt

UUU

NNN i ⊗ UUU

NNN i + λi

UUU

NNN i ⊗ d

dt

UUU

NNN i

)
,

V̇VV =
3∑

i=1

(
λ̇i

VVV

nnni ⊗ VVV

nnni + λi
d

dt

VVV

nnni ⊗ VVV

nnni + λi
VVV

nnni ⊗ d

dt

VVV

nnni

) (4.1.52)

Consider a triple of fixed orthogonal unit vectors eeei and the rotation tensor PPPUUU such
that

UUU

NNN i = PPPUUU ··· eeei

Hence
VVV

nnni = RRR ··· PPPUUU ··· eeei

or
VVV

nnni = PPPVVV ··· eeei , PPPVVV = RRR ··· PPPUUU (4.1.53)

For the rotation tensors PPPUUU and PPPVVV the spin tensors and the angular velocity vectors
can be introduced as follows

ṖPPUUU ··· PPPT
UUU = ΩΩΩUUU × III , ṖPPUUU = ΩΩΩUUU × PPPUUU ,

ṖPPVVV ··· PPPT
VVV = ΩΩΩVVV × III , ṖPPVVV = ΩΩΩVVV × PPPVVV

(4.1.54)

The time derivative of Eq. (4.1.53)2 yields

ṖPPVVV = ṘRR ··· PPPUUU + RRR ··· ṖPPUUU

= ΩΩΩRRR × RRR ··· PPPUUU + RRR ··· (ΩΩΩUUU × III ) ··· RRRT ··· RRR ··· PPPUUU

= (ΩΩΩRRR + RRR ··· ΩΩΩUUU ) × PPPVVV

Hence the following relationship between the angular velocity vectors can be estab-
lished

ΩΩΩVVV = ΩΩΩRRR + RRR ··· ΩΩΩUUU (4.1.55)
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With Eqs. (4.1.54) the rates of change of principal directions can be computed as
follows

d

dt

UUU

NNN i = ΩΩΩUUU × UUU

NNN i ,
d

dt

VVV

nnni = ΩΩΩVVV × VVV

nnni

Consequently the rates of change of stretch tensors (4.1.52) take the following form

U̇UU =
3∑

i=1

λ̇i

UUU

NNN i ⊗ UUU

NNN i + ΩΩΩUUU × UUU − UUU × ΩΩΩUUU ,

V̇VV =
3∑

i=1

λ̇i
VVV

nnni ⊗ VVV

nnni + ΩΩΩVVV × VVV − VVV × ΩΩΩVVV

(4.1.56)

With equation (4.1.56) and

UUU−1 =
3∑

i=1

1

λi

UUU

NNN i ⊗ UUU

NNN i ,

one may compute

RRR ··· U̇UU ··· UUU−1 ··· RRRT = RRR ···
[

3∑
i=1

λ̇iλ
−1
i

UUU

NNN i ⊗ UUU

NNN i + ΩΩΩUUU × III − (UUU × ΩΩΩUUU ) ··· UUU

]
··· RRRT

Applying Eqs. (4.1.53), (4.1.55) it can be simplified as follows

RRR ··· U̇UU ··· UUU−1 ··· RRRT =
3∑

i=1

λ̇iλ
−1
i

VVV

nnni ⊗ VVV

nnni

+ (ΩΩΩVVV − ΩΩΩRRR) × III − VVV ··· [(ΩΩΩVVV − ΩΩΩRRR) × III ] ··· VVV −1

(4.1.57)

Taking the vector invariant of Eq. (4.1.57) and applying the identities (A.4.15) and
(A.4.16) we obtain

(RRR ··· U̇UU ··· UUU−1 ··· RRRT)× = −2(ΩΩΩVVV − ΩΩΩRRR) − AAAVVV ··· (ΩΩΩVVV − ΩΩΩRRR), (4.1.58)

where

AAAVVV =
3∑
i1

λi
VVV

nnni × VVV −1 × VVV

nnni =
3∑

i=1

3∑
j=1

λi

λ j

VVV

nnni × VVV

nnn j ⊗ VVV

nnn j × VVV

nnni

According to (A.4.16) and the Cayley-Hamilton theorem the tensor AAAVVV has the
following representations

AAAVVV = J−1VVV ··· [VVV 2 − (tr VVV 2)III ] = III + J2VVV − J 2
1VVV

J
VVV + J1VVV

J
VVV 2,
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where J1VVV , J2VVV and J = J3VVV are principal invariants of the tensor VVV as defined by
Eqs. (A.4.11). The spectral form of the tensor AAAVVV is

− AAAVVV = λ2
2 + λ2

3

λ2λ3

VVV

nnn1 ⊗ VVV

nnn1 + λ2
3 + λ2

1

λ3λ1

VVV

nnn2 ⊗ VVV

nnn2 + λ2
1 + λ2

2

λ1λ2

VVV

nnn3 ⊗ VVV

nnn3 (4.1.59)

With Eqs. (4.1.49) and (4.1.58) the following relationship between the angular veloc-
ities can be obtained

ωωω = ΩΩΩVVV + 1

2
AAAVVV ··· (ΩΩΩVVV − ΩΩΩRRR) (4.1.60)

The relationship (4.1.60) can also be derived with the following decomposition

FFF = VVV · RRR ⇒ FFF−1 = RRRT · VVV −1

Therefore the velocity gradient is

LLL = ḞFF ··· FFF−1 = V̇VV ··· VVV −1 + VVV ··· ṘRR ··· RRRT ··· VVV −1 (4.1.61)

With Eqs. (4.1.28), (4.1.47) and (4.1.56), Eq. (4.1.61) takes the form

LLL =
3∑

i=1

λ̇iλ
−1
i

VVV

nnni ⊗ VVV

nnni + ΩΩΩVVV × III + LLLΩΩΩ, (4.1.62)

where
LLLΩΩΩ = VVV ··· (Ω̃ΩΩ × III ) ··· VVV −1, Ω̃ΩΩ = ΩΩΩRRR − ΩΩΩVVV

Taking the vector invariant of Eq. (4.1.62) provides the relationship (4.1.60).
With the identity (A.4.8)2 the tensor LLLΩΩΩ can be represented as follows

LLLΩΩΩ = aaa × VVV −2 = VVV 2 × bbb,

aaa = JVVV −1 ··· Ω̃ΩΩ, bbb = J−1VVV ··· Ω̃ΩΩ
(4.1.63)

The right dot product of Eq. (4.1.62) with VVV 2 yields

LLL ··· VVV 2 =
3∑

i=1

λ̇iλi
VVV

nnni ⊗ VVV

nnni + ΩΩΩVVV × VVV 2 + aaa × III , (4.1.64)

With the decomposition of the velocity gradient (4.1.43), Eq. (4.1.64) takes the
following form

DDD ··· VVV 2 =
3∑

i=1

λ̇iλi
VVV

nnni ⊗ VVV

nnni + (ΩΩΩVVV − ωωω) × VVV 2 + aaa × III (4.1.65)
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Taking the vector invariant of Eq. (4.1.65) yields

1

2J
VVV ··· (DDD ··· VVV 2)× =

(
III + 1

2
AAAVVV

)
··· ΩΩΩVVV − 1

2
AAAVVV ··· ωωω − ΩΩΩRRR (4.1.66)

From Eqs. (4.1.60) and (4.1.66) we obtain

1

2J
VVV ··· (DDD ··· VVV 2)× =

(
III − 1

2
AAAVVV

)
··· (ωωω − ΩΩΩRRR)

With Eq. (4.1.59) one may verify the tensor III − 1/2AAAVVV is non-singular. Hence

ωωω − ΩΩΩRRR = KKK VVV ··· (DDD ··· VVV 2)×, KKK VVV = 1

2J

(
III − 1

2
AAAVVV

)−1

··· VVV (4.1.67)

Applying Eq. (4.1.59) the following spectral representation of the tensor KKK VVV can be
established

KKK VVV = 1

(λ2 + λ3)2
VVV

nnn1 ⊗ VVV

nnn1 + 1

(λ3 + λ1)2
VVV

nnn2 ⊗ VVV

nnn2 + 1

(λ1 + λ2)2
VVV

nnn3 ⊗ VVV

nnn3

(4.1.68)

Let us relate the tensor DDD to the time derivative of the Hencky strain tensor hhh. To
this end consider the symmetric part of Eq. (4.1.62)

DDD =
3∑

i=1

λ̇iλ
−1
i

VVV

nnni ⊗ VVV

nnni + 1

2
(VVV 2 × bbb − bbb × VVV 2) (4.1.69)

The time derivative of the Hencky strain tensor (4.1.35) can be computed as follows

ḣhh =
3∑

i=1

λ̇iλ
−1
i

VVV

nnni ⊗ VVV

nnni + ΩΩΩVVV × hhh − hhh × ΩΩΩVVV (4.1.70)

Inserting into Eq. (4.1.69) yields

DDD = ḣhh − ΩΩΩVVV × hhh + hhh × ΩΩΩVVV + 1

2
(VVV 2 × bbb − bbb × VVV 2) (4.1.71)

The tensor

DDDΩΩΩ = 1

2
(VVV 2 × bbb − bbb × VVV 2)
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has the following representation

2DDDΩΩΩ =
3∑

i=1

3∑
j=1

(λ2
i − λ2

j )bbb ··· (
VVV

nnni × VVV

nnn j )(
VVV

nnni ⊗ VVV

nnn j + VVV

nnn j ⊗ VVV

nnni ) (4.1.72)

Assuming that the tensor VVV has distinct principal values λi let us consider the fol-
lowing identity

2DDDΩΩΩ =
3∑

i=1

3∑
j=1

(ln λi − ln λ j )
λ2

i − λ2
j

(ln λi − ln λ j )
bbb ··· (

VVV

nnni × VVV

nnn j )(
VVV

nnni ⊗ VVV

nnn j + VVV

nnn j ⊗ VVV

nnni )

=
3∑

i=1

3∑
j=1

(ln λi − ln λ j )ccc ··· (
VVV

nnni × VVV

nnn j )(
VVV

nnni ⊗ VVV

nnn j + VVV

nnn j ⊗ VVV

nnni )

= hhh × ccc − ccc × hhh, i �= j
(4.1.73)

where the components of vectorccc are related to the components of vectorbbb as follows

ccc ··· (
VVV

nnni × VVV

nnn j ) = λ2
i − λ2

j

(ln λi − ln λ j )
bbb ··· (

VVV

nnni × VVV

nnn j ), i �= j

Hence

ccc ···
3∑

i=1

3∑
j=1

VVV

nnni × VVV

nnn j ⊗ VVV

nnn j × VVV

nnni

= bbb ···
3∑

i=1

3∑
j=1

λ2
i − λ2

j

(ln λi − ln λ j )

VVV

nnni × VVV

nnn j ⊗ VVV

nnn j × VVV

nnni , i �= j

Applying the identity (A.4.14) we obtain

3∑
i=1

3∑
j=1

VVV

nnni × VVV

nnn j ⊗ VVV

nnn j × VVV

nnni =
3∑

i=1

VVV

nnni × III × VVV

nnni =
3∑

i=1

(
VVV

nnni ⊗ VVV

nnni − VVV

nnni ··· VVV

nnni III ) = −2III

Consequently

2ccc = −bbb ···
3∑

i=1

3∑
j=1

λ2
i − λ2

j

(ln λi − ln λ j )

VVV

nnni × VVV

nnn j ⊗ VVV

nnn j × VVV

nnni , i �= j (4.1.74)
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With Eqs. (4.1.63), (4.1.71), (4.1.73) and (4.1.74) the tensor DDD is related to the rate
of the Hencky strain tensor hhh as follows

DDD = ḣhh − ΩΩΩhhh × hhh + hhh × ΩΩΩhhh, ΩΩΩhhh = ΩΩΩVVV + AAAhhh ··· (ΩΩΩRRR − ΩΩΩVVV ) (4.1.75)

where

AAAhhh = − 1

4J
VVV ···

3∑
i=1

3∑
j=1

λ2
i − λ2

j

(ln λi − ln λ j )

VVV

nnni × VVV

nnn j ⊗ VVV

nnn j × VVV

nnni , i �= j

The tensor AAAhhh has the following spectral representation

2AAAhhh = λ2
2 − λ2

3

λ2λ3 ln
λ2
λ3

VVV

nnn1 ⊗ VVV

nnn1 + λ2
3 − λ2

1

λ3λ1 ln
λ3
λ1

VVV

nnn2 ⊗ VVV

nnn2 + λ2
1 − λ2

2

λ1λ2 ln
λ1
λ2

VVV

nnn3 ⊗ VVV

nnn3

In Xiao et al. (1997) the tensorΩΩΩhhh × III is called logarithmic spin. With Eqs. (4.1.55),
(4.1.67) and (4.1.75) the vectorΩΩΩhhh can be computed as follows

ΩΩΩhhh = ωωω + KKK hhh ··· (DDD ··· VVV 2)×, (4.1.76)

where

2KKK hhh =
3∑

i=1

3∑
j=1

1

λ2
i − λ2

j

(
λ2

i + λ2
j

λ2
i − λ2

j

− 1

ln λi
λ j

)
VVV

nnni × VVV

nnn j ⊗ VVV

nnn j × VVV

nnni , i �= j

Equation (4.1.76) is firstly derived by Xiao et al. (1997) in a different notation. The
tensor KKK hhh has the following spectral representation

KKK hhh = 1

λ2
2 − λ2

3

(
1

ln λ2
λ3

− λ2
2 + λ2

3

λ2
2 − λ2

3

)
VVV

nnn1 ⊗ VVV

nnn1

+ 1

λ2
3 − λ2

1

(
1

ln λ3
λ1

− λ2
3 + λ2

1

λ2
3 − λ2

1

)
VVV

nnn2 ⊗ VVV

nnn2

+ 1

λ2
3 − λ2

1

(
1

ln λ1
λ2

− λ2
1 + λ2

2

λ2
1 − λ2

2

)
VVV

nnn3 ⊗ VVV

nnn3



4.2 Conservation of Mass 159

4.2 Conservation of Mass

The mass of an infinitesimal part of the body is

dm = ρdV = ρ0dV0, (4.2.77)

where ρ and ρ0 is the density in the actual and the reference configurations, respec-
tively. With Eq. (4.1.17) the conservation of mass (4.2.77) takes the form

ρ0

ρ
= J (4.2.78)

4.3 Balance of Momentum

The momentum of an infinitesimal part of the solid is defined as follows

dppp = vvvdm = vvvρdV

The momentum for a part of the solid with the volume Vp in the in the actual config-
uration is

pppp =
∫
Vp

vvvρdV (4.3.79)

The balance of momentum or the first law of dynamics states that the rate of change
of momentum of a body is equal to the total force acting on the body.

4.3.1 Stress Vector

Figure4.2 illustrates a body under the given external loads. To visualize the internal
forces let us cut the body in the actual configuration by a plane. The orientation of the
plane is given by the unit normal vector nnn. In the differential neighborhood of a point
P consider an infinitesimal area element dA. To characterize the mechanical action
of the part II on the part I of the body let us introduce the force vector dTTT II−I = dTTT (nnn)

as shown in Fig. 4.2. On the other hand the force vector dTTT I−II = dTTT (−nnn) models
the mechanical action of the part I on the part II. The intensity of these mechanical
actions can be characterized by the stress vectorsσσσ (nnn) andσσσ (−nnn). Both the magnitude
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Fig. 4.2 Stress vector for the plane with the normal vector nnn

and the direction of the stress vector depend on the position within the body. Within
the infinitesimal area element dA the stress vector is assumed constant such that

dTTT (nnn) = σσσ (nnn)dA, dTTT (−nnn) = σσσ (−nnn)dA

One may prove that

dTTT (nnn) = −dTTT (−nnn) ⇒ σσσ (nnn) = −σσσ (−nnn) (4.3.80)

4.3.2 Integral Form

Let us cut a part with the volume Vp and the surface area Ap from the body, as shown
in Fig. 4.3. Themechanical actions on the part of the body can be classified as follows

• body forces, for example force of gravity, electric or magnetic forces acting on a
part of the mass dm = ρdV . This type of action is described with the force density
vector fff such that the elementary body force is dG = fff dm = fff ρdV

• surface forces dTTT (nnn) = σσσ (nnn)dA acting on the surface elements dA of Ap. These
forces characterize the mechanical action of the environment (remainder of the
body) on the given part Vp.
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Fig. 4.3 Forces acting on a part of the body with the volume Vp

The resultant force vector is

Fp =
∫
Ap

σσσ (nnn)dA +
∫
Vp

fff ρdV

The balance of momentum for the part of the solid can be formulated as follows

d

dt

∫
Vp

vvvρdV =
∫
Ap

σσσ (nnn)dA +
∫
Vp

fff ρdV (4.3.81)

4.3.3 Stress Tensor and Cauchy Formula

The balance of momentum (4.3.81) can be applied for any part of the body. Consider
an infinitesimal tetrahedron (Ap → 0, Vp → 0) as a part of the body, Fig. 4.4.
The orthonormal vectors eee1, eee2 and eee3 are introduced to fix the orientation of the
tetrahedron. The mechanical action of the environment on the tetrahedron cut from
the body is characterized by forces and corresponding stress vectors. The cut planes,
the corresponding areas as well as stress and force vectors are given in the Table4.1.
For the infinitesimal tetrahedron the volume integrals in Eq. (4.3.81) have lower order
of magnitude compared to the surface integral such that

∫
Ap

σσσ (nnn)dA = 000 (4.3.82)
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Fig. 4.4 Infinitesimal tetrahedron cut from the body

Table 4.1 Summary of formulae for the infinitesimal tetrahedron

Plane Area Stress vector Force vector

nnn1 = −eee1 dA1 σσσ (nnn1) = −σσσ (eee1) TTT (nnn1) = σσσ (nnn1)dA1

nnn2 = −eee2 dA2 σσσ (nnn2) = −σσσ (eee2) TTT (nnn2) = σσσ (nnn2)dA2

nnn3 = −eee3 dA3 σσσ (nnn3) = −σσσ (eee3) TTT (nnn3) = σσσ (nnn3)dA3

nnn dA σσσ (nnn) TTT (nnn) = σσσ (nnn)dA

Hence
σσσ (nnn1)dA1 + σσσ (nnn2)dA2 + σσσ (nnn3)dA3 + σσσ (nnn)dA = 000

Taking into account (4.3.80)

− σσσ (eee1)dA1 − σσσ (eee2)dA2 − σσσ (eee3)dA3 + σσσ (nnn)dA = 000 (4.3.83)

or
σσσ (nnn)dA = σσσ (eee1)dA1 + σσσ (eee2)dA2 + σσσ (eee3)dA3 (4.3.84)



4.3 Balance of Momentum 163

In addition the following equation is valid for any part of the volume3

∫
Ap

nnndA = 000 (4.3.85)

Applying (4.3.85) to the tetrahedron yields

nnn1dA1 + nnn2dA2 + nnn3dA3 + nnndA = 000 (4.3.86)

Therefore

nnndA = eee1dA1 + eee2dA2 + eee3dA3,

nnn ··· eee1dA = dA1, nnn ··· eee2dA = dA2, nnn ··· eee3dA = dA3

(4.3.87)

Inserting dAi (i = 1, 2, 3) into Eq. (4.3.84) we obtain

σσσ (nnn)dA = dA1σσσ (eee1) + dA2σσσ (eee2) + dA3σσσ (eee3)

= nnn ··· eee1dAσσσ (eee1) + nnn ··· eee2dAσσσ (eee2) + nnn ··· eee3dAσσσ (eee3)

This can be simplified as follows

σσσ (nnn) = nnn ··· eee1σσσ (eee1) + nnn ··· eee2σσσ (eee2) + nnn ··· eee3σσσ (eee3)

= nnn ··· [eee1 ⊗ σσσ (eee1) + eee2 ⊗ σσσ (eee2) + eee3 ⊗ σσσ (eee3)]
(4.3.88)

With the tensor
σσσ = eee1 ⊗ σσσ (eee1) + eee2 ⊗ σσσ (eee2) + eee3 ⊗ σσσ (eee3) (4.3.89)

Eq. (4.3.88) takes the following form

σσσ (nnn) = nnn ···σσσ (4.3.90)

Equation (4.3.90) is the Cauchy formula4 that allows one to compute the stress vector
for any plane with the unit normal nnn if the Cauchy stress tensor σσσ is given.

3This can be verified applying the integral theorem (B.3.4)1 with ϕ = 1.
4In some books of continuum mechanics and applied mathematics the stress tensor is defined as
σσσ = σσσ (eee1) ⊗ eee1 +σσσ (eee2) ⊗ eee2 +σσσ (eee3) ⊗ eee3 such that the Cauchy formula is σσσ (nnn) = σσσ ···nnn. Formally
this definition differs from (4.3.89) by transpose. It might be more convenient, as it is closer to the
matrix algebra. For engineers dealing with internal forces it is more natural to use (4.3.89). Indeed,
to analyze a stress state we need to cut the body first and to specify the normal to the cut plane.
Only after that we can introduce the internal force. The sequence of these operations is clearly seen
in (4.3.89).



164 4 Three-Dimensional Continuum Mechanics

4.3.4 Local Forms

With the Cauchy formula (4.3.90) and the integral theorem (B.3.5)2 the surface
integral in (4.3.81) is transformed as follows

∫
Ap

σσσ (nnn)dA =
∫
Ap

nnn ··· σσσdA =
∫
Vp

∇∇∇ ··· σσσdV (4.3.91)

Now the balance of momentum takes the form
∫
Vp

(ρv̇vv − ∇∇∇ ··· σσσ − ρ fff )dV = 000 (4.3.92)

Since Eq. (4.3.92) is valid for any part of the solid, the following local form of the
balance of momentum can be established

ρv̇vv = ∇∇∇ ··· σσσ + ρ fff (4.3.93)

With the identity (4.1.18) the surface integral (4.3.91) can be transformed as
follows

∫
Ap

σσσ (nnn)dA =
∫
Ap

nnn ··· σσσdA =
∫

Ap0

NNN ··· PPPdA0

∫
Vp0

0∇∇∇ ···PPPdV0, (4.3.94)

where

PPP = J FFF−1 ··· σσσ (4.3.95)

is the Piola-Kirchhoff stress tensor. With Eqs. (4.3.94) and (4.2.78) the balance of
momentum can be formulated as follows

∫
Vp0

(ρ0v̇vv− 0∇∇∇ ···PPP − ρ fff )dV0 = 000 (4.3.96)

The corresponding local form is

ρ0v̇vv = 0∇∇∇ ···PPP + ρ0 fff (4.3.97)
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4.4 Balance of Angular Momentum

With respect to the point O the angular momentum and the resultant moment vectors
for a part of the body are defined as follows5

qqqpO =
∫
Vp

rrr × vvvρdV, MpO =
∫
Ap

rrr × σσσ (nnn)dA +
∫
Vp

rrr × fff ρdV (4.4.98)

The balance of angular momentum or the second law of dynamics states that the rate
of change of angular momentum of a body is equal to the resultant moment acting on
the body. The surface integral in Eq. (4.4.98) can be transformed applying (B.3.5)2
as follows

∫
Ap

rrr × (nnn ··· σσσ)dA = −
∫
Ap

nnn ··· σσσ × rrrdA = −
∫
Vp

∇∇∇ ··· (σσσ × rrr)dV (4.4.99)

Applying the identity (B.2.3) we obtain

∇∇∇ ··· (σσσ × rrr) = (∇∇∇ ··· σσσ) × rrr − σσσ×

The balance of angular momentum can be formulated as follows

q̇qqpO =
∫
Vp

rrr × v̇vvρdV =
∫
Vp

[rrr × (∇∇∇ ··· σσσ + ρρρ f ) + σσσ×]dV

or ∫
Vp

rrr × (v̇vvρ − ∇∇∇ ··· σσσ + ρρρ f )dV =
∫
Vp

σσσ×dV

Taking into account the balance of momentum (4.3.93) this results in

σσσ× = 000 ⇒ σσσ = σσσ T (4.4.100)

5With regard to structural analysis applications discussed in this book it is enough to identify the
angular momentum as themoment of momentum and the resultant moment as themoment of forces.
In contrast, within the micropolar theories material points are equipped by tensor of inertia. The
resultant moment includes surface and body moments which are not related to moment of forces,
e.g. Altenbach et al. (2003), Eringen (1999), Nowacki (1986).
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4.5 Balance of Energy

The total energy Ep of the part of the body, is defined as a sum of the kinetic energy
Kp and the internal energy Up as follows

Ep = Kp + Up,

Kp =
∫
Vp

ρKdV, Up =
∫
Vp

ρUdV, K = 1

2
vvv ··· vvv,

(4.5.101)

where K and U are densities of the kinetic and the internal energy, respectively. The
energy balance equation or the first law of thermodynamics states that the rate of
change of the energy of a body is equal to the mechanical power plus the rate of
change of non-mechanical energy, for example heat, supplied into the body. The
energy balance equation is

d

dt
Ep = Lp + Qp, (4.5.102)

where Lp is the mechanical power and Qp is the rate of change of non-mechanical
energy supply. The mechanical power of forces introduced in Sect. 4.3.2 is defined
as follows

Lp =
∫
Ap

σσσ (nnn) ··· vvvdA +
∫
Vp

fff ··· vvvρdV (4.5.103)

With Eqs. (4.3.90) and (B.3.5)2 the surface integral in (4.5.103) is transformed to

∫
Ap

σσσ (nnn) ··· vvvdA
∫
Ap

nnn ··· σσσ ··· vvvdA =
∫
Vp

∇∇∇ ··· (σσσ ··· vvv)dV (4.5.104)

With the identity (B.2.2) we obtain

∇∇∇ ··· (σσσ ··· vvv) = (∇∇∇ ··· σσσ) ··· vvv + σσσ ······ (∇∇∇ ⊗ vvv)T

The mechanical power can be now given as follows

Lp =
∫
Vp

[(∇∇∇ ··· σσσ + ρ fff ) ··· vvv + σσσ ······ (∇∇∇ ⊗ vvv)T]dV (4.5.105)
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The energy balance equation (4.5.102) takes the form

∫
Vp

ρ(v̇vv ···vvv + U̇)dV =
∫
Vp

[(∇∇∇ ···σσσ + ρ fff ) ···vvv +σσσ ······ (∇∇∇ ⊗vvv)T]dV +Qp (4.5.106)

With the balance of momentum (4.3.93), Eq. (4.5.106) simplifies to

∫
Vp

ρU̇dV =
∫
Vp

σσσ ······ (∇∇∇ ⊗ vvv)TdV + Qp (4.5.107)

The rate of change of the energy supply includes the contributions through the outer
surface and within the volume of the part p

Qp =
∫
Ap

q(nnn)dA +
∫
Vp

rρdV (4.5.108)

Equation (4.5.107) takes the following form

∫
Vp

[ρU̇ − σσσ ······ (∇∇∇ ⊗ vvv)T − ρr ]dV =
∫
Ap

q(nnn)dA (4.5.109)

Equation (4.5.109) is valid for any part of the body. Considering an infinitesimal
tetrahedron the energy balance reduces to

∫
Ap

q(nnn)dA = 0

Applying the procedures discussed in Sect. 4.3.3 one may derive the following equa-
tion

q(nnn) = −nnn ··· qqq, (4.5.110)

where qqq is the heat flow vector. With (B.3.5)1 and (4.5.110) the surface integral can
be transformed into the volume one as follows

∫
Ap

q(nnn)dA = −
∫
Vp

∇∇∇ ··· qqqdV (4.5.111)

Equation (4.5.108) takes the form

∫
Vp

[ρU̇ − σσσ ······ (∇∇∇ ⊗ vvv)T + ∇∇∇ ··· qqq − ρr ]dV = 0 (4.5.112)
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Equation (4.5.112) is valid for any part of the deformed body. Hence

ρU̇ = σσσ ······ (∇∇∇ ⊗ vvv)T − ∇∇∇ ··· qqq + ρr (4.5.113)

With the identity (4.1.18) the surface integral (4.5.111) can be transformed as
follows

∫
Ap

q(nnn)dA = −
∫
Ap

nnn ··· qqqdA = −
∫

Ap0

NNN ··· q̂qqdA0 −
∫

Vp0

0∇∇∇ ··· q̂qqdV0, (4.5.114)

where by analogy to the Piola-Kirchhoff stress tensor the following heat flow vector
can be introduced

q̂qq = J FFF−1 ··· qqq (4.5.115)

Now it is not difficult to derive the local form of the energy balance per unit volume
of the body in the reference configuration

ρ0U̇ = PPP ······ (
0∇∇∇ ⊗vvv)T− 0∇∇∇ ··· q̂qq + ρ0r (4.5.116)

4.6 Entropy and Dissipation Inequalities

The second law of thermodynamics states that the entropy production of a body is
non-negative. This statement is given as the Clausius-Planck inequality

d

dt
Sp −

(
Q

T

)
p

≥ 0, (4.6.117)

where S is the entropy and T is the absolute temperature. The entropy of the part of
the body is defined as follows

Sp =
∫
Vp

ρSdV, (4.6.118)
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where S is the entropy density. For the part of the body we define

(
Q

T

)
p

=
∫
Ap

q(nnn)

T
dA +

∫
Vp

r

T
ρdV (4.6.119)

Applying Eqs. (4.5.110) and (B.3.5)1 we obtain

(
Q

T

)
p

=
∫
Vp

[
−∇ ···

( qqq

T

)
+ r

T
ρ
]
dV (4.6.120)

With Eqs. (4.6.118) and (4.6.120) the entropy inequality (4.6.117) can be formulated
as follows ∫

Vp

[
ρṠ + ∇ ···

( qqq

T

)
− r

T
ρ
]
dV ≥ 0 (4.6.121)

Since (4.6.121) is valid for anypart of the body the local formof the entropy inequality
is

ρṠ ≥ −∇ ···
( qqq

T

)
+ ρr

T
(4.6.122)

With the identity (B.2.1)

∇ ···
( qqq

T

)
= ∇∇∇ ··· qqq

T
− qqq ··· ∇∇∇T

T 2

Multiplying both sides of (4.6.122) by T yields the Clausius-Duhem inequality

ρṠT ≥ −∇∇∇ ··· qqq + qqq ··· ∇∇∇T

T
+ rρ (4.6.123)

The energy balance equation (4.5.113) can be formulated as follows

ρr − ∇∇∇ ··· qqq = ρU̇ − σσσ ······ (∇∇∇ ⊗ vvv)T (4.6.124)

Inserting into the entropy inequality (4.6.123) yields the dissipation inequality

σσσ ······ (∇∇∇ ⊗ vvv)T − ρU̇ + ρṠT − qqq ··· ∇∇∇T

T
≥ 0 (4.6.125)
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Introducing theHelmholtz free energy densityΦ = U−ST the dissipation inequality
(4.6.125) can be put into the following form

σσσ ······ (∇∇∇ ⊗ vvv)T − ρΦ̇ − ρS Ṫ − qqq ··· ∇∇∇T

T
≥ 0 (4.6.126)

With Eqs. (4.2.78), (4.3.95) and (4.5.115) as well as the relationships between the
gradients (4.1.20) the dissipation inequality (4.6.126) can be given with respect to
the reference configuration as follows

PPP ······ (
0∇∇∇ ⊗vvv)T − ρ0Φ̇ − ρ0S Ṫ − q̂qq··· 0∇∇∇ T

T
≥ 0 (4.6.127)
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Chapter 5
Constitutive Models

In this chapter we discuss constitutive equations to describe material behavior
of high-temperature materials under multi-axial stress state. To analyze mater-
ial behavior under complex thermo-mechanical loading a combined model for
thermo(visco)elasto-plasticity considering hardening, softening, damage and other
processes is required. The idea of this chapter is to introduce basic ingredients, useful
for the formulation of such unified material models. They include the heat transfer
modeling, modeling of elasto-plastic deformations, hardening and softening rules
as well as ageing and damage evolution equations. The corresponding uni-axial
models were discussed in Chap. 3. To generalize these models to the multi-axial
stress state several additional assumptions must be introduced. Appropriate stress
and deformation measures must be introduced to capture complex local multi-axial
loadings. General forms of constitutive and evolution equations must be defined such
that invariance requirements with respect to the choice of reference frame, laws of
continuum thermodynamics and other principles are fulfilled. To specialize the con-
stitutive equation results of basic tests of the material behavior, such as tensile test,
creep test, relaxation test, etc. should be systematically analyzed. On the other hand
basic features of materials microstructure in the reference state and after a course
of inelastic deformation process should be established. Microstructural analysis and
appropriate assumptions with regard to symmetries of microstructure would reduce
the identification effort essentially. Different types ofmaterial symmetries and appro-
priate forms of constitutive laws will be discussed.

All equations are presented in the direct tensor notation. This notation guaran-
tees the invariance with respect to the choice of the coordinate system and has the
advantage of transparent and compact representation of constitutive assumptions.
The basic rules of the direct tensor calculus as well as some new results for basic sets
of invariants with respect to different symmetry classes are presented in Appendices
A–B.5.
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5.1 Heat Transfer

Assume that the local power of the internal forces σσσ ······ (∇∇∇ ⊗ vvv)T in (4.6.126) is zero.
The inequality (4.6.126) simplifies to

− ρΦ̇ − ρS Ṫ − qqq ··· ∇∇∇T

T
≥ 0 (5.1.1)

The independent variables in Eq. (5.1.1) are T and ∇∇∇T . The conjugate variables
(sometimes called thermodynamic forces) are S and qqq . These can be assumed to be
the functions of the independent variables, i.e.

S = S(T,∇∇∇T ), qqq = qqq(T,∇∇∇T ), Φ = Φ(T,∇∇∇T )

Consequently

Φ̇ = ∂Φ

∂T
Ṫ + ∂Φ

∂∇∇∇T
··· (∇∇∇T )··· (5.1.2)

With Eq. (5.1.2) the inequality (5.1.1) takes the form

− ρ

(
∂Φ

∂T
+ S

)
Ṫ − ρ

∂Φ

∂∇∇∇T
··· (∇∇∇T )··· − qqq ··· ∇∇∇T

T
≥ 0 (5.1.3)

Inequality (3.1.3) can be formulated as follows

AṪ + bbb ··· (∇∇∇T )··· + C ≥ 0, (5.1.4)

where

A = −ρ

(
∂Φ

∂T
+ S

)
, bbb = −ρ

∂Φ

∂∇∇∇T
, C = −qqq ··· ∇∇∇T

T
(5.1.5)

do not depend on the velocities. For arbitrary Ṫ and (∇∇∇T )··· the inequality is only
satisfied if A = 0, bbb = 000 and C ≥ 0. From bbb = 000 it follows

ρ
∂Φ

∂∇∇∇T
= 0

and the free energy depends on the temperature only. From A = 0 the constitutive
equation for the entropy can be obtained

S = −∂Φ

∂T
(5.1.6)

http://dx.doi.org/10.1007/978-3-319-31629-1_4
http://dx.doi.org/10.1007/978-3-319-31629-1_4
http://dx.doi.org/10.1007/978-3-319-31629-1_3
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With C ≥ 0

− qqq ··· ∇∇∇T

T
≥ 0 (5.1.7)

The inequality (5.1.7) can be satisfied with the Fourier law of heat conduction

qqq = −κκκ ··· ∇∇∇T, (5.1.8)

where the positive semi-definite symmetric tensor κκκ(T ) is called tensor of thermal
conductivity. The functions κκκ(T ) and S(T ) must be identified experimentally.

Neglecting the mechanical power the local energy balance (4.5.113) takes the
form

ρU̇ = −∇∇∇ ··· qqq + ρr = 0 (5.1.9)

With U = Φ + ST and Eq. (5.1.6) the internal energy is the function of the temper-
ature only. For the heat supply r assume the following constitutive equation

ρr = h(Te − T ), (5.1.10)

where h(T ) > 0 and Te is the temperature of the environment. Equation (5.1.10)
is the Newton law of cooling. With Eqs. (5.1.8) and (5.1.10) the energy balance
equation (5.1.9) takes the form

ρc(T )Ṫ = ∇∇∇ ··· (κκκ ··· ∇∇∇T ) + h(Te − T ), c(T ) = dU
dT

, (5.1.11)

where c(T ) is the heat capacity. For homogeneous bodies this simplifies to

ρc(T )Ṫ = κκκ ······ ∇∇∇∇∇∇T + h(Te − T ) (5.1.12)

Assuming that the expected temperature difference is small, one may linearize the
temperature functions c, kkk and h about a reference temperature T0 leading to the
linear differential equation

ρc0Ṫ = κκκ0 ······ ∇∇∇∇∇∇T + h0(Te − T ), (5.1.13)

where c0 = c(T0), kkk0 = kkk(T0) and h0 = h(T0). Equation (5.1.13) is known as the
heat equation or diffusion equation. The solution for the given initial condition and
the boundary conditions with respect to the heat flux or the temperature provides the
time-dependent temperature field in the body. Several methods exist to identify the
functions c, k and h, which are based on temperature measurements and solutions
of the heat equation (5.1.13). For details the reader may consult textbooks on heat
transfer and thermodynamics, for example,Granger (1994),Müller (2007),Nellis and

http://dx.doi.org/10.1007/978-3-319-31629-1_4
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Klein (2009). Once the the heat capacity c(T ) is identified the constitutive equation
(5.1.6) can be used to compute the entropy as follows

S(T ) =
T∫

T0

c(ξ)

ξ
dξ

Assuming c(T ) = c0

S(T ) = c0 ln
T

T0

Integration of the constitutive equation (5.1.6) provides the following expression for
the free energy

Φ = c0

[
(T − T0) − T ln

T

T0

]
+ Φ0

5.2 Material and Physical Symmetries

The tensor of thermal conductivity introduced in Sect. 5.1 includes six components
that should be identified experimentally. In this section we discuss the concepts
of material symmetry, physical symmetry, symmetry transformation and symmetry
group. We take the thermal conductivity tensor as an example to illustrate how to
apply these principles to the analysis of the material behavior.

The material symmetry group is related to the symmetries of the materials
microstructure, e.g. the crystal symmetries, the symmetries due to the arrange-
ment of fibers in a fiber-reinforced materials, etc. The symmetry transformations
are described by means of orthogonal tensors. Two important of them are

• the mirror reflection

QQQ(nnn) = III − 2nnn ⊗ nnn, (5.2.14)

where nnn is the unit normal to the mirror plane,
• the rotation about a fixed axis

QQQ(ϕmmm) = mmm ⊗ mmm + cosϕ(III − mmm ⊗ mmm) + sin ϕmmm × III , (5.2.15)

where mmm is the axis of rotation and ϕ is the angle of rotation.

Any arbitrary rotation of a rigid body can be described as a composition of three
rotations (5.2.15) about three fixed axes (Zhilin 1996). Any symmetry transformation
can be represented by means of rotations and reflections, i.e. the tensors of the
type (5.2.14) and (5.2.15). The notion of the symmetry group as a set of symmetry



5.2 Material and Physical Symmetries 177

transformations was introduced in Noll (1972). According to Truesdell and Noll
(1992) a “simple material” is called aelotropic or anisotropic, if its symmetry group
is a proper subgroup of the orthogonal group.

The concept of the “physical symmetry group” is related to the symmetries of
the material behavior, e.g. thermal conductivity, linear elasticity, thermal expansion,
plasticity, creep, etc. It can only be established based on experimental observations.
Physical symmetries must be taken into account in the formulation of constitutive
equations and constitutive functions. Assume that the tensor of thermal conductivity
κκκ is identified from experiments. Then the element QQQ of the physical symmetry group
can be found from the following equation

κκκ ′ = QQQ ··· κκκ ··· QQQT = κκκ (5.2.16)

Vice versa, if the physical symmetry group is known then one can find the general
structure of the thermal conductivity tensor with Eq. (5.2.16). Clearly, neither the
thermal conductivity tensor nor the physical symmetry group of the thermal conduc-
tivity can be exactly found from tests. However, one can relate physical symmetries
to the known symmetries of materials microstructure. According to the Neumann
principle widely used in different branches of physics and continuum mechanics,
e.g. Altenbach and Zhilin (1988), Nye (1992), Zhilin (1982)

The symmetry group of the reason belongs to the symmetry group of the consequence.

Considering thematerial symmetries as one of the “reasons” and the physical symme-
tries as a “consequence” one can apply the following statement (Zheng and Boehler
1994)

For a material element and for any of its physical properties every material symmetry trans-
formation of the material element is a physical symmetry transformation of the physical
property.

In many cases the material symmetry elements are evident from the arrangement
of the materials microstructure as a consequence of manufacturing conditions, for
example. The above principle states that the physical behavior, e.g. the thermal con-
ductivity, contains all elements of the material symmetry group. The physical sym-
metry group usually possesses more elements than the material symmetry group, e.g.
Nye (1992).

Assume that the mirror reflection QQQ1 = QQQ(nnn1) = III − 2nnn1 ⊗ nnn1 is the element of
the material symmetry group. Since QQQ1 is symmetric, Eq. (5.2.16) yields

κκκ ··· QQQ1 = QQQ1 ··· κκκ or (κκκ ··· QQQ1)× = 000

Taking the vector invariant we obtain

nnn1 × (κκκ ··· nnn1) = 000 ⇒ κκκ ··· nnn1 = λnnn1
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Hence nnn1 is the principal direction of the tensor κκκ . The spectral form of the tensor
κκκ is

κκκ = κ1nnn1 ⊗ nnn1 + κ2nnn2 ⊗ nnn2 + κ3nnn3 ⊗ nnn3, (5.2.17)

where κi are principal values and the orthonormal unit vectors nnni are principal direc-
tions. Equation (5.2.17) specifies the tensor κκκ for materials having a mirror reflection
as a symmetry group, i.e. for monoclinic materials. It is obvious that also the mirror
reflections QQQ2 = QQQ(nnn2) = III − 2nnn2 ⊗ nnn2 and QQQ3 = QQQ(nnn3) = III − 2nnn3 ⊗ nnn3 belong
to the symmetry group of the tensor (5.2.17). Hence the representation (5.2.17) is
valid for orthotropic materials with nnni being the axes of orthotropy.

Let (5.2.15), i.e. the rotation about the axis mmm with any angle ϕ be the symmetry
transformation. Equation (5.2.16) takes the form

QQQ(ϕmmm) ··· κκκ ··· QQQT(ϕmmm) = κκκ (5.2.18)

The right hand side of (5.2.18) does not depend on ϕ. Therefore the derivative of the
left hand side with respect to ϕ is the zero tensor1

mmm × κκκ − κκκ × mmm = 000 (5.2.19)

The right scalar product with mmm yields

mmm × (κκκ ··· mmm) = 000 ⇒ κκκ ··· mmm = λmmm

Hence mmm is the eigenvector of κκκ . Let nnn be a unit vector orthogonal to the vector mmm
and let ppp = nnn × mmm. The right scalar product of Eq. (5.2.19) mit nnn yields

mmm × κκκ ··· nnn − κκκ ··· (mmm × nnn) = 000

Since nnn and ppp are eigenvectors of κκκ too we have

mmm × (κnnnn) − κp ppp = 000, ⇒ (κn − κp)ppp = 000,

where

κn = nnn ··· κκκ ··· nnn, κp = ppp ··· κκκ ··· ppp

are principal values of the tensor κκκ . Specifying κL = λ and κT = κn = κp the tensor
κκκ has the following representation

κκκ = κLmmm ⊗ mmm + κT(III − mmm ⊗ mmm), (5.2.20)

1The derivative of the rotation tensor with the fixed axis of rotation is dQQQ(ϕmmm) = mmm × QQQ(ϕmmm)dϕ,
see also Appendix B.7.
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Materials with the symmetry group defined by arbitrary rotation about the axis mmm
(5.2.15) are called transversely-isotropic. Examples include fiber composites, direc-
tionally solidified alloys etc., Appendix B.7. The constants κL and κT are thermal
conductivities in the longitudinal, for example fiber direction, and the transverse
direction, respectively.

For isotropic materials Eq. (5.2.16) must be valid for any symmetry transforma-
tions. Therefore

κκκ = κ0III ,

where κ0 is the thermal conductivity.
The notion of material and physical symmetries is widely applied in the material

theory. Tensors of material properties of different rank, e.g. the fourth rank elasticity
tensor can be specified in a similar way if the symmetry group is given.

5.3 Thermo-elasticity

5.3.1 Preliminary Remarks

With (4.1.42) the dissipation inequality (4.6.126) can be formulated as follows

σσσ ······ (ḞFF ··· FFF−1) − ρΦ̇ − ρS Ṫ − qqq ··· ∇∇∇T

T
≥ 0 (5.3.21)

Within the framework of elasticity the basic assumption is that the stress tensor is a
function of the deformation. This can be related to experimental observations from the
tensile test, Sect. 1.1. After the loading and subsequent unloading within the elastic
range the specimen takes the original length. The elastic behavior is reversible—no
hysteresis loop is observable if the specimen is subjected to a closed cycle of strain
under adiabatic or isothermal conditions. Furthermore, the current state of stress is
not influenced by the loading history and deformation rate.

Let us assume that the stress tensor and consequently the free energy are functions
of the following arguments

σσσ = σσσ(FFF, T ) ⇒ Φ = Φ(FFF, T )

Then the dissipation inequality (5.3.21) takes the following form2

ḞFF ······
[

FFF−1 ··· σσσ − ρ

(
∂Φ

∂FFF

)T
]

− ρ

(
∂Φ

∂T
+ S

)
Ṫ − qqq ··· ∇∇∇T

T
≥ 0 (5.3.22)

2The rules for derivatives of scalar-valued functions with respect to tensors are given in
Appendix B.4.

http://dx.doi.org/10.1007/978-3-319-31629-1_4
http://dx.doi.org/10.1007/978-3-319-31629-1_4
http://dx.doi.org/10.1007/978-3-319-31629-1_1


180 5 Constitutive Models

With

AAA = FFF−1 ··· σσσ − ρ

(
∂Φ

∂FFF

)T

, B = −∂Φ

∂T
− S, C = −qqq ··· ∇∇∇T

T

the inequality (5.3.22) takes the form

ḞFF ······ AAA + Ṫ B + C ≥ 0, (5.3.23)

Since AAA, B and C do not depend on the velocities and ḞFF and Ṫ can be arbitrary the
inequality is satisfied if AAA = 000, B = 0 and C ≥ 0. Hence

σσσ = ρFFF ···
(
∂Φ

∂FFF

)T

, S = −∂Φ

∂T
, −qqq ··· ∇∇∇T

T
≥ 0 (5.3.24)

As the Cauchy stress tensor is symmetric (see Sect. 4.4)

σσσ = σσσ T ⇒ AAA ······ σσσ = 0

for the skew-symmetric tensor AAA = aaa × III with any vector aaa �= 000. Therefore the
constitutive equation for the stress tensor (5.3.24)1 can be written as follows

AAA ······
[

FFF ···
(
∂Φ

∂FFF

)T
]

= 0 ⇒ AAA ··· FFF ······
(
∂Φ

∂FFF

)T

= 0 (5.3.25)

The first order partial differential equation (5.3.25) can be solved by the method of
characteristics (Courant and Hilbert 1989). To this end consider a family of deforma-
tion gradients depending on the parameter τ , i.e. FFF(τ ). As the free energy depends
on the parameter τ such that Φ(FFF(τ )) = Φ̂(τ ) we compute the derivative

dΦ̂

dτ
= dFFF

dτ
······

(
∂Φ

∂FFF

)T

(5.3.26)

Let us set

dFFF

dτ
······

(
∂Φ

∂FFF

)T

= AAA ··· FFF ······
(
∂Φ

∂FFF

)T

⇒ dFFF

dτ
= AAA ··· FFF (5.3.27)

With Eq. (5.3.25) we have

dΦ̂

dτ
= 0 ⇒ Φ̂(τ ) = Φ̂(τ0) = Φ(FFF0) = const (5.3.28)

http://dx.doi.org/10.1007/978-3-319-31629-1_4
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Hence, any solution of the partial differential equation (5.3.25) takes a constant
(independent on τ ) value on the integral (characteristic) curves FFF(τ ) defined by the
set of ordinary differential equations

dFFF

dτ
= AAA ··· FFF ⇒ dFFF

dτ
= aaa × FFF (5.3.29)

If FFF0 is the rotation tensor then (5.3.29) is the Darboux problem, known from the
dynamics of rigid bodies, e.g. Altenbach et al. (2007, 2009), Zhilin (1996). The
solution is the rotation tensor corresponding to the angular velocity vector aaa. For
arbitrary FFF0 the general solution to (5.3.29) can be given as

FFF(τ ) = RRR(τ ) ··· UUU 0, UUU 0 = (FFFT
0 ··· FFF0)

1/2 (5.3.30)

The rotation tensor RRR(τ ) has to be computed by solving the following Darboux
problem

dRRR

dτ
= aaa × RRR, RRR = RRR0

Since the free energy remains constant on characteristic curves the solution of (5.3.25)
is a function of first integrals of (5.3.29), as shown in Courant and Hilbert (1989).
The ninth order system (5.3.29) has eight independent first integrals. Eliminating the
parameter τ from the solution (5.3.30) we obtain six integrals which do not depend
on the vector aaa

FFFT ··· FFF = FFFT
0 ··· FFF0,

Two integrals

nnnaaa ··· RRR = nnnaaa ··· RRR0, nnnaaa = aaa

|aaa|
include the arbitrary vectoraaa and can be omitted.Hence, the free energy is an arbitrary
function of the right Cauchy-Green strain tensor CCC = FFFT ··· FFF

Φ(FFF) = Φ̃(CCC) ⇒ ∂Φ

∂FFF
= 2

∂Φ̃

∂CCC
··· FFFT (5.3.31)

The constitutive equation (5.3.24) takes the form3

σσσ = 2ρFFF ··· ∂Φ
∂CCC

··· FFFT = 2

J
FFF ··· ∂ρ0Φ

∂CCC
··· FFFT (5.3.32)

3For the sake of brevity tilde is omitted.
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With the Piola-Kirchhoff stress tensor (4.3.95)

PPP = 2
∂ρ0Φ

∂CCC
··· FFFT (5.3.33)

Introducing the second Piola-Kirchhoff stress tensor

PPP2PK = PPP ··· FFFT

the constitutive equation (5.3.33) takes the form

PPP2PK = 2
∂ρ0Φ

∂CCC
(5.3.34)

For known physical symmetries of elastic material behavior the free energy can be
specified as a function of certain invariants ofCCC relative to the given symmetry group.

5.3.2 Isotropic Materials

For isotropic materials the free energy must satisfy the following restriction

Φ(CCC ′) = Φ(CCC), CCC ′ = QQQ ··· CCC ··· QQQT, (5.3.35)

where QQQ is any orthogonal tensor. The physical meaning of Eq. (5.3.35) can be
explained as follows. Consider an experiment, in which a specimen cut from the
material is isothermally deformed by FFF . In the next experiment subject the specimen
to a symmetry transformation QQQ and then deform it by the same way such that
the resulting deformation gradient is FFF ′ = FFF ··· QQQ. Equation (5.3.35) states that the
amount of free energy stored will be the same in both the experiments. Following
Zhilin (2003) consider a family of rotation tensors4 specified by QQQ(τ ), where τ is a
time-like variable. Equation (5.3.35) takes the form

Φ(CCC ′(τ )) = Φ(CCC), CCC ′(τ ) = QQQ(τ ) ··· CCC ··· QQQT(τ ), (5.3.36)

Taking the derivative of both Eqs. in (5.3.36) with respect to τ results in

dΦ

dτ
= dCCC ′

dτ
······ ∂Φ

∂CCC ′ = 0,
dCCC

dτ
= ωωω × QQQ − QQQ ×ωωω, (5.3.37)

4The orthogonal symmetry group includes also reflections. Since any reflection is the composition
of a rotation and the inversion −III , it is possible to consider the proper orthogonal group first and
then apply the inversion.

http://dx.doi.org/10.1007/978-3-319-31629-1_4
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where ωωω is the angular velocity vector corresponding to the rotation tensor QQQ such
that

dQQQ

dτ
= ωωω × QQQ

Assuming QQQ(0) = III andωωω(0) = ωωω0 and setting τ = 0 in Eq. (5.3.37) the following
partial differential equation can be obtained

(ωωω0 × QQQ − QQQ ×ωωω0) ······ ∂Φ
∂CCC

= 0 (5.3.38)

The general solution can be found applying the method of characteristics. Let us skip
the derivations since a similar procedure is discussed in the previous subsection to
solve Eq. (5.3.25). The result is

Φ(CCC) = Φ(J1CCC , J2CCC , J3CCC ),

where J1CCC , J2CCC and J3CCC are principal invariants of the tensor CCC as defined by
Eq. (A.4.11). Note that these invariants can be computed in terms of principal
stretches λi and

JiCCC = JiBBB = JiUUU2 = JiVVV 2 , i = 1, 2, 3

With Eq. (5.3.34) we obtain

PPP2PK = 2
∂ρ0Φ

∂CCC
= 2

∂ρ0Φ

∂ J1CCC

J1CCC

∂CCC
+ 2

∂ρ0Φ

∂ J2CCC

J2CCC

∂CCC
+ 2

∂ρ0Φ

∂ J3CCC

J3CCC

∂CCC
(5.3.39)

Applying the derivatives of the principal invariants (B.4.12), Eq. (5.3.39) takes the
form

PPP2PK = 2
∂ρ0Φ

∂ J1CCC

III + 2
∂ρ0Φ

∂ J2CCC

(
J1CCC III − CCC

) + 2
∂ρ0Φ

∂ J3CCC

J3CCC CCC−1 (5.3.40)

With Eq. (5.3.32) the constitutive equation for theCauchy stress tensor can be derived
as follows

σσσ = 2

J

(
∂ρ0Φ

∂ J1BBB

BBB + ∂ρ0Φ

∂ J2BBB

(
J1BBB BBB − BBB2

) + ∂ρ0Φ

∂ J3BBB

J3BBB III

)
(5.3.41)

We refer to textbooks on non-linear elasticity (Bertram 2012; Lurie 1990; Ogden
1997), among others, for many different representations of constitutive equations
with respect to various stress and strain measures.
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5.3.3 Anisotropic Materials

Assume that the free energy function satisfies the following restrictions

Φ
(

QQQ(ϕMMM) ··· CCC ··· QQQT(ϕMMM)
)

= Φ(CCC), Φ(QQQNNN ··· CCC ··· QQQT
NNN ) = Φ(CCC), (5.3.42)

where

QQQ(ϕMMM) = MMM ⊗ MMM + cosϕ(III − MMM ⊗ MMM) + sin ϕMMM × III ,

is the tensor characterizing the rotation about a fixed axis MMM with the angle φ and

QQQNNN = QQQ(πNNN ) = 2NNN ⊗ NNN − III , NNN ··· MMM = 0

is the rotation about the axis NNN with the angle π . The symmetry group given by
the tensors QQQ(ϕMMM) and QQQNNN is an example of the transverse isotropy or cylindrical
symmetry group.5 The unit vector MMM defines the preferential direction (anisotropy
direction) of the microstructure in the reference configuration. This direction can
be assigned to be the direction of aligned fibers in a fiber-reinforced composite,
e.g. Ogden (2015), Altenbach et al. (2003a). The physical meaning of Eq. (5.3.42)1
is: any rotation of the solid about MMM and subsequent deformation under a constant
temperature lead to the same value of the stored energy. Furthermore a rotation with
the angleπ about any axisNNN which is orthogonal toMMM is the symmetry transformation
as well. Let us note, that the symmetry transformation can be defined for the whole
solid in the reference state, as it usually the case for composites reinforced by long
fibers (Chawla 1987; Ogden 2015; Altenbach et al. 2004). In this case the symmetry
transformation can be understood as a change of the reference placement of the
solid, e.g. Bertram (2012). However, materials may possess symmetries only locally.
An example is the short-fiber reinforced composite, produced by injection molding
(Kröner et al. 2009; Altenbach et al. 2003a). In this case a testpiece from the material
should be deformed after a symmetry transformation to detect a kind of anisotropy.

The right-hand side of Eq. (5.3.42)1 does not depend on the arbitrary angle ϕ.
Setting the derivative of the left-hand side with respect to ϕ to zero results in the
following partial differential equation (Altenbach et al. 2006), see Appendix B.7.1

(MMM × CCC − CCC × MMM) ······
(
∂Φ

∂CCC

)T

= 0 (5.3.43)

The general solution to (5.3.43) is a function of five independent invariants relative
to the symmetry group of rotations about a fixed axis. Six invariants (B.7.28) and

5Five different cases of the transverse isotropy can be defined, see, for example, Spencer (1987),
Zheng and Boehler (1994).



5.3 Thermo-elasticity 185

a relationship between them (B.7.29) are presented in Appendix B.7.1. With the
additional symmetry transformation (5.3.42)2 the list of invariants is reduced to the
three principal invariants J1CCC , J2CCC and J3CCC of the tensorCCC as defined by Eqs. (A.4.11)
and two following invariants

J4CCC = MMM ··· CCC ··· MMM = CCC ······ MMM ⊗ MMM, J5CCC = MMM ··· CCC2 ··· MMM = CCC2 ······ MMM ⊗ MMM,

(5.3.44)

With Eq. (5.3.34) we obtain

PPP2PK = 2W1III + 2W2
(
J1CCC III − CCC

) + 2W3 J3CCC CCC−1

+2W4MMM ⊗ MMM + 2W5(CCC ··· MMM ⊗ MMM + MMM ⊗ MMM ··· CCC)
(5.3.45)

where

Wi = ∂ρ0Φ

∂ JiCCC

, i = 1, 2, . . . 5

Let us introduce the unit vector mmm as follows

mmm = FFF ··· MMM√
MMM ··· FFFT ··· FFF ··· MMM

(5.3.46)

With Eq. (5.3.32) the following constitutive equation for the Cauchy stress tensor
can be derived

σσσ = 2

J

(
W1BBB + W2

(
J1BBB BBB − BBB2

) + W3 J3BBB III

+W4 J4CCC mmm ⊗ mmm + W5 J5CCC (BBB ··· mmm ⊗ mmm + mmm ⊗ mmm ··· BBB)
) (5.3.47)

Instead the invariants J3CCC and J4CCC one may introduce the following invariants with
respect to the spatial tensor BBB and the vector mmm

J4CCC = 1

mmm ··· BBB−1 ··· mmm
J5CCC = mmm ··· BBB ··· mmm

mmm ··· BBB−1 ··· mmm
(5.3.48)

With Eq. (5.3.46) the time derivative of the vector mmm can be computer as follows

ṁmm = ωωω × mmm + mmm ··· DDD ··· (III − mmm ⊗ mmm) (5.3.49)

From Eqs. (5.3.44) and (5.3.45) we may conclude that the constitutive equation
for a transversely-isotropic material can be formulated as follows

Φ(CCC) = Φ̂(CCC, MMM ⊗ MMM), PPP2PK = ggg(CCC, MMM ⊗ MMM), (5.3.50)
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where Φ̂ and ggg are the isotropic scalar-valued and tensor-valued tensor functions
of CCC and MMM ⊗ MMM , respectively. Similarly, we may define the elasticity law for
transversely-isotropic materials in the actual configuration. To this end consider the
following transformation

Φ̂(CCC, MMM ⊗ MMM) = Φ̂

(
RRR

T ··· BBB ··· RRR,
RRR

T ··· VVV −1 ··· mmm ⊗ mmm ··· VVV −1 ··· RRR

mmm ··· BBB−1 ··· mmm

)

Assume two actual configurations of the solid, one defined by the tensors VVV , RRR and
mmm ⊗ mmm and one defined by the the symmetry transformation QQQ and the subsequent
deformation. With FFF∗ = FFF ··· QQQT the corresponding tensors take the form

VVV ∗ = VVV , BBB∗ = BBB, RRR∗ = RRR ··· QQQT, mmm∗ ⊗ mmm∗ = mmm ⊗ mmm

Therefore

Φ̂

(
RRR

T ··· BBB ··· RRR,
RRR

T ··· VVV −1 ··· mmm ⊗ mmm ··· VVV −1 ··· RRR

mmm ··· BBB−1 ··· mmm

)

= Φ̂

(
QQQ ··· RRR

T ··· BBB ··· RRR ··· QQQ
T
,

QQQ ··· RRR
T ··· VVV −1 ··· mmm ⊗ mmm ··· VVV −1 ··· RRR ··· QQQ

T

mmm ··· BBB−1 ··· mmm

) (5.3.51)

Since QQQ is arbitrary, we select QQQ = RRR. Equation (5.3.51) takes the form

Φ̂

(
RRR

T ··· BBB ··· RRR,
RRR

T ··· VVV −1 ··· mmm ⊗ mmm ··· VVV −1 ··· RRR

mmm ··· BBB−1 ··· mmm

)

= Φ̂

(
BBB,

VVV −1 ··· mmm ⊗ mmm ··· VVV −1

mmm ··· BBB−1 ··· mmm

)
= Φ̃(BBB,mmm ⊗ mmm)

(5.3.52)

The free energy must be invariant under any superimposed rigid body rotation in the
actual configuration. Considering again two states: one defined by FFF andmmm ⊗ mmm and
one defined by

FFF∗ = QQQ ··· FFF, mmm∗ ⊗ mmm∗ = QQQ ··· mmm ⊗ mmm ··· QQQT,

where QQQ describes the superimposed rotation we obtain

Φ̃(QQQ ··· BBB ··· QQQT, QQQ ··· mmm ⊗ mmm ··· QQQT) = Φ̃(BBB,mmm ⊗ mmm) (5.3.53)

Therefore, the free energy can be specified as an isotropic function of BBB andmmm ⊗ mmm.
Furthermore, Eq. (5.3.47) can be given as follows

σσσ = g̃gg(BBB,mmm ⊗ mmm),
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where the vector g̃gg is the isotropic tensor function of two arguments. The free energy
or the elasticity law specified in the actual configurationmust be supplemented by the
evolution equation for the vector mmm (5.3.49). An observation can be made that from
Eq. (5.3.53) it follows that the free energy can be locally defined as a transversely-
isotropic function with respect to the actual vector mmm such that

QQQ(ϕmmm) = mmm ⊗ mmm + cosϕ(III − mmm ⊗ mmm) + sin ϕmmm × III , QQQnnn = 2nnn ⊗ nnn − III

are elements of the symmetry group, where the unit vectors mmm and nnn, nnn ··· mmm = 0 are
defined in the actual configuration.

Another observation is that a free energy function subjected to a group of symme-
try transformations, for example (5.3.42) can be extended to the isotropic function
of CCC and MMM ⊗ MMM . This approach is called isotropic extension of anisotropic tensor
functions, and is widely used in the development of constitutive theories. The dyad
MMM ⊗ MMM is an example of the so-called structure tensor—a tensor whose symmetry
group coincideswith thematerial symmetry group. Structure tensors of different rank
are listed in Lokhin and Sedov (1963) for different symmetry classes. An example for
the approach of isotropic extension is presented in Appendix B.8 to find invariants
with respect to the group of orthotropic symmetry.

5.3.4 Linear Elasticity

For many structural materials, for example steel, the elastic material behavior is
observed within the range of small strains. Furthermore, in this range the stress is
proportional to the strain, as observed in the uni-axial tensile test. With the linearized
kinematical relations (4.1.37) one may show that the difference between the stress
measures can be ignored such that the constitutive Eq. (5.3.32) can be put in the
following form

σσσ = ∂ρ0Φ(εεε)

∂εεε
(5.3.54)

There are two ways to specify the constitutive equation (5.3.54). One may specify
a free energy as a quadratic form of the strain tensor and the temperature and then
to define the stress tensor by Eq. (5.3.54). Another approach is to start with the
constitutive equation for the stress tensor and then compute the free energy density
by integrating Eq. (5.3.54). If the linear relationship between the stress and the strain
is observed in stress-strain diagrams thenwemaygeneralize the uni-axial constitutive
equation (3.2.21) as follows

σσσ = (4)CCC ······ (εεε − εεεth), εεεth = αααth�, � = T − T0, (5.3.55)

http://dx.doi.org/10.1007/978-3-319-31629-1_4
http://dx.doi.org/10.1007/978-3-319-31629-1_3
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The fourth rank elasticity tensor (4)CCC must satisfy the following restrictions

aaa ······ (4)CCC ······ aaa ≥ 0, aaa ······ (4)CCC = (4)CCC ······ aaa, ccc ······ (4)CCC = 000,
∀aaa, ccc with aaa = aaaT, ccc = −cccT,

(5.3.56)

where aaa and ccc are second rank tensors. The symmetric second rank tensor αααth is
called tensor of thermal expansion. Both the elasticity and the thermal expansion
tensors can be specified if the material symmetry group is known. For example, if
the orthogonal tensor QQQ stands for a symmetry element, the structure of the tensor
(4)CCC can be established from the following equation

(4)CCC ′ = Ci jkl QQQ ··· eeei ⊗ QQQ ··· eee j ⊗ QQQ ··· eeek ⊗ QQQ ··· eeel =(4)CCC, (5.3.57)

where eeei , i = 1, 2, 3 are basis vectors. The structure of the thermal expansion tensor
can be established from the following equation

QQQ ··· αααth ··· QQQT = αααth (5.3.58)

Symmetry groups of the second rank tensors and restrictions of the type (5.3.58)
are discussed in Sect. 5.2. The fourth rank tensors satisfying the restrictions (5.3.57)
for different material symmetry classes are well-known. The components of these
tensors are given in the matrix notation in many textbooks on linear elasticity as well
as in books and monographs on composite materials, e.g. Altenbach et al. (1996,
1998), Altenbach (2012), Gibson (1994), Powell (1994), Ting (1996). Furthermore,
different coordinate free representations of fourth rank tensors are discussed in the
literature. For a review we refer to Böhlke (2000). One may prove that only eight
basic symmetry classes can be distinguishedwithin the framework of linear elasticity
(Ting 1996). These symmetry classes and the corresponding number of independent
coordinates of the tensor (4)CCC are listed in Table5.1. The number of independent
coordinates coincides with the number of material parameters to be identified from

Table 5.1 Basic symmetry
classes and number of
independent coordinates of
the tensor (4)CCC

Symmetry class Number of independent
coordinates of (4)CCC

Triclinic symmetry 21

Monoclinic symmetry 13

Orthotropic or rhombic symmetry 9

Trigonal symmetry 6

Tetragonal symmetry 6

Transverse isotropy or
hexagonal symmetry

5

Cubic symmetry 3

Isotropic symmetry 2
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tests. With Eqs. (5.3.54) and (5.3.55) the free energy density can be specified as
follows

ρ0Φ = 1

2
εεε ······ (4)CCC ······ εεε − εεε ······ (4)CCC ······ αααth� + g(T ) (5.3.59)

To determine the function g(T ) let us compute

∂U
∂T

= T
∂S
∂T

= −T
∂2Φ

∂T 2
(5.3.60)

With the free energy density (5.3.59) this results in

∂U
∂T

= − 1

ρ0
T
d2 f

dT 2
− 1

2ρ0
Tεεε ······ d2

dT 2

[
(4)CCC

] ······ εεε − 1

ρ0
Tεεε ······ d2

dT 2

[
(4)CCC ······ αααth�

]

The underlined term is the heat capacity without deformation, see Eq. (5.1.11).
Therefore the function f can be obtained from the following differential equation

− 1

ρ0
T
d2 f

dT 2
= c(T )

With Eqs. (5.1.10), (5.3.59) and (5.3.60) the energy balance equation (4.5.113) takes
the following form

− ∂2(ρ0Φ)

∂T 2
Ṫ − ∂2(ρ0Φ)

∂T ∂εεε
······ ε̇εε = ∇∇∇ ··· (κκκ ··· ∇∇∇T ) + h(Te − T ) (5.3.61)

Assuming that the expected temperature difference is small one may linearize the
functions (4)CCC(T ), αααth(T ), c(T ) and h(T ) about the reference temperature T0. The
heat transfer equation (5.3.61) simplifies to

c0Ṫ + αααth0 ······ (4)CCC0 ······ ε̇εε = ∇∇∇ ··· (κκκ0 ··· ∇∇∇T ) + h0(Te − T ), (5.3.62)

where (4)CCC0 = (4)CCC(T0), αααth0 = αααth(T0). The second term in the left-hand side of
Eq. (5.3.62) is usually small and can be neglected (Landau et al. 1986). Therefore,
within the linearized theory the deformation has minor influence on the heat transfer
such that the simplified heat equation

c0Ṫ = ∇∇∇ ··· (κκκ0 ··· ∇∇∇T ) + h0(Te − T )

can be solved independently providing the temperature field T (rrr , t). The balance of
momentum (4.3.93) with the constitutive equation (5.3.55) yields

ρüuu = ∇∇∇ ···
[
(4)CCC ······

(
1

2
∇∇∇uuu + 1

2
(∇∇∇uuu)T − αααth�

)]
+ ρ fff (5.3.63)

http://dx.doi.org/10.1007/978-3-319-31629-1_4
http://dx.doi.org/10.1007/978-3-319-31629-1_4
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For isotropic materials the elasticity tensor and the tensor of thermal expansion have
the following representations

(4)CCC = λIII ⊗ III + μ(eeek ⊗ III ⊗ eeek + eeei ⊗ eeek ⊗ eeei ⊗ eeek), αααT = αT III (5.3.64)

where λ and μ are Lamé’s constants and αT is the coefficient of thermal expansion.
The Lamé’s constants can be computed as follows

μ = G = E

2(1 + ν)
, λ = νE

(1 + ν)(1 − 2ν)
, (5.3.65)

where E is the Young’s modulus, G is the shear modulus and ν is the Poisson’s ratio.
For isotropic homogeneous materials Eq. (5.3.63) takes the following form

ρüuu = μ

1 − 2ν
∇∇∇∇∇∇ ··· uuu + μ���uuu − 2μ

1 + ν

1 − 2ν
αth∇∇∇� + ρ fff (5.3.66)

A wide class of problems is related to the analysis of slow (quasi-static) deforma-
tion in structures. To find the displacement field the following second order partial
differential equation has to be solved

μ

1 − 2ν
∇∇∇∇∇∇ ··· uuu + μ���uuu − 2μ

1 + ν

1 − 2ν
αth∇∇∇� + ρ fff = 000 (5.3.67)

We refer to the classical texts on linear elasticity (Hahn 1985; Landau et al. 1986;
Lurie 2010; Muskhelishvili 2013; Neuber 2013; Timoshenko and Goodier 1951),
where solutions to Eq. (5.3.67) for various problems of structural mechanics are
derived.

5.4 Non-linear Viscosity, Viscoplasticity,
and Rigid Plasticity

5.4.1 Preliminary Remarks

Consider the dissipation inequality (4.6.126)

σσσ ······ LLL − ρΦ̇ − ρS Ṫ − qqq ··· ∇∇∇T

T
≥ 0 (5.4.68)

Assume that the Cauchy stress tensor σσσ is the function of the velocity gradient LLL
and the temperature. Furthermore, assume that the mechanical power σσσ ······ LLL does
not influence the free energy directly. The free energy and the entropy are then the

http://dx.doi.org/10.1007/978-3-319-31629-1_4
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functions of the temperature only. Then the inequality (5.4.68) can be specified as
follows

− ρ

(
∂Φ

∂T
+ S

)
Ṫ + σσσ ······ LLL − qqq ··· ∇∇∇T

T
≥ 0 (5.4.69)

The inequality (5.4.69) has the form A(T )Ṫ + B(T, LLL) ≥ 0. For arbitrary (positive
and negative) rates of temperature it can only be satisfied if A = 0 and B ≥ 0. This
leads to the constitutive equation for the entropy

S = −∂Φ

∂T
(5.4.70)

and the dissipation inequality

σσσ ······ LLL − qqq ··· ∇∇∇T

T
≥ 0 (5.4.71)

Assuming that the heat flux vector qqq does not depend on the strain rate results in two
inequalities

σσσ ······ LLL ≥ 0, −qqq ··· ∇∇∇T

T
≥ 0 (5.4.72)

Since the Cauchy stress tensor is symmetric the former inequality can be reduced to

σσσ ······ DDD ≥ 0 (5.4.73)

For the stress tensor let us assume the following constitutive equation

σσσ(LLL, T ) = gT (T )ggg(LLL), (5.4.74)

Functions of temperature fT (T )will be discussed in Sect. 5.4.4. To specify the func-
tion g(LLL) consider two motions: one characterized by the deformation gradient FFF
and one defined by FFF∗ = QQQ ··· FFF , where QQQ(t) is an arbitrary rotation tensor. The
corresponding velocity gradients are specified by LLL and

LLL∗ = ΩΩΩQQQ × III + (QQQ ···ωωω) × III + QQQ ··· DDD ··· QQQT,

whereΩΩΩQQQ is the angular velocity vector forQQQ.Assuming that under the superimposed
rigid rotation the Cauchy stress tensor is σσσ ∗ = QQQ ··· σσσ ··· QQQT the following restriction
on the function gLLL(LLL) can be formulated6

QQQ ··· ggg(LLL) ··· QQQT = ggg(LLL∗)

6This assumption is deduced from the principle of invariance under superimposed rigid body
motions, e.g. Bertram (2012).
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As a result we obtain

QQQ ··· ggg(ωωω × III + DDD) ··· QQQT = ggg
[
(ΩΩΩQQQ + QQQ ···ωωω) × III + QQQ ··· DDD ··· QQQT

]
(5.4.75)

SinceΩΩΩQQQ is an arbitrary angular velocity vector, we may specify

ΩΩΩQQQ = −QQQ ···ωωω

Now Eq. (5.4.75) takes the form

QQQ ··· ggg(ωωω × III + DDD) ··· QQQT = ggg(QQQ ··· DDD ··· QQQT) (5.4.76)

For QQQ = III this results in

ggg(ωωω × III + DDD) = ggg(DDD) = gggDDD(DDD)

Omitting the skew-symmetric tensor ωωω × III , Eq. (5.4.76) takes the form

QQQ ··· ggg(DDD) ··· QQQT = ggg(QQQ ··· DDD ··· QQQT)

Therefore ggg is the isotropic function of DDD and has the following general representa-
tion7

ggg = α0III + α1DDD + α2DDD2,

where αi are functions of invariants of DDD. The Cauchy stress tensor is co-axial with
the tensor DDD and Eq. (5.4.74) takes the form

σσσ(DDD, T ) = gT (T )
(
α0III + α1DDD + α2DDD2

)
, (5.4.77)

From (5.4.73) it follows that the functions αi must satisfy the following inequality

α0tr DDD + α1tr DDD2 + α2tr DDD3 ≥ 0 (5.4.78)

Specific forms of the constitutive equation (5.4.77) are discussed in the rheology,
e.g. Giesekus (1994), Reiner (1969), Palmov (1998). An example is a model of an
incompressible non-linear viscous fluid. To introduce this model let us decompose
the tensor σσσ into the spherical and deviatoric parts

σσσ = σmIII + sss, tr sss = 0 ⇒ σm = 1

3
tr σσσ , (5.4.79)

7From this consideration it does not follow that only isotropic materials can be described. Indeed,
we assumed that the stress tensor depends only on the velocity gradient, which is not true for
anisotropic materials. Extensions will be discussed in Sect. 5.4.3.
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where sss is the stress deviator and σm is the mean (hydrostatic) stress. For the tensor
DDD we can write

DDD = d0III + ddd, tr ddd = 0 ⇒ d0 = 1

3
∇∇∇ ··· vvv, (5.4.80)

The constitutive model for an incompressible fluid can be formulated as follows

sss(ddd, T ) = gT (T )

[
α̃1ddd + α̃2

(
ddd2 − 1

3
tr ddd2 III

)]
, (5.4.81)

where α̃1 and α̃2 depend on two invariants of the tensor ddd. The hydrostatic stress
is not defined by the constitutive equation. It can be computed from the balance of
momentum. Further specification of the constitutive equation can be made based on
experimental observations. For example assume the shear flow

vvv(x, y, z) = zγ̇eeex , ⇒ LLL = γ̇eeex ⊗ eeez, ddd = DDD = γ̇ (eeex ⊗ eeez + eeez ⊗ eeex ),

where the unit vector eeex designates the flow (velocity) direction and the unit vector
eeez , is the normal to the plane xy and γ̇ is the shear rate. With Eq. (5.4.81) the stress
deviator is

sss = gT (T )α̃1γ̇ (eeex ⊗ eeez + eeez ⊗ eeex ) + gT (T )α̃2γ̇
2

(
1

3
III − eeey ⊗ eeey

)

The first term is the shear stress state in the xz plane with the magnitude gT (T )α̃1γ̇ .
The second term is the “out of plane” stress statewith themagnitude gT (T )α̃2γ̇

2. This
may be important to describe complex material responses, for example the Weis-
senberg effect observed for several non-Newtonian fluids, e.g. Ziegler (1983),
Giesekus (1994). In many cases, for example for hot deformation processes of metals
such effects are usually negligible. With α̃2 = 0 Eq. (5.4.81) is simplified to

sss(ddd, T ) = gT (T )α̃1ddd, (5.4.82)

where α̃1 may depend on two invariants of ddd .
For the identification the following inverse form of Eq. (5.4.77) may be conve-

nient8

DDD(σσσ , T ) = fT (T ) fff (σσσ), fff (σσσ) = β0III + β1σσσ + β2σσσ
2, (5.4.83)

where βi are functions of three invariants of the stress tensor. For many materials,
the inelastic deformation does not produce an essential change in volume. Setting

8For example, to identify creep of metals, the creep rate is considered as a function of the stress
based on results of uni-axial creep tests.
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the trace of Eq. (5.4.83) to zero, we obtain

ddd(σσσ , T ) = fT (T )

[
β̃1sss + β̃2

(
sss2 − 1

3
tr sss2 III

)]
, (5.4.84)

where β̃i depend on two invariants of the stress deviator. To specify these functions,
experimental data from tests under different stress states are required. As an example,
consider the shear stress state which can be obtained if a thin-walled tube is subjected
to the torsion, see Sect. 1.1.2

σσσ = sss = τ(eeex ⊗ eeez + eeez ⊗ eeex ),

where τ is the magnitude of the shear stress. Equation (5.4.84) yields

ddd = fT (T )β̃1τ(eeex ⊗ eeez + eeez ⊗ eeex ) + fT (T )β̃2τ
2

(
1

3
III − eeey ⊗ eeey

)
(5.4.85)

For the fixed temperature a family of creep curves for different values of the shear
stress can be recorded. From the steady creep state one may obtain the components
of the creep rate tensor and identify the functions β̃i . Equation (5.4.85) predicts
that the shear stress leads to shear creep rate, and additionally to the axial creep
rates (Poynting-Swift effect). Within the engineering mechanics of small inelastic
deformation such effects are usually neglected and one may set β̃2 = 0. This leads
to the following equation

ddd(σσσ , T ) = fT (T )β̃1sss (5.4.86)

In this case the dissipation inequality (5.4.73) reads

fT (T )β̃1sss ······ sss ≥ 0

Since fT (T ) > 0, we obtain the restriction for the function β̃1 ≥ 0. FromEq. (5.4.86)
can also be written as follows

ddd2 = f 2T β̃
2
1sss2, ⇒ tr ddd2 = f 2T β̃

2
1 tr sss2 (5.4.87)

Introducing the von Mises equivalent stress and deformation rate

σvM =
√
3

2
tr sss2 =

√
3

2
sss ······ sss, dvM =

√
2

3
tr ddd2 =

√
2

3
ddd ······ ddd (5.4.88)

Equation (5.4.87)2 takes the following form

3

2
d2
vM = f 2T β̃

2
1
2

3
σ 2
vM, ⇒ fT β̃1 = 3

2

dvM
σvM

(5.4.89)

http://dx.doi.org/10.1007/978-3-319-31629-1_1
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Now Eq. (5.4.86) can be put into the following equivalent form

ddd = 3

2

dvM
σvM

sss (5.4.90)

A class of constitutive equations is usually based on the concept of the plastic
or creep potentials and the flow rule. The associated flow rule has the origin in the
engineering theory of plasticity. The basic assumptions of this theory are:

• The existence of a yield condition (creep condition, see Betten (1993), for exam-
ple) expressed by the equation F(σσσ) = 0, where F is a scalar valued function. The
function F depends not only on the stress tensor but also on the internal state vari-
ables and the temperature (Malinin 1981; Rabotnov 1969), i.e. the yield condition
has a form

F(σσσ , Hi , ω j , T ) = 0, i = 1, . . . , n, j = 1, . . . ,m, (5.4.91)

where Hi are hardening variables and ω j are danage variables.
• The existence of a flow potential as a function of the stress tensor Φ(σσσ).

The flow rule (sometimes called the normality rule) is the following assumption for
the inelastic deformation rate tensor

DDD = λ̇
∂Φ

∂σσσ
,

{
λ̇ = 0, if F(σσσ) < 0,
λ̇ ≥ 0, if F(σσσ) = 0

(5.4.92)

Details of the rate-independent plasticity theory including different arguments lead-
ing to (5.4.92) can be found in textbooks, e.g. Hill (1950), Kachanov (1969), Kaliszky
(1984), Khan and Huang (1995), Malinin (1975), Malinin (1992), Skrzypek (1993).

Within the mechanics of inelastic deformation at elevated temperature, the flow
theory is usually applied without the concept of the yield stress or yield condition.
This is motivated by the fact that high-temperature plasticity is a thermally activated
process and the material starts to creep even under low and moderate stress values
below the apparent yield point.9 Furthermore, within the temperature range 0.5Tm <

T < 0.7Tm the dominant creep mechanism for metals and alloys is the diffusion of
vacancies, e.g. Frost and Ashby (1982). Under this condition the existence of a yield
or a creep limit cannot be verified. In Betten (1993, 2008), Malinin (1975, 1981),
Penny and Mariott (1995) the flow rule is applied as follows

DDD = λ̇
∂Φ

∂σσσ
, λ̇ > 0 (5.4.93)

Equation (5.4.93) states the “normality” of the strain rate tensor to the surfaces
Φ(σσσ) = const. The scalar factor λ̇ is determined according to the hypothesis of the

9At high temperature the yield point cannot be defined, the Rp0.2 stress value is used instead in most
cases, see Sect. 1.1.1.1.

http://dx.doi.org/10.1007/978-3-319-31629-1_1
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equivalence of the dissipation power (Altenbach 1999; Betten 2008). With the dissi-
pation power P = DDD ······ σσσ it is assumed that P = ε̇eqσeq, where ε̇eq is the equivalent
strain rate and σeq is the equivalent stress. The equivalent measures of stress and
strain rate are convenient to compare experimental data under different stress states
(see Sect. 1.1.2). From the above hypothesis it follows

λ̇ = P
∂Φ

∂σσσ
······ σσσ

= ε̇eqσeq

∂Φ

∂σσσ
······ σσσ

(5.4.94)

The equivalent strain rate is defined as a function of the equivalent stress according
to the experimental data for uni-axial creep as well as creep mechanisms operating
for the given stress range. An example is the power law stress function

ε̇eq(σeq) = aσ n
eq (5.4.95)

Another form of the flow rule without the yield condition has been proposed
by Odqvist (Odqvist 1974; Odqvist and Hult 1962). The steady-state creep theory
of Odqvist, see Odqvist (1974), is based on the variational equation δW = δσσσ ······ DDD
leading to the flow rule

DDD = ∂W

∂σσσ
, (5.4.96)

where the scalar valued function W (σσσ) plays the role of the creep potential.10 In order
to specify the creep potential, the equivalent stress σeq(σσσ) is introduced. Taking into
account that W (σσσ) = W (σeq(σσσ)) the flow rule (5.4.96) can be formulated as follows

DDD = ∂W

∂σeq

∂σeq

∂σσσ
= ε̇eq

∂σeq

∂σσσ
, ε̇eq = ∂W

∂σeq
(5.4.97)

The creep potential W (σeq) is defined according to experimental data of creep under
uni-axial stress state for the specific stress range. An example is the Norton-Bailey-
Odqvist creep potential

W = σ0

n + 1

(
σvM

σ0

)n+1

, (5.4.98)

widely used for the description of steady-state creep of metals and alloys. In (5.4.98)
σ0 and n are material parameters and σvM is the von Mises equivalent stress. Below
we discuss various restrictions on the potentials, e.g. the symmetries of the creep
behavior and the inelastic incompressibility.

10The dependence on the temperature is dropped for the sake of brevity.

http://dx.doi.org/10.1007/978-3-319-31629-1_1


5.4 Non-linear Viscosity, Viscoplasticity, and Rigid Plasticity 197

In order to compare the flow rules (5.4.93) and (5.4.96) let us compute the dissi-
pation power. From (5.4.97) it follows

P = ε̇εε ······ σσσ = ∂W

∂σeq

∂σeq

∂σσσ
······ σσσ = ε̇eq

∂σeq

∂σσσ
······ σσσ

We observe that the equivalence of the dissipation power follows from (5.4.97) if the
equivalent stress satisfies the following partial differential equation

∂σeq

∂σσσ
······ σσσ = σeq (5.4.99)

Furthermore, in this case the flow rules (5.4.93) and (5.4.96) lead to the same creep
constitutive equation. Many equivalent stress formulations proposed in the literature
satisfy (5.4.99).

The above potential formulations originate from the works of Richard von Mises,
where the existence of variational principles is assumed in analogy to those known
from the theory of elasticity (the principle of the minimum of the complementary
elastic energy, for example). Richard von Mises wrote (von Mises 1928): “Die
Formänderung regelt sich derart, daß die pro Zeiteinheit von ihr verzehrte Arbeit
unverändert bleibt gegenüber kleinen Variationen der Spannungen innerhalb der
Fließgrenze. Da die Elastizitätstheorie einen ähnlichen Zusammenhang zwischen
den Deformationsgrößen und dem elastischen Potential lehrt, so nenne ich die Span-
nungsfunktion F auch das “plastische Potential” oder “Fließpotential”.”11 It can be
shown that the variational principles of linear elasticity are special cases of the energy
balance equation (for isothermal or adiabatic processes), see e.g. Lurie (2010), for
example. Many attempts have been made to prove or to motivate the potential for-
mulations within the framework of irreversible thermodynamics. For quasi-static
irreversible processes various extremum principles (e.g. the principle of least irre-
versible force) are stipulated in Ziegler (1963, 1983). Based on these principles
and additional arguments like material stability, the potential formulations and the
flow rules (5.4.93) and (5.4.96) can be verified. In Lemaitre and Chaboche (1990)
a complementary dissipation potential as a function of the stress tensor as well as
the number of additional forces conjugate to internal state variables is postulated,
whose properties, e.g. the convexity, are sufficient conditions to satisfy the dissipa-
tion inequality. In Maugin (1992) theories of plasticity and visco-plasticity are based
on the notion of the dissipation pseudo-potentials. However, as far as we know, the
flow rules (5.4.93) and (5.4.96) still represent the assumptions confirmed by various
experimental observations of steady-state creep in metals rather than consequences

11The change in shape is governed in such a way that the the work per unit time remains unchanged
compared to small variations of the stresseswithin the yield limit. Since the elasticity theory provides
a similar relationship between the deformations and the elastic potential, so I call the stress function
F also the “plastic potential” or “flow potential”.
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of the fundamental laws. The advantage of variational statements is that they are con-
venient for the formulation of initial-boundary value problems and for the numerical
analysis of creep in engineering structures. The direct variational methods (for exam-
ple, the Ritz method, the Galerkin method, the finite element method) can be applied
for the numerical solution.

Let us note that, constitutive equations of inelastic flow can be developed without
the notion of flow or creep potentials. Examples are Eqs. (5.4.80) and (5.4.83). The
existence of the potential requires that αi or βi must satisfy integrability conditions
(Betten 2008; Lurie 1990; Rivlin and Erickson 1955).

In rheology and theory ofmaterials equations like (5.4.77), (5.4.83) or (5.4.96) are
classified as a constitutive equation for non-linear viscous fluids, or non-linear vis-
cous elements, see, for example, Giesekus (1994), Krawietz (1986), Palmov (1998),
Reiner (1969). On the other hand, for large values of n the creep potential (5.4.98)
is close to the potential of rate-independent plasticity. Functions fff and fT can be
formulated such that experimental data including non-linear viscous flow and plas-
ticity can be described. Therefore equations like (5.4.80), (5.4.83) or (5.4.96) can be
classified as viscoplasticity model. An example is the viscoplasticity model proposed
by Krempl (1996, 1999) where the yield condition is not included. This definition
of a viscoplasticity model like (5.4.77), (5.4.83) or (5.4.96) may contradict the clas-
sification in the rheology, where the viscoplastic model is defined as a connection of
viscous and rigid plastic elements.

The inelastic deformation of crystalline materials is related to dislocation glide
and dislocation climb (Frost and Ashby 1982; Nabarro and de Villiers 1995). The
glidemotion of dislocations dominates at lower homologous temperatures and higher
stress levels, while the climb of dislocations over obstacles is important in high-
temperature regimes and moderate stress levels. From this point of view, equations
like (5.4.77), (5.4.83) or (5.4.96) can be classified as models of high-temperature
plasticity, as preferred in the materials science, see, for example, Ilschner (1973).

Constitutive Equations like (5.4.80), (5.4.83) or (5.4.96) are used in the analysis
of hot deformation processes of metals, for example, friction welding (Schmicker
et al. 2013, 2015). Constitutive equations (5.4.90) and (5.4.96) are applied for the
structural analysis in the steady-state creep range (Altenbach et al. 2008; Boyle 2012;
Naumenko et al. 2009; Naumenko and Altenbach 2007).

5.4.2 Isotropic Materials

In many cases creep behavior can be assumed to be isotropic. In what follows the
classical potential and the potential formulated in terms of three invariants of the
stress tensor are introduced.
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5.4.2.1 Classical Creep Potential

The starting point is the Odqvist flow rule (5.4.96). Under the assumption of the
isotropic creep, the potential depends only on the stress tensor and must satisfy the
following restriction

W (QQQ ··· σσσ ··· QQQT) = W (σσσ) (5.4.100)

for any symmetry transformation QQQ, QQQ ··· QQQT = III , det QQQ = ±1. From (5.4.100) it
follows that the potential depends only on the three invariants of the stress tensor
(see Appendix B.6). Applying the principal invariants

J1(σσσ) = tr σσσ , J2(σσσ) = 1

2
[(tr σσσ)2 − tr σσσ 2],

J3(σσσ) = detσσσ = 1

6
(tr σσσ)3 − 1

2
tr σσσ tr σσσ 2 + 1

3
tr σσσ 3

(5.4.101)

one can write

W (σσσ) = W (J1, J2, J3)

The stress tensor can be decomposed into the spherical and deviatoric parts as follows

σσσ = σmIII + sss, tr sss = 0 ⇒ σm = 1

3
tr σσσ ,

where sss is the stress deviator and σm is the mean stress. With the principal invariants
of the stress deviator

J2D = −1

2
tr sss2 = −1

2
sss ······ sss, J3D = 1

3
tr sss3 = 1

3
(sss ··· sss) ······ sss

the potential takes the form

W = W (J1, J2D, J3D),

Applying the rule for the derivative of a scalar valued function with respect to a
second rank tensor (see Appendix B.4) and Eq. (5.4.96) one can obtain

DDD = ∂W

∂ J1
III − ∂W

∂ J2D
sss + ∂W

∂ J3D

(
sss2 − 1

3
tr sss2III

)
(5.4.102)

In the classical creep theory it is assumed that the inelastic deformation does not
produce a significant change in volume. The spherical part of the deformation rate
tensor is neglected, i.e. tr DDD = 0. Setting the trace of (5.4.102) to zero results in
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tr DDD = 3
∂W

∂ J1
= 0 ⇒ W = W (J2D, J3D)

From this follows that the creep behavior is not sensitive to the hydrostatic stress state
σσσ = −pIII , where p > 0 is the hydrostatic pressure. The creep equation (5.4.102) can
be formulated as

DDD = ddd = − ∂W

∂ J2D
sss + ∂W

∂ J3D

(
sss2 − 1

3
tr sss2III

)
(5.4.103)

The last term in the right-hand side of (5.4.103) is non-linear with respect to the
stress deviator sss. Equations of this type are called tensorial non-linear equations, e.g.
Backhaus (1983),Betten (2008),Malinin (1981),Rabotnov (1969).With the tensorial
non-linearity several non-classical or second order effects of the material behavior
can be considered (Backhaus 1983; Billington 1985). As an example consider the
shear stress state sss = τ(mmm ⊗ nnn + nnn ⊗ mmm), where τ is the magnitude of the shear
stress and mmm and nnn are orthogonal unit vectors. From (5.4.103) it follows

ddd = − ∂W

∂ J2D
τ(mmm ⊗ nnn + nnn ⊗ mmm) + ∂W

∂ J3D
τ 2

(
1

3
III − ppp ⊗ ppp

)
,

where the unit vector ppp is orthogonal to the plane spanned on mmm and nnn. We observe
that the pure shear load leads to shear creep rate, and additionally to the axial creep
rates (Poynting-Swift effect). Within the engineering creep mechanics such effects
are usually neglected.

The assumption that the potential is a function of the second invariant of the stress
deviator only, i.e.

W = W (J2D)

leads to the classical von Mises type potential (von Mises 1928). In applications it
is convenient to introduce the equivalent stress which allows to compare the creep
behavior under different stress states including the uni-axial tension. The von Mises
equivalent stress is defined as follows

σvM =
√
3

2
sss ······ sss = √−3J2D, (5.4.104)

where the factor 3/2 is used for convenience (in the case of the uni-axial tension
with the stress σ the above expression provides σvM = σ ). With W = W (σvM(σσσ))

the flow rule (5.4.96) results in

ddd = ∂W (σvM)

∂σvM

∂σvM

∂σσσ
= ∂W (σvM)

∂σvM

3

2

sss

σvM
(5.4.105)
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The second invariant of ddd can be calculated as follows

ddd ······ ddd = 3

2

[
∂W (σvM)

∂σvM

]2

Introducing the notation ε̇2vM = 2
3ddd ······ ddd and taking into account that

P = ∂W (σvM)

∂σvM
σvM ≥ 0

we obtain

ddd = 3

2
ε̇vM

sss

σvM
, ε̇vM = ∂W (σvM)

∂σvM
(5.4.106)

The constitutive equation of steady-state creep (5.4.106) was proposed by Odqvist
and Hult (1962). Experimental verifications of this equation can be found, for exam-
ple, in Sosnin (1971) for steel 45, in Nikitenko (1984) for titanium alloy Ti-6Al-4V
and in Oytana et al. (1982) for alloys Al-Si, Fe-Co-V and XC 48. In these works
tubular specimens were loaded by tension force and torque leading to the plane
stress state σσσ = σnnn ⊗ nnn + τ(nnn ⊗ mmm + mmm ⊗ nnn), where σ and τ are the magnitudes
of the normal and shear stresses (see Sect. 1.1.2). Surfaces σ 2

vM = σ 2 + 3τ 2 = const
corresponding to the same steady state values of ε̇vM were recorded. Assuming the
Norton-Bailey type potential (5.4.98), from (5.4.106) it follows

ddd = 3

2
aσ n−1

vM sss (5.4.107)

This model is widely used for the analysis steady-state creep in structures, e.g. Boyle
and Spence (1983), Burlakov et al. (1977), Odqvist and Hult (1962), Penny and
Mariott (1995), Rabotnov (1969).

5.4.2.2 Potentials with Three Invariants of the Stress Tensor

In some cases, deviations from the von Mises type equivalent stress were found in
experiments. For example, different secondary creep rates under tensile and compres-
sive loading were observed in Lucas and Pelloux (1981) for Zircaloy-2, in El-Magd
and Nicolini (1999) for aluminium alloy ALC101 and in Stouffer and Dame (1996)
for the nickel-based alloy René 95. One way to consider such effects is to construct
the creep potential as a function of three invariants of the stress tensor. Below we dis-
cuss a generalized creep potential, proposed in Altenbach et al. (1995). This potential
leads to tensorial non-linear constitutive equations and allows to predict the stress
state dependent creep behavior and second order effects. The 6 unknown parame-
ters in this law can be identified by some basic tests. Creep potentials formulated

http://dx.doi.org/10.1007/978-3-319-31629-1_1
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in terms of three invariants of the stress tensor are termed non-classical (Altenbach
et al. 1995).

By analogy to the classical creep equations, the dependence on the stress tensor is
defined by means of the equivalent stress σeq. Various equivalent stress expressions
have been proposed in the literature for the formulation of yield or failure criteria,
e.g. Altenbach and Zolochevsky (1996). In the case of creep, different equivalent
stress expressions are summarized in Kawai (2002). In Altenbach et al. (1995) the
following equivalent stress is proposed

σeq = ασ1 + βσ2 + γ σ3 (5.4.108)

with the linear, the quadratic and the cubic invariants

σ1 = μ1 I1, σ 2
2 = μ2 I 21 + μ3 I2, σ 3

3 = μ4 I 31 + μ5 I1 I2 + μ6 I3, (5.4.109)

where Ii = tr σσσ i (i = 1, 2, 3) are basic invariants of the stress tensor (see Appendix
B.6), μ j ( j = 1, . . . , 6) are parameters, which depend on the material properties.
α, β, γ are numerical coefficients for weighting the influence of the different parts
in the equivalent stress expression (5.4.108). Such a weighting is usual in phenom-
enological modeling of material behavior. For example, in Hayhurst (1972) similar
coefficients are introduced for characterizing different failure modes.

The von Mises equivalent stress (5.4.104) can be obtained from (5.4.108) by
setting α = γ = 0, β = 1 and μ3 = 1.5, μ2 = −0.5. In what follows we set β = 1
and the equivalent stress takes the form

σeq = ασ1 + σ2 + γ σ3 (5.4.110)

It can be verified that the equivalent stress (5.4.110) satisfies (5.4.99).
The flow rule (5.4.96) allows to formulate the constitutive equation for the creep

rate tensor

DDD = ∂W (σeq)

∂σeq

∂σeq

∂σσσ
= ∂W (σeq)

∂σeq

(
α
∂σ1

∂σσσ
+ ∂σ2

∂σσσ
+ γ

∂σ3

∂σσσ

)
(5.4.111)

Taking into account the relations between the invariants σi and the basic invariants
Ii and using the rules for the derivatives of the invariants (see Appendix B.4), we
obtain

∂σ1

∂σσσ
= μ1III ,

∂σ2

∂σσσ
= μ2 I1III + μ3σσσ

σ2
,

∂σ3

∂σσσ
=

μ4 I 21 III + μ5

3
I2III + 2

3
μ5 I1σσσ + μ6σσσ ··· σσσ

σ 2
3

(5.4.112)
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As a result, the creep constitutive equation can be formulated as follows

DDD = ∂W (σeq)

∂σeq

⎡
⎢⎣αμ1III +μ2 I1III + μ3σσσ

σ2
+γ

(
μ4 I 21 + μ5

3
I2

)
III + 2

3
μ5 I1σσσ + μ6σσσ ··· σσσ

σ 2
3

⎤
⎥⎦

(5.4.113)

Introducing the notation

ε̇eq ≡ ∂W (σeq)

∂σeq

the constitutive equation takes the form

DDD = ε̇eq

⎡
⎢⎣αμ1III + μ2 I1III + μ3σσσ

σ2
+ γ

(
μ4 I 21 + μ5

3
I2

)
III + 2

3
μ5 I1σσσ + μ6σσσ ··· σσσ

σ 2
3

⎤
⎥⎦

(5.4.114)

Equation (5.4.114) is non-linear with respect to the stress tensor. Therefore, second
order effects, e.g. Backhaus (1983), Betten (1998), Truesdell (1964) are included
in the material behavior description. In addition, the volumetric creep rate can be
calculated from (5.4.114) as follows

ε̇V = ε̇eq

[
3αμ1 + (3μ2 + μ3)I1

σ2
+ γ

(9μ4 + 2μ5)I 21 + 3(μ5 + μ6)I2
3σ 2

3

]

(5.4.115)

The volumetric creep rate is different from 0, i.e. the compressibility or dilatation
can be considered.

The derived creep equation has the form (5.4.83) of the general relation between
two coaxial tensors. The comparison of (5.4.83) and (5.4.114) provides

fT β0 = ε̇eq

(
αμ1 + μ2 I1

σ2
+ γ

3μ4 I 21 + μ5 I2
3σ 2

3

)
,

fT β1 = ε̇eq

(
μ3

σ2
+ γ

2μ5 I1
3σ 2

3

)
,

fT β2 = ε̇eqγ
μ6

σ 2
3

(5.4.116)

In Altenbach et al. (1995) the power law function of the equivalent stress (5.4.95)
is applied to model creep behavior of several materials. Four independent creep tests
are required to identify thematerial constants. The stress states realized in tests should
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include uni-axial tension, uni-axial compression, torsion and hydrostatic pressure.
Let us note that experimental data which allows to identify the full set of material
constants in (5.4.114) are usually not available. In applications one may consider the
following special cases of (5.4.114) with reduced number of material constants.

The classical creep equation based on the von Mises equivalent stress can be
derived assuming the following values of material constants

α = γ = 0, μ2 = −1/2, μ3 = 3/2, (5.4.117)

σeq = σ2 =
√

−1

2
I 21 + 3

2
I2 =

√
3

2
sss ······ sss = σvM (5.4.118)

The creep rate tensor takes the form

DDD = ε̇eq

(√
3

2
sss ······ sss

)
3σσσ − I1III

2

√
3

2
sss ······ sss

= 3

2

ε̇eq(σvM)

σvM
sss (5.4.119)

Assuming identical behavior in tension and compression and neglecting second
order effects from α = γ = 0, the following equivalent stress can be obtained

σeq = σ2 =
√
μ2 I 21 + μ3 I2 (5.4.120)

The corresponding creep constitutive equation takes the form

DDD = ε̇eq(σ2)
μ2 I1III + μ3σσσ

σ2
(5.4.121)

The parametersμ2 andμ3 can be determined from uni-axial tension and torsion tests.
Based on the experimental data presented in Kowalewski (1987, 1991) for technical
pure copper M1E (Cu 99.9%) at T = 573 K the parameters μ2 and μ3 are identified
in Altenbach et al. (1991).

Neglecting the influence of the third invariant (γ = 0), the creep rate tensor can
be expressed as follows

DDD = ε̇eq(σeq)

(
αμ1III + μ2 I1III + μ3σσσ

σ2

)
(5.4.122)

Equation (5.4.122) describes different behavior in tension and compression, and
includes the volumetric creep rate. Three independent tests, e.g. tension, compression
and torsion are required to identify the material constants μ1, μ2 and μ3.

With the quadratic invariant and the reduced cubic invariant several special cases
with three material constants can be considered. Setting (αμ1 = μ4 = μ5 = 0) the
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tensorial non-linear equation can be obtained

DDD = ε̇eq(σeq)

(
μ2 I1III + μ3σσσ

σ2
+ γ

μ6σσσ ··· σσσ
σ 2
3

)
(5.4.123)

With αμ1 = μ4 = μ6 = 0 the deformation rate tensor takes the form

DDD = ε̇eq(σeq)

(
μ2 I1III + μ3σσσ

σ2
+ γ

μ5(I2III + 2I1σσσ)

σ 2
3

)
(5.4.124)

The material parameters in (5.4.122), (5.4.123) and (5.4.124) were identified in
Altenbach (1999), Altenbach and Zolochevsky (1994) according to data from multi-
axial creep tests for plastics (PVC) at room temperature (Lewin and Lehmann
1977) and aluminium alloy AK4-1T at 473 K (Cvelodub 1991; Gorev et al. 1979;
Soločevskij et al. 1985). Furthermore, simulations have been performed inAltenbach
(1999), Altenbach and Zolochevsky (1994) to compare Eqs. (5.4.122), (5.4.123) and
(5.4.124) as they characterize creep behavior under different loading conditions. The
conclusion was made that cubic invariants applied in (5.4.123) and (5.4.124) do not
deliver any significant improvement in the material behavior description.

5.4.3 Initially Anisotropic Materials

Anisotropic creep behavior and anisotropic creep modeling are subjects which are
rarely discussed in the classical monographs and textbooks on creepmechanics (only
in some books one may found the flow potentials introduced by von Mises (1928)
and Hill (1950). The reason for this is that the experimental data from creep tests
usually show large scatter within the range of 20% or even more. Therefore, it
was often difficult to recognize whether the difference in creep curves measured
for different specimens (cut from the same material in different directions) is the
result of the anisotropy. Therefore, it was no use for anisotropic models with higher
order complexity, since the identification of material constants was difficult or even
impossible. In the last three decades the importance in modeling anisotropic creep
behavior of materials and structures is discussed in many publications. In Bertram
and Olschewski (1996), Mahnken (2002), Qi (1998), Qi and Bertram (1997), Qi and
Bertram (1998), Qi and Bertram (1999) experimental results of creep of superal-
loys SRR99 and CMSX-4 are reported, which demonstrate significant anisotropy of
creep behavior for different orientations of specimens with respect to the crystal-
lographic axes. In Hyde et al. (2003a) experimental creep curves of a 9CrMoNbV
weld metal are presented. They show significant difference for specimens sampled in
longitudinal (welding) direction and transverse directions. In Gariboldi and Casaro
(2007), Naumenko and Gariboldi (2014) creep curves for a forged aluminum alloy
are presented. The results illustrate the essential difference of creep rates for speci-
mens sampled longitudinal (forging) and transverse directions. Further examples are
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materials reinforced by fibers, showing different creep behavior in direction of fibers
and in the transverse direction, e.g. Robinson et al. (2003a, b), Kröner et al. (2009).

Constitutivemodels for anisotropicmaterials include theorientationofmicrostruc-
ture, specified by vectors and tensors of different rank, besides the actual stress and/or
deformation rate states. Examples for the material directions are the orientation of
fibers in a fiber reinforced material, the direction of forging in a forged alloy, the
orientation of crystallographic axes in a single crystal alloy, etc. By analogy to the
elasticity, Sect. 5.3.3, the flow potential can be introduced as a function of the stress
tensor and a set of structure tensors. Within the framework of elasticity, the actual
state of the microstructure can be determined through the deformation gradient, cp.
Eq. (5.3.46) providing the actual orientation of a structure tensor. For example, flex-
ible fibers deform with the matrix material without any sliding/debonding such that
after the unloading the initial orientation of the material microstructure is recovered.
In contrast, the material microstructure during the inelastic flow cannot be related
to the deformation gradient and/or velocity gradient only. For example, short fibers
may change the orientation in a viscous medium as a result of their rotary inertia
(Altenbach et al. 2007, 2009; Lundell 2011; Lundell and Carlsson 2010). Therefore,
additional evolution equations are required to define the current state of microstruc-
ture. Several kinds of anisotropy can be distinguished. The initial anisotropy is usu-
ally the result of the material processing, the information to the material symmetries
including the orientation of material vectors is defined in the reference state. The
deformation and/or damage induced anisotropy is the result of changes in the sym-
metry group during the deformation, for example during the creep exposure. In a
simple case only the orientation of material orientation is changing and the material
possesses the same symmetry group relative to the actual material vectors. In a more
complex case the symmetries are lost during the deformation, as a result of damage,
for example.

In this section we consider only the case of the initial anisotropy. Furthermore,
we assume that the state of the material orientation is stable, such that the associated
structure tensors can be assumed constant. Examples for constitutive equations for
induced anisotropy will be discussed in Sects. 5.3.2 and 5.5.2.

5.4.3.1 Quadratic Potentials

Here we discuss constitutive equations for steady-state creep based on the flow rule
(5.4.96) and assumption that the creep potential has a quadratic form with respect
to the invariants of the stress tensor. These invariants must be established according
to the assumed symmetry elements of the creep behavior. The assumption of the
quadratic form of the flow potential originates from the vonMises work on plasticity
of crystals (von Mises 1928). Therefore, the equations presented below may be
termed as von Mises type equations.



5.4 Non-linear Viscosity, Viscoplasticity, and Rigid Plasticity 207

Transverse Isotropy

In this case the potential W (σσσ) must satisfy the following restriction

W (QQQ ··· σσσ ··· QQQT) = W (σσσ), QQQ(ϕmmm) = mmm ⊗ mmm + cosϕ(III − mmm ⊗ mmm) + sin ϕmmm × III
(5.4.125)

In (5.4.125) QQQ(ϕmmm) is the assumed element of the symmetry group, whereby mmm is
a constant unit vector and ϕ is the arbitrary angle of rotation about mmm. From the
restriction (5.4.125) follows that the potential W must satisfy the following partial
differential equation (see Appendix B.7)

(mmm × σσσ − σσσ × mmm) ······
(
∂W

∂σσσ

)T

= 0 (5.4.126)

The set of integrals of this equation represent the set of functionally independent
scalar valued arguments of the potential W with respect to the symmetry transfor-
mation (5.4.125). The characteristic system of (5.4.126) is the system of ordinary
differential equations

dσσσ

ds
= (mmm × σσσ − σσσ × mmm) (5.4.127)

Any system of n linear ordinary differential equations has not more than n − 1
functionally independent integrals (Courant andHilbert 1989). Sinceσσσ is symmetric,
(5.4.127) is a system of six ordinary differential equations and has not more than
five functionally independent integrals. The lists of these integrals are presented
by (B.7.28) and (B.7.39). Within the classical von Mises type theory second order
effects are neglected. Therefore, we have to neglect the arguments which are cubic
with respect to the stress tensor. In this case the difference between various kinds of
transverse isotropy considered inAppendixB.7 vanishes. It is possible to use different
lists of of scalar arguments. The linear and quadratic arguments from (B.7.28) are

tr σσσ , tr σσσ 2, mmm ··· σσσ ··· mmm, mmm ··· σσσ 2 ··· mmm (5.4.128)

Instead of (5.4.128) one can use other arguments, for example

tr σσσ , tr sss2 = tr σσσ 2 − 1

3
(tr σσσ)2,

mmm ··· sss ··· mmm = mmm ··· σσσ ··· mmm − 1

3
tr σσσ ,

mmm ··· sss2 ··· mmm = mmm ··· σσσ 2 ··· mmm − 2

3
mmm ··· sss ··· mmmtr σσσ − 1

9
(tr σσσ)2,

(5.4.129)

as proposed inRobinson et al. (2003a). Inwhat followsweprefer another set of invari-
ants which can be related to (5.4.128) but has a more clear mechanical interpretation.
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Let us decompose the stress tensor as follows

σσσ = σmmmmm ⊗ mmm + σσσ p + τττm ⊗ mmm + mmm ⊗ τττm (5.4.130)

with the projections

σmm = mmm ··· σσσ ··· mmm,

σσσ p = (III − mmm ⊗ mmm) ··· σσσ ··· (III − mmm ⊗ mmm),

τττm = mmm ··· σσσ ··· (III − mmm ⊗ mmm)

(5.4.131)

The meaning of the decomposition (5.4.130) is obvious. σmm is the normal stress
acting in the plane with the unit normal mmm, σσσ p stands for the “plane” part of the
stress tensor representing the stress state in the isotropy plane. τττm is the shear stress
vector in the plane with the unit normal mmm. For the orthonormal basis kkk, lll and mmm the
projections are (see Fig. 5.1)

τττm = τmkkkk + τmllll,
σσσ p = σkkkkk ⊗ kkk + σlllll ⊗ lll + τkl(kkk ⊗ lll + lll ⊗ kkk)

The plane part of the stress tensor can be further decomposed as follows

σσσ p = sss p + 1

2
tr σσσ p(III − mmm ⊗ mmm), tr sss p = 0 (5.4.132)

Fig. 5.1 Stress state in a transversely isotropic medium with the preferential (fiber) direction mmm
and corresponding projections σmm , σσσ p and τττm
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Now we can introduce the following set of transversely isotropic invariants

I1m = σmm = mmm ··· σσσ ··· mmm,

I2m = tr σσσ p = tr σσσ − mmm ··· σσσ ··· mmm,

I3m = 1

2
tr sss2p = 1

2
tr σσσ 2

p − 1

4
(tr σσσ p)

2

= 1

2

(
tr σσσ 2 + (mmm ··· σσσ ··· mmm)2

) − mmm ··· σσσ 2 ··· mmm − 1

4
(tr σσσ − mmm ··· σσσ ··· mmm)2,

I4m = τττm ··· τττm = mmm ··· σσσ 2 ··· mmm − (mmm ··· σσσ ··· mmm)2 = (mmm × σσσ ··· mmm) ··· (mmm × σσσ ··· mmm)

(5.4.133)

In the above list I2m and I3m are two invariants of σσσ p and I4m = τττ 2
m = τττm ··· τττm is

the square of the length of the shear stress vector acting in the plane with the unit
normal mmm. It is shown in Appendix B.7 that the above invariants are integrals of
Eq. (5.4.127).

Taking into account the relations

∂ I1m

∂σσσ
= mmm ⊗ mmm,

∂ I2m

∂σσσ
= III − mmm ⊗ mmm,

∂ I3m

∂σσσ
= sss p,

∂ I4m

∂σσσ
= τττmmm ⊗ mmm + mmm ⊗ τττmmm

and the flow rule (5.4.96) we obtain the following creep equation

DDD = ∂W

∂ I1m
mmm ⊗ mmm + ∂W

∂ I2m
(III − mmm ⊗ mmm) + ∂W

∂ I3m
sss p

+ ∂W

∂ I4m
(τττmmm ⊗ mmm + mmm ⊗ τττmmm)

(5.4.134)

The next assumption of the classical theory is the zero volumetric creep rate. Taking
the trace of Eq. (5.4.134) we obtain

tr DDD = ∂W

∂ I1m
+ 2

∂W

∂ I2m
= 0 ⇒ W = W (I1m − 1

2
I2m, I3m, I4m) (5.4.135)

Introducing the notation

Jm ≡ I1m − 1

2
I2m = mmm ··· σσσ ··· mmm − 1

2
tr σσσ p

the creep equation (5.4.134) takes the form

DDD = ddd = 1

2

∂W

∂ Jm
(3mmm ⊗ mmm − III ) + ∂W

∂ I3m
sss p + ∂W

∂ I4m
(τττmmm ⊗ mmm + mmm ⊗ τττmmm)

(5.4.136)
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By analogy to the isotropic case we formulate the equivalent stress as follows

σ 2
eq = α1 J 2

m + 3α2 I3m + 3α3 I4m

= α1

(
mmm ··· σσσ ··· mmm − 1

2
tr σσσ p

)2

+ 3

2
α2tr sss2p + 3α3τ

2
mmm

(5.4.137)

The positive definiteness of the quadratic form (5.4.137) is provided by the conditions
αi > 0, i = 1, 2, 3. The deviatoric part sss of the stress tensor and its second invariant
can be computed by

sss = Jm

(
mmm ⊗ mmm − 1

3
III

)
+ sss p + τττm ⊗ mmm + mmm ⊗ τττm,

tr sss2 = 2

3
J 2

m + tr sss2p + 2τ 2
mmm

Consequently, the von Mises equivalent stress (5.4.104) follows from Eq. (5.4.137)
by setting α1 = α2 = α3 = 1.

The advantage of the introduced invariants over (5.4.128) or (5.4.129) is that they
can be specified independently from each other. For example, set the second invariant
in Eq. (5.4.128) to zero, i.e. tr σσσ 2 = σσσ ······ σσσ = 0. From this follows that σσσ = 000 and
consequently all other invariants listed in Eq. (5.4.128) are simultaneously equal to
zero. In addition, the introduced invariants can be related to typical stress stateswhich
should be realized in creep tests for the identification of constitutive functions and
material constants. With the equivalent stress (5.4.137) the creep equation (5.4.136)
can be rewritten as follows

ddd = 3

2σeq

∂W

∂σeq

[
α1 Jm

(
mmm ⊗ mmm − 1

3
III

)
+ α2sss p + α3(τττm ⊗ mmm + mmm ⊗ τττm)

]

(5.4.138)

With the notation ε̇eq ≡ ∂W
∂σeq

Eq. (5.4.138) takes the form

ddd = 3

2

ε̇eq

σeq

[
α1 Jm

(
mmm ⊗ mmm − 1

3
III

)
+ α2sss p + α3(τττm ⊗ mmm + mmm ⊗ τττm)

]
(5.4.139)

Let us introduce the following parts of the creep rate tensor

dmm ≡ mmm ··· ddd ··· mmm,

DDD p ≡ (III − mmm ⊗ mmm) ··· ddd(III − mmm ⊗ mmm),

ddd p ≡ DDD p − 1

2
dmm(III − mmm ⊗ mmm),

γγγ m ≡ mmm ··· ddd ··· (III − mmm ⊗ mmm)

(5.4.140)
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From Eq. (5.4.138) we obtain

dmm = α1
ε̇eq

σeq
Jm, ddd p = 3

2
α2

ε̇eq

σeq
sss p, γγγ m = 3

2
α3

ε̇eq

σeq
τττm (5.4.141)

Similarly to the isotropic case the equivalent creep rate can be calculated as follows

ε̇eq =
√

1

α1
d2

mm + 2

3

1

α2
ddd p ······ ddd p + 4

3

1

α3
γγγ m ··· γγγ m (5.4.142)

The equivalent creep rate (5.4.142) is useful for the verification of the creep potential
hypothesis and the assumed quadratic form of the equivalent stress with respect to the
transversely isotropic invariants of the stress tensor. The introduced creep equation
contains three material constants αi and the equivalent creep rate ε̇eq.

The assumptions of transverse isotropy and the quadratic form of the equiva-
lent stress are widely used in models of elasticity, plasticity, creep and failure of
fiber reinforced composites, e.g. Altenbach et al. (1996), Boehler (1987d), Robinson
et al. (2003a, b), Rogers (1990), Spencer (1984), directionally solidified superalloys
(Bernhardi and Mücke 2000; Mücke and Bernhardi 2003), forged alloys, e.g.
Naumenko and Gariboldi (2014) and multi-pass weld metals (Naumenko and
Altenbach 2005; Lvov et al. 2014).

Orthotropic Symmetry

In this case the potential W (σσσ) must satisfy the following restriction

W (QQQi ··· σσσ ··· QQQT
i ) = W (σσσ), QQQi = III − 2nnni ⊗ nnni , i = 1, 2, 3 (5.4.143)

In (5.4.143) QQQi denote the assumed symmetry elements—three reflections with
respect to the planes with unit normals±nnni , Fig. 5.2. The unit vectors±nnn1,±nnn2,±nnn3

are assumed to be orthogonal, i.e. nnni ··· nnn j = 0, i �= j . In Appendix B.8 the sets of
scalar arguments which satisfy the above restrictions are presented. As in the previ-
ous paragraph we assume the quadratic form of the potential with respect to the stress
tensor. One can use different sets of scalar arguments of the stress tensor satisfying
(5.4.143), see, for example, Boehler (1987c),

nnn1 ··· σσσ ··· nnn1, nnn2 ··· σσσ ··· nnn2, nnn3 ··· σσσ ··· nnn3,

nnn1 ··· σσσ 2 ··· nnn1, nnn2 ··· σσσ 2 ··· nnn2, nnn3 ··· σσσ 2 ··· nnn3

Figure5.2 shows the components of the stress tensor in a Cartesian frame eeei , three
planes of symmetry characterized by the unit vectors ±nnni and components of the
stress tensor with respect to the planes of symmetry. The stress tensor can be repre-
sented as follows

σσσ = σnnn1nnn1nnn1 ⊗ nnn1 + σnnn2nnn2nnn2 ⊗ nnn2 + σnnn3nnn3nnn3 ⊗ nnn3

+ τnnn1nnn2(nnn1 ⊗ nnn2 + nnn2 ⊗ nnn1) + τnnn1nnn3(nnn1 ⊗ nnn3 + nnn3 ⊗ nnn1)

+ τnnn2nnn3(nnn2 ⊗ nnn3 + nnn3 ⊗ nnn2)
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Fig. 5.2 Stress state in an orthotropic medium with the symmetry planes nnni . Components of the
stress tensor σi j in a basis eeei and corresponding projections σnnninnni , τnnninnn j

with

σnnn1nnn1 = nnn1 ··· σσσ ··· nnn1, σnnn2nnn2 = nnn2 ··· σσσ ··· nnn2, σnnn3nnn3 = nnn3 ··· σσσ ··· nnn3,

τnnn1nnn2 = nnn1 ··· σσσ ··· nnn2, τnnn1nnn3 = nnn1 ··· σσσ ··· nnn3, τnnn2nnn3 = nnn2 ··· σσσ ··· nnn3

According to Appendix B.8 we use the following orthotropic invariants of the stress
tensor

Innn1nnn1 = σnnn1nnn1 , Innn2nnn2 = σnnn2nnn2 , Innn3nnn3 = σnnn3nnn3 ,

Innn1nnn2 = τ 2
nnn1nnn2

, Innn1nnn3 = τ 2
nnn1nnn3

, Innn2nnn3 = τ 2
nnn2nnn3

(5.4.144)

Assuming that the creep potential is a function of six arguments introduced, the flow
rule (5.4.96) leads to the following creep equation

DDD = ∂W

∂ Innn1nnn1

nnn1 ⊗ nnn1 + ∂W

∂ Innn2nnn2

nnn2 ⊗ nnn2 + ∂W

∂ Innn3nnn3

nnn3 ⊗ nnn3

+ ∂W

∂ Innn1nnn2

nnn1 ··· σσσ ··· nnn2(nnn1 ⊗ nnn2 + nnn2 ⊗ nnn1)

+ ∂W

∂ Innn1nnn3

nnn1 ··· σσσ ··· nnn3(nnn1 ⊗ nnn3 + nnn3 ⊗ nnn1)

+ ∂W

∂ Innn2nnn3

nnn2 ··· σσσ ··· nnn3(nnn2 ⊗ nnn3 + nnn3 ⊗ nnn2)

(5.4.145)

The assumption of zero volumetric creep rate leads to

tr D = ∂W

∂ Innn1nnn1

+ ∂W

∂ Innn2nnn2

+ ∂W

∂ Innn3nnn3

= 0 (5.4.146)
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From the partial differential equation (5.4.146) follows that the potential W is a
function of five scalar arguments of the stress tensor. The characteristic system of
(5.4.146) is

d Innn1nnn1

ds
= 1,

d Innn2nnn2

ds
= 1,

d Innn3nnn3

ds
= 1 (5.4.147)

The above system of three ordinary differential equations has two independent inte-
grals. One can verify that the following invariants

J1 = 1

2
(Innn2nnn2 − Innn3nnn3), J2 = 1

2
(Innn3nnn3 − Innn1nnn1), J3 = 1

2
(Innn1nnn1 − Innn2nnn2)

(5.4.148)

are integrals of (5.4.147). Only two of them are independent due to the relation
J1 + J2 + J3 = 0. If the principal directions of the stress tensor coincide with the
directions nnni then τnnninnn j = 0, i �= j and the above invariants represent the principal
shear stresses. An alternative set of integrals of (5.4.147) is

J̃1 = Innn1nnn1 − 1

3
tr σσσ , J̃2 = Innn2nnn2 − 1

3
tr σσσ , J̃3 = Innn3nnn3 − 1

3
tr σσσ (5.4.149)

If the principal directions of the stress tensor coincidewithnnni then the above invariants
are the principal values of the stress deviator. For the formulationof the creeppotential
in terms of invariants the relation J̃1 + J̃2 + J̃3 = 0 must be taken into account.

In what follows we apply the invariants (5.4.148). The equivalent stress can be
formulated as follows

σ 2
eq = 2β1 J 2

1 + 2β2 J 2
2 + 2β3 J 2

3

+ 3β12 Innn1nnn2 + 3β13 Innn1nnn3 + 3β23 Innn2nnn3

(5.4.150)

The von Mises equivalent stress (5.4.104) follows from Eq. (5.4.150) by setting
β1 = β2 = β3 = β12 = β13 = β23 = 1. Applying the flow rule (5.4.96) we obtain
the following creep equation

ddd = ε̇eq

σeq

[
β1 J1(nnn2 ⊗ nnn2 − nnn3 ⊗ nnn3)

+β2 J2(nnn3 ⊗ nnn3 − nnn1 ⊗ nnn1)

+β3 J3(nnn1 ⊗ nnn1 − nnn2 ⊗ nnn2)

+3

2
β12τnnn1nnn2(nnn1 ⊗ nnn2 + nnn2 ⊗ nnn1)

+3

2
β13τnnn1nnn3(nnn1 ⊗ nnn3 + nnn3 ⊗ nnn1)

+3

2
β23τnnn2nnn3(nnn2 ⊗ nnn3 + nnn3 ⊗ nnn2)

]

(5.4.151)
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The equivalent stress and the creep equation includes six independent material
parameters. Therefore six independent homogeneous stress states should be realized
in order to identify the whole set of constants. In addition, the dependence of the
creep rate on the equivalent stress must be fitted from the results of uni-axial creep
tests for different constant stress values. For example, if the power law stress function
provides a satisfactory description of steady-state creep then the constant n must be
additionally identified.

An example of orthotropic creep is discussed inKonkin andMorachkovskij (1987)
for the aluminium alloy D16AT. Plane specimens were removed from rolled sheet
along three directions: the rolling direction, the transverse direction as well as under
the angle of 45 ◦ to the rolling direction. Uni-axial creep tests were performed at
273 ◦C and 300 ◦C within the stress range 63-90 MPa. The results have shown that
at 273 ◦C creep curves depend on the loading direction while at 300 ◦C the creep
behavior is isotropic.

General Case of Quadratic Potential

The previous models are based on the assumption of the quadratic form of the creep
potential with respect to the stress tensor. The most general quadratic form can be
formulated as follows

σ 2
eq = 3

2
σσσ ······ (4)BBB ······ σσσ , (5.4.152)

where σeq plays the role of the equivalent stress. The fourth rank tensor (4)BBB must
satisfy the following restrictions

aaa ······ (4)BBB ······ aaa ≥ 0, aaa ······ (4)BBB = (4)BBB ······ aaa, ccc ······ (4)BBB = 000,
∀aaa, ccc with aaa = aaaT, ccc = −cccT,

(5.4.153)

where aaa and ccc are second rank tensors. Additional restrictions follow from the
assumed symmetries of the steady-state creep behavior. For example, if the orthog-
onal tensor QQQ stands for a symmetry element, the structure of the tensor (4)BBB can be
established from the following equation

(4)BBB ′ = Bi jkl QQQ ··· eeei ⊗ QQQ ··· eee j ⊗ QQQ ··· eeek ⊗ QQQ ··· eeel =(4)BBB, (5.4.154)

where eeei , i = 1, 2, 3 are basis vectors.
The flow rule (5.4.96) provides the following generalized anisotropic creep

equation

DDD = 3

2

ε̇eq

σeq

(4)BBB ······ σσσ , ε̇eq ≡ ∂W

∂σeq
(5.4.155)

The fourth rank tensors satisfying the restrictions (5.4.153) are well-known from the
theory of linear elasticity. They are used to represent elastic material properties in
the generalized Hooke’s law, see Sect. 5.3.4.
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Let us recall that (5.4.155) is the consequence of the flow potential hypothesis and
the quadratic formof the equivalent stresswith respect to the stress tensor. Similarly to
the case of linear elasticity (Ting 1996) one can prove that only eight basic symmetry
classes are relevant according to these assumptions. The basic symmetry classes
and the corresponding number of independent coordinates are listed in Table5.1.
The number of independent coordinates indicates the number of material properties
which should be identified fromcreep tests. This number can be reduced if the volume
constancy is additionally assumed. For example, in the cases of transverse isotropy
and orthotropic symmetry the number of independent coordinates of BBB reduces to 3
and 5, respectively (see previous paragraphs).

Cubic Symmetry

As in the previous cases the creep potential can be assumed as an isotropic function of
the stress tensor and a systemof direction tensors associatedwith the orientation of the
materials microstructure. For example, consider the point group Oh (the symmetry
group of the FCC lattice). The creep potential should be formulated as an isotropic
function of the following two arguments

W = W (σσσ ,O), O =
3∑

i=1

nnni ⊗ nnni ⊗ nnni ⊗ nnni , (5.4.156)

where the fourth-rank tensor O is the structure tensor for Oh , as shown in Lokhin
and Sedov (1963) and nnni is the orthonormal basis of the crystal lattice. With the
theory of isotropic scalar-valued tensor functions it is possible to derive a system of
independent arguments of W corresponding to the given symmetry group. Here let
us consider the quadratic form of the creep potential. For materials with the cubic
symmetry the tensor (4)BBB can be specified as follows (Bertram and Olschewski 1996,
2001; Mahnken 2002)

(4)BBB = α1P1 + α2P2 + α3P3, (5.4.157)

where αi are material parameters and

P1 = 1

3
III ⊗ III , P2 =

3∑
i=1

nnni ⊗ nnni ⊗ nnni ⊗ nnni − P1, P3 = I − P1 − P2,

I = 1

2

[
nnni ⊗ III ⊗ nnni + nnni ⊗ nnn j ⊗ nnni ⊗ nnn j

]

Inserting Eq. (5.4.157) into Eq. (5.4.155) we obtain

DDD = 3

2

ε̇eq

σeq

(
3∑

i=1

αiPi

)
······ σσσ (5.4.158)
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With tr DDD = 0 it follows that α1 = 0 and Eq. (5.4.158) simplifies to

DDD = ddd = 3

2

ε̇eq

σeq

(
3∑

i=2

αiPi

)
······ σσσ , σ 2

eq = 3

2
σσσ ······

(
3∑

i=2

αiPi

)
······ σσσ (5.4.159)

Assuming the power law creep and with ξ = α3/α2, Eqs. (5.4.159) can also be
specified as follows

ddd = 3

2
aα2σ

n
eq (P2 + ξP3) ······ σσσ , σ 2

eq = 3

2
α2σσσ ······ (P2 + ξP3) ······ σσσ , (5.4.160)

where a and n are material parameters. The parameter α2 can be selected arbitrarily.
For example one may set α2 = 1. For ξ = 1 Eq. (5.4.155) provides the creep con-
stitutive equation (5.4.106) for isotropic materials. Equation (5.4.160) can also be
written as follows

ddd = 3

2
aσ n−1

eq

[
σnnn1nnn1

(
nnn1 ⊗ nnn1 − 1

3
III

)
+ σnnn2nnn2

(
nnn2 ⊗ nnn2 − 1

3
III

)

+ σnnn3nnn3

(
nnn3 ⊗ nnn3 − 1

3
III

)
+ ξσnnn1nnn2

(
nnn1 ⊗ nnn2 + nnn2 ⊗ nnn1

)

+ ξσnnn1nnn3

(
nnn1 ⊗ nnn3 + nnn3 ⊗ nnn1

)
+ ξσnnn2nnn3

(
nnn2 ⊗ nnn3 + nnn3 ⊗ nnn2

)]
,

(5.4.161)

where

2σ 2
eq = (

σnnn1nnn1 − σnnn2nnn2

)2 + (
σnnn1nnn1 − σnnn3nnn3

)2 + (
σnnn2nnn2 − σnnn3nnn3

)2
+6ξ

(
σ 2

nnn1nnn2
+ σ 2

nnn2nnn2
+ σ 2

nnn1nnn3

) (5.4.162)

and

σnnninnn j = nnni ··· σσσ ··· nnn j

Equation (5.4.161) is applied in Ozhoga-Maslovskaja (2014), Ozhoga-Maslovskaja
et al. (2015) to model creep of single crystal alloys as well as for creep inside
individual grains in polycrystalline aggregates.

5.4.3.2 Non-quadratic Potentials

Non-quadratic potential can be used to capture the dependence of inelastic defor-
mation rate on the kind of loading as well as second order effects as discussed in
Sect. 5.4.2.2 for isotropic materials. Examples of such behavior are different creep
rates under tensile and compressive stress or the effect of reversal of the shear stress.
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The last case is observed in creep tests on tubular specimens under applied torque. The
change of the direction of the applied torque leads to different values of the shear
strain rate. The effect of shear stress reversal is usually explained to be the result
of the anisotropy induced by the deformation process (e.g. anisotropic hardening)
or anisotropy induced by damage evolution. Phenomenological models of induced
anisotropy will be introduced in Sects. 5.3.2 and 5.5. Here we consider the case of
initial anisotropy without analysis of deformation, damage or manufacturing process
histories. Nevertheless, a phenomenological model of anisotropic creep should be
able to reflect the above mentioned effects once they are observed experimentally.
In order to describe non-classical effects the quadratic form of the creep potential
should be replaced by a more general form including all invariants of the stress ten-
sor for the assumed symmetry group. In this case the number of material parameters
increases essentially. Furthermore, the identification and verification of the model
requires creep tests under combinedmulti-axial stress states. Inwhat followswe limit
ourselves to some remarks regarding the general structure of constitutive equations
and kinds of tests for the identification.

Transverse Isotropy

The creep potential must satisfy the restriction (5.4.125) leading to the partial differ-
ential equation (5.4.126). The integrals represent the set of functionally independent
arguments of the creep potential. They are listed in Appendix B.7 for two transverse
isotropy groups. The first group is formed by all the rotations about a given axis
mmm, i.e.

QQQ(ψmmm) = mmm ⊗ mmm + cosψ(III − mmm ⊗ mmm) + sinψmmm × III

The second group additionally includes rotations on the angle π about any axis
orthogonal to mmm, i.e.

QQQ1 = QQQ(π ppp) = 2ppp ⊗ ppp − III , det QQQ = 1, ppp ··· mmm = 0

Let us note that there is an essential difference in these two groups since the creep
potential depends on different non-quadratic arguments of the stress tensor. Here
we limit our considerations to the second case which is widely discussed in the
literature on anisotropic elasticity, plasticity and creep (Betten 2008; Boehler 1987c;
Cazacu and Barlat 2003; Rogers 1990; Schröder andNeff 2003), where the following
invariants are applied12

tr σσσ , tr σσσ 2, tr σσσ 3, mmm ··· σσσ ··· mmm, mmm ··· σσσ 2 ··· mmm (5.4.163)

To be consistent with derivations presented in Sect. 5.4.3.1 let us use the decompo-
sition of the stress tensor (5.4.130) and the following set of invariants

12For the description of elastic material behavior instead ofσσσ a strain tensor, e.g. the Cauchy-Green
strain tensor is introduced. The five transversely isotropic invariants are the arguments of the strain
energy density function, see Sect. 5.3.3.
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I1m = σmm = mmm ··· σσσ ··· mmm,

I2m = tr σσσ p = tr σσσ − mmm ··· σσσ ··· mmm,

I3m = 1

2
tr sss2p = 1

2
tr σσσ 2

p − 1

4
(tr σσσ p)

2

= 1

2

[
tr σσσ 2 + (mmm ··· σσσ ··· mmm)2

] − mmm ··· σσσ 2 ··· mmm − 1

4
(tr σσσ − mmm ··· σσσ ··· mmm)2,

I4m = τττm ··· τττm = mmm ··· σσσ 2 ··· mmm − (mmm ··· σσσ ··· mmm)2 = (mmm × σσσ ··· mmm) ··· (mmm × σσσ ··· mmm)

I5m = τττm ··· sss p ··· τττm = mmm ··· σσσ 3 ··· mmm − 2(mmm ··· σσσ ··· mmm)(mmm ··· σσσ 2 ··· mmm)

+ (mmm ··· σσσ ··· mmm)3 − 1

2
(tr σσσ − mmm ··· σσσ ··· mmm)

[
mmm ··· σσσ 2 ··· mmm − (mmm ··· σσσ ··· mmm)2

]
(5.4.164)

The meaning of the first four invariants is explained in Sect. 5.4.3.1. The last cubic
invariant is introduced instead tr σσσ 3. One can prove the following relation

tr σσσ 3 = I 31m + 3I1m I4m + 3I2m I3m + 3

2
I2m I4m + 1

2
I 32m + 3I5m

Assuming that the creep potential W is a function of five scalar arguments (5.4.164)
and applying the flow rule (5.4.96) we obtain the following creep equation

DDD = h1mmm ⊗ mmm + (h2− 1

2
h5 I4m)(III − mmm ⊗ mmm) + h3σσσ p + h4(τττm ⊗ mmm + mmm ⊗ τττm)

+ h5
(
τττm ⊗ τττm + mmm ⊗ σσσ p ··· τττm + τττm ··· σσσ p ⊗ mmm

)
,

(5.4.165)
where

hi = ∂W

∂ Iim
, i = 1, 2, . . . , 5

The last term in the right-hand side of Eq. (5.4.165) describes second order effects.
To illustrate this consider a stress state with a non-zero “transverse shear stress”
vector

τττm = mmm ··· σσσ ··· (III − mmm ⊗ mmm)

The last term in Eq. (5.4.165) includes a dyad τττm ⊗ τττm . Therefore the deformation
rate in the direction of τττm can be considered. The vector ςςςm = sss p ··· τττm belongs to
the isotropy plane, i.e. ςςςm ··· mmm = 0. In the case that ςςςm �= 000 Eq. (5.4.165) describes
an additional “transverse shear strain rate” effect.

In order to formulate the creep constitutive equation one should specify an expres-
sion for the equivalent stress as a function of the introduced invariants. As an exam-
ple we present the equivalent stress by use of polynomials of the type (5.4.108) and
(5.4.109)

σeq = ασ1 + σ2 + γ σ3, (5.4.166)
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with

σ1 = μ11 I1m + μ12 I2m,

σ 2
2 = μ21 I 21m + μ22 I1m I2m + μ23 I 22m + μ24 I3m + μ25 I4m,

σ 3
3 = μ31 I 31m + μ32 I 21m I2m + μ33 I1m I 22m + μ34 I 32m + μ35 I1m I3m

+ μ36 I2m I3m + μ37 I1m I4m + μ38 I2m I4m + μ39 I5m

(5.4.167)

The equivalent stress (5.4.166) includes 16 material constants μi j and two weight-
ing factors α and γ . The identification of all material constants requires differ-
ent independent creep tests under multi-axial stress states. For example, in order
to find the constant μ39 creep tests under stress states with nonzero cubic invari-
ant I5m should be carried out. An example is the tension in the isotropy plane
combined with the transverse shear stress leading to the stress state of the type
σσσ = σ0nnn1 ⊗ nnn1 + τ0(nnn1 ⊗ mmm + mmm ⊗ nnn1), where σ0 > 0 and τ0 > 0 are the magni-
tudes of the applied stresses, nnn1 is the direction of tension and nnn1 ··· mmm = 0. In this
case

sss p = 1

2
σ0(nnn1 ⊗ nnn1 − nnn2 ⊗ nnn2), nnn1 ··· nnn2 = 0, τττm = τ0nnn1, I5m = 1

2
σ0τ

2
0

By analogy to non-quadratic potentials for isotropic materials discussed in
Sect. 5.4.2.2 different special cases can be introduced. Setting γ = 0 in (5.4.167),
second order effects will be neglected. The resulting constitutive model takes into
account different behavior under tension and compression. To find the constants μ11

and μ12 creep tests under tension (compression) along the direction mmm as well as
tension (compression) along any direction in the isotropy plane should be carried
out. Setting α = 0 the model with the quadratic form of the creep potential with 5
constants can be obtained. The assumption of the zero volumetric creep rate would
lead to the model discussed in Sect. 5.4.3.1.

Second order effects of anisotropic creep were discussed by Betten (1984, 2008).
He found disagreements between creep equations based on the theory of isotropic
functions and the creep equation of the type (5.4.165) according to the potential
hypothesis and the flow rule. The conclusion was made that the potential theory
leads to restrictive forms of constitutive equations if compared to the representations
of tensor functions.

Let us recall the results following from the algebra of isotropic tensor functions
(Boehler 1987a). In the case of transverse isotropy group characterized by the sym-
metry elements (B.7.31) the basic problem is to find the general representation of
the isotropic tensor function of the stress tensor σσσ and the dyad mmm ⊗ mmm (structure
tensor). The constitutive equation describing the creep behavior must be found as
follows

DDD = fff (σσσ ,mmm ⊗ mmm),
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where fff is an isotropic tensor function of two tensor arguments. The general repre-
sentation of this function is Boehler (1987c)

fff (σσσ ,mmm ⊗ mmm)= f1mmm ⊗ mmm + f2(III − mmm ⊗ mmm) + f3σσσ + f4σσσ 2

+ f5(mmm ⊗ mmm ··· σσσ + σσσ ··· mmm ⊗ mmm) + f6(mmm ⊗ mmm ··· σσσ 2+ σσσ 2 ··· mmm ⊗ mmm),

(5.4.168)

where the scalars fi , i = 1, . . . , 6, depend on the five invariants of the stress tensor
(5.4.163). Betten found that the last term in Eq. (5.4.168) ismissing in the constitutive
equation which is based on the potential theory. In order to discuss the meaning
of the last term in (5.4.168) let us introduce the identities which follow from the
decomposition of the stress tensor by Eqs. (5.4.130) and (5.4.132)

σσσ 2 = I2msss p + (I3m + 1

4
I 22m)(III − mmm ⊗ mmm) + mmm ⊗ sss p ··· τττm + τττm ··· sss p ⊗ mmm

+ (I1m + 1

2
I2m)(τττm ⊗ mmm + mmm ⊗ τττm) + (I 21m + I4m)mmm ⊗ mmm + τττm ⊗ τττm,

(5.4.169)

mmm ⊗ mmm ··· σσσ + σσσ ··· mmm ⊗ mmm = τττm ⊗ mmm + mmm ⊗ τττm + 2I1mmmm ⊗ mmm,

mmm ⊗ mmm ··· σσσ 2 + σσσ 2 ··· mmm ⊗ mmm = mmm ⊗ sss p ··· τττm + τττm ··· sss p ⊗ mmm

+ (I1m + 1

2
I2m)(τττm ⊗mmm + mmm⊗τττm)

+ 2(I4m + I 21m)mmm⊗mmm

After inserting (5.4.169), (5.4.130) and (5.4.132) into (5.4.168) we obtain the fol-
lowing creep equation

DDD = g1mmm ⊗ mmm + g2(III − mmm ⊗ mmm) + g3sss p + g4(mmm ⊗ τττm + τττm ⊗ mmm)

+ g5(mmm ⊗ sss p ··· τττm + τττm ··· sss p ⊗ mmm) + g6τττm ⊗ τττm
(5.4.170)

with

g1 = f1 + f4(I 21m + I4m) + 2 f5 I1m + 2 f6(I4m + I 21m),

g2 = f2 + 1

2
f3 I2m + f 4(I3m + 1

4
I 22m),

g3 = f3 + I2m f4,

g4 = ( f4 + f6)(I1m + 1

2
I2m) + f5,

g5 = f4 + f6,

g6 = f4

We observe that Eq. (5.4.170) based on the theory of isotropic tensor functions does
not deliver any new second order effect in comparison to Eq. (5.4.165). The only
difference is that the two last terms in Eq. (5.4.170) characterizing the second order
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effects appearwith twodifferent influence functions. The comparisonofEq. (5.4.170)
with Eq. (5.4.165) provides the following conditions for the existence of the flow
potential

∂W

∂ I1m
= g1,

∂W

∂ I2m
= g2 + 1

2
g5 I4m,

∂W

∂ I3m
= g3,

∂W

∂ I4m
= g4,

∂W

∂ I5m
= g5, g6 = g5

Furthermore, the functions gi must satisfy the integrability conditions which can be
obtained by equating the mixed derivatives of the potential with respect to invari-
ants, i.e.

∂2W

∂ Iim∂ Ikm
= ∂2W

∂ Ikm∂ Iim
, i �= k, i, k = 1, 2, . . . , 5

Let us note that the models (5.4.165) and (5.4.170) are restricted to the special case
of transverse isotropy. In the general case one should analyze the creep potential with
the invariants listed in Eq. (B.7.39).

Other Cases

Alternatively a phenomenological constitutive equation of anisotropic creep can be
formulatedwith the help ofmaterial tensors, e.g. Altenbach (1999). Introducing three
material tensors AAA, (4)BBB and (6)CCC the equivalent stress (5.4.166) can be generalized
as follows

σeq = ασ1 + σ2 + γ σ3 (5.4.171)

with

σ1 = AAA ······ σσσ , σ 2
2 = σσσ ······ (4)BBB ······ σσσ , σ 3

3 = σσσ ······ (σσσ ······ (6)CCC ······ σσσ) (5.4.172)

The structure of the material tensors must be established from the following restric-
tions

AAA′ = QQQ ··· AAA ··· QQQT = Ai j QQQ ··· eeei ⊗ QQQ ··· eee j = AAA,
(4)BBB ′ = Bi jkl QQQ ··· eeei ⊗ QQQ ··· eee j ⊗ QQQ ··· eeek ⊗ QQQ ··· eeel =(4)BBB,
(6)CCC ′ = Ci jklmn QQQ ··· eeei ⊗ QQQ ··· eee j ⊗ QQQ ··· eeek ⊗ QQQ ··· eeel ⊗ QQQ ··· eeem ⊗ QQQ ··· eeen =(6)CCC,

(5.4.173)

where QQQ is an element of the physical symmetry group. The creep potential hypoth-
esis and the flow rule (5.4.96) lead to the following creep equation

DDD = ∂W

∂σeq

(
α
∂σ1

∂σσσ
+ ∂σ2

∂σσσ
+ γ

∂σ3

∂σσσ

)
(5.4.174)
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Taking into account the relations

∂σ1

∂σσσ
= AAA,

∂σ2

∂σσσ
=

(4)BBB ······ σσσ
σ2

,
∂σ3

∂σσσ
= σσσ ······ (6)CCC ······ σσσ

σ 2
3

(5.4.175)

a generalized anisotropic creep equation can be formulated as follows

DDD = ε̇eq

(
αAAA +

(4)BBB ······ σσσ
σ2

+ γ
σσσ ······ (6)CCC ······ σσσ

σ 2
3

)
, ε̇eq ≡ ∂W

∂σeq
(5.4.176)

In Betten (1982), Rabotnov (1969) the following anisotropic creep equation is
proposed

DDD = HHH + (4)MMM ······ σσσ + ((6)LLL ······ σσσ) ······ σσσ (5.4.177)

Comparing the Eqs. (5.4.176) and (5.4.177) the material tensors HHH , (4)MMM and (6)LLL
can be related to the tensors AAA, (4)BBB and (6)CCC .

The tensors AAA, (4)BBB and (6)CCC contain 819 coordinates (AAA-9, (4)BBB-81, (6)CCC-729).
From the symmetry of the stress tensor and the deformation rate tensor as well as
from the potential hypothesis it follows that “only” 83 coordinates are independent
(AAA-6, (4)BBB-21, (6)CCC-56). Further reduction is based on the symmetry considerations.
The structure of material tensors and the number of independent coordinates can be
obtained by solving Eq. (5.4.173).

Another possibility of simplification is the establishing of special cases of
Eq. (5.4.176). For instance, equations with a reduced number of parameters can
be derived as follows

• α = 1, γ = 0:

σeq = σ1 + σ2, DDD = ε̇eq

(
AAA +

(4)BBB ······ σσσ
σ2

)
, (5.4.178)

• α = 0, γ = 1:

σeq = σ2 + σ3, DDD = ε̇eq

(
(4)BBB ······ σσσ

σ2
+ σσσ ······ (6)CCC ······ σσσ

σ 2
3

)
, (5.4.179)

• α = 0, γ = 0:

σeq = σ2, DDD = ε̇eq

(
(4)BBB ······ σσσ

σ2

)
(5.4.180)

The last case has been discussed in Sect. 5.4.3.1. Examples of application of consti-
tutive equation (5.4.176) as well as different cases of symmetries are discussed in
Altenbach (1999), Altenbach et al. (1995).
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5.4.4 Functions of Stress and Temperature

In constitutive equations discussed in Sects. 5.4.2 and 5.4.3 the flow potential or the
equivalent strain rate must be specified as functions of the equivalent stress and the
temperature, i.e.

ε̇eq = ∂W

∂σeq
= f (σeq, T )

In Krempl (1999) the function f is called constitutive or response function. For the
formulation of constitutive functions one may apply theoretical foundations from
materials science with regard to mechanisms of inelastic deformation and related
forms of stress and temperature functions. Furthermore, experimental data including
families of creep curves obtained from uni-axial creep tests for certain ranges of
stress and temperature as well as stress-strain curves for a range of strain rates
and temperatures are required. It is convenient to present these curves in a form
of equivalent strain rate versus stress and equivalent strain rate versus temperature.
Examples are discussed in Sect. 1.1.

Several empirical functions of stress and temperature have been proposed to fit
experimental data. For reviewswe refer toChaboche (2008), Ilschner (1973),Odqvist
and Hult (1962), Penny and Mariott (1995), Rabotnov (1979), Skrzypek (1993). For
manymaterialswithin certain ranges of stress and temperature the equivalent inelastic
deformation rate can be approximated by a product of two separate functions of stress
and temperature as follows

ε̇eq = fσ (σeq) fT (T )

Examples of stress functions include:

• power law

fσ (σeq) = ε̇0

(
σeq

σ0

)n

(5.4.181)

The power law (5.4.181) contains three material parameters (ε̇0, σ0, n) but only
two of them are independent. Instead of ε̇0 and σ0 one constant

a = ε̇0

σ n
0

can be introduced.
• power law including the creep limit

fσ (σeq) = ε̇′
0

(
σeq

σ ′
0

− 1

)n′

, σeq > σ ′
0

http://dx.doi.org/10.1007/978-3-319-31629-1_1
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If σeq ≤ σ ′
0 the deformation rate is equal zero. In this case σ ′

0 is the assumed creep
limit.

• exponential law

fσ (σeq) = ε̇0 exp
σeq

σ0

ε̇0, σ0 arematerial parameters. Thedisadvantage of this expression is that it predicts
a nonzero creep rate for a zero equivalent stress

fσ (0) = ε̇0 �= 0

• hyperbolic sine law

fσ (σeq) = ε̇0 sinh
σeq

σ0
(5.4.182)

For low stress values σeq � σ0 this function provides the linear dependence on
the stress

fσ (σeq) ≈ ε̇0
σeq

σ0

while for high stress values σeq � σ0 the exponential law can be obtained

fσ (σeq) ≈ ε̇0

2
exp

σeq

σ0

• double power law

fσ (σeq) = ε̇0

[
σeq

σ0
+

(
σeq

σ0

)n]
(5.4.183)

For low stress values σeq � σ0 this function provides the linear dependence on
the stress while for σeq � σ0 the power law stress dependence (5.4.181) can be
obtained

• power law breakdown equation

fσ (σeq) = ε̇0

[
sinh

(
σeq

σ0

)]n

(5.4.184)

For σeq � σ0 the power law stress function (5.4.181) follows from Eq. (5.4.184)
while for σeq � σ0 the exponential law

fσ (σeq) = ε̇0

2
exp

(
n
σeq

σ0

)

can be obtained. Equation (5.4.184) describes both the power law and the power
law breakdown regimes



5.4 Non-linear Viscosity, Viscoplasticity, and Rigid Plasticity 225

The dependence on the temperature is usually expressed by the Arrhenius law

fT (T ) = exp[−Q/RT ],

where Q and R denote the activation energy and the universal gas constant, respec-
tively.

For the use of stress and temperature functions one should take into account that
different deformation mechanisms may operate for different specific ranges of stress
and temperature. An overview is provided by the deformation mechanisms map, as
proposed by Frost and Ashby (1982), Fig. 5.3. Contours of constant strain rates are
presented as functions of the normalized equivalent stress σeq/G and the homologous
temperature T/Tm, where G is the shear modulus and Tm is the melting temperature.
For a given combination of the stress and the temperature, the map provides the
dominant mechanism and of the high-temperature plasticity and an approximate
value of the strain rate.

Let us briefly discuss different regions on the map, the mechanisms of inelastic
deformation and constitutive functions derived in materials science. For compre-
hensive reviews one may consult François et al. (2012), Kassner and Pérez-Prado
(2004), Nabarro and de Villiers (1995). The origins of the inelastic deformation
at the temperature range 0.5 < T/Tm < 0.7 are transport processes associated with

Fig. 5.3 Schematic deformation-mechanism map
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motion and interaction of dislocations and diffusion of vacancies. Two typical classes
of physical models are the dislocation creep and the diffusion creep. Various creep
rate equations within the dislocation creep range are based on the Bailey-Orowan
recovery hypothesis. An internal barrier stress σint being opposed to the dislocation
movement is assumed. When the plastic strain occurs the internal stress increases as
a result of work hardening due to accumulation of deformation and due to increase
of the dislocation density. As the material is subjected to the load and temperature
over certain time, the internal stress σint decreases as a result of diffusion processes.
In the uni-axial case the rate of change of the internal stress is assumed as follows

σ̇int = hε̇pl − rσint,

where h and r are material properties related to hardening and recovery, respectively.
In the steady state σ̇int = 0 so that

ε̇ = rσint
h

Specifying the values for r , h and σint various models for the steady-state creep rate
have been derived. An example is the following expression (for details of derivation
we refer to (François et al. 1998))

ε̇ ∝ D

RT

σ 4

G3
exp

(
− Q

RT

)
,

where D is the diffusion coefficient.
Furthermodels of dislocation creep are derived under the assumption of the climb-

plus-glide deformation mechanism. At high temperatures and moderate stresses,
dislocations can climb as well as glide. The glide of dislocations produced by the
applied stress is opposed by obstacles. Due to diffusion of vacancies, the dislocations
can climb around strengthening particles. The inelastic strain is then controlled by
the glide, while its rate is determined by the climb. The climb-plus-glide mechanism
can be related to the recovery-hardening hypothesis. The hardening results from the
resistance to glide due to interaction of moving dislocations with other dislocations,
precipitates, etc. The recovery mechanism is the diffusion controlled climb which
releases the glide barriers. The climb-plus-glide based creep ratemodels can be found
in François et al. (1998), Frost and Ashby (1982), Nabarro and de Villiers (1995).
The common result is the power-law creep

ε̇eq ∝
(σeq

G

)n
exp

(
− Q

RT

)
(5.4.185)

Equation (5.4.185) can be used to fit experimental data for a range of stresses up to
10−3G. The exponent n varies from 3 to about 10 for metallic materials. At higher
stresses above 10−3G the power law (5.4.185) breaks down. Themeasured strain rate
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is greater than the Eq. (5.4.185) predicts. Within the range of the power-law break
down a transition from the climb-plus-glide to the glidemechanism is assumed (Frost
and Ashby 1982). The following empirical equation can be applied, e.g. Frost and
Ashby (1982), Nabarro and de Villiers (1995),

ε̇eq ∝
[
sinh

(
α
σeq

G

)]n
exp

(
− Q

RT

)
, (5.4.186)

where α is a material constant. If ασeq/G < 1 then (5.4.186) reduces to (5.4.185).
At higher temperatures (T/Tm > 0.7) diffusion mechanisms control the creep

rate. The deformation occurs at much lower stresses and results from diffusion of
vacancies. The mechanism of grain boundary diffusion (Coble creep) assumes dif-
fusive transport of vacancies through and around the surfaces of grains. The devi-
atoric part of the stress tensor changes the chemical potential of atoms at the grain
boundaries. Because of different orientations of grain boundaries a potential gra-
dient occurs. This gradient is the driving force for the grain boundary diffusion.
The diffusion through the matrix (bulk diffusion) is the dominant creep mechanism
(Nabarro-Herring creep) for temperatures close to the melting point. For details con-
cerning the Coble and the Nabarro-Herring creep models we refer to François et al.
(1998), Nabarro and deVilliers (1995). Thesemodels predict the diffusion controlled
creep rate to be a linear function of the stress.

In addition to the dislocation and the diffusion creep, the grain boundary sliding
is the important mechanism for poly-crystalline materials. This mechanism occurs
because the grain boundaries are weaker than the ordered crystalline structure of
the grains (Nabarro and de Villiers 1995; Riedel 1987). Furthermore, the formation
of voids and micro-cracks on grain boundaries contributes to the sliding (Ozhoga-
Maslovskaja et al. 2015). The whole deformation rate depends on the grain size and
the grain aspect ratio (ratio of the grain dimensions parallel and perpendicular to
the tensile stress direction). Samples with a larger grain size usually exhibit a lower
strain rate.

5.5 Elasto-plasticity

Assume that the mechanical power L = σσσ ······ LLL can be additively decomposed in two
parts L = Ls + Ld with

Ls = σσσ s ······ LLLs, Ld = σσσ d ······ LLLd,

where σσσ s and σσσ d are quasi-conservative and dissipative stress tensors, respectively,
and LLLs and LLLd are deformation rate-like variables. By analogy to the uni-axial case,
see Sect. 3.4 assume that σσσ s may depend only on the deformation-like variables and
the temperature, whileσσσ d may depend on the deformation rates and the temperature.
This additive decomposition can be applied to define a part of the mechanical power

http://dx.doi.org/10.1007/978-3-319-31629-1_3
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which is dissipated as heat, i.e. Ld and can affect the free energy by means of
temperature and the remaining partLs which directly affects the free energy andunder
certain conditions can be stored. For example, this is the case for isothermal elasticity,
as discussed in Sect. 3.2. In Ziegler (1983) Ls is called quasi-conservative and Ld—
dissipated parts of mechanical power, respectively. Several approaches to define
the corresponding stress and deformation parts are discussed in the literature. For
example, one may consider various connections of rheological elements including
a spring, a viscous element and a friction element (Krawietz 1986; Palmov 1998).
Another approach, which is more appropriate for the three-dimensional continuum
mechanics is to consider a mixture with several (elastic and inelastic) constituents
having different properties and volume fractions (Atkin and Craine 1976; Altenbach
et al. 2003b). Alternatively, one may assume a multiplicative decomposition for the
deformation gradient, and appropriate decompositions for the rate of deformations
and/or stress tensors (Besseling and van der Giessen 1994; Khan and Huang 1995;
Maugin 1992; Nemat-Nasser 2004).

5.5.1 Multiplicative Decomposition of Deformation Gradient

The following decomposition of the deformation gradient is assumed

FFF = FFFel ··· FFFpl (5.5.187)

The elastic FFFel and the plastic FFFpl parts are not deformation gradients in the sense
that they are not gradients of position vectors in a certain configuration of a body.
Indeed, the decomposition (5.5.187) can also be given as follows

rrr i ⊗ Ri = rrr i ⊗ gggi ··· gggk ⊗ Rk, (5.5.188)

where the vectors Ri in the reference configuration are defined by Eq. (4.1.2), the
vectorsrrr i in the actual configuration are given by Eq. (4.1.5) and the tripple of vectors
gggi must satisfy the condition (ggg1 × ggg2) ··· ggg3 �= 0. The vectors gggi are not derivatives
of the position vector in a configuration of a body with respect to the coordinates.
To motivate the sequence of parts in the decomposition (5.5.187): the plastic part at
the first place and then the elastic part in the second one, the notion of an unloaded
or intermediate configuration is introduced.13 As the body is locally subjected to the
deformation gradient FFF , one may assume the “elastic” unloading from the actual
configuration by FFFel. The remaining part FFFpl = (FFFel)−1 ··· FFF is assumed to be “stress-
free”. The local configuration after this unloading procedure is interpreted as an inter-
mediate (stress-free). In order to formulate constitutive equation the multiplicative

13The intermediate configuration can only be used as illustrative since it has a number of concep-
tual shortcomings. Historical essays and critical remarks to the multiplicative decomposition are
presented in Naghdi (1990), Bertram (2012), Xiao et al. (2006).

http://dx.doi.org/10.1007/978-3-319-31629-1_3
http://dx.doi.org/10.1007/978-3-319-31629-1_4
http://dx.doi.org/10.1007/978-3-319-31629-1_4
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decomposition (5.5.187) should be supplemented by the rules as how the tripple of
vectors gggi transform by the change of the reference configuration and how these vec-
tors are affected by a superimposed rotation. Let QQQ be an orthogonal tensor. Consider
the deformation gradient FFF and the transformed deformation gradient FFF∗ = FFF ··· QQQT

after the change of the reference configuration. For the parts in the multiplicative
decomposition we may assume, for example,

FFFel
∗ = FFFel ··· QQQT, FFFpl

∗ = QQQ ··· FFFpl ··· QQQT (5.5.189)

Another choice could be

FFFel
∗ = FFFel ··· Q̄QQ

T
, FFFpl

∗ = Q̄QQ ··· FFFpl ··· QQQT, (5.5.190)

where Q̄QQ is an orthogonal tensor. Now assume that the body is subjected to a super-
imposed rotation QQQ(t). The transformed deformation gradient is FFF∗∗ = QQQ ··· FFF . For
the elastic and plastic parts one may assume

FFFel
∗∗ = QQQ ··· FFFel, FFFpl

∗∗ = FFFpl (5.5.191)

Another choice could be

FFFel
∗∗ = QQQ ··· FFFel ··· Q̄QQ

T
, FFFpl

∗∗ = Q̄QQ ··· FFFpl, (5.5.192)

where Q̄QQ(t) is a rotation tensor.
With the multiplicative decomposition the velocity gradient is computed as

follows

LLL = ḞFF ··· FFF−1 = ḞFF
el ··· FFFel−1 + FFFel ··· ḞFF

pl ··· FFFpl−1 ··· FFFel−1
(5.5.193)

The mechanical power can be computed as follows

L = Ls + Ld,

Ls = σσσ ······
(

ḞFF
el ··· FFFel−1

)
, Ld =

(
FFFel−1 ··· σσσ ··· FFFel

)
······

(
ḞFF

pl ··· FFFpl−1
)

Obviously the quasi-conservative stress tensor is σσσ s = σσσ while the dissipative stress
tensor can be defined as follows

σσσ d = FFFel−1 ··· σσσ ··· FFFel (5.5.194)

Let us assume that σσσ s depends on FFFel and the temperature T , while σσσ d depends on

ḞFF
pl
and temperature. With Φ = Φ(FFFel, T ) the dissipation inequality (5.3.21) takes

the following form
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ḞFF
el ······

[
FFFel−1 ··· σσσ − ρ

(
∂Φ

∂FFFel

)T
]

− ρ

(
∂Φ

∂T
+ S

)
Ṫ

+σσσ d ······
(

ḞFF
pl ··· FFFpl−1

)
− qqq ··· ∇∇∇T

T
≥ 0

(5.5.195)

The inequality is satisfied with14

σσσ = ρFFFel ···
(

∂Φ

∂FFFel

)T

, S = −∂Φ

∂T
(5.5.196)

and

σσσ d ······
(

ḞFF
pl ··· FFFpl−1

)
≥ 0, −qqq ··· ∇∇∇T

T
≥ 0 (5.5.197)

From the symmetry of the Cauchy stress tensor it follows, see Eqs. (5.3.25)–(5.3.32)

Φ(FFFel, T ) = Φ(CCCel, T ),

and

σσσ = 2ρFFFel ··· ∂Φ

∂CCCel
··· FFFelT = 2

J
FFFel ··· ∂ρ0Φ

∂CCCel
··· FFFelT , CCCel = FFFelT ··· FFFel (5.5.198)

With Eq. (5.5.194) the dissipative stress tensor takes the form

σσσ d = 2

J

∂ρ0Φ

∂CCCel
··· CCCel (5.5.199)

Let us assume that the physical symmetry group of elasticity is the full orthogonal
group, i.e. the material exhibits isotropic behavior. One may show by the use of
either (5.5.189)1 or (5.5.190)2 that the free energy depends on the three invariants
of the tensorCCCel, see Sect. 5.3.2. Constitutive equations like (5.3.40) can be derived.
Alternatively the following constitutive equation can be applied

σσσ = 2

J

∂ρ0Φ

∂BBBel
··· BBBel, BBBel = FFFel ··· FFFelT (5.5.200)

For isotropic elasticity the free energy can also be assumed to be a function of the
Hencky strain tensor such that

Φ(FFFel, T ) = Φ(hhhel, T )

14See the analysis presented in Sect. 5.3.1.
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and

σσσ = 1

J

∂ρ0Φ

∂hhhel
, hhhel = lnVVV el = 1

2
ln BBBel (5.5.201)

An example of the constitutive equation for an isotropic elastic material (Hencky
material) is

Jσσσ = λ(tr hhhel)III + 2μhhhel, (5.5.202)

where the Lamé constants λ and μ are defined by (5.3.65). With the polar decompo-
sition

FFFel = VVV el ··· RRRel

the dissipative stress (5.5.194) can be computed as follows

σσσ d = RRRelT ··· VVV el−1 ··· σσσ ··· VVV el ··· RRRel (5.5.203)

Since the Cauchy tensor is coaxial with the tensor VVV el, Eq. (5.5.203) takes the fol-
lowing form

σσσ d = RRRelT ··· σσσ ··· RRRel (5.5.204)

To proceed with the inelastic deformation one should specify the rotation tensor RRRel.
An assumption is made in Lee (1969) that the elastic unloading takes place without
rotation such that RRRel = III . Then σσσ d = σσσ s = σσσ leading to the iso-stress approach, as
postulated in the uni-axial case, see Sect. 3.4. For the dissipative stress tensor let us
postulate the following constitutive equation

σσσ d(���
pl, T ) = σσσ(���pl, T ) = gT (T )ggg(���pl), ���pl = ḞFF

pl ··· FFFpl−1
(5.5.205)

With RRRel = III the tensor FFFel is symmetric and the transformation (5.5.192) takes the
form

FFFel
∗∗ = QQQ ··· FFFel ··· QQQT, FFFpl

∗∗ = QQQ ··· FFFpl, (5.5.206)

With the decomposition

���pl = DDDpl +ωωωpl × III

the following transformation rule can be obtained

���pl
∗∗ = ΩΩΩQQQ × III + (QQQ ···ωωωpl) × III + QQQ ··· DDDpl ··· QQQT,

http://dx.doi.org/10.1007/978-3-319-31629-1_3
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whereΩΩΩQQQ is the angular velocity vector for the rotation tensor QQQ. Under superim-
posed rigid rotation the Cauchy stress tensor is σσσ ∗∗ = QQQ ··· σσσ ··· QQQT, and the following
restriction on the function ggg(���pl) can be formulated

QQQ ··· ggg(���pl) ··· QQQT = ggg(���pl
∗∗)

As a result we obtain

QQQ ··· ggg(DDDpl +ωωωpl × III ) ··· QQQT = ggg[(ΩΩΩQQQ + QQQ ···ωωωpl) × III + QQQ ··· DDDpl ··· QQQT] (5.5.207)

SinceΩΩΩQQQ is an arbitrary angular velocity vector, we may specify

ΩΩΩQQQ = −QQQ ···ωωωpl

Equation (5.5.207) takes the form

QQQ ··· ggg(DDDpl +ωωωpl × III ) ··· QQQT = ggg(QQQ ··· DDDpl ··· QQQT) (5.5.208)

For QQQ = III this results in

ggg(DDDpl +ωωωpl × III ) = ggg(DDDpl)

Omitting the skew-symmetric tensor ωωωpl × III , Eq. (5.5.208) takes the form

QQQ ··· ggg(DDDpl) ··· QQQT = ggg(QQQ ··· DDDpl ··· QQQT)

Therefore ggg is the isotropic function of DDDpl and has the following general represen-
tation15

ggg = α0III + α1DDDpl + α2DDDpl2 ,

where αi are functions of invariants of DDDpl. The Cauchy stress tensor is co-axial
with the tensor DDDpl. From (5.5.197) it follows that the functions αi must satisfy the
following inequality

α0tr DDDpl + α1tr DDDpl2 + α2tr DDDpl3 ≥ 0 (5.5.209)

Specific forms of the function ggg or its inverse were discussed in Sect. 5.4. As an
example consider the following tensorial-linear constitutive equation

DDDpl = fT (T )β(sss)sss, tr DDDpl = 0, det FFFpl = 1, (5.5.210)

15From this consideration it does not follow that only isotropic plasticity can be described. Indeed,
we assumed that the stress tensor depends only on���pl, which is not true for anisotropic materials.
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where fT (T ) is a function of temperature and β is a function of invariants of the
stress deviator.

With Eq. (5.5.193) and RRRel = III the velocity gradient can be decomposed as fol-
lows

DDD +ωωω × III = DDDel +ωωωel × III + VVV el ··· DDDpl ··· VVV el−1 + VVV el ··· (ωωωpl × III ) ··· VVV el−1

(5.5.211)

With the constitutive assumptions (5.5.210) and (5.5.200) it is obvious that the tensors
VVV el and DDDpl are coaxial. Therefore

VVV el ··· DDDpl ··· VVV el−1 = DDDpl (5.5.212)

With (A.4.8)2 the last term in Eq. (5.5.211) can be transformed as follows

VVV el ··· (ωωωpl × III ) ··· VVV el−1 = 1

J
VVV el2 × ω̃ωω

pl
, ω̃ωω

pl = VVV el ···ωωωpl

Taking the vector invariant of Eq. (5.5.211) and applying the identity (A.4.16) we
obtain the following relationship between the angular velocities

ωωω = ωωωel − 1

2
AAAVVV el ···ωωωpl, (5.5.213)

where

AAAVVV el =
3∑
i1

λeli

VVV el

nnn i ×VVV el−1× VVV el

nnn i=
3∑

i=1

3∑
j=1

λeli

λelj

VVV el

nnn i × VVV el

nnn j ⊗ VVV el

nnn j × VVV el

nnn i ,

where λeli are principal values and
VVV el

nnn i are principal axes of the tensor VVV el, respec-
tively. According to (A.4.16) and the Cayley-Hamilton theorem the tensor AAAVVV el has
the following representations

AAAVVV el = J−1VVV el ··· [VVV el2 − (tr VVV el2)III ] = III + J2VVV el − J 2
1VVV el

J
VVV el + J1VVV el

J
VVV el2 ,

where J1VVV el , J2VVV el and J = J3VVV el are principal invariants of the tensor VVV el as defined
by Eqs. (A.4.11).

With Eq. (5.5.211) the symmetric part of Eq. (5.5.212) is

DDD = DDDel + DDDpl + 1

2

[
VVV el ··· (ωωωpl × III ) ··· VVV el−1 − VVV el−1 ··· (ωωωpl × III ) ··· VVV el

]
(5.5.214)
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With Eq. (A.4.8)2 Eq. (5.5.214) can be transformed as follows

DDD = DDDel + DDDpl + VVV el2 × ω̃ωω
pl − ω̃ωω

pl × VVV el2 , (5.5.215)

where

ω̃ωω
pl = 1

2J
VVV el ···ωωωpl

To complete the theory one should define the vectorsωωωpl andΩΩΩ
pl
RRR . For example, one

may set, cp. Belytschko et al. (2014), Besseling and van der Giessen (1994)

ωωωpl = 000 (5.5.216)

Then Eq. (5.5.215) simplifies to

DDD = DDDel + DDDpl, (5.5.217)

i.e. the deformation rate tensor can be decomposed into the elastic and plastic parts.
Furthermore, from Eq. (5.5.213) it follows that

ωωω = ωωωel (5.5.218)

With Eq. (4.1.75) we can replace the elastic part of the deformation rate through the
time derivative of the Hencky strain tensor as follows

DDDel = ḣhh
el −ΩΩΩhhhel × hhhel + hhhel ×ΩΩΩhhhel , ΩΩΩhhhel = (III − AAAhhhel) ···ΩΩΩVVV el , (5.5.219)

where16

AAAhhhel = − 1

4J
VVV el ···

3∑
i=1

3∑
j=1

λel
2

i − λel
2

j

(ln λeli − ln λelj )

VVV el

nnn i × VVV el

nnn j ⊗ VVV el

nnn j × VVV el

nnn i , i �= j

The tensor AAAhhhel has the following spectral representation

2AAAhhhel = λel
2

2 − λel
2

3

λel2 λ
el
3 ln λel2

λel3

VVV el

nnn 1 ⊗ VVV el

nnn 1

+ λel
2

3 − λel
2

1

λel3 λ
el
1 ln λel3

λel1

VVV el

nnn 2 ⊗ VVV el

nnn 2 + λel
2

1 − λel
2

2

λel1 λ
el
2 ln λel1

λel2

VVV el

nnn 3 ⊗ VVV el

nnn 3

16Here we assumed that the tensor VVV el has distinct principal values.

http://dx.doi.org/10.1007/978-3-319-31629-1_4
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With Eqs. (4.1.60) and (5.5.218) we obtain

ωωω =
(

III + +1

2
AAAVVV el

)
···ΩΩΩVVV el (5.5.220)

or in the inverse form

ΩΩΩVVV el =
(

III − ÃAAVVV el

)
···ωωω, (5.5.221)

where

ÃAAVVV el = λel
2

2 + λel
2

3

(λel2 − λel3 )
2

VVV el

nnn 1 ⊗ VVV el

nnn 1

+ λel
2

3 + λel
2

1

(λel3 − λel1 )
2

VVV el

nnn 2 ⊗ VVV el

nnn 2 + λel
2

1 + λel
2

2

(λel1 − λel2 )
2

VVV el

nnn 3 ⊗ VVV el

nnn 3

With Eqs. (5.5.219)2 and (5.5.221) the vectorΩΩΩhhhel can be computed as follows

ΩΩΩhhhel = (III − AAAhhhel) ···
(

III − ÃAAVVV el

)
···ωωω (5.5.222)

The inverse form of the constitutive equation (5.5.202) is

hhhel = τττ

2μ
− λ

2μ

(tr τττ)III

3λ + 2μ
, (5.5.223)

where τττ = Jσσσ is the Kirchhoff stress tensor. Taking the time derivative of (5.5.223)
and applying Eqs. (5.5.217) and (5.5.219) we obtain the relationship between the
rate of deformation tensor and the Kirchhoff stress tensor

DDD = d

dt

(
τττ

2μ
− λ

2μ

(tr τττ)III

3λ + 2μ

)
+ 1

2μ
(τττ ×ΩΩΩhhhel −ΩΩΩhhhel × τττ) + DDDpl (5.5.224)

Equations (5.5.224), (5.5.222) and (5.5.223) together with constitutive equation for
DDDpl, for example, Eq. (5.5.210) can be applied to compute stress response for the
given velocity gradient LLL . Let us note, that the “plastic part” of the deformation
gradient FFFpl is not defined as long asΩΩΩpl

RRR .
Another possibility is to assume

ωωωpl = ΩΩΩ
pl
RRR (5.5.225)

instead of (5.5.216). From Eq. (4.1.67) it follows that (DDDpl ··· VVV pl2)× = 000, i.e. the ten-
sor VVV pl is co-axial with the tensor DDDpl. Furthermore, if we accept the constitutive
Eqs. (5.5.210) and (5.5.202) then the tensor DDDpl is co-axial with the tensorVVV el. There-
fore, the tensors VVV el and VVV pl are co-axial too, and the tensor VVV el ··· VVV pl is symmetric.

http://dx.doi.org/10.1007/978-3-319-31629-1_4
http://dx.doi.org/10.1007/978-3-319-31629-1_4
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With RRRpl = III the multiplicative decomposition (5.5.187) takes the form

FFF = VVV el ··· VVV pl ··· RRRpl

Since VVV = VVV el ··· VVV pl is symmetric, from the polar decomposition theorem we may
identify RRR = RRRpl. For the Hencky strain tensor the additive decomposition can be
applied

hhh = hhhel + hhhpl

Furthermore, the principal axes of the tensors VVV el, VVV pl and VVV rotate with the same
angular velocities

ΩΩΩVVV = ΩΩΩVVV el = ΩΩΩVVV pl

Since ωωωpl = ΩΩΩ
pl
RRR = ΩΩΩRRR , it follows from the relationship (4.1.55) that ΩΩΩVVV pl = ΩΩΩRRR

and consequentlyΩΩΩ = ΩΩΩRRR . This is only possible if the tensor DDD is co-axial with the
tensor VVV , as it follows from Eqs. (4.1.55) and (4.1.67). This condition restricts the
class of allowable deformations.

We refer to Lubarda (2001), Nemat-Nasser (2004) for various versions of the
multiplicative decomposition as well as to several formulations for rotation tensors
and associated spins.

5.5.2 Small Strains

Many high-temperature components are designed such that local deformations can-
not exceed some small allowable values. For the structural analysis the geometrically-
linear theory (small strain theory) can be applied. Within the linearized theory of
elasto-plasticity the additive split of strain tensors can be assumed as follows

εεε = εεεel + εεεpl (5.5.226)

The time derivative of Eq. (5.5.226) provides the additive split of strain rates

DDD = DDDel + DDDpl, DDD = ε̇εε, DDDel = ε̇εεel, DDDpl = ε̇εεpl (5.5.227)

In the general case of thermo-elasto-plasticity one should add thermal strains, see
Sect. 5.3.4

εεε = εεεel + εεεpl + εεεth, εεεth = αααth� (5.5.228)

http://dx.doi.org/10.1007/978-3-319-31629-1_4
http://dx.doi.org/10.1007/978-3-319-31629-1_4
http://dx.doi.org/10.1007/978-3-319-31629-1_4
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As an example, consider the isotropic linear-elasticity coupled with isotropic von
Mises-Odqvist type inelastic flow. The stress tensor is then defined as follows

σσσ = λ(tr εεε)III + 2μ(εεε − εεεpl) − (3λ + 2μ)αth�III , (5.5.229)

where the Lamé constants λ and μ are defined by (5.3.65). With the decomposition
of the stress tensor (5.4.79) we obtain

σm = K (εV − 3αth�) , sss = 2μ(εεε − εεεpl), (5.5.230)

where

K = 3λ + 2μ

3
= E

3(1 − 2ν)

is the bulk modulus, εV = tr εεε is the volumetric strain and

εεε = εεε − 1

3
εV III (5.5.231)

is the strain deviator. The inelastic strain rate tensor can be defined by Eq. (5.4.106)
as follows

ε̇εεpl = 3

2
ε̇vM

sss

σvM
, ε̇vM = ∂W (σvM)

∂σvM
(5.5.232)

With Eqs. (5.5.230) and (5.5.231) the strain tensor can be computed

εεε = σm

3K
III + sss

2μ
+ αth�III + εεεpl (5.5.233)

The time derivative of Eq. (5.5.233) yields

ε̇εε = d

dt

(
σm

3K
III + sss

2μ
+ αth�III

)
+ ε̇εεpl (5.5.234)

With Eq. (5.5.232) we obtain

ε̇εε = d

dt

(
σm

3K
III + sss

2μ
+ αth�III

)
+ 3

2
ε̇vM

sss

σvM
(5.5.235)

For isothermal condition Eq. (5.5.235) simplifies to

ε̇εε = σ̇m

3K
III + ṡss

2μ
+ 3

2
ε̇vM

sss

σvM
(5.5.236)
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5.6 Hardening and Softening Rules

In the case of rapid changes of external loading one must take into account transient
effects of inelasticmaterial behavior. Let us discuss some experimental results related
to high-temperature plasticity under variablemulti-axial loading conditions and small
strains. The majority of multi-axial tests have been performed on thin-walled tubes
under combined action of tension (compression) force and torque. In this case the
uniform stress state σσσ = σnnn ⊗ nnn + τ(nnn ⊗ mmm + mmm ⊗ nnn) is assumed, where σ and
τ are calculated from the force and torque as well as the geometry of the cross
section (see Sect. 1.1.2). Figure5.4 presents a sketch of experimental data for type
304 steel (2 1

4Cr-1Mo) at 600 ◦C (Inoue 1988). A tube was loaded the first 5 h by
the constant tension force and the constant torque. After that the direction of the
force was reversed while the torque kept constant. The normal strain versus time
creep curve under compressive force after the reversal differs substantially from the
reference creep curve under tensile force, Fig. 5.4a. The absolute value of the strain
rate before and after the reversal differs significantly. Furthermore, the shear strain
versus time creep curve is influenced by the reversal of the axial force, Fig. 5.4b.

Figure5.5 shows a sketch of experimental results obtained in Penkalla et al. (1988)
for INCONEL Alloy 617 (NiCr22Co12Mo) tubes at 900 ◦C under cyclic torsion.
Every 100h the applied torque was reversed leading to the change of the sign of
the shear stress. The inelastic shear strain accumulated after each cycle of positive
(negative) torque decreases rapidly after few cycles of reversals. Similar behavior is
reported in Ohno et al. (1990) for the type 304 steel, where, in addition, the effect
of thermal exposure before and during the loading is discussed. Creep behavior
of steels is usually accompanied by the thermally induced evolution of structure
of carbide precipitates (coarsening or new precipitation). The effect of ageing has
a significant influence on the transient creep of steels as discussed in Ohno et al.
(1990). For example, the decrease of inelastic shear strain under alternating torsion

(a) (b)

Fig. 5.4 Transient creep at combined tension and torsion. Effect of the normal stress reversal.
a Normal strain versus time, b shear strain versus time, after Inoue (1988)

http://dx.doi.org/10.1007/978-3-319-31629-1_1
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Fig. 5.5 Creep under shear stress reversals, after Penkalla et al. (1988)

(a) (b)

Fig. 5.6 Creep at combined tension and torsion—effect of the shear stress reversals. a Normal
strain versus time, b shear strain versus time, after Penkalla et al. (1988)

was not observed if tubular specimens were subjected to the thermal exposure within
the time interval of 500h before the loading.

Additional effects have been observed in the case of reversals of the applied torque
combined with the constant tension force, Fig. 5.6. Here the axial strain response is
significantly influenced by the cyclic torsion. Furthermore, the rate of the shear strain
depends on the sign of the applied torque. Such a response indicates the anisotropic
nature of the hardening processes.

Multi-axial inelastic behavior is significantly influenced by the deformation his-
tory. As an example, Fig. 1.25 presents a sketch of results reported in Kawai (1989)
for type 304 stainless steel. Tubular specimens were first loaded up to the stress σ1
leading to the plastic strain of 3%. After that the specimens were unloaded to σ0.
Subsequent creep tests have been performed under combined constant normal strain
σ and shear strain τ . Tests under different stress states leading to the same value of

http://dx.doi.org/10.1007/978-3-319-31629-1_1
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the von Mises stress σvM = √
σ 2 + 3τ 2 = σ0 were performed. The results show that

the tensile creep curve of the material after plastic pre-straining differs significantly
from the creep curve of the “virgin material” (curve a). Furthermore, the von Mises
inelastic strain versus time curves after plastic pre-straining depend significantly on
the type of the applied stress state (compare, for example, tension, curve a, torsion,
curve b, and compression, curve e).

In this sectionwe discuss phenomenologicalmodels to describe primary creep and
inelastic transients under multi-axial stress states. We start with empirical models of
time and strain hardening. Then we introduce the concept of kinematic hardening to
characterize transient creep effects under constant and varying loading. Our purpose
is to discuss general ideas rather than enter into details of empirical functions of stress
and temperature as well as different forms of evolution equations for hardening
variables (the so-called hardening rules). Regarding the hardening rules one may
consult the comprehensive reviews (Chaboche 1989; Ohno 1990; Chaboche 2008)
and monographs (Krausz and Krausz 1996; Lemaitre and Chaboche 1990; Miller
1987; Stouffer andDame 1996). For classification and assessment of different unified
models of high-temperature plasticity we refer to Inoue (1988), Inoue et al. (1989).

5.6.1 Time and Strain Hardening

The time hardening model assumes a relationship between the equivalent creep rate,
the equivalent stress and the time at fixed temperature, i.e.

ft (ε̇
pl
eq, σeq, t) = 0

The strain hardening model postulates a relationship between the equivalent creep
rate, the equivalent creep strain and the equivalent stress at fixed temperature. In this
case

fs(ε̇
pl
eq, ε

pl
eq, σeq) = 0

Figure5.7 illustrates the uni-axial creep response after reloading (stress jump from
σ1 to σ2 at t = tr). Based on the time hardening model the strain rate at t ≥ tr is
determined by the stress σ2 and the time tr only. Thus the creep curve for t ≥ tr
can be obtained by translation of the curve BC to the point D. Following the strain
hardening model the strain rate depends on the stress and the accumulated strain.
The creep curve after the stress jump can be determined by translating the curve AC
(the creep curve for the stress σ2 starting from the creep strain ε

pl
A accumulated over

time tr) along the time axis.
It can be shown that for specific functions of stress, time and strain as well as

under the assumption of the constant stress and temperature the strain and the time
hardening models provide the same description. For example, if we set
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Fig. 5.7 Creep response at variable loading (the open circles denote typical experimental values)

ε̇pleq = aσ n
eqtm (5.6.237)

according to the time hardening with a, n and m as the material parameters, the
integration with respect to the time variable assuming σeq = const and ε

pl
eq = 0 at

t = 0 leads to

εpleq = aσ n
eq

1

m + 1
tm+1 (5.6.238)

On the other hand applying the strain hardening model, the creep equation can be
formulated as

ε̇pleq = bσ k
eq(ε

pl
eq)

l (5.6.239)

Taking into account (5.6.238) the time variable can be eliminated from (5.6.237). As
a result the following relations between the material parameters can be obtained

b = [a(m + 1)m] 1
m+1 , k = n

m + 1
, l = m

m + 1

Vice versa, the strain hardening equation (5.6.238) can be integrated for the spe-
cial choice of k and l and for σeq = const. Again, if ε

pl
eq = 0 at t = 0, we obtain

Eq. (5.6.238).
Applying the time hardening model the von Mises-Odqvist creep theory (see

Sect. 5.4.2.1) can be generalized as follows
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ε̇εεpl = 3

2
aσ n−1

vM tmsss (5.6.240)

By analogy one can formulate the creep constitutive equation with the strain hard-
ening

ε̇εεpl = 3

2
bσ k−1

vM (ε
pl
vM)lsss (5.6.241)

The time and the strain hardening models provide simple empirical description
of the uni-axial creep curve within the range of primary creep and are popular in
characterizing the material behavior, e.g. Hayhurst et al. (2002), Hyde et al. (2003b),
Kowalewski et al. (1994). Despite the simplicity, both the models suffer from several
limitations, even if applied stress and temperature are constant. The disadvantage of
the time hardening model is that the time variable appears explicitly in Eq. (5.6.237)
for the creep rate. An additional drawback is that the constants m and l take usually
the values −1 < m < 0,−1 < l < 0 as the result of curve fitting. If εpleq = 0 at t = 0
then Eq. (5.6.239) provides an infinite starting creep rate. One can avoid this problem
in a time-step based numerical procedure assuming a small non-zero creep equivalent
strain at the starting time step. Finally, bothmodels can be applied only for the case of
the constant or slowly varying stresses. Transient creep effects under rapid changes
of loading and in particular under stress reversals cannot be described.

Many details of time and strain hardening models can be found in Kraus (1980),
Penny and Mariott (1995). In Kraus (1980) a modified strain hardening model is
proposed based on the concept of creep strain origins.

5.6.2 Kinematic Hardening

The common approach in describing transient inelastic effects under complex load-
ing paths is the introduction of internal state variables and appropriate evolution
equations (the so-called hardening rules). The scalar-valued internal state variables
are applied to characterize isotropic hardening and ageing processes. Examples are
discussed in Sect. 3.5. Several “non-classical” effects observed in tests under non-
proportional loading have motivated the use of tensor-valued variables (usually sec-
ond rank tensors).

The idea of kinematic hardening (translation of the yield surface in the stress
space) originates from the theory of plasticity and has been proposed by Prager
(1956). In the creep mechanics the kinematic hardening was introduced by Malinin
and Khadjinsky (1969, 1972) and Frederick and Armstrong (2007).17

17The model was firs published in 1966 in a CEGB report, see Frederick and Armstrong (2007) for
historical remarks.

http://dx.doi.org/10.1007/978-3-319-31629-1_3
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The starting point is the additive decomposition of the stress tensor into two parts:
σσσ = σ̄σσ + ααα, where σ̄σσ is called the active or the effective part of the stress tensor andααα
denotes the additional or translation part of the stress tensor (backstress tensor). The
introduced tensors can be further decomposed into spherical and deviatoric parts

σ̄σσ = 1

3
tr σ̄σσ III + s̄ss, tr s̄ss = 0,

ααα = 1

3
tr αααIII + βββ, tr βββ = 0,

σσσ = 1

3
(tr σ̄σσ + tr ααα)III + sss, sss = s̄ss + βββ

(5.6.242)

It is assumed that the inelastic strain rate is determined by the active part of the
stress tensor. The flow potential is then a function of the active part of the stress
tensor, i.e. W = W (σ̄σσ ) = W (σσσ − ααα), e.g. Oytana et al. (1982). As in the case of the
isotropic creep (Sect. 5.4.2.1) only the second invariant of the deviator s̄ss is considered.
Introducing the von Mises equivalent stress

σ̄vM =
√
3

2
s̄ss ······ s̄ss =

√
3

2
(sss − βββ) ······ (sss − βββ) (5.6.243)

the flow rule (5.4.96) leads to the following constitutive equation

ε̇εεpl = 3

2

ε̇
pl
vM

σ̄vM
s̄ss, ε̇vM =

√
2

3
ε̇εεpl ······ ε̇εεpl (5.6.244)

The equivalent creep rate can be expressed by the use of stress and temperature
functions discussed in Sect. 5.4.4. For example, the power law stress function and
the Arrhenius temperature dependence can be applied as follows

ε̇
pl
vM = aσ̄ n

vM, a = a0 exp

(
− Q

RT

)
(5.6.245)

Equations (5.6.244) contain the deviatoric part of the back stress βββ. This internal
state variable is defined by the evolution equation and the initial condition. InMalinin
(1975, 1981) the following evolution equation is postulated

β̇ββ = 2

3
bε̇εεpl − g(αvM)

αvM
βββ (5.6.246)

with

αvM =
√
3

2
βββ ······ βββ
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In Malinin (1975, 1981) the function g is postulated as follows

g(αvM) = cαn
vM, c = c0 exp

(
− Qr

RT

)

Equation (5.6.246) is the multi-axial utilization of the Bailey-Orowan recovery
hypothesis, see Sect. 5.4.4, b and c0 are material parameters and Qr is the activation
energy of recovery.

The Armstrong-Frederick type evolution equation for the backstress deviator can
be formulated as follows (Frederick and Armstrong 2007; Längler et al. 2014)

β̇ββ = 1

Eh(T )

d Eh

dT
Ṫβββ + 2

3
Eh

[
ε̇εεpl − 3

2
ε̇vM

βββ

β∗ (σvM, T )

]
, (5.6.247)

where Eh(T ) is a function of the temperature, and β∗ (σvM, T ) is a function of the
von Mises equivalent stress

σvM =
√
3

2
sss ······ sss

and the temperature.
Let us show how the kinematic hardening model behaves for the uni-axial homo-

geneous stress state σσσ(t) = σ(t)nnn ⊗ nnn, where σ(t) is the magnitude of the applied
stress and nnn is the unit vector. With ααα(0) = 000 one can assume that ααα(t) is coaxial
with the stress tensor. Therefore one can write (Malinin 1975, 1981)

ααα = αnnn ⊗ nnn, βββ = α

(
nnn ⊗ nnn − 1

3
III

)
, σ̄vM = |σ − α|, αvM = |α|

From Eqs. (5.6.245) and (5.6.246) it follows

ε̇pl = asign(σ − α)|σ − α|n, ε̇pl = nnn ··· ε̇εεpl ··· nnn,
α̇ = bε̇pl − csignα|α|n (5.6.248)

Let us assume thatσ(t) = σ0 > 0,α(0) = 0,σ0 − α > 0. In addition, let us introduce
the variable H = α/σ0. From (5.6.248) we obtain

ε̇pl = aσ n
0 (1 − H)n, Ḣ = σ n−1

0 [ba(1 − H)n − cH n] (5.6.249)

The constitutive and evolution Eqs. (5.6.249) describe the primary and the secondary
stages of a uni-axial creep curve, Fig. 5.8. In the considered case of the uni-axial
tension the parameter 0 ≤ H < H∗ < 1 is equal to zero at the beginning of the
creep process and increases over time. In the steady state H = H∗, where H∗ is the
saturation value. From the second equation in (5.6.249) we obtain
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Fig. 5.8 Primary and secondary creep stages of a uni-axial creep curve

H∗ = 1

1 + μ
1
n

, μ = c

ab
(5.6.250)

The minimum creep rate in the steady creep state is calculated by

ε̇
pl
min = aσ n

0 (1 − H∗)n = ãσ n
0 , ã ≡ a(1 − H∗)n (5.6.251)

The constants ã and n can be obtained from the experimental data of steady-state
creep. For the given value of H∗ the second equation in (5.6.249) can be integrated
providing the duration time of primary creep tpr (see Fig. 5.8)

tpr = ϕ(H∗)
baσ n

0

, ϕ(H∗) =
H∗∫
0

dH

(1 − H)n − μH n

From the first equation in Eqs. (5.6.249) the creep strain ε
pl
pr follows at t = tpr (see

Fig. 5.8) as

εplpr = σ0

b

H∗∫
0

(1 − H)ndH

(1 − H)n − μH n

The above equations can be used for the identification of material parameters.
To discuss the model predictions for the case of the uni-axial cyclic loading let us

introduce the following dimensionless variables
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σ̃ = σ(t)

σ0
, τ = t

tpr
, ε = εpl

a(1 − H∗)σ n
0 tpr

,

where σ0 denotes the constant stress value in the first loading cycle. Equations
(5.6.248) take the form

dε

dτ
= asign(σ̃ − H)

|σ̃ − H |n
1 − H∗ ,

d H

dτ
= ϕ(H∗)

[
sign(σ̃ − H)|σ̃ − H |n − sign(H)

(
1 − H∗

H∗

)n

|H |n
] (5.6.252)

Figures5.9 and5.10 illustrate the results of the numerical integration ofEqs. (5.6.252)
with n = 3, H∗ = 0.7 and the initial conditions ε(0) = 0 and H(0) = 0. In the first

(a) (b)

Fig. 5.9 Uni-axial creep after unloading—simulations based on Eqs. (5.6.252) for the case n = 3
and H∗ = 0.7. a Creep strain versus time, b hardening variable versus time

(a) (b)

Fig. 5.10 Uni-axial creep under cyclic loading—simulations based on Eqs. (5.6.252) for the case
n = 3 and H∗ = 0.7. a Creep strain versus time, b hardening variable versus time
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case presented in Fig. 5.9 we assume σ = σ0 within the time interval [0; 2tpr], so
that the hardening variable increases up to the saturation value and remains constant.
The creep curve exhibits both the primary and the secondary stages, Fig. 5.9a. At
t = 2tpr we assume a spontaneous unloading, i.e. σ = 0. We observe that the model
(5.6.252) is able to describe the creep recovery (see Fig. 1.11b). Figure5.10 presents
the numerical results for the case of cyclic loading. Three loading cycles with the
constant stresses±σ0 and the holding time�t = 2tpr, Fig. 5.10a, are considered. We
observe that the model (5.6.252) predicts identical creep responses for the first and
the third loading cycle.

Let us analyze the model predictions under multi-axial stress state. To this end we
consider the loading case with the constant stress deviator sss within a given interval
of time [t0, t]. Equations (5.6.244) and (5.6.246) can be rewritten as follows

ε̇εεpl = 3

2

f (σ̄vM)

σ̄vM
(sss − βββ), β̇ββ = b

f (σ̄vM)

σ̄vM
(sss − βββ) − g(αvM)

αvM
βββ (5.6.253)

In the steady creep state βββ = βββ∗, where βββ∗ is the saturation value of the back stress
deviator. From Eq. (5.6.253)2 it follows

b
f (σ̄vM∗)

σ̄vM∗
(sss − βββ∗) = g(αvM∗)

αvM∗
βββ∗, (5.6.254)

where

σ̄vM∗ =
√
3

2
(sss − βββ∗) ······ (sss − βββ∗), αvM∗ =

√
3

2
βββ∗ ······ βββ∗

The double inner product of (5.6.254) with itself results in

[
b f (σ̄vM∗)

]2 = [
g(αvM∗)

]2
Since f (σ̄vM∗) > 0 and g(αvM∗) > 0 we obtain

b f (σ̄vM∗) = g(αvM∗) (5.6.255)

From (5.6.254) it follows

βββ∗ = αvM∗
σ̄vM∗ + αvM∗

sss ⇒ σ̄vM∗ = σvM + αvM∗ (5.6.256)

Now the steady state value of the back stress deviator can be calculated

βββ∗ = αvM∗
sss

σvM
(5.6.257)

http://dx.doi.org/10.1007/978-3-319-31629-1_1
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Let us assume power functions for f and g. Then from Eq. (5.6.255) we obtain

ba(σvM − αvM∗)
n = cαn

vM∗

As in the uni-axial case we introduce the hardening variable H = αvM/σvM. The
saturation value H∗ is then determined by (5.6.250). From Eq. (5.6.253)1 we obtain

ε̇εε
pl
st = 3

2
ãσ n−1

vM sss, ã ≡ a(1 − H∗)n (5.6.258)

We observe that the kinematic hardening model (5.6.253) results in the Norton-
Bailey-Odqvist constitutive equation of steady-state creep discussed in Sect. 5.4.2.1.
This model predicts isotropic steady-state creep independently from the initial con-
dition for the back stress deviator βββ. Furthermore, different stress states leading to
the same value of the von Mises equivalent stress will provide the same steady state
value of the equivalent creep rate.

As an example let us consider a thin-walled tube subjected to the axial force ant
the torque (see Sect. 1.1.2). Let us assume that in the first loading cycle the force and
the torque are kept constant over a certain period of time such that the creep rates
attain the steady state values. The stress deviator has the following form

sss1 = σ(kkk ⊗ kkk − 1

3
III ) + τ(eeeϕ ⊗ kkk + kkk ⊗ eeeϕ), (5.6.259)

where σ is the normal stress, τ is the shear stress and the unit vectors kkk and eeeϕ

designate the axial and the circumferential direction, respectively (cp. Fig. 1.22). In
addition, we assume that in the second loading cycle the tube is loaded by the same
tensile force but the reversed constant shear stress. In this case the stress deviator is

sss2 = σ(kkk ⊗ kkk − 1

3
III ) − τ(eeeϕ ⊗ kkk + kkk ⊗ eeeϕ), (5.6.260)

From Eqs. (5.6.259) and (5.6.260) we find that

sss2 = QQQ ··· sss1 ··· QQQT, QQQ = QQQT = 2kkk ⊗ kkk − III (5.6.261)

The kinematic hardening model (5.6.253) predicts the following relation between
the steady state creep rates in the first and the second loading cycle

ε̇εε
pl
st2 = QQQ ··· ε̇εεplst1 ··· QQQT

Consequently, the normal strain rates and the magnitudes of the shear strain rates
will be the same at the end of the loading cycles.

The model (5.6.253) is applied in Malinin (1981), Oytana et al. (1982) for the
description of creep for different materials under simple or non-proportional loading
conditions. It is demonstrated that the predictions agree well with experimental data.

http://dx.doi.org/10.1007/978-3-319-31629-1_1
http://dx.doi.org/10.1007/978-3-319-31629-1_1
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However, inmany cases deviations from theNorton-Bailey-Odqvist type steady-state
creep can be observed in experiments. For example, in the case shown in Fig. 5.6
the steady state shear creep rate changes significantly after the shear stress reversals,
although the von Mises equivalent stress remains constant. The results presented in
Fig. 1.25 indicate that the initial hardening state due to plastic pre-strain is the reason
for the stress state dependence of the subsequent creep behavior. This effect is not
described by the model (5.6.253).

The model with the back stress of the type (5.6.253) are sometimes called
anisotropic hardening model, e.g. Malinin (1981). The type of anisotropy is then
determined by the symmetry group of the back stress tensor or deviator. The sym-
metry group of any symmetric second rank tensor includes always eight elements,
e.g. Lurie (1990). For the tensor βββ the symmetry elements are

QQQβββ = ±nnn1 ⊗ nnn1 ± nnn2 ⊗ nnn2 ± nnn3 ⊗ nnn3, (5.6.262)

wherennni are the principal axes of the tensorβββ. The flow potential formulated in terms
of the stress deviator and the back stress deviator satisfies the following condition

W (sss,βββ) = W (QQQβββ ··· sss ··· QQQT
βββ, QQQβββ ··· βββ ··· QQQT

βββ) = W (QQQβββ ··· sss ··· QQQT
βββ,βββ)

Consequently the flow potential is an orthotropic function of the stress deviator with
the symmetrygroupdefinedby (5.6.262).As shown inBoehler (1987b) anykinematic
hardening model of the type (5.6.253) leads to a restrictive form of orthotropic
inelastic behavior. In order to demonstrate this let us put the back stress deviator in
the following form

βββ = β1nnn1 ⊗ nnn1 + β2nnn2 ⊗ nnn2 − (β1 + β2)nnn3 ⊗ nnn3

= β1(nnn1 ⊗ nnn1 − nnn3 ⊗ nnn3) + β2(nnn2 ⊗ nnn2 − nnn3 ⊗ nnn3),

where β1 and β2 are the principal values andnnn1,nnn2 andnnn3 are the principal directions
of βββ. For the given back stress deviator βββ the equivalent stress (5.6.243) takes the
form

σ̄ 2
vM = 3 J̃ 2

1

(
1 − β1

J̃1

)2

+ 3 J̃ 2
2

(
1 − β2

J̃2

)2

+ 3

2
J̃1 J̃2

(
1 − β1

J̃1

) (
1 − β2

J̃2

)

+ 3I 2nnn1nnn2
+ 3I 2nnn1nnn3

+ 3I 2nnn2nnn3
,

(5.6.263)

where the invariants J̃i are defined by Eqs. (5.4.149) and the invariants Innninnn j are
defined by Eqs. (5.4.144). Steady state creep with initial orthotropic symmetry is
discussed in Sect. 5.4.3. In this case the von Mises type equivalent stress includes
6 invariants and 6 independent material parameters. The equivalent stress (5.6.263)
contains all 6 orthotropic invariants.However, the last three terms (three shear stresses
with respect to the three planes of the orthotropic symmetry) are not affected by the

http://dx.doi.org/10.1007/978-3-319-31629-1_1
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hardening. Furthermore, in the steady state range these terms vanish since the back
stress deviator βββ∗ is coaxial with the stress deviator according to (5.6.257).

Several possibilities to refine the kinematic hardening model are discussed in the
literature. Examples include:

• Introduction of additional state variables like isotropic hardening variable, e.g.
Chaboche (1989, 2008), ageing variable, e.g. Ohno et al. (1990), Naumenko and
Gariboldi (2014), or damage variables, e.g. Dyson andMcLean (1998), Naumenko
et al. (2011a, b),

• Formulation of the creep potential as a general isotropic function of two tensors σσσ
and ααα. Such an approach is proposed in Boehler (1987b) for the case of plasticity
and includes different special cases of kinematic hardening,

• Consideration of the initial anisotropy of the material behavior, e.g. Inoue (1988),
Naumenko and Gariboldi (2014).

Creep models with kinematic hardening of the type (5.6.244) and different specific
forms of the hardening evolution equation are discussed in Kawai (1996), Kawai
(1997), Malinin (1981), Ohno et al. (1990), Oytana et al. (1982), Robinson (1984)
among others. For the description of creep and creep-plasticity interaction at complex
loading conditions a variety of unified models is available including the hardening
variables as second rank tensors. For details we refer to Krausz and Krausz (1996),
Krempl (1999), Lemaitre and Chaboche (1990), Miller (1987). Several unified mod-
els are reviewed and evaluated in Inoue (1988); Inoue et al. (1989). The historical
background of the development of non-linear kinematic hardening rules is presented
in Chaboche (1989, 2008).

5.6.3 Phase Mixture Models for Hardening and Softening

Advanced heat resistant steels contain relatively high dislocation density at the ini-
tial state after the processing. Fine subgrain structure and different types of pre-
cipitates are examples of microstructural features that improve creep strength and
high-temperature resistance Abe (2009), Dyson and McLean (1998), Blum (2008),
Straub (1995). For such materials the inelastic deformation is accompanied by soft-
ening processes including recovery of dislocation substructures and coarsening of
subgrains (Blum 2008). Stress-strain curves of softening materials show descending
(softening) branch, Fig. 1.2 and creep curves exhibit accelerated regime immediately
after the primary creep stage, Fig. 1.9.

In Sect. 3.5.3 a phase mixture model (or composite model) is applied to character-
ize hardening and softening processes. The basic idea is to idealize the heterogeneous
inelastic deformation in a volume element by considering amixture with two ormore
constituents with different, but homogeneous inelastic properties. Assuming the total
deformation of constituents to be the same, redistribution of stresseswould take place,

http://dx.doi.org/10.1007/978-3-319-31629-1_1
http://dx.doi.org/10.1007/978-3-319-31629-1_1
http://dx.doi.org/10.1007/978-3-319-31629-1_3
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leading to the decrease of the overall inelastic strain rate. In Straub (1995), Polcik
et al. (1998), Polcik (1999), Barkar and Ågren (2005) two phases are introduced
including the inelastic hard phase to characterize subgrain boundaries with a rela-
tively high dislocation density and the inelastic soft one to model subgrain interiors.
Two different sets of constitutive equations for inelastic strains are formulated. Fur-
thermore, the volume fraction of the hard constituent is assumed to decrease over
time to capture the coarsening process. Below let us generalize the phase mixture
model to the multi-axial stress state. For the sake of simplicity let us assume small
strains such that the geometrically-linear theory can be applied.

Let us consider a composite material with two constituents. We assume that con-
stituents have the same thermo-elastic properties. To designate the properties of the
constituents the subscripts s (for inelastic-soft) and h (for inelastic-hard) will be
used. Let εεε be the strain tensor and σσσ the Cauchy stress tensor. We specify by εs

and εh the infinitesimal strain tensors of the constituents and by σ s and σ h the corre-
sponding effective stress tensors. To generalize the constitutive equations discussed
in Sect. 3.5.3 we assume isotropic thermo-elasticity and creep for both the con-
stituents. Furthermore, we assume that the constituents have the same temperature.
With Eq. (5.5.234) the constitutive equations for the constituents are

ε̇εεh = d

dt

(
σmh

3K
III + sssh

2μ
+ αth�III

)
+ ε̇εε

pl
h ,

ε̇εεs = d

dt

(
σms

3K
III + ssss

2μ
+ αth�III

)
+ ε̇εεpls ,

(5.6.264)

where

σmh = 1

3
tr σσσ h, sssh = σσσ h − σmh III ,

σms = 1

3
tr σσσ s, ssss = σσσ s − σms III

The corresponding equation for the composite is

ε̇εε = d

dt

(
σm

3K
III + sss

2μ
+ αth�III

)
+ ε̇εεpl (5.6.265)

For the inelastic strain rates of the constituents let us assume the following constitutive
equations

ε̇εεpls = 3

2

ε̇vMs

σvMs

ss, ε̇vMs = f (σvMs)g(T ),

ε̇εε
pl
h = 3

2

ε̇vM

σvM∗
(sh − s),

(5.6.266)

http://dx.doi.org/10.1007/978-3-319-31629-1_3
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where

σvMs =
√
3

2
ss ······ ss, σvM∗ =

√
3

2
(sh∗ − s) ······ (sh∗ − s),

ε̇vM =
√
2

3
ε̇pl ······ ε̇pl, ε̇vMs =

√
2

3
ε̇pl
s ······ ε̇pl

s ,

(5.6.267)

and sssh∗ is the saturation stress deviator which is assumed to be collinear with sss. The
stress and the strain tensors of the composite are defined by the following mixture
rules

σσσ = (1 − ηh)σσσ s + ηhσσσ h, εεε = (1 − ηh)εεεs + ηhεεεh, (5.6.268)

where ηh is the volume fraction of the hard constituent. To complete the model a
rule for the interaction between the constituents is required. Here let us apply the
iso-strain approach such that

εεεh = εεεs = εεε (5.6.269)

The traces of Eqs. (5.6.268)1 and (5.6.269) yield

σm = (1 − ηh)σms + ηhσmh , εV = εVh = εVs ,

where εV = tr εεε, εVh = tr εεεh and εVs = tr εεεs are volumetric strains. From constitutive
Eqs. (5.6.264) it follows

εVh − 3αth� = σmh

K
, εVs − 3αth� = σms

K
, εV − 3αth� = σm

K

Hence

σm = σmh = σms = K (εV − 3αth�) (5.6.270)

Since the bulkmoduli of the constituents are assumed to be the same and the spherical
parts of the creep rate tensors are zeros, the mean stresses have identical values. Then
for the deviatoric parts of the stress and the strain tensors we have

sss = (1 − ηh)ssss + ηhsssh, εεε = εεεh = εεεs (5.6.271)

For the identification of functions andmaterial properties in the phase mixture model
it is convenient to introduce the following new variables

β = ηh0

1 − ηh0
(sh − s), Γ = ηh

1 − ηh

1 − ηh0

ηh0
, (5.6.272)
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where ηh0 is the reference value of the volume fraction. From Eqs. (5.6.264)1,
(5.6.265), (5.6.266)2, (5.6.269) and (5.6.270) we obtain

β̇ = 1

μ

dμ

dT
Ṫβββ + 2μ

ch

[
ε̇pl − 3

2
ε̇vM

β

β∗

]
, (5.6.273)

where

ch = 1 − ηh0

ηh0
, β∗ =

√
3

2
βββ∗ ······ βββ∗, βββ∗ = 1

ch
(sh∗ − s)

With Eqs. (5.6.264)2, (5.6.265), (5.6.266)1, (5.6.269) and (5.6.270) the inelastic
strain rate tensor can be computed as follows

ε̇pl = 3

2
f (σ̄vM)g(T )

s̄ss

σ̄vM
− d

dt

(
βββΓ

2μ

)
, (5.6.274)

where

s̄ss = s − βΓ, σ̄vM =
√
3

2
s̄ ······ s̄ (5.6.275)

In Eq. (5.6.274) the introduced variables βββ and Γ play the role of internal state
variables. If the volume fraction of the hard constituent does not evolve over time, i.e.
ηh = ηh0 then according to Eq. (5.6.272) Γ = 1. Equations (5.6.273) and (5.6.274)
simplify to

ε̇pl = 3

2
f (σ̄vM)g(T )

s̄ss

σ̄vM
− d

dt

(
βββ

2μ

)
, s̄ss = s − βΓ

β̇ = 1

μ

dμ

dT
Ṫβββ + 2μ

ch

[
ε̇pl − 3

2
ε̇vM

β

β∗

] (5.6.276)

For ch � 1 the underlined term has a minor influence and can be neglected.
With Eh = 3μ/ch and without the underlined term Eqs. (5.6.276) coincide with
Frederick-Armstrong type constitutive and evolution equations, cp. Eqs. (5.6.244)
and (5.6.247).

To consider softening processes an additional evolution equation is required for
the variableΓ . Let us assume thatΓ evolves by the exponential lawwith the increase
of the mean inelastic strain towards the saturation value Γ∗(σ ), i.e.

Γ̇ = As
[
Γ∗(σvM) − Γ

]
ε̇
pl
vM (5.6.277)

Then, as discussed in Sect. 3.5.3 the introduced model describes the decrease of
the inelastic strain rate as a result of stress redistribution between the constituents
and the increase of the inelastic strain rate as a consequence of softening processes
(decrease of the volume fraction of the hard constituent).

http://dx.doi.org/10.1007/978-3-319-31629-1_3
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5.7 Damage Processes and Damage Mechanics

Inelastic deformation is often accompanied by damage processes. Examples include
the formation, growth and coalescence of voids on grain boundaries, microcracks in
particles of the second phase, decohesion at particle/matrix interfaces and surface
relief and surface cracks under cyclic loading. In contrast to softening and ageing,
leading to the increase of inelastic strain rate, damage processes cause formation of
cracks and final fracture of solids. The characterization of damage processes under
multi-axial stress state is important for life-time estimation of a component designed
for high-temperature application.

Continuum damage mechanics is a powerful approach to characterize various
damage phenomena in materials and structures (Krajcinovic 1996; Lemaitre and
Desmorat 2005; Murakami 2012). Several examples of damage evolution equations
for uni-axial stress state are presented in Sect. 3.6. In this Section we discuss gen-
eralizations to the multi-axial stress state. The damage rate and the inelastic strain
rate are determined by the stress level, the accumulated damage and the temperature.
These dependencies can be established based on experimental data from uni-axial
tests, for example creep tests. If the material is subjected to multi-axial loading, the
kind of stress state has a significant influence on the damage growth. Tension and
compression lead to different creep rates. Different stress states corresponding to
the same von Mises equivalent stress lead, in general, to different equivalent tertiary
creep rates while the equivalent strain rate in the secondary stage is approximately the
same. These facts are established from the data of creep tests under combined tension
and torsion, e.g. Kowalewski (1996, 2001), as well as from biaxial and triaxial creep
tests (Sakane and Hosokawa 2001; Sakane and Tokura 2002). Stress state effects
must be considered in the damage evolution equation. In Sect. 5.7.1 we discuss vari-
ous possibilities to characterize the tertiary creep behavior by means of scalar-valued
damage parameters. Under non-proportional loading conditions, the additional fac-
tor is the influence of the damage induced anisotropy. Examples are creep tests under
combined tension and alternating torsion, e.g. Murakami and Sanomura (1985), and
creep tests under biaxial loading with alternating direction of the first principal stress
(Sakane and Tokura 2002). In both cases the assumption of isotropic creep behavior
and the scalar measure of damage lead to disagreement with experimental obser-
vations. In Sect. 5.7.2 we review some experimental results illustrating the damage
induced anisotropy and discuss creep-damage models with tensor-valued damage
variables. In this Section we focus on the description of creep damage—a main
factor that usually limits the lifetime of a high-temperature component.

5.7.1 Scalar-Valued Damage Variables

Many microstructural observations show the directional effect of creep damage.
For example, during a cyclic torsion test on copper, voids nucleate and grow

http://dx.doi.org/10.1007/978-3-319-31629-1_3
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predominantly on those grain boundaries, which are perpendicular to the first princi-
pal direction of the stress tensor, e.g. Hayhurst (1999). Creep damage has therefore
an anisotropic nature and should be characterized by a tensor. However, if the ini-
tially isotropic material is subjected to constant or monotonic loading the influence
of the damage anisotropy on the observed creep behavior, i.e. the strain versus time
curves, is not significant. If the state of damage is characterized by a tensor (see
Sect. 5.7.2) then such a tensor can be assumed to be coaxial with the stress tensor
under monotonic loading conditions. In such a case only the scalar damage measures
will enter the creep constitutive equation. Below we introduce different models of
tertiary creep including the phenomenological, the so-calledmicromechanically con-
sistent and mechanism based models. The effect of damage is described by means of
scalar valued damage parameters and corresponding evolution equations. The stress
state influences are expressed in the equivalent stress responsible for the damage
evolution.

5.7.1.1 Kachanov-Rabotnov Model

To generalize Eqs. (3.6.118) and (3.6.119) to the multi-axial stress states Rabotnov
(1963) assumed that

• the creep process is determined by the effective stress tensor σ̃σσ = fff (σσσ , ω),
• the creep potential for the damagedmaterial has the same form as for the secondary
creep

For example, the Norton-Bailey-Odqvist creep potential (5.4.98) can be generalized
as follows

W (σ̃σσ ) = σ0

n + 1

(
σ̃vM

σ0

)n+1

, σ̃vM =
√
3

2
s̃ss ······ s̃ss, s̃ss = σ̃σσ − 1

3
tr σ̃σσ III (5.7.278)

Rabotnov (1963, 1967) proposed the following effective stress tensor

σ̃σσ = σI

1 − ω
nnnI ⊗ nnnI + σI InnnI I ⊗ nnnI I + σI I InnnI I I ⊗ nnnI I I (5.7.279)

for the case of distinct principal values of the stress tensor σI > σI I > σI I I and
σI > 0. Equation (5.7.279) implies that the effect of damage is only significant in
the planes perpendicular to the first principal direction associated with the maximum
tensile stress. Hence the constitutive equation for the creep rate would have the form

ε̇εεpl = λ̇(σ̃vM)

[
sss + ω

1 − ω
σI (nnnI ⊗ nnnI − 1

3
III )

]
, (5.7.280)

Equation (5.7.280) suggests that the proportionality between the creep rate tensor
and the stress deviator is violated in the tertiary creep range. Leckie and Hayhurst

http://dx.doi.org/10.1007/978-3-319-31629-1_3
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(1977) analyzed experimental data of combined tension and torsion for copper and
aluminium alloys. They concluded that the strain trajectories (see Fig. 1.24) are not
sensibly affected by the damage processes. Therefore, the creep rate can be assumed
in the form

ε̇εεpl = λ̇(σ̃vM)sss

Leckie and Hayhurst (1977) proposed to generalize the von Mises-type secondary
creep equation (see Sect. 5.4.2.1) as follows

ε̇εεpl = 3

2
a

(
σvM

1 − ω

)n sss

σvM
(5.7.281)

Equation (5.7.281) can be also derived applying the strain equivalence princi-
ple (Lemaitre and Chaboche 1990) and the effective stress tensor in the form
σ̃σσ = σσσ/(1 − ω).

The next step is the formulation of the damage evolution equation. By analogy
with the uni-axial case, the damage rate should have a form

ω̇ = ω̇(σσσ , ω)

The dependence on the stress tensor can be expressed by means of the “damage
equivalent stress” σω

eq(σσσ) which allows the comparison of creep strength behavior
under different stress states.With the damage equivalent stress, the uni-axial equation
(3.6.119) can be generalized as follows

ω̇ = b(σω
eq)

k

(1 − ω)l
(5.7.282)

Thematerial parameters a, b, n, k and l can be identified from uni-axial creep curves.
In order to find a suitable expression for the damage equivalent stress, the data from
multi-axial creep tests up to rupture are required. For isotropic materials, σω

eq can
be formulated in terms of three invariants of the stress tensor, for example the basic
invariants

σω
eq = σω

eq[I1(σσσ), I2(σσσ), I3(σσσ)]

Similarly to the uni-axial case, see Eq. (3.6.126), the damage evolution equation
(5.7.282) can be integrated assuming that the stress tensor is constant during the test.
As a result, the relationship between the time to creep fracture and the equivalent
stress can be obtained

t∗ = 1

(l + 1)b
(σω

eq)
−k (5.7.283)
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Sdobyrev (1959) carried out long term tests on tubular specimens made from alloys
EI-237B (Ni-based alloy) and EI-405 (Fe-based alloy) under tension, torsion and
combined tension-torsion. The results of tests are collected for different tempera-
tures and presented as equivalent stress versus fracture time plots. The following
dependence was established

1

2
(σI + σvM) = f (log t∗) (5.7.284)

Sdobyrev found that the linear function f provides a satisfactory description of
the experimental data. The equivalent stress responsible to the long term strength
at high temperatures is then σ ∗

eq = 1
2 (σI + σvM). Based on different mechanisms

which control creep failure, the influence of three stress state parameters (the mean
stress σm = I1/3, the first positive principal stress or the maximum tensile stress
σmax t = (σI + |σI |)/2 and the von Mises stress) is discussed by Trunin (1965). The
Sdobyrev criterion was extended as follows

σ ∗
eq = 1

2
(σvM + σmax t) a1−2η, η = 3σm

σvM + σmax t
, (5.7.285)

where a is a material constant. For special loading cases this equivalent stress yields

• uni-axial tension

σ ∗
eq = σ, η = 1

2

• uni-axial compression

σ ∗
eq = σa3

2
, η = −1

• pure torsion

σ ∗
eq =

√
3 + 1

2
τa, η = 0

The constant a can be calculated from the ultimate stress values leading to the same
fracture time for a given temperature. For example, if the ultimate tension and shear
stresses are σu and τu, respectively, then

a = 2√
3 + 1

σu

τu

Hayhurst (1972) proposed the following relationship

t∗ = A(ασmax t + β I1 + γ σvM)−χ , (5.7.286)
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where A and χ are material constants, I1 = 3σm and α + β + γ = 1. Comparing
this equation with Eq. (5.7.283) one can obtain

A = 1

(l + 1)b
, χ = k, σω

eq = ασmax t + β I1 + γ σvM (5.7.287)

Hayhurst introduced the normalized stress tensor σ̄σσ = σσσ/σ0 and the normalized time
to fracture t̄∗ = t∗/t∗0, where t∗0 is the time to fracture in a uni-axial test conducted
at the stress σ0. From Eqs. (3.6.126) and (5.7.283) it follows

t̄∗ =
(
σω
eq

σ0

)−k

= (σ̄ ω
eq)

−k

By setting the normalized rupture time equal to unity, the equation σ̄ ω
eq = 1 follows,

which defines the stress states leading to the equal rupture time. In Hayhurst (1972)
the data of biaxial tests (biaxial tension test, combined tension and torsion of tubular
specimens) are collected for differentmaterials. Itwas found convenient to present the
results in terms of the isochronous rupture surface, which is the plot of the equation
σ̄ ω
eq = 1 for the specified values of α and β in the normalized stress space. For plane

stress states the isochronous rupture loci can be presented in the normalized principal
stress axes. Examples for different materials are discussed by Hayhurst (1972). The
coefficients α and β are specific for each material and, in addition, they may depend
on the temperature. Figure5.11 shows the isochronous rupture loci for three special
cases: σ̄ ω

eq = σ̄max t , σ̄ ω
eq = σ̄vM and σ̄ ω

eq = 3σ̄m. The first two represent the limit cases
of the material behavior (Leckie and Hayhurst 1977).

A generalized expression for the damage equivalent stress can be formulated by
the use of three invariants of the stress tensor. With the first invariant I1, the von
Mises equivalent stress σvM and

sin 3ξ = −27

2

(s · ss · ss · s) ······ sss

σ 3
vM

, −π

6
≤ ξ ≤ π

6
,

as a cubic invariant, the following equivalent stress has been proposed in Altenbach
and Zolochevsky (1996)

σω
eq = λ1σvM sin ξ + λ2σvM cos ξ + λ3σvM + λ4 I1 + λ5 I1 sin ξ + λ6 I1 cos ξ

(5.7.288)

The identification of coefficients λi , i = 1, . . . , 6 requires six independent tests.
Equation (5.7.288) contains a number of known failure criteria as special cases,
see Altenbach and Zolochevsky (1996). Setting λ1 = λ2 = λ4 = λ5 = λ6 = 0 the
equation provides the von Mises equivalent stress. Taking into account

σI = 1

3

[
2σvM sin

(
ξ + 2π

3

)
+ I1

]
= −1

3
σvM sin ξ +

√
3

3
σvM cos ξ + 1

3
I1
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Fig. 5.11 Plane stress isochronous rupture loci, for details see Hayhurst (1972)

and with

λ1 = −1

6
, λ2 =

√
3

6
, λ3 = 1

2
, λ4 = 1

6
, λ5 = λ6 = 0

one can obtain σω
eq = 1

2 (σI + σvM). With

λ1 = −1

3
α, λ2 =

√
3

3
α, λ3 = β, λ4 = 1 − 2

3
α − β, λ5 = λ6 = 0

Equation (5.7.288) yields σω
eq = ασI + βσvM + (1 − α − β)I1. Other examples are

discussed in Altenbach (2001).
In order to identify the material constants, e.g., a in Eqs. (5.7.285) or α and β

in Eq. (5.7.286), the values of the ultimate stresses leading to the same failure time
for different stress states are necessary. Therefore series of independent creep tests
up to rupture are required. For each kind of test the creep strength curve (stress
vs. time to fracture curve), see Fig. 3.9, must be obtained. For example, a series
of torsion tests (at least two) under different stress values should be performed.
Usually, experimental data from creep tests under complex stress states are limited
and the scatter of the experimental results is unavoidable. Therefore, the constitutive
and the evolution equation (5.7.281) and (5.7.282) with the two-parametric damage

http://dx.doi.org/10.1007/978-3-319-31629-1_3
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equivalent stress (5.7.287) are widely used in modeling tertiary creep. Examples of
material parameters as well as structural mechanics applications can be found in
Altenbach et al. (1997, 2000, 2001b), Altenbach and Naumenko (1997), Bodnar
and Chrzanowski (1991), Boyle and Spence (1983), Hayhurst (1972), Hyde et al.
(1997, 1999, 2000), Konkin and Morachkovskij (1987), Kowalewski (1996) among
others.

5.7.1.2 Micromechanically-Consistent Models

The creep constitutive equation (5.7.281) includes the effect of damage by means
of the equivalent stress concept. An alternative approach to formulate the creep
constitutive equation can be based on micromechanics. Rodin and Parks (1986)
considered an infinite block from incompressible isotropic material containing a
given distribution of cracks and subjected to a far field homogeneous stress. As
a measure of damage ρ = a3N/V is proposed, where N is the number of cracks
(voids) in a volume V and a is the averaged radius of a crack. Assuming power law
creep the creep potential for such a material has the following form

W (σσσ , ρ, n) = ε̇0σ0

n + 1
f
(
ζ(σσσ), ρ, n

) (
σvM

σ0

)n+1

, (5.7.289)

where ε̇0 is the reference creep rate, σ0 is the reference stress and n is a material
constant. ζ(σσσ) is a function representing the influence of the kind of stress state. In
Rodin and Parks (1986) the following particular expression is proposed

ζ(σσσ) = σI

σvM
,

where σI is the maximum principal stress. The creep potential (5.7.289) and the flow
rule (5.4.96) give

ε̇εεpl = ∂W

∂σσσ
= ∂W

∂σvM

∂σvM

∂σσσ
+ ∂W

∂ζ

∂ζ

∂σσσ

= ε̇0

(
σvM

σ0

)n [
3

2

(
f − ζ f,ζ

n + 1

)
sss

σvM
+ f,ζ

n + 1
nnnI ⊗ nnnI

]
,

(5.7.290)

where nnnI is the first principal direction of the stress tensor. The function f must
satisfy the following convexity condition (Rodin and Parks 1986)

f f,ζ ζ − n

n + 1
f 2,ζ > 0,

The form of the function f is established for the assumed particular distribution
of cracks and by use of a self-consistent approach. In Rodin and Parks (1988) the
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following expression is proposed

f (ζ, ρ, n) = [
1 + α(ρ, n)ζ 2

] n+1
2 ,

α(ρ, n) = 2ρ

n + 1
+ (2n + 3)ρ2

n(n + 1)2
+ (n + 3)ρ3

9n(n + 1)3
+ (n + 3)ρ4

108n(n + 1)4

Models of the type (5.7.290) are popular in materials science related literature, e.g.
Gaudig et al. (1999), Mohrmann and Sester (1999). They are based on microme-
chanical considerations and therefore seem to be more preferable for creep-damage
analysis. However, only idealized damage states, e.g. dilute non-interacting cracks or
voids with a given density and specific distribution can be considered. Furthermore,
there is no micromechanically-consistent way to establish the form of the evolution
equation for the assumed damage variable. Different empirical equations are pro-
posed in the literature. For example, Mohrmann and Sester (1999) assume that the
cavity nucleation is strain controlled and recommend the following equation

ρ

ρ f
=

(
εvM

ε f

)γ

,

where ρ f , ε f and γ are material constants which should be identified from “macro-
scopic” creep responses.

Bassani andHawk (1990) proposed to use a phenomenological damage parameter
ω (see Sect. 5.7.1.1) instead of ρ. The function f is then postulated as follows

f (ζ, ω, n) = 1

(1 − ω)k

(
1 − α0ω + α0ωζ 2

) n+1
2 (5.7.291)

Here

ζ = (1 − α1)
σI

σvM
+ α1

σH

σvM

and k, n, α0 and α1 are material constants. From Eqs. (5.7.290) and (5.7.291) follows

ε̇εεpl = ε̇0

(
σvM

σ0

)n 1

(1 − ω)k
(1 − α0ω + α0ωζ 2)

n−1
2 ×

×
{
3

2
(1 − α0ω)

sss

σvM
+ α0ωζ [(1 − α1)nnnI ⊗ nnnI + α1III ]

} (5.7.292)

With α0 = 0, α1 = 1 and k = n Eq. (5.7.292) reduces to the Kachanov-Rabotnov
type constitutive equation (5.7.281). By setting α0 = 1, k = (n + 1)/2 and ω � 1
Eq. (5.7.292) approximates the Rodin and Parks micro-mechanically consistent
model (Rodin and Parks 1986). For the case k = n, α0 = 1 and α1 = 1 the con-
stitutive equation for the creep rate can be presented as follows
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ε̇εεpl = ε̇0

[
σvM

σ0(1 − ω)

]n

(1 − ω + ωζ 2)
n−1
2

[
3

2
(1 − ω)

sss

σvM
+ ωζ III

]
, ζ = σH

σvM
(5.7.293)

Equation (5.7.293) is applied in Bassani and Hawk (1990) to the finite element
simulation of creep crack growth.

From Eq. (5.7.292) one can calculate the volumetric creep rate

ε̇V = tr ε̇εεpl = ε̇0

(
σvM

σ0

)n 1

(1 − ω)k
(1 − α0ω + α0ωζ 2)

n−1
2 [α0ωζ(1 + 2α1)]

We observe that for α0 �= 0 the damage growth induces dilatation. Creep constitutive
equations (5.7.290) or (5.7.292) include the first principal direction of the stress
tensor. It should be noted that the dyadnnnI ⊗ nnnI can be only found if σI �= 0, σI �= σI I

and σI �= σI I I . In this case, e.g. Lurie (1990)

nnnI ⊗ nnnI = 1

(σI − σI I )(σI − σI I I )

[
σσσ 2 − (tr σσσ − σI )σσσ + detσσσ

σI
III

]
(5.7.294)

Inserting Eq. (5.7.294) into Eq. (5.7.290) or Eq. (5.7.292) we observe that not only
the volumetric strain but also second order effects (see Sect. 5.4.2.2 for discussion)
are “induced” by damage.

5.7.1.3 Mechanism-Based Models

The constitutive and evolution equations (5.7.281) and (5.7.282) are formulated in
terms of power law functions of stress. It is known from materials science that the
power law stress dependence guarantees the correct description of the creep rate only
for a specific stress range. In addition, the power law stress and damage functions
used in Eqs. (5.7.281) and (5.7.282)may lead to numerical problems in finite element
simulations of creep in structures with stress concentrations or in attempts to predict
the creep crack growth (Liu and Murakami 1998; Saanouni et al. 1989).

The uni-axial creep tests are usually performed under increased stress and tem-
perature levels in order to accelerate the creep process. For the long term analysis
of structures the material model should be able to predict creep rates for wide stress
ranges including moderate and small stresses. Within the materials science many
different damage mechanisms which may operate depending on the stress level and
the temperature are discussed, e.g., Dyson (1992). Each of the damage mechanisms
can be considered by a state variable with an appropriate kinetic equation.

Within the so-called mechanism-based approach the internal state variables are
introduced according to those creep and damage mechanisms which dominate for
a specific material and specific loading conditions. Furthermore, different functions
of stress and temperature proposed in materials science can be utilized. The form
and the validity frame of such a function depend on many factors including the
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stress and temperature levels, type of alloying, grain size, etc. The materials science
formulations do not provide the values of material constants (only the bounds are
given). They must be identified from the data of standard tests, e.g. uni-axial creep
test. Examples of mechanism-based models can be found in Hayhurst (1994, 1999),
Kowalewski et al. (1994), Othman et al. (1994), Perrin and Hayhurst (1994), Nau-
menko et al. (2011a, b), Naumenko and Gariboldi (2014). Here let us discuss the
model proposed by Perrin and Hayhurst (1994) for a 0.5Cr-0.5Mo-0.25V ferritic
steel in the temperature range 600–675 ◦C.

The starting point is the assumption that the rate of the local grain boundary
deformation is approximately a constant fraction of the overall deformation rate.
From this follows that the constitutive equations for the overall creep rate can be
formulated in terms of empirical relationships between the local grain boundary
deformation rate and the stress, the temperature, the cavitation rate, etc.

For ferritic steels the nucleation of cavities has been observed at carbide particles
on grain boundaries due to the local accumulation of dislocations. The nucleation
kinetics can be therefore related to the local deformation. Furthermore, the cavity
nucleation depends on the stress state characterized byσI /σvM.Cane (1981) observed
that the area fraction of intergranular cavities in the plane normal to the applied
stress increases uniformly with the accumulated creep strain. He proposed that the
nucleation and growth can be combined into an overall measure of cavitation. The
cavitated area fraction Af can be related to the von Mises equivalent creep strain, the
von Mises equivalent stress and the maximum principal stress by the equation

Af = DεvM

(
σI

σvM

)μ

, (5.7.295)

where D and μ are constants depending on the material microstructure. Perrin and
Hayhurst define the damage state variableω as the cavitated area fraction. The failure
condition in a uni-axial creep test is the complete cavitation of all grain boundaries
normal to the applied stress. The cavitated area fraction at failure is approximately
1/3. Therefore, the critical state at which the material fails, can be characterized by
ω∗ = 1/3.

The ageing mechanism for the ferritic steel under consideration is the temperature
dependent coarsening of carbide precipitates. First, the carbide precipitates restrict
the deformation of the grain interior and second, they provide sites for nucleation
of cavities. Following Dyson (1992), the particle coarsening can be characterized
by the state variable φ = 1 − li/ l related to the initial (li ) and current (l) spacing
of precipitates. The kinetic equation is derived from the coarsening theory (Dyson
1992; Dyson and McLean 1998), see Sect. 3.5.4

φ̇ =
(

Kc

3

)
(1 − φ)4 (5.7.296)

http://dx.doi.org/10.1007/978-3-319-31629-1_3
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with Kc as the material dependent constant for a given temperature. The rate of the
coarsening variable is independent from the applied stress and can be integrated with
respect to time.

The primary creep is characterized by the work hardening due to the formation
of the dislocation substructure. For this purpose a scalar hardening state variable H
is introduced. This variable varies from zero to a saturation value H∗, at which no
further hardening takes place. The proposed evolution equation is

Ḣ = hcε̇
pl
vM

σvM

(
1 − H

H∗

)
(5.7.297)

with hc as the material constant.
The creep rate is controlled by the climb plus glide deformation mechanism. For

the stress dependence of the creep rate, the hyperbolic sine stress function is used.
The materials science arguments for the use of hyperbolic sine function instead
of power law function are discussed, for example, by Dyson and McLean (2001).
With the assumed mechanisms of hardening, cavitation and ageing as well as the
corresponding state variables the following equation for the von Mises creep rate is
proposed

ε̇
pl
vM = A sinh

BσvM(1 − H)

(1 − φ)(1 − ω)
(5.7.298)

Equations (5.7.295)–(5.7.298) are formulated under assumption of constant temper-
ature. The influence of the temperature on the processes of creep deformation, creep
cavitation and coarsening can be expressed by Arrhenius functions with appropriate
activation energies. Further details of the physical motivation are discussed in Perrin
and Hayhurst (1994). The following set of constitutive and evolution equations has
been proposed

ε̇εεpl = 3

2

sss

σvM
A sinh

BσvM(1 − H)

(1 − φ)(1 − ω)
,

Ḣ = hcε̇
pl
vM

σvM

(
1 − H

H∗

)
,

φ̇ =
(

Kc

3

)
(1 − φ)4,

ω̇ = DN ε̇
pl
vM

(
σI

σvM

)υ

,

A = A0B exp

(
− Q A

RT

)
, B = B0 exp

(
− Q B

RT

)
,

Kc = Kc0

B3
exp

(
− QKc

RT

)
, D = D0 exp

(
− Q D

RT

)
,

(5.7.299)
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where N = 1 forσI > 0 and N = 0 for σI ≤ 0. A0, B0, D0, Kc0 , hc, H∗, Q A, Q B , Q D

and QKc are material constants which must be identified from uni-axial creep tests.
The material property υ, the so-called stress state index, can be determined from
multi-axial creep rupture data. These constants are identified in Perrin and Hayhurst
(1994) based on the experimental data of uni-axial creep over the stress range of
28–110 MPa and over the temperature range of 615–690 ◦C. In Perrin and Hayhurst
(1999) Eqs. (5.7.299) are applied to model creep in different zones of a weldment at
640◦C including the weld metal, the heat-affected zone and the parent material.

It should be noted that Eqs. (5.7.299) are specific for the considered material
and can only be applied with respect to the dominant mechanisms of the creep
deformation and damage evolution. Further examples of mechanism based material
models are presented in Othman et al. (1993) for a nickel-based super-alloy and in
Kowalewski et al. (1994) for an aluminium alloy.

5.7.1.4 Models Based on Dissipation

Sosnin (1974), Sosnin et al. (1986) proposed to characterize the material damage by
the specific dissipation work. The following damage variable has been introduced

q =
t∫

0

σ ε̇pldτ (5.7.300)

For the variable q the evolution equation was postulated

q̇ = fσ (σ ) fT (T ) fq(q)

For the multi-axial stress state this variable is defined as follows

q =
t∫

0

σσσ ······ ε̇εεpldτ

In Sosnin et al. (1986) experimental data for various titanium and aluminium alloys
are presented in a form of q versus time curves. It was established that a critical value
q∗ exists at which the material fails under creep conditions. The value q∗ does not
depend on the kind of the applied stress state.

For isotropic materials the creep rate equation can be formulated as follows (see
Sect. 5.4.2)

ε̇εεpl = 3

2

P

σvM
sss, P = σσσ ······ ε̇εεpl = σvMε̇

pl
vM (5.7.301)
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Sosnin assumed the dissipation power P to be a function of the vonMises equivalent
stress, the temperature and the internal state variable q as follows

q̇ ≡ P = fσ (σvM) fT (T ) fq(q)

The following empirical equation provides a satisfactory agreement with experimen-
tal results

q̇ = bσ n
vM

qk(qk+1∗ − qk+1)m
, (5.7.302)

where b, n, k, m and q∗ are material constants. In Sosnin et al. (1986) experimental
data obtained from uni-axial tests and tests on tubular specimens under combined
tension and torsion are presented. In particular the results of combined tension and
torsion tests show that the q versus t curves do not depend on the kind of the stress
state. The material constants are identified for titanium alloys OT-4, BT-5 and BT-9,
for the aluminium alloy D16T and for the steel 45. In Altenbach and Zolochevsky
(1994) the Sosnin’s dissipation damage measure is applied to the description of
creep-damage of the titanium alloy OT-4 and the aluminium alloy D16T considering
stress state effects. In Zyczkowski (2000) the dissipation power P was calculated
starting from the Kachanov-Rabotnov constitutive equation (5.7.281). It was found
that for a class of materials it is possible to express the damage evolution equation
(5.7.282) in terms of the dissipation power. A conclusion was made that the number
of material constants to be determined from creep tests can be significantly reduced
if applying a dissipation based damage model.

5.7.2 Damage-Induced Anisotropy

For many metals and alloys the dominant damage mechanism is the nucleation
and growth of cavities and formation of micro-cracks. Cavities nucleate on grain
boundaries having different orientations. At the final stages of deformation before
creep rupture the coalescence of cavities and the formation of oriented micro-cracks
is observed. The preferential direction of micro-cracks depends on the material
microstructure and on the kind of the applied stress. For example, micrographs of
copper specimens tested under torsion show that the micro-cracks dominantly occur
on the grain boundaries whose normals coincide with the direction of the maxi-
mum positive principal stress (Hayhurst 1999; Hayhurst and Leckie 1990; Morishita
and Hirao 1997). The strongly oriented micro-cracks may induce anisotropic creep
responses, in particular, at the last stage of the creep process. Creep behavior of the
austenitic steel X8 CrNiMoNb 1616 and the ferritic steel 13 CrMo 4 4 is experimen-
tally studied in Betten et al. (1995), El-Magd et al. (1996) with respect to different
loading orientations. Figure5.12 schematically presents the results of testing. Uni-
axial creep tests were carried out on flat specimens at different stress and temperature
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(a) (b)

Fig. 5.12 Uni-axial creep tests with different orientations of the loading direction. a Creep curve
for a flat specimen and creep curves for small specimens after different prestraining, b creep curves
for different loading directions after pre-straining of 0.75εpl∗ (Betten et al. 1995; El-Magd et al.
1996)

levels. In order to establish the influence of the creep history (pre-loading and pre-
damage), series of flat specimenswere tested up to different values of the creep strain.
The values of the creep pre-straining were εpl = 0.25εpl∗ ; 0.5εpl∗ ; 0.75εpl∗ , where ε

pl
∗

is the creep strain at fracture. After unloading, small specimens were manufactured
from the pre-strained flat specimens with different orientation to the loading axis,
Fig. 5.12b. The uni-axial tests performed on the small specimens show that the creep
responses depend on the angle of the orientation θ . In El-Magd et al. (1996) it is
demonstrated that for small specimens pre-strained up to 0.25εpl∗ the creep response
is not sensitive to the angle θ . The significant dependence of the creep curves and
the fracture times on the angle θ has been observed for specimens pre-strained up to
0.75εpl∗ .

In Murakami and Sanomura (1985) creep tests were carried out on thin-walled
copper tubes under combined tension and torsion. The loading history and the creep
responses are schematically presented in Fig. 1.27. During the first cycle the speci-
mens were preloaded by constant normal and shear stresses within the time interval
[0, t1]. In the second cycle from t1 up to creep rupture the specimens were loaded
under the same constant normal stress but the reversed constant shear stress. The
stress state after the reversal is characterized by the change of the principal direc-
tions. The angle between the first principal direction in the reference loading cycle
and after the reversal can be controlled by the values of the normal and the shear
stresses. Creep curves for different angles are presented in Murakami and Sanomura
(1985). It is demonstrated that the creep-damage model with a scalar damage para-
meter is not able to predict the creep behavior after the shear stress reversal. In
particular, the fracture time is underestimated in all loading cases. Similar results are
discussed in Murakami et al. (1986) based on tests on Nimonic 80A.

http://dx.doi.org/10.1007/978-3-319-31629-1_1
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The introduced examples of experimental observations indicate that the creep rate
and the lifetime of a specimen additionally depend on the orientation ofmicro-defects
with respect to the principal axes of the stress tensor. One way to consider such a
dependence is the use of a tensor-valued damage parameter. A second rank damage
tensor was firstly introduced by Vakulenko and Kachanov (1971) for the description
of elastic-brittle damage. The first attempt to use a tensor-valued damage parameter
in creep mechanics is due to Murakami and Ohno (Murakami 1983; Murakami and
Ohno 1981). They considered a characteristic volume V in the material having N
wedge cracks and specified the area of the grain boundary occupied by the kth crack
by dAk

g. They assumed that the state of damage can be characterized by the following
second rank symmetric tensor

ΩΩΩ = 3

Ag(V )

N∑
k=1

∫
V

[mmmk ⊗ mmmk + wk(III − mmmk ⊗ mmmk)]dAk
g, (5.7.303)

where mmmk is the unit normal vector to the kth crack and Ag(V ) is the total area of
all grain boundaries in V . wk characterizes the effect of the kth crack on the area
reduction in the planes whose normals are perpendicular tommmk . Specifying the three
principal values ofΩΩΩ byΩ j , j = 1, 2, 3, and the corresponding principal directions
by the unit vectors nnn j the damage tensor can be formulated in the spectral form

ΩΩΩ =
3∑

j=1

Ω jnnn j ⊗ nnn j (5.7.304)

The principal values of the damage tensor Ω j are related to the cavity area frac-
tions in three orthogonal planes with the unit normals ±nnn j . The cases Ω j = 0 and
Ω j = 1 correspond to the undamaged state and the creep-rupture in the j th plane,
respectively. By analogy with the uni-axial bar (see Fig. 3.7) Murakami and Ohno
introduced a fictitious undamaged configuration in a solid by means of effective
infinitesimal area elements. From three orthogonal planes having the unit normals
−nnn j an infinitesimal tetrahedron is constructed with area elements −ñnnid Ãi and ñnnd Ã
so that

ñnnd Ã =
3∑

j=1

nnn jd Ã j =
3∑

j=1

(1 − Ω j )nnn jdA j (5.7.305)

With Ω jnnn j = nnn j ···ΩΩΩ = ΩΩΩ ··· nnn j

ñnnd Ã = (III −ΩΩΩ) ··· nnn dA (5.7.306)

http://dx.doi.org/10.1007/978-3-319-31629-1_3
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The stress vector acting in the plane with the unit normal nnn can be specified by σσσ (nnn).
The resultant force vector acting in the plane dA is

dAσσσ (nnn) = dAnnn ··· σσσ = d Ãñnn ··· (III −ΩΩΩ)−1 ··· σσσ = d Ãñnn ··· σ̃σσ , σ̃σσ ≡ (III −ΩΩΩ)−1 ··· σσσ ,

(5.7.307)

where σ̃σσ is the effective stress tensor. Introducing the so-called damage effect tensor
ΦΦΦ ≡ (III −ΩΩΩ)−1 one can write

σ̃σσ = ΦΦΦ ··· σσσ (5.7.308)

According to the strain equivalence principle (Lemaitre and Chaboche 1990), the
constitutive equation for the virgin material, for example the constitutive equation
for the secondary creep, can be generalized to the damaged material replacing the
Cauchy stress tensor σσσ by the net-stress tensor σ̃σσ . The net stress tensor (5.7.308) is
non-symmetric. Introducing the symmetric part

σ̃σσ
s = 1

2
(σσσ ···ΦΦΦ +ΦΦΦ ··· σσσ) (5.7.309)

the secondary creep equation is generalized as follows (Murakami et al. 1986)

ε̇εεpl = 3

2
aσ̃ n−1

vM s̃sss
, s̃sss = σ̃σσ

s − 1

3
trσ̃σσ s III , σ̃vM =

√
3

2
s̃sss ············ s̃sss (5.7.310)

The rate of the damage tensor is postulated as a function of the stress tensor and the
current damage state. The following evolution equation is proposed in Murakami
and Sanomura (1985) for the description of creep damage of copper

Ω̇ΩΩ = b[ασ̃ s
I + (1 − α)σ̃ s

vM]k(nnnσ̃σσ
I ···ΦΦΦ ··· nnnσ̃σσ

I )
lnnnσ̃σσ

I ⊗ nnnσ̃σσ
I , (5.7.311)

where b, α, k and l are material constants and the unit vector nnnσ̃σσ
I denotes the direction

corresponding to the first positive principal stress σ̃I . The constitutive and evolution
equations (5.7.310) and (5.7.311) have been applied inMurakami et al. (1986) for the
description of creep-damage behavior of Nimonic 80A. The second rank damage ten-
sor (5.7.304) and the net stress (5.7.309) have been used in Murakami and Sanomura
(1985) with McVetty-type creep equations for the prediction of creep-damage of
copper. The results suggest that the model with the damage tensor provides better
agreement with experimental data if compared to the model with a scalar-valued
damage parameter. In Murakami and Ohno (1981) the following damage evolution
equation is utilized

Ω̇ΩΩ = b[ασ̃ s
I + βσ̃m + (1 − α − β)σ̃ s

vM]k(tr ΦΦΦ2)l/2
[
ηIII + (1 − η)nnnσ̃σσ

I ⊗ nnnσ̃σσ
I

]
,

(5.7.312)
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where β and η are material constants. This equation takes into account the influence
of the mean stressSSMean stress on the damage rate. Furthermore, the isotropic part
of the damage tensor associated with the growth of voids is included.

To discuss the damage tensor (5.7.304) let us consider a uni-axial homogeneous
stress state σσσ = σ0mmm ⊗ mmm with σ0 > 0 and mmm = const. Let us specifyΩΩΩ = 000 as the
initial condition. The evolution equation (5.7.311) takes the form

Ω̇ΩΩ(t) = ω̇(t)mmm ⊗ mmm, ω̇ = bσ k
0

(1 − ω)k+l
, ω(0) = 0 (5.7.313)

The equation for the scalar ω can be integrated as shown in Sect. 3.6.1. As a result
one can find the relation between the time to fracture and the stress σ0. Based on
this relation and experimental data one can estimate the values of material constants
b, k and l (Sect. 3.6.1). According to the introduced damage measure (5.7.304) the
damage stateΩΩΩ = ωmmm ⊗ mmm corresponds to the case of uniformly distributed penny-
shaped cracks (circular planes) with the unit normals mmm.

Now let us assume that the damage stateΩΩΩ = ω0mmm ⊗ mmm, 0 < ω0 < 1 is induced
as a result of the constant stress σσσ = σ0mmm ⊗ mmm exerted over a period of time [0, t1]
and in the next loading cycle the stress σσσ = σ0ppp ⊗ ppp, ppp ··· mmm = 0 is applied. In this
case the solution of (5.7.311) can be written down as follows

ΩΩΩ(t) = ω0mmm ⊗ mmm + ω1(t)ppp ⊗ ppp, ω̇1 = bσ k
0

(1 − ω1)k+l
, ω1(0) = 0 (5.7.314)

Equation (5.7.314) predicts that in the second cycle the material behaves like a virgin
material. Then the total time to fracture can be calculated as follows

t∗ = t1 + 1

(k + l + 1)bσ k
0

We observe that t∗ does not depend on the damage value ω0 induced during the first
loading cycle. The rate of nucleation and growth of new voids (cracks) on the planes
orthogonal to ppp will not be affected by cracks formed in the first loading cycle.
Furthermore, if a compressive stress, i.e., σσσ = −σ0ppp ⊗ ppp is applied in the second
cycle the model predicts no damage accumulation.

Let us note that the evolution equations (5.7.311) and (5.7.312) can only be applied
if σ̃I �= 0, σ̃I �= σ̃I I and σ̃I �= σ̃I I I . In this case the dyad nnnσ̃σσ

I ⊗ nnnσ̃σσ
I can be found from

the identity (5.7.294). For the stress statesσσσ = a0III orσσσ = appp ⊗ ppp + b(III − ppp ⊗ ppp),
a < b, there is an infinite number of first principal directions. Such stress states
are typical for engineering structural components. For example, the stress state
of the type σσσ = appp ⊗ ppp + b(III − ppp ⊗ ppp) arises in the midpoint of a transversely
loaded square plate with all for edges to be fixed (e.g. supported or clamped edges),
(Altenbach et al. 2002). In the loaded (top) surface of such a plate b < a < 0 while
in the bottom surface b > a, a < 0, b > 0. Stress states of the same type arise in dif-
ferent rotationally symmetric problems of structural mechanics. For analysis of such

http://dx.doi.org/10.1007/978-3-319-31629-1_3
http://dx.doi.org/10.1007/978-3-319-31629-1_3
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problems amodified form of the evolution equation (5.7.312) is required (Ganczarski
and Skrzypek 2001).

Various forms of creep-damage constitutive equations with second rank damage
tensors have been utilized. In Altenbach et al. (2001a) the effective stress tensor

σ̃σσ = ΦΦΦ1/2 ··· σσσ ···ΦΦΦ1/2 (5.7.315)

originally proposed in Cordebois and Sidoroff (1983), is applied to formulate the
creep-damage constitutive equation. Mechanisms of damage activation and deacti-
vation are taken into account. Themodel predictions are comparedwith experimental
data of creep in copper. In Qi (1998), Qi and Bertram (1997, 1998, 1999) a second
rank damage tensor is applied for themodeling of creep of nickel-based single crystal
super-alloys SRR 99 and CMSX-6 at 760◦C. The proposed constitutive equations
take into account both the initial anisotropy and the damage induced anisotropy.

The symmetry group of a symmetric second rank tensor includes at least eight ele-
ments. With the second rank damage tensor and the effective stress tensors (5.7.309)
or (5.7.315) only restrictive forms of orthotropic tertiary creep can be considered
(a similar situation is discussed in Sect. 5.6.2). Therefore in many publications it
is suggested to introduce higher order damage tensors. For different definitions of
damage tensors one may consult Altenbach et al. (1990), Altenbach and Blume-
nauer (1989), Betten (1993), Krajcinovic (1996), Lemaitre (1996), Skrzypek and
Ganczarski (1998), Lemaitre and Desmorat (2005), Murakami (2012). A critical
review is given in Schiesse (1994). Usually, the available experimental data on creep
responses is not enough to verify whether the orthotropic symmetry is an appropri-
ate symmetry assumption for the modeling of anisotropic creep-damage processes.
From the micro-structural point of view one may imagine rather complex three-
dimensional patterns of voids and cracks which nucleate and propagate as the result
of multi-axial non-proportional loadings. An attempt to predict these patterns would
result in a complexmathematicalmodelwith a large (or even infinite) number of inter-
nal variables including tensors of different rank. A model to characterize different
patterns of cracks may be based on the orientation distribution function, orienta-
tion averaging and the so-called orientation tensors. This approach is widely used
in different branches of physics and materials science for the statistical modeling
of oriented micro-structures. Examples include fiber suspensions (Leal and Hinch
1973), mixtures (Faria 2001), polymers and polymer composites (Altenbach et al.
2003a; Tamuzh and Kuksenko 1978; Kröner et al. 2009). The application of orienta-
tional averaging to characterize damage states under creep conditions is discussed in
Morishita and Hirao (1997), Onat and Leckie (1988), Stamm and von Estroff (1993).

Let us note, that the material behavior at high temperature and non-proportional
loading is accompanied by a complex interaction of different deformation and dam-
age mechanisms such as hardening, recovery, softening, creep-damage, fatigue-
damage, etc. Several unified models utilize constitutive equations of creep with
kinematic and/or isotropic hardening and include damage effects by means of
the effective stress concept and the strain equivalence principle. In Kawai (1996)
the Malinin-Khadjinsky kinematic hardening rule, see Sect. 5.6.2 and isotropic
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Kachanov-Rabotnov type damage variable are discussed. The damage rate is addi-
tionally governed by the magnitude of the hardening variable, so that the coupling
effect of damage and strain hardening/softening can be taken into account. It is
shown that the kinematic hardening coupled with isotropic damage predicts well the
effect of longer life-time after the stress reversal. In Dunne and Hayhurst (1992) the
Chaboche-Rousselier visco-plasticitymodel ismodified to predict the coupled creep-
plasticity-damage behavior. The scalar damage variable is introduced as a sum of the
accumulated time-dependent and cycle-dependent components. Various approaches
to formulate a unified material model within the framework of continuum damage
mechanics and thermodynamics of dissipative processes are discussed in Chaboche
(1988a, b), Chaboche (1999), Lemaitre and Chaboche (1990), Kostenko et al. (2013),
Altenbach et al. (2013), Naumenko et al. (2011b).

The verification of a unified model with non-linear anisotropic hardening and
damage coupling requires a large number of independent tests under non-proportional
loading. As a rule, accurate experimental data are rarely available. Furthermore, non-
uniform stress and strain fields may be generated in a standard uni-axial specimen
under non-proportional cyclic loading conditions Lin et al. (1999). They may be the
reason for the large scatter of experimental data and misleading interpretations.
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Chapter 6
Examples of Constitutive Equations
for Various Materials

In Chaps. 3 and 5 various constitutive equations to characterize behavior of materials
at high temperature are presented. These equations include a number of material
dependent parameters like Young’s modulus, creep exponent, hardening modulus
etc., to be identified from experimental data. Furthermore functions of stress, strain
rate and temperature (sometimes called response functions) are unknown in advance
and should be formulated according to available experimental data for given ranges
of loading and specific material.

This chapter presents several examples of constitutive equations, response func-
tions of stress and temperature aswell asmaterial parameters for selected engineering
materials. In order to find a set of material parameters, uni-axial tests under constant
temperature leading to homogeneous stress and deformation states are required. The
majority of available experimental data is presented as tensile curves (stress-strain
curves) and creep curves (creep strain vs. time curves) obtained from standard uni-
axial tests. Based on such curves the response functions and material parameters are
identified.

Section6.1 provides an overview of approaches to calibrate constitutive mod-
els against experimental data of high-temperature material behavior. In Sect. 6.2
constitutive equations of isotropic high-temperature plasticity of several alloys are
presented. The objective of Sect. 6.3 is to discuss anisotropic inelastic behavior. Two
examples of initially anisotropic materials including a forged aluminium alloy and
a multi-pass weld metal from an advanced steel are presented.

6.1 Basic Approaches of Identification

The problem to identify the material parameters (also known as the inverse problem)
can be solved with the following steps
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• Formulate the functional with respect to the unknown material parameters by the
use of the (weighted) least squares method,

• Minimize the functional by specifying appropriate guess for the material parame-
ters.

For simplified constitutive equations, e.g. power law creep or deformation plasticity,
the above steps are enough to fit the deformation response with a desired accuracy.
Various examples for applications of least square methods to compute material para-
meters in constitutive equations of creep are presented in Boyle and Spence (1983).
Mathematical and numerical aspects of identification procedures are discussed in
Mahnken and Stein (1996, 1997), among others.

In contrast, the identification of material properties in unified constitutive models
to capture several phenomena of inelastic deformation like hardening/recovery, soft-
ening and damage under different loading paths can be ill-posed for the following
reasons

• The unified model should be calibrated for wide strain rate, stress and temperature
ranges to capture both creep and LCF regimes. For example, for cast ironmaterials
the inelastic strain rate ranges from 10−7 to 10 1/h (Längler et al. 2014). There-
fore, not only the material parameters but also functions of strain rate, stress and
temperature are unknown in advance and should be found during the identification
process,

• The resolution of experimental data is usually not fine enough to perform a stable
minimization. For example, inelastic strain rates at the beginning of the creep
process after the loading are usually not well defined,

• Experimental data may show a large scatter generated by testing a series of spec-
imens removed from the same material. The origins of scatter in creep tests are
discussed, for example, in Dyson (1996),

• Inelastic behaviormay significantly dependon thekindof processingof specimens,
e.g. the heat treatment. As a result, different data sets for the material with the
same chemical composition may be found in the literature. For example, one may
compare experimental data for 9Cr1Mo (P91) ferritic steel obtained in different
laboratories (Abe 2001; Choudhary et al. 2001; Eggeler et al. 1994; Kloc et al.
2001; Orlová et al. 1998; Wu et al. 2004).

An alternative approach is to develop a step-by-step identification procedure. For
example, one may develop the identification procedure based on the following steps

• Experimental creep curves (creep strain versus time curves) are smoothed and
transformed to the creep rate versus creep strain curves,

• Initial and minimum inelastic strain rates as functions of stress and temperature
are processed from experimental data for creep and tensile regimes,

• Response functions of stress and temperature are identified from experimental data
on initial and steady strain rates,

• Evolution equations for softening, ageing and damage are calibrated against exper-
imental creep rate versus creep strain curves within the tertiary creep range
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Step-by-step identification procedures are presented in Samir et al. (2005), Kostenko
et al. (2006, 2009a), Längler et al. (2014), Naumenko and Gariboldi (2014), among
others. An example will be presented in Sect. 6.2.3.

6.2 Isotropic Materials

In this section examples of constitutive equations for isotropic high-temperature
behavior of several alloys are presented. Sections 6.2.1 and 6.2.2 provide simplified
creep-damage constitutive equations. Here the hardening processes are ignored and
the tertiary creep is described by a single damage variable. In Sects. 6.2.3 and 6.2.4
mechanisms-based models are discussed in detail. Examples of evolution equations
for hardening/recovery, softening and ageing are presented. In all examples response
functions of stress and temperature as well as values of material parameters are
presented.

6.2.1 Type 316 Steel

Thefirst example is type 316 stainless steel at 650 ◦C. InLiu et al. (1994) the following
creep equations are applied

ε̇εεpl = 3

2
f1(σvM)g1(ω)

sss

σvM
, ω̇ = f2

[
σω
eq(σσσ)

]
g2(ω),

εεεpl|t=0 = 000, ω|t=0 = 0, 0 ≤ ω ≤ ω∗,

sss = σσσ − 1

3
tr σσσ III , σvM =

√
3

2
sss······sss

(6.2.1)

Here εεεpl is the creep strain tensor,σσσ is the stress tensor,ω is the scalar-valued damage
parameter and σω

eq is the damage equivalent stress (see Sect. 5.7.1.1). The response
functions f1, f2, g1, and g2 are

f1(σ ) = aσ n, g1(ω) = (1 − ω)−n,

f2(σ ) = bσ k, g2(ω) = (1 − ω)−k (6.2.2)

The material parameters are presented in Liu et al. (1994) as follows

a = 2.13 · 10−13 MPa−n/h, b = 9.1 · 10−10 MPa−k/h,
n = 3.5, k = 2.8

(6.2.3)

Note, that the constants a and b in Eqs. (6.2.2) are identified for the constant tem-
perature. In the general case they must be replaced by functions of temperature. It

http://dx.doi.org/10.1007/978-3-319-31629-1_5
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is assumed that the damage evolution is controlled by the maximum tensile stress.
Therefore the damage equivalent stress takes the form

σω
eq(σσσ) = σI + |σI |

2
,

where σI is the first principal stress. The elastic material behavior is characterized
by the following values of the Young’s modulus E and the Poisson’s ratio ν

E = 1.44 · 105 MPa, ν = 0.314 (6.2.4)

Equations (6.2.1) can be applied for the analysis of creep under constant or pro-
portional slowly varying loading. Response functions and material parameters in
Eqs. (6.2.1) can be found in the literature for numerous metals and alloys. Exam-
ples are presented in the monographs by Boyle and Spence (1983), Lemaitre and
Chaboche (1990),Malinin (1981), Penny andMariott (1995), Podgorny et al. (1984),
Rabotnov (1969), Skrzypek and Ganczarski (1998), Hyde et al. (2013). Experimen-
tal data from long-term creep tests are usually limited and the scatter is unavoid-
able. Therefore, robust equations (6.2.1) are widely used in modeling creep behavior
and in structural analysis. Examples of material parameters as well as structural
mechanics applications can be found in Altenbach et al. (1997b), Altenbach and
Naumenko (1997), Altenbach et al. (2000, 2001), Bodnar and Chrzanowski (1991),
Hayhurst (2001), Hyde et al. (1997, 1999, 2000), Konkin andMorachkovskij (1987),
Kowalewski (1996), among others.

6.2.2 Steel 13CrMo4-5

In Segle et al. (1996) the creep behavior of steel 13CrMo4-5 at 550 ◦C is described
by (6.2.1) with the following response functions

f1(σ ) = aσ n, g1(ω) = 1 − ζ + ζ(1 − ω)−n,

f2(σ ) = bσ k, g2(ω) = (1 − ω)−l (6.2.5)

The material parameters are

a = 1.94 · 10−15 MPa−n/h, b = 3.302 · 10−13 MPa−k/h,
n = 4.354, k = 3.955, l = 1.423, ζ = 0.393

(6.2.6)

The damage equivalent stress is assumed in the form

σω
eq(σσσ) = α

σI + |σI |
2

+ (1 − α)σvM
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with α = 0.43. The Young’ modulus and Poisson’s ratio are E = 1.6 · 105 MPa and
ν = 0.3, respectively. Equations (6.2.1) with response functions (6.2.5) are applied
in Naumenko and Altenbach (2007) for the long-term strength analysis of a steam
transfer line, see also Sect. 1.2.1.2.

6.2.3 Steel X20CrMoV12-1

In this section we present a set of constitutive and evolution equations to describe
the inelastic behavior of advanced 9–12%Cr heat resistant steels. These materials
are designed for the use at steam temperatures up to 650 ◦C (Mayer and Masuyama
2008). If compared to the low alloy steels, they have a rather complex composition
and show complicated inelastic behavior (see Chap. 1). The main features are

• The uni-axial creep curves do not exhibit a secondary (steady-state) stage. The
dependence of the minimum creep rate on the stress essentially deviates from the
power law (Kloc and Sklenička 2004; Kimura et al. 2009; Kostenko et al. 2009a).

• The transition from the primary to the tertiary creep stage is controlled by softening
processes, e.g. the coarsening of the subgrain microstructure (Straub 1995; Polcik
et al. 1998).

• The final part of the tertiary creep is influenced by damage processes, e.g. the
formation and growth of voids and micro-cracks (Straub 1995; Rauch et al. 2004;
Simon 2007).

• The damage and softening processes are more or less dominant for different stress
ranges. As a result the slope of the creep term strength curve (stress versus time
to rupture in a double logarithmic scale) continuously decreases with a decrease
of the stress level (Naumenko and Kostenko 2009).

• The stress-strain curves show descending (softening) branches, Fig. 1.2.

The conventional approach in the creep continuum damagemechanics is to introduce
damage parameter(s) and to calibrate the damage evolution equation(s) against the
tertiary stage of the creep curve. As proposed by Rabotnov (1963) a single damage
parameter can be used to describe tertiary creep and long term strength in the range
of “brittle” creep rupture, see Sect. 3.6.1. On the other hand, the Hoff’s kinematical
model of ductile creep predicts tertiary creep as a result of the shrinkage of the
specimens cross section (Hoff 1953), see Sect. 3.3. The combination of Rabotnov’s
and Hoff’s models provides the two-slope long term strength curve including both
the ductile and the brittle creep regimes (Rabotnov 1963; Odqvist 1974). Further
developments of this approach were related to quantification of different damage
mechanisms, e.g. creep constrained or continuum cavity nucleation and growth (Lin
et al. 2005) as well as processes that accompany and influence the damage evolution,
e.g. the coarsening of carbide precipitates (Dyson and McLean 2001). The resulting
models include several independent internal state variables that account for different
deterioration processes and characterize tertiary creep in a more precise manner
(Hayhurst 1999).

http://dx.doi.org/10.1007/978-3-319-31629-1_1
http://dx.doi.org/10.1007/978-3-319-31629-1_1
http://dx.doi.org/10.1007/978-3-319-31629-1_1
http://dx.doi.org/10.1007/978-3-319-31629-1_3
http://dx.doi.org/10.1007/978-3-319-31629-1_3
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Below we extend the conventional approach by quantifying hardening/recovery,
softening, and damage processes. For the sake of simplicity we introduce a single
damage parameter to characterize creep cavitation. The influence of ageing processes
like coarsening of carbide precipitates will be ignored. We focus on the modeling
of softening associated with the evolution of subgrain structure usually observed
in advanced heat resistant steels. In particular, we show that a combined model
including hardening, softening, and damage variables describes well the inelastic
response under constant and variable loading. Furthermore, such a model allows us
to reproduce the long term strength behavior in a wide stress range.

To describe hardening and softening phenomena we apply a phase mixture model
discussed in Sects. 3.5.3 and 5.6.3. The response functions of stress and temper-
ature as well as material parameters are calibrated against experimental data for
X20CrMoV12-1 steel presented in Straub (1995). Creep tests under tension and com-
pressionwere performed for a rangeof stresses and temperatures. For the compressive
true stress the tertiary creep is primarily determined by the softening processes. Based
on the corresponding creep curves the phase mixture model will be calibrated. For
the tensile stress, additional rapid increase of the creep rate is controlled by damage
evolution. This fact is confirmed by microstructural observations presented in Straub
(1995), where voids and micro-cracks were detected only for tension specimen. To
describe the final part of the creep curve the scalar-valued damage variable and the
damage evolution equation will be utilized.

Toverify the developedmodel, creep curves under stress changeswill be simulated
and the results will be compared with experimental data. To validate the coupled
softening and damage evolution equations time to fracture will be simulated for
different uni-axial stress levels. To discuss the applicability range of the model we
simulate the inelastic behavior under strain controlled tension.

6.2.3.1 Hardening and Softening

The constitutive model for the inelastic deformation considering hardening/recovery
and softening processes is presented in Sect. 5.6.3. The model includes the constitu-
tive equation for the inelastic strain rate tensor (5.6.274), the evolution equation for
the backstress deviator (5.6.273) and the evolution equation for the softening vari-
able (5.6.277). For isothermal conditions the constitutive model can be formulated
as follows

ε̇pl = 3

2
f (σ̄vM)g(T )

s̄ss

σ̄vM
− d

dt

(
βββΓ

2μ

)
,

β̇ = 2μ

ch

(
ε̇pl − 3

2
ε̇
pl
vM

β

β∗

)
,

Γ̇ = As
[
Γ∗(σvM) − Γ

]
ε̇
pl
vM,

(6.2.7)

where the active stress deviator s̄ss and the corresponding von Mises equivalent stress
σ̄vM are defined as follows

http://dx.doi.org/10.1007/978-3-319-31629-1_3
http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
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s̄ss = s − βΓ, σ̄vM =
√
3

2
s̄······s̄ (6.2.8)

The underlined term in Eq. (6.2.7)1 has minor influence on the inelastic strain rates
and can be neglected, as proposed in Naumenko et al. (2011a, b), Kostenko et al.
(2013). For the uni-axial stress state the stress deviator sss and the backstress deviator
βββ take the following forms

sss = σ(eee ⊗ eee − 1

3
III ), βββ = β(eee ⊗ eee − 1

3
III ), (6.2.9)

where σ is the uni-axial stress, β is the uni-axial backstress and the unit vector eee
stands for the loading direction. The constitutive model (6.2.7) takes the following
form

ε̇pl = f (|σ − βΓ |)g(T )
σ − βΓ

|σ − βΓ | ,

β̇ = 3μ

ch

(
ε̇pl − |ε̇pl| β

β∗

)
,

Γ̇ = As
[
Γ∗(|σ |) − Γ

]|ε̇pl|
(6.2.10)

Assuming a constant stress value σ = const and with a new variable H = β/σ0

Eqs. (6.2.10) can be simplified as follows

ε̇pl = f [|σ |(1 − HΓ )]g(T )sgnσ,

Ḣ = 3μ

chσ

(
1 − H

H∗

)
ε̇pl, H∗ = β∗

|σ |
Γ̇ = As

[
Γ∗(|σ |) − Γ

]
ε̇plsgnσ

(6.2.11)

With the initial condition H(0) = 0 the hardening evolution equation in (6.2.11)2
can be integrated leading to

H(σ, εpl) = H∗
[
1 − exp

(
− 3μ

ch H∗
εpl

σ

)]
(6.2.12)

Neglecting the softening, i.e. setting in (6.2.11)3 As = 0 andwith the initial condition
Γ (0) = 1 the creep constitutive equation (6.2.11)1 takes now the form

ε̇pl = f

{
|σ |

[
1 − H∗ + H∗ exp

(
− 3μ

ch H∗
εpl

σ

)]}
g(T )sgnσ (6.2.13)

Equation (6.2.13) describes the primary stage of a creep curve, i.e. the decrease of
the creep rate towards a steady-state value ε̇

pl
ss = f [|σ |(1 − H∗)]g(T )sgnσ with an

increase of the creep strain. Constitutive and evolution Eqs. (6.2.11)1 and (6.2.11)2
withΓ = 1were used inDyson andMcLean (2001),Kowalewski et al. (1994), Perrin
andHayhurst (1994) to describe primary creep of variousmaterials, see Sects. 5.7.1.3

http://dx.doi.org/10.1007/978-3-319-31629-1_5
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and 6.2.4. We observe, that Eqs. (6.2.11)1 and (6.2.11)2 are only applicable for the
constant stress value.

For the constant stress value σ and with the initial condition Γ (0) = 1 the
softening evolution equation (6.2.11)3 can be integrated providing the softening
variable as the following function of stress and inelastic strain

Γ (σ, εpl) = Γ∗(|σ |) + [1 − Γ∗(|σ |)] exp(−Asε
plsgnσ) (6.2.14)

With Eqs. (6.2.12) and (6.2.14) the inelastic strain rate (6.2.10)1 is the function of
the inelastic strain and the applied stress.

Figure6.1 shows the experimental data for X20CrMoV12-1 steel at 873K pre-
sented in Straub (1995). Creep tests were performed under constant compressive
true stress. From the absolute strain values the creep rate was evaluated and plotted
against the logarithmic creep strain. The resulting creep rate versus creep strain curves
clearly show the hardening and softening regimes, Fig. 6.1. The experimental data
is used to identify the material parameters and response functions in Eqs. (6.2.10)1,
(6.2.12) and (6.2.14). To calibrate a constitutive model a family of creep curves in
wide stress and temperature ranges is usually required. Creep curves presented in
Fig. 6.1 are given for one temperature level and for a narrow stress range. Therefore
additional experimental data onminimum creep rates is applied for the identification.
Figure6.1 shows the minimum creep rate as a function of stress for three temperature
levels. The experimental data is collected by Straub (1995) from several publications
and based on own creep tests. To fit the data various response functions of stress and
temperature, which are more or less physically motivated, can be applied. Overviews
are presented in Sect. 5.4.4. One example is the hyperbolic sine law

Fig. 6.1 Normalized creep rate versus creep strain curves for X20CrMoV12-1 steel at 873K and
different stress levels

http://dx.doi.org/10.1007/978-3-319-31629-1_5
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ε̇min = g(T ) sinh(Bσ), (6.2.15)

where B is a constant and g(T ) is the Arrhenius function of the absolute temperature
T . Equation (6.2.15) is applied in Dyson and McLean (2001), Kowalewski et al.
(1994), Perrin and Hayhurst (1994). Another way is to assume that the minimum
creep rate is the sum of the linear and the power law stress functions. As pointed
out in Frost and Ashby (1982) power law and diffusion creep mechanisms involve
different defects and may be assumed independent such that the corresponding creep
rates add. The constitutive equation can be formulated as follows

ε̇min = ε̇0(T )
σ

σ0(T )
+ ε̇0(T )

(
σ

σ0(T )

)n

, (6.2.16)

where n is a constant and ε̇0(T ), σ0(T ) are Arrhenius functions of the temperature.
The response function (6.2.16) is applied in Kloc and Sklenička (2004), Rieth et al.
(2004), Naumenko and Kostenko (2009), Naumenko et al. (2009) to describe the
minimum creep rate for various advanced steels. The results of fitting by the use
of Eqs. (6.2.15) and (6.2.16) are presented in Fig. 6.2. In what follows let us apply
the hyperbolic sine law. The identified response functions in Eqs. (6.2.10) can be
summarized as follows

f (x) = sinh (Bx) , g(T ) = a0 exp
(
− α

T

)
,

Γ∗ (x) = aΓ

1 + bΓ e− x
cΓ

, β∗ (x) = H∗x
(6.2.17)

Fig. 6.2 Minimum creep rate versus stress curves for X20CrMoV12-1 steel at three temperature
levels
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with B = 7.74 · 10−2 1/MPa, a0 = 4.64 · 10231/h, α = 6.12 · 1041/K, aΓ = 0.42,
bΓ = 9.12 · 106, cΓ = 9.46 MPa, H∗ = 0.46. The additional material parameters in
Eqs. (6.2.10) are identified as ch = 8.84 and As = 7.21. The Young’s modulus E and
the shear modulus μ are functions of temperature. The corresponding temperature
dependencies are given in Straub (1995) as follows

E(T ) = −aE + bE T, μ(T ) = −aμ + bμT (6.2.18)

with
aE = 95.597 MPa/K, bE = 252334.26 MPa,

aμ = 38.773 MPa/K, bμ = 97398.16 MPa

6.2.3.2 Damage Processes and Creep Strength

Damage processes are usually associated with nucleation, growth and coalescence of
voids on grain or subgrain boundaries as well as nucleation of voids and microcracks
around carbide precipitates. For low-alloy steels the damage evolution equations
are usually calibrated against the tertiary stage of the creep curve. For advanced
steels the essential part of the tertiary creep is related to softening processes (e.g.
coarsening of subgrain structure) as documented in Polcik et al. (1999), Kimura
(2006), Kostenko and Naumenko (2008), see also Fig. 1.9. For 9%Cr steels the voids
on former austenite grain boundaries and/or carbides can be observed after prolonged
test durations and essentially higher values of the creep strain if compared to the low
alloy steels, e.g. Rauch et al. (2004), Maile and Scheck (2008). Let us describe the
uni-axial creep curves for X20CrMoV12-1 steel presented in Straub (1995). To this
end we introduce the Kachanov-Rabotnov damage parameter (Rabotnov 1963) and
apply the strain equivalence principle as proposed in Lemaitre and Chaboche (1990),
see Sects. 3.6.1 and 5.7.1.1. The constitutive equation (6.2.10)1 can be modified as
follows

ε̇pl = f

( |σ − βΓ |
1 − ω

)
σ − βΓ

|σ − βΓ | (6.2.19)

For the damage parameter ω the evolution (3.6.135) equation is applied

ω̇ = hω(ω)
1 + sgnσ

2

|ε̇pl|
ε
pl
∗ (|σ |) , (6.2.20)

where hω(ω) and ε
pl
∗ (|σ |) are response functions. Figure6.3 shows creep curves for

X20CrMoV12-1 steel obtained from tension tests under constant true stress levels.
For the comparison the creep curves under compression for the same stress levels
are presented. The results of metallographic analysis presented in Straub (1995)
show that the increase in the creep rate under tension is primarily connected with
the nucleation and growth of voids. Therefore the continuum damage mechanics can
be applied to describe the whole creep process including the final part before the

http://dx.doi.org/10.1007/978-3-319-31629-1_1
http://dx.doi.org/10.1007/978-3-319-31629-1_3
http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_3
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Fig. 6.3 Normalized creep rate versus creep strain curves for X20CrMoV12-1 steel at 873K and
different stress levels

fracture. Let us summarize all constitutive and evolution equations for the uni-axial
stress state as follows

ε̇pl = f (|σ − βΓ |)g(T )
σ − βΓ

|σ − βΓ | ,

β̇ = 3μ

ch

(
ε̇pl − |ε̇pl| β

β∗

)
, (6.2.21)

Γ̇ = As
[
Γ∗(|σ |) − Γ

]|ε̇pl|,
ω̇ = hω(ω)

1 + sgnσ

2

|ε̇pl|
ε
pl
∗ (|σ |) ,

The response functions in the damage evolution equation are identified as follows

hω(ω) = lω
l−1

l , εpl∗ (|σ |) = εbr + aε

1 + bε exp
(
−|σ |

cε

) (6.2.22)

with l = 8, εbr = 0.09, aε = 0.2, bε = 8.39 · 105, cε = 12.67 MPa.
Numerical integration of Eqs. (6.2.21) over time provides the relation between

the applied stress and the time to rupture. Figure6.4 shows the results of integration
according to three different model assumptions. The model of ductile creep rupture
proposed by Hoff (1953) ignores softening and damage processes. The the tertiary
creep stage is the result of the specimens cross section shrinkage only, see Sect. 3.4.
This approach provides a rough estimation of the time to creep rupture, Fig. 6.4. If
softening processes are taken into account then the long term strength curve shifts

http://dx.doi.org/10.1007/978-3-319-31629-1_3
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Fig. 6.4 Engineering stress versus time to rupture for X20CrMoV12-1 steel at 873 K

down along the stress axis. Furthermore, a sigmoidal inflection of the creep strength
curve can be observed, Fig. 6.4. Such sigmoidal inflection is documented in many
experimental studies related to advanced 9–12%Cr steels (Abe 2004; Kimura et al.
1997; Sklenička et al. 2003).

If we consider both the softening and the damage processes an additional decrease
of the slope of the long term strength curve can be described. Let us note that hard-
ening, softening and damage evolution equations are calibrated against the creep
curves in a narrow stress range (identification range). To check the quality of life-
time prediction in the wide stress range let us compare the results with experimental
data plotted by dots in Fig. 6.4 after Gandy (2006). Despite a relatively large scatter
of the data, we may conclude that the Hoff’s model overestimates the rupture life in
the range of moderate and low stress levels. The softening model leads to the result
closer to experimental data while the additional consideration of damage provides a
conservative estimation of the lifetime.

Voids and microcracks usually nucleate and grow on those planes which are
perpendicular to the direction of the maximum tensile stress, e.g. Naumenko and
Altenbach (2007), Betten (2008). The microstructural observations and the analy-
sis of void size distributions in crept specimen from steels X20CrMoV12-1 and
X22CrMoV12-1 are presented in Straub (1995). The biggest voidswere foundwithin
the angles 60◦–90◦ to the stress axis. The topology of the directional damage state
can be characterized by damage tensors of different rank, see Sect. 5.7.2. To estab-
lish the influence of the directional damage on the creep rate, creep tests under
non-proportional loading conditions are required. Examples include creep tests on
thin-walled tubes under combined tension and torsion (Murakami and Sanomura
1985) and biaxial creep tests on cruciform specimens (Sakane and Tokura 2002).
The results of such tests can be applied to calibrate the tensor-valued damage evolu-

http://dx.doi.org/10.1007/978-3-319-31629-1_5
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tion equations. Multi-axial test data for 9–12%Cr steels are currently not published.
Here we neglect the directional nature of damage. The damage evolution equation
(6.2.20) can be generalized as follows

ω̇ = hω(ω)
1

2

(σI + |σI |)
σvM

ε̇
pl
vM

ε
pl
∗ (σvM)

, (6.2.23)

where σI is the first principal stress. Applying the strain equivalence principle
(Lemaitre and Chaboche 1990; Lemaitre 1996) the constitutive equation (6.2.7)1
can be generalized as follows

ε̇pl = 3

2
f

(
σ̄vM

1 − ω

)
g(T )

s̄ss

σ̄vM
(6.2.24)

6.2.3.3 Creep Under Stress Changes

To verify the constitutive model let us simulate creep behavior under variable load-
ing conditions. Figure6.5 shows the experimental creep curve under compressive
stress changes obtained in Straub (1995). During the test the specimen was initially
subjected to the constant compressive true stress with the value of 196MPa. After
a certain hold time the stress was rapidly reduced to the value of 150MPa. Several
loading/unloading cycles with hold time were performed up to the reaching of the
creep strain value of 25%. As Fig. 6.5 shows the stress changes were performed
within the tertiary creep stage.

Fig. 6.5 Normalized creep rate versus creep strain for X20CrMoV 12-1 steel at T = 600 ◦C and
variable compressive stress
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The inelastic strain rate versus inelastic strain curve predicted by Eqs. (6.2.21) is
presented in Fig. 6.5 by the solid line. For the comparison, two creep curves under
the constant upper and lower stress values are shown. We observe that the model
underestimates the creep rates after the rapid loading reduction. This slight disagree-
ment may be related to the deficiency of the assumed constitutive equation for the
inelastic-hard constituent in the phase mixture model, see Sect. 5.6.3. Despite this
inaccuracy, the creep behavior under stress changes is well represented by the com-
posite model with the varying volume fraction. One feature of the softening process
is well reproduced by the model. After the stress decrease the creep rate remains
lower, while after the stress increase remains higher than the corresponding creep
rates under the constant stress levels.

6.2.3.4 Tensile Behavior Under Constant Strain Rate

The next verification test is to simulate tensile behavior under a constant strain rate.
To compute the stress response we integrate the equation

ε̇ = σ̇

E
+ ε̇pl = const (6.2.25)

together with the constitutive model (6.2.21). Figure6.6 shows the experimental
stress-strain diagram obtained with ε̇ = 2.63 · 10−4 s−1 and 803 K (Röttger 1997).
The results of the model prediction are presented by the solid line. In addition, a
zoom of the transition from the linear-elastic to the inelastic behavior is given in the
left smaller diagram. The right smaller diagram shows the backstress variable β as a
function of the strain. The elastic behavior up to 300MPa is almost exactly described.
The beginning of the inelastic behavior is observed at the strain value ε ≈ 0.0015.
Up to this value the backstress remains almost zero. It is obvious that there is no
kink in the progress of the global stress-strain curve, although the change of the
slope is too abrupt if compared to the experimental data. The too strict transition
from the linear-elastic to the inelastic behavior and a low slope of the curve at the
beginning of the inelastic range may again be related to the the deficiency of the
assumed constitutive equation for the inelastic-hard constituent in the phase mixture
model, see Sect. 5.6.3. Nevertheless, the maximum stress value and the softening
behavior are well reproduced by the model. For strains higher than 16% the model
overestimates the stress values. This may be caused by the start of necking of the
specimen, which is not taken into account in the uni-axial model.

6.2.3.5 Summary of Constitutive and Evolution Equations

The proposed constitutive model includes three state variables: the backstress devia-
torβββ, the softening variable Γ and the damage variable ω. The inelastic strain tensor
and the internal state variables are defined by the following equations

http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
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Fig. 6.6 Stress-strain diagram for X20CrMoV12-1 steel with ε̇ = 2.63 · 10−4 s−1 at 803 K

ε̇pl = 3

2
f

(
σ̄vM

1 − ω

)
g(T )

s̄ss

σ̄vM
,

β̇ = 2μ

ch

[
ε̇pl − 3

2
ε̇
pl
vM

β

β∗(σvM)

]
, (6.2.26)

Γ̇ = As
[
Γ∗(σvM) − Γ

]
ε̇
pl
vM,

ω̇ = hω(ω)
1

2

(σI + |σI |)
σvM

ε̇
pl
vM

ε
pl
∗ (σvM)

with the active stress deviator s̄ss and the corresponding von Mises equivalent stress
σ̄vM

s̄ss = s − βΓ, σ̄vM =
√
3

2
s̄······s̄ (6.2.27)

The response functions f , g, β∗, Γ∗, hω and ε
pl
∗ and the material parameters ch, As

must be identified from families of creep and tensile curves for a range of stresses,
temperatures and strain rates. For 12%Cr steel X20CrMoV12-1 these functions are
calibrated from experimental data on creep as follows
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f (x) = sinh (Bx) , g(T ) = a0 exp
(
− α

T

)
,

Γ∗ (x) = aΓ

1 + bΓ exp
(
− x

cΓ

) , β∗ (x) = H∗x,

hω(ω) = lω
l−1

l , εpl∗ (|σ |) = εbr + aε

1 + bε exp
(
−|σ |

cε

)
(6.2.28)

with the material parameters

B = 7.74 · 10−2 1/MPa, a0 = 4.64 · 1023 1/h, α = 6.12 · 104 1/K,

ch = 8.84, H∗ = 0.46,

As = 7.21, aΓ = 0.42, bΓ = 9.12 · 106, cΓ = 9.46 MPa

(6.2.29)

The Young’s modulus E and the shear modulus μ are identified in Straub (1995) as
follows

E(T ) = −aE + bE T, μ(T ) = −aμ + bμT (6.2.30)

with

aE = 95.597 MPa/K, bE = 252334.26 MPa,

aμ = 38.773 MPa/K, bμ = 97398.16 MPa

In a slightly modified form Eqs. (6.2.26) are applied in Kostenko and Naumenko
(2008), Kostenko et al. (2009a, b), Naumenko et al. (2011b), Kostenko et al. (2013)
to describe inelastic behavior of 10%Cr steels.

The advantageof the phasemixturemodel is the possibility to describe the inelastic
behavior with a minimum number of response functions and material parameters.
The developed model is compatible with the standard structural mechanics and can
be implemented inside any finite element code. Since the model incorporates both
the softening and damage variables and reproduces the descending branch of the
stress-strain curve, regularization techniques (de Borst 2004) might be necessary to
avoid spurious mesh dependence.

To improve the model, in particular for the better description of inelastic tran-
sients under rapid loading changes, the constitutive equation for the inelastic hard
constituent should be refined. Another possibility is to consider a phase mixture
with three or more constituents. This would lead to several backstress variables and
increase the number of material parameters.
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6.2.4 Aluminium Alloy BS 1472

The experimental data for aluminium alloy BS 1472 at 150 ± 0.5 ◦C (Al, Cu, Fe, Ni,
Mg and Si alloy) are published in Kowalewski et al. (1994). The authors proposed to
describe the uni-axial creep curves (loading conditions 227.53, 241.3 and 262 MPa)
by use of two constitutive models. The first model is based on Eqs. (6.2.1) and the
time hardening function

ε̇εεpl = 3

2

aσ n−1
vM

(1 − ω)n
ssstm, ω̇ = b(σω

eq)
k

(1 − ω)l
tm (6.2.31)

with σω
eq = σvM. The material parameters in Eqs. (6.2.31) are identified as follows

(Kowalewski et al. 1994)

a = 3.511 · 10−31 MPa−n/hm+1, b = 1.960 · 10−23 MPa−k/hm+1,

n = 11.034, k = 8.220, l = 12.107, m = −0.3099
(6.2.32)

The Young’s modulus and Poisson’s ratio are E = 0.71 · 105 MPa and ν = 0.3.
Equations (6.2.31) include the time hardening function. One shortcoming of the
time hardening model is that the creep behavior depends on the choice of the time
scale (see Sect. 5.6.1).

Alternatively the experimental data presented in Kowalewski et al. (1994) can be
described by the following equations

ε̇εεpl = 3

2

aσ n−1
vM

(1 − ω)m
sss, ω̇ = b(σω

eq)
k

(1 − ω)l
(6.2.33)

with the following set of material parameters

a = 1.35 · 10−39 MPa−n/h, b = 3.029 · 10−35 MPa−k/h,
n = 14.37, k = 12.895, l = 12.5, m = 10

(6.2.34)

In the above equations the primary creep effect is neglected. Figure6.7 presents the
experimental results and the predictions by Eqs. (6.2.31) and (6.2.33).

The second approach applied in Kowalewski et al. (1994) is based on the
mechanism-based model (see Sect. 5.7.1.3). The constitutive model can be sum-
marized as follows

http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
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Fig. 6.7 Experimental data andmodel predictions for the aluminium alloyBS 1472 at 150± 0.5 ◦C,
after Kowalewski et al. (1994)

ε̇εεpl = 3

2

A

(1 − ω)n

sss

σvM
sinh

[
BσvM(1 − H)

1 − Φ

]
,

Ḣ = hc

σvM

A

(1 − ω)n
sinh

[
BσvM(1 − H)

1 − Φ

] (
1 − H

H∗

)
,

Φ̇ = Kc

3
(1 − Φ)4, (6.2.35)

ω̇ = D A

(1 − ω)n

(
σI

σvM

)υ

N sinh

[
BσvM(1 − H)

1 − Φ

]
,

n = BσvM(1 − H)

1 − Φ
coth

[
BσvM(1 − H)

1 − Φ

]
,

N = 1 for σI > 0, N = 0 for σI ≤ 0,

0 ≤ ω < 0.3, 0 ≤ Φ < 1, 0 ≤ H ≤ H∗

The set of equations (6.2.35) includes the creep constitutive equation and evolution
equations with respect to three internal state variables. The hardening variable H
is introduced to describe primary creep. The variable Φ characterizes the ageing
process. The variable ω is responsible for the grain boundary creep constrained
cavitation.

The material parameters in Eqs. (6.2.35) may be divided into three groups: the
constants hc and H∗ must be obtained from the primary creep stage; A and B char-
acterize the secondary creep (minimum creep rate versus stress); and Kc and D must
be found from the tertiary creep stage. The parameter υ is the so-called stress state
index, which characterizes the stress state dependence of the damage evolution. The
material constants are identified in Kowalewski et al. (1994) as follows
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Fig. 6.8 Experimental data and simulations for the aluminium alloy BS 1472 at 150± 0.5 ◦C, after
Kowalewski et al. (1994)

A = 2.960 · 10−11 h−1, B = 7.167 · 10−2 MPa−1,

hc = 1.370 · 105 MPa, H∗ = 0.2032,
Kc = 19.310 · 10−5 h−1, D = 6.630

(6.2.36)

Figure6.8 presents the experimental creep curves and predictions based on Eqs.
(6.2.35). To identify the stress state index υ experimental data from multi-axial
creep tests up to creep rupture are required. The isochronous rupture loci obtained
according to Eqs. (6.2.35) for different values of υ in the range 0 ≤ υ ≤ 12 are
presented in Kowalewski et al. (1994).

This example illustrates that the same experimental data can be described by
different relations (6.2.31), (6.2.33) and (6.2.35). The model (6.2.35) seems to be
more preferable since it is based on material science foundations. One feature of
Eqs. (6.2.35) is the use of a hyperbolic function for the dependence of the minimum
creep rate on the stress instead of the power function in Eqs. (6.2.33). Let us compare
how the models (6.2.33) and (6.2.35) describe the secondary creep rate for a wide
stress range. For this purpose we assume ω � 1 in Eqs. (6.2.33) leading to the
Norton-Bailey creep equation ε̇crmin = aσ n . In Eq. (6.2.35) we set H = H∗, ω � 1
and Φ � 1 resulting in ε̇crmin = A sinh[Bσ(1− H∗)]. Figure6.9 shows the minimum
creep rate as a function of stress calculated by the use of material parameters (6.2.34)
and (6.2.36). We observe that within the stress range 227–262MPa the minimum
creep rate versus stress curves almost coincide. The coincidence of curves is not
surprising since the material parameters in both models were identified from creep
tests carried out within the stress range 227–262MPa. This stress range is marked
in Fig. 6.9 as the identification range. Furthermore, a wider stress range exist, for
which the power law and the hyperbolic sine functions provide nearly the same
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Fig. 6.9 Minimum creep rate versus stress by use of the power law and sinh functions

inelastic strain rates, Fig. 6.9. If a structure is loaded in such a way that the vonMises
equivalent stress lies within this range, then both the models would lead to similar
results of structural analysis, e.g. time dependent deformation, stress redistribution
etc.

However, in most applications one has to analyze statically indeterminate struc-
tures. In this case, if the external loads are constant, the stresses may rapidly relax
down at the beginning of the creep process. Therefore, the range of moderate
and small stress values is important in the structural analysis. For this range the
two applied models lead to quite different predictions, Fig. 6.9. In Altenbach et al.
(1997a, c) we utilized the models (6.2.33) and (6.2.35) for the structural analysis of
pressurized cylindrical shells and transversely loaded rectangular plates. The max-
imum values of the von Mises equivalent stress in the reference elastic state of
structures were within the identification range. The results of creep analysis based
on the models (6.2.33) and (6.2.35) qualitatively agree only at the beginning of the
creep process as long as the maximum values of the von Mises equivalent stress lay
within the range of the same prediction. With the relaxation and redistribution of
stresses, the discrepancy between the results increases leading to quite different long
term predictions. The differences in estimated life times were of up to a factor 5.

6.3 Initially Anisotropic Materials

Many materials exhibit anisotropic inelastic behavior as a result of processing. This
Section presents examples of constitutive equations for initially-anisotropic materi-
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als. The first one is related to the forged aluminium alloy AA2014. Microstructural
observations and experimental data suggest that the anisotropy of inelastic behavior
is primarily caused by elongated grains and grain boundaries as a result of mate-
rial processing. The second example deals with a multi-pass weld metal. Here the
arrangement of weld beads and microstructural zones is the reason for anisotropic
creep.

6.3.1 Forged Al-Cu-Mg-Si Alloy

Age-hardenable alloys based on the aluminum-copper system (known as AA2xxx
alloys) exhibit superior creep strength and are widely used in structural components
operating at elevated temperatures (Polmear 1996, 2004). Complex shape parts pro-
duced from these alloys usually exhibit microstructural anisotropy as a result of
processing (Gariboldi and Conte 2013). Furthermore, the creep properties of age-
hardenable alloys strongly depend on the heat treatment and ageing conditions (Gari-
boldi and Casaro 2007). Origins of anisotropic creep include elongated grains, crys-
tallographic texture, non-uniform distribution of particles, oriented grain boundary
cavities, etc. One approach to formulate a constitutive equation for anisotropic creep
is based on the theory of symmetries and representation of tensor-valued functions,
see Sect. 5.4.3. For the assumed symmetry class, e.g. a transverse isotropy, a creep
potential is formulated as a function of appropriate invariants of the stress tensor.
The resulting creep constitutive equation includes a number ofmaterial parameters to
be identified from experimental creep curves for different stress states and different
loading directions. This approach provides a general form of a constitutive equation.
However, the identification of all required parameters is usually not feasible since
the required experimental creep curves are rarely available.

6.3.1.1 Basic Features of Microstructure

Al-Cu-Mg-Si alloy forging had displayed anisotropic effects in longitudinal (L),
transverse (T) and radial (R) sampling directions (Gariboldi et al. 2016). Two sets of
20×20×100 mm3 bars were sampled from the as supplied forging with their longer
side in L, T and R directions, respectively. Tensile tests were performed at tempera-
tures within the range 20–170 ◦C. Creep tests were conducted under constant load at
130, 150 and 170 ◦C (homologous temperature range 0.44–0.49) under stresses that
led to a range of times to rupture t∗ from several hours to more than 10,000h. Crept
specimens were diametrally cut in order to investigate microstructure features along
the gauge length.

The investigated forging was characterized by grains elongated in the main plastic
flow path experienced during the processing. Their mean size of grains was about
300, 80 and 50 µm along the L, T and R directions, respectively. Figure6.10 shows
light optical microscope micrographs of the microstructure of the forged part in

http://dx.doi.org/10.1007/978-3-319-31629-1_5
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Fig. 6.10 Light optical microscope micrographs of the forged part from AA2014 in different
metallographic sections, after Gariboldi et al. (2016)

2014 alloy in different metallographic sections. Two kinds of coarse intermetallic
particles were present in the microstructure: globular Al2Cu (θ ) particles (bright
particles in Fig. 6.10) and blocky shaped clustered particles containing Fe, Mn, Si
andCu (darker particles in Fig. 6.10). These latter secondary phase clustered particles
are elongated in the L direction. In most of the volume of the forging, macrographic
analyzes revealed the large intermetallic particles longitudinally oriented, suggesting
the same direction of the plastic flow during the processing.

In addition, transmission electron microscopy images published in Angella et al.
(2008) illustrate the presence of θ ′ phase, in the formof plate-like precipitates in {100}
crystallographic planes of the α-Al matrix. These precipitates play an important role
in strengthening of the alloy. The forging was supplied in the T6 condition, that is
the solution treatment at 778 K and aging at 433K for 16h. During the subsequent
creep overageing processes take place leading to the increase of particles size and
distance between particles with time.

6.3.1.2 Minimum Creep Rates

Creep curves of the material sampled in L and T direction are presented and analyzed
in Naumenko and Gariboldi (2014). Figure6.11 shows minimum creep rate vs stress
curves. To normalize the data the reference stress σ0 = 320MPa, the reference strain
rate ε̇0 = 1.026 1/h and the Arrhenius function of the temperature

g(T ) = exp

(
− Q

RT

)
(6.3.37)
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Fig. 6.11 Normalized minimum creep rate versus normalized stress for longitudinal, transverse
and radial creep tests of AA2014 at 150 ◦C, after Gariboldi et al. (2016)

with apparent activation energy Q, the universal gas constant R and absolute tem-
perature T is applied. The value Q = 175.42 kJ/mol is used as given in Gariboldi
and Casaro (2007), Naumenko and Gariboldi (2014). The reference stress σ0 is intro-
duced to split the ranges of power law creep and power law breakdown, as shown
in Fig. 6.11. According to experimental data presented in Fig. 6.11 the anisotropy is
primarily observable in the power law range. The following relation

ε̇
pl
Tmin

= αε̇
pl
Lmin

, α = 2.43

indicates that the creep rate in the T direction is 2.43 times higher that the creep rate
in the L direction for the same stress level. In the power law breakdown range the
difference between L and T data is not significant, if compared to the usual scatter
of experimental data in the creep range, and can be neglected. The minimum creep
rates for T-specimen can be described by the following equation

ε̇
pl
Tmin

= ε̇0g(T )

(
σ

σ0

)n

with n = 9.94. Two additional creep tests at 150 ◦C for specimens sampled in
R direction were performed in Gariboldi et al. (2016). The results indicate that
the difference in creep rates for T and R directions is not significant, Fig. 6.11.
This supports the assumption of transversely-isotropic creep made in Naumenko
and Gariboldi (2014).
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6.3.1.3 Constitutive Model

In what follows let us assume that the minimum creep rates in R and T directions
are approximately the same and the plane spanned on R and T directions to be the
isotropy plane. Constitutive equations of transversely-isotropic steady-state creep
were applied in Betten (2008) to modeling deep drawing sheets and in Naumenko
and Altenbach (2005) to characterize multi-pass weld metals, for example. Let eeeL
be the unit vector that designates the direction L, III the second rank unit tensor and
PPP = III −eeeL ⊗eeeL the projector onto the RT plane. For anisotropic materials different
parts of the stress state cause different creep responses. Therefore let us decompose
the stress state characterized by the stress tensor σσσ into the three parts including
the tension (compression) along L σLL, the plane stress state in the RT-plane σσσ p

and the out of plane shear characterized by the shear stress vector τττL. Figure6.12
illustrates the corresponding components of the stress tensor. The decomposition has
the following form

σσσ = σLLeeeL ⊗ eeeL + σσσ p + τττL ⊗ eeeL + eeeL ⊗ τττL (6.3.38)

By subtracting the hydrostatic stress state the stress deviator sss can be given as follows

sss = sssL + sssp + τττL ⊗ eeeL + eeeL ⊗ τττL, (6.3.39)

where

sssL =
(

σLL − 1

2
tr σσσ p

)(
eeeL ⊗ eeeL − 1

3
III

)
, sssp = σσσ p−1

2
trσσσ p(III −eeeL⊗eeeL) (6.3.40)

eeeL

eeeR

eee

σLL

τLT

τLT

τLR
τLR

σRR

τRT

τRT

σTT

Longitudinal direction: eeeL,

Transverse direction: eeeT,

Radial direction: eeeR,

Normal stress along L:σLL

Plane stress state:

σσσp = σRReeeR ⊗ eeeR +σTTeeeT ⊗ eeeT
+τRT(eeeT ⊗ eeeR + eeeR ⊗ eeeT)

Out-of-plane shear stress vector:

τττ L = τLTeeeT + τLReeeR

Fig. 6.12 Stress state in a forged material with elongated grains and preference (forging) direction
mmm = eeeL, after Naumenko and Gariboldi (2014)
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With the decomposition (6.3.39), the creep potential hypothesis and the assumption
that the volumetric creep rate is negligible, the constitutive equation can be formu-
lated as follows, see Sect. 5.4.3.1

ε̇εεpl = 3

2
ε̇0g(T )

(
σeq

σ0

)n 1

σeq

[
α1sssL + α2sssp + α3(τττL ⊗ eeeL + eeeL ⊗ τττL)

]
, (6.3.41)

where εεεpl is the tensor of inelastic strains, ε̇0, σ0, n and αi , i = 1, 2, 3 are material
parameters. The equivalent stress σeq is defined as follows

σ 2
eq = 3

2

(
α1tr sss2L + α2tr sss2p + 2α3τττL···τττL

)
(6.3.42)

To identify the material parameters families of creep curves for different stress levels
for three independent kinds of loading are required. These include the loading in L
and T directions, respectively as well as any kind of loading that leads to non-zero
out-of-plane shear stress. For α1 = α2 = α3 = 1 the von Mises equivalent stress
follows from Eq. (6.3.42). Equation (6.3.41) reduces to the Norton-Bailey-Odqvist
equation of isotropic creep in the power law range (5.4.107).

For the tensile stress σLL the longitudinal creep rate ε̇
pl
TT can be computed from

Eq. (6.3.41) as follows

ε̇
pl
LL = ε̇0g(T )

(
σL L

σ0

)n

α
n+1
2

1 (6.3.43)

The creep rate in the transverse direction for the applied stress σTT is

ε̇
pl
TT = ε̇0g(T )

(
σT T

σ0

)n (
α1 + 3α2

4

) n+1
2

(6.3.44)

The function g(T ) and the parameter ε̇0 can be identified from minimum creep rate
versus stress data generated from transverse creep curves, Fig. 6.11. In this case the
parameter α2 can be set to one. To identify the parameter α1 the ratio of creep rates α

for the same stress level can be computed from Eqs. (6.3.43) and (6.3.44) as follows

α = ε̇
pl
TT

ε̇c
LL

=
(

α1 + 3

4α1

) n+1
2

(6.3.45)

For the given values of α and n the solution of Eq. (6.3.45) is α1 = 0.81.

http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
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6.3.2 Multi-pass Weld Metal

For many structures designed for high-temperature applications, e.g., piping sys-
tems and pressure vessels, an important problem is the assessment of creep strength
of welded joints. The lifetime of the welded structure is primarily determined by
the behavior in the local zones of welds, where time-dependent creep and damage
processes dominate. Different types of creep failure that have occurred in recent
years are discussed in Shibli (2002), for example. The design of welded structures
and their residual life estimations require engineering mechanics models that would
be able to characterize creep strains, stress redistributions, and damage evolution in
the zones of welds.

A weld is usually considered as a metallurgical notch. The reason for this is the
complex microstructure in the weld metal itself and in the neighboring heat-affected
zone. Many research activities have been directed to the study of welded joints.
First, theoretical and experimental studies have addressed the welding process with
the aim of predicting the formation of the microstructure of the welds and analyzing
residual stresses (Aurich et al. 1999). Second, the behavior of welded joints under
the mechanical and thermal loadings was investigated (Hyde et al. 2003b). Here one
must consider that the stress-strain response at room temperature is quite different
for the weld metal, the heat-affected zone, and the base metal (parent material),
particularly if they are loaded beyond the yield limit. At elevated temperatures quite
different inelastic strain versus time curves can be obtained in different zones even
in the case of a constant moderate load. Figure1.52 illustrates zones with different
microstructures and the variation in material behavior within the weld.

The results of creep tests of cross-weld specimens (Hyde et al. 1997, 1999),
and specimens with a simulated microstructure (Lundin et al. 2001; Matsui et al.
2001; Wohlfahrt and Brinkmann 2001; Wu et al. 2004) show significant variation
in creep properties in different material zones within the weld. Furthermore, they
illustrate that the intercritical region of the heat-affected zone is the weakest part of
the weld with respect to the creep properties. The material with the heat-affected
zone microstructure usually exhibits the highest creep rate and the shortest time to
failure if compared to other material zones within the weld for the same load and
temperature.

For thick and moderately thick cross sections, multi-pass welding is usually pre-
ferred, where many stringer beads are deposited in a defined sequence. As a result
of heating and cooling cycles during the welding process, the complex bead-type
microstructure of the weld metal is formed, where every single bead consists of
columnar, coarse-grained, and fine-grained regions (Hyde et al. 2003b). The results
of uni-axial creep tests for the weld metal 9CrMoNbV are reported in Hyde et al.
(2003a). They show that the creep strain versus time curves significantly differ for
specimens removed from the weld metal in the longitudinal (welding) direction and
the transverse direction. Furthermore, different types of damage were observed for
the longitudinal and the transverse specimens.

http://dx.doi.org/10.1007/978-3-319-31629-1_1
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One possibility for studying the creep behavior in structures is the use of con-
tinuum damage mechanics (Altenbach and Naumenko 2002; Altenbach et al. 2001;
Hayhurst 1994). The application of this approach to welded joints is discussed in
Hall and Hayhurst (1991), Hayhurst et al. (2002), Hyde et al. (2003b), for example.
Here the weld is considered as a heterogeneous structure composed of at least three
constituents—the weld metal, the heat-affected zone, and the parent material with
different creep properties. Constitutive and evolution equations that are able to reflect
experimental data of primary, secondary, and tertiary creep in different zones of the
welded joint are presented in Eggeler et al. (1994), Hall and Hayhurst (1991), Hay-
hurst et al. (2002), Hyde et al. (2003b), Wohlfahrt and Brinkmann (2001), among
others. The results of finite element simulations illustrate stress redistributions, creep
strains, and damage evolution in different zones of the weld (Eggeler et al. 1994; Hall
and Hayhurst 1991; Hayhurst et al. 2002; Hyde et al. 2003b). Furthermore, they are
useful to analyze the influence of numerous factors like weld dimensions, types of
external loading, and material properties on the creep behavior of welded structures
(Hyde et al. 2003b).

6.3.2.1 Basic Features of Microstructure

A weld bead produced by a single pass welding has a columnar solidification
microstructure. During the multi-pass welding many weld beads are deposited in
the groove by a defined sequence. As a subsequent weld bead is laid, the part of the
metal produced in previous cycles is subjected to the local reheating and cooling.
As a result, the weld beads consist of columnar, coarse-grained and fine-grained
microstructural zones (Hyde et al. 2003a, b). A sketch for the typical microstructure
of a multi-pass weld metal is presented in Fig. 6.13. This microstructure depends on
many factors of the welding process like bead size, travel speed, buildup sequence,
interpass temperature, and type of postweld heat treatment (Hyde et al. 2003a). The
resulting inelastic material behavior will be apparently determined by the distribu-
tion and size of columnar, coarse-grained, and fine-grained zones as well as residual
stresses in the weld metal. It is well established that creep behavior is very sensi-
tive to the type of microstructure and, in particular, to grain size. Experimental data
illustrating the significant influence of grain size on creep behavior are presented for
copper in Kowalewski (1992) and for various types of steel in Lundin et al. (2001),
Wohlfahrt and Brinkmann (2001), Wu et al. (2004). The grain size dependence is
explained in materials science by two creep mechanisms: grain boundary sliding and
grain boundary diffusion. These mechanisms operate under moderate loading and
within a temperature range of 0.5 < T/Tm < 0.7, where Tm is the melting temper-
ature (see Sect. 1.3). The principal damage mechanism is the nucleation and growth
of voids on grain boundaries. Many experimental observations show that the finer
the grain structure, the higher the secondary creep rate and the higher the damage
rate for the same loading and temperature conditions.

http://dx.doi.org/10.1007/978-3-319-31629-1_1
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Fig. 6.13 Microstructure of the weld metal, after Naumenko and Altenbach (2005)

6.3.2.2 Elementary Micromechanics Model

To discuss the origins of the anisotropic creep in a weld metal let us consider a
uni-axial model of a binary structure composed of constituents with different creep
properties. In what follows let us term the first constituent “fine-grained” or “creep-
weak” and the second one “coarse-grained” or “creep-strong.” Let us describe the
creep behavior of the constituents by use of the Kachanov-Rabotnov model (see
Sect. 3.6.1)

ε̇pl = aσ n

(1 − ω)n
, ω̇ = bσ k

(1 − ω)l
(6.3.46)

In what follows we use the subscripts f and c for the fine-grained and coarse-grained
constituents, respectively. For the sake of simplicity we assume that the constituents
have the same value of Young’s modulus E and the same values of parameters n, k
and l in (6.3.46). Let us introduce the dimensionless quantities

s = σ

σ0
, ε = ε

ε0
, εpl = εpl

ε0
, τ = t

t∗f
, (6.3.47)

where t∗f is the time to fracture of the fine-grained constituent, σ0 is the reference
stress and ε0 is the elastic strain at σ0, i.e. ε0 = σ0/E . Equations (6.3.46) can be
formulated for two constituents as follows

http://dx.doi.org/10.1007/978-3-319-31629-1_3
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Fig. 6.14 Creep curves for constituents
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, (6.3.48)

where

ã = ε∗f

(
1 − n

l + 1

)
, b̃ = 1

l + 1
, α = ε̇

pl
minc

ε̇
pl
minf

, β = t∗f
t∗c

Figure6.14 illustrates creep curves obtained after integration of Eqs. (6.3.48) for the
cases n = 3, k = n + 1, l = n + 2, ε∗ f = 5, α = 0.15, β = 0.25, s = 1.

Let us consider a connection of constituents in parallel, as it usually assumed for
composite materials (Altenbach et al. 2004; Chawla 1987). The strains and the strain
rates can be assumed to be the same (iso-strain concept)

ε = εf = εc, ε̇ = ε̇f = ε̇c (6.3.49)

We assume that a constant load F = σ0 A, Fig. 6.15, is applied to the composite,
where A is the cross section area. Specifying by Nf and Nc the internal forces in the
constituents such that Nf + Nc = F we can write

σf Af + σcAc = σ0 A, ηfσf + (1 − ηf)σc = σ0, ηfsf + (1 − ηf)sc = 1 (6.3.50)
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Fig. 6.15 Normalized stresses versus normalized time for connection of constituents in parallel

where ηf = Af/A is the volume fraction of the fine-grained constituent. For the
stresses we apply the following constitutive equations

σf = E(ε − ε
pl
f ), σc = E(ε − εplc ) (6.3.51)

Based on Eqs. (6.3.48)–(6.3.51) one can formulate a system of ordinary differential
equations describing the stress redistribution between constituents. With respect to
the stress in the fine-grained constituent the following equation can be obtained

dsf
dτ

= ā(1 − ηf)

[
α

(1 − ηf)n

(1 − ηfsf)n

(1 − ωc)n
− sn

f

(1 − ωf)n

]
(6.3.52)

Equation (6.3.52) is numerically solved together with the evolution equations for the
damage parameters (6.3.48) and initial conditions sf = 1, ωf = ωc = 0 providing
time variation of the stress sf . The stress sc can be then computed from Eqs. (6.3.50).
The results are shown in Fig. 6.15 for the case ηf = 0.3. In addition, Fig. 6.16
presents creep strains and the damage parameters in the constituents as well as the
creep strain of the mixture εpl = ε − 1. At the beginning of the creep process the
creep rate is higher in the fine-grained constituent, Fig. 6.16a. Therefore, the stress
in the fine-grained constituent relaxes down while the stress in the coarse-grained
constituent increases, Fig. 6.15. If we neglect the influence of damage on the creep
process, i.e. set ωf = ωc = 0 in (6.3.52), we obtain the steady-state creep solution.
The corresponding results are plotted in Fig. 6.15 by dotted lines.We observe that the
maximumvalue of sc and theminimumvalue of sf in the case of creep-damage almost
coincide with the corresponding steady-state values. The steady-state solution for sf
follows from Eqs. (6.3.52) by setting ωf = ωc = 0 and dsf

dτ
= 0. The corresponding
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(a) (b)

Fig. 6.16 Connection of constituents in parallel. a Normalized creep strains versus normalized
time, b damage parameters versus normalized time

value for sc is obtained from (6.3.50). The results are

sfmin = α
1
n

1 − ηf(1 − α
1
n )

, scmax = 1

1 − ηf(1 − α
1
n )

Weobserve that these stress values are determined by the volume fraction of the “fine-
grained” constituent ηf and the ratio of minimum creep rates α. The stress value sc
is higher than sf after the initial stress redistribution. Therefore, the coarse-grained
constituent exhibits the higher creep rate and the higher damage rate in the final stage
of the creep process, Fig. 6.16. The simulation predicts the failure initiation in the
coarse-grained constituent.

In the case of a connection of constituents in series (iso-stress approach) we
assume

σ0 = σf = σc, εpl = ηfε
pl
f + (1 − ηf)ε

pl
c

The results can be obtained by integration (6.3.48) for sf = sc = 1. The correspond-
ing plots of normalized creep strains are presented in Fig. 6.14. The maximum creep
and damage rates are now in the fine-grained constituent. The lifetime of the binary
structure is determined by the lifetime of the fine-grained constituent for the given
constant stress.

Figure6.17 shows the creep curves obtained for the two considered cases of the
binary structure under the same constant load. The results of the presented model
provide an analogy to the creep behavior of a weld metal loaded in the longitudinal
(welding) and the transverse directions. The experimental creep curves for the spec-
imen removed from the weld metal in two directions are presented in Hyde et al.
(2003a). They show, that the transverse specimens exhibit higher minimum creep
rate. Furthermore, the creep curves for transverse specimens have a much shorter
tertiary stage and lower values of fracture strain if compared to curves for specimens
removed in the welding direction. The times to fracture for the transverse speci-
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Fig. 6.17 Creep curves for the binary structure in the cases of parallel and series connections of
constituents

mens are much shorter than those for the longitudinal specimens. From the results
in Fig. 6.17 we observe that these effects are predicted by the mechanical model of
the binary structure. Furthermore, our results for the damage evolution qualitatively
agreewith the results ofmicrostructural damage observations presented inHyde et al.
(2003a). For the longitudinal specimens extensive voids and cracks were observed
in columnar and coarse-grained regions along the entire specimen length. For the
transverse specimens voids and cracks are localized near the fracture surface. The
fracture surface has fine-grained structure and the failure propagated through the
fine-grained regions of the specimen.

Based on the presented results we may conclude that among many different creep
and damage mechanisms which may operate and interact during the creep process
an essential role plays the stress redistribution between the creep-weak and creep-
strong constituents. For longitudinal specimens this mechanism leads to a prolonged
tertiary creep stage. The material behaves like a “more ductile” material, although
the damage and failure occur in the “more brittle” creep-strong constituent.

In Hyde and Sun (2005), Lvov et al. (2014) micromechanical models of multi-
pass weld are presented by taking into account realistic distributions of weld beads
and microstructural zones. Finite element simulations of the weld metal sample are
performed for different strass states including tension in welding and transverse
directions as well a longitudinal and transverse shear.
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6.3.2.3 Constitutive Model

For the analysis ofwelded structures amodelwhich is able to reflect anisotropic creep
in aweldmetal undermulti-axial stress states has to be developed. Three-dimensional
models for mixtures are discussed within the framework of continuum mechanics,
e.g.Altenbach et al. (2003).Ageneralization of the compositemodel developed in the
previous section to themulti-axial stress states would however require the knowledge
of creep properties of constituents under multi-axial stress states. Furthermore, creep
mechanisms of interaction between constituents, like frictional sliding should be
taken into account.

In what follows we assume the weld metal to be a quasi-homogeneous anisotropic
material. For a description of creep we prefer the engineering creep mechanics
approach, where the creep potential hypothesis, the representation of tensor functions
and internal state variables are applied (see Sect. 5.4.3). The resulting constitutive
equations can be utilized in standard finite element codes for structural analysis
purposes.

Examples for anisotropic creepbehavior and related constitutive equations are pre-
sented for a single-crystal alloy in Bertram andOlschewski (2001), a fiber-reinforced
material in Robinson et al. (2003) and a forged aluminium alloy in Sect. 6.3.1. One
problem of anisotropic creep modeling is that the assumed material symmetries
(microstructure symmetries) are difficult to verify in creep tests due to the relatively
large scatter of experimental data. Furthermore, the material may lose some or even
all symmetries during the creep as a consequence of hardening and damage processes.

In our case the material symmetries can be established according to the arrange-
ment of the weld beads in the weld metal. For the structure presented in Fig. 6.13 one
can assume the reflection QQQ1 = III − 2mmm ⊗ mmm, the rotation QQQ2 = 2lll ⊗ lll − III and the
reflection QQQ3 = QQQ1···QQQ2 = III − 2kkk ⊗ kkk to be the elements of the material symmetry
group, where III is the second rank unit tensor and kkk, lll and mmm are orthogonal unit
vectors.

However, this material symmetry group is poor for the modeling of creep. Indeed,
based on the model discussed in the previous section we can assume that the same
creep mechanisms will operate by loading the weld metal in kkk- or lll-directions.
Although the experimental data presented in Hyde et al. (2003a) are available only
for specimen removed in mmm- and kkk-directions, one may assume that that the differ-
ence between the experimental creep curves by loading in kkk- and lll-directions will be
not essential with respect to the usual scatter of experimental data. Here we assume
transversely isotropic creep, where the plane spanned on the vectors kkk and lll is the
quasi-isotropy plane.

The models of steady-state creep under the assumption of transverse isotropy are
derived in Sects. 5.4.3.1 and 5.4.3.2. Here we apply the constitutive Eq. (5.4.139). In
the equivalent stress expression (5.4.137) the αi ’s play the role of dimensionless fac-
tors. Three independent uniform stress states should be realized in order to determine
αi . The relevant stress states are

http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
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• Uni-axial tension in the direction mmm (longitudinal tension test). In this case the
stress tensor isσσσ = σ0mmm ⊗mmm, where σ0 > 0 is the magnitude of the applied stress.
From Eqs. (5.4.137) and (5.4.139) follows

Jm = σ0, I3m = I4m = 0, σeq = σ0
√

α1,

ε̇εεpl = √
α1ε̇eq

[
mmm ⊗ mmm − 1

2
(III − mmm ⊗ mmm)

]
(6.3.53)

• Uni-axial tension in the direction kkk (transverse tension test), i.e. σσσ = σ0kkk ⊗ kkk,
σ0 > 0. From Eqs. (5.4.137) and (5.4.139) we obtain

sss p = 1

2
σ0(kkk ⊗ kkk − lll ⊗ lll), Jm = −1

2
σ0,

I3m = 1

4
σ 2
0 , I4m = 0, σeq = 1

2
σ0

√
α1 + 3α2,

ε̇εεpl = ε̇eq

2
√

α1 + 3α2
[(α1 + 3α2)kkk ⊗ kkk + (α1 − 3α2)lll ⊗ lll − 2α1mmm ⊗ mmm]

(6.3.54)

• Uniform shear in the plane spanned on mmm and kkk, i.e. σσσ = τ0(mmm ⊗ kkk + kkk ⊗ mmm),
τ0 > 0. From Eqs. (5.4.137) and (5.4.139)

Jm = I3m = 0, I4m = τ 2
0 , ε̇εεpl =

√
3α3

2
ε̇eq(mmm ⊗ kkk + kkk ⊗ mmm) (6.3.55)

The next step is the form of the creep potential W (σeq) or the form of the creep
rate versus stress dependence in the steady-state range. The criteria for the choice
of a suitable function are the type of the deformation mechanisms operating for the
given stress and temperature range as well as the best fitting of the experimentally
obtained strain versus time curves. Experimental data for the weld metal 9CrMoNbV
are presented in Hyde et al. (2003a) for the stress range 87–100MPa and the constant
temperature 650 ◦C. The authors used a power law in order to fit the experimental
data for secondary creep of longitudinal and transverse specimens. In this case the
Norton-Bailey-Odqvist creep potential can be applied (Odqvist and Hult 1962)

W (σeq) = a

n + 1
σ n+1
eq , ε̇eq = aσ n

eq, (6.3.56)

where a and n are material parameters. For the longitudinal direction from
Eqs. (6.3.53) and (6.3.56) it follows

ε̇
pl
L ≡ mmm ··· ε̇εεplmmm = aLσ

n
0 , aL ≡ aα

n+1
2

1 (6.3.57)

Taking the longitudinal direction to be the “reference”directionwe set inEqs. (6.3.57)
α1 = 1. From Eqs. (6.3.54) and (6.3.56) we obtain for the transverse direction

http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
http://dx.doi.org/10.1007/978-3-319-31629-1_5
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ε̇
pl
T ≡ kkk ··· ε̇εεpl ···kkk = aTσ

n
0 , aT ≡ a

(
1 + 3α2

4

) n+1
2

(6.3.58)

In Hyde et al. (2003a) the values for the material parameters are presented. However,
the exponent n is found to be different for the longitudinal and the transverse direc-
tions. Different values for n contradict to the creep potential hypothesis employed
in the previous section. Here we compute the values for aL, aT and n based on the
following functional

F(ãL, ãT, n) =
k∑

i=1

(ãL + nσ̃i − ˜̇εLi )
2 +

k∑
i=1

(ãT + nσ̃i − ˜̇εTi )
2,

ãL ≡ log aL, ãT ≡ log aT, σ̃ ≡ log σ0,
˜̇εL ≡ log ε̇L, ˜̇εT ≡ log ε̇T,

(6.3.59)

where k is the number of experimental data points. Setting the first variation of F to
zero leads to the system of three algebraic equations with respect to ãL, ãT and n. As
the result we obtain the following set of material constants

aL = 1.377 · 10−21 MPa−n/h, aT = 2.023 · 10−21 MPa−n/h, (6.3.60)

n = 8.12

Figure6.18 shows the experimental data presented in Hyde et al. (2003a) and the
numerical predictions by use of Eqs. (6.3.57), (6.3.58) and (6.3.60).

Fig. 6.18 Minimum creep rates versus stress, experimental data after Hyde et al. (2003a)
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Finally let us summarize the constitutive equation for secondary creep and the set
of identified material constants as follows

ε̇εεpl = 3

2
aσ n−1

eq

[
Jm

(
mmm ⊗ mmm − 1

3
III

)
+ α2sss p + α3(τττm ⊗ mmm + mmm ⊗ τττm)

]
,

σ 2
eq =

(
mmm ···σσσ ···mmm − 1

2
tr σσσ p

)2

+ 3

2
α2tr sss2p + 3α3τ

2
mmm,

a = 1.377 · 10−21 MPa−n/h, n = 8.12, α2 = 1.117
(6.3.61)

The weighting factor α3, which stands for the influence of the transverse shear stress,
remains undetermined in Eqs. (6.3.61) since experimental data of creep under trans-
verse shear stress state are not available. In Lvov et al. (2014) results of microme-
chanics simulations of a weld metal samples subjected to different stress states are
presented. The obtained creep rates indicate that one may set α2 ≈ α3.

Model (6.3.61) is limited only to secondary creep behavior and can be used to
reproduce only the secondary part of the creep curves presented inHyde et al. (2003a).
For the description of thewhole creep process including the primary and tertiary creep
stages, model (6.3.61) can be modified by use of hardening, softening and damage
variables.
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Appendix A
Basic Operations of Tensor Algebra

The tensor calculus is a powerful tool for the description of the fundamentals in
continuum mechanics and the derivation of the governing equations for applied
problems. In general, there are two possibilities for the representation of the tensors
and the tensorial equations:

• the direct (symbolic, coordinate-free) notation and
• the index (component) notation

The direct notation operates with scalars, vectors and tensors as physical objects
defined in the three-dimensional space (in this book we are limit ourselves to this
case). A vector (first rank tensor)aaa is considered as a directed line segment rather than
a triple of numbers (coordinates). A second rank tensor AAA is any finite sum ofordered
vector pairs AAA = a ⊗ ba ⊗ ba ⊗ b + · · · + c ⊗ dc ⊗ dc ⊗ d . The scalars, vectors and tensors are handled
as invariant (independent from the choice of the coordinate system) quantities. This
is the reason for the use of the direct notation in the modern literature of mechanics
and rheology, e.g. Altenbach (2012), Antman (1995), Besseling and van der Giessen
(1994), Giesekus (1994), Haupt (2002), Lurie (1990), Palmov (1998), Truesdell and
Noll (1992), Zhilin (2001) among others. The basics of the direct tensor calculus are
given in the classical textbooks of Wilson (1901) (founded upon the lecture notes of
Gibbs) and Lagally (1962).

The index notation deals with components or coordinates of vectors and tensors.
For a selected basis, e.g. gggi , i = 1, 2, 3 one can write

aaa = aigggi , AAA = (
ai b j + · · · + ci d j

)
gggi ⊗ ggg j

Here the Einstein’s summation convention is used: in one expression the twice
repeated indices are summed up from 1 to 3, e.g.

akgggk ≡
3∑

k=1

akgggk, Aikbk ≡
3∑

k=1

Aikbk
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In the above examples k is a so-called dummy index. Within the index notation the
basic operations with tensors are defined with respect to their coordinates, e.g. the
sum of two vectors is computed as the sum of their coordinates ci = ai + bi . The
introduced basis remains in the background. It must be noted that a change of the
coordinate system leads to the change of the components of tensors.

In this book we prefer the direct tensor notation over the index one. When solv-
ing applied problems the tensor equations can be “translated into the language” of
matrices for a specified coordinate system. The purpose of this Appendix is to give
a brief guide to notations and rules of the tensor calculus applied throughout this
book. For more comprehensive overviews on tensor calculus we recommend Betten
(1987), de Boer (1982), Giesekus (1994), Lebedev et al. (2010), Lippmann (1993),
Lurie (1990), Trostel (1993), Zhilin (2001). The calculus of matrices is presented in
Bellmann (1970), Faddejew and Faddejewa (1964), Zurmühl and Falk (1992), for
example. AppendixA provides a summary of basic algebraic operations with vectors
and second rank tensors. Several rules from tensor analysis are given in Appendix B.
Basic sets of invariants for different groups of symmetry transformation are presented
in Sect.B.5, where a novel approach to find the functional basis is discussed.

A.1 Polar and Axial Vectors

A vector in the three-dimensional Euclidean space is defined as a directed line
segment with specified scalar-valued magnitude and direction. The magnitude (the
length) of a vector aaa is denoted by |aaa|. Two vectors aaa and bbb are equal if they have the
same direction and the same magnitude. The zero vector 000 has a magnitude equal to
zero. In mechanics two types of vectors can be introduced.

The vectors of the first type are directed line segments. These vectors are asso-
ciated with translations in the three-dimensional space. Examples for polar vectors
include the force, the displacement, the velocity, the acceleration, the momentum,

∗∗∗

(a) (b) (c)

aaa

aaa

aaa aaa

aaa

Fig. A.1 Spin vector and its representation by an axial vector. a Spin vector, b axial vector in the
right-screw oriented reference frame, c axial vector in the left-screw oriented reference frame
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etc. The second type is used to characterize spinor motions and related quantities, i.e.
the moment, the angular velocity, the angular momentum, etc., Fig.A.1a shows the
so-called spin vector aaa∗ which represents a rotation about the given axis. The direc-
tion of rotation is specified by the circular arrow and the “magnitude” of rotation is
the corresponding length. For the given spin vector aaa∗ the directed line segment aaa is
introduced according to the following rules (Zhilin 2001):

1. the vector aaa is placed on the axis of the spin vector,
2. the magnitude of aaa is equal to the magnitude of aaa∗,
3. the vector aaa is directed according to the right-handed screw, Fig.A.1b, or the

left-handed screw, Fig.A.1c

The selection of one of the two cases in of the third item corresponds to the convention
of orientation of the reference frame (Zhilin 2001). The directed line segment is called
a polar vector if it does not change by changing the orientation of the reference frame.
The vector is called to be axial if it changes the sign by changing the orientation of the
reference frame. The above definitions are valid for scalars and tensors of any rank
too. The axial vectors (and tensors) are widely used in the rigid body dynamics, e.g.
Altenbach et al. (2007), Zhilin (1996), in the theories of rods, plates and shells, e.g.
Altenbach and Zhilin (1988), Naumenko and Eremeyev (2014), in the asymmetric
theory of elasticity, e.g. Nowacki (1986), as well as in dynamics of micro-polar
media, e.g. Altenbach et al. (2003), Eringen (1999). When dealing with polar and
axial vectors it should be remembered that they have different physical meanings.
Therefore, a sum of a polar and an axial vector has no sense.

A.2 Operations with Vectors

A.2.1 Addition

For a given pair of vectors aaa and bbb of the same type the sum ccc = aaa + bbb is defined
according to one of the rules in Fig.A.2. The sum has the following properties

• aaa + bbb = bbb + aaa (commutativity),
• (aaa + bbb) + ccc = aaa + (bbb + ccc) (associativity),
• aaa + 000 = aaa

(a) (b)

aaa aaa

bbb

bbb

ccc ccc

Fig. A.2 Addition of two vectors. a Parallelogram rule, b triangle rule
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A.2.2 Multiplication by a Scalar

For any vector aaa and for any scalar α a vector bbb = αaaa is defined in such a way that

• |bbb| = |α||aaa|,
• for α > 0 the direction of bbb coincides with that of aaa,
• for α < 0 the direction of bbb is opposite to that of aaa.

For α = 0 the product yields the zero vector, i.e. 000 = 0aaa. It is easy to verify that

α(aaa + bbb) = αaaa + αbbb,

(α + β)aaa = αaaa + βaaa

A.2.3 Scalar (Dot) Product of Two Vectors

For any pair of vectors aaa and bbb a scalar α is defined by

α = aaa ··· bbb = |aaa||bbb| cosϕ,

where ϕ is the angle between the vectors aaa and bbb. As ϕ one can use any of the two
angles between the vectors, Fig.A.3a. The properties of the scalar product are

• aaa ··· bbb = bbb ··· aaa (commutativity),
• aaa ··· (bbb + ccc) = aaa ··· bbb + aaa ··· ccc (distributivity)

Two nonzero vectors are said to be orthogonal if their scalar product is zero. The unit
vector directed along the vector aaa is defined by (see Fig.A.3b)

nnnaaa = aaa

|aaa|

(a) (b)

aaa

bbb bbb

aaannnaaa
aaa
aaa

bbb aaa nnnaaa

Fig. A.3 Scalar product of two vectors. a Angles between two vectors, b unit vector and projection
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(a) (b) (c)

bbbaaa bbb bbbaaa aaa

ccc

ccc

Fig. A.4 Vector product of two vectors. a Plane spanned on two vectors, b spin vector, c axial
vector in the right-screw oriented reference frame

The projection of the vector bbb onto the vector aaa is the vector (bbb ··· aaa)nnnaaa , Fig. A.3b.
The length of the projection is |bbb|| cosϕ|.

A.2.4 Vector (Cross) Product of Two Vectors

For the ordered pair of vectorsaaa andbbb the vectorccc = aaa×bbb is defined in two following
steps (Zhilin 2001):

• the spin vector ccc∗ is defined in such a way that

– the axis is orthogonal to the plane spanned on aaa and bbb, Fig.A.4a,
– the circular arrow shows the direction of the “shortest” rotation from aaa to bbb,
Fig.A.4b,

– the length is |aaa||bbb| sin ϕ, where ϕ is the angle of the “shortest” rotation from aaa
to bbb,

• from the resulting spin vector the directed line segment ccc is constructed according
to one of the rules listed in Sect.A.1.

The properties of the vector product are

aaa × bbb = −bbb × aaa,

aaa × (bbb + ccc) = aaa × bbb + aaa × ccc

The type of the vector ccc = aaa×bbb can be established for the known types of the vectors
aaa and bbb (Zhilin 2001). If aaa and bbb are polar vectors the result of the cross product will
be the axial vector. An example is the moment of momentum for a mass point m
defined by rrr × (mv̇vv), where rrr is the position of the mass point and vvv is the velocity
of the mass point. The next example is the formula for the distribution of velocities
in a rigid body vvv = ωωω × rrr . Here the cross product of the axial vector ωωω (angular
velocity) with the polar vector rrr (position vector) results in the polar vector vvv.
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The mixed product of three vectors aaa, bbb and ccc is defined by (aaa ×bbb) ··· ccc. The result
is a scalar. For the mixed product the following identities are valid

aaa ··· (bbb × ccc) = bbb ··· (ccc × aaa) = ccc ··· (aaa × bbb) (A.2.1)

If the cross product is applied twice, the first operation must be set in parentheses,
e.g., aaa × (bbb × ccc). The result of this operation is a vector. The following relation can
be applied

aaa × (bbb × ccc) = bbb(aaa ··· ccc) − ccc(aaa ··· bbb) (A.2.2)

By use of (A.2.1) and (A.2.2) one can calculate

(aaa × bbb) ··· (ccc × ddd) = aaa ··· [bbb × (ccc × ddd)]
= aaa ··· (ccc bbb ··· ddd − ddd bbb ··· ccc) (A.2.3)

= aaa ··· ccc bbb ··· ddd − aaa ··· ddd bbb ··· ccc

A.3 Bases

Any triple of linear independent vectors eee1, eee2, eee3 is called basis. A triple of vectors
eeei is linear independent if and only if eee1 ··· (eee2 × eee3) �= 0. For a given basis eeei any
vector aaa can be represented as follows

aaa = a1eee1 + a2eee2 + a3eee3 ≡ aieeei

The numbers ai are called the coordinates of the vector aaa for the basis eeei . In order
to compute the coordinates ai the dual (reciprocal) basis eeek is introduced in such a
way that

eeek ··· eeei = δk
i =

{
1, k = i,
0, k �= i

δk
i is the Kronecker symbol. The coordinates ai can be found by

eeei ··· aaa = aaa ··· eeei = ameeem · eeei = amδi
m = ai

For the selected basis eeei the dual basis can be found from

eee1 = eee2 × eee3
(eee1 × eee2) ··· eee3

, eee2 = eee3 × eee1
(eee1 × eee2) ··· eee3

, eee3 = eee1 × eee2
(eee1 × eee2) ··· eee3

(A.3.4)
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By use of the dual basis a vector aaa can be represented as follows

aaa = a1eee
1 + a2eee

2 + a3eee
3 ≡ aieee

i , am = aaa ··· eeem, am �= am

In the special case of the orthonormal vectors eeei , i.e. |eeei | = 1 and eeei ··· eeek = 0 for
i �= k, from (A.3.4) follows that eeek = eeek and consequently ak = ak .

A.4 Operations with Second Rank Tensors

A second rank tensor is a finite sum of ordered vector pairs AAA = aaa ⊗bbb +· · ·+ccc ⊗ddd.
One ordered pair of vectors is called the dyad (Wilson 1901). The symbol⊗ is called
the dyadic (tensor) product of two vectors. A single dyad or a sum of two dyads are
special cases of the second rank tensor. Any finite sum of more than three dyads can
be reduced to a sum of three dyads. For example, let

AAA =
n∑

i=1

aaa(i) ⊗ bbb(i)

be a second rank tensor. Introducing a basis eeek the vectors aaa(i) can be represented by
aaa(i) = ak

(i)eeek , where ak
(i) are coordinates of the vectors aaa(i). Now we may write

AAA =
n∑

i=1

ak
(i)eeek ⊗ bbb(i) = eeek ⊗

n∑

i=1

ak
(i)bbb(i) = eeek ⊗ dddk, dddk ≡

n∑

i=1

ak
(i)bbb(i)

A.4.1 Addition

The sumof two tensors is defined as the sumof the corresponding dyads. The sumhas
the properties of associativity and commutativity. In addition, the following operation
can be introduced

aaa ⊗ (bbb + ccc) = aaa ⊗ bbb + aaa ⊗ ccc, (aaa + bbb) ⊗ ccc = aaa ⊗ ccc + bbb ⊗ ccc

A.4.2 Multiplication by a Scalar

This operation is introduced first for one dyad. For any scalar α and any dyad aaa ⊗ bbb

α(aaa ⊗ bbb) = (αaaa) ⊗ bbb = aaa ⊗ (αbbb),

(α + β)aaa ⊗ bbb = αaaa ⊗ bbb + βaaa ⊗ bbb
(A.4.5)
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By setting α = 0 in the first equation of (A.4.5) the zero dyad can be defined, i.e.
0(aaa ⊗ bbb) = 000 ⊗ bbb = aaa ⊗ 000. The above operations can be generalized for any finite
sum of dyads, i.e. for second rank tensors.

A.4.3 Inner Dot Product

For any two second rank tensors AAA and BBB the inner dot product is specified by AAA ··· BBB.
The rule and the result of this operation can be explained in the special case of two
dyads, i.e. by setting AAA = aaa ⊗ bbb and BBB = ccc ⊗ ddd

AAA ··· BBB = aaa ⊗ bbb ··· ccc ⊗ ddd = (bbb ··· ccc)aaa ⊗ ddd = αaaa ⊗ ddd, α ≡ bbb ··· ccc

Note that in general AAA · BBB �= BBB · AAA. This can be again verified for two dyads. The
operation can be generalized for two second rank tensors as follows

AAA ··· BBB =
3∑

i=1

aaa(i) ⊗ bbb(i) ···
3∑

k=1

ccc(k) ⊗ ddd(k)

=
3∑

i=1

3∑

k=1

(bbb(i) ··· ccc(k))aaa(i) ⊗ ddd(k) =
3∑

i=1

3∑

k=1

α(ik)aaa(i) ⊗ ddd(k)

with α(ik) ≡ bbb(i) ··· ccc(k). The result of this operation is a second rank tensor.

A.4.4 Transpose of a Second Rank Tensor

The transpose of a second rank tensor AAA is defined as follows

AAAT =
(

3∑

i=1

aaa(i) ⊗ bbb(i)

)T

=
3∑

i=1

bbb(i) ⊗ aaa(i)

A.4.5 Double Inner Dot Product

For any two second rank tensors AAA and BBB the double inner dot product is specified
by AAA ······ BBB. The result of this operation is a scalar. This operation can be explained for
two dyads AAA = aaa ⊗ bbb and BBB = ccc ⊗ ddd as follows

AAA ······ BBB = aaa ⊗ bbb ······ ccc ⊗ ddd = (bbb ··· ccc)(aaa ··· ddd)
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By analogy to the inner dot product one can generalize this operation for two second
rank tensors. It can be verified that AAA······BBB = BBB ······ AAA for arbitrary second rank tensors AAA
and BBB. For a second rank tensor AAA and for a dyad aaa ⊗bbb the double inner dot product
yields

AAA ······ aaa ⊗ bbb = bbb ··· AAA ··· aaa (A.4.6)

A scalar product of two second rank tensors AAA and BBB is defined by

α = AAA ······ BBBT

One can verify that
AAA ······ BBBT = BBBT ······ AAA = BBB ······ AAAT

A.4.6 Dot Products of a Second Rank Tensor and a Vector

The right dot product of a second rank tensor AAA and a vector ccc is defined by

AAA ··· ccc =
(

3∑

i=1

aaa(i) ⊗ bbb(i)

)

··· ccc =
3∑

i=1

(bbb(i) ··· ccc)aaa(i) =
3∑

i=1

α(i)aaa(i)

with α(i) ≡ bbb(i) ··· ccc. The left dot product is defined by

ccc ··· AAA = ccc ···
(

3∑

i=1

aaa(i) ⊗ bbb(i)

)

=
3∑

i=1

(ccc ··· aaa(i))bbb(i) =
3∑

i=1

β(i)bbb(i)

with β(i) ≡ ccc ··· aaa(i). The results of these operations are vectors. One can verify that

AAA ··· ccc �= ccc ··· AAA, AAA ··· ccc = ccc ··· AAAT

A.4.7 Cross Products of a Second Rank Tensor and a Vector

The right cross product of a second rank tensor AAA and a vector ccc is defined by

AAA × ccc =
(

3∑

i=1

aaa(i) ⊗ bbb(i)

)

× ccc =
3∑

i=1

aaa(i) ⊗ (bbb(i) × ccc) =
3∑

i=1

aaa(i) ⊗ ddd(i)

with ddd(i) ≡ bbb(i) × ccc. The left cross product is defined by
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ccc × AAA = ccc ×
(

3∑

i=1

aaa(i) ⊗ bbb(i)

)

=
3∑

i=1

(ccc × aaa(i)) ⊗ bbb(i) =
3∑

i=1

eee(i) ⊗ bbb(i)

with eee(i) ≡ bbb(i) × ccc. The results of these operations are second rank tensors. It can
be shown that

AAA × ccc = −[ccc × AAAT]T

A.4.8 Trace

The trace of a second rank tensor is defined by

tr AAA = tr

(
3∑

i=1

aaa(i) ⊗ bbb(i)

)

=
3∑

i=1

aaa(i) ··· bbb(i)

By taking the trace of a second rank tensor the dyadic product is replaced by the dot
product. It can be shown that

tr AAA = tr AAAT, tr (AAA ··· BBB) = tr (BBB ··· AAA) = tr (AAAT ··· BBBT) = AAA ······ BBB

A.4.9 Symmetric Tensors

A second rank tensor is said to be symmetric if it satisfies the following equality

AAA = AAAT

An alternative definition of the symmetric tensor can be given as follows. A second
rank tensor is said to be symmetric if for any vector ccc �= 000 the following equality is
valid

ccc ··· AAA = AAA · ccc

An important example of a symmetric tensor is the unit or identity tensor III , which
is defined by such a way that for any vector ccc

ccc ··· III = III ··· ccc = ccc

The representations of the identity tensor are

III = eeek ⊗ eeek = eeek ⊗ eeek
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for any basis eeek and eeek , eeek ··· eeem = δm
k . For three orthonormal vectors mmm, nnn and ppp the

identity tensor has the form

III = nnn ⊗ nnn + mmm ⊗ mmm + ppp ⊗ ppp

A symmetric second rank tensor PPP satisfying the condition PPP ··· PPP = PPP is called
projector. Examples of projectors are

mmm ⊗ mmm, nnn ⊗ nnn + ppp ⊗ ppp = III − mmm ⊗ mmm,

wheremmm, nnn and ppp are orthonormal vectors. The result of the dot product of the tensor
mmm ⊗ mmm with any vector aaa is the projection of the vector aaa onto the line spanned on
the vector mmm, i.e. mmm ⊗ mmm ··· aaa = (aaa ··· mmm)mmm. The result of (nnn ⊗ nnn + ppp ⊗ ppp) ··· aaa is the
projection of the vector aaa onto the plane spanned on the vectors nnn and ppp.

A.4.10 Skew-Symmetric Tensors

A second rank tensor is said to be skew-symmetric if it satisfies the following equality

AAA = −AAAT

or if for any vector ccc �= 000

ccc ··· AAA = −AAA · ccc

Any skew-symmetric tensor AAA can be represented by

AAA = aaa × III = III × aaa

The vector aaa is called the associated vector. Any second rank tensor can be uniquely
decomposed into the symmetric and skew-symmetric parts

AAA = 1

2

(
AAA + AAAT

) + 1

2

(
AAA − AAAT

) = AAA1 + AAA2,

AAA1 = 1

2

(
AAA + AAAT

)
, AAA1 = AAAT

1 ,

AAA2 = 1

2

(
AAA − AAAT) , AAA2 = −AAAT

2
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A.4.11 Linear Transformations of Vectors

A vector valued function of a vector argument fff (aaa) is called to be linear if fff (α1aaa1 +
α2aaa2) = α1 fff (aaa1) + α2 fff (aaa2) for any two vectors aaa1 and aaa2 and any two scalars α1

and α2. It can be shown that any linear vector valued function can be represented by
fff (aaa) = AAA ··· aaa, where AAA is a second rank tensor. In many textbooks, e.g. Antman
(1995), Smith (1993), a second rank tensor AAA is defined to be the linear transformation
of the vector space into itself.

A.4.12 Determinant and Inverse of a Second Rank Tensor

Let aaa, bbb and ccc be arbitrary linearly-independent vectors. The determinant of a second
rank tensor AAA is defined by

det AAA = (AAA ··· aaa) ··· [(AAA ··· bbb) × (AAA ··· ccc)]
aaa ··· (bbb × ccc)

(A.4.7)

The following identities can be verified

det(AAAT) = det(AAA),

det(AAA ··· BBB) = det(AAA) det(BBB)

The inverse of a second rank tensor AAA−1 is introduced as the solution of the following
equation

AAA−1 ··· AAA = AAA ··· AAA−1 = III

AAA is invertible if and only if det AAA �= 0. A tensor AAA with det AAA = 0 is called singular.
Examples for singular tensors are projectors.

Applying (A.4.7) one may derive the following identities valid for a non-singular
tensor AAA and vectors aaa and bbb (Zhilin 2001)

det AAAAAA−T ··· (aaa × bbb) = (AAA ··· aaa) × (AAA ··· bbb),

det AAAAAA−T ··· (aaa × III ) ··· AAA−1 = (AAA ··· aaa) × III
(A.4.8)

A.4.13 Principal Values and Directions of Symmetric Second
Rank Tensors

Consider a dot product of a second rank tensor AAA and a unit vector nnn. The resulting
vector aaa = AAA ··· nnn differs in general from nnn both by the length and the direction.
However, one can find those unit vectors nnn, for which AAA ··· nnn is collinear with nnn, i.e.
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only the length of nnn is changed. Such vectors can be found from the equation

AAA ··· nnn = λnnn or (AAA − λIII ) ··· nnn = 000 (A.4.9)

The unit vector nnn is called the principal vector (principal direction) and the scalar
λ the principal value of the tensor AAA. The problem to find the principal values and
principal directions of Eq. (A.4.9) is the eigen-value problem for AAA. The principal
values are the eigen-values, the principal directions are the eigen-directions.

Let AAA be a symmetric tensor. In this case the principal values are real numbers and
there exist at least three mutually orthogonal principal vectors. The principal values
can be found as roots of the characteristic polynomial

det(AAA − λIII ) = −λ3 + J1(AAA)λ2 − J2(AAA)λ + J3(AAA) = 0 (A.4.10)

Here Ji (AAA)(i = 1, 2, 3) are the principal invariants of the tensor AAA

J1(AAA) = tr AAA,

J2(AAA) = 1

2
[(tr AAA)2 − tr AAA2],

J3(AAA) = det AAA = 1

6
(tr AAA)3 − 1

2
tr AAAtr AAA2 + 1

3
tr AAA3

(A.4.11)

The principal values are specified by λI , λI I , λI I I . The following three cases can
be introduced

• three distinct values λi , i = I, I I, I I I , i.e. λI �= λI I �= λI I I , or
• one single value and one double solution, e.g. λI = λI I �= λI I I , or
• one triple solution λI = λI I = λI I I

For a fixed solution λi , i = I, I I, I I I the eigen-directions can be found from

(AAA − λi III ) ··· nnn(i) = 000 (A.4.12)

The eigen-direction is defined with respect to an arbitrary scalar multiplier.
For known principal values and principal directions the second rank tensor can

be represented as follows (spectral representation)

AAA = λInnnI ⊗ nnnI + λI InnnI I ⊗ nnnI I + λI I InnnI I I ⊗ nnnI I I for λI �= λI I �= λI I I ,

AAA = λI (III − nnnI I I ⊗ nnnI I I ) + λI I InnnI I I ⊗ nnnI I I for λI = λI I �= λI I I ,

AAA = λIII for λI = λI I = λI I I = λ

A.4.14 Cayley-Hamilton Theorem

Any second rank tensor satisfies the following equation
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AAA3 − J1(AAA)AAA2 + J2(AAA)AAA − J3(AAA)III = 000, (A.4.13)

where AAA2 = AAA ··· AAA, AAA3 = AAA ··· AAA ··· AAA. The Cayley-Hamilton theorem can be
applied to compute the powers of a tensor higher than two or negative powers of
a non-singular tensor. For example, the fourth power of AAA can be computed by
multiplying (A.4.13) by AAA

AAA4 − J1(AAA)AAA3 + J2(AAA)AAA2 − J3(AAA)AAA = 000

After eliminating the third power we get

AAA4 = (
J 2
1 (AAA) − J2(AAA)

)
AAA2 +

(
J3(AAA) − J1(AAA)J2(AAA)

)
AAA + J1(AAA)J3(AAA)III

For a non-singular tensor AAA (det AAA �= 0) the inverse can be computed by multiplying
(A.4.13) by AAA−1. As a result one obtains

AAA−1 = [
AAA2 − J1(AAA)AAA + J2(AAA)III

] 1

J3(AAA)

A.4.15 Vector Invariant

The vector invariant or “Gibbsian Cross” of a second rank tensor AAA is defined by

AAA× =
(

3∑

i=1

aaa(i) ⊗ bbb(i)

)

×
=

3∑

i=1

aaa(i) × bbb(i)

The result of this operation is a vector. The vector invariant of a symmetric tensor is
the zero vector. The following identities can be verified

(aaa × III )× = −2aaa,

aaa × III × bbb = bbb ⊗ aaa − (aaa ··· bbb)III
(A.4.14)

For any vector aaa and any second rank tensor BBB the following identity is valid

(aaa × BBB)× = BBB ··· aaa − (tr BBB)aaa, (BBB × aaa)× = BBBT ··· aaa − (tr BBB)aaa (A.4.15)

For any vectoraaa and symmetric tensors AAA, BBB the following identity can be established
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[(AAA × aaa) ··· BBB]× = [AAA ··· (aaa × BBB)]× = CCC ··· aaa,

CCC =
3∑

i=1

λA
i

AAA

nnni ×BBB× AAA

nnni=
3∑

i=1

λB
i

BBB

nnni ×AAA× BBB

nnni

= [tr (AAA ··· BBB) − tr AAAtr BBB]III + (tr BBB)AAA + (tr AAA)BBB − AAA ··· BBB − BBB ··· AAA,

(A.4.16)

where λA
i and λB

i are principal values of the tensors AAA and BBB, respectively. The

othonormal vectors
AAA

nnni and
BBB

nnni are corresponding principal directions.

A.4.16 Coordinates of Second Rank Tensors

Let eeei be a basis and eeek the dual basis. Any two vectors aaa and bbb can be represented
as follows

aaa = aieeei = a jeee
j , bbb = bleeel = bmeeem

A dyad aaa ⊗ bbb has the following representations

aaa ⊗ bbb = ai b jeeei ⊗ eee j = ai b jeeei ⊗ eee j = ai b jeee
i ⊗ eee j = ai b

jeeei ⊗ eee j

For the representation of a second rank tensor AAA one of the following four bases can
be used

eeei ⊗ eee j , eeei ⊗ eee j , eeei ⊗ eee j , eeei ⊗ eee j

With these bases one can write

AAA = Ai jeeei ⊗ eee j = Ai jeee
i ⊗ eee j = Ai∗

∗ jeeei ⊗ eee j = A∗ j
i∗ eeei ⊗ eee j

For a selected basis the coordinates of a second rank tensor can be computed as
follows

Ai j = eeei ··· AAA · eee j , Ai j = eeei ··· AAA · eee j ,

Ai∗
∗ j = eeei ··· AAA · eee j , A∗ j

i∗ = eeei ··· AAA · eee j

A.4.17 Orthogonal Tensors

A second rank tensor QQQ is said to be orthogonal if it satisfies the equation

QQQT ··· QQQ = III

If QQQ operates on a vector, its length remains unchanged, i.e. let bbb = QQQ ··· aaa, then
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|bbb|2 = bbb ··· bbb = aaa ··· QQQT ··· QQQ ··· aaa = aaa ··· aaa = |aaa|2

Furthermore, the orthogonal tensor does not change the scalar product of twoarbitrary
vectors. For two vectors aaa and bbb as well as aaa′ = QQQ ··· aaa and bbb′ = QQQ ··· bbb one can
calculate

aaa′ ··· bbb′ = aaa ··· QQQT ··· QQQ ··· bbb = aaa ··· bbb

From the definition of the orthogonal tensor follows

QQQT = QQQ−1, QQQT ··· QQQ = QQQ ··· QQQT = III ,
det(QQQ ··· QQQT) = (det QQQ)2 = det III = 1 ⇒ det QQQ = ±1

Orthogonal tensors with det QQQ = 1 are called proper orthogonal or rotation tensors.
The rotation tensors are widely used in the rigid body dynamics, e.g. Zhilin (1996),
and in the theories of rods, plates and shells, e.g. Altenbach and Zhilin (1988),
Antman (1995).

Any orthogonal tensor is either the rotation tensor or the composition of the
rotation and the tensor −III . Let PPP be a rotation tensor, det PPP = 1, then an orthogonal
tensor QQQ with det QQQ = −1 can be composed by

QQQ = (−III ) ··· PPP = PPP ··· (−III ), det QQQ = det(−III ) det PPP = −1

For any two orthogonal tensors QQQ1 and QQQ2 the composition QQQ3 = QQQ1 ··· QQQ2 is the
orthogonal tensor, too. This property is used in the theory of symmetry and symmetry
groups, e.g. Nye (1992), Zheng and Boehler (1994). Two important examples for
orthogonal tensors are the

• rotation tensor about a fixed axis

QQQ(ϕmmm) = mmm ⊗ mmm + cosϕ(III − mmm ⊗ mmm) + sin ϕmmm × III , det QQQ = 1, (A.4.17)

where the unit vector mmm represents the axis and ϕ is the angle of rotation,
• reflection tensor

QQQ = III − 2nnn ⊗ nnn, det QQQ = −1, (A.4.18)

where the unit vector nnn represents the normal to the mirror plane.

One can prove the following identities (Zhilin 2001)

(QQQ ··· aaa) × (QQQ ··· bbb) = det QQQQQQ ··· (aaa × bbb), (A.4.19)

QQQ ··· (aaa × QQQT) = QQQ ··· (aaa × III ) ··· QQQT = det QQQ [(QQQ ··· aaa) × III ] (A.4.20)
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A.4.18 Polar Decomposition

Any regular second rank tensor AAA with det AAA > 0 can be represented in a unique
manner as following polar decompositions of the positive-semidefinite symmetric
tensors UUU or VVV and a rotation tensor RRR

AAA = RRR · UUU = VVV · RRR (A.4.21)

RRR · UUU is the right and VVV · RRR the left polar decomposition. The following statements
are valid

• RRR is the proper orthogonal tensor: RRR · RRRT = III , det RRR = +1.
• UUU and VVV are symmetric, positive-semidefinite tensors:

UUU = UUUT, VVV = VVV T, (UUU · aaa) · aaa > 0, (VVV · bbb) · bbb > 0

aaa,bbb are arbitrary non-zero vectors.
• UUU , VVV can be uniquely computed from FFF .
• The eigen-values of the tensors UUU and VVV are the same. If ηηη is an eigen-vector of

UUU , then RRR · ηηη is an eigen-vector of VVV .

The proof of the statements is elementary. For any tensor AAA and vector aaa �= 000 we
can write

(AAA · aaa) ··· (AAA · aaa) = aaa ··· (
AAAT · AAA

) · aaa > 0

Hence AAAT · AAA is a symmetric positive-semidefinite tensor. Therefore the tensorsUUU =(
AAAT · AAA

)1/2
andUUU−1 are also symmetric and positive-semidefinite. The orthogonality

of RRR follows from

RRR ··· RRRT = (
AAA ··· UUU−1) ··· (

AAA · UUU−1)T = AAA · UUU−2 · AAAT = AAA · (
UUU 2)−1 · AAAT

= AAA · (
AAAT · AAA

)−1 · AAAT = AAA ·
[

AAA−1 · (
AAAT

)−1
]

· AAAT

= (
AAA · AAA−1

) ·
[(

AAAT
)−1 · AAAT

]
= III · III = III

With det FFF > 0 we obtain detUUU−1 > 0 and it follows det RRR = det AAAdetUUU−1 > 0.
The orthogonality condition RRR ··· RRRT = III yields det

(
RRR ··· RRRT) = (det RRR)2 = +1

and det RRR = +1. The proof of the uniqueness can be given as follows. From AAA =
RRR ··· UUU = RRR1 ··· UUU 1 it follows (RRR ··· UUU )T = (RRR1 ··· UUU 1)

T. Hence

UUU = UUUT, UUU 1 = UUUT
1 , UUU ··· RRRT = UUU 1 ··· RRRT

1
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Finally,

UUU 2 = UUU ··· (
RRRT ··· RRR

) ··· UUU = (
UUU ··· RRRT

) ··· (RRR ··· UUU )

= (
UUU 1 ··· RRRT

1

) ··· (RRR1 ··· UUU 1) = UUU 1 ··· (
RRRT

1 ··· RRR1
) ··· UUU 1 = UUU 2

1,

thatmeansUUU = UUU 1. The proof of the second decomposition is similar. ForFFF = VVV ··· RRR
with VVV = (

FFF ··· FFFT
)1/2

we obtain

VVV 2 = FFF ··· FFFT = (RRR ··· UUU ) ··· (RRR ··· UUU )T = RRR ··· UUU 2 ··· RRRT = (RRR ··· UUU ) ··· (RRRT ··· RRR) ··· (UUU ··· RRRT)

= (
RRR ··· UUU ··· RRRT) ··· (

RRR ··· UUU ··· RRRT) = (
RRR ··· UUU ··· RRRT)2

,

VVV = RRR ··· UUU ··· RRRT =⇒ VVV ··· RRR = RRR ··· UUU ··· (
RRRT ··· RRR

) = RRR ··· UUU = FFF

If ηηη and λ are eigen-vector and eigen-value of UUU , then ληηη = UUU ··· ηηη and

λ(RRR ··· ηηη) = (RRR ··· UUU ) ··· ηηη = (VVV ··· RRR) ··· ηηη = VVV ··· (RRR ··· ηηη)

UUU and VVV have the same eigen-value λ and ηηη or RRR ··· ηηη are the eigen-vectors ofUUU and
VVV , respectively.
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Appendix B
Elements of Tensor Analysis

B.1 Coordinate Systems

The vector rrr characterizing the position of a point PPP can be represented by use of
the Cartesian coordinates xi as follows, Fig.B.1,

rrr(x1, x2, x3) = x1eee1 + x2eee2 + x3eee3 = xieeei

Instead of coordinates xi one can introduce any triple of curvilinear coordinates
q1, q2, q3 by means of one-to-one transformations

xk = xk(q1, q2, q3) ⇔ qk = qk(x1, x2, x3)

It is assumed that the above transformations are continuous and continuous differ-
entiable as many times as necessary and for the Jacobians

det

(
∂xk

∂qi

)
�= 0, det

(
∂qi

∂xk

)
�= 0

must be valid. With these assumptions the position vector can be considered as a
function of curvilinear coordinates qi , i.e. rrr = rrr(q1, q2, q3). Surfaces q1 = const,
q2 = const, and q3 = const, Fig.B.1, are called coordinate surfaces. For given fixed
values q2 = q2∗ and q3 = q3∗ a curve can be obtained along which only q1 varies.
This curve is called the q1-coordinate line, Fig.B.1. Analogously, one can obtain the
q2- and q3-coordinate lines.

The partial derivatives of the position vector with respect the to selected coordi-
nates

rrr1 = ∂rrr

∂q1
, rrr2 = ∂rrr

∂q2
, rrr3 = ∂rrr

∂q3
, rrr1 ··· (rrr2 × rrr3) �= 0

© Springer International Publishing Switzerland 2016
K. Naumenko and H. Altenbach, Modeling High Temperature
Materials Behavior for Structural Analysis, Advanced Structured Materials 28,
DOI 10.1007/978-3-319-31629-1
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eee

rrr

rrr

rrr

rrr

eee eee

Fig. B.1 Cartesian and curvilinear coordinates

define the tangential vectors to the coordinate lines in a point P , Fig.B.1. The vectors
rrr i are used as the local basis in the point P . By use of (A.3.4) the dual basis rrrk can be
introduced. The vector drrr connecting the point P with a point P ′ in the differential
neighborhood of P is defined by

drrr = ∂rrr

∂q1
dq1 + ∂rrr

∂q2
dq2 + ∂rrr

∂q3
dq3 = rrrkdqk

The square of the arc length of the line element in the differential neighborhood of
P is calculated by

ds2 = drrr ··· drrr = (rrr idqi ) ··· (rrrkdqk) = gikdqidqk,

where gik ≡ rrr i ··· rrrk are the so-called contravariant components of the metric tensor.
With gik one can represent the basis vectors rrr i by the dual basis vectors rrrk as follows

rrr i = (rrr i ··· rrrk)rrr
k = gikrrr

k

Similarly
rrr i = (rrr i ··· rrrk)rrrk = gikrrrk, gik ≡ rrr i ··· rrrk,

where gik are termed covariant components of the metric tensor. For the selected
bases rrr i and rrrk the second rank unit tensor has the following representations

III = rrr i ⊗ rrr i = rrr i ⊗ gikrrrk = gikrrr i ⊗ rrrk = gikrrr
i ⊗ rrrk = rrr i ⊗ rrr i
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B.2 Hamilton (Nabla) Operator

Ascalar field is a functionwhich assigns a scalar to each spatial point P for the domain
of definition. Let us consider a scalar fieldϕ(rrr) = ϕ(q1, q2, q3). The total differential
of ϕ by moving from a point P to a point P ′ in the differential neighborhood is

dϕ = ∂ϕ

∂q1
dq1 + ∂ϕ

∂q2
dq2 + ∂ϕ

∂q3
dq3 = ∂ϕ

∂qk
dqk

Taking into account that dqk = drrr ··· rrrk

dϕ = drrr ··· rrrk ∂ϕ

∂qk
= drrr ··· ∇∇∇ϕ

The vector ∇∇∇ϕ is called the gradient of the scalar field ϕ and the invariant operator
∇∇∇ (the Hamilton or nabla operator) is defined by

∇∇∇ = rrrk ∂

∂qk

For a vector field aaa(rrr) one may write

daaa = (drrr ··· rrrk)
∂aaa

∂qk
= drrr ··· rrrk ⊗ ∂aaa

∂qk
= drrr ··· ∇∇∇ ⊗ aaa = (∇∇∇ ⊗ aaa)T ··· drrr ,

∇∇∇ ⊗ aaa = rrrk ⊗ ∂aaa

∂qk

The gradient of a vector field is a second rank tensor. The operation∇∇∇ can be applied
to tensors of any rank. For vectors the following additional operations are defined

divaaa ≡ ∇∇∇ ··· aaa = rrrk ··· ∂aaa

∂qk
,

rotaaa ≡ ∇∇∇ × aaa = rrrk × ∂aaa

∂qk

The divergence and the rotation (curl) of tensor fields of any rank higher 1 can be
calculated in a similar manner.

The following identities can be verified

∇∇∇ ⊗ rrr = rrrk ⊗ ∂rrr

∂qk
= rrrk ⊗ rrrk = III , ∇∇∇ ··· rrr = 3

For a scalar α, a vector aaa and for a second rank tensor AAA the following identities are
valid
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∇∇∇(αaaa) = rrrk⊗ ∂(αaaa)

∂qk
=

(
rrrk ∂α

∂qk

)
⊗ aaa+αrrrk⊗ ∂aaa

∂qk
= (∇∇∇α)⊗ aaa+α∇∇∇⊗ aaa, (B.2.1)

∇∇∇ ··· (AAA ··· aaa) = rrrk ··· ∂(AAA ··· aaa)

∂qk
= rrrk ··· ∂AAA

∂qk
··· aaa + rrrk ··· AAA ··· ∂aaa

∂qk
(B.2.2)

= (∇∇∇ ··· AAA) ··· aaa + AAA ······
(

∂aaa

∂qk
⊗ rrrk

)

= (∇∇∇ ··· AAA) ··· aaa + AAA ······ (∇∇∇ ⊗ aaa)T

For a second rank tensor AAA and a position vector rrr one can prove the following
identity

∇∇∇ ··· (AAA × rrr) = rrrk ··· ∂(AAA × rrr)

∂qk
= rrrk ··· ∂AAA

∂qk
× rrr + rrrk ··· AAA × ∂rrr

∂qk
(B.2.3)

= (∇∇∇ ··· AAA) × rrr + rrrk ··· AAA × rrrk = (∇∇∇ ··· AAA) × rrr − AAA×

Here we used the definition of the vector invariant as follows

AAA× = (
rrrk ⊗ rrrk ··· AAA

)
× = rrrk × (rrrk ··· AAA) = −rrrk ··· AAA × rrrk

B.3 Integral Theorems

Let ϕ(rrr), aaa(rrr) and AAA(rrr) be continuously differentiable scalar, vector and second
rank tensor fields. Let V be the volume of a bounded domain with a regular surface
A(V ) and nnn be the outer unit normal to the surface at rrr . The integral theorems can
be summarized as follows

• Gradient Theorems
∫

V

∇∇∇ϕ dV =
∫

A(V )

nnnϕ dA,

∫

V

∇∇∇ ⊗ aaa dV =
∫

A(V )

nnn ⊗ aaa dA, (B.3.4)

∫

V

∇∇∇ ⊗ AAA dV =
∫

A(V )

nnn ⊗ AAA dA

• Divergence Theorems
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∫

V

∇∇∇ ··· aaa dV =
∫

A(V )

nnn ··· aaa dA, (B.3.5)

∫

V

∇∇∇ ··· AAA dV =
∫

A(V )

nnn · AAA dA

• Curl Theorems
∫

V

∇∇∇ × aaa dV =
∫

A(V )

nnn × aaa dA, (B.3.6)

∫

V

∇∇∇ × AAA dV =
∫

A(V )

nnn × AAA dA

Based on the first equation in (B.3.5) and Eq. (B.2.2) the following formula can be
derived

∫

A(V )

nnn ··· AAA ··· aaa dA =
∫

V

∇∇∇ ··· (AAA ··· aaa)dV =
∫

V

[
(∇∇∇ ··· AAA) ··· aaa+AAA······(∇∇∇⊗aaa)T

]
dV (B.3.7)

With the second equation in (B.3.5) and Eq. (B.2.3) the following relation can be
obtained

∫

A(V )

rrr × (nnn ··· AAA)dA = −
∫

A(V )

nnn ··· AAA × rrrdA

= −
∫

V

∇∇∇ ··· (AAA × rrr)dV (B.3.8)

=
∫

V

[
rrr × (∇∇∇ ··· AAA) + AAA×

]
dV

B.4 Scalar-Valued Functions of Vectors
and Second Rank Tensors

Let ψ be a scalar valued function of a vector aaa and a second rank tensor AAA, i.e.
ψ = ψ(aaa, AAA). Introducing a basis eeei the function ψ can be represented as follows

ψ(aaa, AAA) = ψ(aieeei , Ai jeeei ⊗ eee j ) = ψ(ai , Ai j )
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The partial derivatives of ψ with respect to aaa and AAA are defined according to the
following rule

dψ = ∂ψ

∂ai
dai + ∂ψ

∂ Ai j
dAi j (B.4.9)

= daaa ··· eeei ∂ψ

∂ai
+ dAAA ······ eee j ⊗ eeei ∂ψ

∂ Ai j

In the coordinate-free form the above rule can be rewritten as follows

dψ = daaa ··· ∂ψ

∂aaa
+ dAAA ······

(
∂ψ

∂AAA

)T

= daaa ··· ψ,aaa + dAAA ······ (ψ,AAA)T (B.4.10)

with

ψ,aaa ≡ ∂ψ

∂aaa
= ∂ψ

∂ai
eeei , ψ,AAA ≡ ∂ψ

∂AAA
= ∂ψ

∂ Ai j
eeei ⊗ eee j

It can be verified that ψ,aaa and ψ,AAA are independent from the choice of the basis. As
an example let us calculate the partial derivatives of the function

ψ(aaa,bbb, AAA) = aaa ··· AAA ··· bbb

with respect to aaa, bbb and AAA. With

dψ = daaa ··· AAA ··· bbb + aaa ··· dAAA ··· bbb + aaa ··· AAA ··· dbbb

= daaa ··· AAA ··· bbb + dAAA ······ (bbb ⊗ aaa) + dbbb ··· (aaa ··· AAA)

= daaa ··· ψ,aaa + dAAA ······ (ψ,AAA)T + dbbb ··· ψ,bbb

we obtain
ψ,aaa = AAA ··· bbb, ψ,bbb = aaa ··· AAA, ψ,AAA = aaa ⊗ bbb

Let us calculate the derivatives of the functions J1(AAAk) = tr AAAk , k = 1, 2, 3 with
respect to AAA. With

J1(AAA) = AAA ······ III , J1(AAA2) = AAA ······ AAA, J1(AAA3) = AAA ······ (AAA ··· AAA)

we can write

dJ1(AAA) = dAAA ······ III , dJ1(AAA2) = 2dAAA ······ AAA, dJ1(AAA3) = 3dAAA ······ (AAA ··· AAA)

Consequently

J1(AAA),AAA = III , J1(AAA2),AAA = 2AAAT, J1(AAA3),AAA = 3AAA2T (B.4.11)
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With (B.4.11) the derivatives of principal invariants of a second rank tensor AAA can
be calculated as follows

J1(AAA),AAA = III ,

J2(AAA),AAA = J1(AAA)III − AAAT , (B.4.12)

J3(AAA),AAA = AAA2T − J1(AAA)AAAT + J2(AAA)III = J3(AAA)(AAAT )−1

To find the derivative of the function ψ(AAA) = ψ(J1(AAA), J2(AAA), J3(AAA)) with respect
to AAA we may write

dψ = dAAA ······
[

∂ψ

∂ J1

(
J1(AAA),AAA

)T + ∂ψ

∂ J2

(
J2(AAA),AAA

)T + ∂ψ

∂ J3

(
J3(AAA),AAA

)T
]

Taking into account (B.4.12) we obtain

ψ
(

J1(AAA), J2(AAA), J3(AAA)
)

,AAA
=

(
∂ψ

∂ J1
+ J1

∂ψ

∂ J2
+ J2

∂ψ

∂ J3

)
III (B.4.13)

−
(

∂ψ

∂ J2
+ J1

∂ψ

∂ J3

)
AAAT + ∂ψ

∂ J3
AAAT2

B.5 Orthogonal Transformations and Orthogonal
Invariants

Anapplication of the theory of tensor functions is to find a basic set of scalar invariants
for a given group of symmetry transformations, such that each invariant relative to
the same group is expressible as a single-valued function of the basic set. The basic
set of invariants is called functional basis. To obtain a compact representation for
invariants, it is required that the functional basis is irreducible in the sense that
removing any one invariant from the basis will imply that a complete representation
for all the invariants is no longer possible.

Such a problem arises in the formulation of constitutive equations for a given
group of material symmetries. For example, the strain energy density of an elastic
non-polar material is a scalar valued function of the second rank symmetric strain
tensor. In the theory of the Cosserat continuum two strain measures are introduced,
where the first strain measure is a polar tensor while the second one is an axial tensor,
e.g. Eringen (1999). The strain energy density of a thin elastic shell is a function of
two second rank tensors and one vector, e.g. Altenbach and Zhilin (1988), Altenbach
et al. (2005). In all cases the problem is to find a minimum set of functionally
independent invariants for the considered tensorial arguments.

For the theory of tensor functions we refer to Boehler (1987). Representations of
tensor functions are reviewed in Rychlewski and Zhang (1991), Zheng (1994). An
orthogonal transformation of a scalar α, a vector aaa and a second rank tensor AAA is
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defined by Altenbach and Zhilin (1988), Zhilin (1982)

α′ ≡ (det QQQ)ζ α, aaa′ ≡ (det QQQ)ζ QQQ ··· aaa, AAA′ ≡ (det QQQ)ζ QQQ ··· AAA ··· QQQT, (B.5.14)

where QQQ is an orthogonal tensor, ζ = 0 for absolute (polar) scalars, vectors and
tensors and ζ = 1 for axial ones. An example of the axial scalar is the mixed product
of three polar vectors, i.e. α = aaa ··· (bbb×ccc). A typical example of the axial vector is the
cross product of two polar vectors, i.e.ccc = aaa×bbb. An example of the second rank axial
tensor is the skew-symmetric tensorWWW = aaa× III , whereaaa is a polar vector. Consider a
group of orthogonal transformations S (e.g., the material symmetry transformations)
characterized by a set of orthogonal tensors QQQ. A scalar-valued function of a second
rank tensor f = f (AAA) is called to be an orthogonal invariant under the group S if

∀QQQ ∈ S : f (AAA′) = (det QQQ)η f (AAA), (B.5.15)

where η = 0 if values of f are absolute scalars and η = 1 if values of f are axial
scalars.

Any second rank tensor BBB can be decomposed into a symmetric and a skew-
symmetric part, i.e. BBB = AAA + aaa × III , where AAA is a symmetric tensor and aaa is an
associated vector. Therefore f (BBB) = f (AAA,aaa). If BBB is a polar (axial) tensor, then aaa
is an axial (polar) vector. For the set of symmetric second rank tensors and vectors
the definition of an orthogonal invariant (B.5.15) can be generalized as follows

∀QQQ ∈ S : f (AAA′
1, AAA′

2, . . . , AAA′
n,aaa′

1,aaa′
2, . . . ,aaa′

k)= (det QQQ)η f (AAA1, AAA2, . . . AAAn,aaa1,aaa2, . . . ,aaak)
(B.5.16)

B.6 Invariants for the Full Orthogonal Group

In Zhilin (2003) orthogonal invariants for different sets of second rank tensors and
vectors with respect to the full orthogonal group are presented. It is shown that
orthogonal invariants are integrals of a generic partial differential equation (basic
equations for invariants). Let us present two following examples

• Orthogonal invariants of a symmetric second rank tensor AAA are

Ik = tr AAAk, k = 1, 2, 3

Instead of Ik it is possible to use the principal invariants Jk defined by (A.4.11).
• Orthogonal invariants of a symmetric second rank tensor AAA and a vector aaa are

Ik = tr AAAk, k = 1, 2, 3, I4 = aaa ··· aaa, I5 = aaa ··· AAA ··· aaa,

I6 = aaa ··· AAA2 ··· aaa, I7 = aaa ··· AAA2 ··· (aaa × AAA ··· aaa)
(B.6.17)
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In the above set of invariants only 6 are functionally independent. The relation
between the invariants (so-called syzygy) can be formulated as follows

I27 =
∣∣∣∣∣
∣

I4 I5 I6
I5 I6 aaa ··· AAA3 ··· aaa
I6 aaa ··· AAA3 ··· aaa aaa ··· AAA4 ··· aaa

∣∣∣∣∣
∣
, (B.6.18)

where aaa ··· AAA3 ··· aaa and aaa ··· AAA4 ··· aaa can be expressed by Il , l = 1, . . . 6 applying the
Cayley-Hamilton theorem (A.4.13).

The set of invariants for a symmetric second rank tensor AAA and a vector aaa can be
applied for a non-symmetric second rank tensor BBB since it can be represented by
BBB = AAA + aaa × III , AAA = AAAT.

B.7 Invariants for the Transverse Isotropy Group

Transverse isotropy is an important type of the symmetry transformation due to a
variety of applications. Transverse isotropy is usually assumed in constitutive mod-
eling of fiber reinforced materials Altenbach et al. (2003a), Kröner et al. (2009), fiber
suspensions, Altenbach et al. (2003b, 2007), directionally solidified alloys, Mücke
andBernhardi (2003), deep drawing sheets, Betten (1976, 2001), forgingsNaumenko
and Gariboldi (2014), Gariboldi et al. (2016) and piezoelectric materials Schröder
andGross (2004). The invariants and generating sets for tensor-valued functions with
respect to different cases of transverse isotropy are discussed in Bruhns et al. (1999),
Xiao et al. (2000) (see also relevant references therein). In what follows we analyze
the problem of a functional basis within the theory of linear first order partial differ-
ential equations rather than the algebra of polynomials. Let us discuss the approach
proposed in Altenbach et al. (2006) for the invariants with respect to the group of
transverse isotropy. The invariants will be found as integrals of the generic partial
differential equations. Although a functional basis formed by these invariants does
not include any redundant element, functional relations between them may exist. It
may be therefore useful to find out simple forms of such relations. We show that the
proposed approach may supply results in a direct, natural manner.

B.7.1 Invariants for a Single Second Rank Symmetric Tensor

Consider the proper orthogonal tensor which represents a rotation about a fixed
axis, i.e.

QQQ(ϕmmm) = mmm ⊗mmm + cosϕ(III −mmm ⊗mmm) + sin ϕmmm × III , det QQQ(ϕmmm) = 1, (B.7.19)
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where mmm is assumed to be a constant unit vector (axis of rotation) and ϕ denotes
the angle of rotation about mmm. The symmetry transformation defined by this tensor
corresponds to the transverse isotropy, where five different cases are possible, e.g.
Spencer (1987), Zheng and Boehler (1994). Let us find scalar-valued functions of a
second rank symmetric tensor AAA satisfying the condition

f
(

AAA′(ϕ)
)
= f

(
QQQ(ϕmmm) ··· AAA ··· QQQT(ϕmmm)

)
= f (AAA), AAA′(ϕ) ≡ QQQ(ϕmmm) ··· AAA ··· QQQT(ϕmmm)

(B.7.20)
Equation (B.7.20) must be valid for any angle of rotation ϕ. In (B.7.20) only the
left-hand side depends on ϕ. Therefore its derivative with respect to ϕ can be set to
zero, i.e.

d f

dϕ
= dAAA′

dϕ
······

(
∂ f

∂AAA′

)T

= 0 (B.7.21)

The derivative of AAA′ with respect to ϕ can be calculated by the following rules

dAAA′(ϕ) = dQQQ(ϕmmm) ··· AAA ··· QQQT(ϕmmm) + QQQ(ϕmmm) ··· AAA ··· dQQQT(ϕmmm),

dQQQ(ϕmmm) = mmm × QQQ(ϕmmm)dϕ ⇒ dQQQT(ϕmmm) = −QQQT(ϕmmm) × mmm dϕ
(B.7.22)

By inserting the above equations into (B.7.21) we obtain

(mmm × AAA − AAA × mmm) ······
(

∂ f

∂AAA

)T

= 0 (B.7.23)

Equation (B.7.23) is classified in Courant andHilbert (1989) to be the linear homoge-
neous first order partial differential equation. The characteristic system of (B.7.23) is

dAAA

ds
= (mmm × AAA − AAA × mmm) (B.7.24)

Any system of n linear ordinary differential equations has not more than n − 1
functionally independent integrals (Courant and Hilbert 1989). By introducing a
basis eeei the tensor AAA can be written down in the form AAA = Ai jeeei ⊗ eee j and (B.7.24)
is a system of six ordinary differential equations with respect to the coordinates Ai j .
The five integrals of (B.7.24) may be written down as follows

gi (AAA) = ci , i = 1, 2, . . . , 5,

where ci are integration constants. Any function of the five integrals gi is the solution
of the partial differential equation (B.7.23). Therefore the five integrals gi represent
the invariants of the symmetric tensor AAA with respect to the symmetry transformation
(B.7.19). The solutions of (B.7.24) are

AAAk(s) = QQQ(smmm) ··· AAAk
0 ··· QQQT(smmm), k = 1, 2, 3, (B.7.25)
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where AAA0 plays the role of the initial condition. In order to find the integrals, the
variable s must be eliminated from (B.7.25). Taking into account the following
identities

tr (QQQ ··· AAAk ··· QQQT) = tr (QQQT ··· QQQ ··· AAAk) = tr AAAk, mmm ··· QQQ(smmm) = mmm,

(QQQ ··· aaa) × (QQQ ··· bbb) = (det QQQ)QQQ ··· (aaa × bbb)
(B.7.26)

and using the notation QQQm ≡ QQQ(smmm) the integrals can be found as follows

tr (AAAk) = tr (AAAk
0), k = 1, 2, 3,

mmm ··· AAAl ··· mmm = mmm ··· QQQm ··· AAAl
0 ··· QQQT

m ··· mmm
= mmm ··· AAAl

0 ··· mmm, l = 1, 2,
mmm ··· AAA2 ··· (mmm × AAA ········· mmm) = mmm ··· QQQm ··· AAA2

0 ··· QQQT
m ··· (mmm × QQQm ··· AAA0 ··· QQQT

m ··· mmm)

= mmm ··· AAA2
0 ··· QQQT

m ··· [
(QQQm ··· mmm) × (QQQm ··· AAA0 ··· mmm)

]

= mmm ··· AAA2
0 ··· (mmm × AAA0 ··· mmm)

(B.7.27)
As a result we can formulate the six invariants of the tensor AAA with respect to the
symmetry transformation (B.7.19) as follows

Ik = tr (AAAk), k = 1, 2, 3, I4 = mmm ··· AAA ··· mmm,

I5 = mmm ··· AAA2 ··· mmm, I6 = mmm ··· AAA2 ··· (mmm × AAA ········· mmm)
(B.7.28)

The invariants with respect to various symmetry transformations are discussed in
Bruhns et al. (1999). For the case of the transverse isotropy six invariants are derived
in Bruhns et al. (1999) by the use of another approach. In this sense our result
coincides with the result given in Bruhns et al. (1999). However, from the derivations
presented here it follows that only five invariants listed in (B.7.28) are functionally
independent. Taking into account that I6 is the mixed product of vectors mmm, AAA ··· mmm
and AAA2 ··· mmm the relation between the invariants can be written down as follows

I26 = det

⎡

⎣
1 I4 I5
I4 I5 mmm ··· AAA3 ··· mmm
I5 mmm ··· AAA3 ··· mmm mmm ··· AAA4 ··· mmm

⎤

⎦ (B.7.29)

One can verify thatmmm ··· AAA3 ··· mmm andmmm ··· AAA4 ··· mmm are transversely isotropic invariants, too.
However, applying the the Cayley-Hamilton theorem (A.4.13) they can be uniquely
expressed by I1, I2, . . . I5 in the following way (Betten 1987)

mmm ··· AAA3 ··· mmm = J1 I5 + J2 I4 + J3,

mmm ··· AAA4 ··· mmm = (J 2
1 + J2)I5 + (J1 J2 + J3)I4 + J1 J3,

where J1, J2 and J3 are the principal invariants of AAA defined by (A.4.11). Let us note
that the invariant I6 cannot be dropped. In order to verify this, it is enough to consider
two different tensors

AAA and BBB = QQQn ··· AAA ··· QQQT
n ,
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where

QQQn ≡ QQQ(πnnn) = 2nnn ⊗ nnn − III , nnn ··· nnn = 1, nnn ··· mmm = 0, det QQQn = 1

One can prove that the tensor AAA and the tensor BBB have the same invariants
I1, I2, . . . , I5. Taking into account that mmm ··· QQQn = −mmm and applying the last identity
in (B.7.26) we may write

I6(BBB) = mmm ··· BBB2 ··· (mmm × BBB ··· mmm) = mmm ··· AAA2 ··· QQQT
n ··· (mmm × QQQn ··· AAA ··· mmm)

= −mmm ··· AAA2 ··· (mmm × AAA ··· mmm) = −I6(AAA)

We observe that the only difference between the two considered tensors is the sign
of I6. Therefore, the triples of vectorsmmm, AAA ··· mmm, AAA2 ··· mmm andmmm, BBB ··· mmm, BBB2 ··· mmm have
different orientations and cannot be combined by a rotation. It should be noted that
the functional relation (B.7.29) would in no way imply that the invariant I6 should
be “dependent” and hence “redundant”, namely should be removed from the basis
(B.7.28). In fact, the relation (B.7.29) determines the magnitude but not the sign
of I6.

To describe yielding and failure of oriented solids a dyad MMM = vvv ⊗ vvv has been
used in Betten (1985), Boehler and Sawczuk (1977), where the vector vvv specifies a
privileged direction. A plastic potential is assumed to be an isotropic function of the
symmetric Cauchy stress tensor and the tensor generator MMM . Applying the represen-
tation of isotropic functions the integrity basis including ten invariants was found.
In the special case vvv = mmm the number of invariants reduces to the five I1, I2, . . . I5
defined by (B.7.28). Further details of this approach and applications in continuum
mechanics are given in Betten (2008), Boehler (1987). However, the problem state-
ment to find an integrity basis of a symmetric tensor AAA and a dyad MMM , i.e. to find
scalar valued functions f (AAA, MMM) satisfying the condition

f (QQQ ··· AAA ··· QQQT, QQQ ··· MMM ··· QQQT) = (det QQQ)η f (AAA, MMM),

∀QQQ, QQQ ··· QQQT = III , det QQQ = ±1
(B.7.30)

essentially differs from the problem statement (B.7.20). In order to show this we
take into account that the symmetry group of a dyad MMM , i.e. the set of orthogonal
solutions of the equation QQQ ··· MMM ··· QQQT = MMM includes the following elements

QQQ1,2 = ±III ,

QQQ3 = QQQ(ϕmmm), mmm = vvv

|vvv| , (B.7.31)

QQQ4 = QQQ(πnnn) = 2nnn ⊗ nnn − III , nnn ··· nnn = 1, nnn ··· vvv = 0,

where QQQ(ϕmmm) is defined by (B.7.19). The solutions of the problem (B.7.30) are at
the same time the solutions of the following problem
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f (QQQi ··· AAA ··· QQQT
i , MMM) = (det QQQi )

η f (AAA, MMM), i = 1, 2, 3, 4,

i.e. the problem to find the invariants of AAA relative to the symmetry group (B.7.31).
However, (B.7.31) includes much more symmetry elements if compared to the prob-
lem statement (B.7.20).

An alternative set of transversely isotropic invariants can be formulated by the
use of the following decomposition

AAA = αmmm ⊗ mmm + β(III − mmm ⊗ mmm) + AAApD + ttt ⊗ mmm + mmm ⊗ ttt, (B.7.32)

where α, β, AAApD and ttt are projections of AAA. With the projectors PPP1 = mmm ⊗ mmm and
PPP2 = III − mmm ⊗ mmm we may write

α = mmm ··· AAA ··· mmm = tr (AAA ··· PPP1),

β = 1

2
(tr AAA − mmm ··· AAA ··· mmm) = 1

2
tr (AAA ··· PPP2), (B.7.33)

AAApD = PPP2 ··· AAA ··· PPP2 − βPPP2,

ttt = mmm ··· AAA ··· PPP2

The decomposition (B.7.32) is the analogue to the following representation of a
vector aaa

aaa = III ··· aaa = mmm ⊗mmm ··· aaa + (III −mmm ⊗mmm) ··· aaa = ψmmm +τττ , ψ = aaa ··· mmm, τττ = PPP2 ··· aaa
(B.7.34)

Decompositions of the type (B.7.32) are applied in Bischoff-Beiermann and Bruhns
(1994), Bruhns et al. (1999). The projections introduced in (B.7.33) have the follow-
ing properties

tr (AAApD) = 0, AAApD ··· mmm = mmm ··· AAApD = 000, ttt ··· mmm = 0 (B.7.35)

With (B.7.32) and (B.7.35) the tensor equation (B.7.24) can be transformed to the
following system of equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dα

ds
= 0,

dβ

ds
= 0,

dAAApD

ds
= mmm × AAApD − AAApD × mmm,

dttt

ds
= mmm × ttt

(B.7.36)
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From the first two equations we observe that α and β are transversely isotropic invari-
ants. The third equation can be transformed to one scalar and one vector equation as
follows

dAAApD

ds
······ AAApD = 0 ⇒ d(AAApD ······ AAApD)

ds
= 0,

dbbb

ds
= mmm × bbb

with bbb ≡ AAApD ··· ttt . We observe that tr (AAA2
pD) = AAApD ······ AAApD is a transversely isotropic

invariant, too. Finally, we have to find the integrals of the following system

⎧
⎪⎨

⎪⎩

dttt

ds
= ttt × mmm,

dbbb

ds
= bbb × mmm

(B.7.37)

The solutions of (B.7.37) are

ttt(s) = QQQ(smmm) ··· ttt0, bbb(s) = QQQ(smmm) ··· bbb0,

where ttt0 and bbb0 play the role of initial conditions. The vectors ttt and bbb belong to
the plane of isotropy, i.e. ttt ··· mmm = 0 and bbb ··· mmm = 0. Therefore, one can verify the
following integrals

ttt ··· ttt = ttt0 ··· ttt0, bbb ··· bbb = bbb0 ··· bbb0, ttt ··· bbb = ttt0 ··· bbb0, (ttt × bbb) ··· mmm = (ttt0 × bbb0) ··· mmm
(B.7.38)

We found seven integrals, but only five of them are functionally independent. In order
to formulate the relation between the integrals we compute

bbb ··· bbb = ttt ··· AAA2
pD ··· ttt, ttt ··· bbb = ttt ··· AAApD ··· ttt

For any plane tensor AAAp satisfying the equations AAAp ··· mmm = mmm ··· AAAp = 000 the Cayley-
Hamilton theorem can be formulated as follows, see e.g. Boehler (1987)

AAA2
p − (tr AAAp)AAAp + 1

2

[
(tr AAAp)

2 − tr (AAA2
p)

]
(III − mmm ⊗ mmm) = 000

Since tr AAApD = 0 we have

2AAA2
pD = tr (AAA2

pD)(III − mmm ⊗ mmm), ttt ··· AAA2
pD ··· ttt = 1

2
tr (AAA2

pD)(ttt ··· ttt)

Because tr (AAA2
pD) and ttt ··· ttt are already defined, the invariant bbb ··· bbb can be omitted.

The vector ttt × bbb is spanned on the axis mmm. Therefore

ttt × bbb = γmmm, γ = (ttt × bbb) ··· mmm,

γ 2 = (ttt × bbb) ··· (ttt × bbb) = (ttt ··· ttt)(bbb ··· bbb) − (ttt ··· bbb)2
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Now we can summarize six invariants and one relation between them as follows

Ī1 = α, Ī2 = β, Ī3 = 1

2
tr (AAA2

pD), Ī4 = ttt ··· ttt = ttt ··· AAA ··· mmm,

Ī5 = ttt ··· AAApD ··· ttt, Ī6 = (ttt × AAApD ··· ttt) ··· mmm,

Ī 26 = Ī 24 Ī3 − Ī 25

(B.7.39)

Let us assume that the symmetry transformation QQQn ≡ QQQ(πnnn) belongs to the
symmetry group of the transverse isotropy, as it was made in Betten (2008), Boehler
(1987). In this case f (AAA′) = f (QQQn ··· AAA ··· QQQT

n ) = f (AAA) must be valid. Taking into
account that QQQn ··· mmm = −mmm we can write

α′ = α, β ′ = β, AAA′
pD = AAApD, ttt ′ = −QQQn ··· ttt

Therefore in (B.7.39) Ī ′
k = Īk , k = 1, 2, . . . , 5 and

Ī ′
6 = (ttt ′ × AAA′

pD ··· ttt ′) ··· mmm = (
(QQQn ··· ttt) × QQQn ··· AAApD ··· ttt

) ··· mmm

= (ttt × AAApD ··· ttt) ··· QQQn ··· mmm = −(ttt × AAApD ··· ttt) ··· mmm = − Ī6

Consequently

f (AAA′) = f ( Ī ′
1, Ī ′

2, . . . , Ī ′
5, Ī ′

6) = f ( Ī1, Ī2, . . . , Ī5,− Ī6)
⇒ f (AAA) = f ( Ī1, Ī2, . . . , Ī5, Ī 26 )

and Ī 26 can be omitted due to the last relation in (B.7.39).

B.7.2 Invariants for a Set of Vectors and Second
Rank Tensors

By setting QQQ = QQQ(ϕmmm) in (B.5.16) and taking the derivative of (B.5.16) with respect
to ϕ results in the following generic partial differential equation

n∑

i=1

(
∂ f

∂AAAi

)T

······ (mmm × AAAi − AAAi × mmm) +
k∑

j=1

∂ f

∂aaa j
··· (mmm × aaa j ) = 0 (B.7.40)

The characteristic system of (B.7.40) is

⎧
⎪⎪⎨

⎪⎪⎩

dAAAi

ds
= (mmm × AAAi − AAAi × mmm), i = 1, 2, . . . , n,

daaa j

ds
= mmm × aaa j , j = 1, 2, . . . , k

(B.7.41)
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The above system is a system of N ordinary differential equations, where N =
6n+3k is the total number of coordinates of AAAi andaaa j for a selected basis. The system
(B.7.41) has not more then N − 1 functionally independent integrals. Therefore we
can formulate:

Theorem B.1 A set of n symmetric second rank tensors and k vectors with N = 6n+
3k independent coordinates for a given basis has not more than N − 1 functionally
independent invariants for N > 1 and one invariant for N = 1 with respect to the
symmetry transformation QQQ(ϕmmm).

In essence, the proof of this theorem is given within the theory of linear first order
partial differential equations (Courant and Hilbert 1989).

As an example let us consider the set of a symmetric second rank tensor AAA and
a vector aaa. This set has eight independent invariants. For a visual perception it is
useful to keep in mind that the considered set is equivalent to

AAA, aaa, AAA ··· aaa, AAA2 ··· aaa

Therefore it is necessary to find the list of invariants, whose fixation determines this
set as a rigid whole. The generic equation (B.7.40) takes the form

(
∂ f

∂AAA

)T

······ (mmm × AAA − AAA × mmm) + ∂ f

∂aaa
··· (mmm × aaa) = 0 (B.7.42)

The characteristic system of (B.7.42) is

dAAA

ds
= mmm × AAA − AAA × mmm,

daaa

ds
= mmm × aaa (B.7.43)

This system of ninth order has eight independent integrals. Six of them are invariants
of AAA and aaa with respect to the full orthogonal group. They fix the considered set as
a rigid whole. The orthogonal invariants are defined by Eqs. (B.6.17) and (B.6.18).

Let us note that the invariant I7 in (B.6.17) cannot be ignored. To verify this it is
enough to consider two different sets

AAA, aaa and BBB = QQQ p ··· AAA ··· QQQT
p, aaa,

where QQQ p = III − 2ppp ⊗ ppp, ppp ··· ppp = 1, ppp ··· aaa = 0. One can prove that the invariants
I1, I2, . . . , I6 are the same for these two sets. The only difference is the invariant I7,
i.e. aaa ··· BBB2 ··· (aaa × BBB ··· aaa) = −aaa ··· AAA2 ··· (aaa × AAA ··· aaa). Therefore the triples of vectors
aaa, AAA ··· aaa, AAA2 ··· aaa and aaa, BBB ··· aaa, BBB2 ··· aaa have different orientations and cannot be
combined by a rotation. In order to fix the considered set with respect to the unit
vector mmm it is enough to fix the next two invariants

I8 = mmm ··· AAA ··· mmm, I9 = mmm ··· aaa (B.7.44)

The eight independent transversely isotropic invariants are (B.6.17), (B.6.18) and
(B.7.44).
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B.8 Invariants for the Orthotropic Symmetry Group

The orthogonal tensors

QQQ1 = 2nnn1 ⊗ nnn1 − III , QQQ2 ≡ nnn2 ⊗ nnn2 − III , det QQQ1 = det QQQ2 = 1

represent the rotations on the angle π about the axes nnn1 and nnn2. These tensors are
the symmetry elements of the orthotropic (orthorhombic) symmetry group. Let us
find the scalar-valued functions of a symmetric tensor AAA satisfying the following
conditions

f (QQQ1 ··· AAA ··· QQQT
1 ) = f (QQQ2 ··· AAA ··· QQQT

2 ) = f (AAA) (B.8.45)

Replacing the tensor AAA by the tensor QQQ2 ··· AAA ··· QQQT
2 we find that

f (QQQ1 ··· QQQ2 ··· AAA ··· QQQT
2 ··· QQQT

1 ) = f (QQQ2 ··· AAA ··· QQQT
2 ) = f (AAA) (B.8.46)

Consequently the tensor QQQ3 = QQQ1 ··· QQQ2 = 222nnn3 ⊗ nnn3 − III = QQQ(πnnn3) belongs to
the symmetry group, where the unit vector nnn3 is orthogonal to nnn1 and nnn2. Consider
three tensors AAA′

i formed from the tensor AAA by three symmetry transformations i.e.,
AAA′

i ≡ QQQi ··· AAA ··· QQQT
i . Taking into account that QQQi ··· nnni = nnni (no summation over i)

and QQQi ··· nnn j = −nnn j , i �= j we can write

tr (AAA′k
i ) = tr (AAAk), k = 1, 2, 3, i = 1, 2, 3,

nnni ··· AAA′
i ··· nnni = nnni ··· QQQi ··· AAA ··· QQQT

i ··· nnni

= nnni ··· AAA ··· nnni , i = 1, 2, 3, (B.8.47)

nnni ··· AAA′2
i ··· nnni = nnni ··· QQQi ··· AAA2 ··· QQQT

i ··· nnni

= nnni ··· AAA2 ··· nnni , i = 1, 2, 3

The above set of includes 9 scalars. The number can be reduced to 7 due to the
obvious relations

tr (AAAk) = nnn1 ··· AAAk ··· nnn1 + nnn2 ··· AAAk ··· nnn2 + nnn3 ··· AAAk ··· nnn3, k = 1, 2

Therefore the orthotropic scalar-valued function of the symmetric second rank tensor
can be represented as a function of the following seven arguments

I1 = nnn1 ··· AAA ··· nnn1, I2 = nnn2 ··· AAA ··· nnn2, I3 = nnn3 ··· AAA ··· nnn3,

I4 = nnn1 ··· AAA2 ··· nnn1, I5 = nnn2 ··· AAA2 ··· nnn2, I6 = nnn3 ··· AAA2 ··· nnn3, I7 = tr AAA3 (B.8.48)

Instead of I4, I5, I6 and I7 in (B.8.48) one may use the following list of arguments
(Lurie 1990)
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J1 = (nnn1 ··· AAA ··· nnn2)
2, J2 = (nnn2 ··· AAA ··· nnn3)

2, J3 = (nnn1 ··· AAA ··· nnn3)
2, (B.8.49)

J4 = (nnn1 ··· AAA ··· nnn2)(nnn1 ··· AAA ··· nnn3)(nnn2 ··· AAA ··· nnn3)

The invariants J1, J2, J3, J4 can be uniquely expressed through I1, . . . , I7 by use
of the following relations

I4 = I 21 + J1 + J3, I5 = I 22 + J1 + J2, I6 = I 23 + J2 + J3,
I7 = 2I1(I4 − I 21 ) + 2I2(I5 − I 22 ) + 2I3(I6 − I 23 ) + J4

(B.8.50)

Let us note that if AAA is the polar tensor, then the lists of invariants (B.8.48) and
(B.8.49) are also applicable to the class of the orthotropic symmetry characterized
by the following eight symmetry elements

QQQ = ±nnn1 ⊗ nnn1 ± nnn2 ⊗ nnn2 ± nnn3 ⊗ nnn3 (B.8.51)

In Sect.B.7 we derived the generic partial differential equation for the case of
the transverse isotropy. Applying this approach one may find the list of functionally
independent invariants among all possible invariants. Let us formulate the generic
partial differential equation for the case of orthotropic symmetry. To this end let us
find the scalar valued arguments of the tensor AAA from the following condition

f (AAA′,nnn′
1 ⊗ nnn′

1,nnn′
2 ⊗ nnn′

2,nnn′
3 ⊗ nnn′

3) = f (AAA,nnn1 ⊗ nnn1,nnn2 ⊗ nnn2,nnn3 ⊗ nnn3), (B.8.52)

where AAA′ = QQQ ··· AAA ··· QQQT, nnn′
i = QQQ ··· nnni , ∀QQQ, det QQQ = 1. The symmetry group of a

single dyad is given by Eqs. (B.7.31). It can be shown that the symmetry group of
three dyads nnni ⊗ nnni includes eight elements (B.8.51). Among all rotation tensors QQQ
the three rotations QQQ1, QQQ2 and QQQ3 belong to the symmetry group ofnnni ⊗nnni . Therefore
Eq. (B.8.52) is equivalent to the following three equations

f (QQQ1 ··· AAA ··· QQQT
1 ,nnn1 ⊗ nnn1,nnn2 ⊗ nnn2,nnn3 ⊗ nnn3) = f (AAA,nnn1 ⊗ nnn1,nnn2 ⊗ nnn2,nnn3 ⊗ nnn3),

f (QQQ2 ··· AAA ··· QQQT
2 ,nnn1 ⊗ nnn1,nnn2 ⊗ nnn2,nnn3 ⊗ nnn3) = f (AAA,nnn1 ⊗ nnn1,nnn2 ⊗ nnn2,nnn3 ⊗ nnn3),

f (QQQ3 ··· AAA ··· QQQT
3 ,nnn1 ⊗ nnn1,nnn2 ⊗ nnn2,nnn3 ⊗ nnn3) = f (AAA,nnn1 ⊗ nnn1,nnn2 ⊗ nnn2,nnn3 ⊗ nnn3)

Consequently, the scalar-valued arguments of AAA found from (B.8.52) satisfy three
Eqs. (B.8.45) and (B.8.46). To derive the generic partial differential equation for
invariants we follow the approach presented in Zhilin (2003, 2006). Let QQQ(τ ) be a
continuous set of rotations depending on the real parameter τ . In this case

d

dτ
QQQ(τ ) = ωωω(τ) × QQQ(τ ) ⇒ d

dτ
QQQT(τ ) = −QQQT(τ ) × ωωω(τ),

QQQ(0) = III , ωωω(0) = ωωω0,

where the axial vectorωωω has the sense of the angular velocity of rotation. Taking the
derivative of Eq. (B.8.52) with respect to τ we obtain the following partial differential
equation
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(ωωω × AAA′ − AAA′ × ωωω) ······
(

∂ f

∂AAA′

)T

+
3∑

i=1

(ωωω × nnn′
i ⊗ nnn′

i − nnn′
i ⊗ nnn′

i × ωωω) ······
(

∂ f

∂nnn′
i ⊗ nnn′

i

)T

= 0,
(B.8.53)

where AAA′(τ ) = QQQ(τ ) ··· AAA ··· QQQT(τ ), nnn′
i (τ ) = QQQ(τ ) ··· nnni . For τ = 0 Eq. (B.8.53)

takes the form

(ωωω0 × AAA − AAA × ωωω0) ······
(

∂ f

∂AAA

)T

+
3∑

i=1

(ωωω0 × nnni ⊗ nnni − nnni ⊗ nnni × ωωω0) ······
(

∂ f

∂nnni ⊗ nnni

)T

= 0
(B.8.54)

Taking into account the following identities

(aaa × AAA) ······ BBB = aaa ··· (AAA ··· BBB)×, BBB ······ (AAA × aaa) = aaa ··· (BBB ··· AAA)×,

Eq. (B.8.54) can be transformed to

ωωω0 ···
[

AAA ···
(

∂ f

∂AAA

)T

−
(

∂ f

∂AAA

)T

··· AAA

+
3∑

i=1

nnni ⊗ nnni ···
(

∂ f

∂nnni ⊗ nnni

)T

−
3∑

i=1

(
∂ f

∂nnni ⊗ nnni

)T

··· nnni ⊗ nnni

]

×
= 0

Because ωωω0 is the arbitrary vector we obtain

[

AAA ···
(

∂ f

∂AAA

)T

−
(

∂ f

∂AAA

)T

··· AAA

+
3∑

i=1

nnni ⊗ nnni ···
(

∂ f

∂nnni ⊗ nnni

)T

−
3∑

i=1

(
∂ f

∂nnni ⊗ nnni

)T

··· nnni ⊗ nnni

]

×
= 000

(B.8.55)

The vector partial differential equation (B.8.55) corresponds to three scalar differen-
tial equations. The total number of scalar arguments of the function f is 9 including 6
components of the symmetric tensor AAA and three parameters (e.g. three Euler angles)
characterizing three dyads nnni ⊗nnni . Each of the scalar partial differential equations in
(B.8.55) reduces the number of independent arguments by one. Therefore, the total
number of independent arguments is 6. It can be shown that all seven arguments
presented by Eqs. (B.8.48) or (B.8.49) satisfies (B.8.55). Because only six of them
are independent, one functional relation must exist. In the case of the list (B.8.49)
the functional relation is obvious. Indeed, we can write
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J 2
4 = J1 J2 J3 (B.8.56)

To derive the functional relation for the list (B.8.48) one may apply Eqs. (B.8.50) to
express J1, . . . , J4 through I1, . . . I7. The result should be inserted into Eq. (B.8.56).
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A
Ageing, 62, 242, 264, 300
Aluminium alloy BS 1472, 299
Angular velocity vector, 152, 153, 191, 232
Anisotropy, 26, 249

damage induced, 27, 206, 254, 266, 271
deformation induced, 27, 206
induced, 27
initial, 26, 206, 271

Annihilation, 8
Annihilation of dislocations, 4
Arrhenius function of the temperature, 97,

304
Arrhenius temperature dependence, 126,

225, 243, 264

B
Backstress, 111, 112, 243, 289, 296
Bailey-Orowan recovery hypothesis, 244
Balance of angular momentum, 165
Balance of momentum, 84, 85, 159, 161,

164, 167
Base metal, 57, 308
Bauschinger effect, 114
Biaxial tests, 258
Bulk modulus, 237

C
Cauchy formula, 163
Cauchy-Green tensor, 147
Cavitated area fraction, 263
Cavitation, 264
Cavities, 123, 124, 266
Cayley-Hamilton theorem, 154, 233

Clausius-Duhem inequality, 88, 169
Clausius-Planck inequality, 87, 168
Climb-plus-glide deformation mechanism,

226
Coarse-grained region, 58, 308
Coarsening, 263

carbide precipitates, 9
subgrain microstructure, 9
subgrains, 4

Coble creep, 227
Coffin-Manson equation, 21
Columnar region, 58, 308
Compressibility, 203
Conjugate variable, 91, 174
Connection in parallel, 311
Connection in series, 313
Conservation of mass, 83, 159
Constituent

inelastic-hard, 251
inelastic-soft, 251

Continuity, 124
Continuum mechanics modeling, 62
Continuum micromechanics, 63
Convexity condition, 260
Crack driving force, 134
Creep

accelerated, 6
anisotropic, 13, 26, 266, 303, 315
cyclic, 13
dynamic, 15
fracture, 256
grain boundary, 300
high cyclic, 15
McVetty-type, 269
multi-axial rupture data, 265
power law, 124, 260
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primary, 6, 240, 264, 289, 299, 300, 309
ratcheting, 59
recovery, 10, 247
reduced, 6
rupture, 301
secondary, 6, 125, 126, 256, 269, 300,
309, 318

stationary, 6
steady-state, 196, 201, 248, 312
tertiary, 6, 105, 129, 255, 288, 292, 300,
309, 314

transient, 13, 242
transversely isotropic, 315
volumetric, 203, 262

Creep condition, 195
Creep damage, 21, 61, 129

Kachanov-Rabotnov model, 124, 255
mechanim-based model, 262
micromechanically-consistent model,
260

model based on dissipation, 265
Creep damage evolution, 18
Creep equation, 203

classical, 201, 204
non-classical, 201
non-quadratic, 216
tensorial non-linear, 200

Creep failure, 257, 308
Creep-fatigue, 18
Creep fracture, 129, 131
Creep history, 267
Creep in structures, 30
Creep potential, 195, 196, 255, 260, 315, 316

classical, 199
Norton-Bailey-Odqvist, 196, 255, 316

Creep rate
volumetric, 203

Creep strain tensor, 285
Creep strength, 127
Creep test, 57, 308, 315

biaxial, 254
multi-axial, 256, 301
short-term uni-axial, 60
triaxial, 254
uni-axial, 5, 254, 262, 265, 266

Creep theory
von Mises-Odqvist, 241

Cross section shrinkage, 104, 105
Cross-weld specimens, 57, 308
Cubic symmetry, 215

D
Damage, 62, 123, 124, 254, 255, 287, 296,

315, 318
activation, 271
deactivation, 271
elastic-brittle, 268

Damage driving force, 134
Damage effect tensor, 269
Damage equivalent stress, 285, 286
Damage evolution, 286, 308, 309
Damage evolution equation, 127, 256
Damage mechanism, 132
Damage parameter, 292

scalar-valued, 254, 269, 285
tensor-valued, 268

Damage process
evolution equation, 124

Damage rate, 124
Damage state variable, 124
Damage tensor, 268

higher order, 271
second rank, 269

Damage variable, 124
tensor-valued, 254

Darboux problem, 181
Decomposition

polar, 339
Deformation gradient, 81, 145, 150, 191, 206

decomposition, 228
multiplicative decomposition, 229

Deformation rate tensor, 151
Degradation function, 133, 135
Degradation of stiffness, 132
Diffusion creep, 226
Diffusion equation, 93, 175
Diffusion of vacancies, 66
Dilatation, 203, 262
Discrete dislocation dynamics, 65
Dislocation creep, 226
Dislocation density hardening, 121
Displacement, 80, 143
Dissipation inequality, 88, 97, 131, 169, 170,

179, 190, 229
Dissipation power, 197, 266
Drag stress, 62, 107, 121
Ductile creep rupture, 105, 293
Dyad, 329
Dyadic product, 332

E
Effective stress, 125
Effective stress concept, 125, 271
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Effective stress tensor, 255, 269, 271
Eigen-direction, 335
Eigen-value, 335
Eigen-value problem, 335
Elasticity tensor, 188, 190
Elastic range, 2
Elastic regime, 3
Elastic springback, 3
Elastoplasticity, 100
Empirical modeling, 60
Energy

free, 92, 176, 179, 184, 186, 189, 190
internal, 85, 166, 175
kinetic, 85, 166
total, 85, 166

Energy balance, 87, 93, 95, 96, 167, 168,
175, 189

Energy supply, 167
Engineering stress, 103
Entropy inequality, 88, 169
Equivalent creep rate

von Mises, 24
Equivalent creep strain, 263

von Mises, 24
Equivalent deformation rate

von Mises, 194
Equivalent stress, 200, 202, 204, 214, 257,

263, 315
damage, 256, 258
generalized, 258
von Mises, 22, 194, 200, 204, 243, 258,
288, 302

F
Fatigue damage, 16, 21, 59, 61

surface induced, 52
Fatigue failure, 16
Fatigue life, 18, 19
Fatigue strength, 16
Fine-grained region, 58, 308
First law of dynamics, 84
First principal direction, 255
First principal stress, 286, 295
Flow potential, 195, 243
Flow rule, 195, 196, 202

Odqvist, 199
Fluid

incompressible, 193
linear viscous, 98
non-linear viscous, 98, 192
non-Newtonian, 193

Fourier law of heat conduction, 92, 175

Fracture, 124
Frederick-Armstrong model, 114, 253
Free-surface effect, 64
Friction welding, 99
Function of temperature, 285
Functions of stress

exponential law, 224
hyperbolic sine, 301
hyperbolic sine law, 224
power, 301, 316
power law, 223
power law breakdown equation, 224
souble power law, 224

G
Grain boundary cavitation, 64
Grain boundary sliding, 53, 64, 227
Grain boundary strengthening, 52
Grain size, 309

H
Hall-Petch effect, 52
Hamilton operator, 144
Hardening, 5, 13, 53, 62, 129, 226, 250, 264,

288, 289, 315, 318
anisotropic, 249
cyclic, 16, 59, 111
initial, 249
isotropic, 242
kinematic, 242, 248

Hardening parameter, 107
Hardening rate, 109
Hardening regime, 2
Hardening rule, 242
Hardening variable, 122, 248, 300
Harmonic stress variation, 14
Heat-affected zone, 56, 57, 265, 308, 309
Heat capacity, 93, 175, 189
Heat equation, 93, 175, 189
Heat flow, 89, 167
Heat flow vector, 168
Heat flux, 97, 175
Heat flux vector, 191
Heat transfer equation, 96, 189
Helmholtz free energy, 89, 170
Heterogeneous structure, 309
High-temperature inelasticity, 64

I
Identity tensor, 333
Independent variable, 91, 174
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Inelastic-hard constituent, 116
Inelastic regime, 3

with hardening, 3
with necking, 3

Inelastic strain rate, 61
Internal state variable, 242, 300, 315
Invariant

cubic, 202
linear, 202
principal, 155, 183, 185
quadratic, 202

Isochronous rupture surface, 258
Iso-strain approach, 252
Iso-strain concept, 311
Iso-stress approach, 99, 108, 131, 231, 313

K
Kachanov-Rabotnov model, 310
Kachanov’s continuity, 124
Kinematic hardening model, 242

L
Lamé constants, 190, 237
LCF test, 114
Least squares method, 284
Linear damage summation rule, 61
Linear hardening rule, 112
Linear stress-strain relationship, 2
Loading

combined, 26
complex, 242
cyclic, 13
multi-axial, 254
multi-axial non-proportional, 271
non-isothermal, 51
non-proportional, 26, 27, 248, 254
proportional, 26
simple, 248
thermo-mechanical cyclic, 39

Low cycle fatigue, 16

M
Martensitic transformation, 4
Mass, 83
Material

aelotropic, 177
anisotropic, 177, 206
crystalline, 198
cubic symmetry, 215
Hencky, 231
isotropic, 179, 182, 190

poly-crystalline, 227
transversely-isotropic, 179, 185

Material processing, 12
Materials science modeling, 61
Material symmetry, 67, 176, 177, 315
Material symmetry group, 188, 315
Maximum tensile stress, 255, 286
Maxwell model, 100
Mean dislocation density, 121
Mean dislocation density model, 109
Mechanical action, 160
Mechanical power, 86, 99, 108, 110, 131,

166, 175, 190, 227
Mechanism-based model, 262, 299
Method of characteristics, 180
Micromechanically-consistent model, 260
Micromechanical modeling, 63
Microstructural analysis, 67
Minimum creep rate, 126, 304
Mirror reflection, 176, 177
Mixture model, 288
Mixture rule, 116, 252
Momentum, 83, 159

angular, 165
Monkman-Grant relationship, 60, 129
Motion, 80, 143
Multi-pass weld, 56, 309

N
Nabarro-Herring creep, 227
Nabla operator, 144
Necking, 3, 5
Net-stress, 125
Net-stress tensor, 269
Neumann principle, 177
Newton law of cooling, 93, 175
Non-mechanical energy supply, 86, 166
Norton-Bailey law, 248
Norton-Bailey type potential, 201
Notation

component, 323
coordinate-free, 323
direct, 173, 323
index, 323
symbolic, 323

Notch stress effect, 64

O
Offset yield point, 3, 5
Orientation averaging, 271
Orientation distribution function, 271
Orientation tensor, 271
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Orowan hardening, 121
Orowan stress, 121
Orthotropic symmetry, 211
Overstress, 117

P
Parent material, 309
Particle hardening, 121
Peach-Köhler force, 65
Permanent plastic strain, 3
Phase mixture model, 250
Physical symmetry, 176, 177
Piping system, 308
Plasticity

rate-independent, 98, 195
rigid, 98

Plastic pre-strain, 249
Poisson’s ratio, 190
Polar decomposition, 152, 231
Position vector, 142
Power-law function of stress, 97
Poynting-Swift effect, 194, 200
Prandtl model, 100
Pre-damage, 267
Pre-loading, 267
Pressure vessel, 308
Pressurized cylindrical shell, 302
Pre-straining, 267
Principal direction, 335
Principal value, 335
Principal vector, 335
Projector, 333

R
Ratchetting, 15
Rate of plastic strain, 111
Recovery, 4, 8, 13, 62, 226, 288
Redistribution, 302
Relaxation, 10, 302
Relaxation-fatigue, 18
Relaxation test, 12
Representative volume element, 64
Requirements for the modeling, 66
Resistance function, 133, 135
Rigid body rotation, 186
Rotation, 315

infinitesimal, 150
Rotation about a fixed axis, 176
Rotation tensor, 148, 152, 153, 181, 191, 232

linearized, 150
Rupture time, 258

S
Saturation, 4
Saturation stress, 117
Sdobyrev criterion, 257
Shear flow, 193
Shear modulus, 190, 298
Softening, 4, 5, 13, 250, 253, 287, 290, 296

cyclic, 16, 59
Specific dissipation work, 265
Specimen

circumferentially notched, 22
cruciform, 22
cylindrical, 5
standard, 2
thin-walled tube, 22

Spectral form, 178
Spectral representation, 148, 153
Spin tensor, 152, 153

left, 152
State variables

hidden, 62
internal, 62

Steady-state flow regime, 4
Steel 13CrMo4-5, 286
Strain, 81

creep, 7
cyclic, 18
elastic, 7
Hencky, 94
infinitesimal, 150
local, 81
local normal, 146

Strain deviator, 237
Strain equivalence principle, 125, 256, 269,

271
Strain hardening, 240, 242
Strain hardening model, 240
Strain local shear, 147
Strain tensor

additive split, 236
Almansi, 148
Biot, 148
Cauchy-Green, 148

left, 148
Green-Lagrange, 149
Hencky, 148, 156, 158, 230
right Cauchy-Green, 181

Strain trajectory, 26, 256
Strengthening

mechanism, 54
Stress

effective, 125
engineering, 89
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hydrostatic, 193
Kirchhoff, 95
mean, 193

Stress concentration, 53
Stress deviator, 193

active, 288, 297
Stress function

hyperbolic sine, 264
power law, 243

Stress redistribution, 308, 309, 312, 314
Stress relaxation, 10, 12
Stress state effect, 25, 27, 254, 266
Stress state index, 265, 300
Stress tensor

active part, 243
additional part, 243
Cauchy, 163, 180, 183, 185, 190–192,
230, 232

deviatoric part, 22, 227, 243
dissipative, 227, 230, 231
effective part, 243
Piola-Kirchhoff, 164, 168, 182

second, 182
quasi-conservative, 227, 229
spherical part, 243
translation part, 243

Stress vector, 160
Stretch, 81

local, 81, 146
principal, 148, 183

Stretch tensor, 153
left, 148
right, 148

St. Venant model, 98
Symmetries of microstructure, 67
Symmetry group, 176, 187

physical, 230
Symmetry transformation, 176, 178

T
Taylor hardening, 121
Tensile test

uni-axial, 2
Tensor

orthogonal, 337
second rank, 329
singular, 334
skew-symmetric, 333
symmetric, 332

Test
multi-axial, 22
stress controlled, 23

Thermal conductivity, 92, 132, 179
tensor, 175, 177

Thermal expansion
coefficient, 190
tensor, 188, 190

Thermal expansion coefficient, 95
Thermally-activated dislocation climb, 66
Thermodynamic force, 91, 174
Thermoelasticity, 101
Thermo-elasto-plasticity, 236
Thermo-mechanical fatigue, 19
Time hardening, 240, 242, 299
Time hardening function, 299
Time hardening model, 240
Time to fracture, 127
Transient heat transfer, 45
Transverse isotropy, 207
Transversely loaded rectangular plate, 302
Type 316 stainless steel, 285

U
Uni-axial tension, 316
Unified model, 44
Uniform shear, 316

V
Variable

hidden, 107
internal state, 107, 118, 122, 132

Vector
axial, 324
polar, 324
spin, 325

Velocity field, 81, 144
Velocity gradient, 151, 152, 190, 191, 206
Viscoelasticity, 100
Viscoplasticity, 98
Void, 123, 124, 254, 260, 270
Void growth, 64
Volume constancy, 23
Volume fraction, 252
Von Mises-Odqvist type inelastic flow, 237
Von Mises type potential, 200
Voronoi tessellation, 64
Vorticity vector, 151

W
Weakening, 53
Weissenberg effect, 193
Welded joint, 308, 309
Weld metal, 57, 265, 283, 308, 309
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Weld metal 9CrMoNbV, 308, 316
Work hardening, 264

Y
Yield condition, 195

Yield limit, 3
Yield point, 2

lower, 3
upper, 3

Young’s modulus, 190, 298
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