
Chapter 6
Stable Distributions and RandomWalks

Abstract Stable distributions are special types of probability distributions whose
origin is a particular limit regime of other types of distributions. They are closely
related to the simple convolution process, which is introduced first for continuous and
then for discrete random variables. This leads to the central limit theorem as one of
the most important results of probability theory, as well as to its generalized version
which is useful in the analysis of randomwalks. Extreme-value distributions are also
presented, as they possess a limit theorem of their own (Fisher–Tippett–Gnedenko).
The last part is devoted to the discussion of discrete-time and continuous-time random
walks, together with their characteristic diffusion properties.

In this chapter we sum independent random variables Xi and discuss what happens
to the distribution of their sum, Y =∑i Xi. We shall see that the distribution of Y
is given by the convolution of distributions of individual Xi’s, and that in the case
i → ∞—under certain conditions—the distributions ofY tend to stable distributions,
relevant for the processes of random walks.

6.1 Convolution of Continuous Distributions

What is the distribution of Z = X + Y if continuous random variables X and Y
correspond to densities fX(x) and fY (y)? We are interested in the probability that the
sum x + y falls within the interval [z, z + dz], where x and y are arbitrary within their
own definition domains. All points fulfilling this requirement are represented by the
oblique shaded area in the figure.
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144 6 Stable Distributions and Random Walks

One must add up all contributions to the probability within this band. The infin-
itesimal area dx dz (shaded rhomboid) corresponds to the infinitesimal probability
fX(x)fY (y) dx dz. By integrating over x we obtain the probability fZ(z) dz. Let us write
only its density and insert y = z − x:

fZ(z) = (fX ∗ fY )(z) =
∫ ∞

−∞
fX(x)fY (z − x) dx. (6.1)

This operation is called the convolution of distributions and we denote it by the
symbol ∗. If you do not trust this geometric argument, one can also reason as follows:

fZ(z) dz = P(z ≤ Z ≤ z + dz) = P(z ≤ X + Y ≤ z + dz)

=
∫ ∞

−∞
dx
∫ z−x+dz

z−x
fX(x)fY (y) dy =

∫ ∞

−∞
fX(x)dx

∫ z−x+dz

z−x
fY (y) dy

︸ ︷︷ ︸
fY (z−x) dz

,

whence (6.1) follows immediately. Convolution is a symmetric operation:

(
fX ∗ fY

)
(z) =
∫ ∞
−∞

fX (x)fY (z − x) dx =
∫ ∞
−∞

fX (z − y)fY (y) dy = (fY ∗ fX
)
(z).

A convolution of three probability distributions is calculated as follows:

(
f1 ∗ f2 ∗ f3

)
(z) =
∫ ∞

−∞

∫ ∞

−∞
f1(x1) f2(x2) f3(z − x1 − x2) dx1 dx2,

and generalizations of higher order are obvious.

Example What do we obtain after two consecutive convolutions of a symmetric
uniform distribution U(−1/2, 1/2), corresponding to the “box” probability density
f shown in Fig. 6.1? The first convolution yields

Fig. 6.1 Twofold
consecutive convolution of
U(−1/2, 1/2) with itself
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g(x) = (f ∗ f
)
(x) =

∞∫

−∞
f (x′) f (x − x′) dx′ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x+1/2∫

−1/2

dx′ = 1 + x ; −1 ≤ x ≤ 0,

1/2∫

x−1/2

dx′ = 1 − x ; 0 ≤ x ≤ 1,

which is a triangular distribution (f ∗ f in the figure). The second convolution gives

(
f ∗ f ∗ f

)
(x) =

∞∫

−∞
f (x′) g(x − x′) dx′

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x+1∫

−1/2

[•] dx′ = 9

8
+ 3x

2
+ x2

2
; − 3

2 ≤ x ≤ − 1
2 ,

x∫

−1/2

[•] dx′ +
1/2∫

x

[•] dx′ = −x2

2
+ 3

4
; |x| ≤ 1

2 ,

1/2∫

x−1

[•] dx′ = 9

8
− 3x

2
+ x2

2
; 1

2 ≤ x ≤ 3
2 ,

where • = 1 + (x − x′). This density is denoted by f ∗ f ∗ f in the figure. Try to
proceed yet another step and calculate f ∗ f ∗ f ∗ f ! (You shall see in an instant
where this is leading.) �
Example What about the convolution of an asymmetric distribution? For instance,
what is the distribution of the variable Y = X1 + X2 + · · · + Xn if allXi are uniformly
distributed on [0, 1], i.e. Xi ∼ U(0, 1)?

The density of the variable Y for arbitrary n ≥ 1 is

fY (x) = 1

(n − 1)!

x�∑

h=0

(n

h

)
(−1)h(x − h)n−1, n ≥ 1, (6.2)

and is shown in Fig. 6.2 for n = 1 (original distribution), n = 2 (single convolution),
n = 3, n = 6 and n = 12. As in the previous example, the density after several con-
volutions reminds one of something “bell-shaped”, one could suspect, the normal
distribution. Besides, the distribution of the sumvariable creeps away from the origin:
this is a cue for the following subsection. �
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Fig. 6.2 Multiple
convolutions of the U(0, 1)
distribution with itself

6.1.1 The Effect of Convolution on Distribution Moments

First consider what happens to the average of the sum of two random variables:

Z =
∫ ∞

−∞
z fZ(z) dz =

∫ ∞

−∞
z

[∫ ∞

−∞
fX(x)fY (z − x) dx

]

dz

=
∫ ∞

−∞

[∫ ∞

−∞
z fY (z − x) dz

]

fX(x) dx =
∫ ∞

−∞

[∫ ∞

−∞
(x + y)fY (y) dy

]

fX(x) dx

=
∫ ∞

−∞
x

[∫ ∞

−∞
fY (y) dy

]

fX(x) dx +
∫ ∞

−∞
fX(x) dx

∫ ∞

−∞
y fY (y) dy = X + Y ,

thus
X + Y = X + Y

or E[X + Y ] = E[X] + E[Y ], which we already know from (4.6). Now let us also
calculate the variance of Z! We must average the expression

(
Z − Z
)2 = [(X − X

)+ (Y − Y
)]2 = (X − X

)2 + 2
(
X − X

)(
Y − Y

)+ (Y − Y
)2

.

Because X and Y are independent, the expected value of the second term is zero, so
we are left with only

σ2
X+Y = σ2

X + σ2
Y

or var[X + Y ] = var[X] + var[Y ]. We know that too, namely, from (4.20), in a
slightly different garb also from (4.25) if one sets Y = X1 + X2. As an exercise,
check what happens to the third and fourth moment upon convolution: you will find
out that M3,X+Y = M3,X + M3,Y , so the third moments of distributions are additive.
By taking into account the definition of skewness ρ = M3/σ

3 (see (4.18)) this can
also be written as

ρX+Yσ3
X+Y = ρXσ3

X + ρYσ3
Y .

The fourth moments are not additive, since M4,X+Y = M4,X + M4,Y + 6M2,XM2,Y ,
but by using (4.19) this can be simplified to

http://dx.doi.org/10.1007/978-3-319-31611-6_4
http://dx.doi.org/10.1007/978-3-319-31611-6_4
http://dx.doi.org/10.1007/978-3-319-31611-6_4
http://dx.doi.org/10.1007/978-3-319-31611-6_4
http://dx.doi.org/10.1007/978-3-319-31611-6_4
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Fig. 6.3 As few as two convolutions may be needed to turn a relatively irregular distribution into a
distribution that looks almost like the standardized normal. (We have subtracted the expected value
of the distribution obtained at each step and rescaled the variance)

εX+Yσ4
X+Y = εXσ4

X + εYσ4
Y .

Example It appears as if even the most “weird” distribution evolves into something
“bell-shaped” when it is convoluted with itself a couple of times. Figure6.3 shows
an example in which upon just two convolutions a rather irregular density (fulfilling
all requirements for a probability density) turns into a density closely resembling the
standardized normal distribution. �

Example Still, convolution does not perform miracles. Let us calculate the n-fold
convolution of the Cauchy distribution with itself! We obtain

f (1)(x) = f (x) = 1

π

1

1 + x2
,

f (2)(x) = (f ∗ f
)
(x) = 1

π

2

4 + x2
,

f (3)(x) = (f ∗ f ∗ f
)
(x) = 1

π

3

9 + x2
,

...

f (n)(x) = (f ∗ f ∗ · · · ∗ f
︸ ︷︷ ︸

n

)
(x) = 1

π

n

n2 + x2
. (6.3)

Certainly f (n) does not approach the density of the normal distribution; rather, it
remains faithful to its ancestry. Consecutive convolutions yield just further Cauchy
distributions! We say that the Cauchy distribution is stable with respect to convolu-
tion. The reasons for this behaviour will be discussed below. �

6.2 Convolution of Discrete Distributions

The discrete analog of the continuous convolution formula (6.1) for the summation
of independent discrete random variables X and Y is at hand: if X takes the value
i, then Y must be n − i if their sum is to be n. Since X and Y are independent, the
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probabilities for such an “event” should be multiplied, thus

P(X + Y = n) =
∑

i

P(X = i,Y = n − i) =
∑

i

P(X = i)P(Y = n − i) (6.4)

or
fX+Y (n) =

∑

i

fX(i)fY (n − i).

Example Let us demonstrate that the convolution of two Poisson distributions is
still a Poisson distribution! Let X ∼ Poisson(λ) and Y ∼ Poisson(μ) be mutually
independent Poisson variables with parameters λ and μ. For their sum Z = X + Y
one then has

P(Z = n) =
n∑

i=0

P(X = i,Y = n − i) =
n∑

i=0

P(X = i)P(Y = n − i)

=
n∑

i=0

λie−λ

i!
μ(n−i)e−μ

(n − i)! = e−(λ+μ)

n!
n∑

i=0

n!
i!(n − i)!λ

iμn−i = e−(λ+μ)(λ + μ)n

n! ,

thus indeed Z ∼ Poisson(λ + μ). A more elegant solution of this problem will be
given by the Example on p. 369 in Appendix B.1. �
Example Let us compute the probability distribution of the sum Z = X + Y of in-
dependent discrete random variables X and Y , distributed according to

fn = P(X=n) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0.15 ; n = −3,
0.25 ; n = −1,
0.1 ; n = 2,
0.3 ; n = 6,
0.2 ; n = 8,
0 ; otherwise,

gn = P(Y =n) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0.2 ; n = −2,
0.1 ; n = 1,
0.3 ; n = 5,
0.4 ; n = 8,
0 ; otherwise.

The distributions are shown in Fig. 6.4 (left) [1].
In principle we are supposed to find all values P(Z = z), so we must compute the

convolution sum {h} = {f } ∗ {g} for each n separately:

hn = P(Z = n) =
∞∑

j=−∞
fjgn−j.

To make the point, let us just calculate the probability that X + Y = 4. We need

h4 = P(Z = 4) = f−3�g7 + f−2�g6 + f−1g5 + ��f 0�g4 + ��f 1�g3 + f2�g2

+��f 3g1 + ��f 4�g0 + ��f 5�g−1 + f6g−2 + ��f 7�g−3 + f8�g−4

= 0.25 · 0.3 + 0.3 · 0.2 = 0.135.
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Fig. 6.4 Discrete convolution in the case when the distributions have different supports. [Left]
Distributions f and g. [Right] Convolution of f and g

When n and j indices are combed through, many fjgn−j terms vanish (crossed-out
terms above); only the underlined bilinears survive. Such a procedure must be re-
peated for each n: a direct calculation of convolutionsmay become somewhat tedious.
The problem can also be solved by using generating functions, as demonstrated by
the Example on p. 374 in Appendix B.2. �

6.3 Central Limit Theorem

Let X1,X2, . . . ,Xn be real, independent and identically distributed random vari-
ables with probability density fX , whose expected value μX = E[Xi] and variance
σ2
X = E[(Xi − μX)2] are bounded.Define the sumof randomvariablesYn =∑n

i=1 Xi.
By (4.6) and (4.22), the expected value and variance of Yn are E[Yn] = μYn = nμX

and σ2
Yn

= nσ2
X , respectively. The probability density fY of the sum variable Yn is

given by the n-fold convolution of the densities of the Xi’s,

fYn = fX ∗ fX ∗ · · · ∗ fX︸ ︷︷ ︸
n

.

The example in Fig. 6.2 has revealed that the average of the probability density,
calculated by consecutive convolutions of the original density, kept on increasing: in
that case, the average in the limit n → ∞ even diverges! One sees that the variance
keeps on growing as well. Both problems can be avoided by defining a rescaled
variable

Zn = Yn − μYn

σYn

= Yn − nμX√
nσX

.

This ensures that upon subsequent convolutions, the average of the currently obtained
density is subtracted and its variance is rescaled: see Fig. 6.3. In the limit n → ∞ the

http://dx.doi.org/10.1007/978-3-319-31611-6_4
http://dx.doi.org/10.1007/978-3-319-31611-6_4
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distribution function of the variable Zn then converges to the distribution function of
the standardized normal distribution N(0, 1),

lim
n→∞P(Zn ≤ z) = �(z) = 1√

2π

∫ z

−∞
e−t2/2 dt,

or, in the language of probability densities,

lim
n→∞ σYn fYn

(
σYnz + μYn

) = 1√
2π

e−z2/2.

In other words, the dimensionless probability density σYn fYn converges to the stan-
dardized normal probability density in the limit n → ∞, which is known as the
central limit theorem (CLT).

6.3.1 Proof of the Central Limit Theorem

The central limit theorem can be proven in many ways: one way is to exploit our
knowledge onmomentum-generating functions fromAppendixB.2. Suppose that the
momentum-generating function of the variables Xi exists and is finite for all t in some
neighborhood of t = 0. Then for each standardized variableUi = (Xi − μX)/σX , for
whichE[Ui] = 0 and var[Ui] = 1 (thus alsoE[U2

i ] = 1), there exists a corresponding
momentum-generating function

MUi(t) = E
[
etUi
]
,

which is the same for all Ui. Its Taylor expansion in the vicinity of t = 0 is

MU(t) = 1 + t E[U]
︸ ︷︷ ︸

0

+ t2

2! E[U2]
︸ ︷︷ ︸

1

+ t3

3! E[U3] + · · · = 1 + t2

2
+ O
(
t2
)
. (6.5)

Let us introduce the standardized variable

Zn = (U1 + U2 + · · · + Un)/
√
n = (X1 + X2 + · · · + Xn − nμX)/(σX

√
n).

Its momentum-generating function is MZn(t) = E
[
etZn
]
. Since the variables Xi are

mutually independent, this also applies to the rescaled variables Ui, therefore, by
formula (B.16), we get

E
[
etZn
] = E
[
et(U1+U2+···+Un)/

√
n
] = E
[
e(t/

√
n)U1
]
E
[
e(t/

√
n)U2
] · · ·E[e(t/

√
n)Un
]

or
MZn(t) = [MU

(
t/

√
n
)]n

, n = 1, 2, . . .
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By using the expansion of MU , truncated at second order, we get

MZn(t) =
[

1 + t2

2n
+ O(t2/n)

]n

, n = 1, 2, . . .

Hence

lim
n→∞MZn(t) = lim

n→∞

(

1 + t2

2n

)n

= et
2/2.

We know from (B.13) that this is precisely the momentum-generating function cor-
responding to the normal distribution N(0, 1), so indeed

fZ(z) = 1√
2π

e−z2/2,

which we set out to prove. A direct proof (avoiding the use of generating functions)
can be found in [2]; it proceeds along the same lines as the proof of the Laplace limit
theorem in Appendix B.3.1.

The speed of convergence to the standardized normal distribution N(0, 1) with
the distribution function �(z) is quantified by the Berry–Esséen theorem [2]. If the
third moment of |X − μX | is bounded (ρ = E[|X − μX |3] < ∞), it holds that

|P(Zn ≤ z) − �(z) | ≤ Cρ√
nσ3

X

,

where 0.4097 � C � 0.4748 [3]. Nowwe also realize why consecutive convolutions
in (6.3) have not led us to the normal distribution: no moments exist for the Cauchy
distribution (see Sect. 4.7.1), so the condition ρ < ∞ is not fulfilled. Moreover, one
should not truncate the Taylor expansion (6.5).

The central limit theorem and the form of the bound on the speed of convergence
remain valid when summing variables Xi distributed according to different (non-
identical) probability distributions, if the variables are not too “dispersed” (Linde-
berg criterion, see [2]). An excellent (and critical) commentary on “why normal
distributions are normal” is also given by [4].

Example Let us revisit the convolution of the uniform distribution in Fig. 6.2. We
sum twelve mutually independent variables Xi ∼ U(0, 1) and subtract 6,

Y =
12∑

i=1

Xi − 6. (6.6)

What are we supposed to get? The averages of allXi are 1/2,E[Xi] = 1/2, while their
variances are var[Xi] = 1/12 (see Table4.1). Hence, Y should also have an average
of zero and a variance of var[Y ] = var[X1] + · · · + var[X12] = 12/12 = 1. By the
central limit theorem, Y should be almost normally distributed, if we believe that
12 ≈ ∞. How well this holds is shown in Fig. 6.5.

http://dx.doi.org/10.1007/978-3-319-31611-6_4
http://dx.doi.org/10.1007/978-3-319-31611-6_4


152 6 Stable Distributions and Random Walks

Fig. 6.5 Histogramof 107 valuesY , randomly generated according to (6.6), compared to the density
of the standardized normal distribution (3.10). In effect, the figure also shows the deviation of (6.2)
from the normal density. The sharp cut-offs at ≈−5 and ≈4.7 are random: by drawing a larger
number of values the histogram would fill the whole interval [−6, 6]

We have thus created a primitive “convolution” generator of approximately nor-
mally distributed numbers, but with its tails cut off since Y can never exceed 6 and
can never drop below −6. It is a practical generator—which does not mean that it
is good. How a “decent” generator of normally distributed random numbers can be
devised will be discussed in Sect. C.2.5. �
Example (Adapted from [5].) ThemassM of granules of a pharmaceutical ingredient
is a random variable, distributed according to the probability density

fM(m) = 1

24m5
0

m4e−m/m0 , m ≥ 0, m0 = 40mg. (6.7)

To analyze the granulate, we acquire a sample of 30 granules. What is the probability
that the total mass of the granules in the sample exceeds its average value by more
than 10%?

The average mass of a single granule and its variance are

M =
∫ ∞

0
mfM(m) dm = 5m0, σ2

M =
∫ ∞

0

(
m − M

2)
fM(m) dm = 5m2

0.

The probability density fX of the total samplemassX, which is also a randomvariable,
is a convolution of thirty densities of the form (6.7); this number is large enough to
invoke the central limit theorem, so the density fX is almost normal, with average
X = 30M = 150m0 and variance σ2

X = 30 σ2
M = 150m2

0:

fX(x) ≈ fnorm
(
x;X,σ2

X

) = fnorm
(
x; 150m0, 150m

2
0

)
.

The desired probability is then

P(X>165m0) ≈
∞∫

165m0

fnorm
(
x;X,σ2X

)
dx = 1

2

[

1 − erf

(
(165 − 150)m0√

2
√
150m0

)]

≈ 11%,

where we have used Table D.2. �

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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6.4 Stable Distributions �

The normal distribution as the limit distribution of the sum of independent random
variables can be generalized by the concept of stable distributions [6, 7].

Suppose we are dealing with independent random variablesX1,X2 andX3 with the
same distribution over the sample space �. We say that such a distribution is stable,
if for each pair of numbers a and b there exists a pair c and d such that the distribution
of the linear combination aX1 + bX2 is equal to the distribution of cX3 + d, that is,

P
(
aX1 + bX2 ∈ A

) = P
(
cX3 + d ∈ A

) ∀A ⊂ �.

Such random variables are also called ‘stable’; a superposition of stable random
variables is a linear function of a stable random variable with the same distribution.

Stable distributions aremost commonly described by their characteristic functions
(see Appendix B.3). Among many possible notations we follow [6]. We say that a
random variable X has a stable distribution fstab(x;α,β, γ, δ), if the logarithm of its
characteristic function (B.17) has the form

logφX(t) = iδt − γα|t|α[1 − iβ�α(t)
]
,

where

�α(t) =
{
sign(t) tan(πα/2) ; α �= 1,
− 2

π
sign(t) log |t| ; α = 1.

The parameterα ∈ (0, 2] is the stability index or characteristic exponent, the parame-
terβ ∈ [−1, 1] describes the skewness of the distribution, and two further parameters
γ > 0 and δ ∈ R correspond to the distribution scale and location, respectively. For
α ∈ (1, 2] the expected value exists and is equal to E[X] = δ. For general α ∈ (0, 2]
there exist moments E[|X|p], where p ∈ [0,α).

It is convenient to express X by another random variable Z ,

X =
{

γZ + δ ; α �= 1,
γ
(
Z + 2

π
β log γ

)+ δ ; α = 1.

Namely, the characteristic function of Z is somewhat simpler,

logφZ(t) = −|t|α[1 − iβ�α(t)
]
,

as it depends only on two parameters, α and β. The probability density fZ of the
variable Z is calculated by the inverse Fourier transformation of the characteristic
function φZ :

fZ(z;α,β) = 1

π

∫ ∞

0
exp(−tα) cos

(
zt − tαβ�α(t)

)
dt,
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Fig. 6.6 Stable distributions fstab(x; α,β, γ, δ). [Top left and right] Dependence on parameter α at
β = 0.5 and 1.0. [Bottom left and right] Dependence on parameter β at α = 0.5 and 1.0. At α �= 1
the independent variable is shifted by cα,β = β tan(πα/2)

where fZ(−z;α,β) = fZ(z;α,−β). The values of fZ and fX can be computed by
using integrators tailored to rapidly oscillating integrands: see [8], p. 660; a modest
software support for stable distributions can also be found in [9]. With respect to α
and β, the definition domains of fZ are

z ∈
⎧
⎨

⎩

(−∞, 0] ; α < 1, β = −1,
[0,∞) ; α < 1, β = 1,
R ; otherwise.

The dependence of fstab (fX or fZ with appropriate scaling) on the parameter α is
shown in Fig. 6.6 (top left and right), while the dependence on β is shown in the
same figure at bottom left and right.

By a suitable choice of parameters such a general formulation allows for all
possible stable distributions. The most relevant ones are
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normal : α = 2, β = 0, fX(x) = 1√
2π

e−x2/2, x ∈ R ;

Cauchy : α = 1, β = 0, fX(x) = 1

π

1

1 + x2
, x ∈ R ;

Lévy : α = 1
2 , β = 1, fX(x) = 1√

2π
e−1/(2x) x−3/2, x ∈ R+.

Stable distributions with α ∈ (0, 2) have a characteristic behaviour of probability
densities known as power or fat tails. The cumulative probabilities satisfy the as-
ymptotic relations

β ∈ (−1, 1] :
∫ ∞

x
fZ(z;α,β) dz ∼ 1

2
cα(1 + β)x−α, x → ∞,

β ∈ [−1, 1) :
∫ x

−∞
fZ(z;α,β) dz ∼ 1

2
cα(1 − β)(−x)−α, x → −∞,

(6.8)

where cα = 2 sin(πα/2)�(α)/π. Forβ ∈ (−1, 1) such asymptotic behaviour is valid
in both limits, x → ±∞. Note that the probability density has the asymptotics
O(|x|−α−1) if the cumulative probability goes as O(|x|−α).

6.5 Generalized Central Limit Theorem �

Having introduced stable distributions (Sect. 6.4) one can formulate the generalized
central (or Lévy’s) limit theorem, elaboratedmore closely in [2]. Here we just convey
its essence.

Suppose we have a sequence of independent, identically distributed random vari-
ables {Xi}i∈N, from which we form the partial sum

Yn = X1 + X2 + · · · + Xn.

Assume that their distribution has power tails, so that for α ∈ (0, 2] the following
limits exist:

lim
x→∞ |x|α P(X > x) = d+, lim

x→−∞ |x|α P(X < x) = d−,

and d = d+ + d− > 0. Then real coefficients an > 0 and bn exist such that the
rescaled partial sum

Zn = Yn − nbn
an

in the limit n → ∞ is stable, and its probability density is fstab(x;α,β, 1, 0). Its
skewness is given by β = (d+ − d−)/(d+ + d−), while an and bn are
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an =
{

(d n/cα)1/α ; α ∈ (0, 2),
√

(d n log n)/2 ; α = 2,

bn =
{
E
[
Xi
] ; α ∈ (1, 2],

E
[
Xi H
(|Xi| − an

)] ; otherwise,

where H is the Heaviside function. The constant cα is defined next to (6.8). The
coefficient an for α < 2 diverges with increasing n as O(n1/α).

The generalized central limit theorem is useful in analyzing the process of random
walk, which is analogous to extending the partial sum of random numbers Yn. Such
processes are discussed in Sects. 6.7 and 6.8. The convergence to the stable distrib-
ution when n → ∞ is becoming more and more “capricious” when α decreases.

6.6 Extreme-Value Distributions �

In Sects. 6.3 and 6.4 we have discussed the distributions of values obtained in sum-
ming independent, identically distributed random variables {Xi}ni=1. Now we are
interested in statistical properties of their maximal and minimal values, i.e. the be-
haviour of the quantities

Mn = max{X1,X2, . . . ,Xn},
M̃n = min{X1,X2, . . . ,Xn},

when n → ∞. We thereby learn something about the probability of extreme events,
as exceptionally strong earthquakes, unusual extent of floods or inconceivably large
amounts of precipitation: “It rained for four years, eleven months, and two days.”
(See [10], p. 315.) The variables Xi are the values of the process, usually recorded
at constant time intervals—for example, n = 365 daily temperature averages on
Mt. Blanc—while Mn is the corresponding annual maximum. We are interested in,
say, the probability that on top of Mt. Blanc, the temperature of +42 ◦C will be
exceeded on any one day in the next ten years.

In principle, we have already answered these questions—about both the maximal
and minimal value—in Problem 2.11.6: if FX is the distribution function of the
individual Xi’s, the maximal values Mn are distributed according to

FMn(x) = P
(
Mn ≤ x

) = [FX(x)
]n

, (6.9)

and the minimal as

1 − FM̃n
(x) = 1 − P

(
M̃n ≤ x

) = P
(
M̃n > x

) = [1 − FX(x)
]n

.

http://dx.doi.org/10.1007/978-3-319-31611-6_2
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But this does not help much, as FX is usually not known! A statistical analysis of
the observations may result in an approximate functional form of FX , but even small
errors in FX (particularly in its tails) may imply large deviations in Fn

X . We therefore
accept the fact that FX is unknown and try to find families of functions Fn

X , by which
extreme data can be modeled directly [11, 12].

There is another problem. Define x+ as the smallest value x, for which FX(x) = 1.
Then for any x < x+ we get Fn

X(x) → 0, when n → ∞, so that the distribution
function ofMn degenerates into a “step” at x+. The figure above shows this in the case
of uniformly distributed variables Xi ∼ U(0, 1) with probability density fX(x) = 1
(0 ≤ x ≤ 1) and distribution function FX(x) = x (0 ≤ x ≤ x+ = 1). When n → ∞,
the distribution function Fn

X tends to the step (Heaviside) function at x = 1, while
its derivative (probability density) resembles the delta “function” at the same point.
Our goal is to find a non-degenerate distribution function. We will show that this can
be accomplished by a rescaling of the variable Mn,

M∗
n = Mn − bn

an
, (6.10)

where an > 0 and bn are constants. Illustrations of a suitable choice of these constants
or of their calculation are given by the following Example and Exercise in Sect. 6.9.5.
A general method to determine these constants is discussed in [13, 14].

Example LetX1,X2, . . . ,Xn be a sequence of independent, exponentially distributed
variables, thus FX(x) = 1 − e−x. Let an = 1 and bn = log n. Then

P

(
Mn − bn

an
≤ x

)

= P
(
Mn ≤ anx + bn

) = P
(
Mn ≤ x + log n

)

= [FX
(
x + log n

)]n = [1 − e−(x+log n)
]n =
[
1 − 1

n
e−x
]n

→ exp
(− exp(−x)

)
, x ∈ R,

when n → ∞. By a suitable choice of an and bn we have therefore stabilized the
location and scale of the distributions ofM∗

n in the limit n → ∞.
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Let us repeat this calculation for independent variables with the distribution func-
tion FX(x) = e−1/x and for uniformly distributed variables, FX(x) = x! In the first
case we set an = n and bn = 0, and get P(M∗

n ≤ x) = e−1/x (x > 0). In the second
case a good choice is an = 1/n and bn = 1, yielding P(M∗

n ≤ x) → ex (x < 0) in the
limit n → ∞. Plot all three functions FX(x) of this Example and elaborate why one
or the other are more or less sensible for the actual physical description of extreme
phenomena! �

6.6.1 Fisher–Tippett–Gnedenko Theorem

Apparently the choice of constants an and bn is crucial if we wish the distribution
of M∗

n in the limit n → ∞ to be non-trivial (not degenerated into a point); the basic
formalism for a correct determination of these constants is discussed e.g. in [14].
In the following we assume that such constants can be found; one can then namely
invoke the Fisher–Tippett–Gnedenko theorem [15, 16], which is the extreme-value
analog of the central limit theorem of Sect. 6.3: if there exist sequences of constants
{an > 0} and {bn} such that in the limit n → ∞ we have

P

(
Mn − bn

an
≤ x

)

→ G(x)

for a non-degenerate distribution function G, then G belongs to the family

G(x) = exp

{

−
[

1 + ξ

(
x − μ

σ

)]−1/ξ
}

, (6.11)

defined on the set of points {x : 1 + ξ(x − μ)/σ) > 0}, where−∞ < μ < ∞, σ > 0
and −∞ < ξ < ∞. Formula (6.11) defines the family of generalized extreme-value
distributions (GEV).An individual distribution is described by the location parameter
μ (a sort of average of extreme values), the scale parameter σ (their dispersion),
and the shape parameter ξ. The value of ξ characterizes three sub-families of the
GEV set—Fréchet (ξ > 0), Gumbel (ξ = 0) and Weibull (ξ < 0)—differing by the
location of the point x+ and asymptotics. The Gumbel-type distributions must be
understood as the ξ → 0 limit of (6.11):

G(x) = exp

{

− exp

[

−
(
x − μ

σ

)]}

, −∞ < x < ∞. (6.12)

The corresponding probability density in the case ξ �= 0 is

g(x) = G′(x) = 1

σ

[
t(x)
]1+ξ

e−t(x), t(x) =
[

1 + ξ
x − μ

σ

]−1/ξ

(6.13)

while for ξ = 0 it is



6.6 Extreme-Value Distributions � 159

Fig. 6.7 Rainfall in Engelberg (1864–2014). [Left] Time series of annual extreme values. [Right]
Histogram of extremes, the corresponding probability density g (dashed curve) and the GEV dis-
tribution function (full curve). The optimal parameters μ̂, σ̂ and ξ̂ have been determined by fitting
g to the histogram

g(x) = 1

σ
exp

[

−x − μ

σ
− exp

(

−x − μ

σ

)]

.

The predictive power of the Fisher–Tippett–Gnedenko theorem does not lag be-
hind the one of the central limit theorem: if one is able to find suitable {an} and {bn},
the limiting extreme-value distribution is always of the type (6.11), regardless of the
parent distribution FX that generated these extreme values in the first place! Different
choices of {an} and {bn} lead to GEV-type distributions with different μ and σ, but
with the same shape parameter ξ, which is the essential parameter of the distribution.

Example Figure6.7 (left) shows the annual rainfall maxima, measured over 151
years (1864–2014) in the Swiss town of Engelberg [17]. Each data point represents
the extreme one-day total (the wettest day in the year): we are therefore already
looking at the extreme values and we are interested in their distribution, not the
distribution of all non-zero daily quantities: that is most likely normal!

Figure6.7 (right) shows the histogram of 151 extreme one-day totals, normalized
such that the sum over all bins is equal to one. It can therefore be directly fitted by the
density (6.13) (dashed curve), resulting in the distribution parameters μ̂ = 53.9mm,
σ̂ = 14.8mm, ξ̂ = 0.077 (Fréchet family). The corresponding distribution function
is shown by the full curve. �

6.6.2 Return Values and Return Periods

The extreme-value distribution and its asymptotic behaviour can be nicely illustrated
by a return-level plot. Suppose that we havemeasured n = 365 daily rainfall amounts
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Fig. 6.8 Return values for
extreme rainfall in Engelberg
(period 1864–2014). The full
curve is the model prediction
with parameters from
Fig. 6.7, and the dashed
curve is the model with
parameters obtained by the
maximum likelihood method

xi over a period ofN consecutive years, so that their annualmaxima are also available:

x1, x2, . . . , xn︸ ︷︷ ︸
Mn,1

, xn+1, xn+2, . . . , x2n︸ ︷︷ ︸
Mn,2

, . . . , x(N−1)n+1, x(N−1)n+2, . . . , xNn
︸ ︷︷ ︸

Mn,N

.

The quantiles of the annual extremes distribution are obtained by inverting (6.11):

xp =
{

μ − σ

ξ

[
1 − (− log(1 − p)

)−ξ
]

; ξ �= 0,

μ − σ log
(− log(1 − p)

) ; ξ = 0,

where G(xp) = 1 − p. We call xp the return level corresponding to the return period
T = 1/p. One may namely expect that the value xp will be exceeded once every
1/p years or that the annual maximum will exceed the value xp in any year with a
probability of p = 1/T . From these definitions it follows that

T = 1

p
= 1

1 − G(xp)
. (6.14)

The model dependence of xp on T in the case of Engelberg rainfall is shown in
Fig. 6.8 by the full curve. On the abscissa one usually uses a logarithmic scale; one
thereby shrinks the region of “extreme extreme” values and obtains a clearer picture
of the asymptotics in terms of ξ. We must also plot the actually measured extreme
observationsMn,1,Mn,2, . . . ,Mn,N . In general, these are not sorted, so—in the spirit
of (6.14)—individual extremes Mn,i are mapped to their return periods:

Ti = N

N + 1 − rank(Mn,i)
, i = 1, 2, . . . ,N .

The points (Ti,Mn,i) are denoted by circles in the figure. Themaximum one-day total
of 111.2mm, recorded in 2005, has an expected return period of 31 years, while the
deluge witnessed in 1874 may reoccur every ≈150 years on the average.
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Thefitting of the probability density to the data as in the previousExample depends
on the number of bins in the histogram (see Sect. 9.2), so this is not the best way
to pin down the optimal parameters. In Problem 8.8.3 the parameters of the GEV
distribution and their uncertainties will be determined for the same data set by the
method of maximum likelihood. In Fig. 6.7 (right) this distribution is shown by the
dashed line.

6.6.3 Asymptotics of Minimal Values

So far we have only discussed the distributions of maximal values, most frequently
occurring in practice. On the other hand, the distributions of extremely small values,
i.e. the asymptotic behaviour of the quantities

M̃n = min{X1,X2, . . . ,Xn}

when n → ∞, are also important, in particular in modeling critical errors in systems,
where the lifetime of the whole system, M̃n, is equal to the minimal lifetime of one
of its components {Xi}.

There is no need to derive new formulas for minimal values; we can simply
use the maximal-value results. Define Yi = −Xi for i = 1, 2, . . . , n, so that small
values of Xi correspond to large values of Yi. Thus if M̃n = min{X1,X2, . . . ,Xn} and
Mn = max{Y1,Y2, . . . ,Yn}, we also have

M̃n = −Mn.

In the limit n → ∞ we therefore obtain

P
(
M̃n ≤ x

) = P
(−Mn ≤ x

) = P
(
Mn ≥ −x

) = 1 − P
(
Mn ≤ −x

)

→ 1 − exp

{

−
[

1 + ξ

(−x − μ

σ

)]−1/ξ
}

= 1 − exp

{

−
[

1 − ξ

(
x − μ̃

σ

)]−1/ξ
}

(6.15)

on {x : 1 − ξ(x − μ̃)/σ > 0}, where μ̃ = −μ. This means that a minimal-value dis-
tribution can be modeled either by directly fitting (6.15) to the observations or by
using (6.11) and considering the symmetry exposed above: if, for example, we wish
to model the data x1, x2, . . . , xn by a minimal-value distribution (parameters μ̃,σ, ξ),
this is equivalent to modeling the data −x1,−x2, . . . ,−xn by a maximal-value dis-
tribution with the same σ and ξ, but with μ̃ = −μ.

http://dx.doi.org/10.1007/978-3-319-31611-6_9
http://dx.doi.org/10.1007/978-3-319-31611-6_8


162 6 Stable Distributions and Random Walks

6.7 Discrete-Time RandomWalks �

Randomwalks are non-stationary random processes used to model a variety of phys-
ical processes. A random or stochastic process is a generalization of the concept of
a random variable: instead of drawing a single value, one “draws” a whole time
series (signal), representing one possible realization of the random process or its
sample path. The non-stationarity of the process means that its statistical proper-
ties change with time. (A detailed classification of random process can be found in
[8].) In this subsection we discuss discrete-time random walks [2, 18, 19], while the
next subsection is devoted to their continuous-time counterparts [18–21]. See also
Chap.12.

Imagine a discrete-time random process X, observed as a sequence of random
variables {X(t)}t∈N. The partial sums of this sequence are

Y(t) = Y(0) +
t∑

i=1

X(i) = Y(t − 1) + X(t) (6.16)

and represent a new discrete-time random process Y , i.e. a sequence of random
variables {Y(t)}t∈N0 . The process Y is called a random walk, whose individual step is
the process X(t). Let the sample space� of X and Y be continuous.We are interested
in the time evolution of the probability density fY(t) of the random variable Y if the
initial density fY(0) is known.

If we assume that Y is a process in which the state of each point depends only on
the state of the previous point, the time evolution of fY(t) is determined by

fY(t)(y) =
∫

�

f
(
Y(t) = y |Y(t − 1) = x

)
fY(t−1)(x) dx,

where f
(
Y(t) = y |Y(t − 1) = x

)
is the conditional probability density that Y goes

from value x at time t − 1 to value y at time t. Let us also assume that the process X is
independent of the previous states, so that f

(
X(t) = x |Y(t − 1) = y − x) = fX(t)(x).

By considering (6.16) and substituting z = y − x we get

fY(t)(y) =
∫

�

fX(t)(z)fY(t−1)(y − z) dz = (fX(t) ∗ fY(t−1)
)
(y).

By using this formula fY(t) can be expressed as a convolution of the initial distribution
fY(0) and the distribution of the sum of steps until time t, f ∗t

X :

fY(t) = fY(0) ∗ f ∗t
X , f ∗t

X = fX(1) ∗ fX(2) ∗ · · · ∗ fX(t).

The time evolution fY(t)(y) is most easily realized in Fourier space, where it is given
by the product of Fourier transforms F of the probability densities,

http://dx.doi.org/10.1007/978-3-319-31611-6_12


6.7 Discrete-Time Random Walks � 163

F
[
fY(t)
] = F

[
fY(0)
] t∏

i=1

F
[
fX(i)
]
.

One often assumes that at time zero the value of the process Y is zero and that
fY(0)(y) = δ(y). This assumption is useful in particular when one is interested in the
qualitative behaviour of fY(t) at long times.

6.7.1 Asymptotics

Tounderstand the time asymptotics of the distribution fY(t) is is sufficient to study one-
dimensional random walks. Assume that the steps are identically distributed, with
the density fX(t) = fX , and Y(0) = 0. The distribution corresponding to the process
Y is therefore determined by the formula

fY(t) = F−1

[(
F
[
fX
])t
]

for all times t. The behaviour of fY(t) in the limit t → ∞ is determined by the central
limit theorem (Sect. 6.3) and its generalization (Sect. 6.5). The theorems tell us that
at large t, fY(t) converges to the limiting (or asymptotic) distribution which can be
expressed by one of the stable distributions fstab, such that

fY(t)(y) ∼ L(t)fstab
(
L(t)y + tμ(t)

)

with suitably chosen functions L and μ. The function L represents the effective
width of the central part of the distribution fY(t), where the bulk of the probability
is concentrated, and is called the characteristic spatial scale of the distribution. The
function μ has the role of the distribution average.

Furthermore, if the distribution of steps, fX , has a bounded variance, σ2
X < ∞, the

central limit theorem tells us that fY(t) tends to the normal distribution with a standard
deviation of

L = σY(t) ∼ t1/2.

Such asymptotic dependence of the spatial scale on time defines normal diffusion,
and this regime of random walks is named accordingly (Fig. 6.9 (left)).

If the probability density fX asymptotically behaves as

fX(x) ∼ C±
|x|α+1

, x → ±∞,

where C± are constants, we say that the distribution has power or fat tails, a concept
familiar from Sect. 6.4. For α ∈ (0, 2), the second moment of the distribution no
longer exists, and fY(t) at large t tends to a distribution with scale
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Fig. 6.9 Dependence of the characteristic spatial scale L on time t. [Left] Discrete-time random
walks. [Right] Continuous-time random walks

L ∼ t1/α.

Because in this case the characteristic scale changes faster than in the case of normal
diffusion, we are referring to super-diffusion. The dynamics of the process Y in this
regime is known as Lévy flights. The diffusionwithα = 1 is called ballistic: particles
propagate with no restrictions with given velocities, so that

L ∼ t.

Near α = 2 we have L(t) ∼ (n log n)1/2, a regime called log-normal diffusion.
These properties can be easily generalized to multiple space dimensions. We

observe the projection of the walk, n̂TY(t), along the direction defined by the unit
vector n̂, and its probability density fn̂TY(t). For each n̂ we apply the central limit
theorem or its generalization and determine the scale Ln̂. A random walk possesses a
particular direction n̂∗ along which the scale is largest or increases fastest with time.
We may take Ln̂∗ to be the characteristic scale of the distribution fY(t). An example of
a simulation of a two-dimensional random walk where the steps in x and y directions
are independent, is shown in Fig. 6.10.

If the densities fX(t) have power tails, fY(t) also has them. This applies regardless
of the central limit theorem or its generalization. Suppose that in the limit t → ∞
we have fX(t)(x) ∼ C±,t|x|−α−1. When the walk “generates” the density fY(t), the
tails add up, so fY(t)(x) ∼ (∑t

i=1 C±,i
)|x|−α−1 when x → ±∞. This means that the

probability of extreme events in Y(t) increases with time, since

P
(|Y(t)| > y

) ∼
t∑

i=1

P
(|X(i)| > y

)
, when y → ∞.

To estimate the variance of such processes we therefore apply methods of robust sta-
tistics (Sect. 7.4). Instead of calculating the standard deviation σY(t) in sub-diffusive
random walks, for example, one is better off using MAD (7.23).

http://dx.doi.org/10.1007/978-3-319-31611-6_7
http://dx.doi.org/10.1007/978-3-319-31611-6_7
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Fig. 6.10 Examples of random walks (xt, yt) with 104 steps, generated according to xt+1 = xt +
sign(X)|X|−μ and yt+1 = yt + sign(Y)|Y |−μ, where X and Y are independent random variables,
uniformly distributed on [−1, 1]. [Left] μ = 0.25. [Right] μ = 0.75. The circles denote the initial
position of the walks, x = y = 0

6.8 Continuous-Time RandomWalks �

In continuous-time random walks [18–21] the number of steps N(t) taken until time
t becomes a continuous random variable. The definition of a discrete-time random
walk (6.16) should therefore be rewritten as

Y(t) = Y(0) +
N(t)∑

i=1

X(i).

The expression for Y(t) can not be cast in iterative form Y(t) = Y(t − 1) + · · · as
in (6.16). The number of steps N(t) has a probability distribution FN(t). Suppose
that N(t) and X(i) are independent processes—which is not always true, as it is not
possible to take arbitrary many steps within given time [22, 23]. If X(i) at different
times are independent and correspond to probability densities fX(i), the probability
density of the random variable Y(t) is

fY(t)(y) =
∞∑

n=0

FN(t)(n)
(
fY(0) ∗ f ∗n

X

)
(y),

where
f ∗t
X = fX(1) ∗ fX(2) ∗ · · · ∗ fX(t).

In the interpretation of such random walks and the choice of distribution FN(t)

we follow [20]. A walk is envisioned as a sequence of steps whose lengths X(i) and
waiting time T(i) between the steps are randomly drawn. After N steps the walk
makes it to the point X (N) and the elapsed time is T (N), so that
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X (N) =
N∑

i=1

X(i), T (N) =
N∑

i=1

T(i), X (0) = T (0) = 0.

Within given time, a specific point can be reached in different numbers of steps N .
If the step lengths X(i) and waiting times T(i) are independent, the number of steps
N(t) taken until time t is determined by the process of drawing the waiting times.
Let us introduce the probability that the ith step does not occur before time t,

FT(i)(t) =
∫ ∞

t
fT(i)(t

′) dt′,

where fT(i) is the probability density corresponding to the distribution of waiting
times. The probability of making n steps within the time interval [0, t] is then

FN(t)(n) =
∫ t

0
f ∗n
T (t′)FT(n+1)(t − t′) dt′ = (f ∗n

T ∗ FT(n+1)
)
(t),

where
f ∗n
T = fT(1) ∗ fT(2) ∗ · · · ∗ fT(n).

The distribution FN(t) can be calculated by using the Laplace transformation in
time domain and the Fourier transformation in spatial domain: this allows one to
avoid convolutions and operate with products of functions in transform spaces. The
procedure, which we can not discuss in detail, leads to the Montroll–Weiss equation
[20], helping us to identify four parameter regions corresponding to distributions of
step lengths (density fX ) and waiting times (density fT ) with different dependencies
of the scale L on time t, which determine the diffusion properties of the randomwalk.
These regions are shown in Fig. 6.9 (right) and quantified below. We assume that the
distributions of step lengths and waiting times do not change during the walk, so that
fX(i) = fX and fT(i) = fT .

Normal diffusionwith spatial scale L ∼ t1/2 is obtained when E[T ] < ∞, σX < ∞.

Sub-diffusion with scale L ∼ tβ/2 is obtained with E[T ] = ∞, σX < ∞ and distri-
bution of waiting times

fT (t) ∼ 1

t1+β
, β ∈ (0, 1).

Super-diffusionwithL ∼ t1/α is obtainedwithE[T ] < ∞,σX = ∞ and distribution
of step lengths

fX(x) ∼ 1

x1+α
, α ∈ (0, 2).

When E[T ] = ∞ and σX = ∞, and when
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Fig. 6.11 [Left] Convolution of the uniform distribution U(−3, 3) and the standardized normal
distribution N(0, 1). [Right] Convolution of the exponential distribution with parameter λ = 0.2
and the standardized normal distribution

fX(x) ∼ 1

x1+α
, fT (t) ∼ 1

t1+β
, α ∈ (0, 2), β ∈ (0, 1),

the scale is L ∼ tβ/α. The walks are super-diffusive if 2β > α and sub-diffusive
otherwise. Processes for which E[T ] = ∞ are deeply non-Markovian: this means
that the values of the process at given time depend on its whole history, not just on
the immediately preceding state. Further reading can be found in [19, 21].

6.9 Problems

6.9.1 Convolutions with the Normal Distribution

Calculate the convolution of the normal distribution with the① uniform,② normal
and ③ exponential distributions!

✎ ① The convolution of the uniform distribution with the density fX(x) = 1/(b −
a) (see (3.1)) and the normal distribution with the density fY (Definition (3.7)) is

fZ(z) =
∫ b

a
fX(x)fY (z − x) dx = 1

b − a

1√
2π σ

∫ b

a
exp

[

− (z − x)2

2σ2

]

dx

= 1

b − a

1√
2π

∫ (b−z)/σ

(a−z)/σ
e−u2/2 du = 1

2(b − a)

[

erf

(
b − z√
2σ

)

− erf

(
a − z√
2σ

)]

.

This function is shown in Fig. 6.11 (left).
Part ② is easily solved by using characteristic functions (B.20) and prop-

erty (B.22):

http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_3


168 6 Stable Distributions and Random Walks

φZ(t) = φX+Y (t) = φX(t)φY (t) = ei (μX+μY )te−(σ2
X+σ2

Y)t
2/2 = eiμZ te−σ2

Z t
2/2.

From this it is clear that the convolution of two normal distributions with means
μX and μY and variances σ2

X and σ2
Y is also a normal distribution, with mean μZ =

μX + μY and variance σ2
Z = σ2

X + σ2
Y .

Problem ③ requires us to convolute the distribution with the probability density
fX(x) = λ exp(−λx) (see (3.4)) and the normal distribution, where we set μ = 0:

fZ(z) = λ√
2π σ

∫ z

−∞
e−λ(z−y)e−y2/(2σ2) dy.

Upon rearranging the exponent,

−λ(z − y) − y2

2σ2
= − λ

2σ2

(

2σ2(z − y) + y2

λ
+ λσ4 − λσ4

)

= −λz + λ2σ2

2
− 1

2σ2

(
y − λσ2)2 ,

it follows that

fZ(z) = λ√
2π σ

exp

(

−λz + λ2σ2

2

)∫ (z−λσ2)/σ

−∞
e−u2/2 du

= λ exp

(

−λz + λ2σ2

2

)
1

2

[

1 + erf

(
z − λσ2

√
2 σ

)]

.

This function is shown in Fig. 6.11 (right).

6.9.2 Spectral Line Width

The lines in emission spectra of atoms and molecules have finite widths [24]. Line
broadening has three contributions: the natural width (N), collisional broadening
(C) due to inelastic collisions of radiating particles, and Doppler broadening (D).
Calculate a realistic spectral line profile by convoluting these three distributions.

✎ The natural width of the line in spontaneous emission—usually the smallest
contribution to broadening—has a Lorentz (Cauchy) profile with a width of �νN,

φN(ν) = 1

π

�νN/2

(ν − ν0)2 + (�νN/2)2
.

As noted in the discussion of (3.19), such a distribution embodies a Fourier transfor-
mation of the exponential time dependence of the decays into Fourier space.

http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_3
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The broadening due to inelastic collisions depends on pressure and temperature—
approximately one has �νC ∝ p/

√
T—and has a Cauchy profile as well:

φC(ν) = 1

π

�νC/2

(ν − ν0)2 + (�νC/2)2
. (6.17)

A convolution of two Cauchy distributions is again a Cauchy distribution,

φN+C(ν) =
∫ ∞

−∞
φN(ρ)φC(ν − ρ) dρ = 1

π

(�νN + �νC)/2

(ν − ν0)2 + (�νN + �νC)2/4
,

where we have shifted the origin of φC before integrating by setting ν0 = 0 in (6.17).
If we had failed to do that, the peak of the convoluted distribution φN+C would shift
from ν0 to 2ν0—see Sect. 6.1.1!

The Doppler effect is proportional to the velocity of the radiating objects, which
is normally distributed (see (3.14) for a single velocity component), hence the cor-
responding contribution to the line profile has the form

φD(ν) = 2
√
log 2√

π�νD
exp

{

−
(
2
√
log 2

�νD
(ν − ν0)

)2}

.

The final spectral line shape is calculated by the convolution of the distributions
φN+C and φD, where again the origin must be shifted. We obtain

φV(ν) =
∫ ∞

−∞
φN+C(ρ)φD(ν − ρ) dρ = 2

√
log 2√

π�νD

{
a

π

∫ ∞

−∞
e−x2

(w − x)2 + a2
dx

}

,

where

a = √log 2 �νN + �νC

�νD
, w = 2

√
log 2

ν − ν0

�νD
.

This is called the Voigt distribution. The natural width is usually neglected because
�νN � �νC,�νD. How well φV describes an actual line shape (as compared to the
Cauchy and Gaussian profiles) is shown in Fig. 6.12.

6.9.3 Random Structure of Polymer Molecules

(Adapted from [5].) A polymer molecule can be envisioned as a chain consisting of
a large number of equal, rigid, thin segments of length L. Starting at the origin, a
molecule growsby attaching to the current terminal point further and further segments
in arbitrary directions in space.① What is the probability distribution for the position
of the terminal point? ② Calculate the expected distance R between the initial and
terminal point of the chain and R2!

http://dx.doi.org/10.1007/978-3-319-31611-6_3


170 6 Stable Distributions and Random Walks

Fig. 6.12 Description of the
Si (III) emission line at the
wave-length of 254.182 nm
(compare to Fig. 3.6) by a
Gaussian (normal), Cauchy
(Lorentz) and Voigt
distribution with added
constant background

✎ ① Whenanewsegment is attached to the chain, it “chooses” its orientation at ran-
dom: the directional distribution is therefore isotropic, f�(cos θ) = dF�/d(cos θ) =
1/2. For a projection of a single segment onto an arbitrary direction (e.g. x) we have

X1 = L cos� = L
∫ π

0
cos θ f�(cos θ) sin θ dθ = 0,

σ2
X1

= X2
1 = L2 cos2 � = L2

∫ π

0
cos2 θ f�(cos θ) sin θ dθ = L2

3
. (6.18)

The X-coordinate of the terminal point of an N-segment chain is the sum of indepen-
dent and identically distributed random variables X1 so, by the central limit theorem,
it is nearly normally distributed at large N , with expected value X = NX1 = 0 and
variance σ2

X = X2 = Nσ2
X1

= NL2/3. The corresponding probability density is

fX(x) = 1√
2π σX

exp

(

− x2

2σ2
X

)

=
√

3

2πNL2
exp

(

− 3x2

2NL2

)

.

The x, y and z projections are not independent when a single segment is attached,
but they are independent on average (after many attachments), so the same reasoning
applies to Y and Z coordinates. Since R2 = X2 + Y 2 + Z2, the probability density
corresponding to the radial distribution of the terminal point of the chain is

fR(r) = fX(x)fX(y)fX(z) =
(

3

2πNL2

)3/2
exp

(

− 3r2

2NL2

)

. (6.19)

② This can be used to calculate the expected values of R and R2:

R =
∫ ∞

0
rfR(r) 4πr

2 dr = L

√
8N

3π
, R2 =

∫ ∞

0
r2fR(r) 4πr

2 dr = NL2.

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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The latter can also be derived by recalling (6.18), since

R2 = X2 + Y 2 + Z2 = X2 + Y 2 + Z2 = 3
NL2

3
= NL2.

There is yet another path to the same result. Each segment (n = 1, 2, . . . ,N) is
defined by a vector rn = (xn, yn, zn)T. We are interested in the average square of the
sum vector,

R2 = |R|2 =
(

N∑

m=1

rm

)T ( N∑

n=1

rn

)

=
∑

n

r2n +
∑

m �=n

rTmrn.

Averaging the second sum yields zero due to random orientations, rTmrn = 0, hence

R2 =
N∑

n=1

r2n = Nr21 = NL2.

6.9.4 Scattering of Thermal Neutrons in Lead

(Adapted from [5].) A neutron moves with velocity v in lead and scatters elasti-
cally off lead nuclei. The average time between collisions is τ , corresponding to
the mean free path λ = vτ . The times between consecutive collisions are mutually
independent, and each scattering is isotropic. ① What is the (spatial) probability
distribution of neutrons at long times? Calculate the average distance R of neutrons
from the origin andR2!② Demonstrate thatR2 is proportional to time, so the process
has the usual diffusive nature! The diffusion coefficient D is defined by the relation
R2 = 6Dt. How does D depend on λ and v?

✎ ① Isotropic scattering implies f�(cos θ) = dF�/d(cos θ) = 1/2. But we must
also take into account the times between collisions or the distances l traversed by the
neutron between collisions, fT (t) = dFT/dt = τ−1 exp(−t/τ ), thus

fL(l) = dFL

dl
= dFT

dt

dt

dl
= 1

τ
e−t/τ 1

v
= 1

λ
e−l/λ,

where l = vt. The joint probability density of the linear and angular variable, relevant
to each collision, is therefore

fL,�(l, cos θ) = 1

2λ
e−l/λ.

The expected value of the projection of the neutron trajectory between two collisions
onto the x-axis and the corresponding variance are
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X1 = L cos� =
∫ ∞

0

∫ π

0
l cos θ fL,�(l, cos θ) dl sin θ dθ = 0,

σ2
X1

= X2
1 = L2 cos2 � =

∫ ∞

0

∫ π

0
l2 cos2 θ fL,�(l, cos θ) dl sin θ dθ = 2λ2

3
.

Hence, as in Sect. 6.9.3, X = NX1 = 0 after N scatterings, while σ2
X = Nσ2

X1
=

2Nλ2/3. Therefore the probability density for the distribution of R (distance from
the origin to the current collision point) has the same functional form as in (6.19),

fR(r) =
(

3

4πNλ2

)3/2
exp

(

− 3r2

4Nλ2

)

,

one only needs to insert the variance 2Nλ2/3 instead of NL2/3. It follows that

R =
∫ ∞

0
rfR(r) 4πr

2 dr = λ

√
16N

3π
, R2 =

∫ ∞

0
r2fR(r) 4πr

2 dr = 2Nλ2.

② The elapsed time afterN collisions is t = Nλ/v, so that indeed R2 is proportional
to time, R2 = 2Nλ2 = 2(vt/λ)λ2 = 2vtλ. From the definition R2 = 6Dt it follows
that

D = λv

3
.

6.9.5 Distribution of Extreme Values of Normal Variables �

Let continuous random variables Xi (i = 1, 2, . . . , n) be normally distributed, Xi ∼
N(0, 1), with the corresponding distribution function FX(x) = �(x) and probability
density fX(x) = φ(x) for each variable:

�(x) = 1√
2π

∫ x

−∞
e−t2/2 dt, φ(x) = 1√

2π
e−x2/2.

What is the distribution function FMn of the valuesMn = max{X1,X2, . . . ,Xn}? This
Problem [13] is a continuation of the Example on p. 157 and represents a method
to determine the parameters an and bn for the scaling formula (6.10) such that the
limiting distribution (6.9) is non-degenerate.

✎ Let 0 ≤ τ ≤ ∞ and let {un} be a sequence of real numbers such that

1 − FX(un) → τ

n
when n → ∞. (6.20)



6.9 Problems 173

By definition of the exponential function by a series we get

FMn (un) = P
(
Mn ≤ un

) = Fn
X (un) = [1 − (1 − FX (un)

)]n =
[
1 − τ

n
+ O(1/n)

]n ∼ e−τ ,

when n → ∞. The leading dependence of the distribution function,FMn ∼ exp(−τ ),
follows without explicit reference to the parent distribution FX(x) being normal! A
motivation for a specific form of τ can then be found in the asymptotic property of
the normal distribution

1 − �(z) ∼ φ(z)

z
, n → ∞. (6.21)

Let τ = e−x. The reason for this choice, fully consistent with (6.20), will become
clear in the following: this is the only way to obtain in the final expression a linear
dependence on x in the rescaled argument of the distribution function. By compar-
ing (6.20) to (6.21) we obtain

1 − �(un) ∼ e−x

n
∼ φ(un)

un
⇒ 1

n
e−x un

φ(un)
→ 1.

Taking the logarithm we get − log n − x + log un − logφ(un) → 0 or

− log n − x + log un − 1
2 log 2π + 1

2 u
2
n → 0. (6.22)

For fixed x in the limit n → ∞ one therefore has u2n/(2 log n) → 1, so that taking
the logarithm again yields 2 log un − log 2 − log log n → 0 or

log un = 1
2

(
log 2 + log log n

)+ O(1).

Inserting this in (6.22), we get 1
2u

2
n = x + log n − 1

2 log 4π − 1
2 log log n + O(1),

hence

u2n = 2 log n

[

1 + x − 1
2 log 4π − 1

2 log log n

log n
+ O
(

1

log n

)]

,

and finally, after taking the square root,

un = √2 log n
[

1 + x − 1
2 log 4π − 1

2 log log n

2 log n
+ O
(

1

log n

)]

.

This expression has the form

un = anx + bn + O
(
(log n)−1/2) = anx + bn + O

(
an
)
,

whence we read off the normalization constants an and bn:
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an = 1√
2 log n

, bn = √2 log n − log log n + log 4π

2
√
2 log n

. (6.23)

These constants imply P
(
Mn ≤ anx + bn + O(an)

)→ exp
(−e−x

)
, that is,

FMn(x) = P

(
Mn − bn

an
+ O(1) ≤ x

)

→ exp
(−e−x

)
.

The distribution of extreme values of normally distributed variables is therefore of
the Gumbel type (6.12) with normalization constants (6.23).
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