
Chapter 4
Expected Values

Abstract Finding expected values of distributions is one of the main tasks of any
probabilistic analysis. The expected value in the narrower sense of the average
(mean), which is a measure of distribution location, is introduced first, followed
by the related concepts of the median and distribution quantiles. Expected values of
functions of random variables are presented, as well as the variance as the primary
measure of the distribution scale. The discussion is extended to moments of distri-
butions (skewness, kurtosis), as well as to two- and d-dimensional generalizations.
Finally, propagation of errors is analyzed.

In this chapter we discuss quantities that one may anticipate for individual ran-
dom variables or their functions—with respect to the probability distributions of
these variables—after multiple repetitions of random experiments: they are known
as expected values or expectations of random variables. The most important such
quantity is the average value, which is the expected value in the basic, narrowest
sense of the word; further below we also discuss other expected values in the broader
sense.

4.1 Expected (Average, Mean) Value

The expected value of a discrete random variable X, which can assume the values xi
(i = 1, 2, . . .), is computed by weighting (multiplying) each of these values by the
probability P(X = xi) = fX(xi) that in a large number of trials this particular value
turns up (see (2.13)), then sum all such products:

X = E[X] =
n∑

i=1

xi P(X = xi). (4.1)

The average is denoted by E or by a line across the random variable (or its function)
being averaged. Both E[X] and X , as well as the frequently used symbol μX imply
the “averaging operation” performed on the variable X. (We emphasize this because
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94 4 Expected Values

we occasionally also use the slightly misleading expression “expected value of a
distribution”: what usually changes in random processes is the value of a variable,
not its distribution!) In Chaps. 4–6 the symbols

E[X], X, μX , (4.2)

signify the one and the same thing, while in Chaps. 7–10 the symbols X and x will
denote the average value of a sample and E[•]will be used strictly as expected value.
The only symbol that really would not make any sense, is E[x].

It can not hurt to recall the formula to compute the center of mass of a one-
dimensional system of point-like masses with a total mass M = ∑n

i=1 mi:

xcm =
∑n

i=1 ximi∑n
i=1 mi

=
n∑

i=1

xi
mi

M
.

If all probabilities in (4.1) are equal, we get a simple expression for the usual arith-
metic average

x = 1

n

n∑

i=1

xi.

The expected value of a continuous random variable X is obtained by replacing
the sum by the integral and integrating the product of the variable value x and the
corresponding probability density over the whole definition domain,

X = E[X] =
∫ ∞

−∞
x fX(x) dx. (4.3)

(Beware: this expected value may not exist for certain types of densities fX .) The
analogy from mechanics is again the center of mass of a three-dimensional inhomo-
geneous body, which is calculated by integrating the product of the position vector
with the position-dependent density over the whole volume:

rcm = r = 1

m

∫

V
r dm = 1

m

∫

V
rρ(r) d3r.

Example In a casino we indulge in a game of dice with the following rules for
each throw: 2 spots—win 10e; 4 spots—win 30e; 6 spots—lose 20e; 1 spot, 3
spots or 5 spots—neither win nor lose. Any number of spots xi is equally probable,
P(X = xi) = 1

6 , so the expected value of our earnings is

E[X] = 1
60e + 1

610e + 1
60e + 1

630e + 1
60e + 1

6 (−20)e ≈ 3.67e.

If the casino wishes to profit from this game, the participation fee should be at least
this much. �

http://dx.doi.org/10.1007/978-3-319-31611-6_6
http://dx.doi.org/10.1007/978-3-319-31611-6_7
http://dx.doi.org/10.1007/978-3-319-31611-6_10
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4.2 Median

Themedian of a random variable X (discrete or continuous) is the value x = med[X],
for which

P(X < x) ≤ 1
2 and P(X > x) ≤ 1

2 . (4.4)

For a continuous variable X the inequalities become equalities,

P(X < x) = P(X > x) = 1
2 ⇐⇒ med[X] = F−1

X (1/2),

as it is always possible to find the value of x that splits the area under the probability
density curve in two halves: the probabilities that X assumes a value above or below
the median, respectively, are exactly 50%.

The median of a discrete variable X sometimes can not be determined uniquely,
since the discrete nature of its distribution may cause the inequalities in (4.4) to be
fulfilled simultaneously, but for many different x. For example, consider a discrete
distribution with probability function fX(x) = 1/2x, where x = 1, 2, . . . We see
that P(X < x) = P(X > x) = 1

2 holds for any value 1 ≤ x ≤ 2. In such cases
the median is defined as the central point of the interval on which the assignment is
ambiguous—in the present example we therefore set it to med[X] = 1.5.

Example A continuous random variable has the probability density

fX(x) =
⎧
⎨

⎩

4x(9 − x2)

81
; 0 ≤ x ≤ 3,

0 ; elsewhere,
(4.5)

shown in Fig. 4.1 (left). Find the mode (location of maximum), median and the
average (mean) of this distribution!

Fig. 4.1 [Left] Probability density fX (see (4.5)) with its average, median and mode (maximum).
[Right] Maxwell distribution with its mode (“most probable velocity”), average velocity and the
root-mean-square velocity. See also Fig. 3.4 (left)

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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The mode is obtained by differentiating and setting the result to zero:

dfX
dx

∣∣∣∣
Xmax

= 36 − 12X2
max

81
= 0 =⇒ Xmax = √

3 ≈ 1.73.

The median med[X] ≡ amust split the area under the curve of fX in two parts of 1/2
each, thus

P (X < a) = P (X > a) = 4

81

∫ a

0
x
(
9 − x2

)
dx = 4

81

(
9a2

2
− a4

4

)
≡ 1

2
.

This results in the quadratic equation 2a4 − 36a2 + 81 = 0 with two solutions,
a2 = 9(1± √

2/2). Only the solution with the negative sign is acceptable as it is the
only one that falls within the [0, 3] domain:

med[X] =
√
a2 =

√
9(1 − √

2/2) ≈ 1.62.

The average is calculated by using the definition (4.3),

X =
∫ 3

0
x fX(x) dx = 4

81

∫ 3

0
x2
(
9 − x2

)
dx = 4

81

(
3x3 − x5

5

)∣∣∣∣
3

0

≈ 1.60.

All three values are shown in Fig. 4.1 (left). �

4.3 Quantiles

The value of a random variable, below which a certain fraction of all events are
found after numerous trials, is called the quantile of its distribution (lat. quantum,
“howmuch”). For a continuous probability distribution this means that the integral of
the probability density from −∞ to xα equals α (Fig. 4.2). For example, the 0.50th
quantile of the standardized normal distribution is x0.50 = 0, while its 0.9985th
quantile is x0.9985 ≈ 3, see (3.13).

To express the αth quantile all values 0 ≤ α ≤ 1 are allowed, but several brethren
terms are in wide use for specific values of α: integer values (in percent) express
percentiles, the tenths of the whole range ofα are delimited by deciles and the fourths
by quartiles: x0.20 defines the 20th percentile or the second decile of a distribution,
x0.25 and x0.75 set the limits of its first and third quartile. Hence, x0.50 carries no less
than five names: it is the 0.50th quantile, the 50th percentile, the second quartile, the
fifth decile and—the median. The difference x0.75 − x0.25 is called the inter-quartile
range (IQR). The interval [x0.25, x0.75] contains half of all values; a quarter of them
reside to its left and a quarter to its right.

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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Fig. 4.2 Definition of the quantile of a continuous distribution. The integral of the density fX (x)
from −∞ (or the lowest edge of its domain) to x = xα equals α. The figure shows the density

fX (x) = 21
32

(
x − 1

2

)2( 5
2 − x

)5, 0.5 ≤ x ≤ 2.5, the corresponding distribution function, and the 90th
percentile (α = 0.90), which is xα = 1.58

Fig. 4.3 [Left] Daily sales of fiction books as a function of sales rank. [Right] Daily earnings as a
function of sales rank. In the book segment the online giant earns 50% by selling books with sales
ranks above med[R] ≈ 53, while the average sales rank is r ≈ 135

Example Fig. 4.3 (left) shows the daily sales of fiction books from the 1000 bestseller
list (sales rank r) of theAmazon online bookstore in a certain time period. (Note the
log-log scale: in linear scale the distribution has a sharp peak at r = 1 and a rapidly
dropping tail, so it mostly occupies the region around the origin.)

To study the sales dynamics such discrete distributions are often approximated
by continuous Pareto distributions (3.16). For many markets in the past, the “Pareto
80/20 principle” seemed to apply, stating that a relatively small fraction (≈20%) of
products (in our case best-selling books) brings the most (≈80%) profit. Figure4.3
(right) shows the daily earnings as a function of sales rank, as well as the median,
average rank, and the sales rank up to which Amazon earns 80% of the money: the
latter is 234 (of 1000), neatly corresponding with the Pareto “principle”. Still, it is
obvious from the graph that the Pareto distribution under-estimates the actual sales
at high ranks r. Analyses show [1, 2] that the distribution n(r) has become flatter
over the years, meaning that more and more profit is being squeezed from the ever
increasing tail; see also [3]. �

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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4.4 Expected Values of Functions of Random Variables

The simplest functions of random variables are the sum X + Y of two variables and
the linear combination aX + b, where a and b are arbitrary real constants. Since the
expected value of a continuous random variable, E[X], is defined by an integral, the
expected values of E[X + Y ] and E[aX + b] inherit all properties of the integral, in
particular linearity. (A similar conclusion follows in the discrete case where we are
dealing with sums.) Therefore, for both continuous and discrete random variables it
holds that

E[X + Y ] = E[X] + E[Y ], (4.6)

as well as

E[X1 + X2 + · · · + Xn] =
n∑

i=1

E[Xi]

and
E[aX + b] = aE[X] + b.

One needs to be slightly more careful in computing the expected values of more
general functions of random variables. Suppose that X is a discrete random variable
with probability distribution (probability function) fX . Then Y = g(X) is also a
random variable and its probability function is

fY (y) = P(Y = y) =
∑

{x|g(x)=y}
P(X = x) =

∑

{x|g(x)=y}
fX(x).

If X takes the values x1, x2, . . . , xn and Y takes the values y1, y2, . . . , ym (m ≤ n), we
have

E[Y ] = y1fY (y1) + y2fY (y2) + · · · + ymfY (ym)

= g(x1)fX(x1) + g(x2)fX(x2) + · · · + g(xn)fX(xn) = E
[
g(X)

]
,

hence

g(X) = E
[
g(X)

] =
n∑

i=1

g(xi)fX(xi). (4.7)

If X is a continuous random variable, we just need to replace the sum by the integral
and the probability function by the probability density:

g(X) = E
[
g(X)

] =
∫ ∞

−∞
g(x)fX(x) dx. (4.8)

This is a good spot to comment on a very popular approximation that can be an ugly
mistake or a good short-cut to a solution: it is the approximation
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g
(
X
) ≈ g(X). (4.9)

The trick works well if the density fX of X is a sharp, strongly peaked function,
and not so well otherwise. Regardless of this, however, for any convex1 function g,
Jensen’s inequality holds true:

g
(
X
) ≤ g(X), (4.10)

that is,

g

(∫
x fX(x) dx

)
≤
∫

g(x)fX(x) dx.

4.4.1 Probability Densities in Quantum Mechanics

As physicists, we ceaselessly calculate expected values of the form (4.8) in any field
related to statistical or quantummechanics.We say: the expected value of an operator
Ô in a certain state of a quantum-mechanical system (for example, ground state of
the hydrogen atom) described by the wave-function ψ, is

O =
∫

�

ψ∗(r)Ô(r)ψ(r) dV .

The operator Ô acts on the right part of the integrand, ψ, then the result is multiplied
from the left by its complex conjugateψ∗, and integrated over the whole domain. If Ô
is multiplicative, for example Ô(r) = z—in this case we obtain the expectation value
of the third Cartesian component of the electron’s position vector in the hydrogen
atom—we are computing just

O =
∫

�

Ô(r) |ψ(r)|2︸ ︷︷ ︸
ρ(r)

dV, (4.11)

which is the integral of a product of two scalar functions, the second of which, ρ(r),
is nothing but the probability density of (4.8).

Example An electron moving in the electric field of a lead nucleus is described by
the function

ψ(r) = 1√
π
r−3/2
B e−r/rB ,

where rB ≈ 6.46 × 10−13 m. The nucleus may be imagined as a positively charged
sphere with radius 7 × 10−15 m. How much time does the electron “spend” in the

1A function is defined to be convex if the line segment between any two points on the graph of the
function lies above the graph.
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nucleus, i. e. what is the probability that it resides within a sphere of radius R? All
we are looking for is the expected value of the operator Ô(r) = 1 in (4.11); due to
angular symmetry the volume element is simply dV = 4πr2 dr, thus

P =
∫ R

0
|ψ(r)|2 4πr2 dr ≈ 1.67 × 10−6.

An almost identical result is obtained by assuming that ψ is practically constant
on the interval [0,R], which is reasonable, since R � rB. In this case we obtain
P = (1/π)r−3

B (4πR3/3) = (4/3)(R/rB)3 ≈ 1.69 × 10−6. �

4.5 Variance and Effective Deviation

Computing the expected value of a random variable X tells us something about
where within its domain its values will approximately land after many repetitions of
the corresponding random experiment. Now we are also interested in the variation
(scattering) of the values around their averageE[X] = X . Ameasure of this scattering
is the variance, defined as

var[X] = E
[
(X − E[X])2] = (X − X)2.

A large variancemeans a large scatter around the average and vice-versa. The positive
square root of the variance,

σX = √
var[X],

is known as effective or standard deviation—inparticularwith the normal distribution
on our minds. In the following we shall also make use of the relation

var[aX + b] = a2 var[X]. (4.12)

(Prove it as an exercise.) If X is a discrete random variable, which takes the values
x1, x2, . . . , xn and has the probability function fX , its variance is

σ2
X =

n∑

i=1

(
xi − X

)2
fX(xi). (4.13)

In the case that all probabilities are equal, fX(xi) = 1/n, the variance is

σ2
X = 1

n

n∑

i=1

(
xi − X

)2
. (4.14)
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Note the factor 1/n—not 1/(n − 1), as one often encounters—as it will acquire an
important role in random samples in Chap.7.

If X is a continuous random variable with the probability density fX , its variance
is

σ2
X =

∫ ∞

−∞

(
x − X

)2
fX(x) dx. (4.15)

It can be shown that, regardless of the distribution obeyed by any (continuous or
discrete) random variable X, it holds that

P
(|X − X| ≥ a

) ≤ σ2
X

a2

for any constant a > 0, which is known as the Chebyshev inequality. It can also be
formulated in terms of the slightly tighter Cantelli’s constraints

P
(
X ≥ X + a

) ≤ σ2
X

σ2
X + a2

, P
(
X ≤ X − a

) ≤ σ2
X

σ2
X + a2

. (4.16)

Wemay resort to this tool if we know only the expected value of the random variable,
X, and its variance, σ2

X , but not the functional form of its distribution. In such cases
we can still calculate the upper limits for probabilities of the form (4.16).

Example Suppose that the measured noise voltage at the output of a circuit has an
average ofU = 200mV and variance σ2

U = (80mV)2. The probability that the noise
exceeds 300mV (i. e. raises more than �U = 100mV above the average), can be
bounded from above as P

(
U ≥ U + �U

) ≤ σ2
U

/(
σ2
U + (�U)2

) ≈ 0.39. �

4.6 Complex Random Variables

A particular linear combination of real random variables X and Y is the complex
random variable

Z = X + i Y .

Its distribution function at z = x + i y is defined as

FZ(z) = P(X ≤ x,Y ≤ y) = FX,Y (x, y),

where FX,Y (x, y) is the distribution function of the pair—more precisely, the random
vector (X,Y). The expected value of the variable Z is defined as

E[Z] = E[X] + iE[Y ].

http://dx.doi.org/10.1007/978-3-319-31611-6_7
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Computing the expectation values of complex random variables is an additive and
homogeneous operation: for arbitrary Z1 and Z2 it holds that

E[Z1 + Z2] = E[Z1] + E[Z2],

while for an arbitrary complex constant c = a + i b we have

E[cZ] = cE[Z].

The variance of a complex random variable is defined as

var[Z] = E
[∣∣Z − E[Z]∣∣2

]
.

A short calculation—do it!—shows that it is equal to the sum of the variances of its
components,

var[Z] = var[X] + var[Y ].

The complex random variables Z1 = X1 + i Y1 and Z2 = X2 + i Y2 are mutually
independent if random vectors2 (X1,X2) and (Y1,Y2) are independent. (A general-
ization is at hand: complex random variables Zk = Xk + i Yk (k = 1, 2, . . . , n) are
mutually independent if the same applies to random vectors (Xk,Yk).) If Z1 and Z2
are independent and possess expected values, their product also possesses it, and it
holds that

E[Z1Z2] = E[Z1]E[Z2].

4.7 Moments

The average (mean) and the variance are two special cases of expected values in the
broader sense called moments: the pth raw or algebraic moment M ′

p of a random
variable X is defined as the expected value of its pth power, that is,M ′

p = E[Xp]:

M ′
p =

n∑

i=1

xpi fX(xi) (discrete case),

M ′
p =

∫ ∞

−∞
xpfX(x) dx (continuous case).

(4.17)

2A random vector X = (X1,X2, . . . ,Xm) with a distribution function FX(x1, x2, . . . , xm) and a
random vector Y = (Y1,Y2, . . . ,Yn) with a distribution function FY (y1, y2, . . . , yn) are mutually
independent if FX,Y (x1, x2, . . . , xm, y1, y2, . . . , yn) = FX(x1, x2, . . . , xm)FY (y1, y2, . . . , yn). This
is an obvious generalization of (2.20) and (2.24).

http://dx.doi.org/10.1007/978-3-319-31611-6_2
http://dx.doi.org/10.1007/978-3-319-31611-6_2
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Frequently we also require central moments, defined with respect to the correspond-
ing average value of the variable, that is,Mp = E

[(
X − X

)p]
:

Mp =
n∑

i=1

(
xi − X

)p
fX(xi) (discrete case),

Mp =
∫ ∞

−∞

(
x − X

)p
fX(x) dx (continuous case).

From here we read off M ′
0 = 1 (normalization of probability distribution), M ′

1 = X
and M2 = σ2

X . The following relations (check them as an exercise) also hold:

M2 = M ′
2 − X

2 = X2 − X
2
,

M3 = M ′
3 − 3M ′

2X + 2X
3
,

M4 = M ′
4 − 4M ′

3X + 6M ′
2X

2 − 3X
4
.

In addition to the first (average) and second moment (variance) only the third and
fourth central moment are in everyday use. The third central moment, divided by the
third power of its effective deviation,

ρ = M3

σ3
, (4.18)

is called the coefficient of skewness or simply skewness. The coefficient ρ measures
the asymmetry of the distribution around its average: ρ < 0 means that the distribu-
tion has a relatively longer tail to the left of the average value (Fig. 4.4 (left)), while
ρ > 0 implies a more pronounced tail to its right (Fig. 4.4 (center)).

Fig. 4.4 [Left] A distribution with negative skewness: the tail protruding to the left of the average
value is more pronounced than the one sticking to the right. [Center] A distribution with positive
skewness. [Right] Examples of distributions with positive (thick full curve) and negative excess
kurtosis (thick dashed curve) with respect to the normal distribution (thin full curve)
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The fourth central moment, divided by the square of the variance,

M4

σ4
,

is known as kurtosis and tells us something about the “sharpness” or “bluntness” of
the distribution. For the normal distribution we have M4/σ

4 = 3, so we sometimes
prefer to specify the quantity

ε = M4

σ4
− 3, (4.19)

called the excess kurtosis: ε > 0 indicates that the distribution is “sharper” than the
normal (more prominent peak, faster falling tails), while ε < 0 implies a “blunter”
distribution (less pronounced peak, stronger tails), see Fig. 4.4 (right).

The properties of the most important continuous distributions—average value,
median, mode (location of maximum), variance, skewness (ρ) and kurtosis (ε+3)—
are listed in Table4.1. See also Appendices B.2 and B.3, where we shall learn how
to “automate” the calculation of moments by using generating and characteristic
functions.

Table 4.1 Properties of select continuous distributions: average (mean) value, median, mode,
variance, skewness (M3/σ

3 = ρ) and kurtosis (M4/σ
4 = ε + 3)

Distribution Average Median Mode Variance ρ ε + 3

U(a, b)
(3.1)

a + b

2

a + b

2
/

(b − a)2

12
0

9

5

Exp(λ)

(3.4)

1

λ

log 2

λ
0

1

λ2 2 9

N(μ,σ2)

(3.7)
μ μ μ σ2 0 3

Cauchy
(3.20)

/ x0 x0 / / /

χ2(ν)

(3.21)
ν ν − 2

3

†

ν − 2‡ 2ν
23/2√

ν
3 + 12

ν

t(ν)

(3.22)
0� 0 0

ν

ν − 2

∗
0¶

3(ν − 2)

ν − 4

§

Pareto(a, b)
(3.16)

ab

a − 1

$

b a
√
2 b

b2/(a − 2)

(a − 1)2

�
� ⊕

Notes † approximate dependence for large ν | ‡ for ν > 2 | � undefined for ν = 1
∗ undefined for ν ≤ 2 | ¶ undefined for ν ≤ 3 | § undefined for ν ≤ 4
$ defined for a > 1, otherwise ∞ | � defined for a > 2, while α ∈ (1, 2] for ∞
� [2(a + 1)/(a − 3)]√(a − 2)/a for a > 3
⊕ 3 + 6(a3 + a2 − 6a − 2)/(a(a − 3)(a − 4)) for a > 4

http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_3
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Example We are interested in the mode (“most probable velocity”), average velocity
and the average velocity squared of N2 gas molecules (molar massM = 28 kg/kmol,
mass of single molecule m = M/NA) at temperature T = 303K. The velocity
distribution of the molecules is given by the Maxwell distribution (3.15), whose
maximum (mode) is determined by dfV /dv = 0, hence

(
2v − v2 m

2kBT
2v

)∣∣∣∣
Vmax

= 0 =⇒ Vmax =
√
2kBT

m
≈ 423m/s.

The average value and the square root of the average velocity squared (“root-mean-
square velocity”) are computed from (4.3) and (4.17) with p = 2:

V =
∫ ∞

0
vfV (v) dv =

√
8kBT

πm
=
√

4

π
Vmax ≈ 478m/s,

√
V 2 =

(∫ ∞

0
v2fV (v) dv

)1/2

=
√
3kBT

m
=
√
3

2
Vmax ≈ 518m/s,

where we have used
∫∞
0 z3 exp(−z2) dz = 1/2 and

∫∞
0 z4 exp(−z2) dz = 3

√
π/8.

These three famous quantities are shown in Fig. 4.1 (right). �

4.7.1 Moments of the Cauchy Distribution

The Cauchy distribution fX(x) = (1/π)/(1+x2) drops off so slowly at x → ±∞ that
its moments (average, variance, and so on) do not exist. For this reason its domain
is frequently restricted to a narrower interval [−xmax, xmax]:

gX(x) = fX(x)∫ xmax

−xmax
fX(x′) dx′ = 1

2 arctan xmax

1

1 + x2
.

This is particularly popular in nuclear physics where the Breit–Wigner description
of the shape of the resonance peak in its tails—see Fig. 3.6 (right)—is no longer
adequate due to the presence of neighboring resonances or background. With the
truncated density gX both the average and the variance are well defined:

E[X] = 1

2 arctan xmax

∫ xmax

−xmax

x

1 + x2
dx = 0,

var[X] = 1

2 arctan xmax

∫ xmax

−xmax

x2

1 + x2
dx = xmax

arctan xmax
− 1.

Narrowing down the domain is a special case of a larger class of “distortions”
of probability distributions used to describe, for example, non-ideal outcomes of a

http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_3
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process or imperfect efficiencies for analyzing particles in a detector. If individual
events are detected under different conditions, the ideal probability density, fX , must
be weighted by the detection efficiency:

gX(x) =
∫
�y

fX(x)P(y|x)ε(x, y) dy
∫
�x′
∫
�y

fX(x′)P(y|x′)ε(x′, y) dx′ dy
,

where y is an auxiliary variable over which the averaging is being performed, and
ε(x, y) is the probability density for the event being detected near X = x and Y = y.
An introduction to such weighted averaging procedures can be found in Sect. 8.5
of [4].

4.8 Two- and d-dimensional Generalizations

Let the continuous random variables X and Y be distributed according to the joint
probability density fX,Y (x, y). In this case the expected values of the individual vari-
able can be calculated by the obvious generalization of (4.3) to two dimensions.
The density fX,Y is weighted by the variable whose expected value we are about to
compute, while the other is left untouched:

X = μX = E[X] =
∫ ∞

−∞

∫ ∞

−∞
x fX,Y (x, y) dx dy,

Y = μY = E[Y ] =
∫ ∞

−∞

∫ ∞

−∞
y fX,Y (x, y) dx dy.

In the discrete case the extension to two variables requires a generalization of (4.1):

E[X] =
n∑

i=1

m∑

j=1

xi fX,Y (xi, yj), E[Y ] =
n∑

i=1

m∑

j=1

yj fX,Y (xi, yj).

By analogy to (4.15) and (4.13) we also compute the variances of variables in the
continuous case,

σ2
X = E

[
(X − μX)2

] =
∫ ∞

−∞

∫ ∞

−∞
(x − μX)2fX,Y (x, y) dx dy,

σ2
Y = E

[
(Y − μY )2

] =
∫ ∞

−∞

∫ ∞

−∞
(y − μY )2fX,Y (x, y) dx dy,

and the variances in the discrete case,

E
[
(X − μX)2

] =
n∑

i=1

m∑

j=1

(xi − μX)2fX,Y (xi, yj),
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E
[
(Y − μY )2

] =
n∑

i=1

m∑

j=1

(yj − μY )2fX,Y (xi, yj).

Henceforth we only give equations pertaining to continuous variables. The cor-
responding expressions for discrete variables are obtained, as usual, by replacing
the probability densities fX,Y (x, y) by the probability [mass] functions fX,Y (xi, yj) =
P(X = xi,Y = yj), and integrals by sums.

Since now two variables are at hand, we can define yet a third version of the double
integral (or the double sum) in which the variables enter bilinearly—the so-called
mixed moment known as the covariance of X and Y :

σXY = cov[X,Y ] = E
[
(X−μX)(Y−μY )

] =
∞∫

−∞

∞∫

−∞
(x−μX)(y−μY )fX,Y (x, y) dx dy.

One immediately sees that

cov[aX, bY ] = ab cov[X,Y ]

for arbitrary constants a and b, as well as

σXY = E
[
(X − μX)(Y − μY )

] = E
[
XY − μXY − μYX + μXμY

]

= E[XY ] − μX E[Y ]︸︷︷︸
μY

−μY E[X]︸︷︷︸
μX

+μXμY = E[XY ] − μXμY .

Therefore, if X and Y are mutually independent, then by definition (2.25) one also
has E[XY ] = E[X]E[Y ] = μXμY , and then

σXY = 0.

(The covariance of independent variables equals zero.) For a later discussion of mea-
surement uncertainties the following relation between the variance and covariance
of two variables is important:

var[X ± Y ] =
∫∫ (

(x − μX) ± (y − μY )
)2
fX,Y (x, y) dx dy

=
∫∫

(x − μX)2fX,Y (x, y) dx dy +
∫∫

(y − μY )2fX,Y (x, y) dx dy

± 2
∫∫

(x − μX)(y − μY )fX,Y (x, y) dx dy

= var[X] + var[Y ] ± 2 cov[X,Y ]. (4.20)

In other words,

http://dx.doi.org/10.1007/978-3-319-31611-6_2
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σ2
X±Y = σ2

X + σ2
Y ± 2σXY .

By using the covariance and both effective deviations we define the Pearson’s coef-
ficient of linear correlation (also linear correlation coefficient)

ρXY = σXY

σXσY
, −1 ≤ ρXY ≤ 1. (4.21)

It is easy to confirm the allowed range of ρXY given above. Because of its power two
the expression E[(λ(X − μX) − (Y − μY ))2] is non-negative for any λ ∈ R. Let us
expand it:

λ2 E
[
(X − μX)2

]
︸ ︷︷ ︸

σ2
X

−2λE
[
(X − μX)(Y − μY )

]
︸ ︷︷ ︸

σXY

+E
[
(Y − μY )2

]
︸ ︷︷ ︸

σ2
Y

≥ 0.

The left side of this inequality is a real polynomial of second degree aλ2+bλ+c = 0
with coefficients a = σ2

X , b = −2σXY , c = σ2
Y , which is non-negative everywhere,

so it can have at most one real zero. This implies that its discriminant can not be
positive, so b2 −4ac ≤ 0. This tells us that 4σ2

XY −4σ2
Xσ2

Y ≤ 0 or |σXY/(σXσY )| ≤ 1,
which is precisely (4.21).

The generalization of (4.20) to the sum of (not necessarily independent) random
variables X1,X2, . . . ,Xn is

var[X1 + X2 + · · · + Xn] =
n∑

i=1

var[Xi] + 2
n∑

i=1

n∑

j=i+1

cov[Xi,Xj].

If the variables X1,X2, . . . ,Xn are mutually independent, this expression reduces to

var[X1 + X2 + · · · + Xn] =
n∑

i=1

var[Xi]. (4.22)

Example Many sticks with length 1 are broken at two random locations. What is the
average length of the central pieces? At each hit, the stick breaks at 0 < x1 < 1 and
0 < x2 < 1, where the values x1 and x2 are uniformly distributed over the interval
[0, 1], but one can have either x1 < x2 or x1 > x2. What we are seeking, then, is
the expected value of the variable L = |X2 − X1| (with values l) with respect to the
probability density fX,Y (x1, x2) = 1:

L =
1∫

0

1∫

0

∣∣x2 − x1
∣∣ dx1 dx2 =

1∫

0

dx2

x2∫

0

(x2 − x1) dx1 +
1∫

0

dx2

1∫

x2

(x1 − x2) dx1 = 1

3
.
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Howwould the result change if the probability that the stick breaks linearly increases
from 0 at the origin to 1 at the opposite edge? �
Example Let the continuous random variables X and Y both be normally distributed,
with averages μX and μY and variances σ2

X and σ2
Y . What is their joint probability

density if X and Y are independent, and what are their joint and conditional densities
in the dependent case, with correlation coefficient ρXY = ρ?

If X and Y are independent, their joint probability density—by (2.25)—is simply
the product of the corresponding one-dimensional densities:

fX,Y (x, y) = X(x)fY (y)= 1√
2πσX

exp

[
− (x − μX)2

2σ2
X

]
1√
2πσY

exp

[
− (y − μY )2

2σ2
Y

]
.

The curves of constant values of fX,Y in the (x, y) plane are untilted ellipses in general
(σX �= σY ), and circles in the special case σX = σY . At any rate ρ = 0 for such
a distribution. A two-dimensional normal distribution of dependent (and therefore
correlated) variables is described by the probability density

fX,Y (x, y) = 1

2πσXσY

√
1 − ρ2

exp

{
− 1

1 − ρ2

[
x′2

2σ2
X

− 2ρ
x′y′

√
2σX

√
2σY

+ y′2

2σ2
Y

]}
,

where we have denoted x′ = x − μX and y′ = y − μY . This distribution can not
be factorized as fX,Y (x, y) = fX(x)fY (y), and its curves of constant values are tilted
ellipses; for parameters μX = 10, μY = 0, σX = σY = 1 and ρ = 0.8 they are shown
in Fig. 4.5 (left).

Conditional probability densities fX|Y (x|y) and fY |X(y|x) can be computed by using
(2.26) and (2.27). Let us treat the first case, the other one is obtained by simply
replacing x ↔ y, μX ↔ μY and σX ↔ σY at appropriate locations:

fX|Y (x|y)= fX,Y (x, y)

fY (y)
= 1√

2πσX

√
1 − ρ2

exp

{
− 1

2(1 − ρ2)σ2
X

[
x′ − ρ

σX

σY
y′
]2}

.

This conditional probability density is shown in Fig. 4.5 (right). By comparing it to
definition (3.7) we infer that the random variable X|Y is distributed as

X|Y ∼ N

(
E[X] + ρ

σX

σY

(
Y − μY

)
,
(
1 − ρ2

)
σ2
X

)
,

a feature also seen in the plot: the width of the band does not depend on y. �

http://dx.doi.org/10.1007/978-3-319-31611-6_2
http://dx.doi.org/10.1007/978-3-319-31611-6_2
http://dx.doi.org/10.1007/978-3-319-31611-6_2
http://dx.doi.org/10.1007/978-3-319-31611-6_3
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Fig. 4.5 [Left] Joint probability density of two dependent, normally distributed random variables
X and Y with averages μX = 10 and μY = 0, variances σ2

X = σ2
Y = 1 and linear correlation

coefficient ρ = 0.8. [Right] Conditional probability density fX|Y (x|y)

4.8.1 Multivariate Normal Distribution

This appears to be a good place to generalize the normal distribution of two variables
(the so-called binormal or bivariate normal distribution) to d dimensions. We are
dealing with a vector random variable

X = (
X1,X2, . . . ,Xd

)T ∈ R
d

and its average

E[X] = (
E[X1],E[X2], . . . ,E[Xd]

)T = (
μ1,μ2, . . . ,μd

)T = µ.

We construct the d × d covariance matrix � with the matrix elements

�ij = cov[Xi,Xj], i, j = 1, 2, . . . , d.

The covariance matrix is symmetric and at least positive semi-definite. It can even
be strictly positive definite if none of the variables Xi is a linear combination of the
others. The probability density of the multivariate normal distribution (compare it to
its one-dimensional counterpart (3.10)) is then

fX(x;µ, �) = (2π)−d/2
(
det�

)−1/2
exp

{
−1

2
(x − µ)T �−1 (x − µ)

}
. (4.23)

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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If d = 2 as in the previous Example, we have simply X = (X1,X2)
T → (X,Y)T and

µ = (μ1,μ2)
T → (μX ,μY )T, while the covariance matrix is

� =
(

σ2
X σXY

σXY σ2
Y

)
.

4.8.2 Correlation Does Not Imply Causality

A vanishing correlation coefficient of X and Y does not mean that these variables
are stochastically independent: for each density fX,Y that is an even function of the
deviations x − μX and y − μY , one has ρXY = 0. In other words, ρXY = 0 is just a
necessary, but not sufficient condition for independence: see bottom part of Fig. 7.8
which illustrates the correlation in the case of finite samples.

Even though one observes a correlation in a pair of variables (sets of values,
measurements, phenomena) this does not necessarily mean that there is a direct
causal relation between them: correlation does not imply causality.Whenwe observe
an apparent dependence between two correlated quantities, often a third factor is
involved, common to both X and Y . Example: the sales of ice-cream and the number
of shark attacks at the beach are certainly correlated, but there is no causal relation
between the two. (Does your purchase of three scoops of ice-cream instead of one
triple your chances of being bitten by a shark?) The common factor of tempting
scoops and aggressiveness of sharks is a hot summer day, when people wish to cool
off in the water and sharks prefer to dwell near the shore.

Besides, one should be aware that correlation and causality are concepts orig-
inating in completely different worlds: the former is a statement on the basis of
probability theory, while the latter signifies a strictly physical phenomenon, whose
background is time and the causal connection between the present and past events.

4.9 Propagation of Errors

If we knew how to generalize (4.20) to an arbitrary function of an arbitrary number
of variables, we would be able to answer the important question of error propagation.
But what do we mean by “error of random variable”? In the introductory chapters
we learned that each measurement of a quantity represents a single realization of a
random variable whose value fluctuates statistically. Such a random deviation from
its expected value is called the statistical uncertainty or “error”. By studying the
propagation of errors we wish to find out how the uncertainties of a given set of
variables translate into the uncertainty of a function of these variables. A typical
example is the determination of the thermal power released on a resistor from the
corresponding voltage drop: if the uncertainty of the voltagemeasurement is�U and

http://dx.doi.org/10.1007/978-3-319-31611-6_7
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the resistance R is known to an accuracy of no more than�R, what is the uncertainty
of the calculated power P = U2/R?

Let X1,X2, . . . ,Xn be real random variables with expected values μ1,μ2, . . . ,μn,
which we arrange as vectors

X = (X1,X2, . . . ,Xn)
T

and
µ = (μ1,μ2, . . . ,μn)

T,

just as in Sect. 4.8.1. Let Y = Y(X) be an arbitrary function of these variables which,
of course, is also a random variable. Assume that the covariances of all (Xi,Xj) pairs
are known. We would like to estimate the variance of the variable Y . In the vicinity
of µ we expand Y in a Taylor series in X up to the linear term,

Y(X) ≈ Y(µ) +
n∑

i=1

(Xi − μi)
∂Y

∂Xi

∣∣∣∣
X=µ

,

and resort to the approximation E[Y(X)] ≈ Y(µ) (see (4.9) and (4.10)) to compute
the variance. It follows that

var[Y(X)] = E
[(

Y(X) − E
[
Y(X)

])2] ≈ E
[(

Y(X) − Y(µ)
)2]

≈
n∑

i=1

n∑

j=1

(
∂Y

∂Xi

∂Y

∂Xj

)

X=µ

�ij, (4.24)

where
�ij = E

[
(Xi − μi)(Xj − μj)

] = cov
[
Xi,Xj

]

is the covariance matrix of the variables Xi: its diagonal terms are the variances of
the individual variables, var[Xi] = σ2

Xi
, while the non-diagonal ones (i �= j) are the

covariances cov[Xi,Xj]. Formula (4.24) is what we have been looking for: it tells
us—within the specified approximations—how the “errors” in X map to the “errors”
in Y . If Xi are mutually independent, we have cov[Xi,Xj] = 0 for i �= j and the
formula simplifies to

var[Y(X)] ≈
n∑

i=1

(
∂Y

∂Xi

)2

X=µ

var[Xi]. (4.25)

Example Let X1 and X2 be independent continuous random variables with the mean
valuesμ1 andμ2 and variances σ2

1 andσ2
2.We are interested in the varianceσ2

Y of their
ratio Y = X1/X2. Since X1 and X2 are independent, we may apply formula (4.25).
We need the derivatives
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(
∂Y

∂X1

)

X=µ

= 1

μ2
,

(
∂Y

∂X2

)

X=µ

= −μ1

μ2
2

.

Therefore

σ2
Y ≈

(
1

μ2

)2

σ2
1 +

(
μ1

μ2
2

)2

σ2
2 = 1

μ4
2

[
μ2
2σ

2
1 + μ2

1σ
2
2

]

or
σ2
Y

μ2
Y

≈ σ2
1

μ2
1

+ σ2
2

μ2
2

,

where μY = E[Y ] = μ1/μ2. �
Example Let X and Y be independent random variables with the expected values μX

and μY and variances σ2
X and σ2

Y (with respective “uncertainties of measurements”
σX and σY ). What is the variance σ2

Z of the product of their powers,

Z = XmYn?

(This is a generalization of the function from the previous example to arbitrary powers
m and n.) By formula (4.25) we again obtain

σ2
Z ≈ (

mXm−1Yn
)2
X=μX

Y=μY

σ2
X + (

nXmYn−1
)2
X=μX

Y=μY

σ2
Y .

Thus

(
σZ

μZ

)2

≈ m2μ2(m−1)
X μ2n

Y

μ2m
X μ2n

Y

σ2
X + n2μ2m

X μ2(n−1)
Y

μ2m
X μ2n

Y

σ2
Y = m2

(
σX

μX

)2

+ n2
(

σY

μY

)2

,

where we have denoted μZ = μm
Xμn

Y . �

4.9.1 Multiple Functions and Transformation
of the Covariance Matrix

Let us now discuss the case of multiple scalar functions Y1,Y2, . . . ,Ym, which all
depend on variables X,

Yk = Yk(X1,X2, . . . ,Xn) = Yk(X), k = 1, 2, . . . ,m.

We arrange the function values in the vector Y = (Y1,Y2, . . . ,Ym)T and retrace the
steps from the beginning of this section. We neglect all higher order terms in the
Taylor expansion
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Yk(X) = Yk(µ) +
n∑

i=1

(Xi − μi)
∂Yk
∂Xi

∣∣∣∣
X=µ

+ · · · , k = 1, 2, . . . ,m,

and take into account that E[Yk(X)] ≈ Yk(µ). Instead of (4.24) we now obtain a
relation between the covariance matrix of variable X and the covariance matrix of
the variables Y ,

�kl(Y) ≈ E
[(

Yk(X) − Yk(µ)
)(

Yl(X) − Yl(µ)
)]

≈
n∑

i=1

n∑

j=1

(
∂Yk
∂Xi

∂Yl
∂Xj

)

X=µ

E
[
(Xi − μi)(Xj − μj)

]
︸ ︷︷ ︸

�ij(X)

.

This relation becomes even more transparent if we write the Taylor expansion as

Y(X) = Y(µ) + DX + · · · ,

where X and Y are n- and m-dimensional vectors, respectively, while D is an m × n
matrix embodying the linear part of the expansion, namely

Dki =
(

∂Yk
∂Xi

)

X=µ

, (4.26)

Hence

�kl(Y) ≈
n∑

i=1

n∑

j=1

Dki�ij(X)Djl, k, l = 1, 2, . . . ,m,

or, in brief,
�(Y) ≈ D�(X)DT. (4.27)

The propagation of errors in higher dimensions can therefore be seen as a transforma-
tion of the covariance matrix. The variances σ2

Yk
of the variables Yk are the diagonal

matrix elements of �(Y). In general they pick up terms from all elements of �(X),
even the non-diagonal ones, since

�kk(Y) ≈
n∑

i=1

(
∂Yk
∂Xi

∂Yk
∂Xj

)

X=µ

�ij(X). (4.28)

But if the variables Xi are mutually independent, only diagonal elements of �(X)

contribute to the right-hand side of the above equation, yielding

σ2
Yk =

n∑

i=1

(
∂Yk
∂Xi

)2

X=µ

σ2
Xi

. (4.29)



4.9 Propagation of Errors 115

Equations (4.28) and (4.29) are multi-dimensional equivalents of (4.24) and (4.25).
Note that the non-diagonal elements of �(Y) may be non-zero even though Xi are
mutually independent! You can find an example of how to use these equations in the
case of a measurement of the momentum of a particle in Problem 4.10.6.

4.10 Problems

4.10.1 Expected Device Failure Time

A computer disk is controlled by five circuits (i = 1, 2, 3, 4, 5). The time until an
irreparable failure in each circuit is exponentially distributed, with individual time
constants λi. The disk as a whole works if circuits 1, 2 and 3, circuits 3, 4 and 5, or,
obviously, all five circuits work simultaneously. What is the expected time of disk
failure?

✎ The probability that the ith element is not broken until time t (the probability
that the failure time is larger than t) is exponentially decreasing and equals e−λi t . For
the disk to fail, three key events are responsible:

event A : circuits 1 and 2 fail after time t : P(A) = e−(λ1+λ2)t,

event B : circuit 3 fails after time t : P(B) = e−λ3t,

event C : circuits 4 and 5 fail after time t : P(C) = e−(λ4+λ5)t .

The disk operates as long as
(
A ∩ B ∩ C

) ∪ (A ∩ B ∩ C
) ∪ (A ∩ B ∩ C

) �= {}. The
probability that the disk still operates after time t, is therefore

P(t) = P
(
A ∩ B ∩ C

)+ P
(
A ∩ B ∩ C

)+ P
(
A ∩ B ∩ C

)

= P(A)P(B)
[
1 − P(C)

]+ [
1 − P(A)

]
P(B)P(C) + P(A)P(B)P(C)

= P(B)
[
P(A) + P(C) − P(A)P(C)

]

= e−(λ1+λ2+λ3)t + e−(λ3+λ4+λ5)t − e−(λ1+λ2+λ3+λ4+λ5)t .

This is not yet our answer, since the expression still contains time! We are looking
for the expected value of failure time, where we should recall that the appropriate
probability density is −P′(t) (see (3.4)), hence

T =
∫ ∞

0
t
[
(λ1 + λ2 + λ3)e

−(λ1+λ2+λ3)t + (λ3 + λ4 + λ5)e
−(λ3+λ4+λ5)t

−(λ1 + λ2 + λ3 + λ4 + λ5)e
−(λ1+λ2+λ3+λ4+λ5)t

]
dt

= 1

λ1 + λ2 + λ3
+ 1

λ3 + λ4 + λ5
− 1

λ1 + λ2 + λ3 + λ4 + λ5
.

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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4.10.2 Covariance of Continuous Random Variables

(Adopted from [5], Example 4.56.) Calculate the linear correlation coefficient of
continuous random variables X and Y distributed according to the joint probability
density

fX,Y (x, y) = 2 e−xe−yH(y)H(x − y), −∞ < x, y < ∞,

where H is the Heaviside function (see (2.8)).

✎ The linear correlation coefficient ρXY of variables X and Y (see (4.21)) is equal
to the ratio of covariance σXY to the product of their effective deviations σX and σY .
First we need to calculate the expected value of the product XY ,

E[XY ] = XY =
∫ ∞

−∞

∫ ∞

−∞
xy fX,Y (x, y) dx dy

= 2
∫ ∞

−∞

∫ ∞

−∞
xy e−xe−yH(y)H(x − y) dx dy

= 2
∫ ∞

0
x e−x

[∫ x

0
y e−y dy

]
dx

= 2
∫ ∞

0
x e−x

[
1 − (1 + x)e−x

]
dx = . . . = 1,

then the expected values of X, Y , X2 and Y 2,

E[X] = X =
∫ ∞

−∞

∫ ∞

−∞
x fX,Y (x, y) dx dy = 3

2
,

E[Y ] = Y =
∫ ∞

−∞

∫ ∞

−∞
y fX,Y (x, y) dx dy = 1

2
,

E[X2] = X2 =
∫ ∞

−∞

∫ ∞

−∞
x2 fX,Y (x, y) dx dy = 7

2
,

E[Y 2] = Y 2 =
∫ ∞

−∞

∫ ∞

−∞
y2 fX,Y (x, y) dx dy = 1

2
.

It follows that

σX =
√
X2 − X

2 ≈ 1.118, σY =
√
Y 2 − Y

2 = 0.5,

hence

cov[X,Y ] = σXY = XY − X Y = 1 − 3

2

1

2
= 1

4

and
ρXY = σXY

σXσY
≈ 0.447.

http://dx.doi.org/10.1007/978-3-319-31611-6_2
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4.10.3 Conditional Expected Values of Two-Dimensional
Distributions

Let us return to the Example on p. 49 involving two random variables, distributed
according to the joint probability density

fX,Y (x, y) =
{
8xy ; 0 ≤ x ≤ 1, 0 ≤ y ≤ x,
0 ; elsewhere.

Find ① the conditional expected value of the variable Y , given X = x, and ② the
conditional expected value of the variable X, given Y = y!

✎ We have already calculated the conditional densities fX|Y (x|y) and fY |X(y|x) in
(2.28) and (2.29), so the conditional expected value ① equals

E
[
Y |X = x

] =
∫ ∞

−∞
y fY |X(y|x) dy =

∫ x

0
y
2y

x2
dy = 2x

3
,

and the conditional expected value ② is

E
[
X|Y = y

] =
∫ ∞

−∞
x fX|Y (x|y) dx =

∫ 1

y
x

2x

1 − y2
dx = 2(1 − y3)

3(1 − y2)
= 2(1 + y + y2)

3(1 + y)
.

4.10.4 Expected Values of Hyper- and Hypo-exponential
Variables

Calculate the expected value, the second moment and the variance of continuous
random variables, distributed according to the① hyper-exponential (see (3.26)) and
② hypo-exponential distribution (see (3.28)).

✎ ① The hyper-exponential distribution, which describes a mixture (superposi-
tion) of k independent phases of a parallel process, whose ith phase proceeds with
probability Pi and time constant λi = 1/τi, is defined by the probability density

fX(x) =
k∑

i=1

Pi fXi(x) =
k∑

i=1

Piλi e
−λix, x ≥ 0, (4.30)

where 0 ≤ Pi ≤ 1 and
∑k

i=1 Pi = 1. The expected value of a hyper-exponentially
distributed variable X is

X = E[X] =
∫ ∞

0
x fX(x) dx =

k∑

i=1

Pi

∫ ∞

0
λix e

−λix dx =
k∑

i=1

Pi

λi
, (4.31)

http://dx.doi.org/10.1007/978-3-319-31611-6_2
http://dx.doi.org/10.1007/978-3-319-31611-6_2
http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_3
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and its second moment is

X2 = E[X2] =
∫ ∞

0
x2fX(x) dx =

k∑

i=1

Pi

∫ ∞

0
λix

2 e−λix dx = 2
k∑

i=1

Pi

λ2
i

.

Its variance is therefore

var[X] = σ2
X = E[X2] − E[X]2 = 2

k∑

i=1

Pi

λ2
i

−
(

k∑

i=1

Pi

λi

)2

. (4.32)

While σX/X = λ/λ = 1 holds true for the usual single-exponential distribution,
its hyper-exponential generalization always has σX/X > 1, except when all λi are
equal: this inequality is the origin of the root “hyper” in its name.

② The hypo-exponential distribution describes the distribution of the sum of k
(k ≥ 2) independent continuous random variables Xi, in which each term separately
is distributed exponentially with parameter λi. The sum variable X = ∑k

i=1 Xi has
the probability density

fX(x) =
k∑

i=1

αiλi e
−λix, (4.33)

where

αi =
k∏

j=1
j �=i

λj

λj − λi
, i = 1, 2, . . . , k.

By comparing (4.33) to (4.30) one might conclude that the coefficients αi represent
the probabilities Pi for the realization of the ith random variable, but we are dealing
with a serial process here: all indices i come into play—see Fig. 3.13! On the other
hand, one can exploit the analytic structure of expressions (4.31) and (4.32), one
simply needs to replace allPi byαi. By a slightly tedious calculation (or by exploiting
the linearity of E[·] and using formula (4.20)) we obtain very simple expressions for
the average and variance:

E[X] = X =
k∑

i=1

1

λi
, var[X] = σ2

X =
k∑

i=1

1

λ2
i

.

It is easy to see—Pythagoras’s theorem comes in handy—that one always has
σX/X < 1. The root “hypo” in the name of the distribution expresses precisely
this property.

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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4.10.5 Gaussian Noise in an Electric Circuit

The noise in electric circuits is frequently of Gaussian nature. Assume that the noise
(random variable X) is normally distributed, with average X = 0V and variance
σ2
X = 10−8 V2. ① Calculate the probability that the noise exceeds the value 10−4 V

and the probability that its value is on the interval between −2 · 10−4 V and 10−4 V!
② What is the probability that the noise exceeds 10−4 V, given that it is positive?
③ Calculate the expected value of |X|.
✎ It is worthwhile to convert the variable X ∼ N(X,σ2

X) to the standardized form

Z = X − X

σX
= X − 0V

10−4 V
= 104X,

so that Z ∼ N(0, 1). The required probabilities ① are then

P
(
X > 10−4 V

) = P(Z > 1) = 0.5 −
∫ 1

0
fZ(z) dz ≈ 0.5 − 0.3413 = 0.1587

and

P
(−2 × 10−4 V < X < 10−4 V

) = P(−2 < Z < 1) = P(0 ≤ Z < 1) + P(0 ≤ Z < 2)

=
∫ 1

0
fZ (z) dz +

∫ 2

0
fZ (z) dz

≈ 0.3413 + 0.4772 = 0.8185,

where the probability density fZ is given by (3.10). We have read off the numerical
values of the integrals from Table D.1.

② The required conditional probability is

P
(
X > 10−4 V|X > 0V

) = P(Z > 1|Z > 0)

= P(Z > 1 ∩ Z > 0)

P(Z > 0)
= P(Z > 1)

P(Z > 0)
= P(Z > 1)

0.5
≈ 0.3174.

③ Since Z = 104X, we also have E[|Z|] = E
[
104|X|] = 104E[|X|], so we need to

compute

E[|Z|] =
∞∫

−∞
|z| fZ (z) dz = 2

∞∫

0

z fZ (z) dz = 2√
2π

∞∫

0

z e−z2/2 dz =
√

2

π

∞∫

0

d
(
e−x) =

√
2

π

and revert to the old variable, hence E[|X|] = 10−4√2/πV.

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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4.10.6 Error Propagation in a Measurement
of the Momentum Vector �

We are measuring the time t in which a non-relativistic particle of mass m and
momentum p traverses a distance L (that is, t = L/v = mL/p), and the spherical
angles θ andφ of the vectorp relative to the z-axis. Suppose thatwe havemeasured the
average values 1/p = 5 (GeV/c)−1, θ = 75◦ and φ = 110◦, but all measurements
contain one-percent uncertainties �(1/p) ≡ σp = 0.05 (GeV/c)−1, �θ ≡ σθ =
0.75◦ and �φ ≡ σφ = 1.1◦, which are uncorrelated. Determine the uncertainties of
the quantities

px = p sin θ cosφ, py = p sin θ sin φ, pz = p cos θ!

✎ In the notation of Sect. 4.9 we are dealing with the variables

X1 = 1/p, X2 = θ, X3 = φ,

with the averages μ1 = 5 (GeV/c)−1, μ2 = 75◦ and μ3 = 110◦. The corresponding
covariance matrix (omitting the units for clarity) is

�(X) =
⎛

⎝
σ2
p 0 0
0 σ2

θ 0
0 0 σ2

φ

⎞

⎠ ≈
⎛

⎝
0.0025 0 0

0 0.000171 0
0 0 0.000369

⎞

⎠ .

We need to calculate the covariance matrix of the variables

Y1 = px = 1

X1
sinX2 cosX3, Y2 = py = 1

X1
sinX2 sinX3, Y3 = pz = 1

X1
cosX2,

and we need the derivatives (4.26) to do that:

∂Y1
∂X1

= − 1

X2
1

sinX2 cosX3,
∂Y1
∂X2

= 1

X1
cosX2 cosX3,

∂Y1
∂X3

= − 1

X1
sinX2 sinX3,

∂Y2
∂X1

= − 1

X2
1

sinX2 sinX3,
∂Y2
∂X2

= 1

X1
cosX2 sinX3,

∂Y2
∂X3

= 1

X1
sinX2 cosX3,

∂Y3
∂X1

= − 1

X2
1

cosX2,
∂Y3
∂X2

= − 1

X1
sinX2,

∂Y3
∂X3

= 0.

When these expressions are arranged in the 3×3matrixD, (4.27) immediately yields

�(Y) = D�(X)DT =
⎛

⎝
σ2
px σpxpy σpxpz

σpypx σ2
py σpypz

σpzpx σpzpy σ2
pz

⎞

⎠ ≈ 10−7

⎛

⎝
126.4 30.74 2.440
30.74 53.10 −6.704
2.440 −6.704 66.63

⎞

⎠ .
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The uncertainties of px, py and pz then become

σpx = √
�11(Y) ≈ 0.00355, σpy = √

�22(Y) ≈ 0.00230,

σpz = √
�33(Y) ≈ 0.00258.

The propagation of the one-percent errors on the variables 1/p, θ and φ has therefore
resulted in more than one-percent errors on the variables px, py and pz:

px = (−0.0661 ± 0.0036)GeV/c = −0.0661(1 ± 0.054)GeV/c,

py = (0.182 ± 0.0023)GeV/c = 0.182(1 ± 0.013)GeV/c,

pz = (0.0518 ± 0.0026)GeV/c = 0.0518(1 ± 0.050)GeV/c.

The error of px and pz = p cos θ has increased dramatically. A feeling for why this
happens in pz can be acquired by simple differentiation dpz = dp cos θ − p sin θ dθ
or

�pz
p cos θ

= �p

p
− sin θ

cos θ
�θ.

The average value of θ is not very far from 90◦, where sin θ ≈ 1 and cos θ ≈ 0.
Any error in �θ in this neighborhood, no matter how small, is amplified by the large
factor tan θ that even diverges as θ → π/2.

In addition, the covariances σpxpy = σpypx , σpxpz = σpzpx and σpypz = σpzpy are all
non-zero, and the corresponding correlation coefficients are

ρpxpy = σpxpy

σpxσpy

≈ 0.375, ρpxpz = σpxpz

σpxσpz

≈ 0.027, ρpypz = σpypz

σpyσpz

≈ −0.113.
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