
Chapter 3
Special Continuous Probability Distributions

Abstract Particular continuous distributions encountered on a daily basis are dis-
cussed: the simplest uniform distribution, the exponential distribution characterizing
the decay of unstable atoms and nuclei, the ubiquitous normal (Gauss) distribution in
both its general and standardized form, theMaxwell velocity distribution in its vector
and scalar form, the Pareto (power-law) distribution, and the Cauchy (Lorentz, Breit–
Wigner) distribution suitable for describing spectral line shapes and resonances.
Three further distributions are introduced (χ2-, Student’s t- and F-distributions),
predominantly used in problems of statistical inference based on samples. Gener-
alizations of the exponential law to hypo- and hyper-exponential distributions are
presented.

In this chapter we become acquainted with the most frequently used continuous
probability distributions that physicists typically deal with on a daily basis.

3.1 Uniform Distribution

Its name says it all: the uniform distribution describes outcomes of random
experiments—a set of measured values of a random variable—where all values
between the lowest (a) and the highest possible (b) are equally probable. A bus
that runs on a 15-min schedule, will turn up at our stop anywhere between a = 0min
and b = 15min from now: our waiting time X is a continuous random variable
distributed uniformly between a and b, which one denotes as

X ∼ U (a, b).

The probability density corresponding to the uniform distribution U (a, b) is

fX (x) =

⎧
⎪⎨

⎪⎩

1

b − a
; a ≤ x ≤ b,

0 ; elsewhere,

(3.1)

(Fig. 3.1 (left)) and its distribution function is
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Fig. 3.1 [Left] The probability density of the uniform distributionU (a, b). [Right] The probability
density of the exponential distribution with parameter λ

P(X ≤ x) = FX (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 ; x < a,

x − a

b − a
; a ≤ x ≤ b,

1 ; x > b.

If we show up at the bus stop at a random instant, the probability that our waiting
time will not exceed 10min, is

P(X ≤ 10) = FX (10) = 10 − 0

15 − 0
= 2

3
.

Example On a hot day, a house-fly mostly sits still, but occasionally takes off to
stretch its legs. Suppose that the time T of its buzzing around is uniformly distributed
between 0 and 30 s, i.e. T ∼ U (0, 30). What is the probability that it will fly for
more than 20 s (event A) given that it flies for more than 10 s (condition B)? Due to
the additional information B the probability density is no longer fT (t) = 1/30 s but
f̃T (t) = 1/((30–10)s) = 1/20 s, hence

P
(
T > 20 s | T > 10 s

) =
∫ 30 s

20 s
f̃T (t) dt = 30 s − 20 s

20 s
= 1

2
.

The same result can be obtained by using the original density fT (t) and direct appli-
cation of the conditional probability formula:

P(A|B) = P(A ∩ B)

P(B)
= P(A)

P(B)
=
∫ 30 s

20 s
fT (t) dt

/∫ 30 s

10 s
fT (t) dt = 1/3

2/3
= 1

2
.

No matter how trivial the example is, do not forget that computing a conditional
probability imposes a restriction on the sample space! �
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3.2 Exponential Distribution

The exponential distribution is used to describe processes in which the probability of
a certain event per unit time is constant: the classical example is the time-dependence
of the radioactive decay of nuclei, but it is also used in modeling the distribution of
waiting times in queues or durations of fault-free operation (lifetimes) of devices
like light bulbs or computer disks.

The decay of an unstable atomic nucleus is a random process par excellence (see
also Sects.C.3 and 3.2.1). For a single nucleus, it is impossible to predict the precise
moment of its decay; the probability for it to decay in some time interval depends
only on the length of this interval, �t , not on the age of the nucleus. We say that the
nuclei “do not age” and that radioactive decay is a “memory-less” process: suppose
that we have been waiting in vain for time t for the nucleus to decay; the probability
that the decay finally occurs after t + �t , is independent of t ,

P(T > t + �t | T > t) = P(T > �t). (3.2)

If the interval �t is short enough, we can assume that the decay probability is
proportional to �t , and then the only choice becomes

P(decay) = λ�t or P(no decay) = 1 − λ�t,

where λ = 1/τ is the decay probability per unit time [s−1], also called the decay
constant, while τ is the characteristic or decay time. The probability that a nucleus
has not decayed yet after n�t is (1− λ�t)n . The probability that it has not decayed
after a longer time t = n�t , meaning that it will decay at some time T > t = n�t ,
is therefore

P(T > t) = lim
n→∞(1 − λ�t)n = lim

n→∞

(

1 − λt

n

)n

= e−λt . (3.3)

Since P(T > t) = 1 − P(T ≤ t) = 1 − FT (t), we can immediately calculate the
corresponding probability density,

fT (t) = dFT (t)

dt
= d

dt

(
1 − e−λt

) = λ e−λt , t ≥ 0, (3.4)

shown in Fig. 3.1 (right). (As an exercise, check the validity of (3.2)!) Let us think
in a complementary way: the probability that the nucleus has not decayed until time
t must equal the probability that it will decay at some instant from t until ∞, i.e. the
corresponding integral of the density we have just derived. Indeed

∫ ∞

t
fT (t ′) dt ′ =

∫ ∞

t
λ e−λt ′

dt ′ = e−λt .
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It is incredible howmany wrong interpretations of these considerations can be heard,
so let us reiterate: Equation (3.3) gives the probability that until time t the nucleus
has not decayed. At time zero this probability equals 1 and exponentially drops to
zero henceforth: every unstable nucleus will decay at some time. The rate of change
of the number of nuclei—nuclei still available for decay—is given by the differential
equation dN (t)/dt = −λN (t) with the initial condition N (t = 0) = N0, and its
solution is

N (t) = N0 e
−λt . (3.5)

The decay constantλ is determined experimentally by counting the number of decays
R(t) until time t . Since N0 = N (t) + R(t), it follows from above that e−λt =
1 − R(t)/N0, therefore

λt = − log

(

1 − R(t)

N0

)

.

By fitting this functional dependence to the measured data we extract λ = 1/τ .

Mini-example Two counters in a bank are busy serving a single customer each: the
first person has just arrived, while the other has been there for 10min. Which counter
should we choose in order to be served as quickly as possible? If the waiting times
are exponentially distributed, it does not matter. �

Example You do not believe the Mini-example? Let the variable T measure the time
between consecutive particle hits in a Geiger–Müller counter, where T is exponen-
tially distributed, with a characteristic time of τ = 84 s [1]. The probability that we
detect a particle �t = 30 s after the counter has been switched on, is

P
(
T ≤ �t

) = FT (�t) = 1 − e−�t/τ ≈ 0.30. (3.6)

Now imagine that we switch on the detector and three minutes (t = 180 s) elapse
without a single particle being detected. What is the probability to detect a particle
within the next �t = 30 s? Intuitively we expect that after three minutes the next
particle is “long over-due”. But we need the conditional probability

P(T ≤ t + �t | T > t) = P(t < T ≤ t + �t)

P(T > t)
.

Here

P(t < T ≤ t+�t) = FT (t +�t)−FT (t) = [1 − e−(t+�t)/τ
]−[1 − e−t/τ

] ≈ 0.035

and P(T > t) = 1 − FT (t) = e−t/τ ≈ 0.117, thus P(T ≤ t + �t | T > t) =
0.035/0.117 ≈ 0.30, which is the same as (3.6). The fact that we have waited 3
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minutes without detecting a particle, has no influence whatsoever on the probability
of detection within the next 30 s. �
Example Customers A and B arrive simultaneously at two bank counters. Their
service time is an exponentially distributed random variable with parameters λA and
λB, respectively. What is the probability that B leaves before A?

Let TA and TB be random variables measuring the actual service time. The prob-
ability that A has not been served until tA is e−λAtA . The corresponding probability
for customer B is e−λBtB . Since the waiting processes are independent, their joint
probability density is the product of individual probability densities:

fTA,TB

(
tA, tB

) = λA e−λAtA · λB e
−λBtB .

Therefore the required probability is

P
(
TB < TA

)=
∫ ∞

0
dtA

∫ tA

0
fTA,TB

(
tA, tB

)
dtB=

∫ ∞

0
dtAλA e−λA tA

(
1 − e−λBtA

)
= λB

λA + λB
.

The limits are also sensible: if the clerk serving B is very slow (λB → 0), then
P
(
TB < TA

)→ 0, while in the opposite case P
(
TB < TA

)→ 1. �

The conviction that exponential distributions are encountered only in random
processes involving time in some manner, is quite false. Imagine a box containing
many balls with diameter d. The fraction of black and white balls is p and 1 − p,
respectively [2]. We draw the balls from the box and arrange them in a line, one
touching the other. Suppose we have just drawn a black ball. What is the probability
that the distance x between its center and the center of the next black ball is exactly
i D, (i = 1, 2, . . .)? We are observing the sequences of drawn balls or “events” of
the form

•| •, •| ◦ •, •| ◦ ◦ •, •| ◦ ◦ · · · ◦ ◦︸ ︷︷ ︸
(i−1)D

•,

so the required probability is obviously

P(x = i D) = (1 − p)i−1 p.

Since these events are exclusive, the corresponding probability function is a sum of
all probabilities for individual sequences:

FX (x) = P(x ≤ i D) = p + (1 − p)p + · · · + (1 − p)i−1 p = 1 − (1 − p)i .

Abbreviating D = 1/n and np = λ this can be written as
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FX (x) = 1 −
(

1 − λ

n

)nx

,

since i = x/D = nx . Suppose we take the limits n → ∞ and p → 0 (i.e. there
are very few black balls in the box and they have very small diameters), such that λ
and x remain unchanged: then FX (x) → 1− e−λx , and the corresponding density is
fX (x) = dFX/dx = λ e−λx , which is indeed the same as (3.4).

3.2.1 Is the Decay of Unstable States Truly Exponential?

The exponential distribution offers an excellent phenomenological description of
the time dependence of the decay of nuclei and other unstable quantum-mechanical
states, but its theoretical justification implies many approximations and assumptions,
some of which might be questionable in the extremes t/τ � 1 and t/τ  1. Further
reading can be found in [3] and the classic textbooks [4–6].

3.3 Normal (Gauss) Distribution

It is impossible to resist the temptation of beginning this Section by quoting the
famous passage from Poincaré’s Probability calculus published in 1912 [7]:

[The law of the distribution of errors] does not follow from strict deduction; many seemingly
correct derivations are poorly argued, among them the one resting on the assumption that the
probability of deviation is proportional to the deviation. Everyone trusts this law, as I have
recently been told by Mr. Lippmann, since the experimentalists believe it is a mathematical
theorem, while the theorists think it is an experimental fact.1

The normal (Gauss) distribution describes—at least approximately—countless quan-
tities from any sphere of human existence and Nature, for example, diameters of
screws being produced in their thousands on a lathe, body masses of people, exam
grades and velocities of molecules. A partial explanation and justification for this
ubiquity of the Gaussian awaits us in Sect. 6.3 and in particular in Chap.11. For now
let us simply become acquainted with the bell-shaped curve of its two-parameter
probability density

fX (x) = 1√
2πσ

exp

(

− (x − μ)2

2σ2

)

, −∞ < x < ∞, (3.7)

1In the original: “Elle ne s’obtient pas par des déductions rigoureuses; plus d’une démonstration
qu’on a voulu en donner est grossière, entre autres celle qui s’appuie sur l’affirmation que la
probabilité des écarts est proportionelle aux écarts. Tout le monde y croit cependant, me disait un
jour M. Lippmann, car les expérimentateurs s’imaginent que c’est un théorème de mathématiques,
et les mathématiciens que c’est un fait expérimental.”

http://dx.doi.org/10.1007/978-3-319-31611-6_6
http://dx.doi.org/10.1007/978-3-319-31611-6_11
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Fig. 3.2 [Top] Normal
distribution
N (μ = 1.5,σ2 = 0.09) with
average (mean) μ and
positive parameter σ
determining the peak width.
Regardless of σ the area
under the curve equals one.
[Bottom] Standardized
normal distribution N (0, 1)

shown in Fig. 3.2 (top).
The definition domain itself makes it clear why the normal distribution is just an

approximation in many cases: body masses can not be negative and exam grades can
not be infinite. The distribution is symmetric around the value of μ, while the width
of its peak is driven by the standard deviation σ; at x = μ ± σ the function fX has
an inflection. The commonly accepted “abbreviation” for the normal distribution is
N (μ,σ2). In Chap.4 we will see that μ is its average or mean and σ2 is its variance.

The cumulative distribution function corresponding to density (3.7) is

FX (x) = P(X ≤ x) =
∫ x

−∞
fX (t) dt = 1

2

[

1 + erf

(
x − μ√

2σ

)]

,

where

erf(z) = 2√
π

∫ z

0
e−t2dt, erf(−z) = −erf(z), (3.8)

is the so-called error function which is tabulated (see TablesD.1 and D.2 and the text
below). The probability that a continuous random variable, distributed according to
the density (3.7), takes a value between a and b, is

P(a ≤ X ≤ b) = FX (b) − FX (a) = 1

2

[

erf

(
b − μ√

2σ

)

− erf

(
a − μ√

2σ

)]

. (3.9)

3.3.1 Standardized Normal Distribution

When handling normally distributed data it makes sense to eliminate the dependence
on the origin and the width by subtracting μ from the variable X and divide out σ,

http://dx.doi.org/10.1007/978-3-319-31611-6_4
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thereby forming a new, standardized random variable

Z = X − μ

σ
.

The distribution of Z is then called standardized normal and is denoted by N (0, 1)
(zero mean, unit variance). It corresponds to the probability density

fZ (z) = 1√
2π

e−z2/2, (3.10)

while the distribution function is

�(z) = P(Z ≤ z) = 1

2
+ 1√

2π

∫ z

0
e−t2/2 dt = 1

2

[

1 + erf

(
z√
2

)]

. (3.11)

The values of definite integrals of the standardized normal distribution

1√
2π

∫ z

0
e−t2/2dt = 1

2
erf

(
z√
2

)

(3.12)

for z between 0 and 5 in steps of 0.01, which is sufficient for everyday use, are listed
in TableD.1. The abscissas x = μ ± nσ or z = ±n (n = 1, 2, . . .) are particularly
important. The areas under the curve fZ (z) on these intervals,

Pnσ = P(μ − nσ ≤ X ≤ μ + nσ) = P(−n ≤ Z ≤ n) = erf

(
n√
2

)

,

are equal to

P1σ ≈ 0.683, P2σ ≈ 0.955, P3σ ≈ 0.997, P4σ ≈ 0.9999367 . . . (3.13)

(see Fig. 3.2 (bottom)) and tell us what fraction of the data (diameters, masses, exam
grades, velocities) iswithin these—completely arbitrary—intervals andwhat fraction
is outside. For example, if we establish a normal mass distribution of a large sample
of massless particles (smeared around zero due to measurement errors), while a few
counts lie above 3σ, one may say: “The probability that the particle actually has
a non-zero mass, is 0.3%.” But if the distribution of measurement error is indeed
Gaussian, then even the extreme 0.3% events in the distribution tail may be genuine!
However, by increasing the upper bound to 4σ, 5σ,… we can be more and more
confident that the deviation is not just a statistical fluctuation. In modern nuclear and
particle physics the discovery of a new particle, state or process the mass difference
or the signal-to-noise ratio must typically be larger than 5σ.
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Example (Adapted from [1].) The diameter of the computer disk axes is described
by a normally distributed random variable X = 2R with average μ = 0.63650 cm
and standard deviation σ = 0.00127 cm, as shown in the figure. The required spec-
ification (shaded area) is (0.6360 ± 0.0025) cm. Let us calculate the fraction of the
axes that fulfill this criterion: it is equal to the probability P(0.6335 cm ≤ X ≤
0.6385 cm), which can be computed by converting to the standardized variables
z1 = (0.6335 cm−μ)/σ = −2.36, corresponding to the lower specified bound, and
z2 = (0.6385 cm − μ)/σ = 1.57, which corresponds to the upper one. Hence the
probability is P(−2.36 ≤ Z ≤ 1.57) and can be computed by using the values from
TableD.1 (see also Fig.D.1):

P(−2.36 ≤ Z ≤ 1.57) = P(Z ≤ 1.57) − P(Z ≤ −2.36)

= P(Z ≤ 1.57) − [1 − P(Z ≤ 2.36)
]

= 1
2 + 0.4418 − [1 − ( 12 + 0.4909

)] = 0.9327.

If the machining tool is modified so as to produce the axes with the required diameter
of 0.6360 cm, but with the same uncertainty as before, σ, the standardized variables
become z2 = −z1 = (0.6335–0.6360 cm)/σ = 1.97, thus

P(z1 ≤ Z ≤ z2) = P(−z2 ≤ Z ≤ z2) = 2 P(0 ≤ Z ≤ z2) = 2 · 0.4756 = 0.9512.

The fraction of useful axes is thereby increased by about 2%.

3.3.2 Measure of Peak Separation

A practical quantity referring to the normal distribution is its full width at half-
maximum (FWHM), see double-headed arrow in Fig. 3.2 (top). It can be obtained
by simple calculation: fX (x)/ fX (0) = 1/2 or exp[−x2/(2σ2)] = 1/2, hence x =
σ
√
2 log 2. The FWHM is just twice this number,

FWHM = 2
√
2 log 2 σ ≈ 2.35σ.
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Fig. 3.3 Illustration of the measure of peak separation. The centers of the fourth and fifth peak
from the left are 0.3 apart, which is just slightly above the value of FWHM = 0.24 for individual
peaks, so they can still be separated. The three leftmost peaks can also be separated. The structure at
the right consists of two peaks which are too close to each other to be cleanly separated. In practice,
similar decisions are almost always complicated by the presence of noise

FWHM offers a measure of how well two Gaussian peaks in a physical spectrum
can be separated. By convention we can distinguish neighboring peaks with equal
amplitudes and equal σ if their centers are at least FWHM apart (Fig. 3.3).

3.4 Maxwell Distribution

The Maxwell distribution describes the velocities of molecules in thermal motion
in thermodynamic equilibrium. In such motion the velocity components of each
molecule, v = (vx , vy, vz), are stochastically independent, and the average velocity
(as a vector) is zero. The directions x , y and z correspond to kinetic energies mv2

x/2,
mv2

y/2 and mv2
z /2, and the probability density in velocity space at given temperature

T decreases exponentially with energy. The probability density for v is the product
of three one-dimensional Gaussian densities:

fV (v) =
(

1√
2π σ

)3

exp

(

−v2
x + v2

y + v2
z

2σ2

)

=
(

1

2πσ2

)3/2

exp

(

− v2

2σ2

)

,

(3.14)
where v2 = v2

x + v2
y + v2

z and σ2 = kBT/m. The distribution over v is spherically
symmetric, so the appropriate distribution in magnitudes v = |v| is obtained by
evaluating fV (v) in a thin spherical shell with volume 4πv2dv, thus

fV (v) = dFV

dv
=
(

m

2πkBT

)3/2

4πv2 exp

(

− mv2

2kBT

)

. (3.15)

An example of such distribution for nitrogen molecules at temperatures 193 and
393K is shown in Fig. 3.4 (left).
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Fig. 3.4 [Left] Maxwell distribution of velocities of nitrogen molecules at T = 193K and T =
393K. See also Fig. 4.1 (right) and Problem3.10.4. [Right] Pareto distribution with parameters
b ≡ xmin (minimum value on the abscissa) and a (shape parameter)

3.5 Pareto Distribution

Probability distributions of many quantities that can be interpreted as random vari-
ables have relatively narrow ranges of values. The height of an average adult, for
example, is 180 cm, but nobody is 50 or 500 cm tall. The data acquired by the WHO
[8] show that the body mass index (ratio of the mass in kilograms to the square of
the height in meters) is restricted to a range between ≈15 and ≈50.

But one also frequently encounters quantities that span many orders of magni-
tude, for example, the number of inhabitants of human settlements (ranging from
a few tens in a village to tens of millions in modern city conglomerates). Similar
“processes” with a large probability for small values and small probability for large
values are: frequency of specific given names, size of computer files, number of
citations of scientific papers, number of web-page accesses and the quantities of
sold merchandise (see Example on p.97), but also quantities measured in natural
phenomena, like step lengths in randomwalks (anomalous diffusion), magnitudes of
earthquakes, diameters of lunar craters or the intensities of solar X-ray bursts [9–11].
A useful approximation for the description of such quantities is the Pareto (power
law) distribution with the probability density

fX (x) = aba

xa+1
= a

b

(
b

x

)a+1

, 0 < b ≤ x, (3.16)

where b is the minimal allowed x (Fig. 3.4 (right)), and a is a parameter which
determines the relation between the prominence of the peak near the origin and the
strength of the tail at large x . It is this flexibility in parameters that renders the Pareto
distribution so useful in modeling the processes and phenomena enumerated above.
As an example, Fig. 3.5 (left) shows the distribution of the lunar craters in terms

http://dx.doi.org/10.1007/978-3-319-31611-6_4
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Fig. 3.5 [Left] Distribution of lunar craters with respect to their diameter, as determined by
researchers of the Lunar Orbiter Laser Altimeter (LOLA) project [12, 13] up to 2011. [Right]
The distribution of hard X-rays in terms of their intensity, measured by the Hard X-Ray Burst
Spectrometer (HXRBS) between 1980 and 1989 [14]. The straight lines represent the approxi-
mate power-law dependencies, also drawn in the shaded areas, although the Pareto distributions
commence only at their right edges (x ≥ xmin)

of their diameter, and Fig. 3.5 (right) shows the distribution of solar X-ray bursts in
terms of their intensity.

The Pareto distribution is normalized on the interval [b,∞) and frequently one
does not use its distribution function FX (x) = P(X ≤ x) but rather its complement,

1 − FX (x) = P(X > x) =
∞∫

x

fX (t) dt = aba

∞∫

x

dt

ta+1
=
(

b

x

)a

, x ≥ b,

(3.17)
as it is easier to normalize and compare it to the data: the ordinate simply specifies
the number of data points (measurements, events) that were larger than the chosen
value on the abscissa. By plotting the data in this way, one avoids histogramming in
bins, which is not unique. The values xmin = b should not be set to the left edge of the
interval onwhichmeasurements are available (e.g. 20m inLOLAmeasurements), but
to the value above which the description in terms of a power-law appears reasonable
(≈50m). The parameter a can be determined by fitting the power function to the
data, but in favor of better stability [9] we recommend the formula

a = n

[
n∑

i=1

log
xi

b

]−1

,

which we derive later ((8.11)).

Hint If we wish to plot the cumulative distribution for the data {xi , yi }n
i=1, we can

use the popular graphing toolGnuplot. We first sort the data, so that xi are arranged

http://dx.doi.org/10.1007/978-3-319-31611-6_8
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in increasing order (two-column file data). The cumulative distribution can then be
plotted by the command

gnuplot > plot "data" using 1 : ($0/n) with lines

3.5.1 Estimating the Maximum x in the Sample

Having at our disposal a sample of n measurements presumably originating from
a power-law distribution with known parameters a and b, a simple consideration
allows us to estimate the value of the largest expected observation [9]. Since we
are dealing with a continuous distribution, we should refer to the probability that its
value falls in the interval [x, x + dx]. The probability that a data point is larger than
x , is given by (3.17), while the probability for the opposite event is 1 − P(X > x).
The probability that a particular measurement will be in [x, x + dx] and that all
others will be smaller is therefore [1− P(X > x)]n−1 fX (x) dx . Because the largest
measurement can be chosen in n ways, the total probability is

n [1 − P(X > x)]n−1 fX (x) dx .

The expected value of the largest measurement—such quantities will be discussed
in the next chapter—is obtained by integrating x , weighted by the total probability,
over the whole definition domain:

xmax = n
∫ ∞

b
x fX (x) [1 − P(X > x)]n−1 dx = na

∫ ∞

b

(
b

x

)a [

1 −
(

b

x

)a]n−1

dx

= nb
∫ 1

0
tn−1(1 − t)−1/a dt = nb B

(

n,
a − 1

a

)

,

where B(p, q) is the beta function. We have substituted t = 1 − (b/x)a in the
intermediate step. For the sample in Fig. 3.5 (left), which contains n = 1513 data
points, a = 2.16 and b = 0.05 km, we obtain xmax ≈ 2.5 km. If the sample were ten
times as large, we would anticipate xmax ≈ 7.1 km.

3.6 Cauchy Distribution

The Cauchy distribution with probability density

fX (x) = 1

π

1

1 + x2
, −∞ < x < ∞, (3.18)
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is already familiar to us from the Example on p.41. In fact, we should have discussed
it along with the exponential, as the Fourier transform of the exponential function in
the time scale is the Cauchy function in the energy scale:

g(t) = e−|t |/τ =⇒ 1

2π

∫ ∞

−∞
g(t) e−i 2πνt dt = 1

π

1/τ

(1/τ )2 + 4π2ν2
. (3.19)

In other words, the energy distribution of the states decaying exponentially in time
is given by the Cauchy distribution. It is therefore suitable for the description of
spectral line shapes in electromagnetic transitions of atoms and molecules (Fig. 3.6
(left)) or for modeling the energy dependence of cross-sections for the formation of
resonances in hadronic physics (Fig. 3.6 (right)). With this in mind, it makes sense
to furnish it with the option of being shifted by x0 and with a parameter s specifying
its width:

fX (x; x0, s) = 1

π

s

s2 + (x − x0)2
. (3.20)

In spectroscopy the Cauchy distribution is also known as the Lorentz curve, while
in the studies of narrow, isolated resonant states in nuclear and particle physics it is
called the Breit–Wigner distribution: in this case it is written as

f (W ; W0, �) = 1

π

�/2

(W − W0)2 + �2/4
,

where W0 is the resonance energy and � is the resonance width.

Fig. 3.6 [Left] A spectral line in the emission spectrum of silicon (centered at λ = 254.182 nm)
at a temperature of 19,000K and particle density 5.2 × 1022/m3 [15], along with the Cauchy
(Lorentz) approximation. Why the agreement with the measured values is imperfect and how it can
be improved will be revealed in Problem6.9.2. [Right] Energy dependence of the cross-section for
scattering of charged pions on protons. In this process a resonance state is formed whose energy
distribution in the vicinity of the maximum can also be described by the Cauchy (Breit–Wigner)
distribution

http://dx.doi.org/10.1007/978-3-319-31611-6_6
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Fig. 3.7 The density of the χ2 distribution for four different parameters (degrees of freedom) ν.
The maximum of the function fχ2 (x; ν) for ν > 2 is located at x = ν − 2. For large ν the χ2

density converges to the density of the normal distribution with average ν − 2 and variance 2ν. The
thin curve just next to fχ2 (x; 10) denotes the density of the N (8, 10) distribution

3.7 The χ2 distribution

The χ2 distribution, a one-parameter probability distribution with the density

fχ2(x; ν) = 1

2ν/2

1

�
(
ν/2
) xν/2−1e−x/2, x > 0, (3.21)

will play its role in the our discussion on statistics (Chaps. 7–10). The parameter
ν is called the number of degrees of freedom. The probability density of the χ2

distribution for four values of ν is shown in Fig. 3.7. The corresponding distribution
function is

Fχ2(x; ν) = P (X ≤ x) = 1

2ν/2

1

�
(
ν/2
)

∫ x

0
tν/2−1e−t/2 dt.

In practical work one usually does not need this definite integral but rather the answer
to the opposite question, the cut-off value x at given P . These values are tabulated:
see Fig.D.1 (top right) and TableD.3.

3.8 Student’s Distribution

The Student’s distribution (or the t distribution)2 is also a one-parameter probability
distribution that we shall encounter in subsequent chapters devoted to statistics. Its
density is

2The Student’s distribution acquired its first peculiar name from a paper [16] that an English sta-
tistician W.S. Gosset published under the pseudonym Student, and the second one from a specific
random variable (see formula (7.18)).

http://dx.doi.org/10.1007/978-3-319-31611-6_7
http://dx.doi.org/10.1007/978-3-319-31611-6_10
http://dx.doi.org/10.1007/978-3-319-31611-6_7
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Fig. 3.8 The density of the Student’s (t) distribution with ν = 1, ν = 4 and ν = 20 degrees of
freedom. The distribution is symmetric about the origin and approaches the standardized normal
distribution N (0, 1) with increasing ν (thin curve), from which it is hardly discernible beyond
ν ≈ 30

fT (x; ν) = 1√
ν B

(
ν
2 ,

1
2

)

(

1 + x2

ν

)−(ν+1)/2

, −∞ < x < ∞, (3.22)

where ν is the number of degrees of freedom and B is the beta function. The graphs
of its density for ν = 1, ν = 4 and ν = 20 are shown in Fig. 3.8. In the limit ν → ∞
the Student’s distribution tends to the standardized normal distribution.

3.9 F distribution

The F distribution is a two-parameter distribution with the probability density

fF (x; ν1, ν2) =
(

ν1

ν2

)ν1/2 �
(
(ν1 + ν2)/2

)

�
(
ν1/2

)
�
(
ν2/2

) xν1/2−1

(

1 + ν1

ν2
x

)−(ν1+ν2)/2

, (3.23)

where ν1 is the number of degrees of freedom “in the numerator” and ν2 is the number
of degrees of freedom “in the denominator”. Why this distinction is necessary will
become clear in Sect. 7.2.3: there we shall compare ratios of particular random vari-
ables, distributed according to (3.23). The probability densities of the F distribution
are shown in Fig. 3.9 for several typical (ν1, ν2) pairs.

3.10 Problems

3.10.1 In-Flight Decay of Neutral Pions

A complicated transformation of a uniform distribution may still turn out to be a
uniform distribution, as we learn by solving the classical problem in relativistic

http://dx.doi.org/10.1007/978-3-319-31611-6_7
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Fig. 3.9 [Left] The probability density of the F distribution for ν1 = 10 degrees of freedom
(numerator) and three different degrees of freedom ν2 (denominator). [Right] The density of the F
distribution for ν2 = 10 and three different values of ν1

kinematics, the in-flight neutral pion decay to two photons, π0 → γ + γ. Calculate
the energy distribution of the decay photons, dN/dEγ!

✎ Let the π0 meson fly in the laboratory frame along the z-axis with velocity vπ .
The decay in the π0 rest frame is isotropic. Due to azimuthal symmetry (φ) this
implies a uniform distribution over the cosine of the angle θ∗ (see Sect.C.2.2):

f (cos θ∗) = dN

d(cos θ∗)
= 1

2
, −1 ≤ cos θ∗ ≤ 1,

where θ∗ is the emission angle of the first photon in the rest frame, as shown in the
figure:

The energy distribution of the photons is obtained by the derivative chain-rule:

dN

dEγ
= dN

d(cos θ∗)
d(cos θ∗)
dEγ

= 1

2

d(cos θ∗)
dEγ

. (3.24)

We therefore need to establish a relation between θ∗ and Eγ , and it is offered by the
Lorentz transformation from the π0 rest frame to the laboratory frame. Of course,
the energies of the photons in the rest frame are equal, E∗

γ,1 = E∗
γ,2 = E∗

γ = p∗
γc =

mπc2/2, and their four-vectors are

(
E∗

γ,i , p∗
γx,i c, p∗

γy,i c, p∗
γz,i c

) = 1
2mπc2

(
1,± sin θ∗, 0,± cos θ∗), i = 1, 2.
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The Lorentz transformation that gives us their energies in the laboratory frame is

Eγ,i = γE∗
γ,i + γβ p∗

γz,i c = 1
2mπc2γ

(
1 ± β cos θ∗),

where β = vπ/c = pπc/Eπ and γ = 1/
√
1 − β2 = Eπ/(mπc2). It follows that

dEγ,i

d(cos θ∗)
= 1

2mπc2γβ = 1
2 pπc

i.e.
d(cos θ∗)
dEγ

= 2

pπc
.

When this is inserted in (3.24), we obtain the required energy distribution, which is
indeed uniform:

dN

dEγ
= 1

pπc
,

namely on the interval between the minimal and maximal values

Emin
γ = 1

2 (Eπ − pπc) = 1
2 Eπ(1 − β), Emax

γ = 1
2 (Eπ + pπc) = 1

2 Eπ(1 + β).

Let us check our findings by a simple simulation, observing the decay of pions with
a velocity of 0.7c (β = 0.7). We use a computer to generate 100000 uniformly
distributed values −1 ≤ cos θ∗ ≤ 1 (Fig. 3.10 (left)), and then use each of these
values to calculate the photon energies in the laboratory frame, Eγ,1 and Eγ,2. A
uniform distribution over Eγ on the interval between Emin

γ and Emax
γ should appear.

It can be seen in Fig. 3.10 (right) that we were not mistaken.

Fig. 3.10 The π0 → γ + γ decay. [Left] Uniform distribution of events over cos θ∗ in the π0 rest
frame. [Right] Uniform energy distribution of the decay pions in the laboratory frame
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3.10.2 Product of Uniformly Distributed Variables

(Adapted from [17].) Let two continuous random variables X and Y be described by
a known probability density fX,Y (x, y). ① Calculate the probability density fZ (z)
of the product random variable Z = XY in the most general case and in the case
that X and Y are independent. ② Discuss the special case of independent variables
X and Y , both of which are uniformly distributed on the interval (0, 1).

✎ Define the domain D = {(x, y) : xy < z} (shown for positive z as the shaded
region in the figure) which determines the distribution function of the variable Z :

P
(
(X, Y ) ∈ D

) = FZ (z) =
∫ ∞
0

dy
∫ z/y

−∞
fX,Y (x, y) dx +

∫ 0

−∞
dy
∫ ∞

z/y
fX,Y (x, y) dx .

To facilitate the determination of integration boundaries, the intervals of four integra-
tions in this equation—read from left to right—are denoted by numbers 1 to 4 in the
figure. (The derivation for negative z proceeds analogously.) ① The corresponding
probability density is then obtained by differentiation:

fZ (z) = dFZ (z)

dz
=
∫ ∞

0

1

y
fX,Y

(
z

y
, y

)

dy −
∫ 0

−∞
1

y
fX,Y

(
z

y
, y

)

dy.

If X and Y are independent, possessing probability densities fX (x) and fY (y), one
has fX,Y (x, y) = fX (x) fY (y), thus

fZ (z) =
∫ ∞

0

1

y
fX

(
z

y

)

fY (y) dy −
∫ 0

−∞
1

y
fX

(
z

y

)

fY (y) dy. (3.25)

② The product of uniformly distributed variables X and Y is always positive and less
than 1, hence the probability density fZ (z) of the variable Z = XY may be non-zero
only on the interval (0, 1). On this interval it can be determined by using (3.25), in
which only the first term survives due to this very requirement, and even here the
integrand is positive only if 0 < z/y < 1 and 0 < y < 1, i.e. when z < y < 1. It
follows that
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fZ (z) =
∫ 1

z

dy

y
= − log z, 0 < z < 1,

while fZ (z) = 0 elsewhere.

3.10.3 Joint Distribution of Exponential Variables

Let X and Y be independent random variables distributed exponentially with para-
meters λ1 = 1 and λ2 = 3,

fX (x) = λ1 e
−λ1x , fY (y) = λ2 e

−λ2 y, x, y ≥ 0.

Imagine a square region S = [0, a] × [0, a]. ① Calculate the value of a, for which
the probability that a randomly drawn (x, y) pair falls into S, equals 1/2.② Calculate
the conditional joint probability density of the variables X and Y , given that X ≥ a
and Y ≥ a.

✎ The variables X and Y are independent, hence their joint probability density is

fX,Y (x, y) = fX (x) fY (y) = λ1λ2 e
−λ1xe−λ2 y, x, y ≥ 0.

The probability that a random pair of values (x, y) finds itself in S, equals

Paa ≡ P
(
0 ≤ X ≤ a, 0 ≤ Y ≤ a

) =
∫ a

0

∫ a

0
fX,Y (x, y) dx dy =

(
1 − e−λ1a

) (
1 − e−λ2a

)
.

① We are looking for a such that Paa = 1/2. This equation is best solved by
Newton’s method, in spite of its known pitfalls: with the function f (x) = (1 −
e−λ1x )(1− e−λ2x )−1/2 (plot it!) and its derivative f ′(x) = λ1e−λ1x +λ2e−λ2x −(λ1+
λ2)e−(λ1+λ2)x we start the iteration xn+1 = xn − f (xn)/ f ′(xn), n = 0, 1, 2, . . . With
the initial approximation x0 = 0.5 just a few iteration steps lead to a = x∞ ≈ 0.7987.

② We first form the conditional distribution function

FX,Y
(
x, y|X ≥ a, Y ≥ a

) = P
(
X ≤ x, Y ≤ y|X ≥ a, Y ≥ a

)

= P
(
a ≤ X ≤ x ∩ a ≤ Y ≤ y

)

P
(
X ≥ a ∩ Y ≥ a

) = P(a ≤ X ≤ x)P(a ≤ Y ≤ y)

P(X ≥ a)P(Y ≥ a)

=
∫ y

a dv
∫ x

a fX,Y (u, v) du
∫∞

a dv
∫∞

a fX,Y (u, v) du
=
(
e−λ1a − e−λ1x

)(
e−λ2a − e−λ2 y

)

e−λ1ae−λ2a
,

where we have taken into account that X and Y are independent. The probability
density can then be calculated by differentiating FX,Y with respect to x and y:

fX,Y
(
x, y|X ≥ a, Y ≥ a

) = ∂2

∂x∂y
FX,Y

(
x, y|X ≥ a, Y ≥ a

) = λ1λ2e
−λ1(x−a)e−λ2(y−a).
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We should also check the normalization which must be fulfilled—as for any proba-
bility density—also for the calculated conditional density. Indeed we find

∫ ∞

a

∫ ∞

a
fX,Y

(
x, y|X ≥ a, Y ≥ a

)
dx dy = 1,

where [a,∞]2 is the definition domain of the conditional joint probability density.

3.10.4 Integral of Maxwell Distribution over Finite Range

What fraction of nitrogen (N2) molecules at temperature T = 393K have velocities
between v1 = 500 and v2 = 1000m/s, if the velocity distribution is of the Maxwell
type (see Fig. 3.4 (left))?

✎ Let us rewrite (3.15) in a slightly more compact form

fV (v) =
√
16α3

π
v2 e−αv2 , α =

√
m

2kBT
.

The required fraction of molecules is equal to the definite integral of the probability
density from v1 to v2,

P(v1 ≤ V ≤ v2) =
∫ v2

v1

fV (v) dv =
√
16α3

π

∫ v2

v1

v2 e−αv2 dv.

Such integrals are typically handled by resorting to integration by parts, in which the
power of the variable x in the integrand is gradually reduced:

∫

xn e−αx2
dx = − 1

2α

∫

xn−1(−2αx) e−αx2
dx

= − 1

2α

[

xn−1 e−αx2 −
∫

(n − 1)xn−2 e−αx2
dx

]

.

In our case we only need the integral with n = 2, therefore

I (v) =
v∫

0

x2 e−αx2 dx = 1

2α

v∫

0

e−αx2 dx − 1

2α
v e−αv2 =

√
π

4α3/2 erf
(√

α v
)− v

2α
e−αv2 .

From TableD.2 we read off erf(
√

αv1) ≈ 0.4288 and erf(
√

αv2) ≈ 0.4983, and all
that is needed is to merge the expressions to



86 3 Special Continuous Probability Distributions

P(v1 ≤ V ≤ v2) =
√
16α3

π

[
I (v2) − I (v1)

] ≈ 0.5065.

(The result by computing the erf functions accurately is 0.5066.)

3.10.5 Decay of Unstable States and the Hyper-exponential
Distribution

Organic scintillator is a material in which charged particles promote electrons to
excited states,which get rid of the excess energy by photon emission. The time depen-
dence of the intensity of emitted light can be approximated by a sum of two indepen-
dent excitation mechanisms (occurring almost instantaneously) and de-excitations
proceeding with two different decay times, as shown in Fig. 3.11. ① Write down
the corresponding probability density and the functional form of the decay curve.
② Generalize the expressions to multiple time components. Does the same physical
picture apply to a mixture of radioactive isotopes, if each of them has only a single
decay mode?

✎ The mechanisms of light generation in scintillators are poorly understood, but
the predominant opinion seems to be that the type of relaxation (fast or slow) is
determined already during excitation.① We are thus dealing with exclusive (incom-
patible) events, hence the probability density is

fT (t) = Pλ1 e
−λ1t + (1 − P)λ2 e

−λ2t .

The time dependence of the light curve is then given by the distribution function:

N (t)/N0 = 1 − FT (t) = 1 −
∫ t

0
fT (t ′) dt ′ = P e−λ1t + (1 − P) e−λ2t .

Fig. 3.11 Typical time dependence of a light pulse emanating from an organic scintillator: in
this case, the total intensity consists of a fast relaxation component with decay time τ1 = 30 ns
(frequency 70%) and a slow one with decay time τ2 = 150 ns (30%)
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② Obviously one can generalize this to multiple (k) time components by writing

fT (t) =
k∑

i=1

Piλi e
−λi t ,

k∑

i=1

Pi = 1. (3.26)

The distribution with such probability density is known as the k-phase hyper-
exponential distribution. It can be used to model the superposition of k independent
events, e.g. the response time of a system of k parallel computer servers, in which the
i th server is assignedwith probability Pi to handle our request, and the distribution of
its service time is exponential with parameter λi (Fig. 3.12 (left)). Such a distribution
also describes the lifetime of a product manufactured on several parallel assembly
lines or in factories with different levels of manufacturing quality.

At first sight, radioactive decay in a sample containing various isotopes (for exam-
ple, a mixture of 137Cs, 235U and 241Am) resembles such a k-phase process. But the
key difference is that the decays of individual isotopes are not mutually exclusive:
in a chosen time interval �t we might detect the decay of a single isotope, two, or
all three. In this case the hyper-exponential distribution is not justified.

Similar conclusions can be drawn for the decay of unstable particles with multiple
decay modes, each occurring with a distinct probability. Suppose that particle X
decays into the final state A consisting of two or more lighter particles. The usual
decay law (3.5) applies:

ṄX→A(t) = −λAN (t).

If multiple final states A,B,C, . . . are allowed, we must sum over all contributions:
the time derivative of the number of particles still available for decay at time t is

Ṅ (t) = ṄX→anything(t) = ṄX→A(t)+ṄX→B(t)+· · · = −(λA+λB+· · · )N (t) ≡ −λN (t).

Fig. 3.12 [Left] A set of k parallel independent processes (“phases”) with a single output, described
by the hyper-exponential distribution. [Right] An illustration of the decay modes of a sample of
unstable particles
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The extinction of N is therefore driven by a single time constant, λ = λA+λB+· · · !
Just prior to the decay, Nature does not think about the type of the final state, but
rather just chooses the time of the decay by exponential law with parameter λ,

N (t) = N0 e
−λt = N0 e

−t/τ ,

where τ is the average decay time. Instead of τ we sometimes prefer to specify the
conjugated variable in the Heisenberg sense (time and energy, position and linear
momentum, angle and angular momentum), known as the total decay width:

� = �

τ
= �λ = �

(
λA + λB + · · · ) = �A + �B + · · · .

The total width � is a sum of the partial widths �A, �B, . . . It is only at the very
moment of decay that the particle randomly “picks” a certain final state. The proba-
bilities for the transitions to specific final states can be expressed by branching ratios
or branching fractions: for individual decay modes we have

BrA = ṄX→A

ṄX→anything
= �A

�
, BrB = �B

�
, BrC = �C

�
, . . . (3.27)

Conservation of probability (a particle must decay into some final state after all) of
course ensures

BrA + BrB + BrC + · · · = 1.

As an example, Table3.1 shows the partial widths and branching fractions in the
decay of the Z0 bosons produced in collisions of electrons and positrons at invariant
energies around 91GeV; see Fig. 3.12 (right). From the total decaywidthwe compute
the average decay time τ = �/� ≈ 2.6 × 10−25s. The energy dependence of the
Z0 resonance is described by the Breit-Wigner distribution (Fig. 3.6 (right)) with the
center at approximately 91.2GeV and a width of about 2.5GeV.

Table 3.1 The dominant decay modes of the Z0 boson, the corresponding partial decay widths and
the branching fractions

Decay mode Width (MeV) Branching fraction (%)

Z0 → e+e− 83.9 ± 0.1 3.363 ± 0.004

Z0 → μ+μ− 84.0 ± 0.1 3.366 ± 0.007

Z0 → τ+τ− 84.0 ± 0.1 3.367 ± 0.008

Z0 → νlνl (l = e,μ, τ ) 499.0 ± 1.5 20.00 ± 0.66

Z0 → qq (hadrons) 1744.4 ± 2.0 69.91 ± 0.06

Z0 → anything 2495.2 ± 2.3 100
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3.10.6 Nuclear Decay Chains and the Hypo-exponential
Distribution

In nuclear decay chains an unstable nucleus decays with characteristic time τ1 to a
lighter nucleus, which in turn decays with characteristic time τ2 to an even lighter
nucleus, and so on. Such decay chains with consecutive emissions (mostlyα particles
or electrons) are typical of heavy nuclei. Figure3.13 (left) shows a segment of the
uranium decay chain where each subsequent isotope has a single decay mode, but
with a different characteristic time. Find the probability distribution to describe such
processes!

✎ Suppose that the decay chain is initiated by type 1 isotopes with no daughter
nuclei present at time zero, and that no other isotope decays into this type. The time
evolution of the decay chain is then governed by the set of differential equations

Ṅ1 = −λ1N1,

Ṅ2 = −λ2N2 + λ1N1,

Ṅ3 = −λ3N3 + λ2N2,

· · · = · · · ,

Fig. 3.13 [Left] A segment of the uranium decay chain where only one type of decay is allowed
at each stage. [Center] Depiction of k serial processes with a single output, described by the hypo-
exponential distribution. [Right] Illustration of a nuclear decay chain; compare it to Fig. 3.12 (right)
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with initial conditions

N1(0) = N0, N2(0) = N3(0) = · · · = 0.

We already know the solution of the first line:

N1(t) = N0 e
−λ1t .

The next component of the chain is obtained by first multiplying the second line of
the system by eλ2t and exploiting the previously calculated solution for N1(t),

eλ2t Ṅ2(t) = −λ2 e
λ2t N2 + λ1N0 e

(λ2−λ1)t .

We move the first term on the right to the left,

eλ2t Ṅ2(t) + λ2 e
λ2t N2 = (eλ2t N2(t)

)· = λ1N0 e
(λ2−λ1)t ,

and integrate to get

eλ2t N2(t) = λ1

λ2 − λ1
N0 e

(λ2−λ1)t + C.

The constant C is dictated by the condition N2(0) = 0, whence C = −λ1N0/(λ2 −
λ1) and

N2(t) = λ1

λ1 − λ2
N0
[
e−λ2t − e−λ1t

]
.

The same trick can be used to obtain the remaining elements of the chain: in the i th
line of the system we always multiply Ṅi by eλi t , carry over −λi eλi t Ni to the left
where it can be joined with its neighbor into a derivative of a product, grab the result
from the previous step, and integrate. For the third element of the chain, for example,
we obtain

N3(t) = λ1λ2N0

[
e−λ1t

(λ2 − λ1)(λ3 − λ1)
+ e−λ2t

(λ1 − λ2)(λ3 − λ2)
+ e−λ3t

(λ1 − λ3)(λ2 − λ3)

]

.

It is obvious that this can be generalized to

Nk(t) =
k∑

i=1

⎛

⎜
⎝

k∏

j=1
j �=i

λ j

λ j − λi

⎞

⎟
⎠λi e

−λi t , (3.28)

except that we must replace λk → N0 in the numerator of all fractions. Such a distri-
bution, which in general describes a sum of independent, exponentially distributed
variables, each with its own parameter λi , is called hypo-exponential.
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