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Preface

University-level introductory books on probability and statistics tend to be long—
too long for the attention span and immediate horizon of a typical physics student
who might wish to absorb the necessary topics in a swift, direct, involving manner,
relying on her existing knowledge and physics intuition rather than asking to be
taken through the content at a slow and perhaps over-systematic pace.

In contrast, this book attempts to deliver a concise, lively, intuitive introduction
to probability and statistics for undergraduate and graduate students of physics and
other natural sciences. Conceived primarily as a text for the second-year course on
Probability in Physics at the Department of Physics, Faculty of Mathematics and
Physics, University of Ljubljana, it has been designed to be as relieved of unnec-
essary mathematical ballast as possible, yet never to be mathematically imprecise.
At the same time, it is hoped to be colorful and captivating: to this end, I have
strived to avoid endless, dry prototypes with tossing coins, throwing dice and births
of girls and boys, and replace them wherever possible by physics-motivated
examples, always in the faith that the reader is already familiar with “at least
something”. The book also tries to fill a few common gaps and resurrect some
content that seems to be disappearing irretrievably from the modern, Bologna-style
curricula. Typical witnesses of such efforts are the sections on extreme-value dis-
tributions, linear regression by using singular-value decomposition, and the
maximum-likelihood method.

The book consists of four parts. In the first part (Chaps. 1–6) we discuss
the fundamentals of probability and probability distributions. The second part
(Chaps. 7–10) is devoted to statistics, that is, the determination of distribution
parameters based on samples. Chapters 11–14 of the third part are “applied”, as
they are the place to reap what has been sown in the first two parts and they invite
the reader to a more concrete, computer-based engagement. As such, these chapters
lack the concluding exercise sections, but incorporate extended examples in the
main text. The fourth part consists of appendices. Optional contents are denoted by
asterisks H. Without them, the book is tailored to a compact one-semester course;
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with them included, it can perhaps serve as a vantage point for a two-semester
agenda.

The story-telling and the style are mine; regarding all other issues and doubts I
have gladly obeyed the advice of both benevolent, though merciless reviewers,
Dr. Martin Horvat and Dr. Gregor Šega. Martin is a treasure-trove of knowledge on
an incredible variety of problems in mathematical physics, and in particular of
answers to these problems. He does not terminate the discussions with the elusive
“The solution exists!”, but rather with a fully functional, tested and documented
computer code. His ad hoc products saved me many hours of work. Gregor has
shaken my conviction that a partly loose, intuitive notation could be reader-friendly.
He helped to furnish the text with an appropriate measure of mathematical rigor, so
that I could ultimately run with the physics hare and hunt with the mathematics
hounds. I am grateful to them for reading the manuscript so attentively. I would also
like to thank my student Mr. Peter Ferjančič for leading the problem-solving classes
for two years and for suggesting and solving Problem 5.6.3.

I wish to express my gratitude to Professor Claus Ascheron, Senior Editor at
Springer, for his effort in preparation and advancement of this book, as well as to
Viradasarani Natarajan and his team for its production at Scientific Publishing
Services. http://pp.books.fmf.uni-lj.si

Ljubljana Simon Širca
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Part I
Fundamentals of Probability
and Probability Distributions



Chapter 1
Basic Terminology

Abstract The concepts of random experiment, outcomes, sample space and events
are introduced, and basic combinatorics (variations, permutations, combinations)
is reviewed, leading to the exposition of fundamental properties of probability. A
discussion of conditional probability is offered, followed by the definition of the
independence of events and the derivation of the total probability andBayes formulas.

1.1 Random Experiments and Events

Aphysics experiment can be envisioned as a process that maps the initial state (input)
into the final state (output). Of course wewish such an experiment to be non-random:
during the measurement we strive to control all external conditions—input data, the
measurement process itself, as well as the analysis of output data—and justly expect
that each repetition of the experiment with an identical initial state and in equal
circumstances will yield the same result.

In a random experiment, on the other hand, it may happen that multiple repeats
of the experiment with the same input and under equal external conditions will end
up in different outputs. The main feature of a random experiment is therefore our
inability to uniquely predict the precise final state based on input data. We rather
ask ourselves about the frequency of occurrence of a specific final state with respect
to the number of trials. That is why this number should be as large as possible: we
shall assume that, in principle, a random experiment can be repeated infinitely many
times.

A specific output of a random experiments is called an outcome. An example
of an outcome is the number of photons measured by a detector, e.g. 12. The set
of all possible outcomes of a random experiment is called the sample space, S. In
the detector example, the sample space is the set S = {0, 1, 2, . . .}. Any subset of
the sample space is called an event. Individual outcomes are elementary events.
Elementary events can be joined in compound events: for example, the detector sees
more than 10 photons (11 or 12 or 13, and so on) or sees 10 photons and less than
20 neutrons simultaneously.

© Springer International Publishing Switzerland 2016
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4 1 Basic Terminology

The events, elementary or compound, are denoted by lettersA,B,C, . . .The event
that occurs in all repetitions of the experiment—or can be assumed to occur in all
future tries—is called a certain or universal event and is denoted by U. The event
that does not occur in any repetition of the experiment is called an impossible event,
denoted by ∅ or { }. The relations between events can be expressed in the language
of set theory. Take two events A and B and consider the possibility that at least one
of them occurs: this eventuality is called the sum of events and is denoted by

A ∪ B.

Summing events is commutative and associative: we have A ∪ B = B ∪ A and (A ∪
B) ∪ C = A ∪ (B ∪ C). The sum of two events can be generalized: the event that at
least one of the events A1,A2, . . . ,An occurs, is

A1 ∪ A2 ∪ · · · ∪ An =
n⋃

k=1

Ak .

The event that both A and B occur simultaneously, is called the product of events A
and B. It is written as

A ∩ B

or simply
AB.

For each event A one obviously has A∅ = ∅ and AU = A. The product of events is
also commutative and associative; it holds that AB = BA and (AB)C = A(BC). The
compound event that all events A1,A2, . . . ,An occur simultaneously, is

A1A2 . . .An =
n⋂

k=1

Ak .

The addition andmultiplication are related by the distributive rule (A ∪ B)C = AC ∪
BC. The event that A occurs but B does not, is called the difference of events and is
denoted by

A − B.

(In general A − B �= B − A.) The events A and B are exclusive or incompatible if
they can not occur simultaneously, that is, if

AB = ∅.
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The events A are B complementary if in each repetition of the experiment precisely
one of them occurs: this implies

AB = ∅ and A ∪ B = U.

An event complementary to event A is denoted by A. Hence, for any event A,

AA = ∅ and A ∪ A = U.

Sums of events in which individual pairs of terms are mutually exclusive, are partic-
ularly appealing. Such sums are denoted by a special sign:

A ∪ B
def.= A + B ⇔ A ∩ B = { }.

Event sums can be expressed as sums of incompatible terms:

A1 ∪ A2 ∪ · · · ∪ An = A1 + A1A2 + A1A2A3 + · · · + (
A1A2 . . . An−1An

)
. (1.1)

The set of events
{A1,A2, . . . ,An} (1.2)

is called the complete set of events, if in each repetition of the experiment precisely
one of the events contained in it occurs. The events from a complete set are all
possible (Ai �= ∅), pair-wise incompatible (AiAj = ∅ for i �= j), and their sum is a
certain event: A1 + A2 + · · · + An = U, where n may be infinite.

Example There are six possible outcomes in throwing a die: the sample space is
S = {1, 2, 3, 4, 5, 6}. The event A of throwing an odd number—the compound event
consisting of outcomes {1}, {3} or {5}—corresponds to A = {1, 3, 5}, while for even
numbersB = {2, 4, 6}. The sumofA andB exhausts thewhole sample space;A ∪ B =
S = U implies a certain event. The event of throwing a 7 is impossible: it is not
contained in the sample space at all. �
Example A coin is tossed twice, yielding either head (h) or tail (t) in each toss. The
sample space of this random experiment is S = {hh, ht, th, tt}. Let A represent the
event that in two tosses we get at least one head, A = {hh, ht, th}, and let B represent
the event that the second toss results in a tail, thus B = {ht, tt}. The event that at least
one of A and B occurs (i.e. A or B or both) is

A ∪ B = {hh, ht, th, tt}.

We got A ∪ B = S but that does not hold in general: if, for example, one would
demand event B to yield two heads, B = {hh}, one would obtain A ∪ B = {hh,
ht, th} = A. The event of A and B occurring simultaneously is

A ∩ B = AB = {ht}.
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This implies that A and B are not exclusive, otherwise we would have obtained
AB = { } = ∅. The event that A occurs but B does not occur is

A − B = A ∩ B = {hh, ht, th} ∩ {hh, th} = {hh, th}.

The complementary event to A is A = S − A = {tt}. �

The sample spaces in the above examples are discrete. An illustration of a con-
tinuous one can be found in thermal implantation of ions into quartz (SiO2) in the
fabrication of chips. The motion of ions in the crystal is diffusive and the ions
penetrate to different depths: the sample space for the depths over which a certain
concentration profile builds up is, say, the interval S = [0, 1]µm.

1.2 Basic Combinatorics

1.2.1 Variations and Permutations

We perform m experiments, of which the first has n1 possible outcomes, the second
has n2 outcomes for each outcome of the first, the third has n3 outcomes for each
outcome of the first two, and so on. The number of possible outcomes of all m
experiments is

n1n2n3 . . . nm.

If ni = n for all i, the number of all possible outcomes is simply

nm.

Example A questionnaire contains five questions with three possible answers each,
and ten questions with five possible answers each. In how many ways the question-
naire can be filled out if exactly one answer is allowed for each question? By the
above formulas, in no less than 35510 = 2373046875 ways. �

What if we have n different objects and are interested in how many ways (that
is, variations) m objects from this set can be reshuffled, paying attention to their
ordering? The first object can be chosen in n ways. Now, the second one can only
be chosen from the reduced set of n − 1 objects, . . . , and the last object from the
remaining n − m + 1. The number of variations is then

n(n − 1) · · · (n − m + 1) = n!
(n − m)! = nVm = (n)m. (1.3)

The symbol on the right is known as the Pochammer symbol.



1.2 Basic Combinatorics 7

Example The letters A, B, C and D (n = 4) can be assembled in groups of two
(m = 2) in 4!/2! = 12 ways: {AB,AC,AD,BA,BC,BD,CA,CB,CD,DA,DB,
DC}. Note that in this procedure, ordering is crucial: AB does not equal BA. �

A special case of (1.3) ism = nwhen variations are called permutations: the number
of permutations of n objects is

n(n − 1)(n − 2) · · · 3·2·1 = n! = Pn.

Speaking in reverse, n! is the number of all permutations of n objects, while (1.3) is
the number of ordered sub-sequences of length m from these n objects.

Example We would like to arrange ten books (four physics, three mathematics, two
chemistry books and a dictionary) on a shelf such that the books from the same
field remain together. For each possible arrangement of the fields we have 4! 3! 2! 1!
options, while the fields themselves can be arranged in 4! ways, hence there are a
total of 1! 2! 3! 4! 4! = 6912 possibilities. �

We are often interested in the permutations of n objects, n1 of which are of one
kind and indistinguishable, n2 of another kind . . . , nm of the mth kind, while n =
n1 + n2 + · · · + nm. From all n! permutations the indistinguishable ones n1! , n2! . . .
must be removed, hence the required number of permutations is n!/(n1! n2! · · · nm!)
and is denoted by the multinomial symbol:

n!
n1! n2! . . . nm! = nPn1,n2,...,nm =

(
n

n1, n2, . . . , nm

)
. (1.4)

1.2.2 Combinations Without Repetition

In how many ways can we arrange n objects into different groups of m objects if the
ordering is irrelevant? (For example, the letters A, B, C, D and E in groups of three.)
Based on previous considerations leading to (1.3) we would expect n(n − 1) · · · (n −
m + 1) variations. But in doing this, equal groups would be counted multiple (m!)
times: the letters A, B and C, for example, would form m! = 3! = 6 groups ABC,
ACB,BAC,BCA,CABandCBA, inwhich the letters are justmixed. Thus the desired
number of arrangements—in this case called combinations of mth order among n
elements without repetition—is

n(n − 1) · · · (n − m + 1)

m! = n!
(n − m)!m! = nCm = nVm

Pm
=

( n

m

)
. (1.5)
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The symbol at the extreme right is called the binomial symbol. It can not hurt to
recall its parade discipline, the binomial formula

(x + y)n =
n∑

m=0

( n

m

)
xn−mym. (1.6)

1.2.3 Combinations with Repetition

In combinations with repetition we allow the elements to appear multiple times, for
example, in combining four letters (A, B, C and D) into groups of three, where not
only triplets with different elements like ABC or ABD, but also the options AAA,
AAB and so on should be counted. The following combinations are allowed:

AAA,AAB,AAC,AAD,ABB,ABC,ABD,ACC,ACD,ADD,
BBB, BBC, BBD,BCC, BCD,BDD,CCC, CCD,CDD,DDD.

In general the number of combinations of mth order among n elements with repeti-
tion is

(n + m − 1)!
(n − 1)!m! =

(
n + m − 1

m

)
. (1.7)

In the example above (n = 4, m = 3) one indeed has 6!/(3! 3!) = 20.

1.3 Properties of Probability

A random experiment always leaves us in doubt whether an event will occur or not.
A measure of probability with which an event may be expected to occur is its relative
frequency. It can be calculated by applying “common sense”, i.e. by dividing the
number of chosen (“good”) events A to occur, by the number of all encountered
events: in throwing a die there are six possible outcomes, three of which yield odd
numbers, so the relative frequency of the event A = “odd number of points” should
be P(A) = good/all = 3/6 = 0.5. One may also proceed pragmatically: throw the
die a thousand times and count, say, 513 odd and 487 even outcomes. The empirical
relative frequency of the odd result is therefore 513/1000 = 0.513. Of course this
value will fluctuate if a die is thrown a thousand times again, and yet again—to 0.505,
0.477, 0.498 and so on. But we have reason to believe that after many, many trials
the value will stabilize at the previously established value of 0.5.

We therefore define the probability P(A) of event A in a random experiment as
the value at which the relative frequency of A usually stabilizes after the experiment
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has been repeated many times1 (see also Appendix A). Obviously

0 ≤ P(A) ≤ 1.

The probability of a certain event is one, P(U) = 1. For any event A we have

P(A) + P(A) = 1,

hence also P(∅) = 1 − P(U) = 0: the probability of an impossible event is zero.
For arbitrary events A and B the following relation holds:

P(A ∪ B) = P(A) + P(B) − P(AB). (1.8)

For exclusive events, AB = ∅ and the equation above reduces to

P(A + B) = P(A) + P(B),

which can be generalized for pair-wise exclusive events as

P(A ∪ B ∪ C ∪ · · · ) = P(A) + P(B) + P(C) + · · · .

To generalize (1.8) to multiple events one only needs to throw a glance at (1.1): for
example, with three events A, B and C we read off

A ∪ B ∪ C = A + AB + ABC

= A + (U − A)B + (U − A)(U − B)C

= A + B + C − AB − AC − BC + ABC,

therefore also

P(A ∪ B ∪ C)

= P(A) + P(B) + P(C) − P(AB) − P(AC) − P(BC) + P(ABC). (1.9)

Example (Adapted from [3].) In the semiconductor wafer production impurities
populate the upper layers of the substrate. In the analysis of 1000 samples one
finds a large concentration of impurities in 113 wafers that were near the ion source
during the process, and in 294 wafers that were at a greater distance from it. A low
concentration is found in 520 samples from near the source and 73 samples that were
farther away. What is the probability that a randomly selected wafer was near the
source during the production (event N), or that it contains a large concentration of
impurities (event L), or both?

1This is the so-called frequentist approach to probability, in contrast to the Bayesian approach: an
introduction to the latter is offered by [2].
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We can answer the question by carefully counting themeasurements satisfying the
condition: P(N ∪ L) = (113 + 294 + 520)/1000 = 0.927. Of course, (1.8) leads to
the same conclusion: the probability ofN isP(N) = (113 + 520)/1000 = 0.633, the
probability of L is P(L) = (113 + 294)/1000 = 0.407, while the probability of N
and L occurring simultaneously—they are not exclusive!—is P(NL) = 113/1000 =
0.113, hence

P(N ∪ L) = P(N) + P(L) − P(NL) = 0.633 + 0.407 − 0.113 = 0.927.

Ignoring the last term, P(NL), is a frequent mistake which, however, is easily caught
as it leads to probability being greater than one. �

Example (Adapted from [4].) A detector of cosmic rays consists of nine smaller
independent sub-detectors all pointing in the same direction of the sky. Suppose that
the probability for the detection of a cosmic ray shower (event E) by the individual
sub-detector—the so-called detection efficiency—is P(E) = ε = 90%. If we require
that the shower is seen by all sub-detectors simultaneously (nine-fold coincidence,
Fig. 1.1 (left)), the probability to detect the shower (event X) is

P(X) = (
P(E)

)9 ≈ 0.387.

The sub-detectors can also be wired in three triplets, where a favorable outcome is
defined by at least one sub-detector in the triplet observing the shower. Only then a

Fig. 1.1 Detector of cosmic rays. [Left] Sub-detectors wired in a nine-fold coincidence. [Right]
Triplets of sub-detectors wired in a three-fold coincidence
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triple coincidence is formed from the three resulting signals (Fig. 1.1 (right)). In this
case the total shower detection probability is

P(X) = (
P(E1 ∪ E2 ∪ E3)

)3 = (
3ε − 3ε2 + ε3

)3 ≈ 0.997,

where we have used (1.9). �

1.4 Conditional Probability

Let A be an event in a random experiment (call it ‘first’) running under a certain set
of conditions, and P(A) its probability. Imagine another event B that may occur in
this or another experiment. What is the probability P′(A) of event A if B is interpreted
as an additional condition for the first experiment? Because event B modifies the set
of conditions, we are now actually performing a new experiment differing from the
first one, thus we generally expect P(A) �= P′(A). The probability P′(A) is called the
conditional probability of event A under the condition B or given event B, and we
appropriately denote it byP(A|B). This probability is easy to compute: in n repetitions
of the experimentwith the augmented set of conditionsB occursnB times,whileA ∩ B
occurs nAB times, therefore

P(A|B) = lim
n→∞

nAB/n

nB/n
= P(AB)

P(B)
.

The conditional probability for A given B (P(B) �= 0) is therefore computed by
dividing the probability of the simultaneous event, A ∩ B, by P(B). Obviously, the
reverse is also true:

P(B|A) = P(AB)

P(A)
.

Both relations can be merged into a single statement known as the theorem on the
probability of the product of events or simply the product formula:

P(AB) = P(B|A)P(A) = P(A|B)P(B). (1.10)

The first part of the equation can be verbalized as follows: the probability that A and
B occur simultaneously equals the product of probabilities that A occurs first, and
the probability that B occurs, given that A has already occurred. (The second part
proceeds analogously.)

The theorem can be generalized tomultiple events. LetA1,A2, . . . ,An be arbitrary
events and let P(A1A2 . . .An) > 0. Then

P(A1A2 . . .An) = P(A1)P(A2|A1)P(A3|A1A2) . . .P(An|A1A2 . . .An−1). (1.11)
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Perhaps the essence becomes even clearer if we reverse the ordering of the factors
and digest the formula from right to left:

P(An . . .A2A1) = P(An|An−1 . . .A2A1) . . .P(A3|A2A1)P(A2|A1)P(A1).

Example What is the probability that throwing a die yields a number of spots which
is less than four given that the number is odd? Let A mean “odd number of spots”
(P(A) = 1/2), and B “the number of spots less than four” (P(B) = 1/2). If A and B
occur simultaneously, the probability of the compound event can be inferred from
the intersection of sets A and B in Fig. 1.2 (left): it is

P(AB) = 2
6 = 1

3 ,

since only elements {1, 3} inhabit the intersection, while the complete sample space
is {1, 2, 3, 4, 5, 6}. But this is not yet the answer to our question! We are interested
in the probability of B once A (“the condition”) has already occurred: this implies
that the sample space has shrunk to {1, 3, 5} as shown in Fig. 1.2 (right). From this
reduced space we need to pick the elements that fulfill the requirement B: they are
{1, 3} and therefore

P(B|A) = 2
3 .

Equation (1.10) says the same: P(B|A) = P(AB)/P(A) = 1
3

/
1
2 = 2

3 . We can imagine
that the unconditional probability P(B) = 1/2 has increased to P(B|A) = 2/3 by the
additional information that the throw yields an odd number. �

Example A box in our cellar holds 32 bottles of wine, eight of which are spoiled. We
randomly select four bottles from the box for today’s dinner. What is the probability
that not a single one will be spoiled?

Fig. 1.2 The conditional probability in throwing a die. [Left] The probability of events A and B
occurring simultaneously corresponds to the intersection of the sets {1, 3, 5} and {1, 2, 3}within the
complete sample space S. [Right] The condition A first isolates the set {1, 3, 5} from the complete
S. The conditional probability of B given A corresponds to the fraction of the elements in this set
that also fulfill the requirement B
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This can be solved in two ways. The first method is to apply the product formula
by considering that with each new bottle fetched from the box, both the total number
of bottles and the number of spoiled bottles in it are reduced by one. Let Ai denote the
event that the ith chosen bottle is good, andA the event that all four bottles are fine. The
probability of the first bottle being good is P(A1) = 24/32. This leaves 31 bottles in
the box, 23 ofwhich are good, hence the probability of the second bottle being intact is
P(A2|A1) = 23/31. Analogously P(A3|A1A2) = 22/30 and P(A4|A1A2A3) = 21/29
for the third and fourth bottle, respectively. Formula (1.11) then gives

P(A) = P(A1A2A3A4) = P(A1)P(A2|A1)P(A3|A1A2)P(A4|A1A2A3)

= 24

32

23

31

22

30

21

29
≈ 0.2955.

The second option is to count the number of ways in which 24 good bottles can be
arranged in four places: it is equal to 24!/(4! 20!) (see (1.5)). But this number must be
divided by the number of all possible combinations of bottles in four places, which
is 32!/(4! 28!). The probability of four bottles being good is then

P(A) = 24!
4! 20!

4! 28!
32! ≈ 0.2955.

�
Example An electric circuit has five independent elements with various degrees of
reliability—probabilities that an element functions—shown in the figure.

A B

C D E

0.7 0.7

0.8 0.8 0.8

What is the probability that the circuit works (transmits signals from input to output)
and the probability that A does not work, given that the circuit works?

Let us denote the event “element Aworks” byA (and analogously for the elements
B, C, D and E). The circuit works (event V ) when the elements A and B work or the
elements C, D and E work or all five of them work, hence

P(V ) = P(AB ∪ CDE) = P(AB) + P(CDE) − P(ABCDE)

= P(A)P(B) + P(C)P(D)P(E)

−P(A)P(B)P(C)P(D)P(E)

= (0.7)2 + (0.8)3 − (0.7)2(0.8)3 = 0.75112,

where we have used (1.8). The probability that A has failed (event A), given that the
circuit works, is obtained by the following consideration, noting that XY = X ∩ Y .
We first calculate the probability that A does not work while the circuit as a whole
works. If A has failed, then the bottom branch of the circuit must work. But even
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if A is inoperational, two options remain for B: it either works or it does not. Thus
A ∩ V = [(

A ∩ B
) ∪ (

A ∩ B
)] ∩ (C ∩ D ∩ E). Thus the conditional probability we

have been looking for is

P
(
A|V ) = P

(
AV

)

P(V )
= P

[(
AB ∪ AB

)(
CDE

)]

P(V )
=

[
P
(
AB

) + P
(
AB

)] · P(CDE)
P(V )

= [(1 − 0.7)0.7 + (1 − 0.7)2] · (0.8)3
0.75112

= 0.2045,

where we have used A ∩ B ∩ A ∩ B = { }, since A ∩ A = B ∩ B = { }. �

1.4.1 Independent Events

If events A and B are independent, the probability that A occurs (or does not occur)
is independent of whether we have any information on B (and vice-versa), hence

P(A|B) = P(A) and P(B|A) = P(B).

According to (1.10), the probability that such events occur simultaneously equals the
product of probabilities of them occurring individually:

P(AB) = P(A)P(B). (1.12)

When more than two events are involved, independence must be defined more care-
fully. The events in the set

A = {A1,A2, . . . ,An}

are mutually or completely independent if, for every combination (i1, i2, . . . , ik)
of kth order without repetition (k = 2, 3, . . . , n) among the numbers 1, 2, . . . , n, it
holds that

P
(
Ai1Ai2 . . .Aik

) = P
(
Ai1

)
P
(
Ai2

)
. . .P

(
Aik

)
. (1.13)

When k = n this system of equations has the form

P(A1A2 . . .An) = P(A1)P(A2) . . .P(An),

which is a special case of (1.11); when k = 2, the leftover of (1.13) is simply

P(AiAj) = P(Ai)P(Aj).
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If (1.12) applies to any pair of events in A, we say that such events are pair-wise
independent, but this is still a far cry from mutual (complete) independence! There
are 2n combinations without repetition among n elements (see (1.6) with x = y = 1).
One of them corresponds to the empty set, while there are n combinations of the
first order, as we learn from (1.5). The system above therefore imposes 2n − n − 1
conditions that must be fulfilled by the events fromA in order for them to bemutually
independent. In the special case n = 3 there are four such conditions:

P(A1A2) = P(A1)P(A2),

P(A1A3) = P(A1)P(A3),

P(A2A3) = P(A2)P(A3),

P(A1A2A3) = P(A1)P(A2)P(A3).

This important distinction between pair-wise and mutual independence is discussed
in the following Example.

Example The spin in a quantum system can have two projections: + 1
2 (spin “up”,

↑) or − 1
2 (spin “down”, ↓). The orientation of the spin is measured twice in a

row. We make the following event assignments: event A means “spin ↑ in the first
measurement”, event B is “spin ↑ in the second measurement”, and event C is “both
measurements show the same projection”. The sample space for the measured pairs
of orientations is S = {↑↑,↑↓,↓↑,↓↓}, while the chosen three events correspond
to its subsets A = {↑↑,↑↓}, B = {↑↑,↓↑} and C = {↑↑,↓↓} shown in the Figure.
We immediately obtain the probabilities

P(A) = P(B) = P(C) = 2
4 = 1

2 ,

as well as
P(AB) = P(AC) = P(BC) = 1

4 and P(ABC) = 1
4 .

Since

P(AB) = P(A)P(B) = P(AC) = P(A)P(C) = P(BC) = P(B)P(C),
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events A, B and C are pair-wise independent. On the other hand,

P(ABC) = 1
4 �= 1

8 = P(A)P(B)P(C),

so the events are not mutually independent. �

1.4.2 Bayes Formula

When an eventA occurs under different, mutually exclusive conditions, and we know
the conditional probabilities of A given all these conditions, we can also calculate the
unconditional probability of A. The two-condition case is illustrated by the following
classic insurance-company example.

Example An insurance company classifies the drivers into those deemed less (85%)
and those more accident-prone (15%). These are two mutually exclusive
‘conditions’—call them B and B—that exhaust all options, as there is no third class,
thus P(B) = 0.85, P(B) = 0.15. On average, a first-class driver causes a crash every
10 years, and the second-class driver once in 5 years. Let A denote the event of an
accident, regardless of its cause. The probability for a first-tier driver to cause a crash
within a year is P(A|B) = 1/10, while it is P(A|B) = 1/5 for the second-tier driver.
What is the probability that a new customer will cause an accident within the first
year? Since for any A and B, A = (A ∩ B) ∪ (A ∩ B), we also have

P(A) = P(AB) + P(AB),

while from (1.10) it follows that

P(A) = P(A|B)P(B) + P(A|B)P(B). (1.14)

Statistically, the company may therefore expect the probability of

P(A) = 0.1 · 0.85 + 0.2 · 0.15 = 0.115

for a newly insured driver to cause an accident within a year. �

Equation (1.14) is a sort of weighted average over both driver classes, where the
weights depend on conditions B and B. Suppose that there are more such mutually
exclusive conditions: we then prefer to call them assumptions or hypotheses and
denote them by Hi: we have H1 or H2 …or Hn, exhausting all possibilities. The set
of all Hi constitutes a complete set defined by (1.2), hence

P(A) = P(AH1) + P(AH2) + · · · + P(AHn).
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Applying the left-hand side of (1.10) to each term separately yields the so-called
total probability formula

P(A) = P(A|H1)P(H1) + P(A|H2)P(H2) + · · · + P(A|Hn)P(Hn), (1.15)

illustrated in Fig. 1.3.
Let us recall (1.10) once more, this time in its second part, whence one reads off

P(Hi|A)P(A) = P(A|Hi)P(Hi) or

P(Hi|A) = P(A|Hi)P(Hi)

P(A)
.

The denominator of this expression is given by (1.15) and the final result is the
famous Bayes formula [5]

P(Hi|A) = P(A|Hi)P(Hi)

P(A|H1)P(H1) + · · · + P(A|Hn)P(Hn)
, i = 1, 2, . . . , n. (1.16)

A random experiment may repeatedly yield events A, but the eventsHi condition-
ing A—with corresponding probabilities P(Hi)—occurred prior to A. The quantities
P(Hi) are therefore called prior probabilities since they are, in principle, known in
advance. In contrast, the left side of the Bayes formula gives the probability that the
hypothesis Hi is valid with respect to the later outcome A. The conditional proba-
bility P(Hi|A) is called posterior, since it uses the present outcome A to specify the
probability of Hi occurring prior to A. This is why the Bayes formula is also known
as the theorem on probability of hypotheses.

Example A company decides to manufacture cell-phones by using processor chips
of different suppliers. The first type of chip is built into 70%, the second into 20%, and
the third into 10% of devices. A randomly chosen device contains chip i (event Ci)
with probability P(Ci), where P(C1) = 0.7, P(C2) = 0.2 and P(C3) = 0.1: these
are the known prior probabilities. Some chips are unreliable, causing the devices
to malfunction. The probability that a cell-phone breaks down (event A), given

Fig. 1.3 Illustration of the total probability formula. Mutually exclusive conditions or hypotheses
Hi are disjoint sets that partition the sample space S and therefore also an arbitrary event A
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that it contains chip i, is P(A|Ci). The manufacturer establishes P(A|C1) = 0.01,
P(A|C2) = 0.03 and P(A|C3) = 0.05.

We go to a store and buy a cell-phonemade by this company. It breaks down imme-
diately (eventA at this verymoment).What is the probability that it wasmanufactured
(event Ci in the past) in the factory installing type-i chips (i = 1, 2, 3)? We are look-
ing for the posterior probabilities P(Ci|A) given by the Bayes formula. Its denomi-
nator contains P(A) = ∑3

i=1 P(A|Ci)P(Ci) = 0.01 · 0.7 + 0.03 · 0.2 + 0.05 · 0.1 =
0.018, which is common to all three cases—and this is the probability that the cell-
phone breaks down. This leads to

P(C1|A) = P(A|C1)P(C1)

P(A)
= 0.01 · 0.7

0.018
≈ 38.9%,

P(C2|A) = P(A|C2)P(C2)

P(A)
= 0.03 · 0.2

0.018
≈ 33.3%,

P(C3|A) = P(A|C3)P(C3)

P(A)
= 0.05 · 0.1

0.018
≈ 27.8%.

Of course we also have P(C1|A) + P(C2|A) + P(C3|A) = 1. �

1.5 Problems

1.5.1 Boltzmann, Bose–Einstein and Fermi–Dirac
Distributions

(Adapted from [1].) Imagine a system of n particles in which the state of each particle
is described by p values (components of the position vector or linear momentum,
spin quantum number, and so on). Each particle state can be represented by such
a p-plet, which is a point in p-dimensional space. The state of the whole system is
uniquely specified by a n-plet of such points.

Let us divide the phase space into N (N ≥ n) cells. The state of the system is
described by specifying the distribution of states among the cells. We are interested
in the probability that a given cell is occupied by the prescribed number of parti-
cles. Consider three options: ① The particles are distinguishable, each cell can be
occupied by an arbitrary number of particles, and all such distributions are equally
probable. We then say that the particles “obey” Boltzmann statistics: an example of
such a system are gas molecules.② The particles are indistinguishable, but the cells
may still be occupied by arbitrarymany particles and all such distributions are equally
probable. This is the foundation of Bose–Einstein statistics obeyed by particles with
integer spins (bosons), e.g. photons.③ The particles are indistinguishable, each cell
may accommodate at most one particle due to the Pauli principle [6]. All distribu-
tions are equally probable. This case refers to the Fermi–Dirac statistics applicable
to particles with half-integer spins (fermions), e.g. electrons, protons and neutrons.
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✎ Let Ak be the event that there are precisely k particles (0 ≤ k ≤ n) in a certain
cell, regardless of their distribution in other cells. ① Each of the n particles can be
put into any of theN cells, even if other particles are already sitting there. All particles
can therefore be arranged inNn ways and this is the number of all possible outcomes.
Howmany correspond to eventAk? Into the chosen cell one can pour k particles in

( n
k

)

ways, while the remaining n − k particles can be arranged into the other N − 1 cells
in (N − 1)n−k ways. Event Ak therefore accommodates

( n
k

)
(N − 1)n−k outcomes,

thus

P(Ak) =
(n
k

)
(N − 1)n−k 1

Nn
=

(n
k

) (
1

N

)k (
1 − 1

N

)n−k

.

② Since particles are indistinguishable and each cell is allowed to swallow an arbi-
trary number of particles, the number of all possible distributions equals the number
of combinations of nth order among N elements with repetition (1.7), i.e.

(N+n−1
n

)
.

How many are acceptable for Ak? Event Ak occurs precisely when k particles are
selected for a given cell—since they are indistinguishable, this can be accomplished
in one way only—while the remaining n − k are distributed among N − 1 cells,
which amounts to combinations of order n − k among N − 1 elements with repeti-
tion, i.e.

(N+n−k−2
n−k

)
. It follows that

P(Ak) =
(
N + n − k − 2

n − k

) /(
N + n − 1

n

)
.

③ Since at most one particle is allowed to occupy any single cell, all possible
distributions can be counted by choosing n cells out of N and putting one particle
into every one of them: this can be accomplished in

(N
n

)
ways. How many of them

correspond to event Ak? For k > 1 there are none, while for k = 0 or k = 1 there are
as many ways as one can arrange n − k particles over N − 1 cells, which is

(N−1
n−k

)
.

Therefore

P(Ak) =
(
N − 1

n − k

)/(
N

n

)
=

⎧
⎪⎨

⎪⎩

1 − n

N
; k = 0,

n

N
; k = 1,

whileP(Ak) = 0 for k > 1. Figure1.4 (left) shows the probabilitiesP(Ak) for all three
distributions in the case N = 15, n = 5, while Fig. 1.4 (right) shows the Boltzmann
and the Bose–Einstein distribution in the case N = 100, n = 10.

1.5.2 Blood Types

The fractions of blood types O, A, B and AB in the whole population are

O : 44%, A : 42%, B : 10%, AB : 4%.
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Fig. 1.4 The probability of finding k particles in any chosen cell of a N-cell phase space flooded
with n particles, in the case of Boltzmann (B), Bose–Einstein (BE) and Fermi–Dirac (FD) statistics.
[Left]N = 15, n = 5. The sum of all probabilities within a given distribution of course equals 1, as it
is obvious e.g. in the case of the Fermi–Dirac distribution: P(A0) = 1 − 5

15 = 2
3 , P(A1) = 5

15 = 1
3 .

[Right] N = 100, n = 10

① Two persons are picked at random from the population. What is the probability
of their having the same blood type, and what is the probability that their types
differ? ② We pick four people from the same population. What is the probability
that precisely k (k = 1, 2, 3, 4) blood types will be found among them?

✎ Let us replace the letter notation O,A,B,AB by indices 1, 2, 3, 4, and let Pi

denote the probability that a person has blood type i (i = 1, 2, 3, 4). ① All possible
pairs are {i, i}, i = 1, 2, 3, 4, each having probability P2

i , therefore P = P2
1 + P2

2 +
P2
3 + P2

4 = 0.442 + 0.422 + 0.12 + 0.042 = 0.3816. The complementary event has
probability 1 − P = 0.6184 which, in a more arduous manner, can be computed as:

1 − P = P1(P2 + P3 + P4) + P2(P1 + P3 + P4) + P3(P1 + P2 + P4)

+P4(P1 + P2 + P3)

= 2
[
P1(P2 + P3 + P4) + P2(P3 + P4) + P3P4

] = 0.6184.

② Let P(k) denote the probability that precisely k blood types will be found in
the chosen four. For k = 1 the quartets are {i, i, i, i}, i = 1, 2, 3, 4, hence P(1) =∑

i P
4
i = 0.444 + 0.424 + 0.14 + 0.044 = 0.0687. For k = 2 we use (1.4) to obtain

the number of possible combinations in samples of the form {i, j, j, j} (i �= j), which
is N13 = 4!/(1! 3!) = 4, and the number of combinations in samples of the form
{i, i, j, j} (i �= j), which is N22 = 4!/(2! 2!) = 6. We get

P(2) = N13

∑

i �=j

P1
i P

3
j + N22

∑

i<j

P2
i P

2
j = 0.3665 + 0.2308 = 0.5973.
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The calculation for k = 3 is tedious and is best avoided by calculating the probability
for k = 4,which isP(4) = 4! · P1P2P3P4 = 0.0177, and accumulating all previously
computed P(k) into the complementary event: P(3) = 1 − P(1) − P(2) − P(4) =
0.3163.

1.5.3 Independence of Events in Particle Detection

Two detectors are used to detect charged particles with different parities (mir-
ror symmetries of their wave-functions): pions (π+ and π−) and kaons (K+ and
K−), all possessing negative parity, as well as protons (p), deuterons (d) and
3He and 4He nuclei, all of which have positive parities. Assume that all parti-
cles appear with equal frequencies and assign indices {1, 2, 3, 4, 5, 6, 7, 8} to types
{π+,π−,K+,K−, p, d, 3He, 4He}. Let A denote the event that the first detector has
seen a negative-parity particle. Let B denote the event that the second detector has
detected a positive-parity particle, and suppose that

P(A) = P(A|B) = 4
8 = 1

2 ,

P(B) = P(B|A) = 4
8 = 1

2 .

Let C denote the event that both detectors observe particles with equal parities. Are
events A, B and C (pair-wise or mutually) independent?

✎ There are 64 equally probable outcomes (i, j) in an experiment where the first
and second detector detect particles i and j, respectively; 16 of them are pion-kaon
combinations fulfilling condition C:

(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4),

(3, 1), (3, 2), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4),

as well as 16 combinations of atomic nuclei,

(5, 5), (5, 6), (5, 7), (5, 8), (6, 5), (6, 6), (6, 7), (6, 8),

(7, 5), (7, 6), (7, 7), (7, 8), (8, 5), (8, 6), (8, 7), (8, 8),

thus P(C) = (16 + 16)/64 = 1
2 . Suppose that the first detector has seen a negative-

parity particle and has thereby imposed condition A: then C occurs if the second
detector also reports a negative-parity particle (probability 1/2), implying P(C|A) =
1/2. Analogously we conclude P(C|B) = 1/2, and finally

P(C) = P(C|A) = P(C|B) = 1
2 .



22 1 Basic Terminology

We conclude that A, B and C are pair-wise but not mutually independent since
P(ABC) = P(A)P(B)P(C) does not hold true. Our calculation shows that
P(A)P(B)P(C) = 1

8 , while A ∩ B ∩ C is an impossible event: if there is a negative-
parity particle in the first detector and a positive-parity particle in the second one,
we can not have the same parity in both detectors, thus P(ABC) = 0.

How do these considerations change if the detectors are inefficient in detecting
heavier nuclei (3He and 4He)? Do events A, B and C remain independent? How does
the result change in physically more sensible circumstances in which the number of
pions exceeds the number of kaons by a factor of 100?

1.5.4 Searching for the Lost Plane

The authorities believe that an airliner has been lost in one of the three regions Ri

(i = 1, 2, 3) in which the crash has occurred with equal probability, P(Ri) = 1/3.
Let Pi denote the probability that the plane search in region i will locate the plane
that actually does lie in i. Calculate the conditional probability that the plane crashed
in region i, given that the search in region 1 was unsuccessful!

✎ Let Ri (i = 1, 2, 3) denote the event that the plane went down in region i, and N
the event that the search in region 1 was unsuccessful. Bayes formula for i = 1 gives

P(R1|N) = P(NR1)

P(N)
= P(N |R1)P(R1)∑3

i=1 P(N |Ri)P(Ri)

= (1 − P1)
1
3

(1 − P1)
1
3 + 1· 13 + 1· 13

= 1 − P1

3 − P1
,

while for i = 2 and i = 3 one gets

P(Ri|N) = P(N |Ri)P(Ri)

P(N)
= 1· 13

(1 − P1)
1
3 + 1· 13 + 1· 13

= 1

3 − P1
, i = 2, 3,

where we have exploited the fact that the search in region 1 must be unsuccessful
if the plane lies in region 2 or 3, hence P(N |R2) = P(N |R3) = 1. For example, if
P1 = 0.7, the probability that the plane is in region 1—given that it has not been
found in it—is 0.3/2.3 ≈ 13%. Note that

∑
i P(Ri|N) = 1.

1.5.5 The Monty Hall Problem �

In the Monty Hall TV show with three boxes (adapted from [7, 8]) one box contains
the car keys while the remaining boxes are empty. When the contestant picks one of
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the boxes (e.g. box 1), Monty Hall (MH) tells her: “I’ll make you a favor and open
one of the remaining boxes that does not contain the keys (e.g. 2). Thus the keys are
either in your chosen box or in box 3, so the probability of your winning the car has
increased from 1/3 to 1/2.” The contestant (C) responds: “I’ve changed my mind. I
prefer to pick box 3 instead of box 1.”

① Is Monty’s claim correct? What is the probability of the contestant winning
the car if she changes her mind followingMonty’s disclosure, and what is her chance
of winning if she insists on her initial choice? ② Suppose that the contestant has
been playing this game for a long time and knows that different boxes have different
probabilities of containing the keys, e.g. 50, 40 and 10% for boxes 1, 2 and 3. What
is the most promising strategy in this case?

✎ Two observations are crucial: MH knows which box contains the keys and
obviously does not wish to reveal it; he opens one of the two remaining boxes at
random and with equal probability. The answer to① can then be obtained by simple
counting of possible outcomes shown in Table1.1: ‘W’ means that the contestant
‘wins’, ‘L’ means ‘loses’. (All information is contained in the first three rows since
the rest consists just of cyclic permutations.) The probability of C winning the car
when insisting on the initial choice is 1/3. The probability of winning the car after
having changed her mind is 2/3. Consequently, Monty’s claim is false.

The problem can be approached from another, more intuitive viewpoint [9]. Sup-
pose C decides to always switch. If she chooses an empty box, she can not lose:
MH is then obliged to open the other empty box, so, by switching, C gets the only
remaining box—the one containing the keys. C loses only if she initially chooses
the box with the keys. Whether this strategy of “perpetual switching” works depends
only on the initial choice of the empty box (probability 2/3) or the box containing
the keys (probability 1/3).

Table 1.1 Possible outcomes in the Monty Hall contest

Keys are in C picks MH opens Outcome C switches Outcome

1 1 2 or 3 W 1 for 3 or 2 L

1 2 3 L 2 for 1 W

1 3 2 L 3 for 1 W

2 1 3 L 1 for 2 W

2 2 1 or 3 W 2 for 3 or 1 L

2 3 1 L 3 for 2 W

3 1 2 L 1 for 3 W

3 2 1 L 2 for 3 W

3 3 1 or 2 W 3 for 2 or 1 L

Both contestant’s strategies are shown: “C picks” means the one and only choice of the box, while
“C switches” means that the contestant selects a different box after Monty’s disclosure
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Conditional probability offers yet another vantage point. Suppose that C chooses
box 1 while the keys are in box 2 (event A, P(A) = 1/3). MH opens box 3 (event B).
The graph

1

1

1 2
1 2

1 3

1 3
1 3

Monty opensKeys are in

box 2

box 3
box 2
box 3

box 3

box 2

box 1

then tells us that P(B|A) = 1 and P(B) = 1
3
1
2 + 1

31 = 1
2 , hence, by Bayes formula,

P(A|B) = P(B|A)P(A)
P(B)

= 1· 13
1
2

= 2

3
.

In two thirds of the cases the keys are in the remaining box, so C doubles her 1/3
chance of winning by switching. The same conclusion can be reached by analyzing
the sample space in which the events are not equally probable. Denote all possible
outcomes by (i, j), where i is the box containing the keys, j is the box opened byMH,
and let Pij denote the corresponding probability for such an outcome. When we shall
later become familiar with the concept of random variables, all these values will be
merged into the expression

X ∼
(
(i, j) · · ·
Pij · · ·

)
=

(
(1, 3) (2, 3) (1, 2) (3, 2)
1/6 1/3 1/6 1/3

)
(1.17)

whichwe shall read as: “The discrete variableX is distributed such that the probability
of outcome (1, 3) is P13 = 1/6, the probability of outcome (2, 3) is P23 = 1/3, and
so on.” In a compact manner, however, we can write down the sample space with the
probability values attached as subscripts:

S = {
(1, 3)1/6, (2, 3)1/3, (1, 2)1/6, (3, 2)1/3

}
.

In this notation,A = {
(2, 3)1/3

}
andB = {

(1, 3)1/6, (2, 3)1/3
}
. SinceA ⊂ B, we have

P(A|B) = P(A ∩ B)

P(B)
= P(A)

P(B)
=

1
3

1
3 + 1

6

= 2

3
.

Monty’s tempting offer to increase the contestant’s probability of winning to 1/2 is
based on the wrong assumption that the remaining two possible events (1, 3) and
(2, 3) are equally probable—i.e. that the sample space after the condition A has been
imposed is

{
(1, 3)1/2, (2, 3)1/2

}
—leading to the wrong result P(A|B) = 1/2.

The best strategy for② is: C should choose the least probable box (box 3); when
MH reveals an empty box, C should switch. In this case C will win 90% of the time.
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Table 1.2 Conditional probabilities in a diagnostic test that can be negative when the disease is
absent (specificity R), negative in spite of the disease (false negative), positive with no disease
(false positive) or positive with the disease present (sensitivity O)

Disease absent Disease present

Negative test P(L|D) = R P(L|D) = 1 − O
Positive test P(H|D) = 1 − R P(H|D) = O

The limiting case that box 3 never holds the keys is also covered: MH reveals the
other empty box so, by switching, C always wins.

1.5.6 Bayes Formula in Medical Diagnostics

We have fallen ill with fever and visit a doctor. Recently he has read some news
on the west Nile virus that, on average, infects one person per million. He draws a
blood sample for a test that has a positive outcome in O = 99% of the cases where
the disease is actually present (the so-called sensitivity of the test), and a negative
outcome in R = 95% of the cases where the disease is not present (the so-called
specificity of the test). The test of our blood comes out positive. ① What is the
probability that we are actually infected by the virus? ② Analyze the more general
case of a disease probed by a larger number of tests or exhibiting multiple symptoms.

✎ Let us denote the positive outcome of the test by H (“high titer”) and negative
by L (“low titer”) and write the corresponding conditional probabilities in Table1.2.
Now just read it carefully. ① The probability that the test is positive and the disease
(D) is in fact present, is indeed P(high titer|infected) = P(H|D) = O = 99%. But
the probability that we are actually infected by the virus, given the test was positive,
is P(D|H), and can be computed by using the Bayes formula (1.16):

P(D|H) = P(H|D)P(D)
P(H|D)P(D) + P(H|D)P(D)

= OP(D)

OP(D) + (1 − R)P(D)
,

where we have used P(low titer|not infected) = P(L|D) = R and thus, due to the
complementarity of H and L, P(H|D) = 1 − P(L|D) = 1 − R. But the numerator
also contains the prior probability that, as a random member of the population, we
catch the disease at all, which isP(D) = 10−6. This results in a very small probability

P(D|H) = 0.99 × 10−6

0.99 × 10−6 + 0.05 (1 − 10−6)

= 9.9 × 10−7

9.9 × 10−7 + 0.04999995
≈ 1.98 × 10−5.
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② When a diseasemanifests itself in several symptoms or tests (S = S1 ∩ S2 ∩ · · · ∩
Sm), the posterior probability for the disease is still given by the Bayes formula

P(D|S) = P(S|D)P(D)
P(S)

= P(S1S2 . . . Sm|D)P(D)
P(S1S2 . . . Sm)

,

but it becomes useless in practical cases. Namely, for a specific diseaseDj from a set
of n diseases and a single symptom S one would have the expression

P(Dj|S) = P(S|Dj)P(Dj)∑n
k=1 P(S|Dk)P(Dk)

,

which becomes much more complex by adding new symptoms. With each new
symptom Sm added to the previous set of symptoms S1, S2, . . . , Sm−1, one would
have to compute

P
(
Dj

∣∣S1S2 . . . Sm
) = P

(
Sm

∣∣DjS1S2 . . . Sm−1
)
P
(
Dj

∣∣S1S2 . . . Sm−1
)

∑n

k=1
P
(
Sm

∣∣DkS1S2 . . . Sm−1
)
P
(
Dk|S1S2 . . . Sm−1

) .

For a diagnostic system incorporating, say, 50 diseases and 500 symptoms that may
occur individually or collectively in any of these diseases, we would require the data
on n · 2m = 50 · 2500 ≈ 10152 conditional probabilities. In the so-called naive Bayes
approach one therefore frequently assumes that the symptoms are independent in the
sense that

P(Si|Sj) = P(Si), P(Si|DSj) = P(Si|D).

The first equation states that the probability for Si to appear in a part of the population
that also exhibits symptom Sj is equal to the probability of Si appearing in the whole
population. The second approximation says that the probability of Si appearing in a
part of the population that has the diseaseD and someother symptomSj , is equal to the
probability of Si appearing in all persons having the diseaseD. These simplifications
allow us to operate with far fewer conditional probabilities P(Si|Dj)—only m · n =
50 · 500 = 25,000 in the example above—expressing the probability of Si given the
presence of the disease Dj [10]:

P
(
Dj

∣∣S1S2 . . . Sm
) ≈

∏m

i=1
P(Si|Dj)P(Dj)

∏m

i=1

∑n

k=1
P(Si|Dk)P(Dk)

.

Inevitably, the assumption of symptom independence is quite coarse: given the pres-
ence of the disease, the probability of two symptoms appearing simultaneously
is larger than the product of probabilities of individual symptoms. (If we have a
headache and know it was caused by the flu, we will most likely develop a sore
throat as well.)
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1.5.7 One-Dimensional Random Walk �

(Adapted from [1].)A particlemoves along the real axis, starting at the origin (x = 0).
Consecutive random collisions uniformly spaced in time send it one step to the left
(−1) or to the right (+1) with probabilities 1/2 either way.① What is the probability
that after 2n collisions the particle will return to x = 0 without ever meandering into
the x < 0 region? Five random walks are shown for illustration in Fig. 1.5 (left).
For example, walk number 3 that has always remained at x ≥ 0 and has terminated
at x = 0 after 100 collisions is “acceptable”. ② Verify your result by a computer
simulation. (Random walks will be discussed more generally in Sects. 6.7 and 6.8.)

✎ Each random walk is a consequence of 2n collisions. Each collision shifts the
particle to the left (x �→ x − 1) or to the right (x �→ x + 1), thus the number of all
possible walks is 22n. Let A be the event that the particle returns to the origin after
2n collisions, and B the event that the particle does not wander to x < 0 during 2n
collisions. We are looking for the probability P(AB), where P(AB) = P(B|A)P(A).

① Let us first determine P(A). From 22n possible and equally probable walks
only those are acceptable for event A that end up at (2n, 0), like the walk in Fig. 1.6
denoted by the full line. In all of them the particle has experienced n unit kicks to
the left and n unit kicks to the right. The number of all such walks can be calculated
by counting all possible ways of choosing n collisions that result in a left (or right)
shift, from the total 2n collisions. There are

( 2n
n

)
such ways, therefore

P(A) = 1

22n

(
2n

n

)
.

Fig. 1.5 [Left] Five one-dimensional random walks with 100 time steps. We are looking for the
fraction of the walks that terminate at the origin (event A) and never blunder to x < 0 (condition B),
as inwalk number 3 shown here. [Right] The ratio between the simulated and theoretical expectation
value for event AB

http://dx.doi.org/10.1007/978-3-319-31611-6_6
http://dx.doi.org/10.1007/978-3-319-31611-6_6
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Fig. 1.6 A random walk that
enters the region x < 0 after
a certain time—still
returning to the origin after
2n steps—and its mirror
image from that moment on

From the walks ending up at (2n, 0) and thereby fulfilling condition A, we should
disregard those that fluctuate to x < 0 if we wish to satisfy condition B. How do we
count such occurrences? For each suchwalk (from the verymoment it has crossed the
boundary and reached the point x = −1) we imagine a newwalk, which is the mirror
image of the remainder of the previous walk across the x = −1 axis (dashed line in
Fig. 1.6). The new walk certainly terminates at (2n,−2) and is therefore composed
of n − 1 right and n + 1 left shifts. Hence, under condition A,

( 2n
n+1

)
do not fulfill B,

while
( 2n

n

) − ( 2n
n+1

)
do. This implies that

P(B|A) =

(
2n

n

)
−

(
2n

n + 1

)

(
2n

n

) .

The probability we have been looking for is therefore

P(AB) = P(B|A)P(A) = 1

22n

[(
2n

n

)
−

(
2n

n + 1

)]
= 1

22n(n + 1)

(
2n

n

)
.

(1.18)

② You do not trust this calculation? Let us try to check it by a simple computer
simulation. For each n chosen in advance, start with a particle at the origin, then
randomly add +1 or −1 to its current position and write down its final coordinate
after 2n steps. A walk that ends up at x = 0 and has never erred into x < 0 is counted
as “good”. If for each n we repeat N walks, we may expect that the ratio of the
good walks and all attempted walks will approach the calculated probability (1.18)
in the limitN → ∞. Let us denote this simulated probability by Psim(AB). Figure1.5
(right) shows the ratio between Psim(AB) and the theoretical P(AB) as a function of
the walk duration n for three different numbers N of how many times the simulation
was re-run. Apparently our calculation was correct: with increasing N the ratio does
stabilize near 1. The thick line in the figure still looks wiggly? It is! Recall that for
n = 80 there are 2160 ≈ 1048 all possible walks, while we have performed only a
million of them at each n.
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Chapter 2
Probability Distributions

Abstract Starting with the examples of distributions in general, the Dirac delta and
the Heaviside unit functions are presented, followed by the definition of continu-
ous and discrete random variables and their corresponding probability distributions.
Probability functions, probability densities and (cumulative) distribution functions
are introduced. Transformations of random variables are discussed, with particular
attention given to the cases where the inverse of the mapping is not unique. Two-
dimensional cases are treated separately, defining joint and marginal distributions,
as well as explaining the variable transformation rules in multiple dimensions.

Having become acquainted with the basic properties of probability, we shall devote
this chapter to the question of how probability can be related to the all-pervading
concept of distribution. We introduce two general-purpose tools, the so-called Dirac
delta “function” and the Heaviside step function, then move on to random variables
and their discrete and continuous probability distributions.

2.1 Dirac Delta

The value of a real function f of a real variable x at x = 0 can be calculated, of course,
by evaluating f (0). But we would like to possess a mathematical tool—denote it by
δ—that supplies f (0) as the result of integrating f over the whole real axis,

∫ ∞

−∞
f (x)δ(x) dx = f (0), f : R → R. (2.1)

Physicists call this tool the “Dirac delta”. It is a sort of functional, since it maps from
a function space to the range of f—for purposes of our discussion, let this be simply
R. It seems to operate as a multiplication of f by a very narrow spike (Fig. 2.1 (left)),
resulting in the value of f at the origin. This is the reason one often identifies this
tool as a genuine δ “function”. Due to its property

© Springer International Publishing Switzerland 2016
S. Širca, Probability for Physicists, Graduate Texts in Physics,
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∫ ∞

−∞
δ(x) dx = 1, (2.2)

which is nothing but (2.1) in the special case f (x) = 1, one often hears even the—
completely nonsensical—claim that the δ “function” is normalized. From the strict
mathematical point of view, the Dirac delta is neither a function nor a functional, but
a measure (see [1] and Appendix A).

Obviously the δ “function” must possess a unit inverse to the unit of x, since f (x)
and f (0) must have the same units. If x measures distance (unit [m]), then δ(x) must
have unit [m−1]. In atomic physics, for example, a very narrow and deep square-well
potential V (x) with depth −V0 (in [eV]) and width a (in [nm]) around the origin at
x = 0 (Fig. 2.1 (right)) can be written as

V (x) = −aV0δ(x).

By writing V in this manner we wish to say that in the limits a → 0 and V0 → ∞,
such that the product aV0 [nm eV] remains constant, the precise shape of V (x) is
irrelevant: in computing the expectation values with such a potential only the value
of the integrand f at the origin matters. Obviously we have acquired a tool that allows
us to represent any point, point-like or very compact quantity in physics, for example,
a point electric charge or a tiny mass.

The box-like picture does not appear fancy enough? Two very popular ways to
convey the essence of the Dirac delta are the limit (in the sense of functions) of the
Gaussian, which we will discuss later, and the Fourier integral representation:

δ(x) ∼ lim
a→0

1√
πa

e−x2/a2 , δ(x) ∼ 1

2π

∫ ∞

−∞
ei kxdk.

Weproceed analogously inmultiple dimensions. The one-dimensional Dirac delta
can be generalized to R3 as

Fig. 2.1 [Left] Illustration of definition (2.1). The integral of the product of a continuous function
f and the spike “function” δ(x) yields the value of f at the origin. [Right] A narrow and deep square
potential V (x), for which only the product of its linear dimension and depth is relevant, can be
approximated by V (x) = −aV0δ(x)
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∫

R3
f (r)δ(r) d3r = f (0).

In this case δ(r) = δ(x)δ(y)δ(z) must have units of [m−3] if x, y and z are in [m].

2.1.1 Composition of the Dirac Delta with a Function

How does the Dirac delta behave when its argument is a function, as in δ (g(x))? If
the function g : R → R has precisely one zero at x0 ∈ R, i.e. g(x0) = 0, and satisfies
the condition g′(x) �= 0,∀x ∈ R, then [1]

δ (g(x)) = δ(x − x0)

|g′(x0)| . (2.3)

The simplest case is g(x) = x − y, hence x0 = y and |g′(x0)| = 1. It follows
from (2.3) that by an additive change of the variable, x 
→ x − y, the Dirac delta
yields the functional value corresponding to a translation along the abscissa:

∫ ∞

−∞
f (x)δ(x − y) dx = f (y),

∫ ∞

−∞
f (x − y)δ(x) dx = f (−y).

We imagine that the Dirac delta “combs” the real axis and thereby “samples” the
function f at x = y. When g has several simple zeros {x0, x1, . . . , xn}, (2.3) must be
considered in the vicinity of each zero separately:

∫ ∞

−∞
f (x)δ (g(x)) dx =

n∑

i=0

f (xi)

|g′(xi)| . (2.4)

In such a case (2.3) is replaced by

δ
(
g(x)

) =
n∑

i=0

δ(x − xi)

|g′(xi)| .

The zeros xi must be simple (single). The formulas listed above may not be used in
the case of multiple zeros,

∫∞
−∞ δ(x2) dx = “∞”. One can use the same tool to deal

with the case g(x) = ax, a ∈ R, a �= 0, corresponding to x0 = 0 and |g′(x0)| = |a|.
Rescaling the argument x by a non-zero a then yields

∫∞
−∞ δ(ax) dx = 1/|a|, which

we write symbolically as

δ(ax) = 1

|a| δ(x), a �= 0, (2.5)
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or, in three dimensions, as δ(ax) = δ(x)/|a|3. Let us generalize this to the case that
the vector x is rescaled by a matrix A instead of the scalar a! We have

∫
δ
(
Ax︸︷︷︸
y

)
dV (x) =

∫
δ(y) dV

(
A−1y

) = ∣∣det A−1
∣∣
∫

δ(y) dV
(
y
) = 1

|det A| ,

where dV is the appropriate volume element. Formula (2.5) is then replaced by

δ(Ax) = 1

|det A| δ(x), det A �= 0.

Example To calculate the effect of the Dirac delta when its argument is the function
g(x) = x2 − a2 possessing two real simple zeros, x0 = a and x1 = −a, (2.4) must
be applied with g′(x) = 2x. We obtain

δ(x2 − a2) = δ(x + a)

|g′(−a)| + δ(x − a)

|g′(a)| = 1

2|a| [δ(x + a) + δ(x − a)] .

Such a form can be used, for instance, to describe two very narrow and very high
potential layers (upward-facing square-well potentials) centered at x = −a and
x = a. �

It is worth mentioning that the Dirac delta is part of the tool used primarily in
quantum mechanics to evaluate the integrals of the form

∫ ∞

−∞
dE
∫ ∞

0
f (E) e−iEtdt, (2.6)

where E and T denote energy and time, respectively. This tool is based on the
Sokhotsky–Plemelj theorem dealing with a particular family of Cauchy integrals
along closed curvesC in the complex plane, providing the limit values of the integral
from both sides of C. The version of the theorem on the real axis states that

1

x ± i ε
= ∓ i πδ(x) + P 1

x
.

Here P denotes the principal (generalized) value of the integral, so this compact
notation must actually be read as

lim
ε↘0

∫ ∞

−∞
f (x)

x ± i ε
dx = ∓ i πf (0) + lim

ε↘0

∫

|x|>ε

f (x)

x
dx, (2.7)

where f : R → C. We add an infinitesimally small negative real term to the purely
imaginary argument of the exponential function in (2.6), integrate over time, and
apply (2.7):
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lim
ε↘0

∞∫

−∞
dE f (E)

∞∫

0

e−iEt−εtdt = −i lim
ε↘0

∞∫

−∞

f (E)

E − iε
dE = πf (0) − i lim

ε↘0

∫

|E|>ε

f (E)

E
dE.

2.2 Heaviside Function

The Heaviside function H is defined as

H(x) =
∫ x

−∞
δ(t) dt. (2.8)

From x = −∞ to just slightly below x = 0 the integral yields zero; but as soon as
we cross x = 0, the value of the integral jumps to 1 according to (2.2) and stays there
until x = ∞. The function H is therefore also known as the step function (Fig. 2.2
(left)). Two handy analytic approximations of H (Fig. 2.2 (right)) are

H(x) ∼ lim
k→∞

[
1

2
+ 1

π
arctan kx

]
, (2.9)

H(x) ∼ lim
k→∞

[
1

1 + e−2kx

]
. (2.10)

In literature one occasionally encounters a non-standard definition of the step func-
tion, where H(x < 0) = 0, H(x = 0) = 1/2, and H(x > 0) = 1. Its symmetry
about the origin does establish a neat resemblance to these analytic approximations,
but one should use it carefully.

Fig. 2.2 [Left] Heaviside function, known as the unit step. We define it to be continuous from
the right. (Alternative definition with continuity from the left is also possible.) [Right] Analytic
approximations (2.9) and (2.10) of the Heaviside function
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2.3 Discrete and Continuous Distributions

Before we try to understand probability distributions, consider a distribution of some
well-known physical quantity like, for example, mass.What is the spatial distribution
of mass in the globular cluster NGC 7006 shown in Fig. 2.3?

From the viewpoint of gravity individual stars can be treated as point bodies, since
the stars in the cluster do not overlap and gravity acts as if they were compacted
to single points, their respective centers of mass. The spatial dependence of mass
density within such a cluster—and in any set of point masses—can be described by
the formula

ρ(r) =
∑

i

mi δ(r − ri), (2.11)

where mi is the mass of the individual body and ri is its position vector. Only at
distances smaller than the star radii this description becomes inadequate and forces
us to abandon the discrete picture and switch to the continuum. Within an individual
star, of course, the distribution of mass is given by the density

ρ(r) = dm

dV
,

which makes physical sense in the limit dV → 0. But even this limit must be
taken with a grain of salt: descending the order-of-magnitude ladder to ever smaller
volumes and into the realm of molecules and atoms, the continuous description again
becomes inappropriate and must be replaced by discrete distributions.

Fig. 2.3 The globular cluster NGC 7006 at a distance of approximately 135,000 light years from
the Earth contains hundreds of thousands of stars. [Left] Photograph taken by the Hubble Space
Telescope. [Right] The spatial distribution of mass density within the cluster (and in any set of point
masses) can be described by (2.11)
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2.4 Random Variables

Eachoutcomeof a randomexperiment is specified by the value of one ormore random
or stochastic variables. Random variables are functions, defined on the sample space
S. Their role is to assign a number to each possible outcome in S; in addition, the
frequency with which a certain number occurs, is associated with the corresponding
probability. For example, if throwing a die is considered to be a random process with
sample space

(2.12)

the value of a random variable X “communicates” the outcome:

We denote random variables by upper-case and their values by lower-case letters.
An individual outcome is called the realization of a random variable or draw. The
probability for any outcome in (2.12) is 1/6, hence we can write, as in (1.17):

X ∼
(
x1 x2 x3 x4 x5 x6
P1 P2 P3 P4 P5 P6

)
=
(

1 2 3 4 5 6
1/6 1/6 1/6 1/6 1/6 1/6

)
.

2.5 One-Dimensional Discrete Distributions

A discrete random variable is a random variable that can assume a finite number of
different values xi ∈ R (i = 1, 2, . . . , n). Let the points xi on the real axis be arranged
such that x1 < x2 < · · · < xn. The probability that in a particular repetition of the
experiment X acquires the value xi, is written as

Pi = P(X = xi) = fX(xi), i = 1, 2, . . . , n. (2.13)

The function fX is called the probability [mass] function that corresponds to a discrete
probability distribution. Probability is a non-negative quantity, therefore

fX(x) ≥ 0.

The outcomes of an experiment (X = x1,X = x2, . . .) constitute a complete set of
events (1.2), hence the sum of the probabilities of individual outcomes is one:

n∑

i=1

fX(xi) = 1. (2.14)

This equation states that the probability distribution is normalized.

http://dx.doi.org/10.1007/978-3-319-31611-6_1
http://dx.doi.org/10.1007/978-3-319-31611-6_1
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Itmakes sense to define the probability thatX assumes a value smaller thanor equal
to some value x. For example, in throwing a die we are interested in the probability
that the observed number of spots (random variable X) is less than four (X < 4) or
that the number of spots is x1 = 1, x2 = 2 or x3 = 3. The sum of probabilities must
therefore collect (“accumulate”) the values P1, P2 and P3. In other words, the sum
in (2.14) should not be pulled all the way to n but only up to i = 3. This sum is given
by the [cumulative] distribution function

FX(x) = P(X ≤ x), −∞ < x < ∞.

Since Pi are non-negative, FX is a non-decreasing function.

x ≤ y =⇒ FX(x) ≤ FX(y).

The definition domain ofFX formally ranges from−∞ to∞, soFX certainly vanishes
from the left extreme of the real axis until just below the point x1, while it is equal to
one from the point xn upwards, since by that point all possible Pi have been collected
in the sum:

lim
x→−∞FX(x) = 0, lim

x→∞FX(x) = 1.

When moving along the x axis, “continuity from the right” applies to FX :

lim
ε↘0

FX(x + ε) = FX(x) ∀x.

Hence, for any value xi encountered while combing x in the positive sense, FX jumps
to a value which is Pi higher than the previous one.

Example A fair die is thrown twice. What is the expected distribution of the sum
of spots from both throws after many trials? Let the variable X measure the sum of
spots, which can be x1 = 2, x2 = 3, . . . , x11 = 12. There are 6 · 6 = 36 possible
outcomes, all equally probable (1/36). But different sums are not equally probable.
The sum of 2 can be obtained in a single way, namely by one spot appearing on the
first die and one on the second, hence P(X = x1) = fX(x1) = 1/36. The sum of 3
can be realized by 1 + 2 or 2 + 1, thus P(X = x2) = fX(x2) = 2/36. The sum of 4
appears in three cases: 1 + 3, 2 + 2 or 3 + 1, thus P(X = x3) = fX(x3) = 3/36, and
so on, up to P(X = x11) = fX(x11) = 1/36. Hence X can be assigned the probability
distribution shown in Fig. 2.4 (top). It is non-zero only at eleven points xi (values
denoted by circles), and zero elsewhere.

The distribution function FX is shown in Fig. 2.4 (bottom). It vanishes from −∞
to x1 = 2, where it jumps to the value fX(x1) = 1/36. With increasing x, each xi adds
a value of fX(xi) to FX , where it remains until it bumps into the next point, xi+1. When
the last point (x11 = 12) has been accounted for, we have exhausted all possibilities:
henceforth, up to +∞, the value FX = 1 stays fixed.
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Fig. 2.4 Discrete
probability distribution of
individual outcomes (sum of
spots) in two throws of a die.
[Top] The probability
distribution of the sum of
spots, given by the values of
the probability function
fX (xi). [Bottom] Cumulative
distribution function FX

Let us calculate the probability that the sum of spots is at most x5 = 6:

P(X ≤ 6) = FX(6) = P1 + P2 + P3 + P4 + P5 = 1
36 + 2

36 + 3
36 + 4

36 + 5
36 = 5

12 .

What is the probability that it is more than 6? We should not plunge blindly into the
calculation. Indeed P(X > 6) = P6 + P7 + P8 + P9 + P10 + P11, but one also sees

P(X > 6) = FX(12) − FX(6) = 1 − P(X ≤ 6) = 7
12 .

The probability that we encounter a sum of spots less than 1 is zero, of course:
P(X ≤ 1) = FX(1) = 0. By common sense or by looking at the figure we also
realize that P(X ≤ 12, 13, . . .) = 1 and P(X > 12, 13, . . .) = 0. �

2.6 One-Dimensional Continuous Distributions

In continuous probability distributions we can never speak of “a probability that a
continuous variable X assumes a value x”. This would be just as inappropriate as
claiming that a certain point along a thin wire with linear mass density ρ has a finite
mass. A point is a mathematical abstraction with dimension zero and can not contain
a finite mass. We can only refer to probabilities that “1m of a thin wire has a mass
of 1mg”, “a random variable X has a value between a and b”, “value between x and
x + �x”, and so on. Analogously to the mass distribution a continuous probability
distribution can be assigned a probability density function, which is non-negative
and normalized:

fX(x) ≥ 0,
∫ ∞

−∞
fX(x) dx = 1.

An example of a continuous probability density is shown in Fig. 2.5. The correspond-
ing distribution function FX can be obtained by integrating the density fX from −∞
(or the extreme left of its definition domain) up to the current x. From “tiny bits of
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Fig. 2.5 An example of a normalized probability density fX (thin curve, left ordinate) for a con-
tinuous probability distribution which differs from zero only on the interval [0.5, 2.5] (arrows),
and the corresponding distribution function FX (thick curve, right ordinate). The probability
P(x1 ≤ X ≤ x2) is equal to the area of the shaded region (integral of fX from x1 to x2) and
also equal to FX (x2) − FX (x1)

probability” dFX = fX(t) dt one obtains the probability that X ≤ x:

FX(x) = P(X ≤ x) =
∫ x

−∞
fX(t) dt.

If these relations are valid, we say that “variable X is distributed according to the
distribution FX” and denote this as X ∼ FX or X ∼ name of distribution. (The same
convention applies for discrete distributions.) If the variables X and Y are distributed
according to the same distribution, we write X ∼ Y . The obvious fact that

fX(x) = dFX

dx
= F ′

X(x)

will serve us well later. Just as before, the cumulative distribution is a non-decreasing
function: from x = −∞ up to the leftmost edge of the interval where fX �= 0 (x = 0.5
in Fig. 2.5), FX vanishes. With increasing x, an ever larger portion of probability is
integrated into the cumulative distribution from this point upwards, until the rightmost
edgeof the domainof fX is reached (x = 2.5).HereFX becomes equal to 1 and remains
so all the way to x = +∞.

The probability that X assumes a value on the interval [x1, x2] is given by the
definite integral of the probability density over this range,

P(x1 ≤ X ≤ x2) =
∫ x2

x1

fX(x) dx.

The integral can be written as a difference of integrals
∫ x2

x1

=
∫ x2

−∞
−
∫ x1

−∞
,

therefore also
P(x1 ≤ X ≤ x2) = FX(x2) − FX(x1).
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The shaded region in Fig. 2.5 shows the area under the graph of fX on the interval
[x1, x2] = [1.6, 1.9], which equals the probability P(x1 ≤ X ≤ x2) ≈ 0.0772. The
same result is obtained by subtracting FX(x2) − FX(x1) ≈ 0.9887 − 0.9115.

Example Let X be distributed according to the density fX(x) = C/(1 + x2), where
C is a constant and −∞ < x < ∞ (Cauchy distribution). What is the probability
that the value of X2 lies between 1

3 and 1? We first determine C:

∫ ∞

−∞
fX(x) dx =

∫ ∞

−∞
C

1 + x2
dx = C arctan x

∣∣∣
∞
−∞

= C
(π

2
−
(
−π

2

))
= Cπ = 1,

whence C = 1/π. The condition 1/3 ≤ X2 ≤ 1 is fulfilled on two intervals, as one
can have either 1/

√
3 ≤ X ≤ 1 or −1 ≤ X ≤ −1/

√
3. These “events” are mutually

exclusive, so the corresponding probabilities should be summed:

P
(
1
3 ≤ X2 ≤ 1

) = P
(
1/

√
3 ≤ X ≤ 1

)
+ P

(
−1 ≤ X ≤ −1/

√
3
)

= 1

π

∫ 1

1/
√
3

dx

1 + x2
+ 1

π

∫ −1/
√
3

−1

dx

1 + x2
= 2

π

∫ 1

1/
√
3

dx

1 + x2
= 1

6
.

The distribution function is

FX(x) =
∫ x

−∞
fX(t) dt = 1

π

[
arctan x −

(
−π

2

)]
= 1

2
+ 1

π
arctan x.

Of course FX(−∞) = 0 and FX(∞) = 1, as one expects of a distribution function,
as well as P

(
1
3 ≤ X2 ≤ 1

) = FX(1) − FX(1/
√
3) + FX(−1/

√
3) − FX(−1). �

2.7 Transformation of Random Variables

In this section we learn how to determine the distribution of a random variable cal-
culated from another random variable with a known distribution. Let the random
variable X be distributed according to the density fX . We are interested in the distri-
bution of the variable Y which is some given function of X,

Y = h(X),

where h : D → R ⊂ R is differentiable and monotonous on D (increasing or
decreasing everywhere): this means that h(x1) = h(x2) implies x1 = x2, i.e. its
inverse is unique (bijective mapping from one interval to another). Suppose that h
increases on D (the contrary case is derived analogously). Then
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FY (y) = P(Y ≤ y) = P
(
h(X) ≤ y

) = P
(
X ≤ h−1(y)

)

=
h−1(y)∫

−∞
fX(x) dx =

y∫

−∞
fX
(
h−1(z)

) ∣∣∣∣
d

dz
h−1(z)

∣∣∣∣ dz,

where we have transformed the independent variable, x = h−1(z), and the upper
integration boundary, z = h(x) = h(h−1(y)) = y. If fX is continuous at h−1(y), then
FY is differentiable at y, hence the desired result is

dFY (y)

dy
= fY (y) = fX

(
h−1(y)

) ∣∣∣∣
d

dy
h−1(y)

∣∣∣∣ . (2.15)

Example Let us commence with an example from a nuclear physicist’s daily lab
routine: a planar problem of a point radioactive source and a linear detector (e.g. an
electrode in a particle-tracking wire chamber) at a distance d from the source at its
nearest point (Fig. 2.6).

The source radiates isotropically (from φ = −π to φ = π in the whole plane or
from φ = −π/2 to φ = π/2 in the lower half-plane), and the detector has a constant
sensitivity. The random variable � (this used to be X in (2.15)), which measures the
emission angle φ of the radiated particle, is therefore uniformly distributed,

f�(φ) = dF�

dφ
= 1

π
, −π

2
≤ φ ≤ π

2
.

But what is the distribution of radiation along the wire? We must convert the distri-
bution over φ to a distribution over x. From the figure we infer

y = y0 + d tan φ, (2.16)

therefore φ = h−1(y) = arctan((y − y0)/d). According to (2.15) we obtain

fY (y) = f�
(
h−1(y)

)∣∣∣∣
d

dy
h−1(y)

∣∣∣∣=
1

π

∣∣∣∣
d

dy
arctan

y − y0
d

∣∣∣∣=
1

π

d

d2 + (y − y0)2
,

Fig. 2.6 A planar problem with a point radioactive source and infinitely long thin detector. The
isotropic radiation from the source (uniform distribution over angles φ) is distributed according to
the Cauchy distribution along the detector (y coordinate)
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which is a correctly normalized Cauchy distribution, since
∫∞
−∞ fY (y) dy = 1. If we

read the above equation in reverse, we learn something else: the values of y, randomly
distributed according to theCauchydistribution, can beobtainedby randomlypicking
numbers φ, uniformly distributed between −π/2 and π/2, and calculating y by
using (2.16).

What, then, is the distribution of flight path lengths of particles flying from the
source to the detector? (The question is relevant because different flight paths imply
different energy losses, meaning that the particles will be detected with different
energies along the wire.) The flight path length is s = h(φ) = d/ cosφ: now the
functional form of h is different, see Figs. 2.6 and 2.7 (left). Thus φ = h−1(s) =
arccos(d/s), and the same rule as above yields

fS(s) = f�
(
h−1(s)

) ∣∣∣∣
d

ds
h−1(s)

∣∣∣∣ =
1

π

∣∣∣∣
d

ds
arccos

(
d

s

)∣∣∣∣ =
1

π

d

s
√
s2 − d2

. (2.17)

The variable s is defined on d ≤ s < ∞. When we wish to check whether the
distribution with the density fS is normalized, a surprise is in store:

∫ ∞

d
fS(s) ds = 1

2
�= 1.

What went wrong? When the variable φ runs through its definition domain, the
variable s runs through its respective domain twice. For a correct normalization we
should therefore multiply the density (2.17) by 2. In other words: the inverse of the
function s(φ) is not unique, since an arbitrary interval of s corresponds to two equally
long intervals of φ, as shown in Fig. 2.7 (left). How this discrepancy is handled will
be discussed in the following. �

Fig. 2.7 [Left] Path lengths of particles flying from the source to the detector at angle φ in the setup
of Fig. 2.6. One interval on the ordinate corresponds to two intervals on the abscissa: the inverse of
s(φ) is not unique. [Right] Path-length distribution
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2.7.1 What If the Inverse of y = h(x) Is Not Unique?

When the function h : D → R is not bijective, an interval on the ordinate corresponds
to two or more intervals on the abscissa (see Fig. 2.8). Suppose that for each y ∈ h(D)

there is a finite set � = {x : h(x) = y}. Let y = h(x) for some x ∈ D, and let h
be differentiable, except in a countable number of points. By the inverse function
theorem, there exists an open interval ID ⊂ D including x and an open interval IR ⊂ R
including y, such that h (restricted to ID) is bijective and its inverse g = h−1 : IR → ID
exists and is differentiable. In other words, for each xi ∈ � there exists a function gi
such that (h ◦ gi)(ŷ) = ŷ for each ŷ in the neighborhood of y and (gi ◦ h)(x̂) = x̂ for
each x̂ in the neighborhood of xi. If needed, the interval IR containing the values y
for which all inverses gi are defined, can be made small enough to render all {gi(IR)}
distinct. Assume y1 ≤ y ≤ y2, where y1, y2 ∈ IR. Thus

P(y1 ≤ Y ≤ y2) = P

(
⋃

xi∈�

{
X ∈ gi

([y1, y2]
)}
)

=
∑

xi∈�

P
({

X ∈ gi
([y1, y2]

)})

=
∑

xi∈�

∫

gi([y1,y2])
fX(x) dx =

∑

xi∈�

∫ y2

y1

fX
(
gi(t)

) ∣∣g′
i(t)
∣∣ dt

=
∫ y2

y1

∑

xi∈�

fX
(
gi(t)

) ∣∣g′
i(t)
∣∣ dt.

Let y1 = y, y2 = y + �y, differentiate both sides of the equation with respect to �y
and finally let �y → 0. It follows that

fY (y) =
∑

xi∈�

fX
(
gi(y)

) ∣∣g′
i(y)
∣∣ =

∑

xi; h(xi)=y

fX(xi)
1

|h′(xi)| . (2.18)

Example A random variable X is distributed according to the density fX(x) = N e−x,
whereN is a normalization constant.Wewould like to calculate the distribution fY (y)
of the random variable Y = h(X), where

Fig. 2.8 An example of the mapping y = h(x) whose inverse is not unique: an interval on the
ordinate corresponds to three intervals on the abscissa; they must be accounted for separately when
transforming the probability densities according to (2.18)
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h(x) =
⎧
⎨

⎩

3x ; 0 < x ≤ 1
3 ,

1 − 5
(
x − 1

3

) ; 1
3 < x ≤ 8

15 ,

2
(
x − 8

15

) ; x > 8
15 .

(2.19)

This function is shown in Fig. 2.8. Let us restrict ourselves to 0 ≤ y ≤ 1 which also
dictates the normalization of fX : the rightmost branch of h reaches the value y = 1
at x = xmax, where 2(xmax − 8/15) = 1, so xmax = 31/30 and

1

N =
∫ xmax

0
fX(x) dx ≈ 0.644181.

Hence the correctly normalized density is

fX(x) =
{N e−x ; 0 ≤ x ≤ 31

30 ,

0 ; elsewhere.

Any subinterval on the y-axis (0 ≤ y ≤ 1) corresponds to three distinct intervals on
the x-axis, lying in the separate definition domains of (2.19). In the leftmost domain
we have y = h(x) = 3x, so the inverse function there is x = h−1(x) = g1(y) = y/3.
Similar results for the remaining two domains are readily obtained:

g1(y) = y

3
, g2(y) = − y

5
+ 8

15
, g3(y) = y

2
+ 8

15
.

We use (2.18) to calculate

fY (y) = fX
(
g1(y)

) ∣∣∣∣
dg1(y)

dy

∣∣∣∣+ fX
(
g2(y)

) ∣∣∣∣
dg2(y)

dy

∣∣∣∣+ fX
(
g3(y)

) ∣∣∣∣
dg3(y)

dy

∣∣∣∣

= N
[
1

3
e−y/3 + 1

5
ey/5−8/15 + 1

2
e−y/2−8/15

]
.

We also compute ∫ 1

0
fY (y) dy = 1,

hence the distribution with density fY is also correctly normalized. �

2.8 Two-Dimensional Discrete Distributions

It is not hard to generalize our discussion to two-dimensional probability distribu-
tions: first we are dealing with two discrete random variables X and Y , for which we
define a joint probability [mass] function,

P(X = x,Y = y) = fX,Y (x, y),
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with the properties fX,Y (x, y) ≥ 0 and
∑

x,y fX,Y (x, y) = 1. Suppose that X assumes
the values {x1, x2, . . . , xm} and Y assumes the values {y1, y2, . . . , yn}. By analogy
to (2.13) the probability that X = xi and Y = yj equals

P(X = xi,Y = yj) = fX,Y (xi, yj).

An example of a two-dimensional discrete distribution with the probability func-
tion fX,Y (xi, yj) = N (sin πxi + sin πyj

)
, where xi ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0},

yj ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0}, andN is a normalization factor, is shown in Fig. 2.9
(left). The probability that X = xi (regardless of Y ) is obtained by summing the
contributions of all yj, while the probability for Y = yj (regardless of X) is calculated
by summing the contributions of all xi:

P(X = xi) = fX(xi) =
n∑

j=1

fX,Y (xi, yj),

P(Y = yj) = fY (xj) =
m∑

i=1

fX,Y (xi, yj).

As usual, the symbols fX and fY denote the projections of the two-dimensional dis-
tribution fX,Y to the corresponding distributions pertaining to the variables X and Y
alone. Such one-dimensional projections are called marginal distributions. One must
ensure the overall normalization

m∑

i=1

n∑

j=1

fX,Y (xi, yj) = 1,

Fig. 2.9 [Left] Discrete two-dimensional probability distribution with a joint probability function
fX,Y (xi, yj) = N (sin πxi + sin πyj

)
. [Right] Continuous two-dimensional distribution with a joint

density fX,Y (x, y) = N (sin πx + sin πy
)
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hence also
m∑

i=1

fX(xi) =
n∑

j=1

fY (yj) = 1.

(Compute the normalization factor N introduced above as an exercise!) We define
the two-dimensional (joint) cumulative distribution function as the sum of all con-
tributions to probability for which X ≤ x and Y ≤ y, i.e.

P(X ≤ x,Y ≤ y) = FX,Y (x, y) =
∑

u≤x

∑

v≤y

fX,Y (u, v).

If the events X = x and Y = y are independent for all x and y, it holds that

P(X = x,Y = y) = P(X = x)P(Y = y).

Such random variables X and Y are called independent. In that case we also have

FX,Y (x, y) = FX(x)FY (y). (2.20)

2.9 Two-Dimensional Continuous Distributions

By now a generalization of continuous probability distributions to two dimensions
should not prove a tough nut to crack. One introduces a joint probability density
[function], which is non-negative throughout the definition domain,

fX,Y (x, y) ≥ 0,

and normalized, ∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y) dx dy = 1.

An example of a probability distribution with such probability density on the domain
(x, y) ∈ [0, 1] × [0, 1] is shown in Fig. 2.9 (right)—calculate the appropriate nor-
malization factor N ! The probability that a continuous random variable X takes a
value between a and b and a continuous random variable Y takes a value between c
and d, is equal to the integral

P(a ≤ X ≤ b, c ≤ Y ≤ d) =
∫ b

x=a

∫ d

y=c
fX,Y (x, y) dx dy,

indicated in the figure by the rectangular cut-out 0.56 ≤ x ≤ 0.6 and 0.20 ≤ y ≤
0.24. The probability in this example is the volume of the column under the cut-out
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of the fX,Y (x, y) graph. The corresponding joint distribution function is

P(X ≤ x,Y ≤ y) = FX,Y (x, y) =
∫ x

u=−∞

∫ y

v=−∞
fX,Y (u, v) du dv.

Analogously to the discrete case we obtain the probabilities for X ≤ x by integrating
the joint density over the whole domain of Y , and vice-versa:

P(X ≤ x) = FX(x) =
∫ x

−∞
du
∫ ∞

−∞
fX,Y (u, v) dv, (2.21)

P(Y ≤ y) = FY (y) =
∫ y

−∞
dv
∫ ∞

−∞
fX,Y (u, v) du. (2.22)

Hence, the marginal probability densities are

fX(x) =
∫ ∞

−∞
fX,Y (x, v) dv, fY (y) =

∫ ∞

−∞
fX,Y (u, y) du. (2.23)

In the continuous case we call the variables X and Y independent if the events X ≤ x
and Y ≤ y are independent for all x and y, i.e.

P(X ≤ x,Y ≤ y) = P(X ≤ x)P(Y ≤ y),

which is equivalent to
FX,Y (x, y) = FX(x)FY (y). (2.24)

It is important that precisely in this case we also have

fX,Y (x, y) = fX(x)fY (y). (2.25)

Let us complete the story on joint densities by adding the concept of conditional
probability. We inquire about the probability that event A occurred (e.g. Y = y), with
the additional information (“condition”) that B also occurred (e.g. X = x), glancing
at (1.10). With continuous distributions, however, it is meaningless to speak of the
probability that a random variable assumed some precise value; the statement must
therefore be understood in the density sense:

fX|Y (x|y) = fX,Y (x, y)

fY (y)
(2.26)

and

fY |X(y|x) = fX,Y (x, y)

fX(x)
. (2.27)

http://dx.doi.org/10.1007/978-3-319-31611-6_1
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For example, the probability that c ≤ Y ≤ d, given x ≤ X ≤ x + dx, is

P(c ≤ Y ≤ d | x ≤ X ≤ x + dx) =
∫ d

c
fY |X(y|x) dy.

(This can also be interpreted as the definition of the conditional density fY |X .)

Example Let the continuous random variables X and Y possess the joint probability
density

fX,Y (x, y) =
{
8xy ; 0 ≤ x ≤ 1, 0 ≤ y ≤ x,
0 ; elsewhere,

shown in the figure. Note that the domain is only the shaded part of [0, 1] × [0, 1]!
What are the marginal probability densities fX(x) and fY (y), and the conditional
densities fX|Y (x|y) and fY |X(y|x)? We first check the normalization of fX,Y :

∫ 1

x=0
dx
∫ x

y=0
dy fX,Y (x, y) =

∫ 1

0
dx 8x

x2

2
= 4

x4

4

∣∣∣∣
1

0

= 1.

The marginal density fX(x) is obtained by integrating fX,Y over all possible values of
Y , which is from y = 0 to y = x (vertical dark-shaded band),

fX(x) =
∫ x

0
fX,Y (x, y) dy =

∫ x

0
8xy dy =

{
4x3 ; 0 ≤ x ≤ 1,
0 ; elsewhere,

while the marginal density fY (y) is calculated by integrating fX,Y over all values of
X, i.e. from x = y to x = 1 (horizontal band):

fY (y) =
∫ 1

y
fX,Y (x, y) dx =

∫ 1

y
8xy dy =

{
4y(1 − y2) ; 0 ≤ y ≤ 1,

0 ; elsewhere.
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The conditional probability densities are

fX|Y (x|y) = fX,Y (x, y)

fY (y)
=
{
2x/(1 − y2) ; 0 ≤ y ≤ x ≤ 1,

0 ; elsewhere,
(2.28)

where x is a variable and y a parameter, and

fY |X(y|x) = fX,Y (x, y)

fX(x)
=
{
2y/x2 ; 0 ≤ y ≤ x ≤ 1,

0 ; elsewhere; (2.29)

here y is a variable and x is a parameter. If our calculation was right, all densities
should be correctly normalized, as we have only been tailoring the integration to the
desired density. By elementary integration we indeed find out

∫ 1

0
fX(x) dx =

∫ 1

0
fY (y) dy =

∫ 1

y
fX|Y (x|y) dx =

∫ x

0
fY |X(y|x) dy = 1.

Final question: are X and Y independent? The form of the function fX,Y (x, y) = 8xy
might mislead us into believing that a factorization like, for example, fX,Y (x, y) =
4x · 2y, already implies that X and Y are independent. But for independence we have
required (2.25), which certainly does not apply here, since

fX,Y (x, y) = 8xy �= fX(x)fY (y) = 4x3 · 4y(1 − y2).

The culprit, of course, is the narrowing of the domain [0, 1] × [0, 1] to the triangle:
the y ≤ x restriction prevents the variables X and Y from grazing freely. �

2.10 Transformation of Variables in Two and More
Dimensions

In Sect. 2.7 we learned how a probability distribution of a single random variable
can be transformed into a distribution of another variable which is a function of the
former. We would like to generalize the result of (2.18)—disregarding the issue of
uniqueness, already (2.15)—to several dimensions. Instead of the scalar function of
a scalar variable, y = h(x), we are now dealing with vector quantities: X ∈ R

n is a
vector of n independent variables, distributed according to the probability density fX ,
and h is a vector-valued function, which uniquely maps X to a corresponding vector
Y ∈ R

n, so that for the values x and y we have
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y =

⎛

⎜⎜⎜⎝

y1
y2
...

yn

⎞

⎟⎟⎟⎠ = h(x) =

⎛

⎜⎜⎜⎝

h1(x1, x2, . . . , xn)
h2(x1, x2, . . . , xn)

...

hn(x1, x2, . . . , xn)

⎞

⎟⎟⎟⎠ .

The n-dimensional generalization of the derivative of h is the Jacobi total derivative
matrix:

∂h
∂x

(x) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂h1
∂x1

(x)
∂h1
∂x2

(x) · · · ∂h1
∂xn

(x)

∂h2
∂x1

(x)
∂h2
∂x2

(x) · · · ∂h2
∂xn

(x)

...
...

. . .
...

∂hn
∂x1

(x)
∂hn
∂x2

(x) · · · ∂hn
∂xn

(x)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.30)

Comparing this to (2.15) it is easy to see that the probability density fY of the variable
Y is given by

fY(y) = fX
(
h−1(y)

)∣∣Jh−1(y)
∣∣, (2.31)

where

Jh(x) = det

(
∂h
∂x

(x)
)

.

It is also useful to note that

∣∣Jh−1(y)
∣∣ = ∣∣Jh

(
h−1(y)

)∣∣−1
. (2.32)

Example Let X and Y be independent random variables with the joint density

fX,Y (x, y) = 1

2π
e−(x2+y2)/2. (2.33)

The function h maps a pair of variables (X,Y) into a pair (D,�), such that for their
values, arranged as vectors x = (x, y)T and r = (d,φ)T, it holds that

r = (d,φ
)T = h(x) = (x2 + y2, arctan(y/x)

)T
, (2.34)

where the arctan function is sensitive to the quadrant of the pair (x, y). The inverse
of h is

h−1(r) =
(√

d cosφ,
√
d sin φ

)T
,
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and the corresponding 2 × 2 Jacobi matrix (2.30) is

∂h−1

∂r
(r) =

⎛

⎜⎜⎜⎝

1

2
√
d
cosφ −√

d sin φ

1

2
√
d
sin φ

√
d cosφ

⎞

⎟⎟⎟⎠ .

Its determinant is

Jh−1(r) = det

(
∂h−1

∂r
(r)

)
= 1

2
cosφ2 + 1

2
sin φ2 = 1

2
. (2.35)

From (2.31) it then follows that

fD,�(d,φ) = fX,Y
(

x︸︷︷︸√
d cosφ

, y︸︷︷︸√
d sin φ

)
Jh−1(r)= 1

2π
e−(d cos2 φ+d sin2 φ)/2 1

2
= 1

2
e−d/2 1

2π
.

This means that the variable D is exponentially distributed (as we learn later, “with
parameter 1/2”), while� is uniformly distributed, with values on the interval [0, 2π).
Besides, D are � independent. (Explain why!)

The example can also be read in reverse. Start with an exponentially distributed
variable D (with parameter 1/2) and a uniformly distributed, independent variable
� ∼ U[0, 2π), and combine them as

g(r) =
(√

d cosφ,
√
d sin φ

)T
.

Then g−1(x) = h(x), where the function h is already known from (2.34). The Jacobi
matrix corresponding to the inverse function g−1 is

∂g−1

∂x
(x) =

⎛

⎝
2x 2y

− y

x2 + y2
x

x2 + y2

⎞

⎠

and has determinant 2, as one can see from (2.35) and (2.32) without even computing
the matrix, since Jg−1(x) = Jh(x) = [Jh−1

(
h(x)

)]−1 = (1/2)−1 = 2. Hence

fX,Y (x, y) = fD,�

(
d︸︷︷︸

x2+y2

,φ
) · 2 = 1

2π
e−(x2+y2)/2,

which is precisely (2.33). We have learned in passing how one can form a pair
of independent, normally distributed (Gaussian) variables: pick a value of D from
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the exponential distribution with parameter 1/2 and a value of � from the interval
[0, 2π), then calculate g(D,�). See also Sect.C.2.5. �
Long example (Retold after [2].) Continuous randomvariablesX andY are distributed
according to the joint probability density

fX,Y (x, y) =
{

1
96 xy ; 0 < x < 4, 1 < y < 5,

0 ; elsewhere,

which is already normalized, since
∫ 4
0

∫ 5
1 (xy/96) dx dy = 1. Find the probability

density corresponding to the linear combination U = X + 2Y ! If we wish to reap
the fruits of our previous lessons, we must assign to the pair of variables X and Y
another pair U = h1(X,Y) and V = h2(X,Y) such that the mapping will be unique.
Let

u = h1(x, y) = x + 2y, v = h2(x, y) = x.

The first choice is motivated by the problem statement itself while the second choice
will soon become clear: in short, it allows us to keep the integration bounds as simple
as possible and ensure a non-zero Jacobi determinant. We solve both equations for
x and y—in other words, we find the inverse functions X = g1(U, V ) and Y =
g2(U, V ):

x = g1(u, v) = v, y = g2(u, v) = (u − x)/2 = (u − v)/2.

From here we can infer that with respect to the original domains of X and Y ,

0 < x < 4, 1 < y < 5,

the variables U and V span the ranges

0 < v < 4, 2 < u − v < 10,

denoted by the shaded area in Fig. 2.10 (left).
Just as in the previous example the new density fU,V is calculated by evaluating

the old density fX,Y with transformed arguments and multiplying the result by the
absolute value of the Jacobi determinant:

fU,V (u, v) = fX,Y
(
g1(u, v)︸ ︷︷ ︸

v

, g2(u, v)︸ ︷︷ ︸
(u − v)/2

)
∣∣∣∣∣

∣∣∣∣
∂g1
∂u

∂g1
∂v

∂g2
∂u

∂g2
∂v

∣∣∣∣

∣∣∣∣∣ =
v(u − v)

192

∣∣∣∣∣

∣∣∣∣
0 1
1
2 − 1

2

∣∣∣∣

∣∣∣∣∣ ,
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Fig. 2.10 Finding the probability density of the variable U = X + 2Y . [Left] Calculation in the
domain of the transformed variables U and V . [Right] Calculation in the domain of the original
variables X and Y

therefore

fU,V (u, v) =
{

1
384 v(u − v) ; 0 < v < 4, 2 < u − v < 10,

0 ; elsewhere.

If this two-dimensional probability density (corresponding to random variables U
and V ) is integrated over v, we obtain the one-dimensional density corresponding to
the variable U = X + 2Y . In doing so we must pay attention to correct integration
boundaries of the areas denoted by I, II and III in Fig. 2.10:

fU(u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ u−2

0
fU,V (u, v) dv = (u − 2)2(u + 4)

2304
; 2 < u < 6,

∫ 4

0
fU,V (u, v) dv = 3u − 8

144
; 6 < u < 10,

∫ 4

u−10
fU,V (u, v) dv = 348u − u3 − 2128

2304
; 10 < u < 14.

Alternative Method

There is another path leading to the same goal. We first calculate the distribution
function of the variable U, i.e. the probability for “event” U = X + 2Y ≤ u,

FU(u) = P(X + 2Y ≤ u) =
∫∫

x+2y≤u
fX,Y (x, y) dx dy,
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where 0 < x < 4 and 1 < y < 5, and differentiate the resulting function with
respect to u. The integration boundaries must again be tailored carefully: we are
now integrating over a rectangular domain of the original variables x and y, but the
condition x + 2y ≤ u slices it into three distinct sub-domains shown in Fig. 2.10
(right). In domain I we obtain

FU(u) =
∫ u−2

0
dx
∫ (u−x)/2

1

xy

96
dy =

∫ u−2

0

x
(
(u−x)2 − 4

)

768
dx = (u − 2)3(u + 6)

9216
,

where we have first integrated over y and then over x. Reversing the order of inte-
gration would yield the same result, but the upper integration boundaries must be
adjusted accordingly:

∫ u−2

x=0

∫ (u−x)/2

y=1
· · · =

∫ u/2

y=1

∫ u−2y

x=0
· · · .

Finally

fU(u) = dFU(u)

du
= (u − 2)2(u + 4)

2304
, 2 < u < 6, (2.36)

which is exactly the same expression as before. We exploit the same machinery to
handle the contributions from regions II and III. In the end, we should also check the
normalization: we find

∫ 14
2 fU(u) du = 1, as expected.

Swiss Army Knife Approach

We can perhaps shed a different light on the direct integration of the joint density by
resorting to the Dirac delta tool. All cuts through the definition domain in Fig. 2.10
(right) are straight lines of the form u = x+2y. By inserting the Dirac delta with the
argument u − x − 2y = 0 in the integrand this straight-line constraint is enforced,
while the integral over x becomes trivial. We get

fU(u) =
∫∫

fX,Y (x, y)δ(u − x − 2y) dx dy =
∫

I(u)
fX,Y (u − 2y, y) dy,

we just need to pay attention to the intervals for the integration over y. These depend
on the values of u, but in such a way that x never leaves the interval [0, 4] and y never
leaves [1, 5]. As before, this results in three domains,

I(u) =
⎧
⎨

⎩

[1, u/2] ; 2 < u < 6,
[(u − 4)/2, u/2] ; 6 < u < 10,
[(u − 4)/2, 5] ; 10 < u < 14,
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onwhich the final integral over y should be evaluated. In the first domain, for example,
we obtain

fU(u) = 1

96

∫ u/2

1
(u − 2y)ydy = 1

96

(
uy2

2
− 2y3

3

) ∣∣∣∣
u/2

1

= u3 − 12u + 16

2304
,

which is identical to (2.36). �

2.11 Problems

2.11.1 Black-Body Radiation

The distribution of energy spectral density of black-body radiation with respect to
wavelengths λ at temperature T is given by the Planck formula

u(λ;T) = 4π

c

dj

dλ
= 8πhc

λ5

1

exp(hc/λkBT) − 1
,

where h is the Planck and kB is the Boltzmann constant (Fig. 2.11 (left)). Calculate
the distribution over the frequencies ν (Fig. 2.11 (right)) and show that the maxima
of the two distributions are not at the same location, i.e. λmax �= c/νmax!

✎ Only one independent variable is involved, so the frequency distribution is
obtained by the chain rule for derivatives

Fig. 2.11 Planck law of black-body radiation. [Left] Temperature dependence of the energy spec-
tral density in terms of wavelengths. [Right] Temperature dependence of the density in terms of
frequencies. Wien curves connecting the maxima of both distributions are also shown [3]
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u(ν;T) = 4π

c

dj

dν
= 4π

c

dj

dλ

∣∣∣∣
dλ

dν

∣∣∣∣ =
8πhν3

c3
1

exp(hν/kBT) − 1
.

The value on the abscissa which corresponds to the maximum of the distributions
can be obtained by solving the equation for the local extremum. In the case of the
wavelength spectrum one needs to solve the equation d2j/dλ2 = 0, whence

(xλ − 5) exλ + 5 = 0, xλ = hc/λkBT ,

while in the case of the frequency distribution we need to solve d2j/dν2 = 0, which
becomes

(xν − 3) exν + 3 = 0, xν = hν/kBT .

These dimensionless equations have analytic solutions (see [4], p. 94), but they can be
harnessednumerically by iteration.The solution of thefirst equation is xλ ≈ 4.965.At
the temperature on the surface of the Sun (T ≈ 6000K) this means λmax ≈ 490 nm,
i.e. blue light (visible part of the spectrum). The solution of the second equation is
xν ≈ 2.821. At the same temperature T , λ(νmax) = c/νmax ≈ 860 nm, which is in
the infra-red.

2.11.2 Energy Losses of Particles in a Planar Detector

(Adapted from [5].) Consider a planar detector consisting of two parallel infinite
plates spaced apart by h (Fig. 2.12 (left)). A radioactive source attached to the bottom
plate radiates α particles with energy E0. The space between the plates is filled with
gas in which particles lose energy. A particle flying unhindered loses all its energy

Fig. 2.12 [Left] Planar detector with plates at a distance h. The radioactive source is at the origin.
The ratio C = h/R = 1/2 is given. [Right] The expected distribution of particle energy losses
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along a distance called the range (R), which scales roughly as R = kE3/2
0 , where k

is a known constant. The electric signals picked up on the plates are proportional to
the energy loss E of particles in the gas. We are interested in the distribution of the
pulse heights.

✎ In radioactive decay of nuclei at rest no direction of the sky is privileged; the
α particles are emitted isotropically into the solid angle �, hence dF/d� = 1/�.
This implies dF�/dφ = const. = 1/2π and dF�/d(cos θ) = const. = 1 (upper
hemisphere). The remaining energy of a particle emitted under the angle θ and hitting
the top plate after flying over a distance of r = h/ cos θ isE0−E. If the plate were not
there, the particle could have flown an additional distance R− r = k(E0 −E)3/2. Let
us introduce dimensionless quantities x = E/E0 and ρ = r/R, so that the equation
for the range becomes 1− ρ = (1− x)3/2. We read off ρ = C/ cos θ from the figure,
therefore cos θ = C/[1− (1− x)3/2]. Our task is to express the original distribution
over cos θ by the distribution over x, which we accomplish by the derivative chain
rule:

fX(x) = dFX

dx
= dF�

d(cos θ)

∣∣∣∣
d(cos θ)

dx

∣∣∣∣ =
3C

2

√
1 − x

[
1 − (1 − x)3/2

]2 . (2.37)

In Fig. 2.12 (right) this probability density is shown by the curve on the interval from
x = x0 to x = 1. The lower edge of the interval corresponds to the smallest possible
energy loss of the particle in the gas: it occurs if the particle flies vertically upwards
from the source, so that r = h and therefore x0 = 1 − (1 − C)2/3 ≈ 0.370.

What about the particles that are emitted under large enough angles to lose all
their energy (meaning x = 1) and never reach the top plate? From the geometry we
deduce that the fraction of such particles is cos θ0 = h/R = C, and they contribute
to the energy loss distribution with an additional term

Cδ(x − 1). (2.38)

Only then the sum of (2.37) and (2.38) is correctly normalized, so that
∫ 1
0 fX(x)

dx = 1.

2.11.3 Computing Marginal Probability Densities
from a Joint Density

Continuous random variables X and Y are distributed according to the joint proba-
bility density

fX,Y (x, y) =
{
C(2x + y) ; 2 < x < 6, 0 < y < 5,

0 ; elsewhere,
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whereC is the normalization constant.① DetermineC and calculate the probabilities
P(X > 3,Y > 2), P(X > 3) and P(X + Y < 4). ② Compute the distribution
functions FX(x) and FY (y), then differentiate them with respect to x and y to obtain
the marginal probability densities fX(x) and fY (y).

✎ ① The normalization constant is determined by integrating the density fX,Y over
the whole definition domain:

C
∫ 6

2
dx
∫ 5

0
(2x + y) dy = C

∫ 6

2

(
2xy + y2

2

) ∣∣∣∣
y=5

y=0

dx

= C
∫ 6

2

(
10x + 25

2

)
dx = 210C = 1,

hence C = 1/210. The required probabilities are

P(X > 3,Y > 2) =
∫ 6

3
dx
∫ 5

2
fX,Y (x, y) dy = 15

28
,

P(X > 3) =
∫ 6

3
dx
∫ 5

0
fX,Y (x, y) dy = 23

28
,

P(X + Y < 4) =
∫ 4

2
dx
∫ 4−x

0
fX,Y (x, y) dy = 2

35
.

② The cumulative distributions can be computed by resorting to (2.21) and (2.22):

FX(x) = P(X ≤ x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 ; x < 2,∫ x

2
du
∫ 5

0
fX,Y (u, v) dv = 2x2 + 5x − 18

84
; 2 ≤ x < 6,

1 ; x ≥ 6,

FY (y) = P(Y ≤ y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 ; y < 0,∫ y

0
dv
∫ 6

2
fX,Y (u, v) du = y2 + 16y

105
; 0 ≤ y < 5,

1 ; y ≥ 5,

and thence

fX(x) = dFX(x)

dx
= 4x + 5

84
, 2 ≤ x < 6,

fY (y) = dFY (y)

dy
= 2y + 16

105
, 0 ≤ y < 5,
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while one has fX(x) = fY (y) = 0 outside of the specified regions. Of course we can
reach the same conclusion more easily, through (2.23).

2.11.4 Independence of Random Variables
in Two Dimensions

Suppose that the coordinate q and the velocity p of some body are random, that
they always lie on the intervals [q1, q2] and [p1, p2], and that by measuring them
a distribution of points in phase space (q, p) is observed (top figure). What is the
fraction of points in the phase space corresponding to a 10% deviation from the linear
relation

p = p1 + 2
�p

�q
(q − q1),

where �q = q2 − q1 and �p = p2 − p1? The relation is denoted by the dashed line,
while the condition ∣∣∣∣

p − p1
�p

− 2
q − q1
�q

∣∣∣∣ ≤ 0.1

is indicated by the shaded area. In dimensionless variables X = (Q − q1)/�q and
Y = (P − p1)/�p the condition becomes |Y − 2X| ≤ 0.1 (see bottom panel).

Of course the events in the indicated region can be simply counted, but let us
try to envision a simple model. The gradual increase of the density of points from
q1 towards q2 and from p1 to p2 suggests that perhaps the mechanism behind the
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observed pattern can be described by a distribution of continuous variables X and Y
with a joint density

fX,Y (x, y) =
{
Cxy ; 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0 ; elsewhere,

where C is a constant. Normalize the distribution, then calculate ① P(|Y − 2X| ≤
0.1), i.e. the probability that the values of X and Y are restricted to the shaded
band. ② Calculate the one-dimensional probability densities fX(x) and fY (y). Are
the variables X and Y independent? (Do not forget that this is only a model!)

✎ First we normalize the joint density:

1 =
∫ 1

0
dx
∫ 1

0
dy fX,Y (x, y) = C

∫ 1

0
x dx

∫ 1

0
y dy = C

x2

2

∣∣∣∣
1

0

y2

2

∣∣∣∣
1

0
= C

4
=⇒ C = 4.

① The required probability is obtained by integrating the density over two regions:
the dark-shaded region defined by 0 ≤ x ≤ (y + 0.1)/2 and 0 ≤ y ≤ 0.1, and the
light-shaded region defined by (y − 0.1)/2 ≤ x ≤ (y + 0.1)/2 and 0.1 ≤ y ≤ 1:

P(|Y − 2X| ≤ 0.1) =
∫ 0.1

0
dy
∫ (y+0.1)/2

0
fX,Y (x, y) dx +

∫ 1

0.1
dy
∫ (y+0.1)/2

(y−0.1)/2
fX,Y (x, y) dx

= 1

2

[∫ 0.1

0
y(y + 0.1)2 dy +

∫ 1

0.1
0.4y2 dy

]
≈ 0.0667.

② The variables X and Y are independent:

fX(x) =
∫ 1

0
fX,Y (x, y) dy = 4x

∫ 1

0
y dy = 2x, 0 ≤ x ≤ 1,

fY (y) =
∫ 1

0
fX,Y (x, y) dx = 4y

∫ 1

0
x dx = 2y, 0 ≤ y ≤ 1,

therefore we indeed observe fX,Y (x, y) = 4xy = fX(x)fY (y) = 2x · 2y.

2.11.5 Transformation of Variables in Two Dimensions

Let two independent continuous variables X and Y be described by the joint proba-
bility density

fX,Y (x, y) = 1

2π
e−(x2+y2)/2, −∞ < x, y < ∞.
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Calculate the joint probability density of random variables U and V , where ①
U = √

X2 + Y 2, V = arctan(X/Y) and ② U = √
X2 + Y 2, V = X/Y !

✎ In the case ① the system of equations relating x and y to u and v has a unique
solution

x = g1(u, v) = u sin v, y = g2(u, v) = u cos v.

The Jacobi determinant of this system is

J =

∣∣∣∣∣∣∣∣

∂g1

∂u

∂g1

∂v

∂g2

∂u

∂g2

∂v

∣∣∣∣∣∣∣∣
=
∣∣∣∣∣
sin v u cos v

cos v −u sin v

∣∣∣∣∣ = −u sin2 v − u cos2 v = −u,

and its absolute value is |J| = u. From (2.31) we obtain

fU,V (u, v) = fX,Y (u sin v, u cos v) · u = 1

2π
e−(u2 sin2 v+u2 cos2 v)/2 · u = u

2π
e−u2/2.

Let us check the normalization of the density fU,V ! Suitable definition domains of
the transformed variables must be considered, 0 ≤ u < ∞ and 0 ≤ v < 2π. Then
indeed ∫ ∞

0
u e−u2/2du

∫ 2π

0

dv

2π
= 1.

In the case ② the system has two solutions:

x = g1(u, v) = s
uv√
1 + v2

, y = g2(u, v) = s
u√

1 + v2
, (2.39)

where s = ±1. The Jacobi determinant for the first solution is

J =

∣∣∣∣∣∣∣∣

∂g1

∂u

∂g1

∂v

∂g2

∂u

∂g2

∂v

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

v√
1 + v2

u

(
1√

1 + v2
− v2

(1 + v2)3/2

)

1√
1 + v2

− uv

(1 + v2)3/2

∣∣∣∣∣∣∣∣∣

= − u

1 + v2
,

and its absolute value is |J| = u/(1 + v2). Equation (2.31) then yields

fU,V (u, v) = fX,Y

(
uv√
1 + v2

,
u√

1 + v2

)
· u

1 + v2
= 1

2π

u

1 + v2
e−u2/2.

Let us again check the normalization:

1

2π

∫ ∞

0
u e−u2/2du

∫ ∞

−∞
dv

1 + v2
= 1

2
.
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What have wemissed? In the case② the mapping from (u, v) to (x, y) is not unique,
so the problem must be split into such domain segments that on each of them the
inverses x = g1(u, v) and y = g2(u, v) are unique—precisely in the same spirit as
in the one-dimensional problem of Sect. 2.7.1. We must evaluate (2.31) on each of
these segments and sum the contributions. Since |J| is the same for both solutions of
(2.39), all that is missing for the correct probability density is a factor of 2, thus

fU,V (u, v) = 1

π

u

1 + v2
e−u2/2.

2.11.6 Distribution of Maximal and Minimal Values

Let X1,X2, . . . ,Xn be independent and identically distributed continuous random
variables. ① What is the distribution of their maximal value

U = max{X1,X2, . . . ,Xn}?

(One can inquire about the distribution of U because U itself is a random variable.)
Derive the general expression and apply it in the case that all Xi are described by the
exponential probability density of the form fX(x) = λ e−λx, where x ≥ 0, λ > 0. ②
What is the distribution of the minimum of such variables,

V = min{X1,X2, . . . ,Xn}?

✎ Problem ① can be solved by using distribution functions. If the maximal value
of all Xi should be smaller than some x, all Xi simultaneously should be smaller than
x, hence

FU(x) = P(U ≤ x) = P(X1 < x, X2 < x, . . . , Xn < x) = [P(X1 ≤ x)
]n = [FX(x)

]n
.

For an individual exponentially distributed X it holds that

P(X ≤ x) =
∫ x

0
fX(t) dt = FX(x) =

∫ x

0
λ e−λtdt = 1 − e−λx,

therefore
FU(x) = [1 − e−λx

]n
.

To obtain the probability density corresponding to U, we only need to compute the
derivative of FU ,

fU(x) = F ′
U(x) = nλ e−λx

[
1 − e−λx

]n−1
.
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Problem ② can be solved analogously. If all Xi are simultaneously larger than some
x, the minimal Xi is certainly also larger than x:

P(V > x) = 1 − P(V ≤ x) = 1 − FV (x)

= P(X1 > x, X2 > x, . . . , Xn > x) = [P(X1 > x)
]n

.

For exponentially distributed X we have

P(X > x) =
∫ ∞

x
λ e−λtdt = e−λx,

whence
FV (x) = 1 − [e−λx

]n = 1 − e−nλx.

The probability density corresponding to variable V is then

fV (x) = F ′
V (x) = nλ e−nλx.

In other words, if each of the n independent variables {Xi}ni=1 is exponentially dis-
tributed (with parameter λ), their minimal value is also exponentially distributed, but
with parameter nλ.
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Chapter 3
Special Continuous Probability Distributions

Abstract Particular continuous distributions encountered on a daily basis are dis-
cussed: the simplest uniform distribution, the exponential distribution characterizing
the decay of unstable atoms and nuclei, the ubiquitous normal (Gauss) distribution in
both its general and standardized form, theMaxwell velocity distribution in its vector
and scalar form, the Pareto (power-law) distribution, and the Cauchy (Lorentz, Breit–
Wigner) distribution suitable for describing spectral line shapes and resonances.
Three further distributions are introduced (χ2-, Student’s t- and F-distributions),
predominantly used in problems of statistical inference based on samples. Gener-
alizations of the exponential law to hypo- and hyper-exponential distributions are
presented.

In this chapter we become acquainted with the most frequently used continuous
probability distributions that physicists typically deal with on a daily basis.

3.1 Uniform Distribution

Its name says it all: the uniform distribution describes outcomes of random
experiments—a set of measured values of a random variable—where all values
between the lowest (a) and the highest possible (b) are equally probable. A bus
that runs on a 15-min schedule, will turn up at our stop anywhere between a = 0min
and b = 15min from now: our waiting time X is a continuous random variable
distributed uniformly between a and b, which one denotes as

X ∼ U (a, b).

The probability density corresponding to the uniform distribution U (a, b) is

fX (x) =

⎧
⎪⎨

⎪⎩

1

b − a
; a ≤ x ≤ b,

0 ; elsewhere,

(3.1)

(Fig. 3.1 (left)) and its distribution function is
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Fig. 3.1 [Left] The probability density of the uniform distributionU (a, b). [Right] The probability
density of the exponential distribution with parameter λ

P(X ≤ x) = FX (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 ; x < a,

x − a

b − a
; a ≤ x ≤ b,

1 ; x > b.

If we show up at the bus stop at a random instant, the probability that our waiting
time will not exceed 10min, is

P(X ≤ 10) = FX (10) = 10 − 0

15 − 0
= 2

3
.

Example On a hot day, a house-fly mostly sits still, but occasionally takes off to
stretch its legs. Suppose that the time T of its buzzing around is uniformly distributed
between 0 and 30 s, i.e. T ∼ U (0, 30). What is the probability that it will fly for
more than 20 s (event A) given that it flies for more than 10 s (condition B)? Due to
the additional information B the probability density is no longer fT (t) = 1/30 s but
f̃T (t) = 1/((30–10)s) = 1/20 s, hence

P
(
T > 20 s | T > 10 s

) =
∫ 30 s

20 s
f̃T (t) dt = 30 s − 20 s

20 s
= 1

2
.

The same result can be obtained by using the original density fT (t) and direct appli-
cation of the conditional probability formula:

P(A|B) = P(A ∩ B)

P(B)
= P(A)

P(B)
=
∫ 30 s

20 s
fT (t) dt

/∫ 30 s

10 s
fT (t) dt = 1/3

2/3
= 1

2
.

No matter how trivial the example is, do not forget that computing a conditional
probability imposes a restriction on the sample space! �
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3.2 Exponential Distribution

The exponential distribution is used to describe processes in which the probability of
a certain event per unit time is constant: the classical example is the time-dependence
of the radioactive decay of nuclei, but it is also used in modeling the distribution of
waiting times in queues or durations of fault-free operation (lifetimes) of devices
like light bulbs or computer disks.

The decay of an unstable atomic nucleus is a random process par excellence (see
also Sects.C.3 and 3.2.1). For a single nucleus, it is impossible to predict the precise
moment of its decay; the probability for it to decay in some time interval depends
only on the length of this interval, �t , not on the age of the nucleus. We say that the
nuclei “do not age” and that radioactive decay is a “memory-less” process: suppose
that we have been waiting in vain for time t for the nucleus to decay; the probability
that the decay finally occurs after t + �t , is independent of t ,

P(T > t + �t | T > t) = P(T > �t). (3.2)

If the interval �t is short enough, we can assume that the decay probability is
proportional to �t , and then the only choice becomes

P(decay) = λ�t or P(no decay) = 1 − λ�t,

where λ = 1/τ is the decay probability per unit time [s−1], also called the decay
constant, while τ is the characteristic or decay time. The probability that a nucleus
has not decayed yet after n�t is (1− λ�t)n . The probability that it has not decayed
after a longer time t = n�t , meaning that it will decay at some time T > t = n�t ,
is therefore

P(T > t) = lim
n→∞(1 − λ�t)n = lim

n→∞

(
1 − λt

n

)n

= e−λt . (3.3)

Since P(T > t) = 1 − P(T ≤ t) = 1 − FT (t), we can immediately calculate the
corresponding probability density,

fT (t) = dFT (t)

dt
= d

dt

(
1 − e−λt

) = λ e−λt , t ≥ 0, (3.4)

shown in Fig. 3.1 (right). (As an exercise, check the validity of (3.2)!) Let us think
in a complementary way: the probability that the nucleus has not decayed until time
t must equal the probability that it will decay at some instant from t until ∞, i.e. the
corresponding integral of the density we have just derived. Indeed

∫ ∞

t
fT (t ′) dt ′ =

∫ ∞

t
λ e−λt ′

dt ′ = e−λt .
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It is incredible howmany wrong interpretations of these considerations can be heard,
so let us reiterate: Equation (3.3) gives the probability that until time t the nucleus
has not decayed. At time zero this probability equals 1 and exponentially drops to
zero henceforth: every unstable nucleus will decay at some time. The rate of change
of the number of nuclei—nuclei still available for decay—is given by the differential
equation dN (t)/dt = −λN (t) with the initial condition N (t = 0) = N0, and its
solution is

N (t) = N0 e
−λt . (3.5)

The decay constantλ is determined experimentally by counting the number of decays
R(t) until time t . Since N0 = N (t) + R(t), it follows from above that e−λt =
1 − R(t)/N0, therefore

λt = − log

(
1 − R(t)

N0

)
.

By fitting this functional dependence to the measured data we extract λ = 1/τ .

Mini-example Two counters in a bank are busy serving a single customer each: the
first person has just arrived, while the other has been there for 10min. Which counter
should we choose in order to be served as quickly as possible? If the waiting times
are exponentially distributed, it does not matter. �

Example You do not believe the Mini-example? Let the variable T measure the time
between consecutive particle hits in a Geiger–Müller counter, where T is exponen-
tially distributed, with a characteristic time of τ = 84 s [1]. The probability that we
detect a particle �t = 30 s after the counter has been switched on, is

P
(
T ≤ �t

) = FT (�t) = 1 − e−�t/τ ≈ 0.30. (3.6)

Now imagine that we switch on the detector and three minutes (t = 180 s) elapse
without a single particle being detected. What is the probability to detect a particle
within the next �t = 30 s? Intuitively we expect that after three minutes the next
particle is “long over-due”. But we need the conditional probability

P(T ≤ t + �t | T > t) = P(t < T ≤ t + �t)

P(T > t)
.

Here

P(t < T ≤ t+�t) = FT (t +�t)−FT (t) = [1 − e−(t+�t)/τ
]−[1 − e−t/τ

] ≈ 0.035

and P(T > t) = 1 − FT (t) = e−t/τ ≈ 0.117, thus P(T ≤ t + �t | T > t) =
0.035/0.117 ≈ 0.30, which is the same as (3.6). The fact that we have waited 3
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minutes without detecting a particle, has no influence whatsoever on the probability
of detection within the next 30 s. �
Example Customers A and B arrive simultaneously at two bank counters. Their
service time is an exponentially distributed random variable with parameters λA and
λB, respectively. What is the probability that B leaves before A?

Let TA and TB be random variables measuring the actual service time. The prob-
ability that A has not been served until tA is e−λAtA . The corresponding probability
for customer B is e−λBtB . Since the waiting processes are independent, their joint
probability density is the product of individual probability densities:

fTA,TB

(
tA, tB

) = λA e−λAtA · λB e
−λBtB .

Therefore the required probability is

P
(
TB < TA

)=
∫ ∞

0
dtA

∫ tA

0
fTA,TB

(
tA, tB

)
dtB=

∫ ∞

0
dtAλA e−λA tA

(
1 − e−λBtA

)
= λB

λA + λB
.

The limits are also sensible: if the clerk serving B is very slow (λB → 0), then
P
(
TB < TA

)→ 0, while in the opposite case P
(
TB < TA

)→ 1. �

The conviction that exponential distributions are encountered only in random
processes involving time in some manner, is quite false. Imagine a box containing
many balls with diameter d. The fraction of black and white balls is p and 1 − p,
respectively [2]. We draw the balls from the box and arrange them in a line, one
touching the other. Suppose we have just drawn a black ball. What is the probability
that the distance x between its center and the center of the next black ball is exactly
i D, (i = 1, 2, . . .)? We are observing the sequences of drawn balls or “events” of
the form

•| •, •| ◦ •, •| ◦ ◦ •, •| ◦ ◦ · · · ◦ ◦︸ ︷︷ ︸
(i−1)D

•,

so the required probability is obviously

P(x = i D) = (1 − p)i−1 p.

Since these events are exclusive, the corresponding probability function is a sum of
all probabilities for individual sequences:

FX (x) = P(x ≤ i D) = p + (1 − p)p + · · · + (1 − p)i−1 p = 1 − (1 − p)i .

Abbreviating D = 1/n and np = λ this can be written as



70 3 Special Continuous Probability Distributions

FX (x) = 1 −
(
1 − λ

n

)nx

,

since i = x/D = nx . Suppose we take the limits n → ∞ and p → 0 (i.e. there
are very few black balls in the box and they have very small diameters), such that λ
and x remain unchanged: then FX (x) → 1− e−λx , and the corresponding density is
fX (x) = dFX/dx = λ e−λx , which is indeed the same as (3.4).

3.2.1 Is the Decay of Unstable States Truly Exponential?

The exponential distribution offers an excellent phenomenological description of
the time dependence of the decay of nuclei and other unstable quantum-mechanical
states, but its theoretical justification implies many approximations and assumptions,
some of which might be questionable in the extremes t/τ � 1 and t/τ  1. Further
reading can be found in [3] and the classic textbooks [4–6].

3.3 Normal (Gauss) Distribution

It is impossible to resist the temptation of beginning this Section by quoting the
famous passage from Poincaré’s Probability calculus published in 1912 [7]:

[The law of the distribution of errors] does not follow from strict deduction; many seemingly
correct derivations are poorly argued, among them the one resting on the assumption that the
probability of deviation is proportional to the deviation. Everyone trusts this law, as I have
recently been told by Mr. Lippmann, since the experimentalists believe it is a mathematical
theorem, while the theorists think it is an experimental fact.1

The normal (Gauss) distribution describes—at least approximately—countless quan-
tities from any sphere of human existence and Nature, for example, diameters of
screws being produced in their thousands on a lathe, body masses of people, exam
grades and velocities of molecules. A partial explanation and justification for this
ubiquity of the Gaussian awaits us in Sect. 6.3 and in particular in Chap.11. For now
let us simply become acquainted with the bell-shaped curve of its two-parameter
probability density

fX (x) = 1√
2πσ

exp

(
− (x − μ)2

2σ2

)
, −∞ < x < ∞, (3.7)

1In the original: “Elle ne s’obtient pas par des déductions rigoureuses; plus d’une démonstration
qu’on a voulu en donner est grossière, entre autres celle qui s’appuie sur l’affirmation que la
probabilité des écarts est proportionelle aux écarts. Tout le monde y croit cependant, me disait un
jour M. Lippmann, car les expérimentateurs s’imaginent que c’est un théorème de mathématiques,
et les mathématiciens que c’est un fait expérimental.”

http://dx.doi.org/10.1007/978-3-319-31611-6_6
http://dx.doi.org/10.1007/978-3-319-31611-6_11
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Fig. 3.2 [Top] Normal
distribution
N (μ = 1.5,σ2 = 0.09) with
average (mean) μ and
positive parameter σ
determining the peak width.
Regardless of σ the area
under the curve equals one.
[Bottom] Standardized
normal distribution N (0, 1)

shown in Fig. 3.2 (top).
The definition domain itself makes it clear why the normal distribution is just an

approximation in many cases: body masses can not be negative and exam grades can
not be infinite. The distribution is symmetric around the value of μ, while the width
of its peak is driven by the standard deviation σ; at x = μ ± σ the function fX has
an inflection. The commonly accepted “abbreviation” for the normal distribution is
N (μ,σ2). In Chap.4 we will see that μ is its average or mean and σ2 is its variance.

The cumulative distribution function corresponding to density (3.7) is

FX (x) = P(X ≤ x) =
∫ x

−∞
fX (t) dt = 1

2

[
1 + erf

(
x − μ√

2σ

)]
,

where

erf(z) = 2√
π

∫ z

0
e−t2dt, erf(−z) = −erf(z), (3.8)

is the so-called error function which is tabulated (see TablesD.1 and D.2 and the text
below). The probability that a continuous random variable, distributed according to
the density (3.7), takes a value between a and b, is

P(a ≤ X ≤ b) = FX (b) − FX (a) = 1

2

[
erf

(
b − μ√

2σ

)
− erf

(
a − μ√

2σ

)]
. (3.9)

3.3.1 Standardized Normal Distribution

When handling normally distributed data it makes sense to eliminate the dependence
on the origin and the width by subtracting μ from the variable X and divide out σ,

http://dx.doi.org/10.1007/978-3-319-31611-6_4
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thereby forming a new, standardized random variable

Z = X − μ

σ
.

The distribution of Z is then called standardized normal and is denoted by N (0, 1)
(zero mean, unit variance). It corresponds to the probability density

fZ (z) = 1√
2π

e−z2/2, (3.10)

while the distribution function is

�(z) = P(Z ≤ z) = 1

2
+ 1√

2π

∫ z

0
e−t2/2 dt = 1

2

[
1 + erf

(
z√
2

)]
. (3.11)

The values of definite integrals of the standardized normal distribution

1√
2π

∫ z

0
e−t2/2dt = 1

2
erf

(
z√
2

)
(3.12)

for z between 0 and 5 in steps of 0.01, which is sufficient for everyday use, are listed
in TableD.1. The abscissas x = μ ± nσ or z = ±n (n = 1, 2, . . .) are particularly
important. The areas under the curve fZ (z) on these intervals,

Pnσ = P(μ − nσ ≤ X ≤ μ + nσ) = P(−n ≤ Z ≤ n) = erf

(
n√
2

)
,

are equal to

P1σ ≈ 0.683, P2σ ≈ 0.955, P3σ ≈ 0.997, P4σ ≈ 0.9999367 . . . (3.13)

(see Fig. 3.2 (bottom)) and tell us what fraction of the data (diameters, masses, exam
grades, velocities) iswithin these—completely arbitrary—intervals andwhat fraction
is outside. For example, if we establish a normal mass distribution of a large sample
of massless particles (smeared around zero due to measurement errors), while a few
counts lie above 3σ, one may say: “The probability that the particle actually has
a non-zero mass, is 0.3%.” But if the distribution of measurement error is indeed
Gaussian, then even the extreme 0.3% events in the distribution tail may be genuine!
However, by increasing the upper bound to 4σ, 5σ,… we can be more and more
confident that the deviation is not just a statistical fluctuation. In modern nuclear and
particle physics the discovery of a new particle, state or process the mass difference
or the signal-to-noise ratio must typically be larger than 5σ.
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Example (Adapted from [1].) The diameter of the computer disk axes is described
by a normally distributed random variable X = 2R with average μ = 0.63650 cm
and standard deviation σ = 0.00127 cm, as shown in the figure. The required spec-
ification (shaded area) is (0.6360 ± 0.0025) cm. Let us calculate the fraction of the
axes that fulfill this criterion: it is equal to the probability P(0.6335 cm ≤ X ≤
0.6385 cm), which can be computed by converting to the standardized variables
z1 = (0.6335 cm−μ)/σ = −2.36, corresponding to the lower specified bound, and
z2 = (0.6385 cm − μ)/σ = 1.57, which corresponds to the upper one. Hence the
probability is P(−2.36 ≤ Z ≤ 1.57) and can be computed by using the values from
TableD.1 (see also Fig.D.1):

P(−2.36 ≤ Z ≤ 1.57) = P(Z ≤ 1.57) − P(Z ≤ −2.36)

= P(Z ≤ 1.57) − [1 − P(Z ≤ 2.36)
]

= 1
2 + 0.4418 − [1 − ( 12 + 0.4909

)] = 0.9327.

If the machining tool is modified so as to produce the axes with the required diameter
of 0.6360 cm, but with the same uncertainty as before, σ, the standardized variables
become z2 = −z1 = (0.6335–0.6360 cm)/σ = 1.97, thus

P(z1 ≤ Z ≤ z2) = P(−z2 ≤ Z ≤ z2) = 2 P(0 ≤ Z ≤ z2) = 2 · 0.4756 = 0.9512.

The fraction of useful axes is thereby increased by about 2%.

3.3.2 Measure of Peak Separation

A practical quantity referring to the normal distribution is its full width at half-
maximum (FWHM), see double-headed arrow in Fig. 3.2 (top). It can be obtained
by simple calculation: fX (x)/ fX (0) = 1/2 or exp[−x2/(2σ2)] = 1/2, hence x =
σ
√
2 log 2. The FWHM is just twice this number,

FWHM = 2
√
2 log 2 σ ≈ 2.35σ.
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Fig. 3.3 Illustration of the measure of peak separation. The centers of the fourth and fifth peak
from the left are 0.3 apart, which is just slightly above the value of FWHM = 0.24 for individual
peaks, so they can still be separated. The three leftmost peaks can also be separated. The structure at
the right consists of two peaks which are too close to each other to be cleanly separated. In practice,
similar decisions are almost always complicated by the presence of noise

FWHM offers a measure of how well two Gaussian peaks in a physical spectrum
can be separated. By convention we can distinguish neighboring peaks with equal
amplitudes and equal σ if their centers are at least FWHM apart (Fig. 3.3).

3.4 Maxwell Distribution

The Maxwell distribution describes the velocities of molecules in thermal motion
in thermodynamic equilibrium. In such motion the velocity components of each
molecule, v = (vx , vy, vz), are stochastically independent, and the average velocity
(as a vector) is zero. The directions x , y and z correspond to kinetic energies mv2

x/2,
mv2

y/2 and mv2
z /2, and the probability density in velocity space at given temperature

T decreases exponentially with energy. The probability density for v is the product
of three one-dimensional Gaussian densities:

fV (v) =
(

1√
2π σ

)3

exp

(
−v2

x + v2
y + v2

z

2σ2

)
=
(

1

2πσ2

)3/2

exp

(
− v2

2σ2

)
,

(3.14)
where v2 = v2

x + v2
y + v2

z and σ2 = kBT/m. The distribution over v is spherically
symmetric, so the appropriate distribution in magnitudes v = |v| is obtained by
evaluating fV (v) in a thin spherical shell with volume 4πv2dv, thus

fV (v) = dFV

dv
=
(

m

2πkBT

)3/2

4πv2 exp

(
− mv2

2kBT

)
. (3.15)

An example of such distribution for nitrogen molecules at temperatures 193 and
393K is shown in Fig. 3.4 (left).
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Fig. 3.4 [Left] Maxwell distribution of velocities of nitrogen molecules at T = 193K and T =
393K. See also Fig. 4.1 (right) and Problem3.10.4. [Right] Pareto distribution with parameters
b ≡ xmin (minimum value on the abscissa) and a (shape parameter)

3.5 Pareto Distribution

Probability distributions of many quantities that can be interpreted as random vari-
ables have relatively narrow ranges of values. The height of an average adult, for
example, is 180 cm, but nobody is 50 or 500 cm tall. The data acquired by the WHO
[8] show that the body mass index (ratio of the mass in kilograms to the square of
the height in meters) is restricted to a range between ≈15 and ≈50.

But one also frequently encounters quantities that span many orders of magni-
tude, for example, the number of inhabitants of human settlements (ranging from
a few tens in a village to tens of millions in modern city conglomerates). Similar
“processes” with a large probability for small values and small probability for large
values are: frequency of specific given names, size of computer files, number of
citations of scientific papers, number of web-page accesses and the quantities of
sold merchandise (see Example on p.97), but also quantities measured in natural
phenomena, like step lengths in randomwalks (anomalous diffusion), magnitudes of
earthquakes, diameters of lunar craters or the intensities of solar X-ray bursts [9–11].
A useful approximation for the description of such quantities is the Pareto (power
law) distribution with the probability density

fX (x) = aba

xa+1
= a

b

(
b

x

)a+1

, 0 < b ≤ x, (3.16)

where b is the minimal allowed x (Fig. 3.4 (right)), and a is a parameter which
determines the relation between the prominence of the peak near the origin and the
strength of the tail at large x . It is this flexibility in parameters that renders the Pareto
distribution so useful in modeling the processes and phenomena enumerated above.
As an example, Fig. 3.5 (left) shows the distribution of the lunar craters in terms

http://dx.doi.org/10.1007/978-3-319-31611-6_4
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Fig. 3.5 [Left] Distribution of lunar craters with respect to their diameter, as determined by
researchers of the Lunar Orbiter Laser Altimeter (LOLA) project [12, 13] up to 2011. [Right]
The distribution of hard X-rays in terms of their intensity, measured by the Hard X-Ray Burst
Spectrometer (HXRBS) between 1980 and 1989 [14]. The straight lines represent the approxi-
mate power-law dependencies, also drawn in the shaded areas, although the Pareto distributions
commence only at their right edges (x ≥ xmin)

of their diameter, and Fig. 3.5 (right) shows the distribution of solar X-ray bursts in
terms of their intensity.

The Pareto distribution is normalized on the interval [b,∞) and frequently one
does not use its distribution function FX (x) = P(X ≤ x) but rather its complement,

1 − FX (x) = P(X > x) =
∞∫

x

fX (t) dt = aba

∞∫

x

dt

ta+1
=
(

b

x

)a

, x ≥ b,

(3.17)
as it is easier to normalize and compare it to the data: the ordinate simply specifies
the number of data points (measurements, events) that were larger than the chosen
value on the abscissa. By plotting the data in this way, one avoids histogramming in
bins, which is not unique. The values xmin = b should not be set to the left edge of the
interval onwhichmeasurements are available (e.g. 20m inLOLAmeasurements), but
to the value above which the description in terms of a power-law appears reasonable
(≈50m). The parameter a can be determined by fitting the power function to the
data, but in favor of better stability [9] we recommend the formula

a = n

[
n∑

i=1

log
xi

b

]−1

,

which we derive later ((8.11)).

Hint If we wish to plot the cumulative distribution for the data {xi , yi }n
i=1, we can

use the popular graphing toolGnuplot. We first sort the data, so that xi are arranged

http://dx.doi.org/10.1007/978-3-319-31611-6_8
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in increasing order (two-column file data). The cumulative distribution can then be
plotted by the command

gnuplot > plot "data" using 1 : ($0/n) with lines

3.5.1 Estimating the Maximum x in the Sample

Having at our disposal a sample of n measurements presumably originating from
a power-law distribution with known parameters a and b, a simple consideration
allows us to estimate the value of the largest expected observation [9]. Since we
are dealing with a continuous distribution, we should refer to the probability that its
value falls in the interval [x, x + dx]. The probability that a data point is larger than
x , is given by (3.17), while the probability for the opposite event is 1 − P(X > x).
The probability that a particular measurement will be in [x, x + dx] and that all
others will be smaller is therefore [1− P(X > x)]n−1 fX (x) dx . Because the largest
measurement can be chosen in n ways, the total probability is

n [1 − P(X > x)]n−1 fX (x) dx .

The expected value of the largest measurement—such quantities will be discussed
in the next chapter—is obtained by integrating x , weighted by the total probability,
over the whole definition domain:

xmax = n
∫ ∞

b
x fX (x) [1 − P(X > x)]n−1 dx = na

∫ ∞

b

(
b

x

)a [
1 −

(
b

x

)a]n−1

dx

= nb
∫ 1

0
tn−1(1 − t)−1/a dt = nb B

(
n,

a − 1

a

)
,

where B(p, q) is the beta function. We have substituted t = 1 − (b/x)a in the
intermediate step. For the sample in Fig. 3.5 (left), which contains n = 1513 data
points, a = 2.16 and b = 0.05 km, we obtain xmax ≈ 2.5 km. If the sample were ten
times as large, we would anticipate xmax ≈ 7.1 km.

3.6 Cauchy Distribution

The Cauchy distribution with probability density

fX (x) = 1

π

1

1 + x2
, −∞ < x < ∞, (3.18)
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is already familiar to us from the Example on p.41. In fact, we should have discussed
it along with the exponential, as the Fourier transform of the exponential function in
the time scale is the Cauchy function in the energy scale:

g(t) = e−|t |/τ =⇒ 1

2π

∫ ∞

−∞
g(t) e−i 2πνt dt = 1

π

1/τ

(1/τ )2 + 4π2ν2
. (3.19)

In other words, the energy distribution of the states decaying exponentially in time
is given by the Cauchy distribution. It is therefore suitable for the description of
spectral line shapes in electromagnetic transitions of atoms and molecules (Fig. 3.6
(left)) or for modeling the energy dependence of cross-sections for the formation of
resonances in hadronic physics (Fig. 3.6 (right)). With this in mind, it makes sense
to furnish it with the option of being shifted by x0 and with a parameter s specifying
its width:

fX (x; x0, s) = 1

π

s

s2 + (x − x0)2
. (3.20)

In spectroscopy the Cauchy distribution is also known as the Lorentz curve, while
in the studies of narrow, isolated resonant states in nuclear and particle physics it is
called the Breit–Wigner distribution: in this case it is written as

f (W ; W0, �) = 1

π

�/2

(W − W0)2 + �2/4
,

where W0 is the resonance energy and � is the resonance width.

Fig. 3.6 [Left] A spectral line in the emission spectrum of silicon (centered at λ = 254.182 nm)
at a temperature of 19,000K and particle density 5.2 × 1022/m3 [15], along with the Cauchy
(Lorentz) approximation. Why the agreement with the measured values is imperfect and how it can
be improved will be revealed in Problem6.9.2. [Right] Energy dependence of the cross-section for
scattering of charged pions on protons. In this process a resonance state is formed whose energy
distribution in the vicinity of the maximum can also be described by the Cauchy (Breit–Wigner)
distribution

http://dx.doi.org/10.1007/978-3-319-31611-6_6
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Fig. 3.7 The density of the χ2 distribution for four different parameters (degrees of freedom) ν.
The maximum of the function fχ2 (x; ν) for ν > 2 is located at x = ν − 2. For large ν the χ2

density converges to the density of the normal distribution with average ν − 2 and variance 2ν. The
thin curve just next to fχ2 (x; 10) denotes the density of the N (8, 10) distribution

3.7 The χ2 distribution

The χ2 distribution, a one-parameter probability distribution with the density

fχ2(x; ν) = 1

2ν/2

1

�
(
ν/2
) xν/2−1e−x/2, x > 0, (3.21)

will play its role in the our discussion on statistics (Chaps. 7–10). The parameter
ν is called the number of degrees of freedom. The probability density of the χ2

distribution for four values of ν is shown in Fig. 3.7. The corresponding distribution
function is

Fχ2(x; ν) = P (X ≤ x) = 1

2ν/2

1

�
(
ν/2
)
∫ x

0
tν/2−1e−t/2 dt.

In practical work one usually does not need this definite integral but rather the answer
to the opposite question, the cut-off value x at given P . These values are tabulated:
see Fig.D.1 (top right) and TableD.3.

3.8 Student’s Distribution

The Student’s distribution (or the t distribution)2 is also a one-parameter probability
distribution that we shall encounter in subsequent chapters devoted to statistics. Its
density is

2The Student’s distribution acquired its first peculiar name from a paper [16] that an English sta-
tistician W.S. Gosset published under the pseudonym Student, and the second one from a specific
random variable (see formula (7.18)).

http://dx.doi.org/10.1007/978-3-319-31611-6_7
http://dx.doi.org/10.1007/978-3-319-31611-6_10
http://dx.doi.org/10.1007/978-3-319-31611-6_7
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Fig. 3.8 The density of the Student’s (t) distribution with ν = 1, ν = 4 and ν = 20 degrees of
freedom. The distribution is symmetric about the origin and approaches the standardized normal
distribution N (0, 1) with increasing ν (thin curve), from which it is hardly discernible beyond
ν ≈ 30

fT (x; ν) = 1√
ν B

(
ν
2 ,

1
2

)
(
1 + x2

ν

)−(ν+1)/2

, −∞ < x < ∞, (3.22)

where ν is the number of degrees of freedom and B is the beta function. The graphs
of its density for ν = 1, ν = 4 and ν = 20 are shown in Fig. 3.8. In the limit ν → ∞
the Student’s distribution tends to the standardized normal distribution.

3.9 F distribution

The F distribution is a two-parameter distribution with the probability density

fF (x; ν1, ν2) =
(

ν1

ν2

)ν1/2 �
(
(ν1 + ν2)/2

)

�
(
ν1/2

)
�
(
ν2/2

) xν1/2−1

(
1 + ν1

ν2
x

)−(ν1+ν2)/2

, (3.23)

where ν1 is the number of degrees of freedom “in the numerator” and ν2 is the number
of degrees of freedom “in the denominator”. Why this distinction is necessary will
become clear in Sect. 7.2.3: there we shall compare ratios of particular random vari-
ables, distributed according to (3.23). The probability densities of the F distribution
are shown in Fig. 3.9 for several typical (ν1, ν2) pairs.

3.10 Problems

3.10.1 In-Flight Decay of Neutral Pions

A complicated transformation of a uniform distribution may still turn out to be a
uniform distribution, as we learn by solving the classical problem in relativistic

http://dx.doi.org/10.1007/978-3-319-31611-6_7
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Fig. 3.9 [Left] The probability density of the F distribution for ν1 = 10 degrees of freedom
(numerator) and three different degrees of freedom ν2 (denominator). [Right] The density of the F
distribution for ν2 = 10 and three different values of ν1

kinematics, the in-flight neutral pion decay to two photons, π0 → γ + γ. Calculate
the energy distribution of the decay photons, dN/dEγ!

✎ Let the π0 meson fly in the laboratory frame along the z-axis with velocity vπ .
The decay in the π0 rest frame is isotropic. Due to azimuthal symmetry (φ) this
implies a uniform distribution over the cosine of the angle θ∗ (see Sect.C.2.2):

f (cos θ∗) = dN

d(cos θ∗)
= 1

2
, −1 ≤ cos θ∗ ≤ 1,

where θ∗ is the emission angle of the first photon in the rest frame, as shown in the
figure:

The energy distribution of the photons is obtained by the derivative chain-rule:

dN

dEγ
= dN

d(cos θ∗)
d(cos θ∗)
dEγ

= 1

2

d(cos θ∗)
dEγ

. (3.24)

We therefore need to establish a relation between θ∗ and Eγ , and it is offered by the
Lorentz transformation from the π0 rest frame to the laboratory frame. Of course,
the energies of the photons in the rest frame are equal, E∗

γ,1 = E∗
γ,2 = E∗

γ = p∗
γc =

mπc2/2, and their four-vectors are

(
E∗

γ,i , p∗
γx,i c, p∗

γy,i c, p∗
γz,i c

) = 1
2mπc2

(
1,± sin θ∗, 0,± cos θ∗), i = 1, 2.
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The Lorentz transformation that gives us their energies in the laboratory frame is

Eγ,i = γE∗
γ,i + γβ p∗

γz,i c = 1
2mπc2γ

(
1 ± β cos θ∗),

where β = vπ/c = pπc/Eπ and γ = 1/
√
1 − β2 = Eπ/(mπc2). It follows that

dEγ,i

d(cos θ∗)
= 1

2mπc2γβ = 1
2 pπc

i.e.
d(cos θ∗)
dEγ

= 2

pπc
.

When this is inserted in (3.24), we obtain the required energy distribution, which is
indeed uniform:

dN

dEγ
= 1

pπc
,

namely on the interval between the minimal and maximal values

Emin
γ = 1

2 (Eπ − pπc) = 1
2 Eπ(1 − β), Emax

γ = 1
2 (Eπ + pπc) = 1

2 Eπ(1 + β).

Let us check our findings by a simple simulation, observing the decay of pions with
a velocity of 0.7c (β = 0.7). We use a computer to generate 100000 uniformly
distributed values −1 ≤ cos θ∗ ≤ 1 (Fig. 3.10 (left)), and then use each of these
values to calculate the photon energies in the laboratory frame, Eγ,1 and Eγ,2. A
uniform distribution over Eγ on the interval between Emin

γ and Emax
γ should appear.

It can be seen in Fig. 3.10 (right) that we were not mistaken.

Fig. 3.10 The π0 → γ + γ decay. [Left] Uniform distribution of events over cos θ∗ in the π0 rest
frame. [Right] Uniform energy distribution of the decay pions in the laboratory frame
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3.10.2 Product of Uniformly Distributed Variables

(Adapted from [17].) Let two continuous random variables X and Y be described by
a known probability density fX,Y (x, y). ① Calculate the probability density fZ (z)
of the product random variable Z = XY in the most general case and in the case
that X and Y are independent. ② Discuss the special case of independent variables
X and Y , both of which are uniformly distributed on the interval (0, 1).

✎ Define the domain D = {(x, y) : xy < z} (shown for positive z as the shaded
region in the figure) which determines the distribution function of the variable Z :

P
(
(X, Y ) ∈ D

) = FZ (z) =
∫ ∞
0

dy
∫ z/y

−∞
fX,Y (x, y) dx +

∫ 0

−∞
dy
∫ ∞

z/y
fX,Y (x, y) dx .

To facilitate the determination of integration boundaries, the intervals of four integra-
tions in this equation—read from left to right—are denoted by numbers 1 to 4 in the
figure. (The derivation for negative z proceeds analogously.) ① The corresponding
probability density is then obtained by differentiation:

fZ (z) = dFZ (z)

dz
=
∫ ∞

0

1

y
fX,Y

(
z

y
, y

)
dy −

∫ 0

−∞
1

y
fX,Y

(
z

y
, y

)
dy.

If X and Y are independent, possessing probability densities fX (x) and fY (y), one
has fX,Y (x, y) = fX (x) fY (y), thus

fZ (z) =
∫ ∞

0

1

y
fX

(
z

y

)
fY (y) dy −

∫ 0

−∞
1

y
fX

(
z

y

)
fY (y) dy. (3.25)

② The product of uniformly distributed variables X and Y is always positive and less
than 1, hence the probability density fZ (z) of the variable Z = XY may be non-zero
only on the interval (0, 1). On this interval it can be determined by using (3.25), in
which only the first term survives due to this very requirement, and even here the
integrand is positive only if 0 < z/y < 1 and 0 < y < 1, i.e. when z < y < 1. It
follows that
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fZ (z) =
∫ 1

z

dy

y
= − log z, 0 < z < 1,

while fZ (z) = 0 elsewhere.

3.10.3 Joint Distribution of Exponential Variables

Let X and Y be independent random variables distributed exponentially with para-
meters λ1 = 1 and λ2 = 3,

fX (x) = λ1 e
−λ1x , fY (y) = λ2 e

−λ2 y, x, y ≥ 0.

Imagine a square region S = [0, a] × [0, a]. ① Calculate the value of a, for which
the probability that a randomly drawn (x, y) pair falls into S, equals 1/2.② Calculate
the conditional joint probability density of the variables X and Y , given that X ≥ a
and Y ≥ a.

✎ The variables X and Y are independent, hence their joint probability density is

fX,Y (x, y) = fX (x) fY (y) = λ1λ2 e
−λ1xe−λ2 y, x, y ≥ 0.

The probability that a random pair of values (x, y) finds itself in S, equals

Paa ≡ P
(
0 ≤ X ≤ a, 0 ≤ Y ≤ a

) =
∫ a

0

∫ a

0
fX,Y (x, y) dx dy =

(
1 − e−λ1a

) (
1 − e−λ2a

)
.

① We are looking for a such that Paa = 1/2. This equation is best solved by
Newton’s method, in spite of its known pitfalls: with the function f (x) = (1 −
e−λ1x )(1− e−λ2x )−1/2 (plot it!) and its derivative f ′(x) = λ1e−λ1x +λ2e−λ2x −(λ1+
λ2)e−(λ1+λ2)x we start the iteration xn+1 = xn − f (xn)/ f ′(xn), n = 0, 1, 2, . . . With
the initial approximation x0 = 0.5 just a few iteration steps lead to a = x∞ ≈ 0.7987.

② We first form the conditional distribution function

FX,Y
(
x, y|X ≥ a, Y ≥ a

) = P
(
X ≤ x, Y ≤ y|X ≥ a, Y ≥ a

)

= P
(
a ≤ X ≤ x ∩ a ≤ Y ≤ y

)

P
(
X ≥ a ∩ Y ≥ a

) = P(a ≤ X ≤ x)P(a ≤ Y ≤ y)

P(X ≥ a)P(Y ≥ a)

=
∫ y

a dv
∫ x

a fX,Y (u, v) du
∫∞

a dv
∫∞

a fX,Y (u, v) du
=
(
e−λ1a − e−λ1x

)(
e−λ2a − e−λ2 y

)

e−λ1ae−λ2a
,

where we have taken into account that X and Y are independent. The probability
density can then be calculated by differentiating FX,Y with respect to x and y:

fX,Y
(
x, y|X ≥ a, Y ≥ a

) = ∂2

∂x∂y
FX,Y

(
x, y|X ≥ a, Y ≥ a

) = λ1λ2e
−λ1(x−a)e−λ2(y−a).
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We should also check the normalization which must be fulfilled—as for any proba-
bility density—also for the calculated conditional density. Indeed we find

∫ ∞

a

∫ ∞

a
fX,Y

(
x, y|X ≥ a, Y ≥ a

)
dx dy = 1,

where [a,∞]2 is the definition domain of the conditional joint probability density.

3.10.4 Integral of Maxwell Distribution over Finite Range

What fraction of nitrogen (N2) molecules at temperature T = 393K have velocities
between v1 = 500 and v2 = 1000m/s, if the velocity distribution is of the Maxwell
type (see Fig. 3.4 (left))?

✎ Let us rewrite (3.15) in a slightly more compact form

fV (v) =
√
16α3

π
v2 e−αv2 , α =

√
m

2kBT
.

The required fraction of molecules is equal to the definite integral of the probability
density from v1 to v2,

P(v1 ≤ V ≤ v2) =
∫ v2

v1

fV (v) dv =
√
16α3

π

∫ v2

v1

v2 e−αv2 dv.

Such integrals are typically handled by resorting to integration by parts, in which the
power of the variable x in the integrand is gradually reduced:

∫
xn e−αx2

dx = − 1

2α

∫
xn−1(−2αx) e−αx2

dx

= − 1

2α

[
xn−1 e−αx2 −

∫
(n − 1)xn−2 e−αx2

dx

]
.

In our case we only need the integral with n = 2, therefore

I (v) =
v∫

0

x2 e−αx2 dx = 1

2α

v∫

0

e−αx2 dx − 1

2α
v e−αv2 =

√
π

4α3/2 erf
(√

α v
)− v

2α
e−αv2 .

From TableD.2 we read off erf(
√

αv1) ≈ 0.4288 and erf(
√

αv2) ≈ 0.4983, and all
that is needed is to merge the expressions to
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P(v1 ≤ V ≤ v2) =
√
16α3

π

[
I (v2) − I (v1)

] ≈ 0.5065.

(The result by computing the erf functions accurately is 0.5066.)

3.10.5 Decay of Unstable States and the Hyper-exponential
Distribution

Organic scintillator is a material in which charged particles promote electrons to
excited states,which get rid of the excess energy by photon emission. The time depen-
dence of the intensity of emitted light can be approximated by a sum of two indepen-
dent excitation mechanisms (occurring almost instantaneously) and de-excitations
proceeding with two different decay times, as shown in Fig. 3.11. ① Write down
the corresponding probability density and the functional form of the decay curve.
② Generalize the expressions to multiple time components. Does the same physical
picture apply to a mixture of radioactive isotopes, if each of them has only a single
decay mode?

✎ The mechanisms of light generation in scintillators are poorly understood, but
the predominant opinion seems to be that the type of relaxation (fast or slow) is
determined already during excitation.① We are thus dealing with exclusive (incom-
patible) events, hence the probability density is

fT (t) = Pλ1 e
−λ1t + (1 − P)λ2 e

−λ2t .

The time dependence of the light curve is then given by the distribution function:

N (t)/N0 = 1 − FT (t) = 1 −
∫ t

0
fT (t ′) dt ′ = P e−λ1t + (1 − P) e−λ2t .

Fig. 3.11 Typical time dependence of a light pulse emanating from an organic scintillator: in
this case, the total intensity consists of a fast relaxation component with decay time τ1 = 30 ns
(frequency 70%) and a slow one with decay time τ2 = 150 ns (30%)
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② Obviously one can generalize this to multiple (k) time components by writing

fT (t) =
k∑

i=1

Piλi e
−λi t ,

k∑

i=1

Pi = 1. (3.26)

The distribution with such probability density is known as the k-phase hyper-
exponential distribution. It can be used to model the superposition of k independent
events, e.g. the response time of a system of k parallel computer servers, in which the
i th server is assignedwith probability Pi to handle our request, and the distribution of
its service time is exponential with parameter λi (Fig. 3.12 (left)). Such a distribution
also describes the lifetime of a product manufactured on several parallel assembly
lines or in factories with different levels of manufacturing quality.

At first sight, radioactive decay in a sample containing various isotopes (for exam-
ple, a mixture of 137Cs, 235U and 241Am) resembles such a k-phase process. But the
key difference is that the decays of individual isotopes are not mutually exclusive:
in a chosen time interval �t we might detect the decay of a single isotope, two, or
all three. In this case the hyper-exponential distribution is not justified.

Similar conclusions can be drawn for the decay of unstable particles with multiple
decay modes, each occurring with a distinct probability. Suppose that particle X
decays into the final state A consisting of two or more lighter particles. The usual
decay law (3.5) applies:

ṄX→A(t) = −λAN (t).

If multiple final states A,B,C, . . . are allowed, we must sum over all contributions:
the time derivative of the number of particles still available for decay at time t is

Ṅ (t) = ṄX→anything(t) = ṄX→A(t)+ṄX→B(t)+· · · = −(λA+λB+· · · )N (t) ≡ −λN (t).

Fig. 3.12 [Left] A set of k parallel independent processes (“phases”) with a single output, described
by the hyper-exponential distribution. [Right] An illustration of the decay modes of a sample of
unstable particles



88 3 Special Continuous Probability Distributions

The extinction of N is therefore driven by a single time constant, λ = λA+λB+· · · !
Just prior to the decay, Nature does not think about the type of the final state, but
rather just chooses the time of the decay by exponential law with parameter λ,

N (t) = N0 e
−λt = N0 e

−t/τ ,

where τ is the average decay time. Instead of τ we sometimes prefer to specify the
conjugated variable in the Heisenberg sense (time and energy, position and linear
momentum, angle and angular momentum), known as the total decay width:

� = �

τ
= �λ = �

(
λA + λB + · · · ) = �A + �B + · · · .

The total width � is a sum of the partial widths �A, �B, . . . It is only at the very
moment of decay that the particle randomly “picks” a certain final state. The proba-
bilities for the transitions to specific final states can be expressed by branching ratios
or branching fractions: for individual decay modes we have

BrA = ṄX→A

ṄX→anything
= �A

�
, BrB = �B

�
, BrC = �C

�
, . . . (3.27)

Conservation of probability (a particle must decay into some final state after all) of
course ensures

BrA + BrB + BrC + · · · = 1.

As an example, Table3.1 shows the partial widths and branching fractions in the
decay of the Z0 bosons produced in collisions of electrons and positrons at invariant
energies around 91GeV; see Fig. 3.12 (right). From the total decaywidthwe compute
the average decay time τ = �/� ≈ 2.6 × 10−25s. The energy dependence of the
Z0 resonance is described by the Breit-Wigner distribution (Fig. 3.6 (right)) with the
center at approximately 91.2GeV and a width of about 2.5GeV.

Table 3.1 The dominant decay modes of the Z0 boson, the corresponding partial decay widths and
the branching fractions

Decay mode Width (MeV) Branching fraction (%)

Z0 → e+e− 83.9 ± 0.1 3.363 ± 0.004

Z0 → μ+μ− 84.0 ± 0.1 3.366 ± 0.007

Z0 → τ+τ− 84.0 ± 0.1 3.367 ± 0.008

Z0 → νlνl (l = e,μ, τ ) 499.0 ± 1.5 20.00 ± 0.66

Z0 → qq (hadrons) 1744.4 ± 2.0 69.91 ± 0.06

Z0 → anything 2495.2 ± 2.3 100
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3.10.6 Nuclear Decay Chains and the Hypo-exponential
Distribution

In nuclear decay chains an unstable nucleus decays with characteristic time τ1 to a
lighter nucleus, which in turn decays with characteristic time τ2 to an even lighter
nucleus, and so on. Such decay chains with consecutive emissions (mostlyα particles
or electrons) are typical of heavy nuclei. Figure3.13 (left) shows a segment of the
uranium decay chain where each subsequent isotope has a single decay mode, but
with a different characteristic time. Find the probability distribution to describe such
processes!

✎ Suppose that the decay chain is initiated by type 1 isotopes with no daughter
nuclei present at time zero, and that no other isotope decays into this type. The time
evolution of the decay chain is then governed by the set of differential equations

Ṅ1 = −λ1N1,

Ṅ2 = −λ2N2 + λ1N1,

Ṅ3 = −λ3N3 + λ2N2,

· · · = · · · ,

Fig. 3.13 [Left] A segment of the uranium decay chain where only one type of decay is allowed
at each stage. [Center] Depiction of k serial processes with a single output, described by the hypo-
exponential distribution. [Right] Illustration of a nuclear decay chain; compare it to Fig. 3.12 (right)
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with initial conditions

N1(0) = N0, N2(0) = N3(0) = · · · = 0.

We already know the solution of the first line:

N1(t) = N0 e
−λ1t .

The next component of the chain is obtained by first multiplying the second line of
the system by eλ2t and exploiting the previously calculated solution for N1(t),

eλ2t Ṅ2(t) = −λ2 e
λ2t N2 + λ1N0 e

(λ2−λ1)t .

We move the first term on the right to the left,

eλ2t Ṅ2(t) + λ2 e
λ2t N2 = (eλ2t N2(t)

)· = λ1N0 e
(λ2−λ1)t ,

and integrate to get

eλ2t N2(t) = λ1

λ2 − λ1
N0 e

(λ2−λ1)t + C.

The constant C is dictated by the condition N2(0) = 0, whence C = −λ1N0/(λ2 −
λ1) and

N2(t) = λ1

λ1 − λ2
N0
[
e−λ2t − e−λ1t

]
.

The same trick can be used to obtain the remaining elements of the chain: in the i th
line of the system we always multiply Ṅi by eλi t , carry over −λi eλi t Ni to the left
where it can be joined with its neighbor into a derivative of a product, grab the result
from the previous step, and integrate. For the third element of the chain, for example,
we obtain

N3(t) = λ1λ2N0

[
e−λ1t

(λ2 − λ1)(λ3 − λ1)
+ e−λ2t

(λ1 − λ2)(λ3 − λ2)
+ e−λ3t

(λ1 − λ3)(λ2 − λ3)

]
.

It is obvious that this can be generalized to

Nk(t) =
k∑

i=1

⎛

⎜⎝
k∏

j=1
j �=i

λ j

λ j − λi

⎞

⎟⎠λi e
−λi t , (3.28)

except that we must replace λk → N0 in the numerator of all fractions. Such a distri-
bution, which in general describes a sum of independent, exponentially distributed
variables, each with its own parameter λi , is called hypo-exponential.
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Chapter 4
Expected Values

Abstract Finding expected values of distributions is one of the main tasks of any
probabilistic analysis. The expected value in the narrower sense of the average
(mean), which is a measure of distribution location, is introduced first, followed
by the related concepts of the median and distribution quantiles. Expected values of
functions of random variables are presented, as well as the variance as the primary
measure of the distribution scale. The discussion is extended to moments of distri-
butions (skewness, kurtosis), as well as to two- and d-dimensional generalizations.
Finally, propagation of errors is analyzed.

In this chapter we discuss quantities that one may anticipate for individual ran-
dom variables or their functions—with respect to the probability distributions of
these variables—after multiple repetitions of random experiments: they are known
as expected values or expectations of random variables. The most important such
quantity is the average value, which is the expected value in the basic, narrowest
sense of the word; further below we also discuss other expected values in the broader
sense.

4.1 Expected (Average, Mean) Value

The expected value of a discrete random variable X, which can assume the values xi
(i = 1, 2, . . .), is computed by weighting (multiplying) each of these values by the
probability P(X = xi) = fX(xi) that in a large number of trials this particular value
turns up (see (2.13)), then sum all such products:

X = E[X] =
n∑

i=1

xi P(X = xi). (4.1)

The average is denoted by E or by a line across the random variable (or its function)
being averaged. Both E[X] and X , as well as the frequently used symbol μX imply
the “averaging operation” performed on the variable X. (We emphasize this because

© Springer International Publishing Switzerland 2016
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we occasionally also use the slightly misleading expression “expected value of a
distribution”: what usually changes in random processes is the value of a variable,
not its distribution!) In Chaps. 4–6 the symbols

E[X], X, μX , (4.2)

signify the one and the same thing, while in Chaps. 7–10 the symbols X and x will
denote the average value of a sample and E[•]will be used strictly as expected value.
The only symbol that really would not make any sense, is E[x].

It can not hurt to recall the formula to compute the center of mass of a one-
dimensional system of point-like masses with a total mass M = ∑n

i=1 mi:

xcm =
∑n

i=1 ximi∑n
i=1 mi

=
n∑

i=1

xi
mi

M
.

If all probabilities in (4.1) are equal, we get a simple expression for the usual arith-
metic average

x = 1

n

n∑

i=1

xi.

The expected value of a continuous random variable X is obtained by replacing
the sum by the integral and integrating the product of the variable value x and the
corresponding probability density over the whole definition domain,

X = E[X] =
∫ ∞

−∞
x fX(x) dx. (4.3)

(Beware: this expected value may not exist for certain types of densities fX .) The
analogy from mechanics is again the center of mass of a three-dimensional inhomo-
geneous body, which is calculated by integrating the product of the position vector
with the position-dependent density over the whole volume:

rcm = r = 1

m

∫

V
r dm = 1

m

∫

V
rρ(r) d3r.

Example In a casino we indulge in a game of dice with the following rules for
each throw: 2 spots—win 10e; 4 spots—win 30e; 6 spots—lose 20e; 1 spot, 3
spots or 5 spots—neither win nor lose. Any number of spots xi is equally probable,
P(X = xi) = 1

6 , so the expected value of our earnings is

E[X] = 1
60e + 1

610e + 1
60e + 1

630e + 1
60e + 1

6 (−20)e ≈ 3.67e.

If the casino wishes to profit from this game, the participation fee should be at least
this much. �

http://dx.doi.org/10.1007/978-3-319-31611-6_6
http://dx.doi.org/10.1007/978-3-319-31611-6_7
http://dx.doi.org/10.1007/978-3-319-31611-6_10
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4.2 Median

Themedian of a random variable X (discrete or continuous) is the value x = med[X],
for which

P(X < x) ≤ 1
2 and P(X > x) ≤ 1

2 . (4.4)

For a continuous variable X the inequalities become equalities,

P(X < x) = P(X > x) = 1
2 ⇐⇒ med[X] = F−1

X (1/2),

as it is always possible to find the value of x that splits the area under the probability
density curve in two halves: the probabilities that X assumes a value above or below
the median, respectively, are exactly 50%.

The median of a discrete variable X sometimes can not be determined uniquely,
since the discrete nature of its distribution may cause the inequalities in (4.4) to be
fulfilled simultaneously, but for many different x. For example, consider a discrete
distribution with probability function fX(x) = 1/2x, where x = 1, 2, . . . We see
that P(X < x) = P(X > x) = 1

2 holds for any value 1 ≤ x ≤ 2. In such cases
the median is defined as the central point of the interval on which the assignment is
ambiguous—in the present example we therefore set it to med[X] = 1.5.

Example A continuous random variable has the probability density

fX(x) =
⎧
⎨

⎩

4x(9 − x2)

81
; 0 ≤ x ≤ 3,

0 ; elsewhere,
(4.5)

shown in Fig. 4.1 (left). Find the mode (location of maximum), median and the
average (mean) of this distribution!

Fig. 4.1 [Left] Probability density fX (see (4.5)) with its average, median and mode (maximum).
[Right] Maxwell distribution with its mode (“most probable velocity”), average velocity and the
root-mean-square velocity. See also Fig. 3.4 (left)

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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The mode is obtained by differentiating and setting the result to zero:

dfX
dx

∣∣∣∣
Xmax

= 36 − 12X2
max

81
= 0 =⇒ Xmax = √

3 ≈ 1.73.

The median med[X] ≡ amust split the area under the curve of fX in two parts of 1/2
each, thus

P (X < a) = P (X > a) = 4

81

∫ a

0
x
(
9 − x2

)
dx = 4

81

(
9a2

2
− a4

4

)
≡ 1

2
.

This results in the quadratic equation 2a4 − 36a2 + 81 = 0 with two solutions,
a2 = 9(1± √

2/2). Only the solution with the negative sign is acceptable as it is the
only one that falls within the [0, 3] domain:

med[X] =
√
a2 =

√
9(1 − √

2/2) ≈ 1.62.

The average is calculated by using the definition (4.3),

X =
∫ 3

0
x fX(x) dx = 4

81

∫ 3

0
x2
(
9 − x2

)
dx = 4

81

(
3x3 − x5

5

)∣∣∣∣
3

0

≈ 1.60.

All three values are shown in Fig. 4.1 (left). �

4.3 Quantiles

The value of a random variable, below which a certain fraction of all events are
found after numerous trials, is called the quantile of its distribution (lat. quantum,
“howmuch”). For a continuous probability distribution this means that the integral of
the probability density from −∞ to xα equals α (Fig. 4.2). For example, the 0.50th
quantile of the standardized normal distribution is x0.50 = 0, while its 0.9985th
quantile is x0.9985 ≈ 3, see (3.13).

To express the αth quantile all values 0 ≤ α ≤ 1 are allowed, but several brethren
terms are in wide use for specific values of α: integer values (in percent) express
percentiles, the tenths of the whole range ofα are delimited by deciles and the fourths
by quartiles: x0.20 defines the 20th percentile or the second decile of a distribution,
x0.25 and x0.75 set the limits of its first and third quartile. Hence, x0.50 carries no less
than five names: it is the 0.50th quantile, the 50th percentile, the second quartile, the
fifth decile and—the median. The difference x0.75 − x0.25 is called the inter-quartile
range (IQR). The interval [x0.25, x0.75] contains half of all values; a quarter of them
reside to its left and a quarter to its right.

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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Fig. 4.2 Definition of the quantile of a continuous distribution. The integral of the density fX (x)
from −∞ (or the lowest edge of its domain) to x = xα equals α. The figure shows the density

fX (x) = 21
32

(
x − 1

2

)2( 5
2 − x

)5, 0.5 ≤ x ≤ 2.5, the corresponding distribution function, and the 90th
percentile (α = 0.90), which is xα = 1.58

Fig. 4.3 [Left] Daily sales of fiction books as a function of sales rank. [Right] Daily earnings as a
function of sales rank. In the book segment the online giant earns 50% by selling books with sales
ranks above med[R] ≈ 53, while the average sales rank is r ≈ 135

Example Fig. 4.3 (left) shows the daily sales of fiction books from the 1000 bestseller
list (sales rank r) of theAmazon online bookstore in a certain time period. (Note the
log-log scale: in linear scale the distribution has a sharp peak at r = 1 and a rapidly
dropping tail, so it mostly occupies the region around the origin.)

To study the sales dynamics such discrete distributions are often approximated
by continuous Pareto distributions (3.16). For many markets in the past, the “Pareto
80/20 principle” seemed to apply, stating that a relatively small fraction (≈20%) of
products (in our case best-selling books) brings the most (≈80%) profit. Figure4.3
(right) shows the daily earnings as a function of sales rank, as well as the median,
average rank, and the sales rank up to which Amazon earns 80% of the money: the
latter is 234 (of 1000), neatly corresponding with the Pareto “principle”. Still, it is
obvious from the graph that the Pareto distribution under-estimates the actual sales
at high ranks r. Analyses show [1, 2] that the distribution n(r) has become flatter
over the years, meaning that more and more profit is being squeezed from the ever
increasing tail; see also [3]. �

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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4.4 Expected Values of Functions of Random Variables

The simplest functions of random variables are the sum X + Y of two variables and
the linear combination aX + b, where a and b are arbitrary real constants. Since the
expected value of a continuous random variable, E[X], is defined by an integral, the
expected values of E[X + Y ] and E[aX + b] inherit all properties of the integral, in
particular linearity. (A similar conclusion follows in the discrete case where we are
dealing with sums.) Therefore, for both continuous and discrete random variables it
holds that

E[X + Y ] = E[X] + E[Y ], (4.6)

as well as

E[X1 + X2 + · · · + Xn] =
n∑

i=1

E[Xi]

and
E[aX + b] = aE[X] + b.

One needs to be slightly more careful in computing the expected values of more
general functions of random variables. Suppose that X is a discrete random variable
with probability distribution (probability function) fX . Then Y = g(X) is also a
random variable and its probability function is

fY (y) = P(Y = y) =
∑

{x|g(x)=y}
P(X = x) =

∑

{x|g(x)=y}
fX(x).

If X takes the values x1, x2, . . . , xn and Y takes the values y1, y2, . . . , ym (m ≤ n), we
have

E[Y ] = y1fY (y1) + y2fY (y2) + · · · + ymfY (ym)

= g(x1)fX(x1) + g(x2)fX(x2) + · · · + g(xn)fX(xn) = E
[
g(X)

]
,

hence

g(X) = E
[
g(X)

] =
n∑

i=1

g(xi)fX(xi). (4.7)

If X is a continuous random variable, we just need to replace the sum by the integral
and the probability function by the probability density:

g(X) = E
[
g(X)

] =
∫ ∞

−∞
g(x)fX(x) dx. (4.8)

This is a good spot to comment on a very popular approximation that can be an ugly
mistake or a good short-cut to a solution: it is the approximation
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g
(
X
) ≈ g(X). (4.9)

The trick works well if the density fX of X is a sharp, strongly peaked function,
and not so well otherwise. Regardless of this, however, for any convex1 function g,
Jensen’s inequality holds true:

g
(
X
) ≤ g(X), (4.10)

that is,

g

(∫
x fX(x) dx

)
≤
∫

g(x)fX(x) dx.

4.4.1 Probability Densities in Quantum Mechanics

As physicists, we ceaselessly calculate expected values of the form (4.8) in any field
related to statistical or quantummechanics.We say: the expected value of an operator
Ô in a certain state of a quantum-mechanical system (for example, ground state of
the hydrogen atom) described by the wave-function ψ, is

O =
∫

�

ψ∗(r)Ô(r)ψ(r) dV .

The operator Ô acts on the right part of the integrand, ψ, then the result is multiplied
from the left by its complex conjugateψ∗, and integrated over the whole domain. If Ô
is multiplicative, for example Ô(r) = z—in this case we obtain the expectation value
of the third Cartesian component of the electron’s position vector in the hydrogen
atom—we are computing just

O =
∫

�

Ô(r) |ψ(r)|2︸ ︷︷ ︸
ρ(r)

dV, (4.11)

which is the integral of a product of two scalar functions, the second of which, ρ(r),
is nothing but the probability density of (4.8).

Example An electron moving in the electric field of a lead nucleus is described by
the function

ψ(r) = 1√
π
r−3/2
B e−r/rB ,

where rB ≈ 6.46 × 10−13 m. The nucleus may be imagined as a positively charged
sphere with radius 7 × 10−15 m. How much time does the electron “spend” in the

1A function is defined to be convex if the line segment between any two points on the graph of the
function lies above the graph.
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nucleus, i. e. what is the probability that it resides within a sphere of radius R? All
we are looking for is the expected value of the operator Ô(r) = 1 in (4.11); due to
angular symmetry the volume element is simply dV = 4πr2 dr, thus

P =
∫ R

0
|ψ(r)|2 4πr2 dr ≈ 1.67 × 10−6.

An almost identical result is obtained by assuming that ψ is practically constant
on the interval [0,R], which is reasonable, since R � rB. In this case we obtain
P = (1/π)r−3

B (4πR3/3) = (4/3)(R/rB)3 ≈ 1.69 × 10−6. �

4.5 Variance and Effective Deviation

Computing the expected value of a random variable X tells us something about
where within its domain its values will approximately land after many repetitions of
the corresponding random experiment. Now we are also interested in the variation
(scattering) of the values around their averageE[X] = X . Ameasure of this scattering
is the variance, defined as

var[X] = E
[
(X − E[X])2] = (X − X)2.

A large variancemeans a large scatter around the average and vice-versa. The positive
square root of the variance,

σX = √
var[X],

is known as effective or standard deviation—inparticularwith the normal distribution
on our minds. In the following we shall also make use of the relation

var[aX + b] = a2 var[X]. (4.12)

(Prove it as an exercise.) If X is a discrete random variable, which takes the values
x1, x2, . . . , xn and has the probability function fX , its variance is

σ2
X =

n∑

i=1

(
xi − X

)2
fX(xi). (4.13)

In the case that all probabilities are equal, fX(xi) = 1/n, the variance is

σ2
X = 1

n

n∑

i=1

(
xi − X

)2
. (4.14)
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Note the factor 1/n—not 1/(n − 1), as one often encounters—as it will acquire an
important role in random samples in Chap.7.

If X is a continuous random variable with the probability density fX , its variance
is

σ2
X =

∫ ∞

−∞

(
x − X

)2
fX(x) dx. (4.15)

It can be shown that, regardless of the distribution obeyed by any (continuous or
discrete) random variable X, it holds that

P
(|X − X| ≥ a

) ≤ σ2
X

a2

for any constant a > 0, which is known as the Chebyshev inequality. It can also be
formulated in terms of the slightly tighter Cantelli’s constraints

P
(
X ≥ X + a

) ≤ σ2
X

σ2
X + a2

, P
(
X ≤ X − a

) ≤ σ2
X

σ2
X + a2

. (4.16)

Wemay resort to this tool if we know only the expected value of the random variable,
X, and its variance, σ2

X , but not the functional form of its distribution. In such cases
we can still calculate the upper limits for probabilities of the form (4.16).

Example Suppose that the measured noise voltage at the output of a circuit has an
average ofU = 200mV and variance σ2

U = (80mV)2. The probability that the noise
exceeds 300mV (i. e. raises more than �U = 100mV above the average), can be
bounded from above as P

(
U ≥ U + �U

) ≤ σ2
U

/(
σ2
U + (�U)2

) ≈ 0.39. �

4.6 Complex Random Variables

A particular linear combination of real random variables X and Y is the complex
random variable

Z = X + i Y .

Its distribution function at z = x + i y is defined as

FZ(z) = P(X ≤ x,Y ≤ y) = FX,Y (x, y),

where FX,Y (x, y) is the distribution function of the pair—more precisely, the random
vector (X,Y). The expected value of the variable Z is defined as

E[Z] = E[X] + iE[Y ].

http://dx.doi.org/10.1007/978-3-319-31611-6_7
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Computing the expectation values of complex random variables is an additive and
homogeneous operation: for arbitrary Z1 and Z2 it holds that

E[Z1 + Z2] = E[Z1] + E[Z2],

while for an arbitrary complex constant c = a + i b we have

E[cZ] = cE[Z].

The variance of a complex random variable is defined as

var[Z] = E
[∣∣Z − E[Z]∣∣2

]
.

A short calculation—do it!—shows that it is equal to the sum of the variances of its
components,

var[Z] = var[X] + var[Y ].

The complex random variables Z1 = X1 + i Y1 and Z2 = X2 + i Y2 are mutually
independent if random vectors2 (X1,X2) and (Y1,Y2) are independent. (A general-
ization is at hand: complex random variables Zk = Xk + i Yk (k = 1, 2, . . . , n) are
mutually independent if the same applies to random vectors (Xk,Yk).) If Z1 and Z2
are independent and possess expected values, their product also possesses it, and it
holds that

E[Z1Z2] = E[Z1]E[Z2].

4.7 Moments

The average (mean) and the variance are two special cases of expected values in the
broader sense called moments: the pth raw or algebraic moment M ′

p of a random
variable X is defined as the expected value of its pth power, that is,M ′

p = E[Xp]:

M ′
p =

n∑

i=1

xpi fX(xi) (discrete case),

M ′
p =

∫ ∞

−∞
xpfX(x) dx (continuous case).

(4.17)

2A random vector X = (X1,X2, . . . ,Xm) with a distribution function FX(x1, x2, . . . , xm) and a
random vector Y = (Y1,Y2, . . . ,Yn) with a distribution function FY (y1, y2, . . . , yn) are mutually
independent if FX,Y (x1, x2, . . . , xm, y1, y2, . . . , yn) = FX(x1, x2, . . . , xm)FY (y1, y2, . . . , yn). This
is an obvious generalization of (2.20) and (2.24).

http://dx.doi.org/10.1007/978-3-319-31611-6_2
http://dx.doi.org/10.1007/978-3-319-31611-6_2
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Frequently we also require central moments, defined with respect to the correspond-
ing average value of the variable, that is,Mp = E

[(
X − X

)p]
:

Mp =
n∑

i=1

(
xi − X

)p
fX(xi) (discrete case),

Mp =
∫ ∞

−∞

(
x − X

)p
fX(x) dx (continuous case).

From here we read off M ′
0 = 1 (normalization of probability distribution), M ′

1 = X
and M2 = σ2

X . The following relations (check them as an exercise) also hold:

M2 = M ′
2 − X

2 = X2 − X
2
,

M3 = M ′
3 − 3M ′

2X + 2X
3
,

M4 = M ′
4 − 4M ′

3X + 6M ′
2X

2 − 3X
4
.

In addition to the first (average) and second moment (variance) only the third and
fourth central moment are in everyday use. The third central moment, divided by the
third power of its effective deviation,

ρ = M3

σ3
, (4.18)

is called the coefficient of skewness or simply skewness. The coefficient ρ measures
the asymmetry of the distribution around its average: ρ < 0 means that the distribu-
tion has a relatively longer tail to the left of the average value (Fig. 4.4 (left)), while
ρ > 0 implies a more pronounced tail to its right (Fig. 4.4 (center)).

Fig. 4.4 [Left] A distribution with negative skewness: the tail protruding to the left of the average
value is more pronounced than the one sticking to the right. [Center] A distribution with positive
skewness. [Right] Examples of distributions with positive (thick full curve) and negative excess
kurtosis (thick dashed curve) with respect to the normal distribution (thin full curve)
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The fourth central moment, divided by the square of the variance,

M4

σ4
,

is known as kurtosis and tells us something about the “sharpness” or “bluntness” of
the distribution. For the normal distribution we have M4/σ

4 = 3, so we sometimes
prefer to specify the quantity

ε = M4

σ4
− 3, (4.19)

called the excess kurtosis: ε > 0 indicates that the distribution is “sharper” than the
normal (more prominent peak, faster falling tails), while ε < 0 implies a “blunter”
distribution (less pronounced peak, stronger tails), see Fig. 4.4 (right).

The properties of the most important continuous distributions—average value,
median, mode (location of maximum), variance, skewness (ρ) and kurtosis (ε+3)—
are listed in Table4.1. See also Appendices B.2 and B.3, where we shall learn how
to “automate” the calculation of moments by using generating and characteristic
functions.

Table 4.1 Properties of select continuous distributions: average (mean) value, median, mode,
variance, skewness (M3/σ

3 = ρ) and kurtosis (M4/σ
4 = ε + 3)

Distribution Average Median Mode Variance ρ ε + 3

U(a, b)
(3.1)

a + b

2

a + b

2
/

(b − a)2

12
0

9

5

Exp(λ)

(3.4)

1

λ

log 2

λ
0

1

λ2 2 9

N(μ,σ2)

(3.7)
μ μ μ σ2 0 3

Cauchy
(3.20)

/ x0 x0 / / /

χ2(ν)

(3.21)
ν ν − 2

3

†

ν − 2‡ 2ν
23/2√

ν
3 + 12

ν

t(ν)

(3.22)
0� 0 0

ν

ν − 2

∗
0¶

3(ν − 2)

ν − 4

§

Pareto(a, b)
(3.16)

ab

a − 1

$

b a
√
2 b

b2/(a − 2)

(a − 1)2

�
� ⊕

Notes † approximate dependence for large ν | ‡ for ν > 2 | � undefined for ν = 1
∗ undefined for ν ≤ 2 | ¶ undefined for ν ≤ 3 | § undefined for ν ≤ 4
$ defined for a > 1, otherwise ∞ | � defined for a > 2, while α ∈ (1, 2] for ∞
� [2(a + 1)/(a − 3)]√(a − 2)/a for a > 3
⊕ 3 + 6(a3 + a2 − 6a − 2)/(a(a − 3)(a − 4)) for a > 4

http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_3
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Example We are interested in the mode (“most probable velocity”), average velocity
and the average velocity squared of N2 gas molecules (molar massM = 28 kg/kmol,
mass of single molecule m = M/NA) at temperature T = 303K. The velocity
distribution of the molecules is given by the Maxwell distribution (3.15), whose
maximum (mode) is determined by dfV /dv = 0, hence

(
2v − v2 m

2kBT
2v

)∣∣∣∣
Vmax

= 0 =⇒ Vmax =
√
2kBT

m
≈ 423m/s.

The average value and the square root of the average velocity squared (“root-mean-
square velocity”) are computed from (4.3) and (4.17) with p = 2:

V =
∫ ∞

0
vfV (v) dv =

√
8kBT

πm
=
√

4

π
Vmax ≈ 478m/s,

√
V 2 =

(∫ ∞

0
v2fV (v) dv

)1/2

=
√
3kBT

m
=
√
3

2
Vmax ≈ 518m/s,

where we have used
∫∞
0 z3 exp(−z2) dz = 1/2 and

∫∞
0 z4 exp(−z2) dz = 3

√
π/8.

These three famous quantities are shown in Fig. 4.1 (right). �

4.7.1 Moments of the Cauchy Distribution

The Cauchy distribution fX(x) = (1/π)/(1+x2) drops off so slowly at x → ±∞ that
its moments (average, variance, and so on) do not exist. For this reason its domain
is frequently restricted to a narrower interval [−xmax, xmax]:

gX(x) = fX(x)∫ xmax

−xmax
fX(x′) dx′ = 1

2 arctan xmax

1

1 + x2
.

This is particularly popular in nuclear physics where the Breit–Wigner description
of the shape of the resonance peak in its tails—see Fig. 3.6 (right)—is no longer
adequate due to the presence of neighboring resonances or background. With the
truncated density gX both the average and the variance are well defined:

E[X] = 1

2 arctan xmax

∫ xmax

−xmax

x

1 + x2
dx = 0,

var[X] = 1

2 arctan xmax

∫ xmax

−xmax

x2

1 + x2
dx = xmax

arctan xmax
− 1.

Narrowing down the domain is a special case of a larger class of “distortions”
of probability distributions used to describe, for example, non-ideal outcomes of a

http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_3
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process or imperfect efficiencies for analyzing particles in a detector. If individual
events are detected under different conditions, the ideal probability density, fX , must
be weighted by the detection efficiency:

gX(x) =
∫
�y

fX(x)P(y|x)ε(x, y) dy
∫
�x′
∫
�y

fX(x′)P(y|x′)ε(x′, y) dx′ dy
,

where y is an auxiliary variable over which the averaging is being performed, and
ε(x, y) is the probability density for the event being detected near X = x and Y = y.
An introduction to such weighted averaging procedures can be found in Sect. 8.5
of [4].

4.8 Two- and d-dimensional Generalizations

Let the continuous random variables X and Y be distributed according to the joint
probability density fX,Y (x, y). In this case the expected values of the individual vari-
able can be calculated by the obvious generalization of (4.3) to two dimensions.
The density fX,Y is weighted by the variable whose expected value we are about to
compute, while the other is left untouched:

X = μX = E[X] =
∫ ∞

−∞

∫ ∞

−∞
x fX,Y (x, y) dx dy,

Y = μY = E[Y ] =
∫ ∞

−∞

∫ ∞

−∞
y fX,Y (x, y) dx dy.

In the discrete case the extension to two variables requires a generalization of (4.1):

E[X] =
n∑

i=1

m∑

j=1

xi fX,Y (xi, yj), E[Y ] =
n∑

i=1

m∑

j=1

yj fX,Y (xi, yj).

By analogy to (4.15) and (4.13) we also compute the variances of variables in the
continuous case,

σ2
X = E

[
(X − μX)2

] =
∫ ∞

−∞

∫ ∞

−∞
(x − μX)2fX,Y (x, y) dx dy,

σ2
Y = E

[
(Y − μY )2

] =
∫ ∞

−∞

∫ ∞

−∞
(y − μY )2fX,Y (x, y) dx dy,

and the variances in the discrete case,

E
[
(X − μX)2

] =
n∑

i=1

m∑

j=1

(xi − μX)2fX,Y (xi, yj),
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E
[
(Y − μY )2

] =
n∑

i=1

m∑

j=1

(yj − μY )2fX,Y (xi, yj).

Henceforth we only give equations pertaining to continuous variables. The cor-
responding expressions for discrete variables are obtained, as usual, by replacing
the probability densities fX,Y (x, y) by the probability [mass] functions fX,Y (xi, yj) =
P(X = xi,Y = yj), and integrals by sums.

Since now two variables are at hand, we can define yet a third version of the double
integral (or the double sum) in which the variables enter bilinearly—the so-called
mixed moment known as the covariance of X and Y :

σXY = cov[X,Y ] = E
[
(X−μX)(Y−μY )

] =
∞∫

−∞

∞∫

−∞
(x−μX)(y−μY )fX,Y (x, y) dx dy.

One immediately sees that

cov[aX, bY ] = ab cov[X,Y ]

for arbitrary constants a and b, as well as

σXY = E
[
(X − μX)(Y − μY )

] = E
[
XY − μXY − μYX + μXμY

]

= E[XY ] − μX E[Y ]︸︷︷︸
μY

−μY E[X]︸︷︷︸
μX

+μXμY = E[XY ] − μXμY .

Therefore, if X and Y are mutually independent, then by definition (2.25) one also
has E[XY ] = E[X]E[Y ] = μXμY , and then

σXY = 0.

(The covariance of independent variables equals zero.) For a later discussion of mea-
surement uncertainties the following relation between the variance and covariance
of two variables is important:

var[X ± Y ] =
∫∫ (

(x − μX) ± (y − μY )
)2
fX,Y (x, y) dx dy

=
∫∫

(x − μX)2fX,Y (x, y) dx dy +
∫∫

(y − μY )2fX,Y (x, y) dx dy

± 2
∫∫

(x − μX)(y − μY )fX,Y (x, y) dx dy

= var[X] + var[Y ] ± 2 cov[X,Y ]. (4.20)

In other words,

http://dx.doi.org/10.1007/978-3-319-31611-6_2
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σ2
X±Y = σ2

X + σ2
Y ± 2σXY .

By using the covariance and both effective deviations we define the Pearson’s coef-
ficient of linear correlation (also linear correlation coefficient)

ρXY = σXY

σXσY
, −1 ≤ ρXY ≤ 1. (4.21)

It is easy to confirm the allowed range of ρXY given above. Because of its power two
the expression E[(λ(X − μX) − (Y − μY ))2] is non-negative for any λ ∈ R. Let us
expand it:

λ2 E
[
(X − μX)2

]
︸ ︷︷ ︸

σ2
X

−2λE
[
(X − μX)(Y − μY )

]
︸ ︷︷ ︸

σXY

+E
[
(Y − μY )2

]
︸ ︷︷ ︸

σ2
Y

≥ 0.

The left side of this inequality is a real polynomial of second degree aλ2+bλ+c = 0
with coefficients a = σ2

X , b = −2σXY , c = σ2
Y , which is non-negative everywhere,

so it can have at most one real zero. This implies that its discriminant can not be
positive, so b2 −4ac ≤ 0. This tells us that 4σ2

XY −4σ2
Xσ2

Y ≤ 0 or |σXY/(σXσY )| ≤ 1,
which is precisely (4.21).

The generalization of (4.20) to the sum of (not necessarily independent) random
variables X1,X2, . . . ,Xn is

var[X1 + X2 + · · · + Xn] =
n∑

i=1

var[Xi] + 2
n∑

i=1

n∑

j=i+1

cov[Xi,Xj].

If the variables X1,X2, . . . ,Xn are mutually independent, this expression reduces to

var[X1 + X2 + · · · + Xn] =
n∑

i=1

var[Xi]. (4.22)

Example Many sticks with length 1 are broken at two random locations. What is the
average length of the central pieces? At each hit, the stick breaks at 0 < x1 < 1 and
0 < x2 < 1, where the values x1 and x2 are uniformly distributed over the interval
[0, 1], but one can have either x1 < x2 or x1 > x2. What we are seeking, then, is
the expected value of the variable L = |X2 − X1| (with values l) with respect to the
probability density fX,Y (x1, x2) = 1:

L =
1∫

0

1∫

0

∣∣x2 − x1
∣∣ dx1 dx2 =

1∫

0

dx2

x2∫

0

(x2 − x1) dx1 +
1∫

0

dx2

1∫

x2

(x1 − x2) dx1 = 1

3
.
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Howwould the result change if the probability that the stick breaks linearly increases
from 0 at the origin to 1 at the opposite edge? �
Example Let the continuous random variables X and Y both be normally distributed,
with averages μX and μY and variances σ2

X and σ2
Y . What is their joint probability

density if X and Y are independent, and what are their joint and conditional densities
in the dependent case, with correlation coefficient ρXY = ρ?

If X and Y are independent, their joint probability density—by (2.25)—is simply
the product of the corresponding one-dimensional densities:

fX,Y (x, y) = X(x)fY (y)= 1√
2πσX

exp

[
− (x − μX)2

2σ2
X

]
1√
2πσY

exp

[
− (y − μY )2

2σ2
Y

]
.

The curves of constant values of fX,Y in the (x, y) plane are untilted ellipses in general
(σX �= σY ), and circles in the special case σX = σY . At any rate ρ = 0 for such
a distribution. A two-dimensional normal distribution of dependent (and therefore
correlated) variables is described by the probability density

fX,Y (x, y) = 1

2πσXσY

√
1 − ρ2

exp

{
− 1

1 − ρ2

[
x′2

2σ2
X

− 2ρ
x′y′

√
2σX

√
2σY

+ y′2

2σ2
Y

]}
,

where we have denoted x′ = x − μX and y′ = y − μY . This distribution can not
be factorized as fX,Y (x, y) = fX(x)fY (y), and its curves of constant values are tilted
ellipses; for parameters μX = 10, μY = 0, σX = σY = 1 and ρ = 0.8 they are shown
in Fig. 4.5 (left).

Conditional probability densities fX|Y (x|y) and fY |X(y|x) can be computed by using
(2.26) and (2.27). Let us treat the first case, the other one is obtained by simply
replacing x ↔ y, μX ↔ μY and σX ↔ σY at appropriate locations:

fX|Y (x|y)= fX,Y (x, y)

fY (y)
= 1√

2πσX

√
1 − ρ2

exp

{
− 1

2(1 − ρ2)σ2
X

[
x′ − ρ

σX

σY
y′
]2}

.

This conditional probability density is shown in Fig. 4.5 (right). By comparing it to
definition (3.7) we infer that the random variable X|Y is distributed as

X|Y ∼ N

(
E[X] + ρ

σX

σY

(
Y − μY

)
,
(
1 − ρ2

)
σ2
X

)
,

a feature also seen in the plot: the width of the band does not depend on y. �

http://dx.doi.org/10.1007/978-3-319-31611-6_2
http://dx.doi.org/10.1007/978-3-319-31611-6_2
http://dx.doi.org/10.1007/978-3-319-31611-6_2
http://dx.doi.org/10.1007/978-3-319-31611-6_3
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Fig. 4.5 [Left] Joint probability density of two dependent, normally distributed random variables
X and Y with averages μX = 10 and μY = 0, variances σ2

X = σ2
Y = 1 and linear correlation

coefficient ρ = 0.8. [Right] Conditional probability density fX|Y (x|y)

4.8.1 Multivariate Normal Distribution

This appears to be a good place to generalize the normal distribution of two variables
(the so-called binormal or bivariate normal distribution) to d dimensions. We are
dealing with a vector random variable

X = (
X1,X2, . . . ,Xd

)T ∈ R
d

and its average

E[X] = (
E[X1],E[X2], . . . ,E[Xd]

)T = (
μ1,μ2, . . . ,μd

)T = µ.

We construct the d × d covariance matrix � with the matrix elements

�ij = cov[Xi,Xj], i, j = 1, 2, . . . , d.

The covariance matrix is symmetric and at least positive semi-definite. It can even
be strictly positive definite if none of the variables Xi is a linear combination of the
others. The probability density of the multivariate normal distribution (compare it to
its one-dimensional counterpart (3.10)) is then

fX(x;µ, �) = (2π)−d/2
(
det�

)−1/2
exp

{
−1

2
(x − µ)T �−1 (x − µ)

}
. (4.23)

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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If d = 2 as in the previous Example, we have simply X = (X1,X2)
T → (X,Y)T and

µ = (μ1,μ2)
T → (μX ,μY )T, while the covariance matrix is

� =
(

σ2
X σXY

σXY σ2
Y

)
.

4.8.2 Correlation Does Not Imply Causality

A vanishing correlation coefficient of X and Y does not mean that these variables
are stochastically independent: for each density fX,Y that is an even function of the
deviations x − μX and y − μY , one has ρXY = 0. In other words, ρXY = 0 is just a
necessary, but not sufficient condition for independence: see bottom part of Fig. 7.8
which illustrates the correlation in the case of finite samples.

Even though one observes a correlation in a pair of variables (sets of values,
measurements, phenomena) this does not necessarily mean that there is a direct
causal relation between them: correlation does not imply causality.Whenwe observe
an apparent dependence between two correlated quantities, often a third factor is
involved, common to both X and Y . Example: the sales of ice-cream and the number
of shark attacks at the beach are certainly correlated, but there is no causal relation
between the two. (Does your purchase of three scoops of ice-cream instead of one
triple your chances of being bitten by a shark?) The common factor of tempting
scoops and aggressiveness of sharks is a hot summer day, when people wish to cool
off in the water and sharks prefer to dwell near the shore.

Besides, one should be aware that correlation and causality are concepts orig-
inating in completely different worlds: the former is a statement on the basis of
probability theory, while the latter signifies a strictly physical phenomenon, whose
background is time and the causal connection between the present and past events.

4.9 Propagation of Errors

If we knew how to generalize (4.20) to an arbitrary function of an arbitrary number
of variables, we would be able to answer the important question of error propagation.
But what do we mean by “error of random variable”? In the introductory chapters
we learned that each measurement of a quantity represents a single realization of a
random variable whose value fluctuates statistically. Such a random deviation from
its expected value is called the statistical uncertainty or “error”. By studying the
propagation of errors we wish to find out how the uncertainties of a given set of
variables translate into the uncertainty of a function of these variables. A typical
example is the determination of the thermal power released on a resistor from the
corresponding voltage drop: if the uncertainty of the voltagemeasurement is�U and

http://dx.doi.org/10.1007/978-3-319-31611-6_7
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the resistance R is known to an accuracy of no more than�R, what is the uncertainty
of the calculated power P = U2/R?

Let X1,X2, . . . ,Xn be real random variables with expected values μ1,μ2, . . . ,μn,
which we arrange as vectors

X = (X1,X2, . . . ,Xn)
T

and
µ = (μ1,μ2, . . . ,μn)

T,

just as in Sect. 4.8.1. Let Y = Y(X) be an arbitrary function of these variables which,
of course, is also a random variable. Assume that the covariances of all (Xi,Xj) pairs
are known. We would like to estimate the variance of the variable Y . In the vicinity
of µ we expand Y in a Taylor series in X up to the linear term,

Y(X) ≈ Y(µ) +
n∑

i=1

(Xi − μi)
∂Y

∂Xi

∣∣∣∣
X=µ

,

and resort to the approximation E[Y(X)] ≈ Y(µ) (see (4.9) and (4.10)) to compute
the variance. It follows that

var[Y(X)] = E
[(

Y(X) − E
[
Y(X)

])2] ≈ E
[(

Y(X) − Y(µ)
)2]

≈
n∑

i=1

n∑

j=1

(
∂Y

∂Xi

∂Y

∂Xj

)

X=µ

�ij, (4.24)

where
�ij = E

[
(Xi − μi)(Xj − μj)

] = cov
[
Xi,Xj

]

is the covariance matrix of the variables Xi: its diagonal terms are the variances of
the individual variables, var[Xi] = σ2

Xi
, while the non-diagonal ones (i �= j) are the

covariances cov[Xi,Xj]. Formula (4.24) is what we have been looking for: it tells
us—within the specified approximations—how the “errors” in X map to the “errors”
in Y . If Xi are mutually independent, we have cov[Xi,Xj] = 0 for i �= j and the
formula simplifies to

var[Y(X)] ≈
n∑

i=1

(
∂Y

∂Xi

)2

X=µ

var[Xi]. (4.25)

Example Let X1 and X2 be independent continuous random variables with the mean
valuesμ1 andμ2 and variances σ2

1 andσ2
2.We are interested in the varianceσ2

Y of their
ratio Y = X1/X2. Since X1 and X2 are independent, we may apply formula (4.25).
We need the derivatives
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(
∂Y

∂X1

)

X=µ

= 1

μ2
,

(
∂Y

∂X2

)

X=µ

= −μ1

μ2
2

.

Therefore

σ2
Y ≈

(
1

μ2

)2

σ2
1 +

(
μ1

μ2
2

)2

σ2
2 = 1

μ4
2

[
μ2
2σ

2
1 + μ2

1σ
2
2

]

or
σ2
Y

μ2
Y

≈ σ2
1

μ2
1

+ σ2
2

μ2
2

,

where μY = E[Y ] = μ1/μ2. �
Example Let X and Y be independent random variables with the expected values μX

and μY and variances σ2
X and σ2

Y (with respective “uncertainties of measurements”
σX and σY ). What is the variance σ2

Z of the product of their powers,

Z = XmYn?

(This is a generalization of the function from the previous example to arbitrary powers
m and n.) By formula (4.25) we again obtain

σ2
Z ≈ (

mXm−1Yn
)2
X=μX

Y=μY

σ2
X + (

nXmYn−1
)2
X=μX

Y=μY

σ2
Y .

Thus

(
σZ

μZ

)2

≈ m2μ2(m−1)
X μ2n

Y

μ2m
X μ2n

Y

σ2
X + n2μ2m

X μ2(n−1)
Y

μ2m
X μ2n

Y

σ2
Y = m2

(
σX

μX

)2

+ n2
(

σY

μY

)2

,

where we have denoted μZ = μm
Xμn

Y . �

4.9.1 Multiple Functions and Transformation
of the Covariance Matrix

Let us now discuss the case of multiple scalar functions Y1,Y2, . . . ,Ym, which all
depend on variables X,

Yk = Yk(X1,X2, . . . ,Xn) = Yk(X), k = 1, 2, . . . ,m.

We arrange the function values in the vector Y = (Y1,Y2, . . . ,Ym)T and retrace the
steps from the beginning of this section. We neglect all higher order terms in the
Taylor expansion
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Yk(X) = Yk(µ) +
n∑

i=1

(Xi − μi)
∂Yk
∂Xi

∣∣∣∣
X=µ

+ · · · , k = 1, 2, . . . ,m,

and take into account that E[Yk(X)] ≈ Yk(µ). Instead of (4.24) we now obtain a
relation between the covariance matrix of variable X and the covariance matrix of
the variables Y ,

�kl(Y) ≈ E
[(

Yk(X) − Yk(µ)
)(

Yl(X) − Yl(µ)
)]

≈
n∑

i=1

n∑

j=1

(
∂Yk
∂Xi

∂Yl
∂Xj

)

X=µ

E
[
(Xi − μi)(Xj − μj)

]
︸ ︷︷ ︸

�ij(X)

.

This relation becomes even more transparent if we write the Taylor expansion as

Y(X) = Y(µ) + DX + · · · ,

where X and Y are n- and m-dimensional vectors, respectively, while D is an m × n
matrix embodying the linear part of the expansion, namely

Dki =
(

∂Yk
∂Xi

)

X=µ

, (4.26)

Hence

�kl(Y) ≈
n∑

i=1

n∑

j=1

Dki�ij(X)Djl, k, l = 1, 2, . . . ,m,

or, in brief,
�(Y) ≈ D�(X)DT. (4.27)

The propagation of errors in higher dimensions can therefore be seen as a transforma-
tion of the covariance matrix. The variances σ2

Yk
of the variables Yk are the diagonal

matrix elements of �(Y). In general they pick up terms from all elements of �(X),
even the non-diagonal ones, since

�kk(Y) ≈
n∑

i=1

(
∂Yk
∂Xi

∂Yk
∂Xj

)

X=µ

�ij(X). (4.28)

But if the variables Xi are mutually independent, only diagonal elements of �(X)

contribute to the right-hand side of the above equation, yielding

σ2
Yk =

n∑

i=1

(
∂Yk
∂Xi

)2

X=µ

σ2
Xi

. (4.29)
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Equations (4.28) and (4.29) are multi-dimensional equivalents of (4.24) and (4.25).
Note that the non-diagonal elements of �(Y) may be non-zero even though Xi are
mutually independent! You can find an example of how to use these equations in the
case of a measurement of the momentum of a particle in Problem 4.10.6.

4.10 Problems

4.10.1 Expected Device Failure Time

A computer disk is controlled by five circuits (i = 1, 2, 3, 4, 5). The time until an
irreparable failure in each circuit is exponentially distributed, with individual time
constants λi. The disk as a whole works if circuits 1, 2 and 3, circuits 3, 4 and 5, or,
obviously, all five circuits work simultaneously. What is the expected time of disk
failure?

✎ The probability that the ith element is not broken until time t (the probability
that the failure time is larger than t) is exponentially decreasing and equals e−λi t . For
the disk to fail, three key events are responsible:

event A : circuits 1 and 2 fail after time t : P(A) = e−(λ1+λ2)t,

event B : circuit 3 fails after time t : P(B) = e−λ3t,

event C : circuits 4 and 5 fail after time t : P(C) = e−(λ4+λ5)t .

The disk operates as long as
(
A ∩ B ∩ C

) ∪ (A ∩ B ∩ C
) ∪ (A ∩ B ∩ C

) �= {}. The
probability that the disk still operates after time t, is therefore

P(t) = P
(
A ∩ B ∩ C

)+ P
(
A ∩ B ∩ C

)+ P
(
A ∩ B ∩ C

)

= P(A)P(B)
[
1 − P(C)

]+ [
1 − P(A)

]
P(B)P(C) + P(A)P(B)P(C)

= P(B)
[
P(A) + P(C) − P(A)P(C)

]

= e−(λ1+λ2+λ3)t + e−(λ3+λ4+λ5)t − e−(λ1+λ2+λ3+λ4+λ5)t .

This is not yet our answer, since the expression still contains time! We are looking
for the expected value of failure time, where we should recall that the appropriate
probability density is −P′(t) (see (3.4)), hence

T =
∫ ∞

0
t
[
(λ1 + λ2 + λ3)e

−(λ1+λ2+λ3)t + (λ3 + λ4 + λ5)e
−(λ3+λ4+λ5)t

−(λ1 + λ2 + λ3 + λ4 + λ5)e
−(λ1+λ2+λ3+λ4+λ5)t

]
dt

= 1

λ1 + λ2 + λ3
+ 1

λ3 + λ4 + λ5
− 1

λ1 + λ2 + λ3 + λ4 + λ5
.

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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4.10.2 Covariance of Continuous Random Variables

(Adopted from [5], Example 4.56.) Calculate the linear correlation coefficient of
continuous random variables X and Y distributed according to the joint probability
density

fX,Y (x, y) = 2 e−xe−yH(y)H(x − y), −∞ < x, y < ∞,

where H is the Heaviside function (see (2.8)).

✎ The linear correlation coefficient ρXY of variables X and Y (see (4.21)) is equal
to the ratio of covariance σXY to the product of their effective deviations σX and σY .
First we need to calculate the expected value of the product XY ,

E[XY ] = XY =
∫ ∞

−∞

∫ ∞

−∞
xy fX,Y (x, y) dx dy

= 2
∫ ∞

−∞

∫ ∞

−∞
xy e−xe−yH(y)H(x − y) dx dy

= 2
∫ ∞

0
x e−x

[∫ x

0
y e−y dy

]
dx

= 2
∫ ∞

0
x e−x

[
1 − (1 + x)e−x

]
dx = . . . = 1,

then the expected values of X, Y , X2 and Y 2,

E[X] = X =
∫ ∞

−∞

∫ ∞

−∞
x fX,Y (x, y) dx dy = 3

2
,

E[Y ] = Y =
∫ ∞

−∞

∫ ∞

−∞
y fX,Y (x, y) dx dy = 1

2
,

E[X2] = X2 =
∫ ∞

−∞

∫ ∞

−∞
x2 fX,Y (x, y) dx dy = 7

2
,

E[Y 2] = Y 2 =
∫ ∞

−∞

∫ ∞

−∞
y2 fX,Y (x, y) dx dy = 1

2
.

It follows that

σX =
√
X2 − X

2 ≈ 1.118, σY =
√
Y 2 − Y

2 = 0.5,

hence

cov[X,Y ] = σXY = XY − X Y = 1 − 3

2

1

2
= 1

4

and
ρXY = σXY

σXσY
≈ 0.447.

http://dx.doi.org/10.1007/978-3-319-31611-6_2
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4.10.3 Conditional Expected Values of Two-Dimensional
Distributions

Let us return to the Example on p. 49 involving two random variables, distributed
according to the joint probability density

fX,Y (x, y) =
{
8xy ; 0 ≤ x ≤ 1, 0 ≤ y ≤ x,
0 ; elsewhere.

Find ① the conditional expected value of the variable Y , given X = x, and ② the
conditional expected value of the variable X, given Y = y!

✎ We have already calculated the conditional densities fX|Y (x|y) and fY |X(y|x) in
(2.28) and (2.29), so the conditional expected value ① equals

E
[
Y |X = x

] =
∫ ∞

−∞
y fY |X(y|x) dy =

∫ x

0
y
2y

x2
dy = 2x

3
,

and the conditional expected value ② is

E
[
X|Y = y

] =
∫ ∞

−∞
x fX|Y (x|y) dx =

∫ 1

y
x

2x

1 − y2
dx = 2(1 − y3)

3(1 − y2)
= 2(1 + y + y2)

3(1 + y)
.

4.10.4 Expected Values of Hyper- and Hypo-exponential
Variables

Calculate the expected value, the second moment and the variance of continuous
random variables, distributed according to the① hyper-exponential (see (3.26)) and
② hypo-exponential distribution (see (3.28)).

✎ ① The hyper-exponential distribution, which describes a mixture (superposi-
tion) of k independent phases of a parallel process, whose ith phase proceeds with
probability Pi and time constant λi = 1/τi, is defined by the probability density

fX(x) =
k∑

i=1

Pi fXi(x) =
k∑

i=1

Piλi e
−λix, x ≥ 0, (4.30)

where 0 ≤ Pi ≤ 1 and
∑k

i=1 Pi = 1. The expected value of a hyper-exponentially
distributed variable X is

X = E[X] =
∫ ∞

0
x fX(x) dx =

k∑

i=1

Pi

∫ ∞

0
λix e

−λix dx =
k∑

i=1

Pi

λi
, (4.31)

http://dx.doi.org/10.1007/978-3-319-31611-6_2
http://dx.doi.org/10.1007/978-3-319-31611-6_2
http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_3
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and its second moment is

X2 = E[X2] =
∫ ∞

0
x2fX(x) dx =

k∑

i=1

Pi

∫ ∞

0
λix

2 e−λix dx = 2
k∑

i=1

Pi

λ2
i

.

Its variance is therefore

var[X] = σ2
X = E[X2] − E[X]2 = 2

k∑

i=1

Pi

λ2
i

−
(

k∑

i=1

Pi

λi

)2

. (4.32)

While σX/X = λ/λ = 1 holds true for the usual single-exponential distribution,
its hyper-exponential generalization always has σX/X > 1, except when all λi are
equal: this inequality is the origin of the root “hyper” in its name.

② The hypo-exponential distribution describes the distribution of the sum of k
(k ≥ 2) independent continuous random variables Xi, in which each term separately
is distributed exponentially with parameter λi. The sum variable X = ∑k

i=1 Xi has
the probability density

fX(x) =
k∑

i=1

αiλi e
−λix, (4.33)

where

αi =
k∏

j=1
j �=i

λj

λj − λi
, i = 1, 2, . . . , k.

By comparing (4.33) to (4.30) one might conclude that the coefficients αi represent
the probabilities Pi for the realization of the ith random variable, but we are dealing
with a serial process here: all indices i come into play—see Fig. 3.13! On the other
hand, one can exploit the analytic structure of expressions (4.31) and (4.32), one
simply needs to replace allPi byαi. By a slightly tedious calculation (or by exploiting
the linearity of E[·] and using formula (4.20)) we obtain very simple expressions for
the average and variance:

E[X] = X =
k∑

i=1

1

λi
, var[X] = σ2

X =
k∑

i=1

1

λ2
i

.

It is easy to see—Pythagoras’s theorem comes in handy—that one always has
σX/X < 1. The root “hypo” in the name of the distribution expresses precisely
this property.

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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4.10.5 Gaussian Noise in an Electric Circuit

The noise in electric circuits is frequently of Gaussian nature. Assume that the noise
(random variable X) is normally distributed, with average X = 0V and variance
σ2
X = 10−8 V2. ① Calculate the probability that the noise exceeds the value 10−4 V

and the probability that its value is on the interval between −2 · 10−4 V and 10−4 V!
② What is the probability that the noise exceeds 10−4 V, given that it is positive?
③ Calculate the expected value of |X|.
✎ It is worthwhile to convert the variable X ∼ N(X,σ2

X) to the standardized form

Z = X − X

σX
= X − 0V

10−4 V
= 104X,

so that Z ∼ N(0, 1). The required probabilities ① are then

P
(
X > 10−4 V

) = P(Z > 1) = 0.5 −
∫ 1

0
fZ(z) dz ≈ 0.5 − 0.3413 = 0.1587

and

P
(−2 × 10−4 V < X < 10−4 V

) = P(−2 < Z < 1) = P(0 ≤ Z < 1) + P(0 ≤ Z < 2)

=
∫ 1

0
fZ (z) dz +

∫ 2

0
fZ (z) dz

≈ 0.3413 + 0.4772 = 0.8185,

where the probability density fZ is given by (3.10). We have read off the numerical
values of the integrals from Table D.1.

② The required conditional probability is

P
(
X > 10−4 V|X > 0V

) = P(Z > 1|Z > 0)

= P(Z > 1 ∩ Z > 0)

P(Z > 0)
= P(Z > 1)

P(Z > 0)
= P(Z > 1)

0.5
≈ 0.3174.

③ Since Z = 104X, we also have E[|Z|] = E
[
104|X|] = 104E[|X|], so we need to

compute

E[|Z|] =
∞∫

−∞
|z| fZ (z) dz = 2

∞∫

0

z fZ (z) dz = 2√
2π

∞∫

0

z e−z2/2 dz =
√

2

π

∞∫

0

d
(
e−x) =

√
2

π

and revert to the old variable, hence E[|X|] = 10−4√2/πV.

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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4.10.6 Error Propagation in a Measurement
of the Momentum Vector �

We are measuring the time t in which a non-relativistic particle of mass m and
momentum p traverses a distance L (that is, t = L/v = mL/p), and the spherical
angles θ andφ of the vectorp relative to the z-axis. Suppose thatwe havemeasured the
average values 1/p = 5 (GeV/c)−1, θ = 75◦ and φ = 110◦, but all measurements
contain one-percent uncertainties �(1/p) ≡ σp = 0.05 (GeV/c)−1, �θ ≡ σθ =
0.75◦ and �φ ≡ σφ = 1.1◦, which are uncorrelated. Determine the uncertainties of
the quantities

px = p sin θ cosφ, py = p sin θ sin φ, pz = p cos θ!

✎ In the notation of Sect. 4.9 we are dealing with the variables

X1 = 1/p, X2 = θ, X3 = φ,

with the averages μ1 = 5 (GeV/c)−1, μ2 = 75◦ and μ3 = 110◦. The corresponding
covariance matrix (omitting the units for clarity) is

�(X) =
⎛

⎝
σ2
p 0 0
0 σ2

θ 0
0 0 σ2

φ

⎞

⎠ ≈
⎛

⎝
0.0025 0 0

0 0.000171 0
0 0 0.000369

⎞

⎠ .

We need to calculate the covariance matrix of the variables

Y1 = px = 1

X1
sinX2 cosX3, Y2 = py = 1

X1
sinX2 sinX3, Y3 = pz = 1

X1
cosX2,

and we need the derivatives (4.26) to do that:

∂Y1
∂X1

= − 1

X2
1

sinX2 cosX3,
∂Y1
∂X2

= 1

X1
cosX2 cosX3,

∂Y1
∂X3

= − 1

X1
sinX2 sinX3,

∂Y2
∂X1

= − 1

X2
1

sinX2 sinX3,
∂Y2
∂X2

= 1

X1
cosX2 sinX3,

∂Y2
∂X3

= 1

X1
sinX2 cosX3,

∂Y3
∂X1

= − 1

X2
1

cosX2,
∂Y3
∂X2

= − 1

X1
sinX2,

∂Y3
∂X3

= 0.

When these expressions are arranged in the 3×3matrixD, (4.27) immediately yields

�(Y) = D�(X)DT =
⎛

⎝
σ2
px σpxpy σpxpz

σpypx σ2
py σpypz

σpzpx σpzpy σ2
pz

⎞

⎠ ≈ 10−7

⎛

⎝
126.4 30.74 2.440
30.74 53.10 −6.704
2.440 −6.704 66.63

⎞

⎠ .
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The uncertainties of px, py and pz then become

σpx = √
�11(Y) ≈ 0.00355, σpy = √

�22(Y) ≈ 0.00230,

σpz = √
�33(Y) ≈ 0.00258.

The propagation of the one-percent errors on the variables 1/p, θ and φ has therefore
resulted in more than one-percent errors on the variables px, py and pz:

px = (−0.0661 ± 0.0036)GeV/c = −0.0661(1 ± 0.054)GeV/c,

py = (0.182 ± 0.0023)GeV/c = 0.182(1 ± 0.013)GeV/c,

pz = (0.0518 ± 0.0026)GeV/c = 0.0518(1 ± 0.050)GeV/c.

The error of px and pz = p cos θ has increased dramatically. A feeling for why this
happens in pz can be acquired by simple differentiation dpz = dp cos θ − p sin θ dθ
or

�pz
p cos θ

= �p

p
− sin θ

cos θ
�θ.

The average value of θ is not very far from 90◦, where sin θ ≈ 1 and cos θ ≈ 0.
Any error in �θ in this neighborhood, no matter how small, is amplified by the large
factor tan θ that even diverges as θ → π/2.

In addition, the covariances σpxpy = σpypx , σpxpz = σpzpx and σpypz = σpzpy are all
non-zero, and the corresponding correlation coefficients are

ρpxpy = σpxpy

σpxσpy

≈ 0.375, ρpxpz = σpxpz

σpxσpz

≈ 0.027, ρpypz = σpypz

σpyσpz

≈ −0.113.
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Chapter 5
Special Discrete Probability Distributions

Abstract The binomial (Bernoulli), multinomial, negative binomial (Pascal), and
Poisson distributions are presented as the most frequently occurring discrete proba-
bility distributions in practice. The normal approximation of the binomial distribution
is introduced as an example of the Laplace limit theorem, and the Poisson distribution
is shown to represent a special limiting case of the binomial.

In this chapter we discuss distributions of discrete random variables, of which the
binomial and the Poisson distributions are the most important.

5.1 Binomial Distribution

We are dealing with the binomial (Bernoulli) distribution whenever many ran-
dom, mutually independent (“Bernoulli”) trials yield only two kinds of outcomes—
something occurs (probability p) or does not occur (probability q = 1− p). Tossing
a coin results in heads or tails; a girl or a boy is born; the weather prediction for
tomorrow is rainy or dry. The probability that in N trials we encounter n outcomes
of “type p” and N − n outcomes of “type q” counted by the random variable X, is
given by a two-parameter distribution

P(X = n;N, p) =
(
N

n

)
pnqN−n, n = 0, 1, 2, . . . ,N, (5.1)

with parameters N and p = 1 − q. The structure pnqN−n is obvious: since the “p”
events and “q” events are mutually independent, we simply multiply the probability
of “p” occurring n-times and “q” occurring (N − n)-times. We just need to figure
out the number of ways such a combination can be accomplished: it is given by the
binomial symbol (1.5). Of course, the distribution is normalized,

N∑

n=0

P(X = n;N, p) =
N∑

n=0

(
N

n

)
pnqN−n = (q + p)N = 1, (5.2)
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Fig. 5.1 Binomial (Bernoulli) distribution for n outcomes of “type p”withN = 10 trials. [Left] The
distribution with parameter p = 1

2 is symmetric around N/2. [Right] A distribution with parameter
p < 1

2 (in this case p = 1
5 ) is squeezed towards the origin; for p > 1

2 it is pushed towards N

where we have used the binomial expansion (1.6). The examples of the binomial
distribution with parameters N = 10, p = 1/2 and N = 10, p = 1/5 are shown
in Fig. 5.1. The distribution with p = 1/2 is symmetric about its average value; the
trend of its values (filled circles) vaguely reminds us of the normal distribution; this
will be exploited later on (Sect. 5.4).

Example Asix-sided fair die is thrownfive times.What is the probability of obtaining
3 dots exactly twice (X = 2) in these five trials (N = 5)? The probability of the
outcome “3 dots” in each throw is p = 1/6, while the probability for any other
outcome is q = 1 − p = 5/6. Hence the probability is

P(X = 2;N, p) =
(
5

2

)(
1

6

)2 (
5

6

)5−2

= 625

3888
≈ 0.161.

What is the probability that three dots appear at most once (X ≤ 1)? There are only
two possibilities: they do not appear at all (X = 0) or precisely once (X = 1). These
events are mutually exclusive, so

P(X ≤ 1) = P(X = 0) + P(X = 1) =
(
5

0

)(
1

6

)0(5

6

)5

︸ ︷︷ ︸
3125/7776

+
(
5

1

)(
1

6

)1(5

6

)4

︸ ︷︷ ︸
3125/7776

≈ 0.804.

What is the probability of having three dots at least twice (X ≥ 2)? The strenuous
path to answering this is

http://dx.doi.org/10.1007/978-3-319-31611-6_1
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P(X ≥ 2) = P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5)

=
(
5

2

)(
1

6

)2(5

6

)3

︸ ︷︷ ︸
625/3888

+
(
5

3

)(
1

6

)3(5

6

)2

︸ ︷︷ ︸
125/3888

+
(
5

4

)(
1

6

)4(5

6

)1

︸ ︷︷ ︸
25/7776

+
(
5

5

)(
1

6

)5(5

6

)0

︸ ︷︷ ︸
1/7776

≈ 0.196,

while an easy one (complementarity of events!) is P(X ≥ 2) = 1 − P(X ≤ 1). �

Mini-example The unstable meson η can decay in a variety of decay modes: η → 2γ
(mode 1), η → 3π0 (mode 2), η → π+π−π0 (mode 3), . . . with branching fractions
(see definition (3.27)) Br1 ≈ 39.4%, Br2 ≈ 32.5%, Br3 ≈ 22.6%, . . . Suppose we
observeN decays, x of which are of type 2: then X is a binomially distributed random
variable—as we are going to obtain a different x at fixed N in any experiment—with
parameters N and p = Br2. �

Example The waiting time in a cafeteria is an exponentially distributed random
variable with the average of 4min. What is the probability that the student will be
served in less than 3min on at least four of the following six days?

The probability that the student (on any day) has not been served in 4min decays
exponentially: P(t) = e−t/τ , where τ = 4min. The probability of him being served
in less than 3min is p = 1− e−3/4. We must consider all possibilities on consecutive
days, which is accounted for by the binomial distribution. On each day there are
only two options: he is served in less than 3min (probability p) or later than that
(probability 1 − p). Thus the probability we are looking for is

6∑

n=4

(
6

n

)
pn(1 − p)6−n =

6∑

n=4

(
6

n

) (
1 − e−3/4

)n (
e−3/4

)6−n ≈ 0.3969.

Calculate the probability that the student is served quickly (in less than 3min) on at
least one day out of six and the probability of him being served quickly precisely on
day six! How does the latter result change when τ is modified? (Hint: expand the
exponential up to the linear term.) �
Example The reliability of an airplane engine (the probability of it functioning flaw-
lessly) is p. The airplane is able to fly if at least half of its engines operate. For which
values of p a four-engine airplane is safer than a two-engine airplane?

A two-engine airplane can fly if at least one engine is operational, i.e. with prob-
ability

P2 =
(
2

1

)
p(1 − p) +

(
2

2

)
p2 = 2p − p2.

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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A four-engine airplane can fly if at least two engines operate, i.e. with probability

P4 =
(
4

2

)
p2(1−p)2 +

(
4

3

)
p3(1−p)+

(
4

4

)
p4 = 6p2(1−p)2 +4p3(1−p)+p4.

We are seeking values of p satisfying the inequality P4 > P2. After rearranging the
terms we obtain

(p − 1)2(3p − 2) > 0.

Since 0 ≤ p ≤ 1 only the second factor is relevant: thus four engines are safer
than two if 2/3 < p ≤ 1. A consolation for potentially frightened passengers: if
p = 0.9995, which is a poor engine by modern engineering standards, one still has
P2 = 0.99999975 and P4 = 0.9999999995. �

5.1.1 Expected Value and Variance

The expected value (average) and the variance of a binomially distributed random
variable X can be calculated by substituting p → λp in (5.2), computing the first and
second derivative with respect to λ, and finally resetting λ → 1. Thus

N∑

n=0

(
N

n

)
(λp)nqN−n = (λp + q)N ,

of which the first derivative with respect to λ yields

N∑

n=0

nλn−1

(
N

n

)
pnqN−n = N(λp + q)N−1p, (5.3)

and the second derivative gives

N∑

n=0

n(n − 1)λn−2

(
N

n

)
pnqN−n = N(N − 1)(λp + q)N−2p2. (5.4)

When λ = 1 is restored, the left-hand side of (5.3) is precisely the expression for
the expected value of X, while the left-hand side of (5.4) is the expected value of its
function X(X − 1). The first equation therefore gives

E[X] = X = N(p + q)N−1p = Np,



5.1 Binomial Distribution 127

while the second equation yields

E
[
X(X − 1)

] = X(X − 1) = X2 − X = N(N − 1)(p + q)N−2p2 = N(N − 1)p2.

(According to the convention (4.2) we denote the expected values by a line over the
corresponding random quantity.) Finally, both results can be combined to calculate
the variance:

σ2
X = var[X] = (

X − X
)2 = X2 − 2XX + X

2 = X2 − X
2 = X(X − 1) + X − X

2

= N(N − 1)p2 + Np − N2p2 = Np
[
(N − 1)p + 1 − Np

] = Npq.

Let us summarize:
X = Np, σ2

X = Npq. (5.5)

If we interpret σX as the uncertainty of the measured number of events—do not
confuse it with the σ parameter of the normal distribution!—we have

Xmeas = X ± σX = Np ± √
Npq. (5.6)

What does that mean for the empirical determination of probabilities in Bernoulli
trials? If inN trials we observeXmeas “good” andN−Xmeas “bad” outcomes, the ratios
p̃ = Xmeas/N and q̃ = (N−Xmeas)/N at large enoughN become good approximations
to the unknown probabilities p and q. In this case we may write

√
Npq ≈ √

Np̃̃q = √
Np̃(1 − p̃)

and use (5.6) to express p:

p = p̃ ±
√
p̃(1 − p̃)

N
= p̃

[
1 ±

√
1 − p̃

Xmeas

]
. (5.7)

A method to calculate arbitrary moments of discrete random variables directly by
means of probability generating functions is discussed in Appendix B.1.

Example (Adapted from [1].) Initially we have N=100 radioactive nuclei, Xmeas =
n = 15 of which remain “alive” after t=10 s. How accurately can one determine the
half-time (t1/2 = τ log 2) based on this information? We use (5.7) to calculate the
probability p (and its uncertainty) of having n undecayed nuclei at time t:

p = p̃ ± σp̃ = n

N
±

√
n(N − n)

N3
= 2−t/t1/2 .

http://dx.doi.org/10.1007/978-3-319-31611-6_4
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It follows that

t1/2 = − t log 2

log(̃p ± σp̃)
≈ − t log 2

log p̃

(
1 ± σp̃

p̃ log p̃

)
= 3.65(1 ± 0.29) s,

where we have used the small-x expansion of the function 1/ log(a+ x) and inserted
p̃ = 0.15 and σp̃ = 0.0357. �

5.2 Multinomial Distribution

The binomial distribution can be generalized by considering not just two kinds of
outcomes with probabilities p and q = 1 − p in N trials, where np + nq = N , but
having k types of outcomes with probabilities p1, p2, . . . , pk and requiring

∑k

i=1
pi = 1,

∑k

i=1
ni = N .

The probability that inN trialswe obtain preciselyn1 outcomes of type 1, n2 outcomes
of type 2 and so on, is given by the multinomial distribution

P(X = n1, . . . ,X = nk; N, p1, . . . , pk) =
(

N

n1, n2, . . . , nk

)
pn11 p

n2
2 . . . pnkk ,

where the combinatorial factor at the right is the multinomial symbol (1.4). Let us
assume that the ith outcome is a “good” event while all other outcomes are “bad”.
This means that every random variable Xi by itself (with values ni) is distributed
binomially with parameters N and pi. By (5.5) the expected value and variance of
individual Xi’s are

E[Xi] = Xi = Npi, var[Xi] = X2
i − Xi

2 = Npi(1 − pi),

while the covariances of the (Xi,Xj) pairs are

cov[Xi,Xj] = (
Xi − Xi

)(
Xj − Xj

) = −Npipj, i �= j.

Mini-exampleWe measure the velocity distribution of molecules (we expect a result
similar to Fig. 4.1 (right)) and arrange the data in a histogram with k = 15 equidis-
tant bins [0, 100]m/s, [100, 200]m/s, and so on, up to [1400, 1500]m/s. Individ-
ual bins contain ni molecules; all bins are mutually independent. In total we count
N = n1 + n2 + · · · + n15 molecules. Such a histogram—it will change at each new
measurement—represents a multinomial distribution. �

http://dx.doi.org/10.1007/978-3-319-31611-6_1
http://dx.doi.org/10.1007/978-3-319-31611-6_4
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5.3 Negative Binomial (Pascal) Distribution

Suppose we observe a sequence of independent Bernoulli trials with probability p for
a type-A outcome (e.g. an electronic circuit says “success”) and probability q = 1−p
for a type-B outcome (circuit reports “failure”), as shown below:

AAAAAA︸ ︷︷ ︸
6

1︷︸︸︷
B AAAAA︸ ︷︷ ︸

5

2︷︸︸︷
BB AAAA︸ ︷︷ ︸

4

1︷︸︸︷
B AAAAAAAA︸ ︷︷ ︸

8

1︷︸︸︷
B

How long must we wait for r failures to occur? The probability to count n successes
(n = 6 + 5 + 4 + 8 = 23 in the above sequence) before accumulating r failures
(r ≥ 1, r = 5 above) is given by the negative binomial1 random variable with the
distribution

P(X = n; r, p) =
(
n + r − 1

n

)
pn(1 − p)r, n = 0, 1, 2, . . . (5.8)

What is the probability of having n outcomes of any kind (A or B, variable Y ),
before encountering r failures? Because the sum of “good” and “bad” events, n+ r,
is constant, we just need to replace n → n − r in the definition, thus

P(Y = n; r, p) =
(
n − 1

n − r

)
pn−r(1 − p)r, n = r, r + 1, r + 2, . . .

Both forms of the distribution are normalized, which one can check by using the
formula ∞∑

n=0

(
n + r

n

)
pn = 1

(1 − p)r+1
, 0 ≤ p < 1.

5.3.1 Negative Binomial Distribution of Order k

Here is a tougher nut to crack: how long must we wait for k consecutive type-
B outcomes or, more generally still, how long must we wait for r appearances of k
consecutive type-B outcomes?Onemay imagine a device exposed to strong radiation
that causes errors in its memory. The device is able to recover from these errors (B)
and remains operational (A) until the radiation damage is so large that k consecutive

1The ‘negative’ attribute in the name of the distribution originates in the property
(
n + r − 1

n

)
= (−1)n

(−r)(−r − 1)(−r − 2) . . . (−r − n + 1)

n! = (−1)n
(−r

n

)
.

.
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errors occur. For example, in the sequence

BABAAABABABABAAABABAA

k︷︸︸︷
BBB︸ ︷︷ ︸

n
,

we have had k = 3 consecutive failures (B) after n = 21 outcomes of type A or B,
while in the sequence

BABAAABABBBABAAABABAA

k︷ ︸︸ ︷
BBBBAABABAABAAAABBAABA

k︷ ︸︸ ︷
BBBB︸ ︷︷ ︸

n

we have had two (r = 2) occurrences of a four-fold (k = 4) consecutive error after
n = 47 outcomes. The probability for arbitrary k and r is given by the negative
binomial distribution of order k [2]:

P(X=n; k, r, p) =
∑

n1,n2,...,nk

(
n1 + n2 + · · · + nk + r − 1

n1, n2, . . . , nk, r − 1

)
pn

(
1 − p

p

)n1+n2+···+nk

,

where n ≥ kr and where we sum over all non-negative integers n1, n2, . . . , nk , such
that n1 + 2n2 + · · · + knk = n− kr. An example of how this distribution is used can
be found in Sect. 5.6.3.

5.4 Normal Approximation of the Binomial Distribution

If N is large and neither p nor q are too close to zero, the binomial distribution can be
approximated by the normal distribution, although this appears to be something pre-
posterous as the former is discrete, while the latter is continuous! This approximation
is embodied in the Laplace limit theorem

lim
N→∞P

(
a ≤ X − Np√

Npq
≤ b

)
= 1√

2π

∫ b

a
e−x2/2 dx, (5.9)

proven in Appendix B.3.1. In other words, the standardized binomial variable

X − X

σX
= X − Np√

Npq

is asymptotically normal. In practice, this applies already when Np,Nq � 5.

Example A die is thrown 120 times. What is the probability of observing 4 dots
no more than 18 times? The distribution of all N = 120 events is binomial, with
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probabilities p = 1/6 and q = 1 − p = 5/6. The exact answer—requiring us to
calculate 19 terms and an overwhelming amount of factorials—is

18∑

n=0

P(X = n;N, p) =
18∑

n=0

(
120

n

) (
1

6

)n (
5

6

)120−n

≈ 0.3657. (5.10)

By resorting to (5.9) we can obtain an approximate answer with much less effort.
The formula requires us to calculate the average value and the effective deviation

X = Np = 120
1

6
= 20, σX = √

Npq =
√
120

1

6

5

6
≈ 4.08,

and then calculate the standardized variables corresponding to the original (binomial)
variables, i.e. the lower (X = 0) and upper (X = 18) summation index (see Fig. 5.2
(left)). One usually takes an 0.5 smaller lower value and an 0.5 larger upper value (see
Fig. 5.2 (right)): this is the easiest way to approximate any discrete value P(X = n)
by the area under the curve of the probability density fX on the interval [n−1/2, n+
1/2]—and ensure that even by approximating a single point of a discrete distribution
one obtains a non-zero result.

The boundary values of the standardized variables are z1 = (−0.5 − 20)/4.08 ≈
−5.02 and z2 = (18.5 − 20)/4.08 ≈ −0.37. By using TableD.1 we calculate

P(X ≤ 18) ≈ �(−0.37) − �(−5.02) ≈ 0.3557,

where � is the distribution function of the standardized normal distribution. Com-
pared to (5.10), this approximate probability is off by less than 3%. �

Fig. 5.2 [Left] Approximating the binomial distribution by a normal distribution in the case
N = 120, p = 1/6 (X = Np = 20, σX = √

Npq ≈ 4.08).] [Right] Same figure in logarithmic
scale showing the boundary values (0 and 18) of the binomial distribution and the corresponding
integration boundaries of the normal distribution
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5.5 Poisson Distribution

The Poisson distribution is the limit of the binomial in which the probability p of an
individual outcome becomes very small (p → 0) and the number of trials very large
(N → ∞), such that the average X = Np remains unchanged. In each term of (5.1)
we therefore write p = X/N and q = 1 − p = 1 − X/N :

(
N

n

)(
X

N

)n(
1− X

N

)N−n

= N(N − 1)(N − 2) . . . (N − n + 1)

n!Nn
X
n

(
1− X

N

)N−n

= 1

n!
(
1− 1

N

) (
1− 2

N

)
. . .

(
1− n − 1

N

)
X
n

(
1− X

N

)N−n

.

In the limit N → ∞, the last factor is just

lim
N→∞

(
1− X

N

)N−n

= lim
N→∞

(
1 − X

N

)N (
1 − X

N

)−n

= e−X ,

therefore P(X = n;X) = X
n
e−X/n!. We have obtained a single-parameter distrib-

ution with parameter X , its expected value. It is traditionally denoted by X = λ, so
this important distribution, illustrated in Fig. 5.3, is usually written as

P(X = n;λ) = λne−λ

n! , n = 0, 1, 2, . . . (5.11)

No approximations have been made by taking the p → 0 and N → ∞ limits,
just one parameter has evaporated. At its heart, then, the Poisson distribution is still
“binomial”, whence it also inherits the expressions for its average and variance; but
p → 0 implies q → 1, thus

E[X] = X = Np = λ, var[X] = σ2
X = Npq = X = λ. (5.12)

Fig. 5.3 Three examples of
the Poisson distribution with
λ = 1.0, 3.7 and 9.5. For
comparison, the density of
the normal distribution
N(μ = 9.5,σ2 = 9.5) is also
shown
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Instead of (5.6) we may therefore write

Xmeas = X ±
√

X .

Example A total of N = 2000 people are vaccinated. The probability p for side
effects is small, p = 0.001, therefore, on average, only λ = Np = 2 people will
experience them. What is the probability that the number of people experiencing
unwanted effects will be greater than two? The probability that precisely n people
experience a side effect, is

P(X = n;λ) = λn e−λ

n! .

The probability we are seeking is therefore P(> 2) = P(3)+P(4)+· · ·+P(2000).
The calculation of these 1998 values can be avoided by considering the complemen-
tary event: P(> 2) = 1 − P(0) − P(1) − P(2) ≈ 0.323. �
Classical example We count X nuclear decays in time t; let X 
 1 (at least a few
times ten). The estimate of the true source activity (decays per unit time) a is â = X/t.
The measured X fluctuates about X = at by ±σX = ±

√
X. But the true value X is

unknown, hence we approximate σX ≈ √
X and write

X = X ±
√

X ≈ X ± √
X or X ≈ X ± √

X.

Dividing the second equation by t we obtain the relation between the true activity a
and the measured value â:

a = â

(
1 ± 1√

X

)
.

Therefore, if we wish to measure the source activity to a precision of 1%, we must
count 104 decays. This obstacle awaits us in all experiments where anything is being
“counted”. A k-fold reduction in statistical uncertainty requires us to count k2 times
more events, i.e. measure k2 times as long. �
Example (Adapted from [1].) On an average day the surface of the Earth (radius
R = 6400 km) is hit by 25 meteorites. What is the probability that in 10 years at least
one of its N = 7 · 109 inhabitants will be hit by a meteorite?

The probability of an individual being hit is proportional to the ratio of surface
areas S1/S, where S1 ≈ 0.2m2 is the average surface area of a human being and
S = 4πR2 is the surface area of the Earth. In ten years the Earth receives M =
10 · 365 · 25 = 91250 meteorites, thus the expected number of hit people in this
period of time is λ = NMS1/S = 0.248. The probability that a meteorite hits at least
one person, is therefore 1 − λ0e−λ/0! = 1 − e−λ ≈ 0.22. �
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Example Let us stay with the dangers from the sky! When London was bombarded
with German “flying bombs” during World War II, some people thought that hits
tend to form clusters, looking as if the probabilities of certain areas being hit were
relatively higher [3]. Can this assumption be justified?

There were 537 hits on the surface area of 144 km2, divided into 24 × 24 = 576
quadrantswith an area of 0.25 km2 each, so the average number of hits in any quadrant
was λ = 537/576 ≈ 0.9323. If the points of impact were completely random, the
probability that a chosen quadrant has been hit n = 0, 1, 2, . . . times, is given by the
Poisson distribution

P(X = n) = λne−λ

n! , n = 0, 1, 2, . . .

The expected number of quadrants with precisely n hits should therefore be 576
P(X = n), for example, 576P(X = 0) = 576 · e−0.9323 ≈ 226.74 quadrants with
no hits at all. The expected numbers of quadrants with n hits and the corresponding
observed numbers are shown in the Table5.1.

If the projectiles “preferred” specific quadrants, one should be able to see this
primarily as a decrease of the number of quadrants with no hits and an increase in the
middle portion of the distribution. But the excellent agreement of the expected and
observed numbers proves that the distribution of hits is consistent with a random—
Poisson—distribution. We shall put this statement on a more quantitative footing in
Sect. 10.3. �
Example (Adapted from [1].) A gas mixture contains 109/cm3 molecules of CH4

endowed with the radioactive 14C isotope. A sample of V = 1mm3 is taken for
analysis. What is the probability that the concentration of the radioactive admixture
in the sample will exceed its average concentration by more than 0.2%?

On average, a sample will contain λ = (109/cm3)V = 106 radioactive molecu-
les. The probability we wish to compute is the sum of probabilities that the sample
contains 1.002λ or (1.002λ + 1) or (1.002λ + 2) molecules, and so on, thus

P =
nmax∑

n=nmin

λne−λ

n! ,

Table 5.1 The distribution of
hits in World War II bombing
raids over London

Number of bombs
in quadrant

Expected number
of quadrants

Observed number
of quadrants

0 226.74 229

1 211.39 211

2 98.54 93

3 30.62 35

4 7.14 7

≥ 5 1.57 1

http://dx.doi.org/10.1007/978-3-319-31611-6_10
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where nmin = 1.002λ. How do we determine nmax? Assume that the mixture is at
standard conditions, where a mole of gas (NA ≈ 6 · 1023 molecules) has a volume
of V0 ≈ 22.4 dm3. Therefore, a sample with volume V contains nmax = NAV/V0 ≈
3 · 1016 molecules, which by far exceeds the number of radioactive molecules in it,
so we can safely set nmax = ∞. For such high n we can approximate the Poisson
distribution by the normal (see Sect. 5.4) and replace the sum ofmillions of billions of
Poissonian contributions by an integral of the normal density with averageμ = λ and
variance σ2 = λwith the integration boundaries 1.002 n and∞, i.e. the standardized
normal distribution with the boundaries

a = 1.002λ − λ√
λ

= 0.002·106√
106

= 2, b = ∞.

By using (3.9), (3.12) and TableD.2 we obtain P ≈ 1
2

[
1 − erf(2/

√
2)

] ≈ 0.02275.
A direct calculation of the sum by Mathematica yields P ≈ 0.02280. �

5.6 Problems

5.6.1 Detection Efficiency

(Adapted from [4].) Galactic sources of gamma radiation are measured by specially
designed gamma-ray spectrometers. Assume that for a certain region of the sky
we have used two different detectors (different electronics, varying atmospheric
conditions and so on) and determined the following numbers of sources:

N12 sources seen by both detectors,
N12 + N1 sources seen by the first detector,
N12 + N2 sources seen by the second detector,
N − (N12 + N1 + N2) sources not seen by any of them.

Calculate the total detection efficiency—the ratio between the number of observed
rays and the number of all incident rays—and its uncertainty! Note that the measure-
ment has a binomial nature: any source is either detected (probability p) or missed
(probability q = 1 − p).

✎ The efficiencies (which are the estimates of the true values based on repeated
samples) for detection by a single spectrometer and for simultaneous detection are

P̂(1) = ε1 = N12 + N1

N
, P̂(2) = ε2 = N12 + N2

N
, P̂(1 ∩ 2) = N12

N
,

where N is the true number of the sources. Of course, because the values N12, N1

and N2 fluctuate statistically, one can only obtain an estimate N̂ for N . The measure-

http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_3
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ments with two spectrometers are mutually independent, P̂(1∩ 2) = P̂(1)P̂(2), and
therefore

N̂ = (N12 + N1)(N12 + N2)

N12
.

But the measurements with two devices (“event 1” and “event 2”) are not mutually
exclusive, implying P̂(1∪ 2) = P̂(1)+ P̂(2)− P̂(1∩ 2) = P̂(1)+ P̂(2)− P̂(1)P̂(2),
thus the total efficiency is

ε = ε1 + ε2 − ε1ε2 = P̂(1 ∪ 2) = N12 + N1 + N2

N̂
= 1 − N1N2

(N12 + N1)(N12 + N2)
.

The random variable X that “counts” good events (detected sources) is binomially
distributed, the minimum and maximum numbers of detected sources being 0 and
N , respectively. The relative number of the detected sources X/N therefore has the
variance

var

[
X

N

]
= 1

N2
var[X] = Npq

N2
= p(1 − p)

N

(recall (4.12)). The variance of the efficiency of an individual detector is then

σ2(εi) ≈ εi(1 − εi)

N̂
, i = 1, 2.

The variance of the total efficiency ε = ε1 + ε2 − ε1ε2 is calculated by using (4.25):

σ2(ε) ≈
(

∂ε

∂ε1

)2

σ2(ε1) +
(

∂ε

∂ε2

)2

σ2(ε2) = (1 − ε1)(1 − ε2)(ε1 + ε2 − 2ε1ε2)

N̂
.

The total efficiency ε as a function of ε1 and ε2 is shown in Fig. 5.4 (left), while its
uncertainty, multiplied by N̂1/2, is shown in Fig. 5.4 (right).

5.6.2 The Newsboy Problem �

A newsboy purchases his newspapers at a price of a = 1.00e and sells them at
b = 1.50e. While he must purchase all copies from his supplier at once, his actual
sales depend on the fluctuating daily demand. The long-term average of the daily
demand is 100 copies, and he buys just as many from the supplier. ① Calculate
the newsboy’s daily profit by assuming that the demand is described by a random
variable with a Poisson distribution with average λ = 100. ② How many copies
should he purchase in order to maximize his profit?

✎ If the variable X represents the demand and n is the number of copies purchased
by the newsboy, the variable Yn = min{X, n} describes the number of copies sold

http://dx.doi.org/10.1007/978-3-319-31611-6_4
http://dx.doi.org/10.1007/978-3-319-31611-6_4
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Fig. 5.4 [Left] The total efficiency ε for the detection of gamma-rays with two spectrometers as a
function of individual detector efficiencies ε1 and ε2. [Right] The uncertainty of the total efficiency,
multiplied by N̂1/2. The uncertainty is smallest in the limit ε1, ε2 → 1, but also when ε1, ε2 ≈ 0,
although in that corner, one also has ε ≈ 0.

to the customers: if the demand is below the number of copies he has purchased, he
sells X, while in the opposite case he sells n (since he has none left). ① His profit
with Yn sold copies (fluctuating by the day) is therefore measured by the random
variable

�n = aYn − bn,

and its expected value is E[�n] = aE[Yn] − bn. It holds that

E[Yn] =
n∑

k=0

k P
(
Yn = k

) =
n−1∑

k=1

k P
(
min{X, n} = k

)
︸ ︷︷ ︸

P(X=k)

+ n P
(
min{X, n} = n

)
︸ ︷︷ ︸
P(X≥n)=1−P(X<n)

=
n−1∑

k=1

k P(X = k) + n − n
n−1∑

k=0

P(X = k)

= n +
n−1∑

k=1

k
e−λλk

k! − n
n−1∑

k=0

e−λλk

k!

= n + λ e−λ
n−2∑

k=0

λk

k! − n e−λ
n−2∑

k=0

λk

k! − n e−λ λn−1

(n − 1)!

= n + (λ − n) e−λ
n−2∑

k=0

λk

k! − n e−λ λn−1

(n − 1)! .

The second term in the final expression is zero, since λ = n = 100 (the newsboy’s
daily purchase equals the average demand), therefore
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Fig. 5.5 The profit of the
newsboy purchasing n
newspaper copies
a = 1.00e from the supplier
and selling them at
b = 1.50e to customers
whose demand is modeled
by a Poisson distribution
with average 100

E[Yn] = n

[
1 − e−λ λn−1

(n − 1)!
]

≈ 96.01

or E[�n] = aE[Yn] − bn = 1.50e · 96.01 − 1.00e · 100 ≈ 44.02e.

② As shown in Fig. 5.5, the newsboy’s daily purchase of 100 copies is not optimal:
he could count on a maximum profit of 44.59e by purchasing 95 or 96 copies per
day (the maximum of �n is at n ≈ 95.5); in all other cases his profit will be smaller
than that. If he buys more than 150 copies per day, he will even lose money.

5.6.3 Time to Critical Error

A computer memory constantly reviews its “sanity”: it may detect flawless operation
(A) or error (B). The memory operates until encountering four consecutive errors
(BBBB, “critical error”). The probability of a single error is p = 0.5. Calculate the
probability that after N = 40 sanity checks the memory still operates. Use ① your
knowledge of combinatorics and ② the negative binomial distribution of order k.

✎ ① In a random sequence of outcomesA andBwe await the subsequence BBBB,
which may occur at the very beginning, or the subsequence ABBBB that, however,
should not be preceded by the critical BBBB quartet. The options are:

N = 4 N = 5 N = 6 N = 7 N = 8
BBBB ABBBB AABBBB AAABBBB AAAABBBB

BABBBB ABABBBB AABABBBB
BAABBBB ABAABBBB
BBABBBB BAAABBBB

ABBABBBB
BABABBBB
BBAABBBB
BBBABBBB
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The probability of the critical error occurring already in the first N = 4 steps (imme-
diate BBBB combination), is P(4) = p4 = 0.0625. The probability of it occur-
ring in N = 5 steps (subsequence ABBBB) is P(5) = p5 = 0.03125, while in
N = 6 steps (combinations AABBBB or BABBBB), it is P(6) = 2p1p5 = 0.03125.
From the table above we further see that P(7) = 22p2p5 = 0.03125 and P(8) =
23p3p5 = 0.03215, but to conclude P(9) = 24p4p5 would be a mistake: indeed
there would be 24 = 16 possibilities before the critical part ABBBB of the whole
sequence, but one of them has the form BBBBABBBB, which should be discarded
as it already contains the terminating sequence BBBB at the very beginning, which
brings us to the N = 4 case considered before. For N = 9, we therefore have
P(9) = (24 − 1)p4p5 = 0.0292968. Analogously, the subsequent P(N) are

P(N) =
(
1 − NBBBB

2N−5

)
p5,

where NBBBB is the number of quartets of the form BBBB that precede the terminal
quintet ABBBB in the sequence and should therefore not be considered. This number
becomes increasingly difficult to determine at highN : for example, we haveNBBBB =
3 for N = 10, NBBBB = 8 for N = 11, NBBBB = 20 for N = 12, and so on.

There is a more elegant solution. Define the probability P(i) that the critical error
occurs precisely at the ith place in the sequence. The first few values (from i = 0 to
i = 8) are known from the previous discussion:

P(1) = P(2) = P(3) = 0, P(4) = ( 1
2

)4
, P(5) = P(6) = P(7) = P(8) = ( 1

2

)5
.

Nowdefine theprobabilityP(n)of the critical error occurring anywhere up to (includ-
ing) the nth place,

P(n) =
n∑

i=1

P(i).

From N = 9 onwards we therefore simply await the ABBBB subsequence which
occurs with probability p5, while no critical error should occur before that, leading
to the recurrence

P(N) = [
1 − P(N − 5)

]
p5, N > 9.

The solution of the problem—the sum up to N = 40 can be evaluated by some
symbolic computation program, e.g.Mathematica—is therefore

1 − P(40) = 1 −
40∑

N=0

P(N) ≈ 0.2496.

② Undoubtedly the solution by using the negative binomial distribution of order k
is the simplest (we can useMathematica again), but it is bereft of any insight into
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the heart of the problem:

1 −
40∑

N=4

P(N; k = 4, r = 1, p = 0.5) ≈ 0.2496.

5.6.4 Counting Events with an Inefficient Detector

(Adapted from [4].) Charged particles are counted by a detector with a non-ideal
efficiency: the probability to detect a particle is p < 1. Assume that the number X of
particles traversing the detector in fixed time t is Poisson-distributed with average λ.
What is the probability of detecting precisely r particles in time t?

✎ If we are supposed to count r particles, at least r particles should actually fly
through the detector. The desired probability is therefore the sum of probabilities
of detecting r particles while n = r, r + 1, r + 2, . . . particles have actually flown
through. For given n the number r of actually detected particles is given by the
binomial distribution; from the total probability formula (1.15) it follows that

P(X = r) =
∞∑

n=r

P(r detected | n traversed)P(n traversed)

=
∞∑

n=r

Pbinom(X = r; n, p)PPoisson(X = n;λ)

=
∞∑

n=r

n!
(n − r)!r! p

r(1 − p)n−r · λne−λ

n!

= 1

r!
(
pλ

)r
e−λ

∞∑

n=r

[
(1 − p)λ

]n−r

(n − r)! = 1

r!
(
pλ

)r
e−λe(1−p)λ

or

P(X = r) = 1

r!
(
pλ

)r
e−pλ, r = 0, 1, 2, . . . ,

which is nothing but the Poisson distribution with the expected value pλ. (In the
theory of Poisson processes this λ → pλ effect is suggestively called thinning.)

5.6.5 Influence of Primary Ionization on Spatial Resolution �

Charged particles flying through gas ionize its atoms andmolecules. In this (so-called
primary) ionization, a few times ten electron–ion pairs are generated per centimeter
of the particle’s path length through the gas at normal conditions, depending on

http://dx.doi.org/10.1007/978-3-319-31611-6_1


5.6 Problems 141

Fig. 5.6 A charged particle passing near the anode wire in a gas ionization detector. The jth
electron–ion pair is formed at sj . The electrons are attracted by the anode, and their drift time
towards it is a measure of the impact distance of the original particle

the average atomic number of the gas, Z . The average number of ionizations on
distance x isκx, whereκ ≈ 1.5Z cm−1 [5].① Determine the distribution of locations
where the electron–ion pairs are formed! ② How does the discrete nature of the
primary ionization (see Fig. 5.6) influence the spatial resolution of such an elementary
detector?

✎ Ionizations are rare, independent events, so they obey the Poisson distribution: if
κL is the average number of ionizations on distanceL, the probability for n ionizations
is

P
(
X(κ) = n

) = (κL)n

n! e−κL.

① For these n ionizations the distribution of each (jth) pair (1 ≤ j ≤ n) along x is

Dnj(x) = n!
(n − j)!(j − 1)! (L − x)n−jxj−1 1

Ln
.

The function D73(x), for example, describes the point of creation of the third pair if
seven pairs were created in total. (To understand the structure of this expression, plot
D11, then D21, D22 and their sum—it is 2—then D31, D32, D33 and their sum—it is
3—and so on!) The distribution for the point of creation of the jth pair, if κ pairs per
unit length were created, is then

A(κ)
j (x) =

∞∑

n=j

P
(
X(κ) = n

)
Dnj(x) = κ

(κx)j−1

(j − 1)! e
−κx, 0 ≤ x ≤ L.

These distributions are shown inFig. 5.7 (left) forκ = 10 cm−1,which approximately
corresponds to neon at a pressure of 1.2 bar. Each function is normalized on [0,∞).

② The first factor, relevant for the spatial resolution of an ionization detector, is
the non-uniformity of primary ionizations. The jth ionization occurs on distance sj
from the origin (see Fig. 5.6), but in both directions (negative or positive x), which
can be absorbed in computing the moments of sj by replacing κ → 2κ. The average
distance of the jth ionization and the average of its square are therefore
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Fig. 5.7 [Left] The distribution of points of creation of the jth electron–ion pair. [Right] The
influence of primary statistics on the spatial resolution

sj =
∫ ∞

0
xA(2κ)

j (x) dx = j

2κ
, s2j =

∫ ∞

0
x2A(2κ)

j (x) dx = j(j + 1)

4κ2
,

so the corresponding variance is

σ2(sj) = s2j − (
sj
)2 = j

4κ2
.

From Fig. 5.6 we see that dj =
√
b2 + s2j , thus, by error-propagation (4.25), we find

σ2(dj) =
(

∂dj
∂sj

)2
∣∣∣∣∣
sj=sj

σ2(sj) = j3

4κ2(j2 + 4κ2b2)
.

Figure5.7 (right) shows the uncertainties σ(dj) for various j with κ = 34 cm−1

(70% : 30% mixture of argon and isobutane at normal conditions). The spatial
resolution therefore deteriorates with increasing number of primary ionizations.
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1. I. Kuščer, A. Kodre, Mathematik in Physik und Technik (Springer, Berlin, 1993)
2. A.N. Philippou, The negative binomial distribution of order k and some of its properties. Biom.

J. 26, 789 (1984)
3. R.D. Clarke, An application of the Poisson distribution. J. Inst. Actuaries 72, 481 (1946)
4. A.G. Frodesen, O. Skjeggestad, H. Tøfte, Probability and Statistics in Particle Physics (Univer-

sitetsforlaget, Bergen, 1979)
5. F. Sauli, Principles of Operation of Multiwire Proportional and Drift Chambers (CERNReprint

77–09, Geneva, 1977)

http://dx.doi.org/10.1007/978-3-319-31611-6_4


Chapter 6
Stable Distributions and RandomWalks

Abstract Stable distributions are special types of probability distributions whose
origin is a particular limit regime of other types of distributions. They are closely
related to the simple convolution process, which is introduced first for continuous and
then for discrete random variables. This leads to the central limit theorem as one of
the most important results of probability theory, as well as to its generalized version
which is useful in the analysis of randomwalks. Extreme-value distributions are also
presented, as they possess a limit theorem of their own (Fisher–Tippett–Gnedenko).
The last part is devoted to the discussion of discrete-time and continuous-time random
walks, together with their characteristic diffusion properties.

In this chapter we sum independent random variables Xi and discuss what happens
to the distribution of their sum, Y =∑i Xi. We shall see that the distribution of Y
is given by the convolution of distributions of individual Xi’s, and that in the case
i → ∞—under certain conditions—the distributions ofY tend to stable distributions,
relevant for the processes of random walks.

6.1 Convolution of Continuous Distributions

What is the distribution of Z = X + Y if continuous random variables X and Y
correspond to densities fX(x) and fY (y)? We are interested in the probability that the
sum x + y falls within the interval [z, z + dz], where x and y are arbitrary within their
own definition domains. All points fulfilling this requirement are represented by the
oblique shaded area in the figure.

© Springer International Publishing Switzerland 2016
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One must add up all contributions to the probability within this band. The infin-
itesimal area dx dz (shaded rhomboid) corresponds to the infinitesimal probability
fX(x)fY (y) dx dz. By integrating over x we obtain the probability fZ(z) dz. Let us write
only its density and insert y = z − x:

fZ(z) = (fX ∗ fY )(z) =
∫ ∞

−∞
fX(x)fY (z − x) dx. (6.1)

This operation is called the convolution of distributions and we denote it by the
symbol ∗. If you do not trust this geometric argument, one can also reason as follows:

fZ(z) dz = P(z ≤ Z ≤ z + dz) = P(z ≤ X + Y ≤ z + dz)

=
∫ ∞

−∞
dx
∫ z−x+dz

z−x
fX(x)fY (y) dy =

∫ ∞

−∞
fX(x)dx

∫ z−x+dz

z−x
fY (y) dy

︸ ︷︷ ︸
fY (z−x) dz

,

whence (6.1) follows immediately. Convolution is a symmetric operation:

(
fX ∗ fY

)
(z) =
∫ ∞
−∞

fX (x)fY (z − x) dx =
∫ ∞
−∞

fX (z − y)fY (y) dy = (fY ∗ fX
)
(z).

A convolution of three probability distributions is calculated as follows:

(
f1 ∗ f2 ∗ f3

)
(z) =
∫ ∞

−∞

∫ ∞

−∞
f1(x1) f2(x2) f3(z − x1 − x2) dx1 dx2,

and generalizations of higher order are obvious.

Example What do we obtain after two consecutive convolutions of a symmetric
uniform distribution U(−1/2, 1/2), corresponding to the “box” probability density
f shown in Fig. 6.1? The first convolution yields

Fig. 6.1 Twofold
consecutive convolution of
U(−1/2, 1/2) with itself



6.1 Convolution of Continuous Distributions 145

g(x) = (f ∗ f
)
(x) =

∞∫

−∞
f (x′) f (x − x′) dx′ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x+1/2∫

−1/2

dx′ = 1 + x ; −1 ≤ x ≤ 0,

1/2∫

x−1/2

dx′ = 1 − x ; 0 ≤ x ≤ 1,

which is a triangular distribution (f ∗ f in the figure). The second convolution gives

(
f ∗ f ∗ f

)
(x) =

∞∫

−∞
f (x′) g(x − x′) dx′

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x+1∫

−1/2

[•] dx′ = 9

8
+ 3x

2
+ x2

2
; − 3

2 ≤ x ≤ − 1
2 ,

x∫

−1/2

[•] dx′ +
1/2∫

x

[•] dx′ = −x2

2
+ 3

4
; |x| ≤ 1

2 ,

1/2∫

x−1

[•] dx′ = 9

8
− 3x

2
+ x2

2
; 1

2 ≤ x ≤ 3
2 ,

where • = 1 + (x − x′). This density is denoted by f ∗ f ∗ f in the figure. Try to
proceed yet another step and calculate f ∗ f ∗ f ∗ f ! (You shall see in an instant
where this is leading.) �
Example What about the convolution of an asymmetric distribution? For instance,
what is the distribution of the variable Y = X1 + X2 + · · · + Xn if allXi are uniformly
distributed on [0, 1], i.e. Xi ∼ U(0, 1)?

The density of the variable Y for arbitrary n ≥ 1 is

fY (x) = 1

(n − 1)!

x�∑

h=0

(n
h

)
(−1)h(x − h)n−1, n ≥ 1, (6.2)

and is shown in Fig. 6.2 for n = 1 (original distribution), n = 2 (single convolution),
n = 3, n = 6 and n = 12. As in the previous example, the density after several con-
volutions reminds one of something “bell-shaped”, one could suspect, the normal
distribution. Besides, the distribution of the sumvariable creeps away from the origin:
this is a cue for the following subsection. �
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Fig. 6.2 Multiple
convolutions of the U(0, 1)
distribution with itself

6.1.1 The Effect of Convolution on Distribution Moments

First consider what happens to the average of the sum of two random variables:

Z =
∫ ∞

−∞
z fZ(z) dz =

∫ ∞

−∞
z

[∫ ∞

−∞
fX(x)fY (z − x) dx

]
dz

=
∫ ∞

−∞

[∫ ∞

−∞
z fY (z − x) dz

]
fX(x) dx =

∫ ∞

−∞

[∫ ∞

−∞
(x + y)fY (y) dy

]
fX(x) dx

=
∫ ∞

−∞
x

[∫ ∞

−∞
fY (y) dy

]
fX(x) dx +

∫ ∞

−∞
fX(x) dx

∫ ∞

−∞
y fY (y) dy = X + Y ,

thus
X + Y = X + Y

or E[X + Y ] = E[X] + E[Y ], which we already know from (4.6). Now let us also
calculate the variance of Z! We must average the expression

(
Z − Z
)2 = [(X − X

)+ (Y − Y
)]2 = (X − X

)2 + 2
(
X − X

)(
Y − Y

)+ (Y − Y
)2

.

Because X and Y are independent, the expected value of the second term is zero, so
we are left with only

σ2
X+Y = σ2

X + σ2
Y

or var[X + Y ] = var[X] + var[Y ]. We know that too, namely, from (4.20), in a
slightly different garb also from (4.25) if one sets Y = X1 + X2. As an exercise,
check what happens to the third and fourth moment upon convolution: you will find
out that M3,X+Y = M3,X + M3,Y , so the third moments of distributions are additive.
By taking into account the definition of skewness ρ = M3/σ

3 (see (4.18)) this can
also be written as

ρX+Yσ3
X+Y = ρXσ3

X + ρYσ3
Y .

The fourth moments are not additive, since M4,X+Y = M4,X + M4,Y + 6M2,XM2,Y ,
but by using (4.19) this can be simplified to

http://dx.doi.org/10.1007/978-3-319-31611-6_4
http://dx.doi.org/10.1007/978-3-319-31611-6_4
http://dx.doi.org/10.1007/978-3-319-31611-6_4
http://dx.doi.org/10.1007/978-3-319-31611-6_4
http://dx.doi.org/10.1007/978-3-319-31611-6_4
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Fig. 6.3 As few as two convolutions may be needed to turn a relatively irregular distribution into a
distribution that looks almost like the standardized normal. (We have subtracted the expected value
of the distribution obtained at each step and rescaled the variance)

εX+Yσ4
X+Y = εXσ4

X + εYσ4
Y .

Example It appears as if even the most “weird” distribution evolves into something
“bell-shaped” when it is convoluted with itself a couple of times. Figure6.3 shows
an example in which upon just two convolutions a rather irregular density (fulfilling
all requirements for a probability density) turns into a density closely resembling the
standardized normal distribution. �

Example Still, convolution does not perform miracles. Let us calculate the n-fold
convolution of the Cauchy distribution with itself! We obtain

f (1)(x) = f (x) = 1

π

1

1 + x2
,

f (2)(x) = (f ∗ f
)
(x) = 1

π

2

4 + x2
,

f (3)(x) = (f ∗ f ∗ f
)
(x) = 1

π

3

9 + x2
,

...

f (n)(x) = (f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸
n

)
(x) = 1

π

n

n2 + x2
. (6.3)

Certainly f (n) does not approach the density of the normal distribution; rather, it
remains faithful to its ancestry. Consecutive convolutions yield just further Cauchy
distributions! We say that the Cauchy distribution is stable with respect to convolu-
tion. The reasons for this behaviour will be discussed below. �

6.2 Convolution of Discrete Distributions

The discrete analog of the continuous convolution formula (6.1) for the summation
of independent discrete random variables X and Y is at hand: if X takes the value
i, then Y must be n − i if their sum is to be n. Since X and Y are independent, the
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probabilities for such an “event” should be multiplied, thus

P(X + Y = n) =
∑

i

P(X = i,Y = n − i) =
∑

i

P(X = i)P(Y = n − i) (6.4)

or
fX+Y (n) =

∑

i

fX(i)fY (n − i).

Example Let us demonstrate that the convolution of two Poisson distributions is
still a Poisson distribution! Let X ∼ Poisson(λ) and Y ∼ Poisson(μ) be mutually
independent Poisson variables with parameters λ and μ. For their sum Z = X + Y
one then has

P(Z = n) =
n∑

i=0

P(X = i,Y = n − i) =
n∑

i=0

P(X = i)P(Y = n − i)

=
n∑

i=0

λie−λ

i!
μ(n−i)e−μ

(n − i)! = e−(λ+μ)

n!
n∑

i=0

n!
i!(n − i)!λ

iμn−i = e−(λ+μ)(λ + μ)n

n! ,

thus indeed Z ∼ Poisson(λ + μ). A more elegant solution of this problem will be
given by the Example on p. 369 in Appendix B.1. �
Example Let us compute the probability distribution of the sum Z = X + Y of in-
dependent discrete random variables X and Y , distributed according to

fn = P(X=n) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0.15 ; n = −3,
0.25 ; n = −1,
0.1 ; n = 2,
0.3 ; n = 6,
0.2 ; n = 8,
0 ; otherwise,

gn = P(Y =n) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0.2 ; n = −2,
0.1 ; n = 1,
0.3 ; n = 5,
0.4 ; n = 8,
0 ; otherwise.

The distributions are shown in Fig. 6.4 (left) [1].
In principle we are supposed to find all values P(Z = z), so we must compute the

convolution sum {h} = {f } ∗ {g} for each n separately:

hn = P(Z = n) =
∞∑

j=−∞
fjgn−j.

To make the point, let us just calculate the probability that X + Y = 4. We need

h4 = P(Z = 4) = f−3�g7 + f−2�g6 + f−1g5 + ��f 0�g4 + ��f 1�g3 + f2�g2

+��f 3g1 + ��f 4�g0 + ��f 5�g−1 + f6g−2 + ��f 7�g−3 + f8�g−4

= 0.25 · 0.3 + 0.3 · 0.2 = 0.135.
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Fig. 6.4 Discrete convolution in the case when the distributions have different supports. [Left]
Distributions f and g. [Right] Convolution of f and g

When n and j indices are combed through, many fjgn−j terms vanish (crossed-out
terms above); only the underlined bilinears survive. Such a procedure must be re-
peated for each n: a direct calculation of convolutionsmay become somewhat tedious.
The problem can also be solved by using generating functions, as demonstrated by
the Example on p. 374 in Appendix B.2. �

6.3 Central Limit Theorem

Let X1,X2, . . . ,Xn be real, independent and identically distributed random vari-
ables with probability density fX , whose expected value μX = E[Xi] and variance
σ2
X = E[(Xi − μX)2] are bounded.Define the sumof randomvariablesYn =∑n

i=1 Xi.
By (4.6) and (4.22), the expected value and variance of Yn are E[Yn] = μYn = nμX

and σ2
Yn

= nσ2
X , respectively. The probability density fY of the sum variable Yn is

given by the n-fold convolution of the densities of the Xi’s,

fYn = fX ∗ fX ∗ · · · ∗ fX︸ ︷︷ ︸
n

.

The example in Fig. 6.2 has revealed that the average of the probability density,
calculated by consecutive convolutions of the original density, kept on increasing: in
that case, the average in the limit n → ∞ even diverges! One sees that the variance
keeps on growing as well. Both problems can be avoided by defining a rescaled
variable

Zn = Yn − μYn

σYn

= Yn − nμX√
nσX

.

This ensures that upon subsequent convolutions, the average of the currently obtained
density is subtracted and its variance is rescaled: see Fig. 6.3. In the limit n → ∞ the

http://dx.doi.org/10.1007/978-3-319-31611-6_4
http://dx.doi.org/10.1007/978-3-319-31611-6_4
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distribution function of the variable Zn then converges to the distribution function of
the standardized normal distribution N(0, 1),

lim
n→∞P(Zn ≤ z) = �(z) = 1√

2π

∫ z

−∞
e−t2/2 dt,

or, in the language of probability densities,

lim
n→∞ σYn fYn

(
σYnz + μYn

) = 1√
2π

e−z2/2.

In other words, the dimensionless probability density σYn fYn converges to the stan-
dardized normal probability density in the limit n → ∞, which is known as the
central limit theorem (CLT).

6.3.1 Proof of the Central Limit Theorem

The central limit theorem can be proven in many ways: one way is to exploit our
knowledge onmomentum-generating functions fromAppendixB.2. Suppose that the
momentum-generating function of the variables Xi exists and is finite for all t in some
neighborhood of t = 0. Then for each standardized variableUi = (Xi − μX)/σX , for
whichE[Ui] = 0 and var[Ui] = 1 (thus alsoE[U2

i ] = 1), there exists a corresponding
momentum-generating function

MUi(t) = E
[
etUi
]
,

which is the same for all Ui. Its Taylor expansion in the vicinity of t = 0 is

MU(t) = 1 + t E[U]︸ ︷︷ ︸
0

+ t2

2! E[U2]︸ ︷︷ ︸
1

+ t3

3! E[U3] + · · · = 1 + t2

2
+ O(t2). (6.5)

Let us introduce the standardized variable

Zn = (U1 + U2 + · · · + Un)/
√
n = (X1 + X2 + · · · + Xn − nμX)/(σX

√
n).

Its momentum-generating function is MZn(t) = E
[
etZn
]
. Since the variables Xi are

mutually independent, this also applies to the rescaled variables Ui, therefore, by
formula (B.16), we get

E
[
etZn
] = E
[
et(U1+U2+···+Un)/

√
n
] = E
[
e(t/

√
n)U1
]
E
[
e(t/

√
n)U2
] · · ·E[e(t/

√
n)Un
]

or
MZn(t) = [MU

(
t/

√
n
)]n

, n = 1, 2, . . .
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By using the expansion of MU , truncated at second order, we get

MZn(t) =
[
1 + t2

2n
+ O(t2/n)

]n
, n = 1, 2, . . .

Hence

lim
n→∞MZn(t) = lim

n→∞

(
1 + t2

2n

)n
= et

2/2.

We know from (B.13) that this is precisely the momentum-generating function cor-
responding to the normal distribution N(0, 1), so indeed

fZ(z) = 1√
2π

e−z2/2,

which we set out to prove. A direct proof (avoiding the use of generating functions)
can be found in [2]; it proceeds along the same lines as the proof of the Laplace limit
theorem in Appendix B.3.1.

The speed of convergence to the standardized normal distribution N(0, 1) with
the distribution function �(z) is quantified by the Berry–Esséen theorem [2]. If the
third moment of |X − μX | is bounded (ρ = E[|X − μX |3] < ∞), it holds that

|P(Zn ≤ z) − �(z) | ≤ Cρ√
nσ3

X

,

where 0.4097 � C � 0.4748 [3]. Nowwe also realize why consecutive convolutions
in (6.3) have not led us to the normal distribution: no moments exist for the Cauchy
distribution (see Sect. 4.7.1), so the condition ρ < ∞ is not fulfilled. Moreover, one
should not truncate the Taylor expansion (6.5).

The central limit theorem and the form of the bound on the speed of convergence
remain valid when summing variables Xi distributed according to different (non-
identical) probability distributions, if the variables are not too “dispersed” (Linde-
berg criterion, see [2]). An excellent (and critical) commentary on “why normal
distributions are normal” is also given by [4].

Example Let us revisit the convolution of the uniform distribution in Fig. 6.2. We
sum twelve mutually independent variables Xi ∼ U(0, 1) and subtract 6,

Y =
12∑

i=1

Xi − 6. (6.6)

What are we supposed to get? The averages of allXi are 1/2,E[Xi] = 1/2, while their
variances are var[Xi] = 1/12 (see Table4.1). Hence, Y should also have an average
of zero and a variance of var[Y ] = var[X1] + · · · + var[X12] = 12/12 = 1. By the
central limit theorem, Y should be almost normally distributed, if we believe that
12 ≈ ∞. How well this holds is shown in Fig. 6.5.

http://dx.doi.org/10.1007/978-3-319-31611-6_4
http://dx.doi.org/10.1007/978-3-319-31611-6_4
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Fig. 6.5 Histogramof 107 valuesY , randomly generated according to (6.6), compared to the density
of the standardized normal distribution (3.10). In effect, the figure also shows the deviation of (6.2)
from the normal density. The sharp cut-offs at ≈−5 and ≈4.7 are random: by drawing a larger
number of values the histogram would fill the whole interval [−6, 6]

We have thus created a primitive “convolution” generator of approximately nor-
mally distributed numbers, but with its tails cut off since Y can never exceed 6 and
can never drop below −6. It is a practical generator—which does not mean that it
is good. How a “decent” generator of normally distributed random numbers can be
devised will be discussed in Sect. C.2.5. �
Example (Adapted from [5].) ThemassM of granules of a pharmaceutical ingredient
is a random variable, distributed according to the probability density

fM(m) = 1

24m5
0

m4e−m/m0 , m ≥ 0, m0 = 40mg. (6.7)

To analyze the granulate, we acquire a sample of 30 granules. What is the probability
that the total mass of the granules in the sample exceeds its average value by more
than 10%?

The average mass of a single granule and its variance are

M =
∫ ∞

0
mfM(m) dm = 5m0, σ2

M =
∫ ∞

0

(
m − M

2)
fM(m) dm = 5m2

0.

The probability density fX of the total samplemassX, which is also a randomvariable,
is a convolution of thirty densities of the form (6.7); this number is large enough to
invoke the central limit theorem, so the density fX is almost normal, with average
X = 30M = 150m0 and variance σ2

X = 30 σ2
M = 150m2

0:

fX(x) ≈ fnorm
(
x;X,σ2

X

) = fnorm
(
x; 150m0, 150m

2
0

)
.

The desired probability is then

P(X>165m0) ≈
∞∫

165m0

fnorm
(
x;X,σ2X

)
dx = 1

2

[
1 − erf

(
(165 − 150)m0√

2
√
150m0

)]
≈ 11%,

where we have used Table D.2. �

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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6.4 Stable Distributions �

The normal distribution as the limit distribution of the sum of independent random
variables can be generalized by the concept of stable distributions [6, 7].

Suppose we are dealing with independent random variablesX1,X2 andX3 with the
same distribution over the sample space �. We say that such a distribution is stable,
if for each pair of numbers a and b there exists a pair c and d such that the distribution
of the linear combination aX1 + bX2 is equal to the distribution of cX3 + d, that is,

P
(
aX1 + bX2 ∈ A

) = P
(
cX3 + d ∈ A

) ∀A ⊂ �.

Such random variables are also called ‘stable’; a superposition of stable random
variables is a linear function of a stable random variable with the same distribution.

Stable distributions aremost commonly described by their characteristic functions
(see Appendix B.3). Among many possible notations we follow [6]. We say that a
random variable X has a stable distribution fstab(x;α,β, γ, δ), if the logarithm of its
characteristic function (B.17) has the form

logφX(t) = iδt − γα|t|α[1 − iβ�α(t)
]
,

where

�α(t) =
{
sign(t) tan(πα/2) ; α �= 1,
− 2

π
sign(t) log |t| ; α = 1.

The parameterα ∈ (0, 2] is the stability index or characteristic exponent, the parame-
terβ ∈ [−1, 1] describes the skewness of the distribution, and two further parameters
γ > 0 and δ ∈ R correspond to the distribution scale and location, respectively. For
α ∈ (1, 2] the expected value exists and is equal to E[X] = δ. For general α ∈ (0, 2]
there exist moments E[|X|p], where p ∈ [0,α).

It is convenient to express X by another random variable Z ,

X =
{

γZ + δ ; α �= 1,
γ
(
Z + 2

π
β log γ

)+ δ ; α = 1.

Namely, the characteristic function of Z is somewhat simpler,

logφZ(t) = −|t|α[1 − iβ�α(t)
]
,

as it depends only on two parameters, α and β. The probability density fZ of the
variable Z is calculated by the inverse Fourier transformation of the characteristic
function φZ :

fZ(z;α,β) = 1

π

∫ ∞

0
exp(−tα) cos

(
zt − tαβ�α(t)

)
dt,
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Fig. 6.6 Stable distributions fstab(x; α,β, γ, δ). [Top left and right] Dependence on parameter α at
β = 0.5 and 1.0. [Bottom left and right] Dependence on parameter β at α = 0.5 and 1.0. At α �= 1
the independent variable is shifted by cα,β = β tan(πα/2)

where fZ(−z;α,β) = fZ(z;α,−β). The values of fZ and fX can be computed by
using integrators tailored to rapidly oscillating integrands: see [8], p. 660; a modest
software support for stable distributions can also be found in [9]. With respect to α
and β, the definition domains of fZ are

z ∈
⎧
⎨

⎩

(−∞, 0] ; α < 1, β = −1,
[0,∞) ; α < 1, β = 1,
R ; otherwise.

The dependence of fstab (fX or fZ with appropriate scaling) on the parameter α is
shown in Fig. 6.6 (top left and right), while the dependence on β is shown in the
same figure at bottom left and right.

By a suitable choice of parameters such a general formulation allows for all
possible stable distributions. The most relevant ones are
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normal : α = 2, β = 0, fX(x) = 1√
2π

e−x2/2, x ∈ R ;

Cauchy : α = 1, β = 0, fX(x) = 1

π

1

1 + x2
, x ∈ R ;

Lévy : α = 1
2 , β = 1, fX(x) = 1√

2π
e−1/(2x) x−3/2, x ∈ R+.

Stable distributions with α ∈ (0, 2) have a characteristic behaviour of probability
densities known as power or fat tails. The cumulative probabilities satisfy the as-
ymptotic relations

β ∈ (−1, 1] :
∫ ∞

x
fZ(z;α,β) dz ∼ 1

2
cα(1 + β)x−α, x → ∞,

β ∈ [−1, 1) :
∫ x

−∞
fZ(z;α,β) dz ∼ 1

2
cα(1 − β)(−x)−α, x → −∞,

(6.8)

where cα = 2 sin(πα/2)�(α)/π. Forβ ∈ (−1, 1) such asymptotic behaviour is valid
in both limits, x → ±∞. Note that the probability density has the asymptotics
O(|x|−α−1) if the cumulative probability goes as O(|x|−α).

6.5 Generalized Central Limit Theorem �

Having introduced stable distributions (Sect. 6.4) one can formulate the generalized
central (or Lévy’s) limit theorem, elaboratedmore closely in [2]. Here we just convey
its essence.

Suppose we have a sequence of independent, identically distributed random vari-
ables {Xi}i∈N, from which we form the partial sum

Yn = X1 + X2 + · · · + Xn.

Assume that their distribution has power tails, so that for α ∈ (0, 2] the following
limits exist:

lim
x→∞ |x|α P(X > x) = d+, lim

x→−∞ |x|α P(X < x) = d−,

and d = d+ + d− > 0. Then real coefficients an > 0 and bn exist such that the
rescaled partial sum

Zn = Yn − nbn
an

in the limit n → ∞ is stable, and its probability density is fstab(x;α,β, 1, 0). Its
skewness is given by β = (d+ − d−)/(d+ + d−), while an and bn are
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an =
{

(d n/cα)1/α ; α ∈ (0, 2),√
(d n log n)/2 ; α = 2,

bn =
{
E
[
Xi
] ; α ∈ (1, 2],

E
[
Xi H
(|Xi| − an

)] ; otherwise,

where H is the Heaviside function. The constant cα is defined next to (6.8). The
coefficient an for α < 2 diverges with increasing n as O(n1/α).

The generalized central limit theorem is useful in analyzing the process of random
walk, which is analogous to extending the partial sum of random numbers Yn. Such
processes are discussed in Sects. 6.7 and 6.8. The convergence to the stable distrib-
ution when n → ∞ is becoming more and more “capricious” when α decreases.

6.6 Extreme-Value Distributions �

In Sects. 6.3 and 6.4 we have discussed the distributions of values obtained in sum-
ming independent, identically distributed random variables {Xi}ni=1. Now we are
interested in statistical properties of their maximal and minimal values, i.e. the be-
haviour of the quantities

Mn = max{X1,X2, . . . ,Xn},
M̃n = min{X1,X2, . . . ,Xn},

when n → ∞. We thereby learn something about the probability of extreme events,
as exceptionally strong earthquakes, unusual extent of floods or inconceivably large
amounts of precipitation: “It rained for four years, eleven months, and two days.”
(See [10], p. 315.) The variables Xi are the values of the process, usually recorded
at constant time intervals—for example, n = 365 daily temperature averages on
Mt. Blanc—while Mn is the corresponding annual maximum. We are interested in,
say, the probability that on top of Mt. Blanc, the temperature of +42 ◦C will be
exceeded on any one day in the next ten years.

In principle, we have already answered these questions—about both the maximal
and minimal value—in Problem 2.11.6: if FX is the distribution function of the
individual Xi’s, the maximal values Mn are distributed according to

FMn(x) = P
(
Mn ≤ x

) = [FX(x)
]n

, (6.9)

and the minimal as

1 − FM̃n
(x) = 1 − P

(
M̃n ≤ x

) = P
(
M̃n > x

) = [1 − FX(x)
]n

.

http://dx.doi.org/10.1007/978-3-319-31611-6_2
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But this does not help much, as FX is usually not known! A statistical analysis of
the observations may result in an approximate functional form of FX , but even small
errors in FX (particularly in its tails) may imply large deviations in Fn

X . We therefore
accept the fact that FX is unknown and try to find families of functions Fn

X , by which
extreme data can be modeled directly [11, 12].

There is another problem. Define x+ as the smallest value x, for which FX(x) = 1.
Then for any x < x+ we get Fn

X(x) → 0, when n → ∞, so that the distribution
function ofMn degenerates into a “step” at x+. The figure above shows this in the case
of uniformly distributed variables Xi ∼ U(0, 1) with probability density fX(x) = 1
(0 ≤ x ≤ 1) and distribution function FX(x) = x (0 ≤ x ≤ x+ = 1). When n → ∞,
the distribution function Fn

X tends to the step (Heaviside) function at x = 1, while
its derivative (probability density) resembles the delta “function” at the same point.
Our goal is to find a non-degenerate distribution function. We will show that this can
be accomplished by a rescaling of the variable Mn,

M∗
n = Mn − bn

an
, (6.10)

where an > 0 and bn are constants. Illustrations of a suitable choice of these constants
or of their calculation are given by the following Example and Exercise in Sect. 6.9.5.
A general method to determine these constants is discussed in [13, 14].

Example LetX1,X2, . . . ,Xn be a sequence of independent, exponentially distributed
variables, thus FX(x) = 1 − e−x. Let an = 1 and bn = log n. Then

P

(
Mn − bn

an
≤ x

)
= P
(
Mn ≤ anx + bn

) = P
(
Mn ≤ x + log n

)

= [FX
(
x + log n

)]n = [1 − e−(x+log n)
]n =
[
1 − 1

n
e−x
]n

→ exp
(− exp(−x)

)
, x ∈ R,

when n → ∞. By a suitable choice of an and bn we have therefore stabilized the
location and scale of the distributions ofM∗

n in the limit n → ∞.
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Let us repeat this calculation for independent variables with the distribution func-
tion FX(x) = e−1/x and for uniformly distributed variables, FX(x) = x! In the first
case we set an = n and bn = 0, and get P(M∗

n ≤ x) = e−1/x (x > 0). In the second
case a good choice is an = 1/n and bn = 1, yielding P(M∗

n ≤ x) → ex (x < 0) in the
limit n → ∞. Plot all three functions FX(x) of this Example and elaborate why one
or the other are more or less sensible for the actual physical description of extreme
phenomena! �

6.6.1 Fisher–Tippett–Gnedenko Theorem

Apparently the choice of constants an and bn is crucial if we wish the distribution
of M∗

n in the limit n → ∞ to be non-trivial (not degenerated into a point); the basic
formalism for a correct determination of these constants is discussed e.g. in [14].
In the following we assume that such constants can be found; one can then namely
invoke the Fisher–Tippett–Gnedenko theorem [15, 16], which is the extreme-value
analog of the central limit theorem of Sect. 6.3: if there exist sequences of constants
{an > 0} and {bn} such that in the limit n → ∞ we have

P

(
Mn − bn

an
≤ x

)
→ G(x)

for a non-degenerate distribution function G, then G belongs to the family

G(x) = exp

{
−
[
1 + ξ

(
x − μ

σ

)]−1/ξ
}

, (6.11)

defined on the set of points {x : 1 + ξ(x − μ)/σ) > 0}, where−∞ < μ < ∞, σ > 0
and −∞ < ξ < ∞. Formula (6.11) defines the family of generalized extreme-value
distributions (GEV).An individual distribution is described by the location parameter
μ (a sort of average of extreme values), the scale parameter σ (their dispersion),
and the shape parameter ξ. The value of ξ characterizes three sub-families of the
GEV set—Fréchet (ξ > 0), Gumbel (ξ = 0) and Weibull (ξ < 0)—differing by the
location of the point x+ and asymptotics. The Gumbel-type distributions must be
understood as the ξ → 0 limit of (6.11):

G(x) = exp

{
− exp

[
−
(
x − μ

σ

)]}
, −∞ < x < ∞. (6.12)

The corresponding probability density in the case ξ �= 0 is

g(x) = G′(x) = 1

σ

[
t(x)
]1+ξ

e−t(x), t(x) =
[
1 + ξ

x − μ

σ

]−1/ξ

(6.13)

while for ξ = 0 it is
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Fig. 6.7 Rainfall in Engelberg (1864–2014). [Left] Time series of annual extreme values. [Right]
Histogram of extremes, the corresponding probability density g (dashed curve) and the GEV dis-
tribution function (full curve). The optimal parameters μ̂, σ̂ and ξ̂ have been determined by fitting
g to the histogram

g(x) = 1

σ
exp

[
−x − μ

σ
− exp

(
−x − μ

σ

)]
.

The predictive power of the Fisher–Tippett–Gnedenko theorem does not lag be-
hind the one of the central limit theorem: if one is able to find suitable {an} and {bn},
the limiting extreme-value distribution is always of the type (6.11), regardless of the
parent distribution FX that generated these extreme values in the first place! Different
choices of {an} and {bn} lead to GEV-type distributions with different μ and σ, but
with the same shape parameter ξ, which is the essential parameter of the distribution.

Example Figure6.7 (left) shows the annual rainfall maxima, measured over 151
years (1864–2014) in the Swiss town of Engelberg [17]. Each data point represents
the extreme one-day total (the wettest day in the year): we are therefore already
looking at the extreme values and we are interested in their distribution, not the
distribution of all non-zero daily quantities: that is most likely normal!

Figure6.7 (right) shows the histogram of 151 extreme one-day totals, normalized
such that the sum over all bins is equal to one. It can therefore be directly fitted by the
density (6.13) (dashed curve), resulting in the distribution parameters μ̂ = 53.9mm,
σ̂ = 14.8mm, ξ̂ = 0.077 (Fréchet family). The corresponding distribution function
is shown by the full curve. �

6.6.2 Return Values and Return Periods

The extreme-value distribution and its asymptotic behaviour can be nicely illustrated
by a return-level plot. Suppose that we havemeasured n = 365 daily rainfall amounts
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Fig. 6.8 Return values for
extreme rainfall in Engelberg
(period 1864–2014). The full
curve is the model prediction
with parameters from
Fig. 6.7, and the dashed
curve is the model with
parameters obtained by the
maximum likelihood method

xi over a period ofN consecutive years, so that their annualmaxima are also available:

x1, x2, . . . , xn︸ ︷︷ ︸
Mn,1

, xn+1, xn+2, . . . , x2n︸ ︷︷ ︸
Mn,2

, . . . , x(N−1)n+1, x(N−1)n+2, . . . , xNn︸ ︷︷ ︸
Mn,N

.

The quantiles of the annual extremes distribution are obtained by inverting (6.11):

xp =
{

μ − σ

ξ

[
1 − (− log(1 − p)

)−ξ
]

; ξ �= 0,

μ − σ log
(− log(1 − p)

) ; ξ = 0,

where G(xp) = 1 − p. We call xp the return level corresponding to the return period
T = 1/p. One may namely expect that the value xp will be exceeded once every
1/p years or that the annual maximum will exceed the value xp in any year with a
probability of p = 1/T . From these definitions it follows that

T = 1

p
= 1

1 − G(xp)
. (6.14)

The model dependence of xp on T in the case of Engelberg rainfall is shown in
Fig. 6.8 by the full curve. On the abscissa one usually uses a logarithmic scale; one
thereby shrinks the region of “extreme extreme” values and obtains a clearer picture
of the asymptotics in terms of ξ. We must also plot the actually measured extreme
observationsMn,1,Mn,2, . . . ,Mn,N . In general, these are not sorted, so—in the spirit
of (6.14)—individual extremes Mn,i are mapped to their return periods:

Ti = N

N + 1 − rank(Mn,i)
, i = 1, 2, . . . ,N .

The points (Ti,Mn,i) are denoted by circles in the figure. Themaximum one-day total
of 111.2mm, recorded in 2005, has an expected return period of 31 years, while the
deluge witnessed in 1874 may reoccur every ≈150 years on the average.
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Thefitting of the probability density to the data as in the previousExample depends
on the number of bins in the histogram (see Sect. 9.2), so this is not the best way
to pin down the optimal parameters. In Problem 8.8.3 the parameters of the GEV
distribution and their uncertainties will be determined for the same data set by the
method of maximum likelihood. In Fig. 6.7 (right) this distribution is shown by the
dashed line.

6.6.3 Asymptotics of Minimal Values

So far we have only discussed the distributions of maximal values, most frequently
occurring in practice. On the other hand, the distributions of extremely small values,
i.e. the asymptotic behaviour of the quantities

M̃n = min{X1,X2, . . . ,Xn}

when n → ∞, are also important, in particular in modeling critical errors in systems,
where the lifetime of the whole system, M̃n, is equal to the minimal lifetime of one
of its components {Xi}.

There is no need to derive new formulas for minimal values; we can simply
use the maximal-value results. Define Yi = −Xi for i = 1, 2, . . . , n, so that small
values of Xi correspond to large values of Yi. Thus if M̃n = min{X1,X2, . . . ,Xn} and
Mn = max{Y1,Y2, . . . ,Yn}, we also have

M̃n = −Mn.

In the limit n → ∞ we therefore obtain

P
(
M̃n ≤ x

) = P
(−Mn ≤ x

) = P
(
Mn ≥ −x

) = 1 − P
(
Mn ≤ −x

)

→ 1 − exp

{
−
[
1 + ξ

(−x − μ

σ

)]−1/ξ
}

= 1 − exp

{
−
[
1 − ξ

(
x − μ̃

σ

)]−1/ξ
}

(6.15)

on {x : 1 − ξ(x − μ̃)/σ > 0}, where μ̃ = −μ. This means that a minimal-value dis-
tribution can be modeled either by directly fitting (6.15) to the observations or by
using (6.11) and considering the symmetry exposed above: if, for example, we wish
to model the data x1, x2, . . . , xn by a minimal-value distribution (parameters μ̃,σ, ξ),
this is equivalent to modeling the data −x1,−x2, . . . ,−xn by a maximal-value dis-
tribution with the same σ and ξ, but with μ̃ = −μ.

http://dx.doi.org/10.1007/978-3-319-31611-6_9
http://dx.doi.org/10.1007/978-3-319-31611-6_8
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6.7 Discrete-Time RandomWalks �

Randomwalks are non-stationary random processes used to model a variety of phys-
ical processes. A random or stochastic process is a generalization of the concept of
a random variable: instead of drawing a single value, one “draws” a whole time
series (signal), representing one possible realization of the random process or its
sample path. The non-stationarity of the process means that its statistical proper-
ties change with time. (A detailed classification of random process can be found in
[8].) In this subsection we discuss discrete-time random walks [2, 18, 19], while the
next subsection is devoted to their continuous-time counterparts [18–21]. See also
Chap.12.

Imagine a discrete-time random process X, observed as a sequence of random
variables {X(t)}t∈N. The partial sums of this sequence are

Y(t) = Y(0) +
t∑

i=1

X(i) = Y(t − 1) + X(t) (6.16)

and represent a new discrete-time random process Y , i.e. a sequence of random
variables {Y(t)}t∈N0 . The process Y is called a random walk, whose individual step is
the process X(t). Let the sample space� of X and Y be continuous.We are interested
in the time evolution of the probability density fY(t) of the random variable Y if the
initial density fY(0) is known.

If we assume that Y is a process in which the state of each point depends only on
the state of the previous point, the time evolution of fY(t) is determined by

fY(t)(y) =
∫

�

f
(
Y(t) = y |Y(t − 1) = x

)
fY(t−1)(x) dx,

where f
(
Y(t) = y |Y(t − 1) = x

)
is the conditional probability density that Y goes

from value x at time t − 1 to value y at time t. Let us also assume that the process X is
independent of the previous states, so that f

(
X(t) = x |Y(t − 1) = y − x) = fX(t)(x).

By considering (6.16) and substituting z = y − x we get

fY(t)(y) =
∫

�

fX(t)(z)fY(t−1)(y − z) dz = (fX(t) ∗ fY(t−1)
)
(y).

By using this formula fY(t) can be expressed as a convolution of the initial distribution
fY(0) and the distribution of the sum of steps until time t, f ∗t

X :

fY(t) = fY(0) ∗ f ∗t
X , f ∗t

X = fX(1) ∗ fX(2) ∗ · · · ∗ fX(t).

The time evolution fY(t)(y) is most easily realized in Fourier space, where it is given
by the product of Fourier transforms F of the probability densities,

http://dx.doi.org/10.1007/978-3-319-31611-6_12
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F [fY(t)
] = F [fY(0)

] t∏

i=1

F [fX(i)
]
.

One often assumes that at time zero the value of the process Y is zero and that
fY(0)(y) = δ(y). This assumption is useful in particular when one is interested in the
qualitative behaviour of fY(t) at long times.

6.7.1 Asymptotics

Tounderstand the time asymptotics of the distribution fY(t) is is sufficient to study one-
dimensional random walks. Assume that the steps are identically distributed, with
the density fX(t) = fX , and Y(0) = 0. The distribution corresponding to the process
Y is therefore determined by the formula

fY(t) = F−1

[(
F [fX
])t]

for all times t. The behaviour of fY(t) in the limit t → ∞ is determined by the central
limit theorem (Sect. 6.3) and its generalization (Sect. 6.5). The theorems tell us that
at large t, fY(t) converges to the limiting (or asymptotic) distribution which can be
expressed by one of the stable distributions fstab, such that

fY(t)(y) ∼ L(t)fstab
(
L(t)y + tμ(t)

)

with suitably chosen functions L and μ. The function L represents the effective
width of the central part of the distribution fY(t), where the bulk of the probability
is concentrated, and is called the characteristic spatial scale of the distribution. The
function μ has the role of the distribution average.

Furthermore, if the distribution of steps, fX , has a bounded variance, σ2
X < ∞, the

central limit theorem tells us that fY(t) tends to the normal distribution with a standard
deviation of

L = σY(t) ∼ t1/2.

Such asymptotic dependence of the spatial scale on time defines normal diffusion,
and this regime of random walks is named accordingly (Fig. 6.9 (left)).

If the probability density fX asymptotically behaves as

fX(x) ∼ C±
|x|α+1

, x → ±∞,

where C± are constants, we say that the distribution has power or fat tails, a concept
familiar from Sect. 6.4. For α ∈ (0, 2), the second moment of the distribution no
longer exists, and fY(t) at large t tends to a distribution with scale
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Fig. 6.9 Dependence of the characteristic spatial scale L on time t. [Left] Discrete-time random
walks. [Right] Continuous-time random walks

L ∼ t1/α.

Because in this case the characteristic scale changes faster than in the case of normal
diffusion, we are referring to super-diffusion. The dynamics of the process Y in this
regime is known as Lévy flights. The diffusionwithα = 1 is called ballistic: particles
propagate with no restrictions with given velocities, so that

L ∼ t.

Near α = 2 we have L(t) ∼ (n log n)1/2, a regime called log-normal diffusion.
These properties can be easily generalized to multiple space dimensions. We

observe the projection of the walk, n̂TY(t), along the direction defined by the unit
vector n̂, and its probability density fn̂TY(t). For each n̂ we apply the central limit
theorem or its generalization and determine the scale Ln̂. A random walk possesses a
particular direction n̂∗ along which the scale is largest or increases fastest with time.
We may take Ln̂∗ to be the characteristic scale of the distribution fY(t). An example of
a simulation of a two-dimensional random walk where the steps in x and y directions
are independent, is shown in Fig. 6.10.

If the densities fX(t) have power tails, fY(t) also has them. This applies regardless
of the central limit theorem or its generalization. Suppose that in the limit t → ∞
we have fX(t)(x) ∼ C±,t|x|−α−1. When the walk “generates” the density fY(t), the
tails add up, so fY(t)(x) ∼ (∑t

i=1 C±,i
)|x|−α−1 when x → ±∞. This means that the

probability of extreme events in Y(t) increases with time, since

P
(|Y(t)| > y

) ∼
t∑

i=1

P
(|X(i)| > y

)
, when y → ∞.

To estimate the variance of such processes we therefore apply methods of robust sta-
tistics (Sect. 7.4). Instead of calculating the standard deviation σY(t) in sub-diffusive
random walks, for example, one is better off using MAD (7.23).

http://dx.doi.org/10.1007/978-3-319-31611-6_7
http://dx.doi.org/10.1007/978-3-319-31611-6_7
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Fig. 6.10 Examples of random walks (xt, yt) with 104 steps, generated according to xt+1 = xt +
sign(X)|X|−μ and yt+1 = yt + sign(Y)|Y |−μ, where X and Y are independent random variables,
uniformly distributed on [−1, 1]. [Left] μ = 0.25. [Right] μ = 0.75. The circles denote the initial
position of the walks, x = y = 0

6.8 Continuous-Time RandomWalks �

In continuous-time random walks [18–21] the number of steps N(t) taken until time
t becomes a continuous random variable. The definition of a discrete-time random
walk (6.16) should therefore be rewritten as

Y(t) = Y(0) +
N(t)∑

i=1

X(i).

The expression for Y(t) can not be cast in iterative form Y(t) = Y(t − 1) + · · · as
in (6.16). The number of steps N(t) has a probability distribution FN(t). Suppose
that N(t) and X(i) are independent processes—which is not always true, as it is not
possible to take arbitrary many steps within given time [22, 23]. If X(i) at different
times are independent and correspond to probability densities fX(i), the probability
density of the random variable Y(t) is

fY(t)(y) =
∞∑

n=0

FN(t)(n)
(
fY(0) ∗ f ∗n

X

)
(y),

where
f ∗t
X = fX(1) ∗ fX(2) ∗ · · · ∗ fX(t).

In the interpretation of such random walks and the choice of distribution FN(t)

we follow [20]. A walk is envisioned as a sequence of steps whose lengths X(i) and
waiting time T(i) between the steps are randomly drawn. After N steps the walk
makes it to the point X (N) and the elapsed time is T (N), so that
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X (N) =
N∑

i=1

X(i), T (N) =
N∑

i=1

T(i), X (0) = T (0) = 0.

Within given time, a specific point can be reached in different numbers of steps N .
If the step lengths X(i) and waiting times T(i) are independent, the number of steps
N(t) taken until time t is determined by the process of drawing the waiting times.
Let us introduce the probability that the ith step does not occur before time t,

FT(i)(t) =
∫ ∞

t
fT(i)(t

′) dt′,

where fT(i) is the probability density corresponding to the distribution of waiting
times. The probability of making n steps within the time interval [0, t] is then

FN(t)(n) =
∫ t

0
f ∗n
T (t′)FT(n+1)(t − t′) dt′ = (f ∗n

T ∗ FT(n+1)
)
(t),

where
f ∗n
T = fT(1) ∗ fT(2) ∗ · · · ∗ fT(n).

The distribution FN(t) can be calculated by using the Laplace transformation in
time domain and the Fourier transformation in spatial domain: this allows one to
avoid convolutions and operate with products of functions in transform spaces. The
procedure, which we can not discuss in detail, leads to the Montroll–Weiss equation
[20], helping us to identify four parameter regions corresponding to distributions of
step lengths (density fX ) and waiting times (density fT ) with different dependencies
of the scale L on time t, which determine the diffusion properties of the randomwalk.
These regions are shown in Fig. 6.9 (right) and quantified below. We assume that the
distributions of step lengths and waiting times do not change during the walk, so that
fX(i) = fX and fT(i) = fT .

Normal diffusionwith spatial scale L ∼ t1/2 is obtained when E[T ] < ∞, σX < ∞.

Sub-diffusion with scale L ∼ tβ/2 is obtained with E[T ] = ∞, σX < ∞ and distri-
bution of waiting times

fT (t) ∼ 1

t1+β
, β ∈ (0, 1).

Super-diffusionwithL ∼ t1/α is obtainedwithE[T ] < ∞,σX = ∞ and distribution
of step lengths

fX(x) ∼ 1

x1+α
, α ∈ (0, 2).

When E[T ] = ∞ and σX = ∞, and when
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Fig. 6.11 [Left] Convolution of the uniform distribution U(−3, 3) and the standardized normal
distribution N(0, 1). [Right] Convolution of the exponential distribution with parameter λ = 0.2
and the standardized normal distribution

fX(x) ∼ 1

x1+α
, fT (t) ∼ 1

t1+β
, α ∈ (0, 2), β ∈ (0, 1),

the scale is L ∼ tβ/α. The walks are super-diffusive if 2β > α and sub-diffusive
otherwise. Processes for which E[T ] = ∞ are deeply non-Markovian: this means
that the values of the process at given time depend on its whole history, not just on
the immediately preceding state. Further reading can be found in [19, 21].

6.9 Problems

6.9.1 Convolutions with the Normal Distribution

Calculate the convolution of the normal distribution with the① uniform,② normal
and ③ exponential distributions!

✎ ① The convolution of the uniform distribution with the density fX(x) = 1/(b −
a) (see (3.1)) and the normal distribution with the density fY (Definition (3.7)) is

fZ(z) =
∫ b

a
fX(x)fY (z − x) dx = 1

b − a

1√
2π σ

∫ b

a
exp

[
− (z − x)2

2σ2

]
dx

= 1

b − a

1√
2π

∫ (b−z)/σ

(a−z)/σ
e−u2/2 du = 1

2(b − a)

[
erf

(
b − z√
2σ

)
− erf

(
a − z√
2σ

)]
.

This function is shown in Fig. 6.11 (left).
Part ② is easily solved by using characteristic functions (B.20) and prop-

erty (B.22):

http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_3
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φZ(t) = φX+Y (t) = φX(t)φY (t) = ei (μX+μY )te−(σ2
X+σ2

Y)t
2/2 = eiμZ te−σ2

Z t
2/2.

From this it is clear that the convolution of two normal distributions with means
μX and μY and variances σ2

X and σ2
Y is also a normal distribution, with mean μZ =

μX + μY and variance σ2
Z = σ2

X + σ2
Y .

Problem ③ requires us to convolute the distribution with the probability density
fX(x) = λ exp(−λx) (see (3.4)) and the normal distribution, where we set μ = 0:

fZ(z) = λ√
2π σ

∫ z

−∞
e−λ(z−y)e−y2/(2σ2) dy.

Upon rearranging the exponent,

−λ(z − y) − y2

2σ2
= − λ

2σ2

(
2σ2(z − y) + y2

λ
+ λσ4 − λσ4

)

= −λz + λ2σ2

2
− 1

2σ2

(
y − λσ2)2 ,

it follows that

fZ(z) = λ√
2π σ

exp

(
−λz + λ2σ2

2

)∫ (z−λσ2)/σ

−∞
e−u2/2 du

= λ exp

(
−λz + λ2σ2

2

)
1

2

[
1 + erf

(
z − λσ2

√
2 σ

)]
.

This function is shown in Fig. 6.11 (right).

6.9.2 Spectral Line Width

The lines in emission spectra of atoms and molecules have finite widths [24]. Line
broadening has three contributions: the natural width (N), collisional broadening
(C) due to inelastic collisions of radiating particles, and Doppler broadening (D).
Calculate a realistic spectral line profile by convoluting these three distributions.

✎ The natural width of the line in spontaneous emission—usually the smallest
contribution to broadening—has a Lorentz (Cauchy) profile with a width of �νN,

φN(ν) = 1

π

�νN/2

(ν − ν0)2 + (�νN/2)2
.

As noted in the discussion of (3.19), such a distribution embodies a Fourier transfor-
mation of the exponential time dependence of the decays into Fourier space.

http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_3
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The broadening due to inelastic collisions depends on pressure and temperature—
approximately one has �νC ∝ p/

√
T—and has a Cauchy profile as well:

φC(ν) = 1

π

�νC/2

(ν − ν0)2 + (�νC/2)2
. (6.17)

A convolution of two Cauchy distributions is again a Cauchy distribution,

φN+C(ν) =
∫ ∞

−∞
φN(ρ)φC(ν − ρ) dρ = 1

π

(�νN + �νC)/2

(ν − ν0)2 + (�νN + �νC)2/4
,

where we have shifted the origin of φC before integrating by setting ν0 = 0 in (6.17).
If we had failed to do that, the peak of the convoluted distribution φN+C would shift
from ν0 to 2ν0—see Sect. 6.1.1!

The Doppler effect is proportional to the velocity of the radiating objects, which
is normally distributed (see (3.14) for a single velocity component), hence the cor-
responding contribution to the line profile has the form

φD(ν) = 2
√
log 2√

π�νD
exp

{
−
(
2
√
log 2

�νD
(ν − ν0)

)2}
.

The final spectral line shape is calculated by the convolution of the distributions
φN+C and φD, where again the origin must be shifted. We obtain

φV(ν) =
∫ ∞

−∞
φN+C(ρ)φD(ν − ρ) dρ = 2

√
log 2√

π�νD

{
a

π

∫ ∞

−∞
e−x2

(w − x)2 + a2
dx

}
,

where

a = √log 2 �νN + �νC

�νD
, w = 2

√
log 2

ν − ν0

�νD
.

This is called the Voigt distribution. The natural width is usually neglected because
�νN � �νC,�νD. How well φV describes an actual line shape (as compared to the
Cauchy and Gaussian profiles) is shown in Fig. 6.12.

6.9.3 Random Structure of Polymer Molecules

(Adapted from [5].) A polymer molecule can be envisioned as a chain consisting of
a large number of equal, rigid, thin segments of length L. Starting at the origin, a
molecule growsby attaching to the current terminal point further and further segments
in arbitrary directions in space.① What is the probability distribution for the position
of the terminal point? ② Calculate the expected distance R between the initial and
terminal point of the chain and R2!

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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Fig. 6.12 Description of the
Si (III) emission line at the
wave-length of 254.182 nm
(compare to Fig. 3.6) by a
Gaussian (normal), Cauchy
(Lorentz) and Voigt
distribution with added
constant background

✎ ① Whenanewsegment is attached to the chain, it “chooses” its orientation at ran-
dom: the directional distribution is therefore isotropic, f�(cos θ) = dF�/d(cos θ) =
1/2. For a projection of a single segment onto an arbitrary direction (e.g. x) we have

X1 = L cos� = L
∫ π

0
cos θ f�(cos θ) sin θ dθ = 0,

σ2
X1

= X2
1 = L2 cos2 � = L2

∫ π

0
cos2 θ f�(cos θ) sin θ dθ = L2

3
. (6.18)

The X-coordinate of the terminal point of an N-segment chain is the sum of indepen-
dent and identically distributed random variables X1 so, by the central limit theorem,
it is nearly normally distributed at large N , with expected value X = NX1 = 0 and
variance σ2

X = X2 = Nσ2
X1

= NL2/3. The corresponding probability density is

fX(x) = 1√
2π σX

exp

(
− x2

2σ2
X

)
=
√

3

2πNL2
exp

(
− 3x2

2NL2

)
.

The x, y and z projections are not independent when a single segment is attached,
but they are independent on average (after many attachments), so the same reasoning
applies to Y and Z coordinates. Since R2 = X2 + Y 2 + Z2, the probability density
corresponding to the radial distribution of the terminal point of the chain is

fR(r) = fX(x)fX(y)fX(z) =
(

3

2πNL2

)3/2
exp

(
− 3r2

2NL2

)
. (6.19)

② This can be used to calculate the expected values of R and R2:

R =
∫ ∞

0
rfR(r) 4πr

2 dr = L

√
8N

3π
, R2 =

∫ ∞

0
r2fR(r) 4πr

2 dr = NL2.

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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The latter can also be derived by recalling (6.18), since

R2 = X2 + Y 2 + Z2 = X2 + Y 2 + Z2 = 3
NL2

3
= NL2.

There is yet another path to the same result. Each segment (n = 1, 2, . . . ,N) is
defined by a vector rn = (xn, yn, zn)T. We are interested in the average square of the
sum vector,

R2 = |R|2 =
(

N∑

m=1

rm

)T ( N∑

n=1

rn

)
=
∑

n

r2n +
∑

m �=n

rTmrn.

Averaging the second sum yields zero due to random orientations, rTmrn = 0, hence

R2 =
N∑

n=1

r2n = Nr21 = NL2.

6.9.4 Scattering of Thermal Neutrons in Lead

(Adapted from [5].) A neutron moves with velocity v in lead and scatters elasti-
cally off lead nuclei. The average time between collisions is τ , corresponding to
the mean free path λ = vτ . The times between consecutive collisions are mutually
independent, and each scattering is isotropic. ① What is the (spatial) probability
distribution of neutrons at long times? Calculate the average distance R of neutrons
from the origin andR2!② Demonstrate thatR2 is proportional to time, so the process
has the usual diffusive nature! The diffusion coefficient D is defined by the relation
R2 = 6Dt. How does D depend on λ and v?

✎ ① Isotropic scattering implies f�(cos θ) = dF�/d(cos θ) = 1/2. But we must
also take into account the times between collisions or the distances l traversed by the
neutron between collisions, fT (t) = dFT/dt = τ−1 exp(−t/τ ), thus

fL(l) = dFL

dl
= dFT

dt

dt

dl
= 1

τ
e−t/τ 1

v
= 1

λ
e−l/λ,

where l = vt. The joint probability density of the linear and angular variable, relevant
to each collision, is therefore

fL,�(l, cos θ) = 1

2λ
e−l/λ.

The expected value of the projection of the neutron trajectory between two collisions
onto the x-axis and the corresponding variance are
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X1 = L cos� =
∫ ∞

0

∫ π

0
l cos θ fL,�(l, cos θ) dl sin θ dθ = 0,

σ2
X1

= X2
1 = L2 cos2 � =

∫ ∞

0

∫ π

0
l2 cos2 θ fL,�(l, cos θ) dl sin θ dθ = 2λ2

3
.

Hence, as in Sect. 6.9.3, X = NX1 = 0 after N scatterings, while σ2
X = Nσ2

X1
=

2Nλ2/3. Therefore the probability density for the distribution of R (distance from
the origin to the current collision point) has the same functional form as in (6.19),

fR(r) =
(

3

4πNλ2

)3/2
exp

(
− 3r2

4Nλ2

)
,

one only needs to insert the variance 2Nλ2/3 instead of NL2/3. It follows that

R =
∫ ∞

0
rfR(r) 4πr

2 dr = λ

√
16N

3π
, R2 =

∫ ∞

0
r2fR(r) 4πr

2 dr = 2Nλ2.

② The elapsed time afterN collisions is t = Nλ/v, so that indeed R2 is proportional
to time, R2 = 2Nλ2 = 2(vt/λ)λ2 = 2vtλ. From the definition R2 = 6Dt it follows
that

D = λv

3
.

6.9.5 Distribution of Extreme Values of Normal Variables �

Let continuous random variables Xi (i = 1, 2, . . . , n) be normally distributed, Xi ∼
N(0, 1), with the corresponding distribution function FX(x) = �(x) and probability
density fX(x) = φ(x) for each variable:

�(x) = 1√
2π

∫ x

−∞
e−t2/2 dt, φ(x) = 1√

2π
e−x2/2.

What is the distribution function FMn of the valuesMn = max{X1,X2, . . . ,Xn}? This
Problem [13] is a continuation of the Example on p. 157 and represents a method
to determine the parameters an and bn for the scaling formula (6.10) such that the
limiting distribution (6.9) is non-degenerate.

✎ Let 0 ≤ τ ≤ ∞ and let {un} be a sequence of real numbers such that

1 − FX(un) → τ

n
when n → ∞. (6.20)
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By definition of the exponential function by a series we get

FMn (un) = P
(
Mn ≤ un

) = Fn
X (un) = [1 − (1 − FX (un)

)]n =
[
1 − τ

n
+ O(1/n)

]n ∼ e−τ ,

when n → ∞. The leading dependence of the distribution function,FMn ∼ exp(−τ ),
follows without explicit reference to the parent distribution FX(x) being normal! A
motivation for a specific form of τ can then be found in the asymptotic property of
the normal distribution

1 − �(z) ∼ φ(z)

z
, n → ∞. (6.21)

Let τ = e−x. The reason for this choice, fully consistent with (6.20), will become
clear in the following: this is the only way to obtain in the final expression a linear
dependence on x in the rescaled argument of the distribution function. By compar-
ing (6.20) to (6.21) we obtain

1 − �(un) ∼ e−x

n
∼ φ(un)

un
⇒ 1

n
e−x un

φ(un)
→ 1.

Taking the logarithm we get − log n − x + log un − logφ(un) → 0 or

− log n − x + log un − 1
2 log 2π + 1

2 u
2
n → 0. (6.22)

For fixed x in the limit n → ∞ one therefore has u2n/(2 log n) → 1, so that taking
the logarithm again yields 2 log un − log 2 − log log n → 0 or

log un = 1
2

(
log 2 + log log n

)+ O(1).

Inserting this in (6.22), we get 1
2u

2
n = x + log n − 1

2 log 4π − 1
2 log log n + O(1),

hence

u2n = 2 log n

[
1 + x − 1

2 log 4π − 1
2 log log n

log n
+ O
(

1

log n

)]
,

and finally, after taking the square root,

un = √2 log n
[
1 + x − 1

2 log 4π − 1
2 log log n

2 log n
+ O
(

1

log n

)]
.

This expression has the form

un = anx + bn + O((log n)−1/2) = anx + bn + O(an
)
,

whence we read off the normalization constants an and bn:
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an = 1√
2 log n

, bn = √2 log n − log log n + log 4π

2
√
2 log n

. (6.23)

These constants imply P
(
Mn ≤ anx + bn + O(an)

)→ exp
(−e−x

)
, that is,

FMn(x) = P

(
Mn − bn

an
+ O(1) ≤ x

)
→ exp

(−e−x
)
.

The distribution of extreme values of normally distributed variables is therefore of
the Gumbel type (6.12) with normalization constants (6.23).
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Determination of Distribution
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Chapter 7
Statistical Inference from Samples

Abstract Any kind of empirical determination of probability distributions and their
parameters amounts to statistical inference procedures based on samples randomly
drawn from a population. The concepts of the statistic and the estimator are intro-
duced, paying attention to their consistency and bias. Sample mean and sample
variance are defined, and three most relevant sample distributions are investigated:
distribution of sums and differences, distribution of variances, and distribution of
variance ratios. Confidence intervals for the sample mean and sample variance are
discussed. The problem of outliers is elucidated in the context of robust measures,
and linear (Pearson) and non-parametric (Spearman) correlations are presented.

Chapters7–10 are devoted to basics of statistics. The main task of statistics is the
empirical determination of probability distributions and their parameters.

We start by introducing the concepts of population and sample. A population is a
finite or infinite set of elements from which we acquire samples. By using statistical
methods we strive to determine the properties of the entire population by analyzing
only its sample, even though the sample may be much smaller than the population.
If a quantity represented by a random variable X is measured (counted, realized,
recorded) n-times, we obtain a set of values {xi }ni=1, burdened with some error or
uncertainty. Part of this uncertainty has random (statistical) nature: the values xi
are scattered because, in general, a sample contains new elements each time it is
acquired. This part of the uncertainty can be reduced by increasing the sample size.
The other part of the uncertainty has a systematic origin and can not be removed by
augmenting the sample.

Example From a population of N = 2 × 106 we acquire a sample of n = 1000
people and measure their heights. We would like to use the measured n values to
determine the average height and its variance, and offer some kind of a statement on
what these numbers mean in the context of the whole population. If we measure the
height of 1000 randomly selected people today and 1000 randomly selected people
tomorrow, we shall in general obtain two different averages and variances (statistical
uncertainty). If we use a faulty instrument that constantly gives a height 1 cm too
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short, we will obtain wrong heights regardless of the sample size and regardless of
whether sampling is repeated multiple times (systematic uncertainty). �

A population can be finite or infinite (N = ∞). Tossing a coin many times, for
example, yields an estimate of the probability of observing head or tail (which will
be approximately 1/2, see Sect. 1.3), but in this case the population consists of the
set of all possible tosses, which is infinite.

7.1 Statistics and Estimators

Our vantage point is the random sample x = {x1, x2, . . . , xn} from a population
characterized by an unknown parameter θ. We would like to estimate this parameter
from the sample. The function

θ̂ = T (X) = T (X1, X2, . . . , Xn) (7.1)

of random variables Xi with values xi , used to obtain the estimate for θ, is called
the estimator of parameter θ. Conventionally we use the same notation for the esti-
mator as a prescription for the variables, e.g. θ̂ = (X1 + X2)/2, as for its concrete
value or estimate, e.g. θ̂ = (x1 + x2)/2. Any function of the form (7.1) is called a
sample statistic, while probability distributions of such statistics are called sample
distributions.

Of course, the functional form of a statistic is not arbitrary: above all, one wishes
to devise the statistic θ̂ = T (X) so that it is consistent. This means that the estimate
θ̂ converges to the true value θ when the number of observations n is increased:
if a sample of size n results in an estimate θ̂n , then for any positive ε and η there
should exist m such that P

(∣∣θ̂n − θ
∣∣ > ε

)
< η holds true for each n > m. This is

approximately equivalent to the statement that the variance of an estimator goes to
zero for infinite samples:

lim
n→∞ var

[
θ̂n
] = 0. (7.2)

Moreover, it is usually desirable that the estimator is unbiased. This means that for
samples of arbitrary size n, not only infinite ones, the expected value of θ̂ is equal to
the true parameter,

E
[
θ̂
] = θ, ∀n. (7.3)

If, on the contrary,
E
[
θ̂
] = θ + b

(
θ̂
)
, (7.4)

where b �= 0, we say that the estimator is biased. For sensible estimators one expects
b(θ̂) � θ and, say, b(θ̂) ∼ 1/n when n → ∞.

http://dx.doi.org/10.1007/978-3-319-31611-6_1
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7.1.1 Sample Mean and Sample Variance

The crucial parameters of interest for any distribution of a random variable are its
mean and variance. Their values inferred from a given sample are generally different
from their values for the whole population.

Suppose we acquire a sample of n values from a population so that any value can
occur multiple times. In the case of body heights this means that a person is chosen
at random, her height is measured—this is the value of X—and “returned” to the
population, whence she can be randomly “drawn” again. We say that the sample has
been obtained by replacement: if N 	 n, we should not have any second thoughts
about that. If all values in the sample have equal weights, the estimator

T = X = 1

n
(X1 + X2 + · · · + Xn) (7.5)

gives the sample mean of body heights according to (4.1). Note that the line above
the symbol now represents the sample mean, while in previous sections it has been
used as an alternative notation for the expected value. In the following we use the
notation

μ, σ2 ⇔ population,

X (or x), s2X (or s2x ) ⇔ sample,

while expected values will be strictly denoted by E[ • ]. (As usual, lower-case let-
ters imply concrete values of the corresponding statistics upon each sampling.) Our
estimate for the unknown population mean θ = μ, which we wish to infer based on
the concrete sample {xi }ni=1, is therefore

θ̂ = x = 1

n

n∑

i=1

xi .

The estimator (7.5) is clearly unbiased since, according to (7.3), its expected value
is equal to the population mean,

E
[
X
] = 1

n

(
E[X1] + E[X2] + · · · + E[Xn]

)
= 1

n
nμ = μ. (7.6)

It is also consistent, since its variance approaches zero when n → ∞:

var
[
X
] = var

[
1

n
(X1 + X2 + · · · + Xn)

]
= n

1

n2
var[X ] = σ2

n
. (7.7)

This looks nice, but just as we do not know the true population mean μ, the true
population variance var[X ] = σ2 is also unknown. At best, we can resort to (4.14)

http://dx.doi.org/10.1007/978-3-319-31611-6_4
http://dx.doi.org/10.1007/978-3-319-31611-6_4
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to devise a formula for the sample variance,

s2X
?= 1

n

n∑

i=1

(
Xi − X

)2
, (7.8)

which undoubtedly is a kind of estimator forσ2, but is it unbiased? If it were unbiased,
its expected value should be equal to the population variance,

E
[
s2X
] ?= σ2.

Does this hold true? Let us focus on the first term in the sum and write it as

X1 − X = X1 − 1

n

(
X1 + X2 + · · · + Xn

)

= 1

n

[
(n − 1)X1 − X2 − · · · − Xn

]

= 1

n

[
(n − 1)(X1 − μ) − (X2 − μ) − · · · − (Xn − μ)

]
,

then square it,

(
X1 − X

)2= 1

n2

[
(n − 1)2

(
X1 − μ

)2+(X2 − μ
)2 + · · · + (

Xn − μ
)2 + mixed terms

]
.

The variables Xi and X j (i �= j) aremutually independent, so E[(Xi−μ)(X j−μ)] =
0 and the mixed terms do not contribute to the expected value:

E
[(
X1 − X

)2]= 1

n2

{
(n − 1)2E

[(
X1 − μ

)2]+ E
[(
X2 − μ

)2]+ · · · + E
[(
Xn − μ

)2]}

= 1

n2

⎧
⎪⎨

⎪⎩
(n − 1)2σ2 + σ2 + · · · + σ2︸ ︷︷ ︸

(n−1)σ2

⎫
⎪⎬

⎪⎭
= n − 1

n
σ2.

The sum (7.8) contains n such terms, and there is a factor 1/n up front, thus

E
[
s2X
] = n − 1

n
σ2. (7.9)

Therefore s2X is a biased estimator for the population variance: an unbiased estimator
is obtained if the right-hand side of (7.8) is multiplied by n/(n − 1),

s2X = 1

n − 1

n∑

i=1

(
Xi − X

)2
. (7.10)
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Fig. 7.1 Samples of size n = 36 with different means and almost equal effective deviations
x = −0.052, sx = 0.313 (left) and x = 0.092, sx = 0.322 (right), taken from a population with
mean μ = 0 and effective deviation σ = 0.288. Full circles with error bars denote the sample means
x and their uncertainties sx/

√
n

Sometimes both (7.8) and (7.10) are invoked as formulas for sample variance,
although by analogy to definitions (4.14) and (4.15) only the first form is correct.
With respect to bias, the formulas are not equivalent, except for n 	 1 when the
difference is negligible. An illustration of two samples with different means x and
almost equal variances s2x is in Fig. 7.1. See also Problem 7.6.1.

When formula (7.7) is applied to the estimator (7.10), one obtains the estimator
of the variance of the sample mean

s2
X

= s2X
n

= 1

n(n − 1)

n∑

i=1

(
Xi − X

)2
.

Taking the square root yields the uncertainty or “error” of the mean

sX = sX√
n
.

This result offers an important lessonwhose importance can not be over-emphasized.
Each sample from a population has a different sample mean and different sample
variance. The observations will usually be scattered by approximately ±sx (shaded
areas in Fig. 7.1), but that does not mean that the average will also be scattered by
±sx—its uncertainty will only be ±sx/

√
n ! We therefore simply write

x = μ ± σ√
n

or μ = x ± sx√
n
, (7.11)

which is about the same. The expression on the left implies that the sample average
approximately equals the true (population) average, and its uncertainty is ±σ/

√
n.

The formula on the right says that x is a good approximation for μ, the error is,
perhaps,±sx/

√
n. Regardless of the interpretation these formulas dictate the sample

size needed for the desired precision: if, for example, we wish to determine μ to a
precision of 0.01σ, we need n = 104 observations.

Now let us assume that individual Xi are normally distributed. How can we
estimate the scattering of the sample variance s2X about the population variance σ2?
At large n, where the distinction between formulas (7.8) and (7.10) is immaterial,

http://dx.doi.org/10.1007/978-3-319-31611-6_4
http://dx.doi.org/10.1007/978-3-319-31611-6_4
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this “variance of variance” equals

E
[(
s2X − σ2

)2] = E

⎡

⎣
((

X1 − X
)2 + (

X2 − X
)2 + · · · + (

Xn − X
)2

n
− σ2

)2
⎤

⎦ .

Squaring the expression in square brackets first yields n quartic terms of the form
(Xi − X)4, i = 1, 2, . . . , n, where X ≈ E[X ] = μ. The excess of a normally
distributed continuous variable is zero, thus by (4.19) its fourth central moment is
M4 = E[(Xi − μ)4] = 3σ4, contributing 3nσ4/n2 to the final expression. Secondly,
with the approximation X ≈ μ the factors in the products 2(Xi − X)2(X j − X)2,
i �= j , are independent, resulting in n(n − 1)/2 terms of the form

2E[(Xi − X)2(X j − X)2] ≈ 2E[(Xi − μ)2]E[(X j − μ)2] = 2σ2σ2 = 2σ4.

Their total contribution is 2 1
2n(n− 1)σ4/n2. Thirdly, we are left with n mixed terms

of the form −2E[(Xi − X)2]σ2/n ≈ −2E[(Xi −μ)2]σ2/n = −2σ4/n and the lone
σ4, thus at last

E
[(
s2X − σ2

)2] ≈ 1

n2

(
3nσ4 + 2

n(n − 1)

2
σ4 − 2n2σ4

)
+ σ4 = 2σ4

n
.

We have obtained

s2X = σ2

(
1 ±

√
2

n

)
,

which in the case n 	 1 implies

sX = σ

(
1 ± 1√

2n

)
or σ = sX

(
1 ± 1√

2n

)
.

To determine σ to a precision of 1%, one therefore needs n = 5000 observations.

Example (Adapted from [1].) The complete population consists of N = 5 values
{xi }Ni=1 = {2, 3, 6, 8, 11}. The mean and variance of its elements are

μ = E
[
X
] = 1

N

N∑

i=1

xi = 6, σ2 = var[X ] = 1

N

N∑

i=1

(
xi − μ

)2 = 10.8,

thus σ = √
var[X ] ≈ 3.29. From this population we draw all possible samples of

size n = 2 with replacement. There are N = N 2 = 25 such samples:

{2, 2}, {2, 3}, {2, 6}, {2, 8}, {2, 11}, {3, 2}, {3, 3}, . . . , {11, 11}.

http://dx.doi.org/10.1007/978-3-319-31611-6_4
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For each of these samples one can compute 25 sample means, (2.0, 2.5, 4.0, 5.0, 6.5,
2.5, 3.0, . . ., 11.0), denoted by xk (k = 1, 2, . . . ,N). Their expected value—i.e. the
mean of the sample distribution of means—is

E
[
X
] = 1

N

N∑

k=1

xk = 150

25
= 6 = μ,

which is nothing but the true population mean, as expected according to (7.6). The
variance of the sample distribution of means is

var
[
X
] = 1

N

N∑

k=1

(
xk − μ

)2 = 135

25
= 5.4,

which we also obtain from (7.7):

var
[
X
] = σ2

n
= 10.8

2
= 5.4 (7.12)

or
√
var[X ] ≈ 2.32.

If samples of size n = 2 are drawn without replacement, one can form only

N =
(
5
2

)
= 10 such samples:

{2, 3}, {2, 6}, {2, 8}, {2, 11}, {3, 6}, {3, 8}, {3, 11}, {6, 8}, {6, 11}, {8, 11}.

The sample means xk are now 2.5, 4.0, 5.0, 6.5, 4.5, . . . , 9.5. The expected value
of the sample distribution of means is still E[X ] = μ = 6, while the variance of
the sample distribution of means is var[X ] = 1

N

∑N
k=1

(
xk − μ

)2 = 4.05. We have
obtained a different result as in (7.12) because formula (7.7) is not applicable in the
case of sampling without replacement. Instead, one should use

var[X ] =
(
N − n

N − 1

)
σ2

n
.

Then indeed (
N − n

N − 1

)
σ2

n
=
(
5 − 2

5 − 1

)
10.8

2
= 4.05.

We have used small N and n to convey the general idea, otherwise a set of five
elements could hardly be identified with a “large” population (N 	 n) suitable for
“proper” statistical analysis. �
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7.2 Three Important Sample Distributions

7.2.1 Sample Distribution of Sums and Differences

Suppose we are dealing with two infinite populations with means μ1 and μ2 and
variances σ1 and σ2. We draw a sample of size n1 from the first population and
a sample of size n2 from the second, and compute the sample means X1 and X2.
Referring to our previous findings—see in particular (4.6), (4.20) and (7.7)—we can
write

E
[
X1 ± X2

] = E
[
X1
]± E

[
X2
] = μ1 ± μ2 (7.13)

and

var
[
X1 ± X2

] = var
[
X1
]+ var

[
X2
] = σ2

1

n1
+ σ2

2

n2
. (7.14)

If n1, n2 � 30, the random variable

Z =
(
X1 ± X2

)− (μ1 ± μ2)√
σ2
1

n1
+ σ2

2

n2

(7.15)

is distributed according to the standardized normal distribution to a very good approx-
imation. The statement remains valid in the case of drawing with replacement from
finite populations, as one can, in principle, draw an infinite sample from a population
to which elements are restored after being drawn.

Example The lifetime of a circuit of type A is normally distributed, with mean
μA = 7.0 yr and standard deviation σA = 1.1 yr. The circuits of type B have the
mean lifetime μB = 5.8 yr with the standard deviation σB = 0.9 yr. We test nA = 40
of type-A circuits and nB = 40 of type-B circuits. What is the probability that A
circuits will operate a year longer than B circuits?

By using (7.13) and (7.14) we obtain

μA − μB = 1.2 yr,
√
var
[
XA − XB

] =
√

σ2
A

nA
+ σ2

B

nB
= 0.225 yr.

We are interested in the probability that the difference of mean lifetimes is larger
than one year, XA − XB > 1 yr. The corresponding standardized variable (7.15) for
the limit value XA − XB = 1 yr is

Z =
(
XA − XB

)− (
μA − μB

)
√
var
[
XA − XB

] = 1 − 1.2

0.225
≈ −0.89

http://dx.doi.org/10.1007/978-3-319-31611-6_4
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and is normally distributed. So the probability we want is

P
(
XA − XB > 1 yr

) = P
(
Z > −0.89

) = 1
2 + P

(
0 ≤ Z ≤ 0.89

) ≈ 81.3%,

where we have used Table D.1. �

7.2.2 Sample Distribution of Variances

Sample distributions of variances are obtainedwhen one acquires all possible random
samples of size n from the population and calculates the variance of each sample.
From the population variance, σ2, and the sample variance s2X (in biased form (7.8))
we construct the random variable

χ2 = ns2X
σ2

=
n∑

i=1

(
Xi − X

)2

σ2
. (7.16)

If random samples of size n are drawn from a normally distributed population, the
statistic (7.16) is distributed according to theχ2 distribution (3.21) with n−1 degrees
of freedom.

Example Let us revisit the Example on p. 182, where we have drawnN = N 2 = 25
samples of size n = 2 from a population of N = 5 elements. What are the mean
and the variance of the corresponding sample variances, and what is the expected
number of samples whose variance exceeds 7.15?

We first compute k (k = 1, 2, . . . ,N) sample variances s2x = 1
n

∑n
i=1

(
xi − x

)2

for each of the 25 samples. We obtain the variances

0, 0.25, 4, 9, 20.25, 0.25, 0, 2.25,
6.25, 16, 4, 2.25, 0, 1, 6.25, 9,
6.25, 1, 0, 2.25, 20.25, 16, 6.25, 2.25, 0.

(7.17)

The mean of this sample distribution of variances is

E
[
s2X
] = 1

N

N∑

k=1

s2x,k = 135

25
= 5.4.

This has been expected by (7.9), since E
[
s2X
] = (n − 1)σ2/n = 10.8/2 = 5.4. The

scattering of the sample variances is calculated by the usual formula:

var
[
s2X
] = 1

N

N∑

k=1

(
s2x,k − E

[
s2X
])2 = 575.75

25
= 23.03.

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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Fig. 7.2 The probability density of the χ2 distribution for [Left] ν = 1 and [Right] ν = 8 degrees
of freedom. The dashed vertical line indicates the distribution mean

The random variable χ2 is given by (7.16). With the population variance, σ2 = 10.8,
and the prescribed sample variance, s21 = 7.15, χ2 takes the value

χ2
1 = ns21

σ2
= 2 · 7.15

10.8
≈ 1.32,

where the subscript 1 indicates that the variable is χ2-distributed (see (3.21)) with
ν = n − 1 = 1 degree of freedom. The probability that the sample variance s2X
exceeds the prescribed variance s21 , is therefore equal to the probability that the value
of χ2 according to this distribution is larger than the critical value χ2

1. From the first
line of Table D.3 (column for p = 0.75 or 1− p = 0.25) and Fig. 7.2 (right) we find
this probability to be

P
(
s2X ≥ s21

) = P
(
χ2 ≥ χ2

1

) = 0.25.

There areN = 25 samples, 0.25 ·25 = 6.25 of which are expected to have a variance
exceeding the prescribed one. In our Example there are indeed six: they correspond
to the underlined elements in (7.17). �

7.2.3 Sample Distribution of Variance Ratios

From two normally distributed populations with variances σ2
1 and σ2

2 we draw two
independent samples (one from each population) of sizes n1 and n2, respectively. Let
the sample variances (in biased form (7.8)) be s21 and s22 . Then the statistic

F =
(

n1
n1 − 1

)
s21
σ2
1

/((
n2

n2 − 1

)
s22
σ2
2

)
∝
(
s1
s2

)2

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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is distributed according to the F distribution (defined in (3.23)) with (ν1, ν2) =
(n1 − 1, n2 − 1) degrees of freedom.

Example From two normally distributed populations with variances σ2
1 = 5 and

σ2
2 = 9 we draw two samples of size n1 = 8 and n2 = 10 from the first and second

population, respectively. What is the probability that the variance of the first sample
is at least twice the variance of the second sample? (A very small probability may
be anticipated, as the variance of the first population is roughly twice smaller than
the variance of the second, thus it seems highly unlikely that the situation would be
nearly opposite in the samples from these populations.) We calculate the statistic

F =
(

n1
n1 − 1

)
s21
σ2
1

/((
n2

n2 − 1

)
s22
σ2
2

)
= 8

7

s21
5

/(
10

9

s22
9

)
≈ 1.85

s21
s22

.

The Problem statement requires s21 > 2 s22 or

F > 3.70.

The F statistic is distributed according to the F distribution (3.23)with ν1 = n1−1 =
7 degrees of freedom (numerator) and ν2 = n2 − 1 = 9 (denominator). From
Tables D.5 and D.6 we read off the 95% and 99% quantiles F0.95 = 3.29 and F0.99 =
5.61, implying that the sought-after probability (that s21 > 2 s22 and F > 3.70) is
larger than 1% and smaller than 5% (Fig. 7.3 (left)). For a more precise answer, we
integrate the density up to the specified bound (see Appendix D.1):

∫ ∞

3.70
fF (x; ν1=7, ν2=9) dx = 1 −

∫ 3.70

0
fF (x; ν1=7, ν2=9) dx ≈ 0.036.
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Fig. 7.3 Probability density of the F distribution for [Left] ν1 = 7, ν2 = 9 and [Right] ν1 = 9,
ν2 = 7 degrees of freedom
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What is in the numerator and what is in the denominator of the F ratio is irrelevant,
one just needs consistent book-keeping. Let us switch the roles of the populations,
so that n1 = 10, σ2

1 = 9, n2 = 8 and σ2
2 = 5. Seeking the probability that the sample

variances satisfy the inequality s22 > 2 s21 now means

F <
1

3.70
≈ 0.270.

As shown in Fig. 7.3 (right), this probability is also obtained by integrating the density
of the F distribution, but with its degrees of freedom swapped:

∫ 0.270

0
fF (x; ν1=9, ν2=7) dx ≈ 0.036,

which is the same as before. �

7.3 Confidence Intervals

Next to (7.11) we wrote: “The error is, perhaps, ±sx/
√
n.” What exactly does that

mean? The full circles in Fig. 7.1 denoting the sample averages are displaced by
more than their uncertainty, i.e. by more than ±sx/

√
n ! Obviously we need a more

quantitative measure for “perhaps”. It is offered by a criterion called the confidence
interval.

7.3.1 Confidence Interval for Sample Mean

LetμT andσ2
T be themean and variance of the sample distribution of some statistic T ,

e.g. T = X or T = ∑
i Xi . If the sample statistic is approximately normal—which

applies to many statistics if the sample size is at least a few times 10—we expect that
the value of T will be on the interval [μT −σT ,μT +σT ] approximately 68.3% of the
time, on [μT − 2σT ,μT + 2σT ] about 95.5% of the time, on [μT − 3σT ,μT + 3σT ]
roughly 99.7% of the time, and so on (see (3.13)). We say: with confidence level
(CL) 68.3% we may be confident (we trust, believe, anticipate), that T will be found
on the interval [μT − σT ,μT + σT ], and analogously for the others. Such an interval
is called the confidence interval.

Suppose we have a sample {xi }ni=1 or n independent observations for which we
have already determined the sample mean x and variance s2x in unbiased form (7.10).
To determine how well x estimates the true population mean, μ, we first form the
statistic

T = X − μ

sX

√
n. (7.18)

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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Fig. 7.4 The relation between the confidence level 1−α and critical values±t∗ for the determination
of the confidence interval [−t∗, t∗] for the sample mean. (Example with ν = 10.)

Table 7.1 Critical values t∗ for the Student distribution with ν = 10, 20 and 30 degrees of freedom
for a few commonly used confidence levels CL = 1 − α

CL =
1 − α

50% 68.26% 90% 95% 95.45% 99% 99.73%

t∗
(ν = 10)

0.700 1.053 1.812 2.228 2.290 3.169 3.892

t∗
(ν = 20)

0.687 1.026 1.724 2.086 2.139 2.845 3.376

t∗
(ν = 30)

0.683 1.018 1.697 2.042 2.092 2.750 3.230

z∗ 0.675 1.000 1.645 1.960 2.000 2.576 3.000

The last line contains the critical values for the normal distribution, z∗ = t∗(ν → ∞)

If Xi are normally distributed as N (μ,σ2), the T statistic is distributed according to
the Student distribution (3.22) with ν = n − 1 degrees of freedom. The integral of
the density fT (x; ν) determines the boundaries of the interval [ − t∗, t∗] on which
the values of t or the corresponding mean μ are expected with the pre-specified
probability (confidence level) 1− α, while there is a probability (risk level) α that t
will be outside of it: see Fig. 7.4.

Then

−t∗ ≤ x − μ

sx

√
n ≤ t∗

or

μ ∈
[
x − t∗sx√

n
, x + t∗sx√

n

]
, (7.19)

meaning: “The true mean of a large population, from which a sample {xi }ni=1 has
been obtained, is estimated as μ = x , and the confidence interval (7.19) contains
μ with probability 1 − α.” For large samples (n � 30) the Student distribution is
practically identical to the standardized normal, and the corresponding bounds t∗ are
simply the bounds in the Gauss curve (Table7.1). Understandably, t∗ increases with
increasing confidence level: a broader interval implies less “risk”.

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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Example An eleven-fold (n = 11) measurement of a particle’s mass yielded a mean
of m = 4.180GeV/c2 and an unbiased estimate for the standard deviation sm =
0.060GeV/c2. What is the confidence interval on which the true mass of the particle
μ may be expected with a confidence level of 1 − α = 0.90?

If the observations are normally distributed, the variable T = (M − μ)
√
n/sM

is Student-distributed, with ν = n − 1 = 10 degrees of freedom. Table7.1, first
row, 1 − α = 0.90, gives the critical value t∗ = 1.812, shown also in Fig. 7.4. The
requested confidence interval for μ is therefore

[
m − t∗sm√

n
,m + t∗sm√

n

]
= [

4.147, 4.213
]
GeV/c2.

Because the Student distribution is symmetric about the origin, the equation

P
(−t∗ ≤ T ≤ t∗

) = 1 − α

defines the same t∗ as the equation

P
(
T ≤ t∗) = 1 − 1

2 α,

so t∗ can also be determined by using the table of quantiles of the Student distribution.
For purposes of this Problem (1 − α = 0.90) we need the 95. quantile, located in
the tenth row of Table D.4 in the p = 0.95 column, whence we again read off
t∗ = t0.95 = 1.81. �

Example The closing time x of safety valves is measured by an imprecise device
reporting values with a standard deviation sx which we know is near the value of
σ = 40ms. How many valves should we test, at confidence level 1 − α = 99%, in
order to determine the mean closing time μ to a precision of �x = 10ms?

Let us assume that a large sample (n 	 1) will be required, so that the Student
distribution can be replaced by the normal (i.e. Student in the n → ∞ limit). From
the last row of Table D.4, in the 1−α/2 = 0.995 column, we get t∗ = t0.995 = 2.58,
corresponding to the confidence interval

[
x − t∗sx/

√
n, x + t∗sx/

√
n
]
, hence the

population mean is determined to a precision given by

μ = x ± �x = x ± t∗
sx√
n
.

The problem is asking for t∗sx/
√
n ≤ �x , whence

n ≥
(
t∗sx
�x

)2

≈ 106.

We see that the normal approximation is justified. �



7.3 Confidence Intervals 191

7.3.2 Confidence Interval for Sample Variance

From Sect. 7.2.2 (see (7.16)) we know that the variable ns2X/σ2 is χ2-distributed,
with ν = n − 1 degrees of freedom, so we can immediately write down the confi-
dence interval for the sample variance. Take a confidence level of 1− α = 0.90, for
example, so that the critical values of χ2 are χ2

0.05 and χ2
0.95. So the variable ns

2
X/σ2

is bounded as χ2
0.05 ≤ ns2X/σ2 ≤ χ2

0.95. The population effective deviation σ can
therefore be bounded by the sample effective deviation sX as

sX
√
n√

χ2
0.95

≤ σ ≤ sX
√
n√

χ2
0.05

. (7.20)

Figure7.2 (right) shows the ν = 8 case, with critical values χ2
0.05 ≈ 2.73 and

χ2
0.95 ≈ 15.5 (eighth row of Table D.3). Note that the bounds are not symmetric with

respect to the distribution average! See also Problem 7.6.4.

7.3.3 Confidence Region for Sample Mean and Variance

Suppose we were to use the sample {xi }ni=1 to simultaneously locate, with chosen
confidence level (probability 1−α) both the truemeanμ and the true variance σ2. By
doing this, wewould identify somethingwe call a confidence region. If the population
is normally distributed like N (μ,σ2), the variables X and s2X are independent, which
can be proven by using characteristic functions. A confidence region at CL = 1− α
is then obtained by simultaneous requirements

P1 = P

(
−t∗ ≤ X − μ

σ

√
n ≤ t∗

)
= √

1 − α

and

P2 = P

(
χ2

↓ ≤ ns2X
σ2

≤ χ2
↑

)
= √

1 − α,

where ±t∗ are the symmetric bounds in the density of the t distribution, while χ2
↓

and χ2
↑ are the lower and upper bounds in the density of the χ2 distribution. The

confidence region is then defined by the equation P1P2 = 1 − α, that is,

P

(
−t∗ ≤ X − μ

σ

√
n ≤ t∗, χ2

↓ ≤ ns2X
σ2

≤ χ2
↑

)
= 1 − α. (7.21)
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Fig. 7.5 Joint confidence
region for sample mean and
variance of a normally
distributed population,
defined by parameters t∗, χ2↓
and χ2↑ in (7.21)

An example of such a region is shown in Fig. 7.5. (We could have chosen a different
sharing of (1 − α) between the mean and the variance; the shaded area would be
correspondingly narrower and taller or wider and shorter.)

7.4 Outliers and Robust Measures of Mean and Variance

Occasionally a sample contains values which obviously differ from the bulk of the
sample. They are called outliers. Outliers may hint at an error in the experiment
or may represent genuine measurements that happen to strongly deviate from the
majority of observations. The ozone hole over Antarctica, for example, has been
indicated by peculiar recordings by the Nimbus 7 satellite, but they were wrongly
attributed to instrumental errors [2].

To determine the parameters that characterize the samples with relatively small
shares of outliers, we use so-called robust measures and robust statistics [3]. Among
other things, “robustness” implies a small sensitivity of estimates of mean and vari-
ance to the inclusion or exclusion of individual or all outliers from the sample.

Example The classical motivational case for the application of robust methods is the
set of 24 measurements of copper content in bread flour [4]:

2.20 2.20 2.40 2.40 2.50 2.70 2.80 2.90 3.03 3.03 3.10 3.37
3.40 3.40 3.40 3.50 3.60 3.70 3.70 3.70 3.70 3.77 5.28 28.95,

shown in Fig. 7.6. The arithmetic average of the whole sample is x = 4.28 and
the standard deviation is sx = 5.30. If the value x24 = 28.95 is excluded from the
sample, we get x = 3.21 and sx = 0.69. Clearly a single outlier may strongly modify
both x and sx , so neither X nor sX are suitable as robust estimators of population
properties. �



7.4 Outliers and Robust Measures of Mean and Variance 193

Fig. 7.6 A sample (24 values) of copper content in flour, in units of µg/g. The value x24 = 28.95
(and potentially also x23 = 5.28) is an outlier. The median is much less sensitive to the exclusion
of the rightmost outlier x24 than the arithmetic average

A much more robust measure of the “center” of the sample x = {xi }ni=1 is the
median. It is defined as the value (see (4.4)) which splits an ordered sample (xi ≤
xi+1) such that half of the observations are to its left and half are to its right,

med[X] =
{

x(n+1)/2 ; n odd,
1
2 (xn/2 + xn/2+1) ; n even.

(7.22)

The scattering of the data about the median can be quantified by the median
absolute deviation (MAD)

MAD[X] = med
[|X − 1nmed[X]|], (7.23)

where 1n = {1, 1, . . . , 1} is a sequence of ones with length n. To be able to compare
this to the standard deviation, one frequently uses the quantity

MADN[X] ≈ 1.4826MAD[X],

where the factor 1.4826 is chosen such that for a normal N (μ,σ2) distribution one
has MADN = σ. The values for the whole flour sample are med[X] = 3.385 and
MADN = 0.526, while if x24 is excluded, one gets 3.37 and 0.504. Both values
change only insignificantly when the outlier is excluded (see Fig. 7.6).

7.4.1 Chasing Outliers

A straightforward way to exclude outliers is the “3σ”-rule. By following it we may
decide to eliminate all observations deviating from the sample mean x by more
than ±3sx , or simply assign them the values x ± 3sx . The method has several flaws.
Among others, it forces us to needlessly remove, on average, three observations from
an immaculate, normally distributed sample of size n = 1000, since the interval
[x − 3sx , x + 3sx ] for large n contains 99.7% of the data. Besides, the calculation of
the mean and variance itself is highly sensitive to outliers. It is therefore preferable
to use the criterion

http://dx.doi.org/10.1007/978-3-319-31611-6_4
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Fig. 7.7 Box diagram used to identify outlier candidates. Outliers may be expected outside of the
interval [X−, X+] = [Q1 − 3

2 IQR, Q3 + 3
2 IQR]

xi outlier ⇐⇒
∣∣∣∣
xi − med[X]
MADN[X]

∣∣∣∣ > 3.5.

A simple method to visually identify candidates for outliers is to draw a box
diagram. One first calculates the sample median and, by a generalization of (7.22), its
first and third quartile, Q1 and Q3: the sample is then divided into four compartments
with a quarter of observations in each. One then calculates the inter-quartile range
(IQR) and the bounds X− and X+, beyond which outliers are expected to appear,

IQR = Q3 − Q1, X− = Q1 − 3
2 IQR, X+ = Q3 + 3

2 IQR.

This method identifies the values x23 and x24 in the flour sample as outliers (see
Fig. 7.7). The interval [X−, X+] for large n and normal distribution contains 99.3%
of observations, making the method roughly equivalent to the “3σ”-rule.

7.4.2 Distribution of Sample Median (and Sample Quantiles)

There is a theorem on the distribution of sample quantiles, whose special case is the
median. Let X be a continuous random variable with the probability density fX and
distribution function FX . Let x(p) denote the pth quantile of X , so that FX

(
x(p)

) = p,
and x̃(p) the sample quantile determined from the sample {x1, x2, . . . , xn}. In the limit
of large samples (n 	 1) it holds that [5]

√
n
(
x̃(p) − x(p)

) ∼ N

(
0 ,

p(1 − p)

f 2X
(
x(p)

)
)

.

Hence the sample median (p = 0.5) is asymptotically normally distributed with
mean x(0.5) and variance 1/[4n f 2X (x(0.5))]. The variance depends on the density fX !
If the population is normally distributed according to N (μ,σ2), we have x(p) = μ
and 1/[4n f 2X (x(p))] = πσ2/(2n). Therefore

med[X] ∼ N

(
μ ,

πσ2

2n

)
, n 	 1. (7.24)
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7.5 Sample Correlation

In this section we introduce measures of correlation between data sets. The correla-
tion strength is measured by correlation coefficients. Suitable statistics are used to
determine whether observed correlations are statistically significant.

7.5.1 Linear (Pearson) Correlation

The basic measure for the strength of correlation between two data sets is the lin-
ear correlation coefficient ρ̂. Correlations in two-dimensional data sets can often be
simply “seen”: characteristic patterns in the (xi , yi ) plane for correlation coefficients
ρ̂ ≈ 1 (almost complete positive correlation), ρ̂ ≈ −1 (nearly total negative corre-
lation or anti-correlation) and ρ̂ ≈ 0 (roughly uncorrelated observations) are shown
in Fig. 7.8.

The linear correlation coefficient between the data sets {xi }ni=1 and {yi }ni=1 (the
estimate of the true ρ) is

ρ̂ =
∑n

i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2

√∑n
i=1(yi − y)2

, −1 ≤ ρ̂ ≤ 1. (7.25)

The coefficient (7.25) is suitable to estimate the true correlation strength once we
have figured out that a correlation exists and has a certain statistical significance.

Fig. 7.8 Sets of observations (xi , yi ) that one can describe by a two-dimensional distribution
of X and Y , and corresponding estimates of the sample correlation coefficient ρ̂. [Top, right to
left] Almost completely correlated (̂ρ ≈ 1), uncorrelated (̂ρ ≈ 0) and nearly anti-correlated data
(̂ρ ≈ −1). [Bottom] Three cases of realizations of uncorrelated variables which are not statistically
independent. The requirement ρ̂ = 0 is just a necessary condition for statistical independence
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As in the case of the sample mean and average, the sample correlation coefficient
ρ̂ can also be endowed with confidence intervals. To do this, one uses the Fisher
transformation of ρ̂, namely, the statistic

Z = 1

2
log

1 + ρ̂

1 − ρ̂
= Atanh ρ̂,

and assume that the observations xi and yi obey the joint binormal (two-dimensional
normal) distribution. For sample sizes n of at least a few times 10 the Z statistic is
approximately normally distributed, i.e.

Z ∼ N
(
Z ,σ2

Z

) = N

(
1

2

[
log

1 + ρ

1 − ρ
+ ρ

n − 1

]
,

1

n − 3

)
,

where ρ is the true correlation coefficient. (It turns out that correlation coefficients ρ̂
of samples drawn from normally distributed populations are smaller than their popu-
lation counterparts ρ, hence biased. The ρ/(2(n − 1)) helps to approximately cancel
that bias.) The best estimate for ρ is then ρ = ρ̂, while the risk level (significance) at
which one may claim that the measured ρ̂ differs from ρ, is given by

α = 1 − erf

(
|z − z|√n − 3√

2

)
.

To determine whether the observations of xi and yi under conditions “1” and “2”
exhibit different correlations, one compares the correlation coefficients ρ̂1 and ρ̂2.
The statistical significance of the observed difference between ρ̂1 and ρ̂2 is

α = 1 − erf

(
|z1 − z2|√

2

√
(n1 − 3)(n2 − 3)

n1 + n2 − 6

)
.

The reverse question is: to what confidence interval [ρ−, ρ+] can the correlation
coefficient be restricted, given a confidence level of 1 − α? For the commonly used
1 − α ≈ 96% the values ρ− and ρ+ are given by

ρ− = tanh

(
Atanh ρ̂ − 2√

n

)
, ρ+ = tanh

(
Atanh ρ̂ + 2√

n

)
.

7.5.2 Non-parametric (Spearman) Correlation

The linear correlation coefficient formula (7.25) contains the sample means x and y,
which are strongly sensitive to outliers (see Sect. 7.4). A more robust tool is called
for, and one option is to define the correlation by referring to the positions (ranks)
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ri and si that individual xi and yi occupy in the ordered samples x and y. The ranks
are counted from 1 upwards. When several (e.g. m) equal values share m positions,
they are all assigned the average rank which they would have if they differed by an
infinitesimal amount. One also computes the average ranks r = (

∑n
i=1 ri )/n and

s = (
∑n

i=1 si )/n.

Example Let us determine the rank of the sample {xi }8i=1 = {2, 3, 9, 3, 4, 9, 7, 3}.
We first order the sample, obtaining {x1, x2, x4, x8, x5, x7, x3, x6}. The values x2 =
x4 = x8 = 3 share ranks 2 to 4, so their average rank is (2 + 3 + 4)/3 = 3. The
values x3 = x6 = 9 share ranks 7 and 8, so their rank is 7.5. Therefore {ri }8i=1 =
{1, 3, 3, 3, 5, 6, 7.5, 7.5} and the average rank is r = 4.5. �

By using the ranks ri and si as well as the average ranks r and s we define the rank
correlation coefficient

ρ̂r =
∑n

i=1(ri − r)(si − s)√∑n
i=1(ri − r)2

√∑n
i=1(si − s)2

= 1 − 6

n(n2 − 1)

n∑

i=1

(ri − si )
2. (7.26)

To calculate ρ̂r one refers only to the mutual position of the observations, so this
kind of correlation estimation is called non-parametric. The distribution of ranked
observations is uniform, and if there are just a few duplicates, the estimate (7.26) is
muchmore robust than (7.25). The statistical significance of themeasured coefficient
ρ̂r is determined by the t-test (details in Chap.10). We form the statistic

tr = ρ̂r

√
n − 2

1 − ρ̂2r
,

which is distributed approximately according to the Student distribution with n − 2
degrees of freedom. The confidence level 1− α (statistical significance α), at which
one can reject the hypothesis that the measured correlation coefficient ρ̂r equals the
true coefficient ρr , is calculated from

1 − α =
∫ |tr |

−|tr |
fT (x; ν) dx = 1 − Bx (ν/2, 1/2)

B(ν/2, 1/2)
, x = ν

ν + t2r
, ν = n − 2,

where fT is the probability density of the t distribution (see (3.22)), while B(a, b)
and Bx (a, b) are the complete and incomplete beta functions.

http://dx.doi.org/10.1007/978-3-319-31611-6_10
http://dx.doi.org/10.1007/978-3-319-31611-6_3
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7.6 Problems

7.6.1 Estimator of Third Moment

Find an unbiased estimator of the third distribution moment, M3 = E
[(
X − X

)3]
,

based on the sample x = {x1, x2, . . . , xn}! This Problemoffers a parallel to the biased
and unbiased estimators of the population variance (formulas (7.8) and (7.10)).

✎ We split

n∑

i=1

(
Xi − X

)3=
∑

i

((
Xi − μ

)− (
X − μ

))3

=
∑

i

(
Xi − μ

)3

︸ ︷︷ ︸
T1

−3
∑

i

(
Xi − μ

)2(X − μ
)

︸ ︷︷ ︸
T2

+3
∑

i

(
Xi − μ

)(
X − μ

)2

︸ ︷︷ ︸
T3

−
∑

i

(
X − μ

)3

︸ ︷︷ ︸
T4

,

and calculate the expected values term by term:

E
[
T1
] =

∑

i

E
[(
Xi − μ

)3] = nM3,

E
[
T2
] = E

[(
∑

i

(
Xi − μ

)2
)(

1

n

∑

i

(
Xi − μ

)
)]

= M3,

E
[
T3
] = E

⎡

⎣
(
∑

i

(
Xi − μ

)
)(

1

n

∑

i

(
Xi − μ

)
)2
⎤

⎦ = 1

n
M3,

E
[
T4
] = nE

⎡

⎣
(
1

n

∑

i

(
Xi − μ

)
)3
⎤

⎦ = 1

n
M3.

Therefore

E

[
1

n

n∑

i=1

(
Xi − X

)3
]

= 1

n

(
nM3 − 3M3 + 3

n
M3 − 1

n
M3

)
= (n − 1)(n − 2)

n2
M3.

The weighted sum at the left—surely the first form to cross one’s mind—obviously
results in a biased estimator. An unbiased estimator of the third moment is

n

(n − 1)(n − 2)

n∑

i=1

(
Xi − X

)3
.
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7.6.2 Unbiasedness of Poisson Variable Estimators

In this example [6] we realize that unbiasedness is not the holy grail to which one
should strive at all costs. (See also [7].) Let the variable X be Poisson-distributed,
with parameter λ, thus P(X = x) = λxe−λ/x !. Find an unbiased estimator for
(P(X = 0))2 = e−2λ!

✎ Any unbiased estimator T (X) for the given quantity must satisfy the equation

E
[
T (X)

] =
∞∑

x=0

T (x)P(X = x) =
∞∑

x=0

T (x)
λxe−λ

x ! = e−2λ, λ ≥ 0.

But the only option is T (x) = (−1)x , since then e−λ
∑∞

x=0(−1)xλx/x ! = e−λe−λ =
e−2λ. What does that mean? If, for example, a single observation yields x = 200, we
can reasonably conclude that the true e−2λ is virtually zero, while the unbiasedness
requirement forces us to accept the value (−1)200 = 1 as the estimate of e−2λ. On
the other hand, if, for instance, we observe x = 3, the unbiased estimate is supposed
to be (−1)3 = −1, which is a negative value for a random quantity whose values
are always on (0, 1]. A better estimator for e−2λ is certainly e−2X , even though it is
biased.

7.6.3 Concentration of Mercury in Fish

(Adapted from [8]). The following average concentrations of mercury (µg per g of
body weight) in fish from n = 48 Florida lakes are available:

x = {1.23, 1.33, 0.04, 0.04, 1.20, 0.27, 0.49, 0.19, 0.83, 0.81, 0.71, 0.50,
0.49, 1.16, 0.05, 0.15, 0.19, 0.77, 1.08, 0.98, 0.63, 0.56, 0.41, 0.73,

0.59, 0.34, 0.84, 0.50, 0.34, 0.28, 0.34, 0.87, 0.56, 0.17, 0.18, 0.19,

0.04, 0.49, 1.10, 0.16, 0.10, 0.21, 0.86, 0.52, 0.65, 0.27, 0.94, 0.37}.

The histogram of the observations is shown in Fig. 7.9 (left). Based on this sample,
find the 95% confidence interval for the average concentration μ in the whole fish
population!

✎ Does perhaps the sample itself indicate “normality”? A good tool to answer
this question is a graph containing the ordered observations x1 ≤ x2 ≤ . . . ≤ xn
on the abscissa and the variable zi corresponding to the (i − 0.5)/nth quantile ξi
of the standardized normal distribution on the ordinate axis. How is the graph con-
structed?When observations are sorted, the smallest observation is x1 = 0.04, hence
ξ1 = (1 − 0.5)/48 ≈ 0.01042 and �(z1) = ξ1, where �(z) = 1

2

[
1 + erf(z/

√
2)
]
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Fig. 7.9 [Left] Averagemercury concentrations in fish from n = 48 Florida lakes. [Right] Graph of
standardized variables zi as functions of sorted observations xi , the so called “Q–Q plot” showing
the quantiles of two distributions on the respective axes

is the distribution function of the standardized normal distribution. Then z1 =√
2 erf −1

[
2ξ1 − 1

] ≈ −2.311. The pair (x1, z1) is the point at the extreme bot-
tom left in Fig. 7.9 (right). The remaining points (x2, z2), (x3, z3), . . . are calculated
in the same manner: we plot

zi = √
2 erf −1

[
2

(
i − 0.5

n

)
− 1

]
as function of xi , x1 ≤ x2 ≤ . . . ≤ xn.

If the sample is normally distributed, the zi vs. xi graph is a straight line.
In our case the sample exhibits a distribution which does not appear to be normal:

its distribution function increases faster than the normal distribution function at small
xi , and slower at large xi . This indicates that the underlying distribution is positively
skewed (see Fig. 4.4), which one can also infer from the histogram in Fig. 7.9 (left).

The confidence interval for the population mean could be calculated by (7.19),
but it only applies to normally distributed Xi . However, due to the central limit
theorem the mean X is approximately normally distributed at large n regardless
of the distribution of Xi , with mean μ and variance σ2/n ≈ s2X/n. In our case
n = 48 	 1, so (7.19) may be used nonetheless. From the sample we compute
x ≈ 0.536 and sx ≈ 0.360, then use the last row of Table7.1 at CL = 1− α = 95%
to obtain the critical z∗ = 1.960. Therefore, μ can be bounded as

x − z∗
sx√
n

≤ μ ≤ x + z∗
sx√
n
,

which amounts to 0.435 ≤ μ ≤ 0.638.

http://dx.doi.org/10.1007/978-3-319-31611-6_4
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7.6.4 Dosage of Active Ingredient

The mass of the active pharmaceutical ingredient in pills is distributed about the
known average value: in a sample of n = 20 pills taken for analysis we find a
variance of s2x = 0.12mg2 (sx = 0.346mg). Find the 80% confidence interval for
the true (population) standard deviation of the active ingredient mass (a 10% chance
of it being too small and a 10% chance of it being too large)!

✎ The confidence interval for the population variance is given by formula (7.20).
From Table D.3 for ν = n − 1 = 19 we read off the critical values of the χ2

distribution, χ2
0.10 = 11.7 and χ2

0.90 = 27.2, so σ can be bounded as

√
ns2x/χ

2
0.90 ≤ σ ≤

√
ns2x/χ

2
0.10

or 0.297mg ≤ σ ≤ 0.453mg. Note that sx does not lie in the middle of this interval,
as we already know from Sect. 7.3.2 (Fig. 7.2).
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Chapter 8
Maximum-Likelihood Method

Abstract The maximum-likelihood method offers a possibility to devise estimators
of unknown population parameters by circumventing the calculation of expected val-
ues like average, variance and higher moments. The likelihood function is defined
and its role in formulating the principle of maximum likelihood is elucidated. The
variance and efficiency of maximum-likelihood estimators is discussed, in particular
in the light of its information content and possible minimum variance bound. Likeli-
hood intervals are introduced by analogy to the confidence intervals used in standard
sample-based inference. The method is extended to the case when several parame-
ters are determined simultaneously, and to likelihood regions as generalizations of
likelihood intervals.

In this chapter we discuss the possibility to devise an estimator for the unknown
population parameter θ without resorting to the calculation of expected values like
average, variance and higher moments (Chap. 7).

8.1 Likelihood Function

When a continuous or discrete random variable X is measured n-times (or a sample
of size n is drawn from an infinite population) one obtains a set of values x =
{x1, x2, . . . , xn}. Assume that X is distributed according to the probability density or
probability function fX(x; θ), where

θ = {θ1, θ2, . . . , θp} (8.1)

are unknown parameters. Let us consider continuous variables only; the discus-
sion of discrete variables follows the same pattern. The probability that, at given
parameters θ , just the values xi on intervals [xi, xi + dx] have been observed, is
dP = ∏n

i=1 fX
(
xi; θ

)
dx. The product of probability densities in this expression is

called the likelihood function:

© Springer International Publishing Switzerland 2016
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L(x|θ) = L(x1, x2, . . . , xn|θ) =
n∏

i=1

fX(xi; θ),

where the | sign is a warning that a joint conditional density (or probability function)
is implied, since the values x have been observed given the “condition” θ . Note
that the likelihood function depends on the sample and is therefore itself a random
variable. We also define its logarithm, the log-likelihood function

� = logL =
n∑

i=1

log fX(xi; θ).

There are two good reasons for taking the log. Multiplying many fX(xi; θ) may
result in floating-point underflow, which is avoided by turning the product into a
sum. In addition, having a sum is convenient as we shall be taking the derivative of
the likelihood function with respect to the parameters θi. Note also that the log is
a monotonously increasing function with a singularity at the origin: this may be a
source of numerical problems in seeking the global maximum of �.

8.2 Principle of Maximum Likelihood

The principle of maximum likelihood states that the optimal value of the parameter
θ is found by maximizing the likelihood function (or its logarithm) with respect to θ :
such a measurement of x is then seen to be “most likely”. We therefore wish to find
such θ̂ that for all possible θ it holds that �

(
x|θ̂) ≥ �

(
x|θ). Assume that the function

� is twice differentiable with respect to θ . The value θ̂ is obtained by setting its first
derivative to zero,

�′ = d�

dθ
=

n∑

i=1

d

dθ
log fX(xi; θ) =

n∑

i=1

f ′
X(xi; θ)

fX(xi; θ)
= 0, (8.2)

where ′ denotes the derivative with respect to θ . This formula is known as the likeli-
hood equation. The condition that we have indeed found the maximum, is

�′′ = d2�

dθ2
=

n∑

i=1

d2

dθ2
log fX(xi; θ) < 0. (8.3)

Should we wish to determine several parameters (8.1) simultaneously, the likelihood
equation needs to be solved for each parameter separately,

∂

∂θj
�(x|θ) = 0, j = 1, 2, . . . , p. (8.4)
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By analogy to (8.3) we also identify the sufficient condition that the absolute maxi-
mum of � has been found: the square matrix A with the elements

Aij
(̂
θ
) = −

(
∂2�

∂θi∂θj

)

θ=θ̂

(8.5)

must be positive definite.

Example We have been measuring the same quantity with several devices with dif-
ferent uncertainties σi. The observations {x1, x2, . . . , xn} = x are scattered about the
true value μ. Suppose that the fluctuations about the mean are normally distributed.
The probability that, given the value of parameter μ, the observation xi is on the
interval [xi, xi + dx], is then

fX(xi;μ) dx = 1√
2π σi

exp

(
− (xi − μ)2

2σ 2
i

)
dx.

The corresponding likelihood function is

L(x|μ) =
n∏

i=1

fX(xi;μ) =
n∏

i=1

1√
2π σi

exp

(
− (xi − μ)2

2σ 2
i

)
,

and its logarithm is

� = logL(x|μ) = −1

2

n∑

i=1

(xi − μ)2

σ 2
i

−
n∑

i=1

log σi + const. (8.6)

By solving the likelihood equation

d�

dμ
=

n∑

i=1

xi − μ

σ 2
i

= 0

we obtain the estimate μ̂ for the parameter μ:

μ̂ =
∑n

i=1 wixi∑n
i=1 wi

, wi = 1

σ 2
i

, (8.7)

which is the familiar formula for the weighted average of xi with normally distrib-
uted errors σi. The second derivative of � with respect to μ reveals that μ̂ indeed
corresponds to the maximum �, since d2�/dμ2 = −∑n

i=1 wi < 0. �
Example Six vertical lines in Fig. 8.1 represent the observations {x1, x2, . . . , x6},
assumed to originate in a Cauchy-distributed population with the width parameter
s = 0.0001 and unknown mean μ (see (3.20)). What is the maximum-likelihood
estimate for the mean, μ̂, based on this sample?

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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Fig. 8.1 Sample of six values from a Cauchy-distributed population with the width parameter
s = 0.0001 and unknownmeanμ. (The sample was in fact generated by a Cauchy random generator
with μ = 1 and s = 0.0001.) Also shown is the log-likelihood function with four local maxima (◦)
and the global maximum (•) at μ̂ ≈ 0.999922

The log-likelihood function for a sample of size n is

�(x|μ) = log

(
n∏

i=1

1

π

s

s2 + (xi − μ)2

)
=

n∑

i=1

log

(
1

π

s

s2 + (xi − μ)2

)
,

and the likelihood equation is

∂�

∂μ
= 2

n∑

i=1

xi − μ

s2 + (xi − μ)2
= 0.

This can be written as p(μ) = 0, where p is a polynomial of degree 2n− 1. Thus, in
general, the likelihood equation has 2n − 1 solutions, some of which correspond to
local maxima of �. The optimal μ̂ corresponds to the global maximum, which one
usually finds numerically and tends to be near the sample median. In our case there
are four local maxima and a global maximum at μ̂ ≈ 0.999922. �

8.3 Variance of Estimator

Consistency and unbiasedness (see (7.2)–(7.4)) are not the only desirable properties
of a statistical estimator. Onewould also like it to have as small a variance as possible.
In general, different estimators of the same quantity have different variances: for
example, both the sample mean and the sample median are consistent and unbiased
estimators of the “center” of a population with known variance. Yet—as we shall
see—the variance of the mean is smaller than the variance of the median, so the
sample median is a “better” estimator.

http://dx.doi.org/10.1007/978-3-319-31611-6_7
http://dx.doi.org/10.1007/978-3-319-31611-6_7
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8.3.1 Limit of Large Samples

For large samples (n � 1) one expects the estimate θ̂ to be not very different from the
true value of the parameter θ0. We may therefore divide the likelihood equation (8.2)
by n, expand it in a Taylor series and keep just the first two terms:

1

n

d�

dθ
≈ 1

n

n∑

i=1

[
∂

∂θ
log fX(xi; θ)

]

θ0︸ ︷︷ ︸
α(x; θ0)

+(θ − θ0)
1

n

n∑

i=1

[
∂2

∂θ2
log fX(xi; θ)

]

θ0︸ ︷︷ ︸
β(x; θ0)

= 0

or, briefly,
α + (θ − θ0)β = 0. (8.8)

The quantities α and β have a random nature, as they depend on the current sample
x. What are their expected values? For large n the sums can be replaced by integrals:
the role of the sum weights 1/n are taken over by the probability densities. Then one
can write

E[α]=E

[
∂ log fX

∂θ

]

θ0

=
(∫

1

fX

∂fX
∂θ

fX dx

)

θ0

=
(

∂

∂θ

∫
fX(x; θ) dx

)

θ0

= 0,

where we have considered the fact that the probability density fX is normalized
regardless of the value of its parameter,

∫
fX(x; θ) dx = 1, and the derivative of a

constant is zero. We play the same game with β:

E[β]=E

[
∂2 log fX

∂θ2

]

θ0

=
(∫ [

1

fX

∂2fX
∂θ2

− 1

f 2X

(
∂fX
∂θ

)2]
fX dx

)

θ0

=
(

∂2

∂θ2

∫
fX (x; θ) dx

)

θ0

−
(∫ (

∂ log fX
∂θ

)2
fX (x; θ) dx

)

θ0

.

The first term vanishes for the same reason as in E[α], while the second term is the
(negative) expected value of the quantity (∂ log fX/∂θ)2, so

E[β] = E

[
∂2 log fX

∂θ2

]

θ0

= −E

[(
∂ log fX

∂θ

)2]

θ0

	= 0 (8.9)

for all non-degenerate cases. Then we see from (8.8) that θ̂ at large n approaches
the true value θ0, since limn→∞

(
θ̂ − θ0

) = − limn→∞ α/β = −E[α]/E[β] = 0.
Therefore, the estimate for the parameter θ0 is

θ̂ ≈ θ0 − α

E[β] .
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What is the variance of this estimate? We compute it as the expected value

var
[
θ̂
] = E

[(
θ̂ − θ0

)2] = E

[(
α

E[β]
)2]

= E
[
α2
]

E[β]2 .

The denominator has already been calculated in (8.9), and the numerator is

E
[
α2] = 1

n2

n∑

i=1

n∑

j=1

E

[
∂ log fX(Xi; θ)

∂θ

∂ log fX(Xj; θ)

∂θ

]

θ0

.

Individual random variables Xi are mutually independent, so all mixed terms may be
discarded, only the n quadratic terms survive:

E
[
α2] = 1

n2

n∑

i=1

E

[(
∂ log fX(Xi; θ)

∂θ

)2]

θ0

= −E[β]
n

.

So the variance we are looking for is

var
[
θ̂
] = − 1

nE[β] = 1

n

{
E

[(
∂ log fX

∂θ

)2]

θ0

}−1

= −1

n

{
E

[
∂2 log fX

∂θ2

]

θ0

}−1

.

Denoting fX,i = fX(Xi; θ) and taking into account the mutual independence of indi-
vidual Xi, the following relations also hold true:

E
[
(�′)2

]=E
[(∑

i

log fX,i

)′ 2]=E

[(∑

i

f ′X,i

fX,i

)′ 2]
=E

[∑

i

( f ′X,i

fX,i

)2]
=n E

[(
f ′X
fX

)2]
,

E
[
�′′]=E

[(∑

i

log fX,i

)′′]=n E
[(

log fX
)′′]=n E

[(
f ′X
fX

)′]
=−n E

[(
log fX

)′ 2]
.

The variance can thus be computed in at least four equivalent ways; two require the
log-likelihood function, and two require the probability density:

(
var
[
θ̂
])−1 = E

[
(�′)2

] = −E
[
�′′] = n E

[(
f ′
X

fX

)2]
= −n E

[(
log fX

)′′]
. (8.10)

Example Let us determine the parameter a in the Pareto distribution (3.16) based
on the measured sample x = {x1, x2, . . . , xn} and the assumption that the other
parameter, b, is known. The likelihood function is

L(x|a) =
n∏

i=1

fX(xi; a) =
n∏

i=1

a

b

(
b

xi

)a+1

,

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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and its logarithm is

� =
n∑

i=1

[
log

a

b
+ (a + 1) log

b

xi

]
= n log

a

b
+ (a + 1)

n∑

i=1

log
b

xi
.

The likelihood equation ∂�/∂a = 0 yields n/a +∑n
i=1 log(b/xi) = 0, whence the

estimate

â = n

[
n∑

i=1

log
xi
b

]−1

. (8.11)

Formula (8.10) then gives its variance:

(
var
[
â
])−1 = −n E

[(
log fX

)′′] = −n E

[(
log

a

b
+ (a + 1) log

b

X

)′′]

= −n E

[(
1

a
+ log

b

X

)′]
= −n E

[
− 1

a2

]
= n

a2
,

hence var
[
â
] = a2/n. �

8.4 Efficiency of Estimator

There is a relation between the bias and the variance of an estimator, based on the
information contained in the sample. (The concept of information will be discussed
in detail in Chap.11.) The equivalent quantities in (8.10) can be interpreted as the
information of the sample with respect to parameter θ ,

I(θ) = E
[
(�′)2

] = −E
[
�′′] ∝ n.

One can prove that the variance of estimates, obtained with a specific estimator, is
bounded from below [1, 2]. The lower bound of the variance of estimator T with
bias b is given by the Cramér-Rao or information inequality

var[T ] ≥ [1 + b′(θ)]2
I(θ)

.

If b does not depend on θ—or if the estimator is unbiased (b = 0)—the minimum
variance bound is given by the inequality

var[T ] ≥ 1

I(θ)
∝ 1

n
(8.12)

http://dx.doi.org/10.1007/978-3-319-31611-6_11
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with a very clear interpretation: by increasing the information (sample size) it is pos-
sible to reduce the variance of the estimate obtained from the sample with estimator
T . It can be shown [3] that the lower bound is attained precisely when

�′ = A(θ)
(
T − E[T ]) = A(θ)

(
T − θ − b(θ)

)
. (8.13)

Here A is an arbitrary quantity independent of x, but it may depend on the parameter
θ . Integrating the above relation we get � = ∫ �′ dθ = B(θ)T + C(θ) + D, whence,
by inverting the log,

L = e� = d exp
[
B(θ)T + C(θ)

]
, (8.14)

where D and d do not depend on θ . Hence T is a minimum variance estimator if the
likelihood function L has the particular form (8.14). If, in addition, such an estimator
is unbiased, it also follows from (8.12) that

var[T ] = 1

I(θ)
= 1

E[(�′)2] = 1
(
A(θ)

)2
E
[
(T − E[T ])2]

= 1
(
A(θ)

)2
var[T ]

or

var[T ] = 1

|A(θ)| . (8.15)

The quality of an estimator is expressed by its efficiency, defined as the ratio of the
minimal and actual variance of the estimator,

eff[T ] = (var[T ])min

/
var[T ] , 0 ≤ eff[T ] ≤ 1.

In principle high efficiency is desirable, although it does not say much about other
qualities of an estimator, for example, its robustness.

Example We have acquired an integer sample {x1, x2, . . . , xn}, assumed to stem
from a Poisson-distributed population, corresponding to the probability function
fX(x; λ) = λxe−λ/x! and unknown parameter λ.Wewish to determine this parameter.
The log-likelihood function is

� = log

( n∏

i=1

fX(xi; λ)

)
=

n∑

i=1

[
xi log λ − log(xi!) − λ

]
.

By comparing its derivative

�′ = d�

dλ
=

n∑

i=1

(xi
λ

− 1
)

= 1

λ

n∑

i=1

(xi − λ) = n

λ

(
x − λ

)
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Fig. 8.2 Samples of size n = 100 taken from a Poisson-distributed population with parameter
λ = 2.5. [Left] Samplewith arithmeticmean x = λ̂ = 2.54. [Right] Samplewith x = λ̂ = 2.35. The
expected variance of the samplemean isλ/n = 0.025 and the effective deviation is

√
0.025 ≈ 0.158,

consistent with the values shown

and formula (8.13) we see that the arithmetic mean T = X is an unbiased estimator
for the parameter θ = λ with variance |A(λ)|−1 = λ/n. How this works in practice
is shown in Fig. 8.2. �

Example Let us examine the variances of the sample mean x = 1
n

∑
i xi and the

sample median (definition (7.22)) as two possible estimators for the true population
mean μ, assuming that the population is normally distributed, with known variance
σ 2. The derivative of the log-likelihood function with n observations is

�′ = ∂�

∂μ
= ∂

∂μ
log

[
n∏

i=1

1√
2π σ

exp

(
− (xi − μ)2

2σ 2

)]
= n

σ 2

(
x − μ

)
.

This has the form (8.13), whereT = X, θ = μ, b(θ) = 0 andA(θ) = n/σ 2. By (8.15)
therefore

var
[
X
] = 1

|A(θ)| = σ 2

n
.

We know this already, for example, from (7.7). What about the median? The sample
median of large samples (n � 1) is normally distributed according to (7.24), so

var
[
med[X]] = πσ 2

2n
.

Therefore the sample median is a less efficient estimator for the population mean
than the sample mean, since its efficiency is only

eff
[
med[X]] = var[X]

var
[
med[X]] = σ 2

n

2n

πσ 2
= 2

π
≈ 0.637.

http://dx.doi.org/10.1007/978-3-319-31611-6_7
http://dx.doi.org/10.1007/978-3-319-31611-6_7
http://dx.doi.org/10.1007/978-3-319-31611-6_7
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In plain English: after many samplings, an equally good estimate for the true mean
μ of a normally distributed population can be obtained from a sample mean of 637
observations as from the median of 1000 observations. �

8.5 Likelihood Intervals

Likelihood intervals are analogs of confidence intervals discussed in Sect. 7.3 with
a slightly different interpretation. A confidence interval [X − sX/

√
n,X + sX/

√
n]

expresses the probability that the true mean μ will be on this interval, namely P
(
X −

sX/
√
n ≤ μ ≤ X + sX/

√
n
) ≈ 0.683. On the other hand, a likelihood interval

[
θ̂ − σ ≤ θ ≤ θ̂ + σ

]
, (8.16)

where it is assumed that the true σ is known, and the corresponding probability

p = P
(
θ̂ − σ ≤ θ ≤ θ̂ + σ

) ≈ 0.683, (8.17)

measure our “belief” that the observations x were generated by a random process
with parameter θ from the interval (8.16).

How can a likelihood interval be determined? The distribution of θ̂ is generally
unknown, so we also do not know how to compute the probability (8.17). However, if
we resort to the large-sample limit (n � 1), all maximum-likelihood estimates attain
the minimum variance bound [4]. In addition, in the asymptotic regime n → ∞ the
likelihood function becomes independent of the sample x and tends to the normal
distribution in θ , with mean θ̂ and variance σ 2:

L(x|θ) → L(θ) = L(θ̂) e− 1
2R = Lmax e

− 1
2R, R = (θ − θ̂ )2/σ 2. (8.18)

Here the true θ is to be seen as “dancing” about the parameter θ̂ . In its vicinity, the
log-likelihood function has a parabolic shape

�(θ) − �(θ̂) = �(θ) − �max = −1

2

(θ − θ̂ )2

σ 2
, (8.19)

shown in Fig. 8.3.
An arbitrary likelihood interval [θ−, θ+] is then defined by the formula

p = P
(
θ− ≤ θ ≤ θ+) = 


(
θ+ − θ̂

σ

)
− 


(
θ− − θ̂

σ

)
, (8.20)

where 
 is the distribution function of the standard normal distribution (3.11). We
are mostly interested in symmetric intervals [θ−, θ+] = [θ̂ − mσ, θ̂ + mσ ] with
probability content p and probabilities 1

2 (1 − p) to the left and right of them:

http://dx.doi.org/10.1007/978-3-319-31611-6_7
http://dx.doi.org/10.1007/978-3-319-31611-6_3
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Fig. 8.3 The parabolic
shape of the log-likelihood
function near θ̂ with the
corresponding likelihood
intervals for p = 68.3%,
p = 95.4% and 99.7%

p = P
(
θ̂ − mσ ≤ θ ≤ θ̂ + mσ

) = 2
(m) − 1. (8.21)

The intervals correspond to line segments between the intersections of parabolas
with horizontal lines at a below �max, where a = R/2 = m2/2, as shown in Fig. 8.3.
Likelihood intervals with p = 68.3, 95.4 and 99.7% (m = 1, 2 and 3) correspond
to a = 0.5, 2.0 and 4.5, respectively. The method approximately works even in the
asymmetric case, as shown in the following Example.

Example Based on measured decay instances t = {t1, t2, . . . , tn} we wish to deter-
mine the decay time of radioactive nuclei. The sample t may not be large: Fig. 8.4
(left) shows n = 5 decays, and Fig. 8.4 (right) shows n = 50 decays.

The probability for the nucleus to decay in the time interval [t, t + dt] is given by
the exponential distribution, so that fT (t) dt = τ−1 e−t/τ dt. The likelihood function
for the sample t with parameter τ is

L(t|τ) =
n∏

i=1

fT (ti; τ) = 1

τ n
exp

(
−1

τ

n∑

i=1

ti

)
= 1

τ n
exp
(
−n

τ
t
)

,

while its log is � = −nt/τ − n log τ . Comparing the likelihood equation for τ ,

�′ = d�

dτ
= n

τ

(
t

τ
− 1

)
= n

τ 2

(
t − τ

) = 0,

to (8.13) we deduce that τ̂ = t = (
∑

i ti)/n is an unbiased estimator for the mean
decay time, with variance var[̂τ ] = τ 2/n, so that the uncertainty of the parameter τ̂

is τ/
√
n ≈ t/

√
n. At τ̂ = t one has �

(
τ̂
) = �max = −n

(
1 + log τ̂

)
or

− (�(τ)− �
(
τ̂
)) = n

(
τ̂

τ
+ log

τ

τ̂
− 1

)
.

For small n this does not have the parabolic shape (8.19) in τ , so one can not determine
a symmetric likelihood interval byusing (8.21).But one can still define an asymmetric
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Fig. 8.4 Determination of the mean decay time of nuclei from the sample of [Left] n = 5 and
[Right] n = 50 measured decay instances. Also shown are the graphs of log-likelihood functions.
The true decay time, used to generate the events, is τ = 1

interval [τ−, τ+], where τ− = τ̂ − �− and τ+ = τ̂ + �+. For, say, p = 68.3%, this
interval is defined by

− (�(τ±
)− �

(
τ̂
)) = 1

2

and is shown in the upper part of Fig. 8.4 (left). When n � 1, � − �max becomes
more and more parabolic and the corresponding likelihood interval more and more
symmetric (see Fig. 8.4 (right)). Ultimately, in the limit, n → ∞ we finally obtain a
symmetric interval �± = √var[̂τ ]. �

8.6 Simultaneous Determination of Multiple Parameters

Let us revisit the issue of determining multiple parameters θ = {θ1, θ2, . . . , θp},
whose values we wish to infer from the sample x = {x1, x2, . . . , xn}. The likelihood
equations with corresponding log-likelihood functions used to obtain the estimates
for individual θj have already been written down: see (8.4). What complicates the
matter is the determination of uncertainties (variances) of these parameters and their
correlations.

8.6.1 General Method for Arbitrary (Small or Large) Samples

If estimates can be written as explicit functions of the variables X, that is, in the form
θ̂j = θ̂j

(
X1,X2, . . . ,Xn

)
, the covariances of θ̂i and θ̂j can be defined as

cov
[
θ̂i, θ̂j

] =
∫ (

θ̂i − θi
)(

θ̂j − θj
)
L
(
x|θ) dx. (8.22)
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The variances of individual θi are obtained when this formula is applied at i = j,

var
[
θ̂i
] =

∫ (
θ̂i − θi

)2
L
(
x|θ) dx.

The multiple integral should be calculated on the whole definition domain of the
random variables Xi, corresponding to sample values xi. This method is applicable
to samples of any size, small or large.

Example By using (8.22) let us show that the variance of the estimator τ̂ = t for the
mean decay time is indeed τ 2/n, as shown in Example on p. 213:

var
[
τ̂
] =

∫ ∞

0

∫ ∞

0
· · ·
∫ ∞

0︸ ︷︷ ︸
n

(
τ̂ − τ

)2
n∏

i=1

(
1

τ
e−ti/τ dti

)

=
∫

· · ·
∫ (

1

n

n∑

k=1

tk

)(
1

n

n∑

j=1

tj

) n∏

i=1

(
1

τ
e−ti/τ dti

)

−2τ
∫

· · ·
∫ (

1

n

n∑

j=1

tj

) n∏

i=1

(
1

τ
e−ti/τ dti

)
+ τ 2

∫
· · ·
∫ n∏

i=1

(
1

τ
e−ti/τ dti

)

=
(
2

n
+ n − 1

n

)
τ 2 − 2τ 2 + τ 2 = τ 2

n
. (8.23)

Of course, one can also be very brief: var
[
τ̂
] = var

[
T
] = n var[T ]/n2 = τ 2/n. We

shall revisit the decay time determination in Problem 8.8.1. �

8.6.2 Asymptotic Method (Large Samples)

For large samples (n � 1) the dependence (8.19) can be generalized to multiple
parameters as

�(θ) − �(̂θ) ≈ − 1
2

(
θ − θ̂

)T
A
(
θ − θ̂

)T
,

where A is the matrix of negative second derivatives of �with respect to θj as in (8.5).
Its expected value B = E[A] is a symmetric matrix with the elements

Bij = E
[
Aij
] = −E

[(
∂2�

∂θi∂θj

)]

θ=θ̂

, (8.24)

and the likelihood function has the form of a p-dimensional normal density (4.23),

L(x|θ) ∝ exp
(
− 1

2

(
θ − θ̂

)T
C−1

(
θ − θ̂

))
,

http://dx.doi.org/10.1007/978-3-319-31611-6_4
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where C = B−1 is the covariance matrix of the parameters θ . Its elements are

Cii = var
[
θ̂i
]
, Cij = cov

[
θ̂i, θ̂j

]
, (8.25)

while the correlation coefficient of an arbitrary parameter pair is

ρ
(
θ̂i, θ̂j

) = cov
[
θ̂i, θ̂j

]
√
var
[
θ̂i
]√

var
[
θ̂j
] = Cij√

Cii
√
Cjj

.

Example A sample {x1, x2, . . . , xn} presumably stems from a normally distributed
population. We are interested in the estimates for its mean μ and effective deviation
σ as well as their uncertainties. We already know the log-likelihood function (8.6),
except that now all effective deviations are the same. Since two parameters are
involved, θ1 = μ and θ2 = σ , there are two likelihood equations:

∂�

∂μ
= 1

σ 2

n∑

i=1

(xi − μ) = 0,
∂�

∂σ
= − n

σ
+ 1

σ 3

n∑

i=1

(xi − μ)2 = 0.

The usual formulas for sample mean and variance follow:

μ̂ = 1

n

n∑

i=1

xi, σ̂ 2 = 1

n

n∑

i=1

(
xi − μ̂

)2
.

To calculate their uncertainties, we need the second derivatives:

∂2�

∂μ2
= − n

σ 2
,

∂2�

∂μ∂σ
= −2

∑n
i=1

(
xi − μ

)

σ 3
,

∂2�

∂σ 2
= n

σ 2
− 3

∑
i

(
xi − μ

)2

σ 4
,

whose expected values are

B11 = E
[
A11
] = −E

[(
∂2�

∂μ2

)]

μ̂,̂σ

= n

σ̂ 2
,

B12 = E
[
A12
] = −E

[(
∂2�

∂μ∂σ

)]

μ̂,̂σ

=
2
∑n

i=1

(
0︷ ︸︸ ︷

E[Xi − μ] )
μ̂

σ̂ 3
= 0,

B22 = E
[
A22
] = −E

[(
∂2�

∂σ 2

)]

μ̂,̂σ

= − n

σ̂ 2
+ 3

σ̂ 4

n∑

i=1

(
E
[
(Xi − μ)2

]
︸ ︷︷ ︸

σ 2

)

σ̂
= 2n

σ̂ 2
.
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Inverting the matrix B yields the covariance matrix:

B =
(
B11 0
0 B22

)
=⇒ C = B−1 =

(
σ̂ 2/n 0
0 σ̂ 2/2n

)
,

so

var
[
μ̂
] = σ̂ 2

n
, var

[
σ̂
] = σ̂ 2

2n
, cov

[
μ̂, σ̂

] = 0.

The estimates μ̂ and σ̂—in this particular case—are uncorrelated. Repeat the calcu-
lation for θ2 = σ 2 instead of θ2 = σ ! What is the difference? �

8.7 Likelihood Regions

When the maximum-likelihood method is used to determine multiple parameters θ

and one would like to specify their uncertainties, likelihood intervals are replaced
by likelihood regions. Similar to (8.20) one is usually interested in the probabilities
that parameters θ1 and θ2 simultaneously lie on their corresponding intervals,

p = P
(
θ−
1 ≤ θ1 ≤ θ+

1 , θ−
2 ≤ θ2 ≤ θ+

2

)
.

Let us restrict the discussion to two, generally correlated parameters by using large
samples (n � 1). By analogy to the one-dimensional case (8.18) the likelihood
function near the optimal values θ̂1 and θ̂2 has the form of a binormal density in θ1
and θ2 (see Example on p. 108), with possible correlations:

L(x|θ1, θ2) → L(θ1, θ2) = L(θ̂1, θ̂2) e
− 1

2R = Lmax e
− 1

2R

or
�
(
θ1, θ2) = �max − 1

2 R,

where R is a random variable

R = 1

1 − ρ2

[(
θ1 − θ̂1

)2

σ 2
1

− 2ρ

(
θ1 − θ̂1

)(
θ2 − θ̂2

)

σ1σ2
+
(
θ2 − θ̂2

)2

σ 2
2

]
. (8.26)

The curves of constant likelihood are ellipses centered at (θ̂1, θ̂2), defining the corre-
sponding likelihood region. The limiting value R = 1 defines the covariance ellipse,
an example of which is shown in Fig. 8.5 (left).

It turns out [4] that R—regardless of θ̂1, θ̂2, σ1, σ2 and ρ—is distributed according
to the χ2 distribution with ν = 2, so that with a chosen probability p one has
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Fig. 8.5 [Left] Covariance ellipse as the boundary of the likelihood region (p = 39.3%) for
parameters θ1 and θ2. The arrows with lengths 2σ1 and 2σ2 denote the usual likelihood intervals
(p = 68.3%) for an individual parameter regardless of the other. [Right] A rectangle circumscribing
the ellipse as an alternative likelihood region

P
(
R ≤ Rp

) =
∫ Rp

0
fχ2(x; 2) dx = 1

2

∫ Rp

0
e−x/2 dx = 1 − e−Rp/2 = p, (8.27)

where fχ2 is givenby (3.21). Theprobability thatR ≤ Rp is equal to the probability that
θ1 and θ2 are simultaneouslywithin the ellipse definedby the equationR(θ1, θ2) = Rp.
One first chooses a probability pwithwhich onewould like to jointly “capture” θ1 and
θ2 in the elliptic region: the corresponding ellipses are then the intersections of the
surface

(
θ1, θ2, �(θ1, θ2)

)
with parallel planes � = �max − a, where a = Rp/2—just

like in the one-dimensional case in Fig. 8.3. Solving (8.27) for Rp,

Rp = −2 log(1 − p),

then yields the equation of the ellipse (8.26) with R(θ1, θ2) = Rp. Some typical pairs
of p and Rp are listed in the table below.

p 0.393 0.500 0.683 0.865 0.954 0.989 0.997
Rp 1 1.39 2.30 4 6.16 9 11.62

8.7.1 Alternative Likelihood Regions

Likelihood regions may be defined by any prescription that algebraically or geomet-
rically maps the parameter uncertainties to the chosen probability p in a unique way.

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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Instead of an elliptic region, for example, one can define a rectangular one, such that
its sides correspond to the parameter ranges

θ1 = θ̂1 ± mσ1, θ2 = θ̂2 ± mσ2, m ∈ R.

The probability p that θ1 and θ2 are simultaneously within the rectangle depends on
the correlation parameter ρ. It is given by the formula [4]

pρ(m) = 1√
2π

∫ m

−m

[



(
m − ρt√
1 − ρ2

)
− 


(
−m − ρt√
1 − ρ2

)]
e−t2/2 dt,

where 
 is the distribution function of the standard normal distribution (3.11). The
integral is calculated numerically. If a rectangle circumscribes the covariance ellipse
as shown in Fig. 8.5 (right), one obtains a likelihood region with m = 1, on which θ1
and θ2 are found with probability

P
(
θ̂1 − σ1 ≤ θ1 ≤ θ̂1 + σ1, θ̂2 − σ2 ≤ θ2 ≤ θ̂2 + σ2

) = pρ(1).

Some typical pairs of ρ and pρ(1) are shown in the table below.

ρ 0.0 0.2 0.4 0.5 0.6 0.7 0.8 0.9 1.0
pρ(1) 0.466 0.471 0.486 0.498 0.514 0.534 0.561 0.596 0.683

The column with ρ = 0.0 corresponds to uncorrelated parameters, for which

pρ(1) = P
(
θ̂1 − σ1 ≤ θ1 ≤ θ̂1 + σ1, θ̂2 − σ2 ≤ θ2 ≤ θ̂2 + σ2

)

= P
(
θ̂1 − σ1 ≤ θ1 ≤ θ̂1 + σ1

)
P
(
θ̂2 − σ2 ≤ θ2 ≤ θ̂2 + σ2

)

≈ 0.6832 ≈ 0.466.

8.8 Problems

8.8.1 Lifetime of Particles in Finite Detector

A detector is used to measure the lifetime of unstable particles, yielding the sample
t = {t1, t2, . . . , tn}. The times ti = li/(γivi), where γi = (1 − v2

i /c
2)−1/2 is the

Lorentz factor, are calculated for each particle from the measured length li of its
trajectory and its velocity vi. Use the sample t to obtain the maximum-likelihood
estimate of the mean decay time and its variance! Discuss the cases that the detector
is ① infinitely large or ② finite.

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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✎ ① Decay times are exponentially distributed with density fT (t; τ) = τ−1e−t/τ ,
where τ is the true decay time. In an infinite detector one may have 0 ≤ t < ∞ and
the density fT is correctly normalized. The likelihood function for n observations is

L(t|τ) =
n∏

i=1

fT (ti; τ) = 1

τ n
exp

(
−1

τ

n∑

i=1

ti

)
= 1

τ n
exp
(
−n

τ
t
)

,

where t = (1/n)
∑n

i=1 ti is the usual sample mean. The log-likelihood function is
� = −n log τ − nt/τ , and the corresponding likelihood equation is

d�

dτ
= n

τ

(
t

τ
− 1

)
= n

τ 2

(
t − τ

) = 0.

The estimate τ̂ for the true decay time τ is therefore the sample mean, τ̂ = t =
1
n

∑n
i=1 ti. Its variance is given by formula (8.23).

② The finite-detector case is more interesting. Here the decays can be described
by the probability density

fT (t; τ) = τ−1e−t/τ

∫ T
0 τ−1e−t/τ dt

= 1

τ

e−t/τ

1 − e−T/τ
, 0 ≤ t ≤ T ,

where T is the potential decay time. Namely, for the ith particle the time can only be
measured on a finite interval 0 ≤ ti ≤ Ti = lmax,i/(γivi). The log-likelihood function
is now

� = −n log τ − nt

τ
−

n∑

i=1

log
[
1 − e−Ti/τ

]
,

while the likelihood equation is

d�

dτ
= n

τ

(
t

τ
− 1

)
+ 1

τ 2

n∑

i=1

Ti e−Ti/τ

1 − e−Ti/τ
= 0.

Multiplying by τ 2 yields an implicit equation for τ ,

τ = 1

n

n∑

i=1

[
ti + Ti e−Ti/τ

1 − e−Ti/τ

]
= t + 1

n

n∑

i=1

Ti e−Ti/τ

1 − e−Ti/τ
,

which can be solved iteratively with the initial condition obtained in Problem ① .
With τ̂ we also calculate its variance by using the formula

var
[
τ̂
] =

[(
d2�

dτ 2

)]−1

τ=τ̂

.
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8.8.2 Device Failure Due to Corrosion

Figure8.6 (left) showsn = 32 device lifetimes ti (times until failure) in dependence of
the corrosion level of its components [5]. Assume that the lifetime is an exponentially
distributed random variable T with the probability density fT (t; a, b) = λ e−λt =
axb e−axbt , where x is the corrosion level, while a and b are unknown parameters.
Determine a and b and their variances by using the maximum-likelihood method!

✎ The sample consists of n = 32 pairs (xi, ti). The likelihood function and its
logarithm are

L(t, x|a, b) =
n∏

i=1

axbi e
−axbi ti , � = logL = n log a + b

n∑

i=1

log xi − a
n∑

i=1

xbi ti.

The likelihood equations are

∂�

∂a
= n

a
−

n∑

i=1

xbi ti = 0,

∂�

∂b
=

n∑

i=1

log xi − a
n∑

i=1

xbi ti log xi = 0.

These equations can not be solved analytically for a and b, so one can either seek a
numerical solution or directly maximize �. Either way,

â ≈ 1.10, b̂ ≈ 0.49, (8.28)
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Fig. 8.6 [Left] Device lifetimes as functions of corrosion levels present in its components. The
curve represents themodelwith parameters determined by themaximum-likelihoodmethod. [Right]
Measured distribution of glass fibers with respect to their tensile strength. Both data sets can be
found on the book’s website
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so that �
(
â, b̂
) ≈ −22.3. Since the variableT is exponentially distributed, its expected

value is E[T ] = 1/λ = a−1x−b. This curve for optimal parameters (8.28) is shown
in Fig. 8.6 (left). To compute the variances we also need the second derivatives

�aa = ∂2�

∂a2
= − n

a2
, �ab = ∂2�

∂a∂b
= −

n∑

i=1

xbi ti log xi, �bb = ∂2�

∂b2
= −a

n∑

i=1

xbi ti
(
log xi

)2
.

We arrange these expressions in matrix B by formula (8.24). Its inverse is the covari-
ance matrix of the optimal parameters:

B =
(−�aa −�ab

−�ab −�bb

)
≈
(
26.47 12.33
12.33 36.45

)
, C = B−1 ≈

(
0.0448 −0.0152

−0.0152 0.0326

)
.

By using (8.25) we finally obtain
√
var
[
â
] = √

C11 ≈ 0.21 and
√
var
[̂
b
] = √

C22 ≈
0.18.

8.8.3 Distribution of Extreme Rainfall

Let us revisit the Example from p. 159. By fitting the probability density (6.13) to the
histogram in Fig. 6.7 (right) we obtained the parameter values listed in that Figure
(μ̂ = 53.9mm, σ̂ = 14.8mm, ξ̂ = 0.077). Use the maximum-likelihood method to
determine μ, σ and ξ as well as their uncertainties!

✎ The distribution of the measured n = 151 extreme values x = {xi}ni=1 is mod-
eled by the probability density of the form (6.13). The appropriate log-likelihood
function is

�(x|μ, σ, ξ) = −n log σ −
(
1 + 1

ξ

) n∑

i=1

log

[
1 + ξ

xi − μ

σ

]
−

n∑

i=1

[
1 + ξ

xi − μ

σ

]−1/ξ

. (8.29)

To compute the estimates μ̂, σ̂ and ξ̂ we need to solve the likelihood equations
∂�/∂μ = 0, ∂�/∂σ = 0 and ∂�/∂ξ = 0, but clearly this can be rather annoying.
Such cases call for a numerical tool like Mathematica to directly maximize � =
logL[μ, σ, ξ ]. We already know the approximate parameter values: if, on the other
hand, we have not the slightest idea of what they should be, we can simply plot �:
see Fig. 8.7.

Inspecting the plot allows us to narrow down the search region:

NMaximize
[{
logL[μ, σ, ξ ], 50 ≤ μ ≤ 60&&10 ≤ σ ≤ 20&&0.03 ≤ ξ ≤ 0.2

}
,
{
μ, σ, ξ

}]
.

We get
μ̂ ≈ 54.0mm, σ̂ ≈ 13.8mm, ξ̂ ≈ 0.11, (8.30)

where �
(
μ̂, σ̂ , ξ̂

) ≈ −645.0. These values are denoted by black dots in Fig. 8.7.

http://dx.doi.org/10.1007/978-3-319-31611-6_6
http://dx.doi.org/10.1007/978-3-319-31611-6_6
http://dx.doi.org/10.1007/978-3-319-31611-6_6
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Fig. 8.7 The values of the log-likelihood function as a function of parametersμ, σ and ξ pertaining
to the distribution of extreme rainfall in Engelberg. The black symbols denote the maximal value
� ≈ −645.0 attained by the parameter set (8.30)

Without the use of modern computational tools the calculation of variances of
optimal parameters is even more strenuous. One needs second derivatives

∂2�

∂μ2 = · · · ,
∂2�

∂μ∂σ
= · · · ,

∂2�

∂μ∂ξ
= · · · ,

∂2�

∂σ 2 = · · · ,
∂2�

∂σ∂ξ
= · · · ,

∂2�

∂ξ2
= · · · ,

to construct the matrix B by formula (8.24) and the covariance matrix C = B−1,

θ̂ = (μ̂, σ̂ , ξ̂
)
, Bjk = −

(
∂2�

∂θj∂θk

)

θ=θ̂

, C = B−1.

With more and more parameters, this is no longer manageable by hand. InMathe-
matica, on the contrary, one simply defines the parameter array θ =
Table[q[i], {i,3}] and the 3 × 3 matrix B, which one fills with negative second
derivatives:

logL[μ_, σ_, ξ_] := −nLog[σ ]− . . . ; (∗ formula (8.29) ∗)

For[j = 1, j ≤ 3, j++, {
For[k = 1, k ≤ 3, k++, {

B[[j,k]] = −D[ logL[ θ [[1]], θ [[2]], θ [[3]] ], q[j], q[k] ];
}];

}];

The matrix elements, calculated symbolically, need to be evaluated with the optimal
parameters (8.30). The only remaining task is to compute the covariance matrix (use
Inverse[B]):

C = B−1 ≈
⎛

⎝
1.6916 0.6702 −0.0355
0.6702 0.9986 −0.0182

−0.0355 −0.0182 0.0052

⎞

⎠ ,
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so the parameter uncertainties are

√
var
[
μ̂
] = √C11 ≈ 1.30,

√
var
[
σ̂
] = √C22 ≈ 1.00,

√
var
[̂
ξ
] = √C33 ≈ 0.072.

8.8.4 Tensile Strength of Glass Fibers

In modeling the tension of glass fibers one can imagine that each fiber consists of
many smaller fibers, so that the whole breaks when the weakest link in the chain
breaks. Figure8.6 (right) shows the measured distribution of fibers with respect
to their tensile strength [6]. The measured strengths are therefore a kind of mini-
mal extreme values; describe them with an appropriate extreme distribution of the
type (6.15), and determine its parameters and their variances by using the maximum-
likelihood method!

✎ As explained in Sect. 6.6.3, the same problem can be solved if one negates the
data (xi �→ −xi) and finds the distribution of maximal values with the sign of the
mean parameter reversed, μ̃ = −μ̂. Then the optimal parameters and their variances
can be calculated precisely by the procedure outlined in Problem 8.8.3. The log-
likelihood function is given by formula (8.29), and maximizing it gives the estimates

μ̂ = −μ̃ ≈ −1.64, σ̂ ≈ 0.27, ξ̂ ≈ −0.084,

at which the value of the log-likelihood function is �
(
μ̂, σ̂ , ξ̂

) ≈ −14.3. The para-
meter covariance matrix is

C ≈ 10−3

⎛

⎝
1.4082 0.2142 −0.7947
0.2142 0.6516 −0.4412

−0.7947 −0.4412 4.8930

⎞

⎠ ,

and the parameter uncertainties are

√
var
[
μ̂
] = √C11 ≈ 0.038,

√
var
[
σ̂
] = √C22 ≈ 0.026,

√
var
[̂
ξ
] = √C33 ≈ 0.070.
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Chapter 9
Method of Least Squares

Abstract The method of least squares is the basic tool of developing and verifying
models by fitting theoretical curves to data. Fitting functions that linearly depend on
model parameters (linear regression) is treated first, discussing the distinct cases of
known and unknown experimental uncertainties, finding confidence intervals for the
optimal parameters, and estimating the quality of the fit. Regressionwith standard and
orthogonal polynomials, straight-line fitting and fitting a constant are analyzed sep-
arately. Linear regression for binned data, linear regression with constraints, general
linear regression by using singular-value decomposition, and robust linear regression
are presented, followed by a discussion of non-linear regression.

Almost on a daily basis one encounters the problem of fitting a chosen function to
the pairs {(xi, yi)}ni=1, i.e. the values yi measured at points xi, arranged in vectors

y = (y1, y2, . . . , yn)
T, x = (x1, x2, . . . , xn)

T. (9.1)

The observations yi may be correlated. These correlations—to be precise, the esti-
mates of correlations—can of course only be determined by multiple (M-fold) mea-
surement of the whole set y at the same x. The obtained variances and covariances
can be stored in the sample covariance matrix

�y = 1

M

M∑

m=1

(
ym − y

)(
ym − y

)T
, y = 1

M

M∑

m=1

ym,

where (�y)ij ≈ cov[Yi,Yj]. If the measurements are independent, the covariance
matrix is diagonal,

�y = diag
(
σ2
1,σ

2
2, . . . ,σ

2
n

)
, (9.2)

where σi is the uncertainty of the individual yi. The function f being used to fit the
data contains a certain set of model parameters. The final estimates for their values
should be sensitive to the precision or uncertainty of the data. Searching for the
appropriate model function f is called regression.

© Springer International Publishing Switzerland 2016
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9.1 Linear Regression

Linear regressionmeans that themodel function linearly depends on theparametersθ.
This kind of regression is used when we seek a polynomial

f (x) = θ1 + θ2x + · · · + θpx
p−1 (9.3)

that best fits the data (9.1) or, say, a function of the form

f (x) = θ1 + θ2 e
x + θ3 sin x. (9.4)

We assume that each value yi is a realization of a random variable, distributed
about the unknown true value with the uncertainty σi. For the parameter set
θ = {θ1, θ2, . . . , θp} one therefore generally writes

fi = f
(
xi;θ) =

p∑

j=1

aij(xi)θj, i = 1, 2, . . . , n, p ≤ n,

or, in matrix form,
f = A(x)θ.

Here f is a vector of dimension n and A is a n × p matrix with elements Aij that
in general are functions of x. In (9.4), for example, we have Ai1 = 1, Ai2 = exi and
Ai3 = sin xi for each i.

The main idea of fitting is to minimize the sum of squares (yi − fi)2 with respect
to the uncertainties σi. This is the core of the method of least squares. (Regression,
however, is not a uniquely solvable problem, as many other measures of deviation of
yi from fi exist; least squares just happen to be by far the most popular.) One therefore
tries to find the parameters θ minimizing the quadratic form

X2 = (
y − Aθ

)T
�−1

y

(
y − Aθ

)
(9.5)

or, in the case of uncorrelated uncertainties (9.2),

X2 =
n∑

i=1

(
yi − f (xi;θ)

)2

σ2
i

. (9.6)

The deviation of yi from the model value fi = f (xi) is “punished” inversely propor-
tional to the absolute error of yi. The measure of deviation X2 is minimized when its
minimum is found by requiring

∂X2

∂θj
= 0, j = 1, 2, . . . , p,
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or, in vector form, ∂X2/∂θ = −2
(
AT�−1

y y − AT�−1
y Aθ

) = 0. This yields the so-
called normal system of linear equations for the parameters θj,

(
AT�−1

y A
)
θ = AT�−1

y y. (9.7)

Its solution is the vector of optimal parameters

θ̂ = � y, � = (
AT�−1

y A
)−1

AT�−1
y .

What are the uncertainties (variances) and covariances of components of θ̂? In other
words, what is the connection between the p × p covariance matrix of parameters
θ and the n × n covariance matrix of the values y? We use D = � in the error-
propagation formula (4.2.7) to derive

�θ̂ = ��y�
T = (

AT�−1
y A

)−1
AT�−1

y �y�
−1
y A

(
AT�−1

y A
)−1

= (
AT�−1

y A
)−1(

AT�−1
y A

)(
AT�−1

y A
)−1 = (

AT�−1
y A

)−1
. (9.8)

Therefore

var
[
θ̂j
]=(

�θ̂

)
jj, cov

[
θ̂j, θ̂k

]=(
�θ̂

)
jk, corr

[
θ̂j, θ̂k

]=
(
�θ̂

)
jk√(

�θ̂

)
jj

√(
�θ̂

)
kk

, (9.9)

where j, k = 1, 2, . . . , p. The estimate θ̂ is unbiased, E
[̂
θ
] = θ. Because the relation

between θ and y is linear, the Gauss–Markov theorem [1] also tells us that it has the
smallest possible variance.

Note that the dependence of the measure of deviation on parameters θ has the
general form

X2
(
θ
) = X2

(̂
θ
) + (

θ − θ̂
)T

�−1
θ̂

(
θ − θ̂

)
.

In the case of a single parameter θ and a constant covariance matrix of observations
�−1

θ̂
one sees that X2 has a parabolic shape:

X2
(
θ
) = X2

(
θ̂
) + (

var
[
θ̂
])−1(

θ − θ̂
)2

, var
[
θ̂
] = 2

(
∂2X2

∂θ2

)−1

. (9.10)

In the followingwe shall describe the fitting of functions to data in a pedagogically
rather non-orthodox sequence: polynomials, orthogonal polynomials, straight line,
constant. We assume throughout that the observations y are independent, so that their
covariance matrix is given by (9.2).

http://dx.doi.org/10.1007/978-3-319-31611-6_4
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9.1.1 Fitting a Polynomial, Known Uncertainties

When (9.6) is minimized with respect to θj (j = 1, 2, . . . , p) with model (9.3), the
system (9.7) becomes (

V TWV
)
θ = V TWy.

Here V is an n × p Vandermonde matrix with the elements

Vij = xj−1
i , i = 1, 2, . . . , n, j = 1, 2, . . . , p, (9.11)

whileW = diag
(
1/σ2

1, 1/σ
2
2, . . . , 1/σ

2
n

)
is the weight matrix. DenotingB = V TWV

(p × p matrix, B = BT) and b = V TWy (p-dimensional vector) the system can be
rewritten as

Bθ = b (9.12)

or
p∑

j=1

Bkjθj = bk, Bkj =
n∑

i=1

xk+j−2
i

σ2
i

, bk =
n∑

i=1

xk−1
i yi
σ2
i

, (9.13)

where j, k = 1, 2, . . . , p. The solution of (9.12) is the vector of optimal parameters,

θ̂ = B−1b, (9.14)

while their variances and covariances are

var
[
θ̂j
] = (

B−1)
jj, cov

[
θ̂j, θ̂k

] = (
B−1)

jk . (9.15)

Example An experiment results in the angular distribution of scattered particles,
shown in the Table below and in Fig. 9.1. The independent variables xi are the cosines
of the scattering angles and are “almost exactly known”: ameasurement at xi involves
angles on the interval around cosφi which is much smaller than the distance between
the neighboring points, |xi − xi−1|. The dependent variables yi are the numbers of
detected particles at given angle. The uncertainties σi change with the angle and
increase in the backward direction.

xi = cosφi −0.9 −0.7 −0.5 −0.3 −0.1 0.1 0.3 0.5 0.7 0.9
yi = Ni 1412 908 881 534 501 352 218 355 278 482
σi 320 205 180 160 120 103 90 88 80 76

Let us fit the data by a parabola (p = 3). Formulas (9.13) yield



9.1 Linear Regression 231

b =
⎛

⎝
0.351
0.0890
0.134

⎞

⎠ , B = 10−3

⎛

⎝
8.492 3.167 2.926
3.167 2.926 1.791
2.926 1.791 1.746

⎞

⎠ ,

and solving the system (9.14) gives the optimal parameters

θ̂ = (
376.11, −501.45, 650.94

)T
.

Their covariance matrix (see (9.15)) is

B−1 =
⎛

⎝
2808.1 −423.55 −4272.8

−423.55 9251.0 −8782.2
−4272.8 −8782.2 21902.9

⎞

⎠ .

The uncertainties of parameters θ̂, i.e. the effective deviations �θi =
√
var

[
θ̂i
]
, can

be read off from its diagonal elements:

�̂θ1 =
√(

B−1
)
11 = 52.99, �̂θ2 =

√(
B−1

)
22 = 96.18, �̂θ3 =

√(
B−1

)
33 = 148.0.

The parabola with these parameters that fits the data optimally is shown in Fig. 9.1.
The correlations between the calculated parameters are most clearly identified in the
correlation matrix ρ with the elements

ρjk = cov
[
θ̂j, θ̂k

]
√
var

[
θ̂j
]√

var
[
θ̂k
] =

(
B−1

)
jk√(

B−1
)
jj

√(
B−1

)
kk

,

hence

ρ =
⎛

⎝
1 −0.0831 −0.5448

−0.0831 1 −0.6170
−0.5448 −0.6170 1

⎞

⎠ .

Fig. 9.1 Distribution of
particles with respect to
scattering angles (angular
distribution), together with
the best-fit parabola. The
shading indicates the area
corresponding to the
variation of the parabola’s
leading coefficient by one
effective deviation
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The diagonal elements (auto-correlations of parameters θ̂i) are equal to 1. The
parameter cross-correlations are given by the off-diagonal terms: a smaller absolute
value implies a smaller correlation. A positive sign means proportionality
(correlation), a negative sign implies anti-correlation. �

9.1.2 Fitting Observations with Unknown Uncertainties

So far we have assumed that the uncertainties of y were known, providing each
observation yi with an error σi having zero mean, that is,

y = Aθ + σ, E
[
σ
]= 0, E

[
σσT

] = �y,

where �y is the covariance matrix. If the uncertainties are unknown, one usually
assumes that the variance is constant for all observations,σ2, and that the observations
are independent. Then the covariance matrix is simply �y = σ2In, where In is an
n × n unit matrix. In this case the optimal parameters θ can be calculated without
even knowing σ2 since it follows from (9.7) that

θ̂ = (
ATA

)−1
ATy. (9.16)

How can one nevertheless still estimate σ2 and the uncertainties of θ̂? We compute
the sum of squared residuals (SSR)

SSR = X2
min = (

y − Aθ̂
)T(

y − Aθ̂
)
,

measuring the deviation of the model Aθ (evaluated with optimal parameters) from
the observations y. The unbiased estimator for the unknown variance σ2 is then

σ̂2 = SSR

n − p
, (9.17)

while the covariance matrix of the optimal parameters is

�θ̂ = SSR

n − p

(
ATA

)−1
, (9.18)

which can be compared to (9.8) when the uncertainties were known. Variances,
covariances and correlation of optimal parameters are then obtained from (9.9).

Long exampleFig. 9.2 (top left) shows the deviation of the global average temperature
of the Earth surface from the average value obtained between 1951 and 1980, the
so-called temperature anomaly [2]. The circles denote the average annual anomalies
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Fig. 9.2 [Left top and bottom] Time dependence of the temperature anomaly (Earth surface) and
best-fit polynomials of odd degrees. [Right] Deviations (residuals) yi − f (xi), calculated with the
optimal parameter values θ in the case [Top] p = 2 and [Bottom] p = 8. Notice how the residuals
have shrunk and become more random

as a function of time (135 observations between 1880 and 2014). The uncertainties
of �Ti = yi are unknown.

It is useful to shift the origin, ti → xi = ti − 1880, so that one can work with
smaller numbers on the interval [0, 134]. The data are fitted by polynomials (9.3)
of various odd degrees (p = 2, 4, 6 and 8). The matrix A in formula (9.16) is of
the Vandermonde form (9.11). The calculated optimal parameters minimizing the
measure of deviation X2 are listed in Table9.1. The corresponding minimal values
X2
min are given in the second column of Table9.2.
How can we judge whether the chosen model function is “good”? The basic

diagnostic tool are the differences between yi and f (xi) once the minimization of X2

has been done, that is, the residuals

yi − f
(
xi; θ̂

)
.

The distribution of residuals should be as random as possible. The residuals of the
linear fit (p = 2) are shown in Fig. 9.2 (top right). This is clearly unsatisfactory as the
residuals are large and even exhibit some sort of oscillations. When the fit degree is
increased, the residuals shrink and tend to become more and more random, while X2

keeps on dropping. However, one should not perpetuate this as it is wise to describe
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Table 9.1 Values of optimal parameters θ̂ (units of θ̂i are ◦C/yri−1) in regression analysis of the
temperature anomaly with polynomials of various degrees

p θ̂1 103̂θ2 103̂θ3 105̂θ4 107̂θ5 109̂θ6 1011̂θ7 1013̂θ8

2 −0.618 9.311

4 −0.583 15.02 −0.206 0.135

6 −0.442 −16.71 1.424 −3.048 2.626 −0.772

8 −0.515 8.354 −0.536 3.072 −6.475 5.875 −2.147 0.195

See also Table9.2

Table 9.2 Minimal values X2
min, the coefficient of determination R and the estimate of variance σ̂2

(9.17) in polynomial regression of the temperature anomaly

p X2
min R σ̂2

2 3.688 0.828 0.0278

4 2.095 0.902 0.0160

6 1.859 0.913 0.0144

8 1.792 0.917 0.0141

the observations with as few parameters as possible: any data {(xi, yi)}pi=1 can be
even exactly interpolated by a polynomial of degree p − 1, but such fits invariably
become too “wild”: signs of such behaviour can be glimpsed already at p = 8 near
the edges of Fig. 9.2 (bottom left).

Even if X2
min drops when p is increased that does not necessarily mean that a high-

degree polynomial is better than a lower-degree polynomial. Indeed such a function
does a better job in describing the variation in the data, but it is unclear how much
of it can be assigned to the uncertainties of observations and how much to the model
having too many parameters. A good measure of the variance that can be assigned
solely to the model is the coefficient of determination

R = 1 − X2
min/n∑n

i=1

(
yi − y

)2
/n

,

where the denominator is the total variance of the observations about their mean. A
better regression results in the values of R being closer to 1. The values of R for our
Example are given in the third column of Table9.2. A seventh-degree polynomial
(p = 8), for instance, describes 91.7% of the data variation.

Two more tools are at hand to evaluate the relevance of individual parameters θj
for the description of data. The first tool are their correlations, obtained by the usual
formula (9.9). Fitting with p = 4, say, gives the correlation matrix
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ρ =

⎛

⎜⎜⎝

1 −0.860 0.735 −0.650
−0.860 1 −0.967 0.915
0.735 −0.967 1 −0.986

−0.650 0.915 −0.986 1

⎞

⎟⎟⎠ ,

indicating strong correlations, in particular between θ2 and θ3 as well as θ3 and θ4.
The other tool are the ratios of absolute parameter values and their variances—a kind
of “signal-to-noise” ratios—

ξj = ∣∣θ̂j
∣∣
/√

var
[
θ̂j
]

,

where the variances are obtained from the diagonal elements of the covariance
matrix (9.18). If a parameter θj is thought to be statistically relevant, the value
ξj should be much larger than 1. In fitting with p = 4 we get ξ1 = 13.8, ξ2 =
5.47, ξ3 = 4.31 and ξ4 = 5.75, while for p = 6 we get ξ1 = 7.60, ξ2 = 1.88,
ξ3 = 3.43, ξ4 = 3.87, ξ5 = 4.04 and ξ6 = 4.00, indicating that parameter θ2 might be
superfluous. �

9.1.3 Confidence Intervals for Optimal Parameters

Confidence intervals for parameters θ are calculated by analogy to the confidence
intervals for the samplemean (Sect. 7.3.1). If the uncertaintiesσi of yi are unknown—
yet assumed to be independent and identically distributed—we first compute the
covariance matrix (9.18) and extract the variances

var
[
θ̂j
] = (

�θ̂

)
jj, j = 1, 2, . . . , p.

At chosen confidence level 1 − α, parameter θj then has the confidence interval

[
θ̂j − t∗

√
var

[
θ̂j
]
, θ̂j + t∗

√
var

[
θ̂j
]]

(9.19)

on which the unknown true value θj lies. The critical value t∗ can be read off from
Table7.1, taking into account ν = n − p degrees of freedom. In other words,

P

(
θ̂j − t∗

√
var

[
θ̂j
] ≤ θj ≤ θ̂j + t∗

√
var

[
θ̂j
]) = 1 − α.

If n − p � 1, the t distribution turns into the standardized normal distribution and
t∗ can be replaced by z∗ from the last row of Table7.1.

http://dx.doi.org/10.1007/978-3-319-31611-6_7
http://dx.doi.org/10.1007/978-3-319-31611-6_7
http://dx.doi.org/10.1007/978-3-319-31611-6_7
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Example In the previous Example we have seen that in fitting a fifth-degree
polynomial (p = 6) the least reliable parameter was θ2, for which we got

θ̂2 = −0.01671, ξ2 = |θ̂2|
/√

var
[
θ̂2
] = 0.01671/0.00889 ≈ 1.88.

Let us choose a confidence level of 1 − α = 0.99. The sample is large, n − p =
135 − 6 = 129, so the limit the of normal distribution is justified and we can simply
take t∗ = z∗ = 2.576. The confidence interval (9.19) for θ2 is then

[−0.01671 − 2.576 · 0.00889 ≤ θ2 ≤ −0.01671 + 2.576 · 0.00889],

thus P
(−0.0396 ≤ θ2 ≤ 0.0062

) = 0.99. �

9.1.4 How “Good” Is the Fit?

If the uncertainties of the n observations are mutually independent and normally
distributed, and if the p regression parameters are also independent, the minimized
sum of squared residuals isχ2-distributed (3.21) with ν = n − p degrees of freedom,

X2
min =

n∑

i=1

(
yi − [Aθ̂]i

)2

σ2
i

∼ χ2(n − p).

Therefore

G =
∫ ∞

X2
min

fχ2(x; ν) dx = 1 − Fχ2

(
X2
min; ν

)
,

where Fχ2 is the distribution function. This formula is used to quantify the goodness
of fit. A small X2

min or large G indicate a “good fit”, large X2
min and small G imply

that a fit is “bad”. See also Sect. 10.3.

9.1.5 Regression with Orthogonal Polynomials �

The matrix B in (9.12) tends to be ill-conditioned: its condition number exponen-
tially growswith dimension p, soκ(B) ≈ C exp(αp), see Sect. 3.2.5 in [3]. At desired
precision ε of parameters θj the procedure described above can accommodate poly-
nomials of degree p � (1/α) log(εM/Cε), where εM is the machine precision. In
double precision this usually means p � 10.

One can at least partly avoid these stability problems if the points {xi}ni=1 coincide
with the definition domain of some system of orthogonal polynomials. Most suitable

http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_10
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for regression purposes are the discrete-variable orthogonal polynomials {pj(x) :
deg(pj) = j}pj=0 which are mutually independent and orthogonal on a discrete set of
points {xi} in the sense

n∑

i=1

1

σ2
i

pj(xi)pk(xi) = Ajδj,k

with some weight 1/σ2
i . A model function may be devised as a linear combination

f (x;θ) =
p∑

j=0

θjpj(x),

where the expansion coefficients θj are unknown parameters. They are again deter-
mined such that the measure of deviation (9.6) is minimal. We get

X2 =
p∑

j=0

θ2j Aj − 2
p∑

j=0

θjBj + C, Bj =
n∑

i=1

pj(xi)yi
σ2
i

, C =
n∑

i=1

y2i
σ2
i

.

The condition for a minimum, ∂X2/∂θj = 0, gives 2θjAj − 2Bj = 0 or

θ̂j = Bj

Aj
and X2 = C −

p∑

j=0

B2
j

Aj
= min.

Example The most popular system of discrete-variable orthogonal polynomials are
the Chebyshev polynomials of the first kind, Tj(x): see Sect. 4.3 in [3]. A linear
combination f (x) = ∑p

j=0 θjTj(x) of these polynomials minimizes themeasureX2 =∑n
i=1(yi − f (xi))2 with the nodes xi = cos

(
π(2i − 1)/(2n)

)
and coefficients

θ0 = 1

n

n∑

i=1

y(xi), θj = 2

n

n∑

i=1

y(xi)Tj(xi), j = 1, 2, . . . , p,

which is known as the Chebyshev approximation. The problem is well defined for
p + 1 ≤ n. In the limiting case p + 1 = n the function f interpolates the data yi and
the measure of deviation is X2 = 0. �

9.1.6 Fitting a Straight Line

Seeking a straight line f (x) = θ1 + θ2x fitting the data {(xi, yi)}ni=1 with known uncer-
tainties σi is the most common two-parameter linear regression. When the measure
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X2 (9.6) is minimized with respect to θ1 and θ2, we obtain an analytically solvable
system

θ1S + θ2Sx = Sy,

θ1Sx + θ2Sxx = Sxy,

where we have denoted

S =
n∑

i=1

1

σ2
i

, Sx =
n∑

i=1

xi
σ2
i

, Sxx =
n∑

i=1

x2i
σ2
i

, Sxy =
n∑

i=1

xiyi
σ2
i

, Sy =
n∑

i=1

yi
σ2
i

.

The matrix B from (9.12) is immediately recognizable, as well as its inverse,

B =
(
S Sx
Sx Sxx

)
, B−1 = 1

det B

(
Sxx −Sx
−Sx S

)
, (9.20)

where we assume that det B = SxxS − S2x �= 0. The coefficients θ̂1 and θ̂2 that mini-
mize X2 are

θ̂1 = SxxSy − SxSxy
SxxS − S2x

, θ̂2 = SSxy − SxSy
SxxS − S2x

.

A sample fit is shown in Fig. 9.3 (left).
For constant uncertainties (σi = σ) the parameters of the straight line are

θ̂1 = y − θ̂2x, θ̂2 = sxy
s2x

,

Fig. 9.3 Fitting a straight line to the data yi = 1.4, 1.0, 1.5, 2.7, 3.7, 3.0, 4.1 with errors σi =
0.5, 0.3, 0.2, 0.6, 1.0, 0.8, 0.5 at xi = 0, 0.5, 1, 1.5, 2, 2.5, 3 by using the method of least squares.
[Left] The straight line that minimizes the measure X2 (̂θ1 = 0.578, θ̂2 = 1.100). [Center] Covari-
ance ellipse with the center at (̂θ1, θ̂2) and uncertainties ±σ(̂θ1) = ±0.247 and ±σ(̂θ2) = ±0.190.
Parameters within the ellipse correspond to straight lines contained in the shaded area of the [Right]
panel. The straight line corresponding to the true θ1 and θ2 has a probability 1 − e−1/2 of lying
within this area
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where x = (∑n
i=1 xi

)
/n and y = (∑n

i=1 yi
)
/n are the arithmetic means of the obser-

vations, while

s2x = 1

n

n∑

i=1

(
xi − x

)2
and sxy = 1

n

n∑

i=1

(
xi − x

)(
yi − y

)

are their sample variance and covariance. We see that the straight line goes through
the “center of gravity” (x, y) of the data. From (9.15) and (9.20) we also obtain the
variances of the parameters θ̂1 and θ̂2, which do not depend on the position of the
points along the y-axis:

var
[
θ̂1
] = (

B−1
)
11 = Sxx

SxxS − S2x
, var

[
θ̂2
] = (

B−1
)
22 = S

SxxS − S2x
. (9.21)

The off-diagonal elements of the covariance matrix B−1 for estimates θ̂1 and θ̂2 are

cov
[
θ̂1, θ̂2

] = (
B−1)

12 = (
B−1)

21 = −Sx
SxxS − S2x

,

so that the linear correlation coefficient between θ̂1 and θ̂2 is equal to

ρ̂ = cov
[
θ̂1, θ̂2

]
√
var

[
θ̂1
]√

var
[
θ̂2
] .

Let us denote

σ̂1 =
√
var

[
θ̂1
]
, σ̂2 =

√
var

[
θ̂2
]
.

(Do not confuse these with the uncertainties σi of the observations yi.) The estimates
θ̂1 and θ̂2, their uncertainties σ̂1 and σ̂2, together with the correlation coefficient ρ̂,
define a covariance ellipse centered at (θ̂1, θ̂2) with semi-axes r1 and r2, rotated by
angle α in the (θ1, θ2)-plane. The ellipse parameters are given by the formulas [4]

tan 2α = 2ρ̂σ̂1σ̂2 /
(
σ̂2
1 − σ̂2

2

)
,

r21 = σ̂2
1 σ̂

2
2

(
1 − ρ̂2

)/ [
σ̂2
1 sin

2 α − ρ̂σ̂1σ̂2 sin 2α + σ̂2
2 cos

2 α
]
,

r22 = σ̂2
1 σ̂

2
2

(
1 − ρ̂2

)/ [
σ2
1 cos

2 α + ρ̂σ̂1σ̂2 sin 2α + σ̂2
2 sin

2 α
]
.

An example of a covariance ellipse is shown in Fig. 9.3 (center). The points within
the covariance ellipse define a bundle of straight lines, indicated by the shaded area
in Fig. 9.3 (right).

Let us show how the uncertainties σ̂1 and σ̂2 change with increasing number
of points n. Suppose that the points {xi}ni=1 are uniformly distributed on [α,β],
so that xi = α + (i − 1)�x with �x = (β − α)/(n − 1), and that each observation
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has an error of σi = σ. We calculate S = n/σ2, Sx = n(α + β)/(2σ2) and Sxx =
n[(α2 + αβ + β2)(2n − 1) − 3αβ]/[6(n − 1)σ2]. From (9.21) we then extract the
asymptotic behaviour in the n → ∞ limit,

σ̂2
1 ∼ 4(α2 + αβ + β2)σ2

n(α − β)2
+ O

(
1

n2

)
, σ̂2

2 ∼ 12σ2

n(α − β)2
+ O

(
1

n2

)
.

Therefore, with increasing n, the straight-line parameters θ̂1 and θ̂2 gain in precision
just as any other statistical average, i.e. σ̂1, σ̂2 ∼ O(n−1/2).

9.1.7 Fitting a Straight Line with Uncertainties in both
Coordinates

In linear regression with a straight line f (x) = θ1 + θ2x, where the values in both yi
and xi possess uncertainties, we strive to minimize the measure

X2 =
n∑

i=1

(
yi − θ1 − θ2xi

)2

σ2
xiθ

2
2 + σ2

yi

.

The determination of optimal θ̂1 and θ̂2 requires us to simultaneously fulfill the con-
ditions ∂X2/∂θ1 = 0 and ∂X2/∂θ2 = 0. Because θ2 enters non-linearly, the problem
is non-trivial; a reliable algorithm is given in [3], p. 233.

9.1.8 Fitting a Constant

In zero-degree polynomial regression the observations yi are fitted by a constant: we
minimize (9.6) with f (xi) = c. The condition ∂X2/∂c = 0 yields

ĉ = 1

S

n∑

i=1

yi
σ2
i

, S =
n∑

i=1

1

σ2
i

, var
[
ĉ
] = 1

S
, (9.22)

which is precisely the weighted average (8.7). It can be used in place of the arithmetic
average whenever measurements of the same quantity have different errors. The
asymptotic behaviour is (var[̂c])1/2 ∼ O(n−1/2) when n → ∞.

We shall see in Chap.10 that the measure X2 = ∑n
i=1(yi − ĉ)2/σ2

i helps us quan-
tify the assumption of the normal distribution of uncertainties σi. At chosen signifi-
cance (risk level) α, say, α = 5%, we determine χ2+ from the equation

∫ ∞

χ2+
fχ2(x; n − 1) dx = α,

http://dx.doi.org/10.1007/978-3-319-31611-6_8
http://dx.doi.org/10.1007/978-3-319-31611-6_10
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Fig. 9.4 Fitting a constant to the data {yi ± σi}ni=1, n = 10. [Left]Weighted average in the presence
of two outliers (y4 and y7) and without them. [Right] Weighted average of data with an unexplained
systematic error, resulting in an unreasonably small uncertainty of the parameter ĉ, as well as the
average involving rescaled errors (9.23)

where fχ2 is the density (3.21). We compare the obtained χ2+ with the value of X2

calculated from the data. If X2 < χ2+, the optimal value ĉ and its uncertainty may be
considered to be consistent with the data.

Example This apparent simplicity concealsmany pitfalls. Figure9.4 (left) shows n =
10 observations, which we fit by a constant c. The procedure outlined above yields
ĉ = 2.73 ± 0.10 and X2/(n − 1) = 36.5. With a chosen significance α = 5% and
ν = n − 1 = 9, we use Fig. 10.6 to read off χ2+(α = 5%)/9 ≈ 1.88. Since X2/(n −
1) > χ2+/(n − 1), the basic premise of normal errors may be rejected. (In other
words, a constant probability density is inconsistent with the measured sample with
a probability much higher than α.) But if the outliers y4 and y7 are omitted, we
get ĉ = 1.71 ± 0.12 and X2/7 = 1.10, while χ2+(α = 5%)/7 ≈ 2.01. Now the fit
appears to be consistent with the data.

A different problem is revealed in Fig. 9.4 (right). By using the method of
Sect. 7.3.1 we can show that individual observations are outside of the confi-
dence interval for the sample mean. In this case we obtain X2/9 = 12.9 and again
χ2+(α = 5%)/9 ≈ 1.88. But now outliers can not be blamed for a large value of
X2, as the measurements obviously include an unknown, underestimated systematic
error. In such cases the measurement uncertainties may be rescaled:

σ′
i = σi

√
X2

n − 1
, i = 1, 2, . . . , n. (9.23)

http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_10
http://dx.doi.org/10.1007/978-3-319-31611-6_7
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The weighted average to compute the desired parameter ĉ can still be formed
by (9.22), but its uncertainty now becomes

√
var

[
ĉ
] =

√
X2

n − 1

(
n∑

i=1

1

σ2
i

)−1/2

.

This yields a more sensible result and, by construction, X2/(n − 1) = 1. �

9.1.9 Are We Allowed to Simply Discard Some Data?

We certainly are! Among various reasons a specific measurement or an individual
observation may be simply removed, the Particle Data Group [5] lists the following:
• the measurement is superseded by or included in later results; • its error is not
given; • it involves questionable assumptions; • it has a poor signal-to-noise ratio,
low statistical significance, or is otherwise of poorer quality than other data available;
• it is clearly inconsistent with other results that appear to be more reliable; • it is
not independent of other results. The figure shows the mean values of the neutron
decay time, as known over the years 1960–2015. (There were several independent
experiments each year; shown are the annual averages.) Think about which of the
values shown in the plot should be trusted today, based on the above criteria!

9.2 Linear Regression for Binned Data

Often the data are histogrammed or binned in the x variable. This means that n
observations {x1, x2, . . . , xn} are classified into N mutually exclusive classes or bins.
The ith bin then contains yi = ni observations. Figure9.5 (left) shows an example:
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Fig. 9.5 [Left] Histogram of n = 1000 counts arranged in N = 10 bins. [Right] The same data
set, but with specified uncertainties in the x variable which partially overlap (the classes are not
mutually exclusive). These two arrangements are not equivalent!

the first bin x ∈ [0.0, 0.1] has n1 = 113 counts, the second bin x ∈ [0.1, 0.2] has
n2 = 147, and so on.

Let the probability of a certain value landing in the ith bin be pi(θ). Here θ is
the parameter set that determines the model distribution of the observations. The
expected number of counts in the ith bin is therefore fi(θ) = npi(θ). The histogram
contains all observations, hence

∑N

i=1
ni =

∑N

i=1
npi

(
θ
) = n. (9.24)

In Sect. 5.2 we have demonstrated that the distribution of ni inN bins is multinomial,
with the covariance matrix

� =

⎛

⎜⎜⎜⎝

np1(1 − p1) −np1p2 · · · −np1pN
−np2p1 np2(1 − p2) · · · −np2pN

...
...

. . .
...

−npNp1 −npNp2 · · · npN (1 − pN )

⎞

⎟⎟⎟⎠ .

Due to normalization (9.24) the matrix � is singular (|�| = 0), but the least-squares
problem can still be formulated. Namely, one of the bins—say, the N th—can be
eliminated, since one always has nN = n − n1 − n2 − · · · − nN−1. This results in an
(N − 1) × (N − 1) non-singular matrix �′ which we use to minimize the measure
of deviation

X2 = (
y − np

)T(
�′)−1(

y − np
) =

N−1∑

i=1

N−1∑

j=1

(
ni − npi

) ((
�′)−1

)

ij

(
nj − npj

)
,

where y = (n1, n2, . . . , nN−1)
T andp = (p1, p2, . . . , pN−1)

T, and thematrix elements
are �′

ij = npi(δi,j − pj), i, j = 1, 2, . . . ,N − 1, so that �′ = n(D − ppT), where

http://dx.doi.org/10.1007/978-3-319-31611-6_5


244 9 Method of Least Squares

D−1p = 1. By invoking the Sherman-Morrison formula we get

(
D − ppT

)−1 = D−1 + D−1ppTD−1

1 − pTD−1p
= D−1 + 11T

pN
,

wherewe have used 1 − pTD−1p = 1 − p1 − p2 − · · · − pN−1 = pN . The expression
for X2 can therefore be rewritten as

X2 = (
y − np

)T 1
n

(
D−1 + 11T

pN

) (
y − np

)

=
N−1∑

i=1

(ni − npi)
2

npi
+ (nN − npN )2

npN
=

N∑

i=1

(
ni − npi(θ)√

npi(θ)

)2

. (9.25)

Minimizing (9.25) is not a trivial exercise, as the parameters {θ1, θ2, . . . , θp} enter
non-linearly. However, if the number of bins N is large enough, individual pi are so
small the all off-diagonal elements of the matrix � may be neglected. Consequently,
(�)ii = σ2

i = npi(1 − pi) ≈ npi = fi and the parametersθ canbeobtainedby solving
the system of equations

∂X2

∂θj
= −2

N∑

i=1

(
ni − fi
fi

+ 1

2

(
ni − fi
fi

)2
)

∂fi
∂θj

= 0, j = 1, 2, . . . , p. (9.26)

Two simplifications are possible—none of which eliminates non-linearity. The first
option is at hand: imagine that the denominators in (9.25) are independent of θ.
This is equivalent to the system (9.26) without the quadratic term. Besides, we can
replace fi by ni in the denominators, as these values can not be that different! In this
simplified approach, one only needs to solve the system

∂X2

∂θj
= −2

N∑

i=1

(
ni − fi
fi

)
∂fi
∂θj

≈ −2
N∑

i=1

(
1 − fi

ni

)
∂fi
∂θj

= 0. (9.27)

Example Let us revisit Fig. 9.5 (left). A total of n = 1000 counts have been classified
into N = 10 equidistant bins [xi, xi + �x] of width �x = 0.1, where
xi = (i − 1)�x, i = 1, 2, . . . ,N . There are n1, n2, . . . , nN = 113, 147, 153, 136,
95, 74, 54, 59, 79, 90 counts in individual bins. Assume that the observations are
described by the probability density

f (x; θ) = 1 + θ sin(2πx), 0 ≤ x ≤ 1, (9.28)

where θ is an unknown parameter, and that the uncertainties of ni are Poissonian.
The corresponding fi can be calculated by integrating f over each bin:
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fi = n
∫ xi+�x

xi

f (x; θ) dx = n
[

�x︸︷︷︸
ai

+ (2π)−1[cos(2πxi) − cos(2π(xi + �x))]︸ ︷︷ ︸
bi

θ
]
.

The estimate for θ is obtained by (9.27), where we use fi = n(ai + biθ):

∂X2

∂θ
= −2

N∑

i=1

(
ni − n(ai + biθ)

)

ni
nbi = 0,

We obtain

θ̂ = 1

n

[
N∑

i=1

b2i
ni

]−1 N∑

i=1

bi

(
1 − nai

ni

)
≈ 0.457.

We are dealing with a linear problem, so X2 near θ̂ has a parabolic shape (9.10),
which we write as X2

(
θ
) = X2

(
θ̂
) + (∑N

i=1 n
2b2i /ni

)(
θ − θ̂

)2
, whence

var
[
θ̂
] = 2

(
∂2X2

∂θ2

)−1

= 1

n2

(
N∑

i=1

b2i
ni

)−1

≈ 0.0018 =⇒
√
var

[
θ̂
] ≈ 0.042.

Being a density, the best-fit function (9.28) now only needs to be normalized. As we
have n = 1000 counts in N = 10 bins, it obviously has to be multiplied by n/N =
100, so the final form is f (x) = 100

(
1 + 0.457 sin(2πx)

)
. It is shown by the dashed

line in Fig. 9.5 (left). �

9.3 Linear Regression with Constraints

The true quantities being measured—call them ηi—are often algebraically related
through some kind of constraints. The actual observations yi have uncertainties σi,
so they do not necessarily satisfy the constraints which, however, should be satisfied
by the estimates η̂i. The following classic example outlines two general approaches
to including constraints in the method of least squares.

Example Ameasurement of the interior angles of a triangle yields y1 = 51◦, y2 = 42◦
and y3 = 85◦ with errors σ1 = σ2 = σ3 ≡ σ = 1◦. The measured values add up to
y1 + y2 + y3 = 178◦, not the required 180◦. If the true angles are considered as
unknown parameters (ηi = θi), they can be estimated by the method of least squares.
We minimize

X2(θ) =
3∑

i=1

(
yi − θi

σi

)2

,



246 9 Method of Least Squares

besides, we require that
θ1 + θ2 + θ3 − 180◦ = 0. (9.29)

This constraint can be used to eliminate one variable from X2, say, θ3:

X2(θ) =
(
y1 − θ1

σ1

)2

+
(
y2 − θ2

σ2

)2

+
(
y3 − (180◦ − θ1 − θ2)

σ3

)2

.

We calculate the derivative of this measure with respect to θ1 and θ2 and set it to zero,
obtaining two equations for two unknowns. With their solution we exploit (9.29) to
obtain the remaining third angle, thus finally

θ̂1 = 512
3

◦
, θ̂2 = 422

3
◦
, θ̂3 = 180◦ − θ̂1 − θ̂2 = 852

3
◦
,

so that the requirement θ̂1 + θ̂2 + θ̂3 = 180◦ is fulfilled by construction. It can be
seen that themethod has uniformly distributed themissing 2◦ from 178◦ to the correct
value 180◦ among the three observations.

The problem can also be solved by using Lagrange multipliers. The constraint
equation (9.29) is taken into account by endowing it with a weight representing a
new unknown parameter with respect to which the measure of deviation needs to be
minimized:

X2
(
θ1, θ2, θ3,λ

) =
3∑

i=1

(
yi − θi

σi

)2

+ 2λ

(
3∑

i=1

θi − 180◦
)

.

By solving the equations ∂X2/∂θ1 = ∂X2/∂θ2 = ∂X2/∂θ3 = ∂X2/∂λ = 0 we get

λ̂ = 1

3σ2

(
3∑

i=1

yi − 180◦
)

, θ̂i = yi − σ2λ̂ = yi − 1

3

(
3∑

i=1

yi − 180◦
)

,

(9.30)
whence λ̂ = − 2

3 , yielding the same θ̂1, θ̂2 and θ̂3 as before. �
It is worthwhile to outline the method of least squares with linear constraints

in a more general way. If we must determine p parameters θ = {θ1, θ2, . . . , θp}
satisfying q constraints with the appropriate multipliers λ = {λ1,λ2, . . . ,λq}, we
must minimize

X2(θ,λ) = (
y − Aθ

)T
�−1

y

(
y − Aθ

) + 2λT(Bθ − b
)
.

Here B is a q × p matrix and b is a q-dimensional vector, while the observations
vector y, their covariance matrix �y and the regression matrix A have their usual,
well-known roles. ThemeasureX2 isminimized by setting its derivativeswith respect
to each of the p + q parameters to zero:
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∇θX
2 = −2

(
AT�−1

y y − AT�−1
y Aθ

) + 2BTλ = 0,

∇λX
2 = 2

(
Bθ − b

) = 0.

By denoting
�−1

c = AT�−1
y A, c = AT�−1

y y, �b = B�cB
T, (9.31)

this can be written as

�−1
c θ + BTλ = c,

Bθ = b.

The solution of this system [1] are λ, θ, and their variances and covariances:

λ̂ = �−1
b

(
B�cc − b

)
, (9.32)

θ̂ = �cc − �cB
T�−1

b

(
B�cc − b

)
, (9.33)

�θ̂ = �c − (
B�c

)T
�−1

b

(
B�c

)
. (9.34)

Exercise Let us revisit the triangle angles problem. The observations vector is y =
(y1, y2, y3)T, their covariance matrix is �y = diag

(
σ2,σ2,σ2

)
, and the regression

matrix is A = diag(1, 1, 1). The constraint equation Bθ = b is embodied by the
1 × 3 “matrix” B and the 1-dimensional “vector” b:

B = (
1 1 1

)
, b = (

180◦).

The quantities from the definition (9.31) are

�−1
c = 1

σ2

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ = �−1
y , c = 1

σ2

⎛

⎝
y1
y2
y3

⎞

⎠ = 1

σ2
y, �b = (

3σ2
)
.

Using (9.32) and (9.33) immediately leads to (9.30), and formula (9.34) gives the
variances and covariances of the parameter estimates:

�θ̂ =
⎛

⎝
2/3 −1/3 −1/3

−1/3 2/3 −1/3
−1/3 −1/3 2/3

⎞

⎠ (◦)2.

We see that the estimated “optimal” values of the angles have a smaller effective
deviation than the measured ones—namely(

√
2/3)◦ instead of 1◦—but they have

become correlated (non-zero off-diagonal elements). �
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9.4 General Linear Regression by Singular-Value
Decomposition �

A more general form of linear regression,

f (x) =
p∑

j=1

θjφj(x),

where φj are basis functions, can be used to fit the model function f to a large data
set with fewer parameters. Such problems are over-determined, but the data are often
not rich enough to nail down a unique linear combination of the basis functions: one
may obtain many functions that minimize the measure

X2 =
n∑

i=1

(
yi − f (xi;θ)

σi

)2

(9.35)

almost equally well. (From a strict mathematical point of view, of course, the least-
square solution of an over-determined problem is unique.)

A better control over the importance of the parameters θ = (θ1, θ2, . . . , θp)
T can

be obtained by using singular-value decomposition (see Sects. 3.3.2 and 3.3.3 in [3]),
which excels also in terms of numerical stability. By denoting

Aij = φj(xi)

σi
, bi = yi

σi
,

where i = 1, 2, . . . , n and j = 1, 2, . . . , p, we see that (9.35) has the typical least-
squares form X2 = ‖Aθ − b‖2. We then perform the singular-value decomposition
of A: A = U�V T ∈ R

n×p, where n ≥ p. The matrix U = (u1,u2, . . . ,up) has n-
dimensional columnsui, thematrixV = (v1, v2, . . . , vp) has p-dimensional columns
vi, and the diagonal matrix � = diag(λ1,λ2, . . . ,λp) contains the singular values
λi. The vector of optimal parameters is obtained by the sum

θ̂ =
p∑

i=1

uTi b
λi

vi.

The variances and covariances of θ̂ are

var
[
θ̂j
] =

p∑

i=1

V 2
ji

λ2
i

, cov
[
θ̂j, θ̂k

] =
p∑

i=1

VjiVki

λ2
i

. (9.36)

We must be alert to the singular values λi for which λi/λmax � nεM, where εM is the
machine precision. Such values, appearing in the denominators of (9.36), increase the
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Fig. 9.6 Robust linear regression on data containing a significant fraction of outliers. [Left] The
standard least-squares method (LS) yields a straight line that goes through both data clusters, but
does not describe their main part correctly. The LMS method delivers a reasonable description.
[Right] The function being minimized in the LMS method.

uncertainties of parameters θj and indicate that including further parameters would
be pointless. They also contribute insignificantly to the minimization of X2, so they
can be eliminated. This is done by setting 1/λi = 0 (for further explanations see
e.g. the comment to the Fitsvd algorithm in [6]). One may also discard those
singular values for which the ratio λi/λmax is larger than ≈ nεM, at least until X2

starts to increase significantly.

9.5 Robust Linear Regression

As all estimates of distribution location and scale, regressionmethods are sensitive to
outliers (see Sect. 7.4). A telling example is shown in Fig. 9.6 (left). A set of n1 = 30
data of the form yi = θ1 + θ2xi + zi, where θ1 = 2, θ2 = 1, xi and zi are realizations
of X ∼ U(1, 4) and Z ∼ N(0, 0.04), and a relatively large set of n2 = 20 presumed
outliers (xi, yi), realizations of X ∼ N(7, 0.25) and Y ∼ N(2, 0.25), are fitted by a
straight line. The standard least-squares method (LS) yields a result that does not
describe the bulk of the data.

A simple method exists where weminimize the median of the squares of residuals
yi − (θ1 + θ2xi) called least median of squares (LMS). We seek parameters θ1 and
θ2 that minimize the measure of deviation

medi
[(
yi − θ1 − θ2xi

)2]
. (9.37)

The main issue with the LMS method is precisely the minimization of (9.37).
The function being minimized with respect to θj has O(np+1) local minima, where

http://dx.doi.org/10.1007/978-3-319-31611-6_7
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n is the number of points (xi, yi) and p is the degree of the regression polynomial.
The example in the figure has n = n1 + n2 = 50 and p = 1 (straight line), so there
are ≈2500 local minima, among which the global one needs to be found, as shown
in Fig. 9.6 (right). For introductory reading on robust regression see [7].

9.6 Non-linear Regression

In non-linear regression the dependence of the model function on regression para-
meters is non-linear, for example

f (x;θ) = θ1 + θ2 e
θ3x + θ4 sin(x + θ5).

(Compare this to (9.4)!) As usual, the observations yi at xi are arranged in vectors
x = (x1, x2, . . . , xn)T and y = (y1, y2, . . . , yn)T, and the components of the regression
function in f (x;θ) = (

f (x1;θ), f (x2;θ), . . . , f (xn;θ)
)T
, where θ = (θ1, θ2, . . . ,

θp)
T. By analogy to (9.5) the measure of deviation is defined as

X2 = (
y − f (x;θ)

)T
�−1

y

(
y − f (x;θ)

)
.

If the measurement errors are uncorrelated, the covariance matrix is diagonal, �y =
diag(σ2

1,σ
2
2, . . . ,σ

2
n), and the above expression can be simplified to

X2 =
n∑

i=1

(
yi − f (xi;θ)

)2

σ2
i

.

This iswhere the problems start.Minimization ofX2 now implies solving a system
of p (in general non-linear) equations ∂X2/∂θj = 0 (j = 1, 2, . . . , p). Such problems
are therefore solved iteratively: we ride on the sequence

θ(ν+1) = θ(ν) + �θ(ν), ν = 0, 1, 2, . . . , (9.38)

where �θ(ν) is obtained by solving a linear problem, to approach the optimal para-
meter set. In the νth step the update can be calculated by minimizing

X2(�θ) =
[
y − f

(
θ(ν) + �θ

)]T
�−1

y

[
y − f

(
θ(ν) + �θ

)]
,

where we have suppressed the dependence of f on x. If �θ is small, f can be
expanded as f

(
θ(ν) + �θ

) ≈ f
(
θ(ν)

) + J
(
θ(ν)

)
�θ, where J is the Jacobi matrix

with the elements
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Jij =
(

∂fi
∂θj

)

θ=θ(ν)

, i = 1, 2, . . . , n, j = 1, 2, . . . , p.

Let us denote f ν = f
(
θ(ν)

)
and Jν = J

(
θ(ν)

)
. We must minimize the expression

X2(�θ) =
[(
y − f ν

) − Jν�θ
]T

�−1
y

[(
y − f ν

) − Jν�θ
]
.

From the requirement ∂X2/∂(�θ) = 0 it follows that

[
JTν �−1

y Jν

]
�θ(ν) = JTν �−1

y

(
y − f ν

)
.

This system of linear equations must be solved in order to obtain the update �θ in
the νth iteration (9.38). If the data uncertainties are uncorrelated, the procedure can
be summarized as

G
(
θ(ν)

)
�θ(ν) = g

(
θ(ν)

)
, (9.39)

θ(ν+1) = θ(ν) + �θ(ν), ν = 0, 1, 2, . . . , (9.40)

where

Gjk
(
θ(ν)

) =
n∑

i=1

1

σ2
i

(
∂fi
∂θj

∂fi
∂θk

)

θ=θ(ν)

, gj
(
θ(ν)

) =
n∑

i=1

(
yi − fi

σ2
i

(
∂fi
∂θj

))

θ=θ(ν)

.

We are still missing the uncertainties of θ̂. Near the optimum X2 is approximately
parabolic, so the covariance matrix of the regression parameters can be computed as
in (9.8),

�θ̂ = [
JT

(̂
θ
)
�−1

y J
(̂
θ
)]−1

,

or simply �θ̂ = [
G
(̂
θ
)]−1

, if σi are uncorrelated. As usual the diagonal elements of
this matrix are the parameter variances, and the off-diagonal are the covariances, see
(9.9). If the uncertainties of y are unknown, the parameter covariance matrix can be
calculated by analogy to (9.18),

�θ̂ = SSR

n − p

[
JT

(̂
θ
)
J
(̂
θ
)]−1

, SSR = X2
(̂
θ
)
. (9.41)

Example The circles in Fig. 9.7 (left) show n = 132 values of annual global release
of CO2 from fossil fuels over 1880–2011, measured inmillions of tons [8].Wewould
like to model the data by a two-parameter (p = 2) function of the form

f (x) = θ1 e
θ2x, (9.42)
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Fig. 9.7 Global release of CO2. [Left] Exponential model, calculated by non-linear regression (full
curve), and the curve obtained by transforming the straight-line regression of the logarithmic data
(dashed). [Right] Linear regression of logarithmic data

where x = t − 1880 (origin shift as in Fig. 9.2). The data errors are unknown, which
amounts to σi = 1 for all i. The iterative method requires the derivatives

∂fi
∂θ1

= eθ2xi ,
∂fi
∂θ2

= θ1xi e
θ2xi ,

to form the 2 × 2 matrix G,

G11(θ) =
n∑

i=1

e2θ2xi , G12(θ) = θ1

n∑

i=1

xi e
2θ2xi , G22(θ) = θ21

n∑

i=1

x2i e
2θ2xi ,

where G21 = G12, as well as the right-hand side of (9.39):

g1(θ) =
n∑

i=1

(
yi − θ1e

θ2xi
)
eθ2xi , g2(θ) =

n∑

i=1

(
yi − θ1e

θ2xi
)
θ1xi e

θ2xi .

Iteration (9.40) is started by the initial approximation (θ1, θ2)
(0) = (200, 0.02). After

less than ten iterations we obtain the final values

θ̂1 = (363.8 ± 18.3)Mt, θ̂2 = (2.499 ± 0.045) × 10−2/yr,

where the uncertainties have been computed by formula (9.41). The result of non-
linear regression is shown by the full curve in Fig. 9.7 (left). However, do think about
it: a standard polynomial regression of such strongly scattered data would yield an
equally likable result.

There is another way to proceed. If we take the logarithm of the values yi, non-
linear regression becomes linear, since

log f (x) = log θ1 + θ2x. (9.43)
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Now the regression parameters are log θ1 (not θ1) and θ2. By the recipe of Sect. 9.1.6
we compute their optimal values

log θ̃1 = (5.630 ± 0.026) log(Mt), θ̃2 = (2.755 ± 0.034) × 10−2/yr,

corresponding to the straight line in Fig. 9.7 (right). But if the obtained θ̃1 and θ̃2
are reinserted in (9.42), one gets a different description of the non-logarithmic data,
namely the dashed curve in Fig. 9.7 (left). The reason for this disagreement is clear.
Even though the models (9.42) and (9.43) are mathematically identical, the chosen
statistical models yi = θ1 eθ2xi + σi and log yi = log θ1 + θ2xi + εi are not equiva-
lent because the uncertainties σi and εi in each case have different distributions.
Besides, the method of least squares by itself is not “invariant” with respect to such
transformations. �

9.7 Problems

The following Problems refer to standard data sets of NIST, suitable for studying
non-linear regression and testing computer programs [9]. The data files can be found
on the website of the book.

9.7.1 Two Gaussians on Exponential Background

A frequent problem in all areas of physics is describing the data by a model involving
several normal (Gaussian) distributions with different means and widths, superposed
on exponential background. An example is shown in Fig. 9.8 (left). Fit the data

Fig. 9.8 [Left] Two Gaussians on exponential background (model function (9.44)). The dashed
line is the initial approximation with parameters (9.45), and the full curve is the final result of the
fit. [Right] Time dependence of the pressure gradient during the “El Niño Southern Oscillation”
(ENSO) phenomenon
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y = {y1, y2, . . . , yn} at n = 250 points {x1, x2, . . . , xn} = {1, 2, . . . , n} by a eight-
parameter (p = 8) function

f (x;θ) = θ1e
−θ2x + θ3 exp

(
− (x − θ4)

2

θ25

)
+ θ6 exp

(
− (x − θ7)

2

θ28

)
(9.44)

by using the method of non-linear regression described in Sect. 9.6! Use the initial
approximation

θ(0) = {θ1, θ2, . . . , θ8} = {60, 0.01, 50, 100, 10, 50, 150, 10}, (9.45)

corresponding to the dashed line.

✎ The final (rounded) set of parameters and their uncertainties is

θ̂1 = 99.02 ± 0.54, θ̂2 = 0.011 ± 0.0001, θ̂3 = 101.88 ± 0.59, θ̂4 = 107.03 ± 0.15,
θ̂5 = 23.58 ± 0.23, θ̂6 = 72.05 ± 0.62, θ̂7 = 153.27 ± 0.19, θ̂8 = 19.53 ± 0.26.

It corresponds to the full curve in Fig. 9.8 (left).

9.7.2 Time Dependence of the Pressure Gradient

Figure9.8 (right) shows n = 168 monthly averages of pressure differences between
Easter Island in the Pacific and the Australian city of Darwin [10]. This pressure
gradient is responsible for the trade winds in the southern hemisphere. The Fourier
analysis of the data (the signal is indicated by the dashed line connecting the points)
reveals peaks at three frequencies. Themost prominent one corresponds to the annual
cycle (12-month period), but one can detect two further components with 26 and 44-
month periods, characteristic for the so-called El Niño Southern Oscillation (ENSO)
phenomenon. Fit the data by a nine-parameter (p = 9) function

f (x;θ) = θ1 + θ2 cos
(
2πx/12

) + θ3 cos
(
2πx/12

)

+ θ5 cos
(
2πx/θ4

) + θ6 cos
(
2πx/θ4

)

+ θ8 cos
(
2πx/θ7

) + θ9 cos
(
2πx/θ7

)

by the method of non-linear regression (Sect. 9.6) with the initial approximation

θ(0) = {θ1, θ2, . . . , θ9} = {11, 3, 0.5, 40,−0.7,−1.3, 25,−0.3, 1.4}.
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✎ The final set of parameters and their uncertainties is

θ̂1 = 10.51 ± 0.17, θ̂2 = 3.076 ± 0.243, θ̂3 = 0.533 ± 0.244,
θ̂4 = 44.31 ± 0.94, θ̂5 = −1.623 ± 0.281, θ̂6 = 0.526 ± 0.481,
θ̂7 = 26.89 ± 0.42, θ̂8 = 0.213 ± 0.515, θ̂9 = 1.497 ± 0.254.

It corresponds to the full curve in Fig. 9.8 (right).

9.7.3 Thermal Expansion of Copper

Figure9.9 (left) shows the measured thermal expansion coefficient of copper as a
function of temperature [11]. Describe the data (n = 236) by the rational function

f (x;θ) = θ1 + θ2x + θ3x2 + θ4x3

1 + θ5x + θ6x2 + θ7x3
, (9.46)

depending on p = 7 parameters θ = {θ1, θ2, . . . , θ7}. Use the initial sets

θ(0) = {10,−1, 0.05,−10−5,−0.05, 0.001,−10−6}, (9.47)

θ(0) = {10,−0.1, 0.005,−10−6,−0.005, 10−4,−10−7}, (9.48)

and make precisely 20 steps of (9.39). Does the iteration converge in both cases?
Plot the solutions corresponding to both parameter sets.

✎ Choosing good initial parameters is crucial. The iteration started with (9.47)
does not converge: the solution after 20 iterations is the dashed curve in the figure.
The iteration initialized with (9.48) does converge (full curve); the final parameter
set is

θ̂1 = 1.08 ± 0.17,
θ̂2 = −0.123 ± 0.012, θ̂3 = (4.08 ± 0.23) × 10−3, θ̂4 = (−1.43 ± 0.28) × 10−6,

θ̂5 = (−5.76 ± 0.25) × 10−3, θ̂6 = (2.40 ± 0.10) × 10−4, θ̂7 = (−1.23 ± 0.13) × 10−7.

9.7.4 Electron Mobility in Semiconductor

Figure9.9 (right) shows the measured electron mobilities in silicon as a function of
the (log)-concentration of donor admixtures at a certain temperature [12]. Fit the
data (n = 37) by a model of the form (9.46)! Make 20 steps of the iteration (9.39)
with two initial regression parameter sets:
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Fig. 9.9 [Left] Fitting the function (9.46) to the measured thermal expansion coefficient of copper
after 20 iterations: the dashed curve corresponds to the initial conditions (9.47), while the full curve
corresponds to (9.48). [Right] Regression analysis of the data on electron mobility in silicon as a
function of donor concentration

θ(0) = {1000, 1000, 400, 40, 0.7, 0.3, 0.03},
θ(0) = {1300, 1500, 500, 75, 1.0, 0.4, 0.05}.

✎ The method started with the first initial set does not converge. Using the second
set does lead to convergence and the final parameters are

θ̂1 = 1288.1 ± 4.7,
θ̂2 = 1491.1 ± 39.6, θ̂3 = 583.2 ± 28.7, θ̂4 = 75.4 ± 5.6,
θ̂5 = 0.966 ± 0.03, θ̂6 = 0.398 ± 0.015, θ̂7 = 0.0497 ± 0.0066.

The solution with these parameters is shown by the full curve in the figure.

9.7.5 Quantum Defects in Iodine Atoms

Figure9.10 (left) shows the data from a study of quantum defects in iodine atoms
[9], with the excited-state energies on the abscissa and the number of defects on the
ordinate axis. Fit the n = 25 values by a four-parameter (p = 4) function

f (x;θ) = θ1 − θ2x − 1

π
arctan

(
θ3

x − θ4

)
(9.49)

by using the method of non-linear least squares, described in Sect. 9.6! Initialize the
algorithm by the regression parameters

θ(0) = {θ1, θ2, θ3, θ4} = {0.2,−5 · 10−6, 1200,−150}.
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Fig. 9.10 [Left] Modeling the number of quantum defects in iodine atoms by the function (9.49).
[Right] Fitting the function (9.50) to the observed values of the magnetic field strength in a
superconductor as a function of time

✎ The final values of the parameters are

θ̂1 = 0.202 ± 0.019, θ̂2 = (−6.2 ± 3.2) · 10−6, θ̂3 = 1204 ± 74, θ̂4 = −181.3 ± 49.6.

9.7.6 Magnetization in Superconductor

The circles in Fig. 9.10 (right) represent the n = 154 observed magnetic field
strengths as a function of time from a study of magnetization in superconductors
[9]. Model the data by the function

f (x;θ) = θ1
(
θ2 + x

)−1/θ3
. (9.50)

Use the iterative method of non-linear least squares described in Sect. 9.6. The initial
parameter set is θ(0) = {θ1, θ2, θ3} = {−1500, 45, 0.85}.
✎ The final parameter set when iteration (9.39) terminates is θ̂1 = −2523.5 ±
297.2, θ̂2 = 46.74 ± 1.24 and θ̂3 = 0.932 ± 0.020.
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Chapter 10
Statistical Tests: Verifying Hypotheses

Abstract Statistical tests based on hypotheses are used to statistically verify or
disprove, at a certain level of significance, models of populations and their proba-
bility distributions. The null and alternative hypothesis are the corner-stones of each
such verification, and go hand-in-hand with the possibility of inference errors; these
are defined first, followed by the exposition of standard parametric tests for normally
distributed variables (tests of mean, variance, comparison ofmeans, variances). Pear-
son’sχ2-test is introduced as a means to ascertain the quality of regression (goodness
of fit) in the case of binned data. The Kolmogorov–Smirnov test with which binned
data can be compared to a continuous distribution function or two binned data sets
can be compared to each other, is discussed as a distribution-free alternative.

Chapters7–9 were dealing with methods by which random samples were used to
make inferences about populations and to estimate the parameters of their distribu-
tions. This chapter introduces tools used to verify—from the statistical viewpoint—
whether a population model is acceptable or not [1].

10.1 Basic Concepts

To test the validity of a model we use hypotheses about the properties of a population
or its probability distribution, for example, “the coin is fair”, implying a probability
of p = 0.5 for heads or tails. The basic hypothesis being tested is called the null
hypothesis and is denoted by H0, for instance

H0 : p = 0.5.

According to the result of a statistical test the null hypothesis may be accepted or
rejected—although “hypothesis accepted” should always be interpreted as “from the
statistical perspective the available data is insufficient to reject it”; in the following
we should keep in mind this subtle difference. Strictly speaking, one never tests the
null hypothesis by itself, but always against its alternative hypothesis denoted by H1,
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for instance,
H1 : p > 0.5.

Namely, hypotheses need not be exclusive: one can test, for example, the hypothesis
H0 : p > 0.4 with respect to H1 : p > 0.6.

Testing hypothesis also brings about the question of inference errors. Imagine a
blood test used to determine the presence of a disease in two populations, healthy
and sick (see also Problem1.5.6). Most often it happens that based on the test (values
of x) the populations can not be clearly separated (Fig. 10.1 (left)): no matter what
x = x∗ we choose, for x > x∗ a fraction of the sick population will be identified as
sick (true positives, TP), and its remainder as healthy (false negatives, FN), while
with x < x∗ a part of the healthy population will be seen as healthy (true negatives,
TN), and the rest as sick (false positives, FP).

Let us discuss only a continuous randomvariable X ,whose distribution is specified
by a single-parameter probability density f (x; θ). Suppose that the experiment yields
a value X = x , for which we wish to ascertain whether it is consistent with one
or another hypothesis. Let the null and alternative hypotheses correspond to the
distributions with parameters θ0 and θ1, respectively:

H0 : θ = θ0,

H1 : θ = θ1,

as shown in Fig. 10.2. If the observed x exceeds the critical value x∗, we reject H0,
otherwise it may be accepted. (Recall our initial warning.) The interval [x∗,∞)

in Fig. 10.2 (left) is therefore called the rejection region, while (−∞, x∗] is the
acceptance region. Setting the value of x∗ is our primary job—we choose in advance
the probabilityα such that the observed x falls in the rejection region. This probability
is called the statistical significance of the test,

Fig. 10.1 [Left] Distribution with respect to blood test results in healthy and sick populations.
One can have true positive (TP), false negative (FN), true negative (TN) and false positive (FP)
outcomes. [Right] Comparison of significance (α) and sensitivity (1 − β) of the test as a measure
of its reliability—known as the Receiver Operating Characteristic (ROC) curve. See also Example
on p. 262

http://dx.doi.org/10.1007/978-3-319-31611-6_1
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Fig. 10.2 Probability densities corresponding to [Left] Null hypothesis with parameter θ0 and
[Right] Alternative hypothesis with parameter θ1. Shading indicates the rejection regions for sig-
nificances α and β. The critical point is denoted by x∗

α =
∫ ∞

x∗
f (x; θ0) dx . (10.1)

If H0 is rejected with significance α, this means that with probability α we have
made a wrong conclusion, as the observed x can also take values above x∗: we have
rejected a hypothesis when in fact it should have been accepted. We say that we have
rejected it at confidence level 1 − α. In the language of blood tests this value is also
called specificity, so that

FP

TN + FP
= α (significance),

TN

TN + FP
= 1 − α (specificity).

We can also make a different error, namely, accept H0 as true although it is, in
fact, false and H1 should have been accepted instead. The probability for this type
of error depends on H1 (Fig. 10.2 (right)) and is denoted by β:

β =
∫ x∗

−∞
f (x; θ1) dx .

The power of a statistical test or its sensitivity is defined as the probability that a
hypothesis is rejectedwhen it is indeed false. The power of testing the null hypothesis
H0 against the alternative hypothesis H1 is

1 − β =
∫ ∞

x∗
f (x; θ1) dx, (10.2)

therefore, in the blood-test example,

FN

FN + TP
= β,

TP

FN + TP
= 1 − β (sensitivity).
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How does a test attain large power? The integral (10.2) can be written as

∫ ∞

x∗
f (x; θ1) dx =

∫ ∞

x∗

f (x; θ1)

f (x; θ0)
f (x; θ0) dx =

(
f (x; θ1)

f (x; θ0)

)

x=ξ

∫ ∞

x∗
f (x; θ0) dx

︸ ︷︷ ︸
α

,

where ξ ∈ [x∗,∞). Hence the power is large if f (x; θ1)/ f (x; θ0) is large or—in the
case of a sequence of observations x = {x1, x2, . . . , xn}—where the ratio

L(x; θ1)

L(x; θ0)
=

∏n
i=1 f (xi ; θ1)∏n
i=1 f (xi ; θ0)

(10.3)

exceeds a prescribed constant that depends on α. Usually 1 − β rapidly increases
with α and is close to 1 above α � 0.10 (see Fig. 10.1 (right)). The more the curve
approaches the top left corner, the larger the predictive power of the test; in the
extreme case (point (α, 1 − β) = (0, 1)) the populations are completely separated.
Conventionally one chooses 0.01 � α � 0.10. How this works in practice is demon-
strated by the following Example and Problem10.5.1.

Example Photo-disintegration of 3He nuclei below the pion production threshold
involves two decay channels, two-body (2bbu) and three-body (3bbu) breakup:

H0(2bbu) : γ + 3He −→ p + d,

H1(3bbu) : γ + 3He −→ p + p + n.

Experimentally they can be distinguished by calculating the so-calledmissing energy,
i.e. the difference between the photon energy and the kinetic energy of the final-state
proton, Em = Eγ − Tp, where both Eγ and Tp have somemeasurement uncertainties.
An example of a measured spectrum is shown in Fig. 10.3 (left). The peak at Em ≈

Fig. 10.3 Normalized distribution of events with respect to the missing energy in the processes
γ + 3He −→ p + d (two-body breakup, 2bbu) and γ + 3He −→ p + p + n (three-body breakup,
3bbu). [Left] Measured spectrum. [Right] Theoretical spectrum
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5.5MeV corresponds to the separation energy of the proton in 3He, while the bump
above Em ≈ 7.7MeV is a witness to the additional 2.2MeV required to split the
remaining deuteron to a proton and a neutron.

How do we choose the critical Em∗ to test the hypothesis that a detected proton
comes from the two-body process? The higher we set it, the more certain we can be
that the sample will contain all “true” protons from 2bbu, but at the same time more
an more “false” protons from 3bbu will be identified as belonging to 2bbu. If Em∗
is set very low, we may reduce the contamination of the 2bbu sample by protons
from 3bbu, but at the same time we discard a significant fraction of true 2bbu events.
Ideally we wish to minimize the probability α for the rejection of H0 when it is
actually correct, and minimize the probability β for the acceptance of H0, when it is
actually false.

How can this be accomplished? Suppose we have a theoretical model of the
breakup processes that fits the data well (Fig. 10.3 (right)). The probability densities
f (Em; H0) and f (Em; H1) describe the protons from 2bbu and 3bbu, respectively.
(Both densities can be normalized to the number of counts, or vice-versa.) For the
chosen statistical significance of the test, α, we first establish Em∗ for which

∫ ∞

Em∗
f (Em; H0) dEm = α(Em∗).

With this Em∗ we calculate the power of the test

1 − β(Em∗) =
∫ ∞

Em∗
f (Em; H1) dEm.

Themodel in Fig. 10.3 (right) is a sumof normal distributions N (μ0,σ
2
0) for 2bbu and

N (μ1,σ
2
1) for 3bbu, with parameters μ0 = 5.5MeV, σ0 = 0.6MeV, μ1 = 7.7MeV

and σ1 = 1.2MeV. The critical value Em∗ at chosen α is therefore nothing but
the corresponding quantile of the normal distribution, and the integral for 1 − β
is its definite integral. In both cases we may use formula (3.9) and TablesD.1 and
D.2. The dependence of (1 − β) on α—the ROC curve—is shown in the above
figure. �

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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10.2 Parametric Tests for Normal Variables

10.2.1 Test of Sample Mean

Let x = {x1, x2, . . . , xn} be a random sample drawn from a normally distributed
population (N (μ,σ2)). “Testing the mean” implies that we shall use the sample
mean X = (1/n)

∑n
i=1 Xi to provide some sort of statement on the true (population)

meanμ, which is unknown. Two casesmust be distinguished: the population variance
σ2 is known or unknown. If σ2 is known, testing the hypothesis

H0 : μ = μ0

against the alternative hypothesis H1 : μ �= μ0 can be accomplished by using the
statistic

Z = X − μ0

σ/
√
n

∼ N (0, 1),

which is distributed according to the standardized normal distribution. If σ2 is
unknown, we can replace it by the unbiased sample variance (7.10) and use the
statistic

T = X − μ0

sX/
√
n

∼ t (n − 1),

which is distributed according to the Student’s t distribution with (n − 1) degrees
of freedom. Of course, if the sample variance is used in the biased form (7.8), one
should replace

√
n by

√
n − 1. See also Sect. 7.3.1.

Example By using twelve (n = 12) identical thermometers we have measured the
temperatures

x = {33.6, 34.3, 32.6, 32.8, 34.1, 34.9, 32.7, 33.9, 33.1, 32.5, 33.1, 33.4} ◦C.

Maywe claim,with statistical significanceα = 0.05, that the true temperature during
the measurement was higher than μ0 = 32.8 ◦C?

The null hypothesis is H0 : μ = μ0 = 32.8 ◦C, the alternative hypothesis is H1 :
μ > μ0. We wish to reject H0 if the sample mean x exceeds μ0. From the data we
calculate x = 33.42 ◦C and s2x = 0.574 (◦C)2. The value of the statistic T is

t = x − μ0

sx/
√
n

= 33.42 ◦C − 32.8 ◦C
0.758 ◦C/

√
12

≈ 2.83.

TableD.4, row ν = n − 1 = 11, reveals that t = 2.83 lies between t0.99 = 2.72, cor-
responding toα = 0.01, and t0.995 = 3.11, corresponding toα = 0.005. The required
α corresponds to the critical t∗ = t0.95 = 1.80. Since t > t∗, we may reject H0 and

http://dx.doi.org/10.1007/978-3-319-31611-6_7
http://dx.doi.org/10.1007/978-3-319-31611-6_7
http://dx.doi.org/10.1007/978-3-319-31611-6_7
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accept the hypothesis H1 that the actual temperature exceeded 32.8 ◦C, with signifi-
cance α = 0.05 (confidence level 1 − α = 0.95). �

10.2.2 Test of Sample Variance

Testing the variance based on the sample x = {x1, x2, . . . , xn} from a normally dis-
tributed population (X ∼ N (μ,σ2)) again requires us to distinguish two cases: that
the true mean μ is known or unknown. If μ is known, the hypothesis

H0 : σ2 = σ2
0

against H1 : σ2 �= σ2
0 can be tested by using the statistic

X2 = ns2X
σ2
0

= 1

σ2
0

n∑

i=1

(
Xi − μ)2 ∼ χ2(n),

which is distributed according to the χ2 distribution with n degrees of freedom.
(Here s2X is taken in its biased form (7.8).) If μ is unknown, it must be replaced by
the sample mean X = (1/n)

∑n
i=1 Xi in the above formula. Then the statistic X2 is

also χ2-distributed, but with (n − 1) degrees of freedom. See also Sect. 7.2.2.

Example To construct a detector we need many wire electrodes of a specific length.
The largest allowed length tolerance is σ2

0 = 100 (µm)2. A precise measurement
of the length is very demanding, so we can only afford a small sample of n = 10
electrodes, for which we establish a variance of s2x = 142 (µm)2. Given a statisti-
cal significance of α = 0.05, does the wire length in the unexplored “population”
fluctuate exceedingly?

The null hypothesis is H0 : σ2 = σ2
0, while the alternative hypothesis is H1 : σ2 >

σ2
0. We may reject H0 if the sample variance exceeds the critical variance (at given

α). The value of the test statistic is x2 = ns2x/σ
2
0 = 10 · 142/100 = 14.2. The critical

x2 can be read off from Table D.3, row for ν = n − 1 = 9, column for p = 1 − α =
0.95: it is x2∗ = χ2

0.95 = 16.9. Since x2 < x2∗ , we have no reason (at confidence level
1 − α = 95%) to reject H0. We may conclude that the variance of all electrodes is
within the prescribed limits. �

10.2.3 Comparison of Two Sample Means, σ2
X = σ2

Y

Assume we have two samples, x = {xi }nxi=1 and y = {yi }ny

i=1, drawn from normally
distributed populations with different means and equal, but unknown variances σ2

X =
σ2
Y = σ2, that is, X ∼ N (μX ,σ2) and Y ∼ N (μY ,σ2). A situation like this occurs,

for instance, when we apply the same technique to measure a quantity that might

http://dx.doi.org/10.1007/978-3-319-31611-6_7
http://dx.doi.org/10.1007/978-3-319-31611-6_7
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have changed during the measurements. By comparing the samples x and y we test
the hypothesis H0 that they stem from populations with a specific difference between
the true means,

H0 : μX − μY = (μX − μY )0,

against the alternative H1 : μX − μY �= (μX − μY )0. The suitable statistic is

T = X − Y − (μX − μY )

sXY
, sXY =

√(
1

nx
+ 1

ny

)
nxs2X + nys2Y
nx + ny − 2

,

where X and Y are the sample means, while s2X and s2Y are biased sample vari-
ances (7.8). The statistic T is t-distributed, with (nx + ny − 2) degrees of freedom.

Example A laboratory uses two chemicals to determine the concentration of a com-
pound in blood. Presently a reliable, but expensive chemical is used, and it has yielded
a sample of nx = 10 concentrations

x = {7.41, 7.59, 7.56, 7.77, 8.06, 8.04, 7.57, 7.74, 7.47, 7.98}

(in some units). With the cheaper chemical we obtain a sample of ny = 8 values

y = {7.59, 7.83, 7.63, 7.94, 7.69, 7.46, 7.94, 7.38}.

May we claim that there is a statistically significant difference between the average
concentrations (with significance α = 0.05)?

The null hypothesis is H0 : μX − μY = 0 (equal concentrations), and the alter-
native is H1 : μX − μY �= 0. From the sample averages x = 7.719 and y = 7.683
and sample variances s2x = 0.0512 and s2y = 0.0383 we calculate sxy = 0.107, then
the value of the test statistic t = (7.719 − 7.683 − 0)/0.107 ≈ 0.34. TableD.4,
row ν = nx + ny − 2 = 16, tells us that t ≈ 0.34 lies between t0.60 = 0.258, corre-
sponding to 1 − p = α = 0.40, and t0.75 = 0.535, corresponding to α = 0.25. The
required α/2 = 0.025—we must perform a two-sided test, as the alternative hypoth-
esis means either μX > μY or μX < μY—corresponds to the critical value t∗ = 2.12.
Since t < t∗, there is no reason to reject the null hypothesis: both chemicals are
equally effective, so in order to reduce costs, we may purchase the cheaper one. �

10.2.4 Comparison of Two Sample Means, σ2
X �= σ2

Y

A similar test can be performed for samples x and y of sizes nx and ny , presumably
stemming from normal populations with different (and unknown) variances. The test
statistic is

http://dx.doi.org/10.1007/978-3-319-31611-6_7
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T = X − Y − (μX − μY )√
s2X/nx + s2Y /ny

,

where X andY are the samplemeans, and s2X and s
2
Y are the unbiased variances (7.10).

If H0 is true, T is normally distributed (N (0, 1)) when nx , ny � 1.

10.2.5 Comparison of Two Sample Variances

Comparing the variances of two samples x and y is another classic: we thereby test
the hypothesis whether the corresponding population variances are equal,

H0 : σ2
X = σ2

Y .

The test statistic is the ratio of unbiased sample variances,

F = s2X/s2Y .

If the null hypothesis is valid, this ratio is distributed according to the F distribution
with (νx , νy) = (nx − 1, ny − 1) degrees of freedom. Given the significance α three
alternative hypotheses H1 can be formulated:

H1 : σ2
X �= σ2

Y ; H0 rejected if F < Fα/2 or F > F1−α/2,

H1 : σ2
X > σ2

Y ; H0 rejected if F > F1−α,

H1 : σ2
X < σ2

Y ; H0 rejected if F < Fα.

Here Fα/2, Fα, F1−α and F1−α/2 are the F-distribution quantiles (Tables D.5 and
D.6).

Example In sputtering of thin metal layers on semiconductor substrate wafers we
strive to minimize the variance of the layer thickness. The variance in the sample of
nx = 16 layers fabricated with oven X is s2x = 0.058 (nm)2, while the variance in the
second sample of ny = 10 layers made with oven Y is found to be s2y = 0.079 (nm)2.
Canwe claim that any of the twoovensmakes layerswhose thickness ismore precise?
Let the significance of the test be α = 0.10.

The null hypothesis H0 may be rejected if the sample f (value of statistic F) satis-
fies f < F∗− = Fα/2(nx − 1, ny − 1) or f > F∗+ = F1−α/2(nx − 1, ny − 1). From
Table D.5 and from the symmetry of the F distribution (see Fig. 7.3) we get

F∗− = F0.05(15, 9) = 1/F0.95(9, 15) = 1/2.59 = 0.386,

F∗+ = F0.95(15, 9) = 3.01.

http://dx.doi.org/10.1007/978-3-319-31611-6_7
http://dx.doi.org/10.1007/978-3-319-31611-6_7
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The samples give f = s2x/s
2
y = 0.734. Since neither f < F∗− nor f > F∗+ apply,

H0 can not be rejected at confidence level 1 − α = 0.90. The ovens are equally fine.
(However, the samples are small, thus the conclusion is a bit risky.) �
Example The F test can also be applied to determine themaximumsensible degree of
the polynomial used to fit the data {(xi , yi ± σi )}ni=1, given a confidence level 1 − α.
The test can be used to distinguish among so-called nested models, in which a richer
function inherits all parameters of the subordinate one and adds its own: the model
f2(x;θ) = θ1 + θ2x , for instance, is nested within f3(x;θ) = θ1 + θ2x + θ3x2. In
general the more modest ansatz has q, while the richer has p parameters, p > q.
Is the former sufficient to describe the data (H0 : θq+1 = θq+2 = · · · = θp = 0) or
should new terms be included (H1: at least one of the enumerated parameters �= 0)?
For both models we calculate the sum of squared residuals X2

q and X2
p by using (9.6)

and form the statistic

F = (X2
q − X2

p)/(p − q)

X2
p/(n − p − 1)

,

which is distributed according to F(p − q, n − p − 1). If the calculated F exceeds
the critical value F1−α(p − q, n − p − 1), H0 can be rejected; “further parameters
are needed”. In polynomial regression, f (x;θ) = ∑p

j=1 θ j x j−1, the statistic

F = X2
p−1 − X2

p

X2
p/(n − p − 1)

∼ F(1, n − p − 1) (10.4)

therefore “measures” whether the inclusion of a new (pth) parameter—hence the
next, (p−1)th polynomial degree—is justified or not [2].

Figure10.4 (left) shows the data (n = 77) and polynomial fits of various orders,
while Fig. 10.4 (right) shows X2

p/(n − p) and the statistic F (10.4). Let us choose
α = 0.05. Since n � 1, F∗ = F1−α(1, n − p − 1) ≈ 4 for all shown p (TableD.5).

Fig. 10.4 Using the F test to determine the maximum degree of the regression polynomial. [Left]
Data (seewebsite of the book). [Right] Dependence of X2

p/(n − p) and the statistic F on the number
of parameters p (polynomial of degree p − 1)

http://dx.doi.org/10.1007/978-3-319-31611-6_9
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At p = 7 the calculated F falls below F∗ for the first time. Hence, from p = 6
upwards—even though X2

p keeps on dropping—the data do not offer sufficient sta-
tistical support to keep on “inflating” the model. �

10.3 Pearson’s χ2 Test

In Sect. 9.2 we have seen how the observations x = {x1, x2, . . . , xn}, classified in N
mutually exclusive bins, can be fitted by a chosen function. Now we are interested in
the goodness of this fit. If xi are the values of a random variable with the probability
density f , ascertaining the quality of the fit amounts to testing the hypothesis

H0 : f (x) = f0(x),

where f0 is the chosen density. The same applies in the discrete case, where f and
f0 are probability functions. In the i th bin one expects fi counts, while in fact ni are
observed. The null hypothesis is H0 : f1 = f01, f2 = f02, . . . , fN = f0N , and the
test statistic is already familiar from (9.25):

X2 =
N∑

i=1

(
ni − f0i

)2

f0i
. (10.5)

If H0 is true, X2 is distributed according to the χ2 distribution with N − p degrees
of freedom, where p is the number of parameters estimated from the sample
and taken into account in the formulation of the hypothesis. This is an impor-
tant detail; namely, if (10.5) is written such that the i th bin corresponds to a the-
oretical probability pi , while it actually contains ni counts, the null hypothesis
is H0 : p1 = p01, p2 = p02, . . . , pN = p0N , where

∑N
i=1 p0i = 1 or, equivalently,

H0 : n1 = n01, n2 = n02, . . . , nN = n0N , where
∑N

i=1 n0i = n. The appropriate test
statistic is then

X2 =
N∑

i=1

(
ni − np0i

)2

np0i
∼ χ2(N − p − 1).

Example Let us revisit the bombing of London during World War II (Example on
pp. 133–134). All 576 quadrants with 0, 1, 2, 3, 4 or ≥ 5 hits in each were clas-
sified in N = 6 bins {n0, n1, n2, n3, n4, n5} = {229, 211, 93, 35, 7, 1}. From 537
hits we calculated the expected number of hits in any quadrant, n = 537/576 ≈
0.9323. If the hit distribution were Poissonian, with average n, we would expect
{ f01, f02, f03, f04, f05} = {226.74, 211.39, 98.54, 30.62, 7.14, 1.57}quadrantswith
0, 1, 2, 3, 4 or ≥ 5 hits, respectively. Let us test the hypothesis H0 : fmeasured = f0 =
fPoisson with confidence level 1 − α = 0.90!

http://dx.doi.org/10.1007/978-3-319-31611-6_9
http://dx.doi.org/10.1007/978-3-319-31611-6_9
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In the formulation of the hypothesis two parameters have been fixed: the aver-
age n and the normalization n = ∑N

i=1 f0i = 576, hence the statistic (10.5) is χ2-
distributed, with N − 2 = 4 degrees of freedom. We may reject H0 if the observed
x2 exceeds the critical value χ2∗ = 7.78 (see Table D.3 for p = 0.90 and ν = 4).
From the data we get x2 = 1.17 < χ2∗. Hence H0 can not be rejected: the observed
distribution is consistent with the Poisson distribution. �
Example In an experiment we measure the distribution of events with respect to x
that takes the values on the interval [−2.75, 2.75]. Due to instrumental restrictions
we are able to measure only on a restricted range, x ∈ [−1.35, 1.35]. A total of
n = 838 events are classified in N = 27 bins, as shown in Fig. 10.5. Is the measured
distribution consistent with a uniform or, rather, normal distribution? Consider α =
0.05 and α = 0.01.

There are n = 838 counts in all bins. Let us first check the consistency of the
data with the uniform distribution, where each bin is expected to contain f0i =
n/N = 31.04 counts.Byusing (10.5)weget x2 = 59.38.Dividing this by the number
of degrees of freedom ν = N − 1 = 26 yields the so-called reduced value χ2

red =
x2/ν = 2.28. This should be compared to the critical χ2∗/ν at chosen α (Fig. 10.6
or TableD.3). For α = 0.05 we read off χ2∗/ν ≈ 1.50, while for α = 0.01 we see
that χ2∗/ν ≈ 1.76. In either case χ2

red = x2/ν > χ2∗/ν, indicating that the measured
distribution does not match the uniform distribution.

Wehave narroweddown the acceptance region in Fig. 10.5, as this often happens in
practice, forcing us to see the data as nothing but “a constant”.What dowe obtainwith
f0i corresponding to the normal distribution? Assume that only its standard deviation
has been determined from the data, so ν = 26. Now we obtain x2 = 35.66 or χ2

red =
x2/ν = 1.37, which is less than χ2∗(α = 0.05)/ν and less than χ2∗(α = 0.01)/ν. We
can therefore claim, with confidence level at least 99%, that themeasured and normal
distribution are mutually consistent. �

Fig. 10.5 Pearson’s χ2 test for checking the consistency of the binned data with an assumed
theoretical model. [Left] Comparison of data to the uniform distribution. [Right] Comparison of
data to the normal distribution



10.3 Pearson’s χ2 Test 271

Fig. 10.6 Reduced value of
χ2/ν for Pearson’s test as a
function of the number of
degrees of freedom ν at
chosen significance α. The •
symbols at ν = 26 denote
the critical points
χ2∗(0.05)/ν = 1.50 and
χ2∗(0.01)/ν = 1.76 for the
Example in Fig. 10.5, while ◦
indicate the calculated values
of x2/ν = 2.28 and
x2/ν = 1.37 corresponding
to the comparison of the data
to the uniform and normal
distribution, respectively

10.3.1 Comparing Two Sets of Binned Data

The same test can be used to ascertain the mutual consistency of two sets of his-
togrammed data of size m and n in N bins. The appropriate test statistic is

X2 =
N∑

i=1

(√
n/m mi − √

m/n ni
)2

mi + ni
, m =

N∑

i=1

mi , n =
N∑

i=1

ni . (10.6)

In generalm �= n. The χ2-test with the chosen significance α is performed as before,
by using the χ2 distribution with ν = N − 1 degrees of freedom. The values x2/ν >

χ2∗/ν indicate that the observationsmi and ni do not come from the same distribution
law. An example is given in Problem10.5.2.

10.4 Kolmogorov–Smirnov Test

Kolmogorov–Smirnov (KS) test [3, 4] is a non-parametric test used to establish
the probability that the observed data (sample) stems from a population distributed
according to the chosen continuous theoretical distribution, or that one sample comes
from the same population as the other. Of course both the data and the model distri-
bution can be binned and compared by Pearson’s test, but a direct comparison has
several advantages.

First we sort the sample {xi }ni=1 so that x1 ≤ x2 ≤ · · · ≤ xn . For this sorted set we
define the empirical distribution function
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F̃n(x) =
⎧
⎨

⎩

0 ; x < x1,
i/n ; xi ≤ x < xi+1, i = 1, 2, . . . , n − 1,
1 ; x ≥ xn .

This is a monotonously increasing function that jumps upwards by 1/n at each point
xi . For the data

x = {0.22, −0.87, −2.39, −1.79, 0.37, −1.54, 1.28, −0.31, −0.74, 1.72,

0.38, −0.17, −0.62, −1.10, 0.30, 0.15, 2.30, 0.19, −0.50, −0.09}
(10.7)

it is shown by the “staircase” curve in Fig. 10.7 (left).
In the basic version of the KS test the empirical distribution F̃n is compared to the

model distribution F , shown by the smooth curve in the figure. The null hypothesis
is

H0 : F̃n(x) = F(x).

The test statistic is the maximum distance between these distributions,

Dn = sup
x

∣∣F̃n(x) − F(x)
∣∣ = max

1≤i≤n

{
i

n
− F

(
xi

)
, F

(
xi

) − i − 1

n

}
. (10.8)

The smaller the distance dn (value of statistic Dn), the better the agreement between
F̃n and F , pointing to the acceptance of the null hypothesis. If, however, the calculated
dn is larger than the critical value d∗(n;α) ≡ d(α)/

√
n at chosen α, H0 may be

rejected. The critical values are tabulated; amethod (and aMatlab code) to compute
them can be found in [5]. The symbols in Fig. 10.7 (right) represent d∗(n;α) for a

Fig. 10.7 Kolmogorov–Smirnov test. [Left] Data sample (•), the corresponding empirical distribu-
tion function F̃n , model distribution function F and the greatest distance between them, dn . [Right]
Critical values d∗ as a function of n for various statistical significances α. The curves correspond
to the asymptotic formulas (10.9)
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few typical α. The figure also contains the asymptotic curves

d∗(n;α) ≈ 1√
n

√−0.5 log(α/2), n � 35. (10.9)

It is a most charming property of the KS test that the distribution of the statistic Dn

is known and, moreover, does not depend on the distribution F . In the n � 1 limit
it holds that

FKS(z) = lim
n→∞ P

(
Dn ≤ z√

n

)
= 1 − 2

∞∑

k=1

(−1)k−1e−2k2z2 , (10.10)

which is suitable for the calculation at large z, while the form

FKS(z) =
√
2π

z

∞∑

k=1

exp

(
− (2k − 1)2π2

8z2

)

is preferable for small z. In either case

P
(
Dn > z

) = 1 − P
(
Dn ≤ z

) = 1 − FKS
(√

n z
)
. (10.11)

Everyday work is made simpler by the approximation

P
(
Dn > z

) ≈ 1 − FKS
[√

neff z
]
,

√
neff = √

n + 0.12 + 0.11/
√
n, (10.12)

which works well already for n � 5 and has the correct asymptotics. This can be
exploited for the calculation of the critical d∗(n;α) for arbitrary, even small n, if
tables are not at hand. Namely, one can insert z = d∗ in (10.10) to obtain

α ≈ 2
∞∑

k=1

(−1)k−1e−2neffk2d2∗ .

With given n we must figure out d∗ such that the sum on the right equals the chosen
α on the left. When we succeed, we have found d∗ = d∗(neff;α). (Do this as an
exercise! Replace guesswork by bisection.)

Example At significance α = 0.05 we wish to test the null hypothesis that the
sample (10.7) has been drawn from a standard normal population with distri-
bution function F (see (3.11), F = �). By using (10.8) we obtain dn = 0.202
indicated in Fig. 10.7. The sample size is n = 20, and the exact critical value is
d∗(20; 0.05) = 0.294. By formula (10.9), not expected to apply at such low n, one
gets d∗(20; 0.05) = 0.304. In either case dn < d∗, the hypothesis can not be rejected.
The data are consistent with the normal distribution. �

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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The advantage that the distribution of Dn is independent of the model distribution
F can be exploited for the determination of confidence regions for the true distribution
function of the population, F0. Namely, realizing that

P
(
Dn = sup

x

∣∣F̃n(x) − F(x)
∣∣ > d∗(n;α)

) = α,

at chosen significance α, this also means that

P
(
F̃n(x) − d∗(n;α) < F0(x) < F̃n(x) + d∗(n;α)

) = 1 − α ∀x .

Therefore, at any x the value of the true distribution function F0 lies between F̃n(x) −
d∗ and F̃n(x) + d∗ with probability 1 − α. In other words, if we use the calculated
d∗ to create a band about the empirical distribution, the curve of F0(x) lies within
this band with probability 1 − α.

10.4.1 Comparison of Two Samples

Instead of comparing sample and model distributions the KS test can also be applied
to two samples, which may even have different sizes [6]. Let the samples of size
m and n have the empirical distribution functions F̃m(x) and F̃n(x), respectively.
The null hypothesis is that the samples originate in the population with the same
distribution function. In this case the test statistic is

Dmn = sup
x

∣∣F̃m(x) − F̃n(x)
∣∣ .

The critical values d∗(m, n;α) that the value of the statistic Dmn should exceed in
order for the null hypothesis to be rejected at chosen α, are tabulated for small m
and n. Fortunately, it turns out that (10.11) can be replaced by

P
(
Dmn > z

) ≈ 1 − FKS

(√
mn

m + n
z

)
, m, n � 1,

so the critical values for the two-sample test in the limit of large m and n are just
suitably rescaled critical values of the one-sample test:

d∗(m, n;α) =
√
1 + n

m
d∗(n;α) ≈

√
m + n

mn

√−0.5 log(α/2). (10.13)

For small m and n one may again use the empirical parameterization (10.12) with
the replacement n −→ mn/(m + n).
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Fig. 10.8 Comparison of two samples by the Kolmogorov–Smirnov test. [Left] Histogrammed
data (10.7) and (10.14). [Right] Corresponding empirical distribution functions and the maximum
distance between them

Example We wish to examine the null hypothesis that sample (10.7) and sample

y = {−5.13, −2.19, −2.43, −3.83, 0.50, −3.25, 4.32, 1.63, 5.18, −0.43,

7.11, 4.87, −3.10, −5.81, 3.76, 6.31, 2.58, 0.07, 5.76, 3.50} (10.14)

originate in the population with the same distribution function. The samples have
equal sizes, m = n = 20. Their histograms are shown in Fig. 10.8 (left), and their
empirical distribution functions are shown in Fig. 10.8 (right).

The maximum distance between F̃m and F̃n is dmn = 9/20 = 0.45. The criti-
cal values computed by formula (10.13) are d∗(0.10) = 0.387, d∗(0.05) = 0.429,
d∗(0.01) = 0.515 (the exact ones are 0.350, 0.400, 0.500). Hence the null hypothe-
sis can be rejected at significance α between 1 and 5%. �

10.4.2 Other Tests Based on Empirical Distribution
Functions

The KS test is perhaps the most popular test based on empirical distributions, but
others exist [7]. Let us name some general considerations regarding their use. Instead
of the distance between F̃n and F , for example, one could also measure the average
square of the deviation of F̃n from F by calculating the integral

∫ ∞

−∞

[
F̃n(x) − F(x)

]2
w(x) dF(x),

where w(x) is a weight function. By choosing different w(x) greater emphasis can
be given to certain portions of the definition domain of a distribution or its specific
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aspects. Setting

w(x) = n

F(x)(1 − F(x))
,

for instance, yields the Anderson-Darling (AD) test [8, 9], which is more sensitive
to the distribution tails, where F(x) and 1 − F(x) are small. The corresponding
statistic is

W 2
n = −n − 1

n

n∑

i=1

(2i − 1)
[
log F(xi ) + log

(
1 − F(xn+1−i )

)]
,

where xi must be sorted, xi ≤ xi+1. The values of the statistic in this and other
tests is not hard to calculate, but two essential questions always remain: how is this
statistic distributed andhowcanwe compute the critical values for a given distribution
function F . For the AD test, critical values are available for the uniform, normal,
log-normal, exponential and Pareto distributions [10–14].

A final warning: the KS test is strictly applicable only if the model distribution F
being compared to the empirical distribution F̃n is independent of the observations.
Thismeans that the sample being tested should not be used to estimate the parameters
of F , say, its expected value or variance. In this case the test works, but both the
cumulative distributions (10.10) and the critical values are modified. A possible
solution of this problem is the so-called bootstrap resampling: the measured sample
is used to generate a large set of new samples, and the test is performed with the
entire ensemble. Introductory reading on bootstrap methods is offered by [15].

10.5 Problems

10.5.1 Test of Mean Decay Time

(Adapted from [16].)By awell-established theory (hypothesis H0) a certain quantum-
mechanical state should decay with decay time τ0, while according to a competing
theory (hypothesis H1) it should have decay time τ1,

H0 : τ = τ0 = 1 ns, H1 : τ = τ1 = 2 ns.

The actually observed decay times are t = {t1, t2, . . . , tn} and their average is t =
(1/n)

∑n
i=1 ti . Find the region where the power of rejecting the null hypothesis with

variable t atα = 0.05 is largest, for① n = 1 and② n � 1!Assume that the density
has the form f (t; τ ) = τ−1 exp(−t/τ ) for both hypotheses.

✎ The power of the test of H0 against H1 is large where the ratio (10.3) is larger
than some constant,
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L(t; τ = τ1)

L(t; τ = τ0)
=

∏n
i=1 τ−1

1 e−ti /τ1

∏n
i=1 τ−1

0 e−ti /τ0
=

(
τ0

τ1

)n

exp

(
−

(
1

τ1
− 1

τ0

) n∑

i=1

ti

)
> C

or

t >
τ0τ1

τ1 − τ0

(
1

n
logC + log

τ1

τ0

)
= Tn.

The best rejection region is the interval of values t satisfying this inequality, where
Tn is a constant depending on α. The statistic T (with values t) is thus an appropriate
statistic to test the true mean τ , but we must also know its own distribution.

① In the case n = 1 the probability density for T is simply

f1(t; τ ) = τ−1 exp(−t/τ ),

so by (10.1) the rejection region is defined as

α =
∫ ∞

T1

1

τ0
e−t/τ0 dt = e−T1/τ0 .

The critical value is T1/τ0 = − logα ≈ 3.00, and the power of the test of H0 against
H1 is

1 − β =
∫ ∞

T1

1

τ1
e−t/τ1 dt = e−T1/τ1 = ατ0/τ1 ≈ 0.224.

Therefore, by a single observation, t = t1, one may reject H0 if t1 > T1 ≈ 3τ0. Con-
versely, the probability that H0 is accepted when actually H1 is true, is β ≈ 0.776.

② In the case n � 1 the distribution of the test statistic T can be approximated
by the normal distribution with average τ and variance τ 2/n,

fn
(
t; τ

) = 1√
2π τ/

√
n
exp

(
−1

2

(t − τ )2

τ 2/n

)
.

The critical value Tn of the rejection region for t at given α is then defined by

α =
∫ ∞

Tn

fn
(
t; τ0

)
dt = 1 −

∫ Tn

−∞
fn

(
t; τ0

)
dt = 1 − �

(
Tn − τ0

τ0/
√
n

)
,

where � is the distribution function of the standardized normal distribution. At
chosen α this means (Tn − τ0)/(τ0/

√
n) = z∗ = z0.95 ≈ 1.645 (see Table D.1) or

Tn = τ0

(
1 + z∗√

n

)
,

and the power of the test of H0 against H1 is
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1 − β =
∫ ∞

Tn

fn
(
t; τ1

)
dt = 1 −

∫ Tn

−∞
fn

(
t; τ1

)
dt = 1 − �

(
Tn − τ1

τ1/
√
n

)
.

Increasing the sample size dramatically increases the power of the test: with n = 100,
for instance, we get T100 = 1.1645 ns and 1 − β = 0.99999.

10.5.2 Pearson’s Test for Two Histogrammed Samples

The same quantity is measured in two laboratories. We have obtained a sample of
m = 100 observations from laboratory A and n = 200 data points from laboratory
B, classified in a histogram with N = 10 bins shown in Fig. 10.9. The numbers of
counts in each bin are represented by the samples

x (lab A) = {1, 3, 6, 14, 27, 20, 14, 10, 2, 3},
y (lab B) = {3, 2, 6, 20, 45, 63, 31, 24, 5, 1}.

Are these two samples mutually consistent from the perspective of the Pearson’s χ2

test with statistical significance α = 0.10?

✎ The statistic (10.6) is χ2-distributed, with ν = N − 1 = 9 degrees of freedom.
At chosen α = 0.10 we need its 90. percentile, available in TableD.3: χ2

0.90(ν)/ν =
1.63. By using (10.6) with the observed data we get x2/ν = 1.27. Since x2/ν <

χ2
0.90(ν)/ν, we can not reject the hypothesis that the observed distributions are con-

sistent. What if we are a bit less demanding and assume α = 0.25? In this case we
obtain χ2

0.75/ν = 1.26, which is a tad below the observed x2/ν: at confidence level
1 − α = 0.75 we can just claim that the distributions are mutually inconsistent.

Fig. 10.9 Histograms of
m = 100 and n = 200
observations obtained in two
laboratories, compared to
each other by the Pearson’s
χ2 test
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10.5.3 Flu Medicine

A classical pharmaceutical problem is the test of a drug intended to shorten the
duration of flu symptoms. In untreated patients their average duration is μ0 = 7 days,
with standard deviation σ = 1.5 days. The medicine is given to n = 100 random
patients when they develop first symptoms. In this sample the average symptom
duration is x = 5.5 days. Is this outcome statistically significant at significance α =
0.01?

✎ We are testing the null hypothesis H0 : μ = μ0 (medicine has no statistically
significant effect) against H1 : μ < μ0 (medicine shortens the duration of symptoms).
Assume that the distribution of X is normal; by (7.6) and (7.7) it can be assigned the
mean μ0 and variance σ2/n. Since the alternative hypothesis has the form μ < μ0,
the rejection region is at the lower end of the real axis, strictly speaking (−∞, x∗],
but practically [0, x∗], as the duration of symptoms can not be negative. We therefore
seek x∗ such that P

(
X ≤ x∗

) = α if H0 is true. In terms of the standardized variable
Z = (X − μ0)/(σ/

√
n) this means

P

(
Z ≤ x∗ − μ0

σ/
√
n

)
= �

(
x∗ − μ0

σ/
√
n

)
= α,

where � is the distribution function of the standardized normal distribution. Hence

x∗ − μ0

σ/
√
n

= �−1(α) = √
2 erf−1

(
2α − 1

) ≈ −2.33 =⇒ x∗ ≈ 6.65 days.

Because x < x∗, the hypothesis H0 (i.e. that a relatively small average duration has
only been observed by chance) can be rejected. The efficacy of themedicine is indeed
statistically significant.

10.5.4 Exam Grades

The eternal professor (not student) question: are exam grades normally distrib-
uted? ① The grades of a small sample of n = 10 students (in %) are x =
{14, 20, 22, 48, 55, 57, 63, 74, 88, 97}. Is this result compatible with a normal distri-
butionwithmeanμ0 = 50 and standard deviationσ0 = 30, at significanceα = 0.10?
② From a large population we take a sample of m = 6 exams of students majoring
in A (grades x = {24, 33, 56, 65, 77, 94}) and n = 8 exams of students majoring
in B (grades y = {27, 30, 34, 55, 69, 73, 88, 93}). Is there a statistically significant
difference between the A and B students, at α = 0.01?

✎ We use the Kolmogorov–Smirnov test. ① The null hypothesis is H0 : F̃n(x) −
F(x), where F is the distribution function of N (μ0,σ

2
0). The maximum distance

between F̃n and F is dn = 0.173. The exact critical value is d∗(n;α) = 0.369, while

http://dx.doi.org/10.1007/978-3-319-31611-6_7
http://dx.doi.org/10.1007/978-3-319-31611-6_7


280 10 Statistical Tests: Verifying Hypotheses

the asymptotic formula (10.9) gives 0.387. Since dn < d∗, H0 can not be rejected,
which speaks in favor of the normal distribution of grades.

② The null hypothesis is that the samples stem from the same population,
thus within statistical fluctuations their empirical distribution functions should also
be the same, H0 : F̃m(x) = F̃n(x). The maximum distance between F̃m and F̃n is
dmn = 0.167. The exact (tabulated) critical value is d∗(6, 8; 0.01) = 0.8, while the
asymptotic formula (10.13) gives 0.879. Since dmn < d∗, H0 can not be rejected.
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Part III
Special Applications of Probability



Chapter 11
Entropy and Information �

Abstract Entropy is introduced as a concept that quantifies the amount of infor-
mation contained in a signal or in its corresponding probability distribution. It is
defined for discrete and continuous distributions, along with its relative counterpart,
the Kullback-Leibler divergence that measures the “distance” between two distribu-
tions. The principle of maximum entropy is stated, paving the way to the derivation
of several discrete maximum-entropy distributions by means of Lagrange multiplier
formalism: the Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac distributions.
The relation between information and thermodynamic entropy is elucidated. A brief
discussion of continuous maximum-entropy distributions is followed by presenting
the method of maximum-entropy spectral analysis.

11.1 Measures of Information and Entropy

One of the possible paths to the definition of entropy leads through the concept
of information. This connection can be elucidated by studying a discrete random
variable X that can take finitely many values {x1, x2, . . . , xn} with probabilities
{p1, p2, . . . , pn}, where pi = P(X = xi) and

∑n
i=1 pi = 1. Imagine that each out-

come of the experiment with this variable, say, the event (X = x) occurring with
probability p = P(X = x), brings some information I(p). The value x can be seen
as a “signal” or “message” carrying information I(p).

How can its quantity be measured? Intuitively it is clear that any measure of
informationmust have logarithmic nature [1, 2]. If events with probabilities p1 and p2
occur independently (probability p1p2), the information of such a combined outcome
should equal the information supplied by single outcomes: the sentences “it snows”
and “it is Friday” together carry as much information as “it snows and it is Friday”.
Hence, a measure of information should be additive,

I(p1p2) = I(p1) + I(p2).

Besides, we wish the function I(p) to be non-negative, I(p) ≥ 0, monotonous,
p1 < p2 =⇒ I(p1) > I(p2), and continuous: small changes in p imply small changes
in I(p). An obvious candidate is the function

© Springer International Publishing Switzerland 2016
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I(p) = −C logb p

and in fact it can be shown that it is the only possible [3]. A measure defined in this
way has the sensible properties I(1) = 0 (a certain event carries no information)
and limp→0 I(p) = ∞ (a highly improbable event brings lots of information). The
arbitrary real constant C can be hidden in the base of the logarithm by using logb x =
log x/ log b, and is therefore irrelevant. If we adopt b = 2 and C = 1, information
is measured in bits. If we choose b = e and C = 1, it is measured in nats, differing
from bits only by the factor log 2.

There is only one step from information to information entropy. If individual
values xi occur with probabilities pi, i = 1, 2, . . . , n, the average quantity of received
or “created” information is

H(p1, p2, . . . , pn) =
n∑

i=1

piI(pi) = −
n∑

i=1

pi log pi. (11.1)

This “weighting scale” of information is called the entropy of a finite probability
distribution due to Shannon [3]. How can it be interpreted?

The essence of any random process is uncertainty. The outcomes are not pre-
dictable, but each received signal (a single value xi) reduces the uncertainty we had
prior to receiving it. The expression (11.1) can therefore be understood as a measure
of such uncertainty.Wemust realize thatH measures information entropy that should
not be confused with the thermodynamic entropy S. In the following ‘entropy’ means
information entropy.1

The measure (11.1) has many convenient properties. The uncertainty of a certain
event is zero, H(p = 1) = 0. The uncertainty of an impossible event is also zero,
H(p = 0) = 0, as nothing is unclear in an event that never occurs, besides, for-
mally limp→0 p log p = 0. The value of the entropy depends only on the probability
distribution {pi} and no other properties that might be assigned to the signal. It is
independent of the permutations among pi and does not change if n events are aug-
mented by an impossible event, H(p1, p2, . . . , pn) = H(p1, p2, . . . , pn, 0). Entropy
is maximal when we are “maximally uncertain”, i.e. when all outcomes are equally
likely: p1 = p2 = · · · = pn = 1/n (uniform distribution). For any other distribution
or under any condition imposed on pi the entropy decreases (see Example on p. 288
and [5]).

1Shannon had second thoughts on introducing the concept of entropy to information theory. It is said
that his decision was stimulated by the mathematician John Neumann who said [4]: “Firstly, you
have got the same expression−∑

i pi log pi as is used for entropy in thermodynamics and, secondly
and more importantly, since even after one hundred years, nobody understands what entropy is, if
you use the word entropy you will always win in an argument!” See also Sect. 11.3.4.
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Example In tossing a fair coin heads and tails are equally probable: p1 = p2 = 1
2 .

The entropy of the random variable with such distribution is

H = − (
1
2 log2

1
2 + 1

2 log2
1
2

) = 1.

Hence, tossing a coin supplies one bit of information on average. If the coin is unfair
such that, for instance, p1 = 9

20 and p2 = 11
20 , we get

H = − (
9
20 log2

9
20 + 11

20 log2
11
20

) ≈ 0.9928 < 1.

The entropy has decreased as the coin prefers a specific side, reducing the uncertainty.
The dependence of H on p1 = 1 − p2 is shown in the above figure. �
Example Throwing a die has the probability distribution pi = 1

6 , 1 ≤ i ≤ 6. (We
“know” that. How exactly this follows from the principle of maximum entropy is
discussed in Sect. 11.2.) The entropy of this uniform distribution is

H = −61
6 log2

1
6 = log2 6 ≈ 2.585.

Therefore, throwing a die yields about 2.585 bits of information on average. But if
someone tells us, say, that the number of dots is odd, the sample space shrinks since
there are only three possible outcomes, hence p1 = p3 = p5 = 1

3 and

H = −31
3 log2

1
3 = log2 3 ≈ 1.585.

The entropy has diminished as three outcomes instead of six imply less “uncertainty”,
less “indefiniteness”. The restriction to odd number of points on average means
log2 6 − log2 3 = log2 2 = 1 bit of acquired information. �

11.1.1 Entropy of Infinite Discrete Probability Distribution

If the partial sums
∑n

i=1 pi log pi converge when n → ∞, then

H(p1, p2, . . .) = −
∞∑

i=1

pi log pi (11.2)
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represents the entropy of an infinite discrete probability distribution.

Double example For the geometric distribution pi = 1/2i (i = 1, 2, . . .) the
sum (11.2) is not difficult to calculate: −∑∞

i=1 pi log pi = − log 2
∑∞

i=1 pi log2 pi =
log 2

∑∞
i=1 i/2

i = 2 log 2. So its entropy is 2 bits.
With pi = 1/(a i log2 i), where i = 2, 3, . . . and a = ∑∞

k=2 1/(k log
2 k), we are

not that fortunate: even though a ≈ 2.10974 < ∞ and the distribution is normalized,∑∞
i=2 pi = 1,we realize that−∑∞

i=1 pi log pi = ∞. The entropyof such adistribution
does not exist (or we say that it has infinite entropy). �

11.1.2 Entropy of a Continuous Probability Distribution

The entropy of a continuous probability distribution is defined by analogy to the
discrete formulation (11.1). If X is a continuous random variable with the probability
density f , the entropy of its distribution is

H(X) = −
∫ ∞

−∞
f (x) log f (x) dx. (11.3)

Note that we are using the notation H(X) instead of, say, H(f ). Information and
entropy may be assigned both to the random variable itself or to its probability
distribution. There is no general consensus about that, so we will adopt the notations
I(X) and I(p1, p2, . . .) as well as H(X) and H(p1, p2, . . .) in the discrete case—just
as H(X) and H(f ) in the continuous case—as equivalent.

Example The entropyof the uniformdistributionU(a, b)or the uniformly distributed
continuous random variable X ∼ U(a, b) is

H(X) = − 1

b − a
log

1

b − a

∫ b

a
dx = log(b − a). (11.4)

The result clearly depends only on the difference b− a. This means that all uniform
distributions with the same spacing have the same entropy. �
Example The distribution with the probability density

f (x) =
{
0 ; x < e,
1/(x log2 x) ; x ≥ e,

is normalized,
∫∞
−∞ f (x) dx = 1, but − ∫∞

−∞ f (x) log f (x) dx = ∞. Its entropy is
infinite (or: does not exist). �
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11.1.3 Kullback–Leibler Distance

Imagine a time series (signal, sequence) with values distributed according to a dis-
crete probability distribution p = {p1, p2, . . .}. The recorded signal contains a certain
information. We measure another sequence with values corresponding to the distri-
bution q = {q1, q2, . . .}. Has the new sample brought any additional information
with respect to the original data set? In other words, how “distant” to each other—in
the entropy sense—are the two distributions? A measure of this “remoteness” is the
Kullback-Leibler distance or divergence, sometimes also called relative entropy [6].
For discrete distributions p and q it is defined as

DKL(p‖q) =
∑

i

pi log
pi
qi

,

while for continuous distributions with densities p and q it is formulated as

DKL(p‖q) =
∫ ∞

−∞
p(x) log

p(x)

q(x)
dx.

The concept of distance refers to the property DKL(p‖q) ≥ 0, where the equality
sign applies precisely when p = q. Moreover, DKL(p‖q) �= DKL(q‖p).
Example A seismological study [7] resulted in the distribution of vertical compo-
nents of seismic velocities. The signals (348 time series lasting 68 hours each) were
frequency-filtered, so that they corresponded to oscillations with periods (5–10) s
and (10–20) s on the time scale. The obtained distributions p1 and p2 shown in
Fig. 11.1 (left) were fitted by normal distributions q1 and q2. For all 348 samples,

Fig. 11.1 [Left] Distributions of vertical seismic velocities (histograms) and the correspond-
ing normal distributions as best fits to the data (brighter curves). [Right] The Kullback-Leibler
distance between the measured distributions and the normal distributions from the left panel,
DKL(p1‖q1) = •, DKL(p2‖q2) = ◦



288 11 Entropy and Information �

relative entropiesDKL(p1‖q1) andDKL(p2‖q2)were calculated.As shown inFig. 11.1
(right), the “distance” of the second distribution from the normal is much larger, i.e. it
is “much less Gaussian”. �

11.2 Principle of Maximum Entropy

We have seen that in a random process the “uncertainty”— i.e. its information
entropy—is largest when all of its outcomes are equally probable. This realiza-
tion has been succinctly expressed already by Laplace in his principle of insufficient
reason or principle of indifference: in the absence of a specific reason to distinguish
between two or more outcomes, the best strategy is to treat them as equally probable.

The principle of maximum entropy builds upon and upgrades this guideline: in
any circumstance where incomplete information is available—for instance, in a sam-
ple of observations—we strive to quantitatively describe the data by a probability
distribution that is consistent with all known information, yet at the same time as
“nonrestrictive” as possible, “uncertain”, “free” with respect to the unknown infor-
mation.2 Laplace’s argument offers only the negative lever-arm “in the absence of ...”,
while the principle of maximum entropy offers clearly defined, positive tool in the
sense of determining the distribution that is “as nonrestrictive as possible”. It is pre-
cisely this aspect that removes the flavor of arbitrariness from Laplace’s principle [8,
9].

We are using the words like “lever-arm”, “aspect”, “flavor”—all loose, non-
mathematical concepts! The principle of maximum entropy can not be strictly
“proven”, yet de facto practically all known probability distributions follow from
it in a very natural manner. In contrast to Laplace, it has the important property that
each outcome not absolutely excluded by a known piece of information is assigned a
non-zero contribution. Initial reading on maximum entropy is offered by the review
article [10]; for a very mathematically tinted discussion see [11].

Example According to Laplace, throwing a fair die corresponds to the uniform dis-
tribution pi = 1/6, i = 1, 2, . . . , 6. One can reach the same conclusion by invoking
the principle of maximum entropy.Wemaximize−∑6

i=1 pi log pi with the condition∑6
i=1 pi = 1. This can be done by the classical method of Lagrange multipliers. We

calculate the first derivative of the Lagrange function

L = −
∑6

i=1
pi log pi − λ

(∑6

i=1
pi − 1

)

with respect to pi and set it to zero. It follows that ∂L/∂pi = − log pi − 1 − λ = 0
and pi = e−λ−1. Hence pi do not depend on i (that is, they are all equal) and their

2As shown below, the simplest example is the uniform distribution: if no additional condition is
imposed on the distribution apart from normalization, the distribution with the maximum entropy
is precisely the uniform distribution. (This applies in both the discrete and continuous cases.)
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Fig. 11.2 Discrete distribution of values in throwing a fair die and the principle of maximum
entropy. [Left] Normalized distribution with no restrictions (constraints). [Right] Normalized dis-
tribution with constraints (11.11) and (11.12)

sum must be 1. Therefore p1 = p2 = · · · = p6 = 1/6, see Fig. 11.2 (left). In the
following this Example will be expanded into a more general tool based on Lagrange
multipliers. �

11.3 Discrete Distributions with Maximum Entropy

11.3.1 Lagrange Formalism for Discrete Distributions

On any discrete probability distribution we may impose additional conditions or
constraints. The constraint we indeed must impose is the normalization requirement∑n

i=1 pi = 1. But we may also include conditions of the form

n∑

i=1

pi fj(xi) = f j, j = 1, 2, . . . ,m. (11.5)

An example of such constraint is the requirement that the average number of dots
in throwing a die is 4, which is expressed as

∑6
i=1 ipi = 4. The distribution that

maximizes the entropy at given constraints can be calculated by the general method
of Lagrange multipliers. To each of the m + 1 constraints (normalization plus m
conditions of the form (11.5)) we assign its multiplier and minimize

L = −
n∑

i=1

pi log pi − (λ0 − 1)

(
n∑

i=1

pi − 1

)
−

m∑

j=1

λj

(
n∑

i=1

pifj(xi) − f j

)
.

(11.6)

In the second term we have subtracted 1 from λ0 in order to cancel the 1 from the
derivative of the first sum. No harm has been done: λ0 is just as good a multiplier as
λ0 − 1. We calculate the derivative of L with respect to pi and set it to zero:



290 11 Entropy and Information �

∂L
∂pi

= − log pi − 1 − λ0 + 1 −
m∑

j=1

λjfj(xi) = 0. (11.7)

It follows that

pi = exp

⎛

⎝−λ0 −
m∑

j=1

λjfj(xi)

⎞

⎠ . (11.8)

We insert this in
∑n

i=1 pi = 1 and extract from it the factor exp(λ0) called the phase
sum or the partition function:

Z = eλ0 =
n∑

i=1

exp

⎛

⎝−
m∑

j=1

λjfj(xi)

⎞

⎠ . (11.9)

We take the logarithm of the phase sum,

logZ = λ0 = log

⎡

⎣
n∑

i=1

exp

⎛

⎝−
m∑

j=1

λjfj(xi)

⎞

⎠

⎤

⎦ ,

calculate its derivative with respect to λj and, finally, multiply the expressions in the
numerator and denominator of the obtained fraction by e−λ0 :

∂(logZ)

∂λj
= −∑n

i=1 fj(xi) exp
(−λ0 − ∑m

k=1 λkfk(xi)
)

∑n
i=1 exp

(−λ0 − ∑m
k=1 λkfk(xi)

) = −∑n
i=1 fj(xi)pi∑n
i=1 pi

= −f j.

This is a system of m equations for m unknowns λj, j = 1, 2, . . . ,m that needs to
be solved for better or worse. The calculated multipliers yield the final formula for
individual probabilities corresponding to the maximum-entropy distribution:

pi = 1

Z
exp

⎛

⎝−
m∑

j=1

λjfj(xi)

⎞

⎠ , i = 1, 2, . . . , n. (11.10)

Example A die has been tweaked such that the probability of obtaining three dots
is twice the probability of getting two, and the probability of observing four dots is
twice the probability of finding five. Calculate, with these restrictions, the probability
distribution of the number of dots p = {p1, p2, p3, p4, p5, p6} that is consistent with
the maximum-entropy assumption!
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Normalization and the two specified conditions introduce the constraints

p1 + p2 + p3 + p4 + p5 + p6 − 1 = 0,

−2p2 + p3 = 0, (11.11)

p4 − 2p5 = 0. (11.12)

We see that f1(x2) = f2(x5) = −2, f1(x3) = f2(x4) = 1 and f 1 = f 2 = 0. The
appropriate Lagrange function is

L = −
∑6

i=1
pi log pi − (λ0 −1)

(∑6

i=1
pi − 1

)
−λ1

(−2p2 +p3
)−λ2

(
p4 −2p5

)
,

but there is no need to calculate its derivative (11.7) again, since (11.9) immediately
gives us the partition function

Z = 2 + e2λ1 + e−λ1 + e−λ2 + e2λ2 , (11.13)

and thence a system of two equations for λ1 and λ2:

∂(logZ)

∂λ1
= 1

Z

(
2e2λ1 − e−λ1

) = 0,
∂(log Z)

∂λ2
= 1

Z

(−e−λ2 + 2e2λ2
) = 0.

Its solution is λ1 = λ2 = − 1
3 log 2, so that (11.13) yields Z ≈ 5.77976. The final

result then follows from (11.10):

p1 = p6 ≈ 0.1730, p2 = p5 ≈ 0.1090, p3 = p4 ≈ 0.2180.

See Fig. 11.2 (right) and think: we certainly have not anticipated the distribution
pi = 1/6 (1 ≤ i ≤ 6) after all this rattle; but why is the answer not simply p1 = p2 =
p3/2 = p4/2 = p5 = p6 = 1/8? Why did the probabilities p1 and p6 change from
their “Laplacian” values of 1/6 even though the constraints (11.11) and (11.12) do
not address them at all? �

11.3.2 Distribution with Prescribed Mean and Maximum
Entropy

Amongall finite discrete distributionswith probabilitiespi (1 ≤ i ≤ n) andprescribed
arithmetic mean μ (1 ≤ μ ≤ n) the one with the maximum entropy is the power
distribution. One can see that if one maximizes the entropy −∑n

i=1 pi log pi with the
constraints

n∑

i=1

pi = 1,
n∑

i=1

ipi = μ, (11.14)
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Fig. 11.3 Finite discrete
distributions (n = 30) with
prescribed arithmetic means
μ = 5, 10 and 15.5 and
maximum entropy. In the last
case the power distribution
has degenerated into the
uniform distribution

i.e. the Lagrange function

L = −
n∑

i=1

pi log pi − (λ0 − 1)

(
n∑

i=1

pi − 1

)
− λ1

(
n∑

i=1

ipi − μ

)
.

From ∂L/∂pi = 0 it follows that pi = e−λ0e−λ1i ≡ abi, where i = 1, 2, . . . , n. When
this is inserted in (11.14), two equations for the unknowns a and b follow:

a
n∑

i=1

bi = ab
1 − bn

1 − b
= 1, a

n∑

i=1

ibi = ab

[
1 − bn

(1 − b)2
− nbn

1 − b

]
= μ.

The system is solved numerically. Taking n = 30 and μ = 5, 10, 15.5 yields
(a, b) ≈ (0.2479, 0.8016), (0.09181, 0.9229), (0.03333, 1.0000), respectively. The
obtained power distributions with calculated parameters are shown in Fig. 11.3.

11.3.3 Maxwell–Boltzmann Distribution

Assume that a physical system possesses energy levels with single-particle energies
ε1, ε2, . . . , εn that particles occupywith probabilities p1, p2, . . . , pn. Let the expected
value of the energy, ε, be prescribed. What is the probability distribution of particles
that is consistent with the assumption of maximum entropy? We must maximize the
entropy with the constraints

n∑

i=1

pi = 1,
n∑

i=1

piεi = ε, (11.15)

that is, the Lagrange function

L = −
∑n

i=1
pi log pi − (λ0 − 1)

(∑n

i=1
pi − 1

)
− λ1

(∑n

i=1
piεi − ε

)
.
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This means ∂L/∂pi = − log pi−λ0−λ1εi = 0 or pi = e−λ0e−λ1εi ≡ a e−λ1εi , where
i = 1, 2, . . . , n. When this is inserted in (11.15), it follows that

pi = e−λ1εi

∑n
i=1 e

−λ1εi
, ε =

∑n
i=1 εi e−λ1εi

∑n
i=1 e

−λ1εi
. (11.16)

If we set 1/λ1 = kBT , where kB is the Boltzmann constant, these expressions specify
the Maxwell-Boltzmann distribution (see also Sect. 11.3.4).

Example We discuss a system with three (n = 3) discrete energy levels ε1, ε2 = 4ε1
and ε3 = 9ε1, shown in Fig. 11.4 (left). We are interested in the level occupation
probabilities pi at three inverse values of the λ1 parameter, say, 1/λ1 = ε1, 3 ε1 and
10 ε1. By using (11.16) we obtain

1/λ1 = ε1 : {p1, p2, p3} ≈ {0.9523, 0.0474, 0.0003}, ε ≈ 1.145 ε1,
3 ε1 : {0.6957, 0.2559, 0.0483}, 2.155 ε1,

10 ε1 : {0.4566, 0.3383, 0.2052}, 3.656 ε1.

The probabilities pi are shown in Fig. 11.4 (right). The average energy ε ≈ 3.656 ε1
in the case of 1/λ1 = kBT = 10 ε1, lying just slightly below ε2, is denoted by the
dashed line in the level scheme (left part of Figure).

The reverse task is also interesting: to what temperaturemust the system be heated
that the average energy will equal a specific value? If, for example, we wish to attain
ε = 3 ε1, wemust set 1/λ1 = 5.5455 ε1, i.e. crank up the heater toT = 5.5455 ε1/kB,
where {p1, p2, p3} ≈ {0.5499, 0.3201, 0.1299}. �

Fig. 11.4 Maxwell-Boltzmann statistics in a three-level system. [Left] The circles approximately
denote the distribution of N = 10 particles corresponding to 1/λ1 = 10 ε1 (N1 = p1N ≈ 5,
N2 = p2N ≈ 3, N3 = p3N ≈ 2), and the dashed line indicates the average energy ε ≈ 3.656 ε1.
[Right] The maximum-entropy probability distribution for various values of 1/λ1 = kBT . At high
T the distribution approaches the uniform distribution!
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11.3.4 Relation Between Information and Thermodynamic
Entropy

Themathematical form of the theory of information entropy is identical to the formu-
las for entropy obtained in the framework of statistical mechanics. In other words:
the rules of statistical mechanics are principles of statistical inference in physical
garb. Let εi(α1,α2, . . .) be the energy levels of a physical system with parameters
αi specifying quantities like volume, external electro-magnetic field, gravitational
potential, and so on. At given mean energy ε the probabilities pi for the occupation
of levels εi are given by a special form of (11.8), readily identified as the Maxwell-
Boltzmann distribution if one identifies λ1 = 1/(kBT). Similar arguments [8, 9] can
be used to accommodate free energy

F(T ,α1,α2, . . .) = U − TS = −kBT log Z(T ,α1,α2, . . .) (11.17)

in the framework of statistical inference, as well as thermodynamic entropy,

S = −∂F

∂T
= −kB

∑

i

pi log pi,

formally differing from the information entropy only by the Boltzmann constant
providing the appropriate units.

From (11.17) it also becomes clear why in the three-level system in Fig. 11.4
at high temperatures particles fail to accumulate at the highest level as one might
intuitively expect, but rather their distribution approaches the uniform distribution
(p1, p2 and p3 all tend to 1/3). Minimizing the free energy F = U − TS at T = 0
means minimizing the internal energy U, so at T = 0 indeed all particles occupy the
lowest level. But at high T one has U � TS, so in this limit minimizing F implies
maximizing S—thus the uniformity of the distribution.

Example A pair of elementary magnetic dipoles (e.g. electrons with magnetic
moments μ0 treated classically) is exposed to a homogeneous external field �B. Each
dipole can only be oriented along �B or opposite to it, so four configurations are
possible, shown in Fig. 11.5 together with their magnetic energies εm = −�μ0 �B. At
what temperature the average energy of this system (at given magnetic field density
B = |�B|) is equal to ε = −μ0B and the entropy maximal?

Fig. 11.5 Configurations of a pair of magnetic dipoles (with individual magnetic moments μ0) in
an external field and the corresponding magnetic energies
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From (11.16) we obtain
∑4

i=1 εi e−λ1εi = ε
∑4

i=1 e
−λ1εi or

−2μ0B e−λ1(−2μ0B) + 2μ0B e−λ1(2μ0B) = −μ0B
(
2 + e−λ1(−2μ0B) + e−λ1(2μ0B)

)
.

Solving this equation for λ1 we get λ1 = 1/(kBT) = 1
2 log 3/(μ0B) ≈ 0.549/(μ0B)

or T ≈ 1.82μ0B/kB. At this temperature the expected occupation probabilities are
p1 = 0.5625, p2 = p3 = 0.1875 and p4 = 0.0625. �

11.3.5 Bose–Einstein Distribution

Let us discuss a more complex problem of N particles that may occupy n energy
levels with energies εi, i = 1, 2, . . . , n. Let pij be the conditional probability that
the ith level contains j particles, j = 0, 1, 2, . . . (the number of particles on the
individual level is not restricted). The condition—namely that the system is in the
ith state—is given by the prior probability qi, so that Pij = qipij. If the probabilities
qi are unknown, we may recall Laplace and simply set qi = 1/n. The distribution of
particles pij, consistent with the requirement of maximum entropy, is then found by
maximizing the entropy with the constraints

n∑

i=1

qi = 1,
∞∑

j=0

pij = 1,
n∑

i=1

qi

∞∑

j=0

jpij = N,

n∑

i=1

qiεi

∞∑

j=0

jpij = ε, (11.18)

where ε is the prescribed average system energy. When the system is in the ith state,
its entropy is −∑∞

j=0 pij log pij, so the total entropy is

−
n∑

i=1

qi

∞∑

j=0

pij log pij.

This can also be seen if the expression for entropy is rewritten as

−
∑

ij

Pij logPij = −
∑

ij

qipij log
(
qipij

) = −
∑

i

qi log qi −
∑

i

qi
∑

j

pij log pij,

where we have used
∑

j pij = 1, so the first term plays no role in taking the derivative
with respect to pij. The Lagrange function to be minimized is then

L = −
n∑

i=1

qi

∞∑

j=0

pij log pij −
n∑

i=1

(
λi − qi

)
⎛

⎝
∞∑

j=0

pij − 1

⎞

⎠

−α

⎛

⎝
n∑

i=1

qi

∞∑

j=0

jpij − N

⎞

⎠ − β

⎛

⎝
n∑

i=1

qiεi

∞∑

j=0

jpij − ε

⎞

⎠ , (11.19)
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whereα and β are additional Lagrangemultipliers. Taking the derivative with respect
to pij we get ∂L/∂pij = −qi(1 + log pij) − (λi − qi) − αjqi − βjqiεi = 0. From
here we express pij and insert it in (11.18). A brief calculation [5] then leads to the
occupation probabilities

pij = Ai e
−(α+βεi)j, Ai = 1 − e−(α+βεi), (11.20)

as well as to the formulas for the number of particles and system energy,

N =
n∑

i=1

qi
exp(α + βεi) − 1

, ε =
n∑

i=1

qiεi
exp(α + βεi) − 1

, (11.21)

where β = 1/(kBT). We also set α = βμ = μ/(kBT), where μ is the chemical
potential. The expected number of particles on the ith level is

Ni =
∞∑

j=0

jpij =
∞∑

j=0

jAi e
−(α+βεi)j = 1

exp(α + βεi) − 1
, (11.22)

where α and β must be determined from (11.21) at known N and ε. One also has

N =
n∑

i=1

qiNi, ε =
n∑

i=1

qiεiNi.

The obtained distribution is suitable for the description of particles with integer spin
(bosons), e.g. photons, atoms with even numbers of electrons, and nuclei with even
numbers of nucleons.

If we are dealing with bosons whose number is not conserved (virtual photons,
phonons, magnons), there is no restriction on the particle number N , hence the third
constraint in (11.18) and the third term in (11.19) are superfluous. In this case α = 0
and therefore the chemical potential also vanishes: μ = 0.

11.3.6 Fermi–Dirac Distribution

The Fermi-Dirac distribution describes fermionic systems, i.e. systems of particles
with non-integer spins

(
1
2 ,

3
2 , . . .

)
. For such particles Fermi’s rule says that the same

energy level can not be occupied by two (or more) particles: the level can be vacant
or inhabited by precisely one particle. To determine the corresponding maximum-
entropy distributionwe can exploit our previous derivation, wherewe restrict j = 0, 1
in (11.18). The expression for occupation probabilities still has the form (11.20),
while (11.21) is replaced by
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N =
n∑

i=1

qi
exp(α + βεi) + 1

, ε =
n∑

i=1

qiεi
exp(α + βεi) + 1

,

and (11.22) by

Ni = 1

exp(α + βεi) + 1
.

11.4 Continuous Distributions with Maximum Entropy

Maximum-entropy continuous distributions with imposed additional constraints can
also be handled by the Lagrangemultiplier method.We discuss a single paradigmatic
case: a distribution whose variance σ2 is prescribed and has maximum entropy.
One must maximize (11.3) with the constraints

∫∞
−∞ f (x) dx = 1 and

∫∞
−∞(x −

μ)2f (x) dx = σ2, where μ is a free parameter. By analogy to the discrete case (11.6)
the Lagrange function is

L = −
∞∫

−∞
f (x) log f (x) dx − (λ0 − 1)

⎡

⎣
∞∫

−∞
f (x) dx − 1

⎤

⎦ − λ1

⎡

⎣
∞∫

−∞
(x − μ)2f (x) dx − σ2

⎤

⎦ .

The variation of the first term is

δ

[
−
∫ ∞
−∞

f log f dx

]
= −

∫ ∞
−∞

[
δf log f + f

1

f
δf

]
dx =

∫ ∞
−∞

(−δf )
[
log f + 1

]
dx.

By the variation of the whole Lagrange function, which is set to zero,

δL =
∫ ∞

−∞

(−δf (x)
) [
log f (x) + λ0 + λ1(x − μ)2

]
dx = 0,

we get log f (x)+λ0 +λ1(x−μ)2 = 0 or f (x) = exp
(−λ0 −λ1(x−μ)2

)
. We insert

this function into the constraint equations:

1 =
∫ ∞

−∞
f (x) dx = e−λ0

∫ ∞

−∞
e−λ1(x−μ)2dx = e−λ0

√
λ1

∫ ∞

−∞
e−t2 dt =

√
π

λ1
e−λ0 ,

σ2 =
∫ ∞

−∞
(x − μ)2f (x) dx = e−λ0

√
λ3
1

∫ ∞

−∞
t2 e−t2 dt = 1

2

√
π

λ3
1

e−λ0 .

It follows that λ1 = 1/(2σ2), then the first equation gives e−λ0 = 1/(
√
2π σ). Hence

the desired density f corresponds to the normal distribution (3.7).
Two further interesting results refer to case when the mean is prescribed and the

case that the definition domain of X is a finite interval. The following theorems on

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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maximum-entropy distributions applicable to continuous random variables X with
density f and entropy H(X) are given without proof:

1. If var[X] = σ2 �= ∞, then H(X) exists and H(X) ≤ log
√
2π e σ2 holds true,

where the equality applies only if X ∼ N( · ,σ2)—in this case the mean can be
anything, as only an offset along the x-axis is involved.

2. If X is a non-negative random variable (f (x) = 0 for x < 0) with finite mean
E[X] = μ, then H(X) exists and H(X) ≤ log(μe) holds true, where the equality
applies only if X ∼ Exp(1/μ).

3. If the variable X is restricted to the interval [a, b], i.e. f (x) = 0 for x < a and
x > b, then H(X) exists and H(X) ≤ log(b − a) holds true, where the equality
applies only if X ∼ U(a, b)—see (11.4).

Example Let us fix the variance of a continuous distribution, σ2, and check that the
exponential and uniform distributions with such variance have lower entropy than
the normal with the same variance. By Theorem1 the normal distribution has entropy
log

√
2π e σ2 = logσ + log

√
2πe ≈ logσ + 1.42. The exponential distribution has

σ = √
var[X] = E[X] = μ (see (3.4) and Table4.1 and set λ = 1/μ). By Theorem2

its entropy is log(μe) = log(σe) = logσ + 1. The uniform distribution on [a, b]
has σ2 = (b − a)2/12 (Table4.1), so by Theorem3 its entropy is log(b − a) =
log

(
σ
√
12
) ≈ logσ + 1.24. �

11.5 Maximum-Entropy Spectral Analysis

The maximum-entropy principle also leads to a powerful tool for spectral analysis
of time series. Suppose we have a set of (generally complex) observations x =
{x0, x1, . . . , xT } at times 0, 1, . . . ,T . We are interested in the probability distribution
of these values, f , that minimizes the entropy H = − ∫

f (x) log f (x) dx. From the
data xi (values of Xi) we first form our fundamental observables, the temporal auto-
correlations

Ak(X) = 1

T + 1

T−k∑

i=0

X∗
i Xi+k, k = 0, 1, . . . ,m, m < T .

Their expected values

E[Ak(X)] =
∫

Ak(x)f (x) dx ≡ Ak

may be understood as continuous analogues of discrete constraints (11.5). If Xi are
complex, Ak are also complex in general, but it is readily noticed that

http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_4
http://dx.doi.org/10.1007/978-3-319-31611-6_4


11.5 Maximum-Entropy Spectral Analysis 299

Ak = 1

T + 1

T−k∑

i=0

X∗
i Xi+k = 1

T + 1

T∑

i=k

X∗
i−kXi =

(
1

T + 1

T∑

i=k

X∗
i Xi−k

)∗
:= A∗

−k .

As we shall see, this symmetry is essential if we wish that certain quantities—for
instance, the frequency spectrum of the measured signal—is purely real. We must
maximize the Lagrange function

L = H −
m∑

k=0

αk ReAk −
m∑

k=1

βk Im Ak,

where αk and βk are unknown Lagrange multipliers. The second sum runs from
k = 1, since the auto-correlation A0 = (T + 1)−1∑

i |Xi|2 is purely real, hence
Im A0 = 0. Therefore

L = H −
m∑

k=0

αk

2
(Ak + A−k) −

m∑

k=1

βk

2 i
(Ak − A−k)

= H − α0A0 −
m∑

k=1

αk − i βk

2
Ak −

m∑

k=1

αk + i βk

2
A−k = H −

m∑

k=−m

λkAk,

wherewehave denotedλk = (αk−i βk)/2 andλ−k = (αk+i βk)/2, so thatλ−k = λ∗
k .

We know how to solve the problem of maximizing such a Lagrange function from
the discrete case: see formulas (11.9) and (11.10). The probability density and the
partition function have the form

f (x) = Z−1 exp

(
−

m∑

k=−m

λkAk(x)

)
, Z =

∫
exp

(
−

m∑

k=−m

λkAk(x)

)
dx,

while the constraint equations are

∂(logZ)

∂λk
= −Ak, k = −m, . . . ,m. (11.23)

The sum
∑

k λkAk in the arguments of the exponentials can be written as

1

T + 1

(
m∑

k=0

λk

T−k∑

i=0

x∗
i xi+k +

m∑

k=1

λ−k

T∑

i=k

x∗
i xi−k

)
= 1

2

T∑

i,j=0

x∗
i Bijxj = 1

2
x†Bx,

where B is a banded ((2m + 1)-diagonal), (T + 1) × (T + 1) Toeplitz matrix with
the elements

Bij = 2

T + 1
Cij, Cij =

{
λj−i ; |i − j| ≤ m,

0 ; |i − j| > m.
(11.24)
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The properly normalized probability density we are seeking is therefore

f (x) = | det B|1/2
(2π)(T+1)/2

exp

(
−1

2
x†Bx

)
, (11.25)

which is the density of the multivariate normal distribution (4.23). Note that B is
Hermitian, B = B†. It must also be positive definite, otherwise f does not exist.

11.5.1 Calculating the Lagrange Multipliers

The entropy corresponding to the obtained probability density is

H = −
∫

f (x) log f (x) dx = −
∫

f (x)
[
log

| det B|1/2
(2π)(T+1)/2

− 1

2
x†Bx

]
dx

= − log
| det B|1/2
(2π)(T+1)/2

+ 1

2
E
[
X†BX

]

= −1

2
log | det B| + T + 1

2

(
1 + log 2π). (11.26)

Here we have used the relation E
[
X†BX

] = T + 1 which is easy to prove.3 The
phase sum is nothing but the multi-dimensional Gauss integral

Z =
∫

exp

(
−1

2
x†Bx

)
dx = (2π)(T+1)/2

| det B|1/2 ,

so that

logZ = T + 1

2
log 2π − 1

2
log | det B|.

Using the relation between the determinants | det B| = (2/(T + 1))T+1| detC| or

log | det B| = (T + 1) log(2/(T + 1)) + log | detC|, (11.27)

3Let X = (X1,X2, . . . ,Xd)
T be a d-dimensional vector of complex random variables with mean

µ = (μ1,μ2, . . . ,μd)
T and covariance matrix �. Then any constant symmetric matrixM satisfies

E
[
X†MX

] = E
[
tr
(
X†MX

)]= E
[
tr
(
MXX†

)]= tr
(
M E

[
XX†

])= tr
(
M
(
� + µµ†

)) = tr
(
M�

) +
tr
(
Mµµ†

) = tr
(
M�

) + µ†Mµ. In our case (see (11.25)) B in the density fX(x) is Hermitian,
but by decomposing B = K†K and transforming Y = Kx we can write X†BX = Y†Y , so that
fY (y) ∝ exp

(−y†y/2
)
. This is the density of the multivariate normal distribution with mean µ = 0

and covariance matrix � = I . It follows that E
[
X†BX

] = E
[
Y†Y

] = d = T + 1.

http://dx.doi.org/10.1007/978-3-319-31611-6_4
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(11.23) can be written as

Ak = −∂(log Z)

∂λk
= 1

2

∂

∂λk

(
log | detC|), k = −m, . . . ,m.

By Szegő’s theorem [12] at fixed m we have

lim
T→∞

1

T + 1
log | detC| = 1

2π

∫ 2π

0
log p(φ) dφ, (11.28)

where

p(φ) =
m∑

k=−m

λk e
i kφ.

For T � m this leads to the approximation

Ak = T + 1

2

1

2π

∫ 2π

0

1

p(φ)

∂p(φ)

∂λk
dφ = T + 1

2

1

2π

∫ 2π

0

ei kφ

p(φ)
dφ.

This is the key formula connecting the auto-correlations Ak to the Lagrange multi-
pliers λk contained in p(φ). Let us denote ηk = (2/(T + 1))λk and write

p̃(φ) = 2

T + 1
p(φ) =

m∑

k=−m

ηk e
i kφ =

m∑

k=−m

ηkz
k = g(z), (11.29)

where z = eiφ. Calculating Ak requires an integration along the unit circle in the
complex plane:

Ak = 1

2π

∫ 2π

0

ei kφ

p̃(φ)
dφ = 1

2π i

∮
zk−1

g(z)
dz, k = −m, . . . ,m. (11.30)

It turns out [13] that g(z) can be factorized as

g(z) = G(z)
[
G(1/z∗)

]∗
, G(z) =

m∑

k=0

gkz
−k . (11.31)

The first factor,G(z), has zeros only within the unit circle, and the second factor only
outside of it; the function g(z) hasm zeros within the unit circle,m zeros outside and
one on the circle. By the convolution of gj and Ak we get

m∑

j=0

gjAk−j = 1

2π i

∮ ∑m
j=0 gj z

k−j−1

G(z)
[
G(1/z∗)

]∗ dz = 1

2π i

∮
zk−1

[
G(1/z∗)

]∗ dz = 1

g∗
0

δk,0.
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This can be recast as the Yule-Walker system of equations

m∑

j=0

hjAk−j = δk,0, hj = g∗
0gj, k = 0, 1, . . . ,m,

or ⎛

⎜⎜⎜⎝

A0 A−1 · · · A−m

A1 A0 · · · A−m+1
...

...
. . .

...

Am Am−1 · · · A0

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

h0
h1
...

hm

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

1
0
...

0

⎞

⎟⎟⎟⎠ ,

where A−k = A
∗
k for all matrix elements. The last step is to use the obtained hk to

calculate the Lagrange multipliers

λk = T + 1

2
ηk, ηk =

jmax∑

j=jmin

gjg
∗
j+k = 1

|g0|2
jmax∑

j=jmin

hjh
∗
j+k, k = −m, . . . ,m,

where jmin = max{0,−k} and jmax = min{m,m−k}, so that η−k = η∗
k and λ−k = λ∗

k .
The matrix B from the definition (11.24) is thereby uniquely determined, and with it
the probability density (11.25).

11.5.2 Estimating the Spectrum

The power spectral density (PSD) of a signal is defined as

S(ω) =
∞∑

k=−∞
Ak e

−i kω,

where ω = 2πν and Ak are the auto-correlations of an infinite signal. In the true
world we usually only know its finite sample, so the obtained formulas will offer just
an estimate of the true frequency spectrum.With the calculated hk (k = 0, 1, . . . ,m),
the solutions of the Yule-Walker system, we define the function

H(z) =
m∑

k=0

hkz
−k =

m∑

k=0

g∗
0gkz

−k = g∗
0G(z).

From (11.31) it follows that

g
(
eiω

) = G
(
eiω

)[
G
(
eiω

)]∗ = ∣∣G
(
eiω

)∣∣2 = 1

|g0|2
∣∣H

(
eiω

)∣∣2.
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On the other hand, (11.30) can be used to write

∞∑

k=−∞
Ak e

−i kω = 1

2π

∫ 2π

0

1

p̃(φ)

( ∞∑

k=−∞
ei k(φ−ω)

︸ ︷︷ ︸
2πδ[0,2π](ω)

)
dφ = 1

p̃(ω)
= 1

g
(
eiω

) .

The power spectral density can therefore be estimated as

Ŝ(ω) = |g0|2∣∣H
(
eiω

)∣∣2
= h0∣∣∑m

k=0 hk e
−i kω

∣∣2
, |ω| ≤ π.

This formula (up to a multiplicative constant) is usually seen in the form

Ŝ(ν) = σ2

∣∣1 + ∑m
k=1 ak e

−i 2πkν�t
∣∣2

, |ν| ≤ 1

2�t
, (11.32)

where �t = ti+1 − ti (i = 0, 1, . . . ,T − 1), σ2 = 1/h0 and ak = hk/h0. In signal-
processing theory—see, for instance, [14]—the parameter σ2 represents the variance
of the Gaussian noise generated by the signal through the feedback loop with filter
F(z) = ∑

k akz
−k .

The described spectral estimation tool is called the auto-regression model; if the
process (the signal) has a Gaussian nature, it is also known as Maximum-Entropy
Spectral Analysis (MESA) [15]. How MESA works in practice is demonstrated by
the following Example.

Example We use the auto-regression method to analyze the signal

xi = sin
(
i 2π
10

)
+ 2 sin

(
i 4π
10

)
+ 3 sin

(
i 6π
10

)
+ 5

(
R − 1

2

)
, (11.33)

where R ∼ U(0, 1) and i = 0, 1, . . . , 1023, thus T + 1 = 1024. The time series
contains three frequency components with frequencies ν = 0.1, 0.2 and 0.3 with
amplitudes 1, 2 and 3, respectively. Besides, it is very noisy (last term in (11.33)).
The sample of the first 500 values of the signal is shown in Fig. 11.6 (left).

The estimate of the spectrum, calculated by (11.32) for two different m, is shown
in Fig. 11.6 (right). With increasingm the spikes become sharper, but spurious peaks
start to appear that are not expected to be present in the spectrum and represent
noise. �

By using the entropy expression and the relation between the determinants of
B and C one can derive an interesting formula relating entropy to power spectral
density. At large enough T Szegő’s theorem (11.28) can be understood as
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Fig. 11.6 [Left] The first 500 values of the signal (11.33). [Right] The estimate of the spectrum by
using the auto-regression method for two different m

log | detC| ≈ T + 1

2π

2π∫

0

log p(φ) dφ = T + 1

2π

⎡

⎣−2π log
2

T + 1
+

2π∫

0

log p̃(φ) dφ

⎤

⎦ ,

where we have used the relation (11.29) between p and p̃. We insert this in (11.26)
and consider (11.27); see also definition (11.24). It follows that

H ≈ −1

2

{
(T + 1) log

2

T + 1
+ T + 1

2π

[
−2π log

2

T + 1
+
∫ 2π

0
log p̃(φ) dφ

]}

+T + 1

2
(1 + log 2π)

= T + 1

2

[
(1 + log 2π) − 1

2π

∫ 2π

0
log p̃(φ) dφ

]
.

Since S(ω) = 1/̃p(ω), this also means

H

T + 1
≈ 1

2
log 2πe + 1

4π

∫ π

−π

log S(ω) dω.

where H/(T + 1) is the change of entropy per unit time (entropy rate). This is the
average “speed” of acquiring information in the measurement of a spectrum.
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Chapter 12
Markov Processes �

Abstract Markov processes are introduced as memoryless stochastic processes and
classified in four classes based on whether the time parameter is continuous or dis-
crete and whether the sample space is continuous or discrete. Two of them are
treated in more detail: discrete-time (“classical”) Markov chains and continuous-
time, continuous-state Markov processes. Long-time behavior of the chains is dis-
cussed, establishing the conditions for the formation of equilibrium distributions.
In the continuous case, the Markov propagator is defined along with a discussion
of moment functions, characterizing functions, and time evolution of the moments.
Two particular Markov processes, the Wiener and the Ornstein–Uhlenbeck process,
are given special attention due to their relevance for the study of diffusion.

Imagine a sequence of random variables X (t) describing the state of a dynamical
system at times t . In Sect. 6.7 such a sequence was called a random or stochastic
process [1]. A special class of random processes consists of processes in which the
state of the system at current t depends only on its state just prior to t , while all
earlier states are irrelevant for its time evolution: the process is memoryless. Such
processes are calledMarkov processes after the RussianmathematicianA.A.Markov
(1856–1922).

Markov harnessed statistical methods to analyze letter sequences in Pushkin’s
poemEugeneOnegin: hewas seeking probabilities of a vowel preceding a consonant,
a vowel appearing after the consonant, and so on, as well as the answer to the question
whether such estimates change with the length of the analyzed text and whether
Pushkin’s “statistical profile” is perhaps unique. In 1913 he presented his findings
to the Imperial Academy of Sciences in St. Petersburg [2] and thereby initiated a
completely novel field of research [3, 4].

Markovprocesses are divided in four families based onwhether the timeparameter
is continuous or discrete andwhether the values of X are continuous or discrete. In the
following we shall discuss two combinations: discrete variables with discrete time
steps—such processes are known as discrete-time Markov chains—and continuous
variables with a continuous time evolution.

© Springer International Publishing Switzerland 2016
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12.1 Discrete-Time (Classical) Markov Chains

AclassicalMarkov chain is a randomprocess X (t) in a finite discrete state space� =
{i0, i1, . . . , im} with discrete time t = 0, 1, 2, . . . For simplicity we denote X (t) =
Xt . The “memoryless” feature of the process is expressed by the relation

P
(
Xt+1 = jt+1 | Xt = jt , Xt−1 = jt−1, . . . , X0 = j0

) = P
(
Xt+1 = jt+1 | Xt = jt

)
.

In plain words: the probability of arriving to the state-space point jt+1 at time t + 1
is independent of all previous points except jt in which the system dwelled at time
t . Abbreviating jt = i and jt+1 = j , the right-hand side expresses the conditional
probability for the transition from Xt = i to Xt+1 = j in a single time step, the
so-called single-step transition probability,

pi j ≡ P
(
Xt+1 = j | Xt = i

)
, i, j ∈ �, (12.1)

which is at the heart of anyMarkov chain. The basic properties of probability demand∑
j∈� pi j = 1,∀i ∈ �. In the following we shall only discuss time-homogeneous

chains, in which the transition probabilities do not depend on time,

pi j = P
(
Xt+1 = j | Xt = i

) = P
(
X1 = j | X0 = i

)
.

Analogously one defines the probability for the transition from state i to state j after
n time steps, known as the n-step transition probability,

p(n)
i j = P

(
Xn = j | X0 = i

)
, p(1)

i j = pi j .

For different n these are related by the Chapman–Kolmogorov equation [5]

p(n+m)
i j =

∑

k∈�

p(n)
ik p(m)

k j . (12.2)

How can it be elucidated? The transition from state i to state j in n + m steps occurs
in n steps from the initial state i to the intermediate state k with probability p(n)

ik , and
thence inm steps to the final state j with probability p(m)

k j . The events “go from i to k
in n steps” and “go from k to j in m steps” are independent. The probability for the
whole transition is then obtained by the total probability formula (1.15) by summing
over all intermediate states k.

According to (12.1) the transition probabilities can be organized in the so-called
stochastic matrix P = [

pi j
]
, while the distribution of states which the system occu-

pies at time t , can be summarized by the row-vector

p(t) = (
P(Xt = j0), P(Xt = j1), . . . , P(Xt = jm)

)
.

http://dx.doi.org/10.1007/978-3-319-31611-6_1
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Since

pi (1) =
∑

k

pk(0)pki ,

the distribution p(1) at time t = 1 can be calculated from p(0) at time t = 0 by
simplymultiplying p(1) = p(0)P . Equation (12.2) then also tells us that themapping
between p(0) and the distribution p(t) at an arbitrary later time is as simple as it
gets, namely

p(t) = p(0)P t , (12.3)

where t is the power of the matrix P . Therefore the dynamics of the probability
distribution of the chain is completely determined by the probability distribution of
the initial state X0 and the one-step transition probabilities pi j .

12.1.1 Long-Time Characteristics of Markov Chains

If there is a non-zero probability of arriving to any state in � from any other state
in � we say that the Markov chain is irreducible. It is also important whether one
can return to the initial state or not. A state is periodic if it can be revisited by paths
with the numbers of steps whose greatest common divisors are greater than 1. In the
opposite case, the state is aperiodic. A state is reproducible if we certainly return to
it in finite time. If the chain is irreducible on the whole � and all states are aperiodic
and reproducible, we call it ergodic.

The bombardment with all these definitions has more than just academic purpose,
as it leads to the important concept of equilibrium distributions; see also Sect. 6.4.
The equilibrium distribution is defined by π = πP or

π j =
∑

k

πk pk j ,
∑

j

π j = 1. (12.4)

Ergodic chains possess a limit distribution which is equal to the equilibrium distrib-
ution:

lim
t→∞ p(t)

i j = π j ∀i, j ∈ �. (12.5)

No condition is imposed on the initial distribution (index i), so the attribute “equi-
librium” is justified. In finite � all states are reproducible,1 hence eigenvectors and
eigenvalues ofP can be found: the vectorπ representing the equilibrium distribution

1If the chain is irreducible and the states are reproducible (infinite� they always are), the equilibrium
distribution does not exist. If the chain is irreducible and its states are periodic, the limit (12.5) may
not exist or it may depend on i : an example is the matrix P = ((0, 1), (1, 0)) with the equilibrium
distribution π = (1/2, 1/2), as π = πP , but limt→∞ P t does not exist.

http://dx.doi.org/10.1007/978-3-319-31611-6_6
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is the left eigenvector of P with the largest possible eigenvalue λ1 = 1. Each initial
distribution p converges to the equilibrium as π − pP t = O(|λ2|t

)
, t → ∞, where

λ2 (|λ2| < 1) is the second largest eigenvalue of P .
In finite spaces� the Perron-Frobenius theorem [6] guarantees that for irreducible

chains there exists a vector π = (π j > 0) j∈� with components

π j = lim
t→∞

1

t

t∑

n=1

p(n)
i j ∀ j ∈ �, (12.6)

representing the equilibrium distribution regardless of the initial state i . For finite �

the methods (12.4) and (12.6) to compute the equilibrium distribution are equivalent.

Example Imagine a binary communication channel shown in the figure.

Each node receives a signal (bit) and passes it on to the next node with some prob-
ability, or there may be an error in the process so that the opposite bit is forwarded.
What happens at each node depends on its state: if the node receives bit 0, it is
forwarded correctly with probability P(Xt+1=0 | Xt =0) = 1 − a, while the proba-
bility of forwarding the wrong bit, 1, is P(Xt+1=1 | Xt =0) = a. If it receives bit 1,
the probability of correct transmittal is P(Xt+1=1 | Xt =1) = 1 − b, while the prob-
ability of passing on the wrong value, 0, is P(Xt+1=0 | Xt =1) = b. (Topologically
it all looks like Pushkin’s vowels and consonants!) Such error-prone communication
can be modeled by a discrete-time Markov chain on the state-space � = {0, 1}. The
variable Xt represents the bits 0 or 1 leaving the t-th node of the channel. Let us
choose a = 0.1 and b = 0.2, so the stochastic matrix is

P =
(
p00 p01
p10 p11

)
=

(
1 − a a
b 1 − b

)
=

(
0.9 0.1
0.2 0.8

)
.

Let p(0) = (
P(X0 = 0), P(X0 = 1)

) = (0.5, 0.5) be the initial state—the channel
input is a symmetric mixture of bits 0 and 1. We are interested in the behavior of
the chain at large “times”, i.e. the distribution of states 0 and 1 at the output of the
channel containing very many nodes. We could use formula (12.3),

p(t) = p(0)P t = (0.5, 0.5)

(
0.9 0.1
0.2 0.8

)t

,

but it requires us to compute the t-th power of P . Fortunately, our linear algebra
professor tells us that P t can be written as P t = λt

1P1 + λt
2P2, where
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P1 = 1

λ1 − λ2
(P − λ2 I ) , P2 = 1

λ2 − λ1
(P − λ1 I ) ,

and λ1, λ2 are the eigenvalues of P . They can be calculated by solving the secular
equation det (λI − P) = 0, whence λ1 = 1 and λ2 = 1 − a − b. Therefore

P t = P1 + (1 − a − b)tP2 = 1

a + b

{(
b a
b a

)
+ (1 − a − b)t

(
a −a

−b b

)}
.

By using the specified parameters a and b we get

P t =
(
0.9 0.1
0.2 0.8

)t

= 1

3

(
2 + 0.7t 1 − 0.7t

2 − 2 · 0.7t 1 + 2 · 0.7t
)

.

Hence the distribution of states at the t th node is

p(t) = (
P(Xt = 0), P(Xt = 1)

) =
(
2

3
− 0.7t

6
,
1

3
+ 0.7t

6

)

All we need to do now is limt→∞ p(t) = (2/3, 1/3), amounting to

P(X∞ = 0) = 2

3
, P(X∞ = 1) = 1

3
. (12.7)

It is no wonder that the chain “drifts” to a regime where the probability for output
0 is larger than the probability for 1, since b > a. We could have even guessed
the values (12.7) by reasoning that P(X∞ = 0) : P(X∞ = 1) = b : a = 2 : 1 and
P(X∞ = 0) + P(X∞ = 1) = 1. �
Example (Adapted from [7].) Can the long-time analysis of a Markov chain be used
to predictweather? Imagine a simplemodel that knowsonly threeweather conditions:
sunny (s), cloudy (c) and rainy (r), so the state space is � = {s, c, r}. Let the time
step be one day. Assume that the probabilities that tomorrow will be sunny, cloudy
or rainy if the weather today is sunny, are 0.6, 0.3 and 0.1; the probabilities that
the next day will be sunny, cloudy or rainy if the weather today is cloudy, are 0.2,
0.3 and 0.5; the probabilities of having sun, clouds or rain tomorrow if it is raining
today, are 0.4, 0.1 and 0.5, as shown by the graph. We arrange all nine conditional
probabilities in the stochastic matrix where the lines and rows correspond to today’s
and tomorrow’s weather conditions, respectively:

P =
s ↓ c ↓ r ↓

( )0.6 0.3 0.1 ← s
0.2 0.3 0.5 ← c
0.4 0.1 0.5 ← r

. (12.8)
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What is the probability of having rain in two days if it is cloudy today? It is given by
the Chapman–Kolmogorov equation (12.2):

(P2
)
cr = p(2)

cr =
∑

x∈�

pcx pxr = pcs psr + pcc pcr + pcr prr = 0.42.

And what is the probability of rain three days, five days . . . from now if it is cloudy
today? The answer always sits at the same spot: in the matrix element at the second-
row, third-column crossing of the matrices P3, P5, and so on:

P3 =
⎛

⎝
0.436 0.248 0.316
0.436 0.216 0.348
0.452 0.232 0.316

⎞

⎠ , P5 =
⎛

⎝
0.440 0.235 0.325
0.443 0.235 0.322
0.441 0.236 0.322

⎞

⎠ , . . .

We see that the columns of ever higher powers ofP become more and more constant
(independent of the rows): at long times we approach the equilibrium distribution
regardless of the initial state (Fig. 12.1).But formula (12.6) is impractical as it requires

Fig. 12.1 Time evolution of three components of the probability distribution p(t) at two different
initial distributions, p(0) = (0.2, 0.3, 0.5) and p(0) = (0.85, 0.05, 0.1). In both cases the Markov
chain with the stochastic matrix (12.8) converges to the stable distribution (12.9) in just a few steps
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us to compute high powers of P . Besides, the series has a slow convergence. It is
therefore preferable to solve the system (12.4):

πs = 0.6πs + 0.2πc + 0.4πr,

πc = 0.3πs + 0.3πc + 0.1πr,

πr = 0.1πs + 0.5πc + 0.5πr,

together with πs + πc + πr = 1. (The normalization condition is needed since only
two of these equations are independent. Thus we get three equations for three
unknowns.) The solution of the system is the equilibrium distribution

π = p(∞) ≈ (0.441, 0.235, 0.324). (12.9)

Of course the probabilities ps(∞), pc(∞) and pr(∞) also express the probabilities
for sunny, cloudy or rainy weather over a longer time period. If the values (12.9)
were in fact measured, say, over a period of one year, they could even be used to
calibrate the model—i.e. the elements of the stochastic matrix—so that it would
always converge to the desired end configuration. �

12.2 Continuous-Time Markov Processes

In continuous-time Markov processes the transitions between the states X (t) in a
dynamical system do not occur in discrete time jumps but rather in a continuous,
smooth time evolution. In the following—the notation mostly follows [8]—we dis-
cuss continuous-timeprocesses inwhich also the states themselves canbe represented
on the whole real axis, i.e. by a random variable X (t) ∈ R, t ≥ t0.

As we are dealing with continuous random variables, the set of variables
X (t1), X (t2), . . . , X (tn) can be assigned a joint probability density

f (1)
n

(
xn, tn; xn−1, tn−1; . . . ; x1, t1 | x0, t0

)
dxn dxn−1 · · · dx1

= P
(
X (ti ) ∈ [xi , xi + dxi ), i = 1, 2, . . . , n | X (t0) = x0

)
,

where the subscript n and the superscript (1) on f indicate that the n values
{x1, x2, . . . , xn} at times {t1, t2, . . . , tn} on the left of the | sign depend on one value
x0 at time t0 at its right. This applies to general time evolution; but Markov processes
are “memoryless” and therefore

f (i)
1

(
xi , ti |xi−1, ti−1; . . . ; x0, t0

) = f (1)
1

(
xi , ti |xi−1, ti−1

) ≡ f
(
xi , ti |xi−1, ti−1

)
.

In general, a state xi at time ti may depend on i states {xi−1, xi−2, . . . , x0} at all previ-
ous times {ti−1, ti−2, . . . , t0}, while in Markov processes only the state immediately
preceding it is relevant, i.e. xi−1 at time ti−1. Hence the joint probability density can
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be written as a product of densities for individual transitions:

f (1)
n

(
xn, tn; xn−1, tn−1; . . . ; x1, t1 | x0, t0

) =
n∏

i=1

f
(
xi , ti |xi−1, ti−1

)
.

It follows that for arbitrary time t2 on the interval t1 ≤ t2 ≤ t3,Chapman–Kolmogorov
equation applies:

f
(
x3, t3 | x1, t1

) =
∫ ∞

−∞
f
(
x3, t3 | x2, t2

)
f
(
x2, t2 | x1, t1

)
dx2.

In continuous language this equation conveys the same message as its discrete ana-
logue (12.2): the probability f (x3, t3 | x1, t1) dx3 for the transition from the state x1
at time t1 to some state on the interval [x3, x3 + dx3) at time t3 is the sum of proba-
bilities that this transition occurred through a state on any interval [x2, x2 + dx2) at
intermediate time t2.

12.2.1 Markov Propagator and Its Moments

The key quantity embodying the actual step between two states in a very short time
�t is the Markov propagator

�(�t; x, t) = X (t + �t) − X (t), given X (t) = x . (12.10)

The propagator tells us the state of the process at time t + �t , if at time t it was in
state x : the new state will be x + �(�t; x, t). The propagator depends on three real
parameters x , t and �t , but conventionally the latter is given the most prominent
spot: namely, � may be independent of x and t , but it must depend on �t . Since
X (t) is a random variable, the propagator is also a random variable, so it can be
assigned its own propagator density function � with the definition

�
(
ξ | �t; x, t) dξ = P

(
�(�t; x, t) ∈ [ξ, ξ + dξ)

)
.

The density � allows us to define the propagator moment functions

E
[
�n(�t; x, t)] =

∫ ∞

−∞
ξn �(ξ | �t; x, t) dξ = Mn(x, t)�t + O(�t),

where n = 1, 2, . . . The moment functions Mn and the density f are related by [8]

∂

∂t
f
(
x, t | x0, t0

) =
∞∑

n=1

(−1)n

n!
∂n

∂xn
[
Mn(x, t) f (x, t | x0, t0)

]
. (12.11)
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This is the Kramers–Moyal partial differential equation of infinite order describing
the time evolution of f (x, t | x0, t0) at fixed x0 and t0, for which all moments Mn and
the initial condition f (x, t0 | x0, t0) = δ(x − x0) must be known.

If we choose a short enough �t , the propagator �(�t; x, t) can be composed of
n propagators �i with which the process proceeds in time from state X (t0) = x to
states X (t1), X (t2), . . . , X (tn) in steps of length�t/n. These, however, can be made
so small that during a step the value of x remains almost constant:

�(�t; x, t) =
n∑

i=1

�i

(
�t

n
; X (ti−1), ti−1

)
≈

n∑

i=1

�i

(
�t

n
; x, t

)
. (12.12)

In this approximation all these steps become mutually independent, therefore
E

[
�(�t; x, t)] = n E

[
�(�t/n; x, t)] and var

[
�(�t; x, t)] = n var

[
�(�t/n;

x, t)
]
. It is easy to show2 that in this case the expected value and variance of the

Markov propagator must be proportional to the length of the time step:

E
[
�(�t; x, t)] = A(x, t)�t + O(�t),

var
[
�(�t; x, t)] = D(x, t)�t + O(�t),

where the functions A and D do not depend on�t . The key consideration follows. In
the mentioned approximation the right-hand side of (12.12) is a sum of independent
and identically distributed random variables, so by the central limit theorem the
variable � on its left is normally distributed,

�(�t; x, t) ∼ N
(
A(x, t)�t, D(x, t)�t

)
. (12.13)

The functions A and D are the characterizing functions of the Markov process.
Do not confuse them with the characteristic functions of Sect.B.3! Due to obvious
reasons A is called the drift function and D is known as the diffusion function. The
propagator density of a continuous Markov process is therefore

�
(
ξ | �t; x, t) = 1√

2πD(x, t)�t
exp

(
−

(
ξ − A(x, t)�t

)2

2D(x, t)�t

)
.

From here and from (12.13) we see3 that A and D are equal to the moment functions
M1 and M2, respectively, while it turns out that higher moments vanish:

M1(x, t) = A(x, t), M2(x, t) = D(x, t), Mn(x, t) = 0, n ≥ 3.

2We are referring to a simple lemma: is g(z) is a smooth function of z satisfying g(z) = ng(z/n)

for any positive integer n, it holds that g(z) = Cz, where C does not depend on z.
3The expected value is E[�(�t; x, t)] = M1(x, t)�t + O(�t), whence M1(x, t) = A(x, t). The
variance is given by var[�(�t; x, t)] = E[�2(�t; x, t)] − (E[�(�t; x, t)])2 = M2(x, t)�t +
O(�t) − (M1(x, t)�t + O(�t))2 = M2(x, t)�t + O(�t), therefore M2(x, t) = D(x, t).
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What is left of (12.11), then, is just the Fokker–Planck equation

∂

∂t
f (x, t | x0, t0) = − ∂

∂x

[
A(x, t) f (x, t | x0, t0)

] + 1

2

∂2

∂x2
[
D(x, t) f (x, t | x0, t0)

]
,

which is a partial differential equation of the second order that needs to be solved
with the initial condition f (x, t0 | x0, t0) = δ(x − x0).

12.2.2 Time Evolution of the Moments

The time evolution of the variable X is determined by the Markov propagator. But
how do its expected value and variance evolve? And what is the time evolution of
the expected value and variance of the random variable

S(t) =
∫ t

t0

X (t ′) dt ′, (12.14)

which is called the integral of theMarkov process? The answers to both questions for
any continuous-time Markov process are given by ordinary differential equations,
which we list without proof: for their derivation see e.g. [8]. The time evolution of
the expected value and variance of X (t) is given by the equations

d

dt
E

[
X (t)

] = E
[
A
(
X (t), t

)]
, t ≥ t0, (12.15)

d

dt
var

[
X (t)

] = 2
(
E

[
X (t)A

(
X (t), t

)] − E
[
X (t)

]
E

[
A
(
X (t), t

)])

+E
[
D

(
X (t), t

)]
, t ≥ t0, (12.16)

with initial conditions E
[
X (t0)

] = x0 and var
[
X (t0)

] = 0. The time evolution of the
corresponding moments of S(t) for t ≥ t0 is given by

E
[
S(t)

] =
∫ t

t0

E
[
X (t ′)

]
dt ′, (12.17)

var
[
S(t)

] = 2
∫ t

t0

cov
[
S(t ′), X (t ′)

]
dt ′, (12.18)

where the integrand in (12.18) is the solution of the auxiliary equation

d

dt
cov

[
S(t), X (t)

] = var
[
X (t)

] + E
[
S(t)A

(
X (t), t

)] − E
[
S(t)

]
E

[
A
(
X (t), t

)]

with the initial condition cov[S(t0), X (t0)] = 0.
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12.2.3 Wiener Process

The Wiener process is a Markov process in which the drift and diffusion functions
are constant, i.e. independent of x and t : A(x, t) = A and D(x, t) = D ≥ 0. In this
case, not much is left of (12.15) and (12.16); their solutions are

E
[
X (t)

] = x0 + A(t − t0), t ≥ t0, (12.19)

var
[
X (t)

] = D(t − t0), t ≥ t0, (12.20)

while from (12.17) and (12.18) we obtain

E
[
S(t)

] = x0(t − t0) + 1
2 A(t − t0)2, t ≥ t0, (12.21)

var
[
S(t)

] = 1
3D(t − t0)3, t ≥ t0. (12.22)

The Fokker–Planck equation also simplifies significantly,

∂

∂t
f (x, t | x0, t0) = −A

∂

∂x
f (x, t | x0, t0) + D

2

∂2

∂x2
f (x, t | x0, t0).

It is solved by the initial condition f (x, t |x0, t0) = δ(x − x0), and its solution is

f (x, t | x0, t0) = 1√
2πD(t − t0)

exp

(
−

(
x − x0 − A(t − t0)

)2

2D(t − t0)

)
. (12.23)

TheWiener process is therefore aMarkov process described by a normally distributed
variable withmean x0 + A(t − t0) and variance D(t − t0), as shown in Fig. 12.2. The
corresponding phenomenon in nature is self-diffusion, in which a particle with mass
M diffuses among a large ensemble of equally heavy particles (see also Sect. 12.2.4
and Example on p. 320).

Let us check our understanding of the Wiener process by a simple computer
simulation of the Fokker–Planck equation, where the exact functional form of A(x, t)
and D(x, t) can be freely chosen. We set t = t0 = 0, x = x0 = 0 and s = s0 = 0,
and choose a small enough �t . Then we repeat until desired:

1. Draw a value N ∼ N (0, 1).
2. s ← s + x �t
3. x ← x + A(x, t)�t + N√

D(x, t)�t
4. t ← t + �t
5. Write t , x(t) and s(t), and return to 1.

An example of such a simulation until t = 10 is shown in Fig. 12.3.
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Fig. 12.2 Time evolution of the probability density of a continuous-time Markov process with
constant drift and diffusion functions, A(x, t) = A and D(x, t) = D ≥ 0. The initial condition,
the δ(x − x0) “function”, gradually spreads into an ever broader normal distribution which “drifts”
along the straight line given by x(t) = x0 + A(t − t0)

Fig. 12.3 Simulation of the Wiener process with initial value x0 = 0, time step length �t = 0.01,
drift function A(x, t) = 0 and diffusion function D(x, t) = 0.5. [Left] Some realizations of the
random process that does not “drift” anywhere on average, as E[X (t)] = 0 by (12.19). The thin and
thick curves denote the boundaries of one and two standard deviations, as dictated by (12.20). [Right]
Some integrals of the process with mean zero (see (12.21)) and cubic increase of variance (12.22)

12.2.4 Ornstein–Uhlenbeck Process

The Ornstein–Uhlenbeck process is a special case of a continuous Markov process
where the drift function has the form A(x, t) = −kx , k > 0, while the diffusion
function is independent of x and t , D(x, t) = D ≥ 0. The evolution equation (12.15)
therefore has the form ẋ = −kx with the initial condition x(t0) = x0. Its solution is

E
[
X (t)

] = x0 e
−k(t−t0), t ≥ t0. (12.24)
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Equation (12.16) for the variance of X is

d

dt
var

[
X (t)

] = 2
(
E

[
X (t)

(−kX (t)
)] − E

[
X (t)

]
E

[−kX (t)
]) + E[D]

= −2k
(
E

[
X2(t)

] − E
[
X (t)

]2) + D = −2k var
[
X (t)

] + D,

and the initial condition is var[X (t)] = 0, thus

var
[
X (t)

] = D

2k

(
1 − e−2k(t−t0)

)
, t ≥ t0. (12.25)

In this case the Fokker–Planck equation has the form

∂

∂t
f (x, t | x0, t0) = k

∂

∂x

[
x f (x, t | x0, t0)

] + D

2

∂2

∂x2
f (x, t | x0, t0)

and needs to be solved with the initial condition f (x, t | x0, t0) = δ(x − x0). The
probability density f (x, t | x0, t0) that solves this equation corresponds to a normally
distributed random variable

X (t) ∼ N

(
x0 e

−k(t−t0),
D

2k

(
1 − e−2k(t−t0)

))
.

(You can check this,with some effort, bywriting the density of the normal distribution
with specified mean and variance as in (12.23) and insert it in the Fokker–Planck
equation.) In the large-t limit this means

X (t) ∼ N

(
0,

D

2k

)
, t → ∞,

in other words, convergence to a stable distribution:

lim
t→∞ f (x, t | x0, t0) = fstab(x) = 1√

πD/k
exp

(
− x2

D/k

)
.

We are witnessing a process X (t) with probability density f (x, t | x0, t0) whose
expected value exponentially approaches zero, while its variance in the limit t → ∞
stabilizes at the value D/(2k), as shown in Fig. 12.4.

By the same token we solve (12.17) for the expected value of the integral of the
Markov process, S(t), as well as (12.18) for its variance. For t ≥ t0 we get

E
[
S(t)

] = x0
k

(
1 − e−k(t−t0)

)
, (12.26)

var
[
S(t)

] = D

k2

{
(t − t0) − 2

k

(
1 − e−k(t−t0)

) + 1

2k

(
1 − e−2k(t−t0)

)}
. (12.27)
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Fig. 12.4 Time evolution of the probability density of a continuous Markov process with the
drift function A(x, t) = −kx , k > 0, and the diffusion function D(x, t) = D ≥ 0. The “center
of gravity” of the initial condition δ(x − x0) gradually slips towards zero, yet the width of the
distribution no longer increases: the last time slice is already ≈ fstab(x)

Fig. 12.5 Computer simulation of the Ornstein–Uhlenbeck process with initial value x0 = 5, time
step�t = 0.01, drift function A(x, t) = −kx , k = 0.5 and diffusion function D(x, t) = 0.5. [Left]
Some realizations of the process that (on average) exponentially “drifts” towards zero, as dictated
by (12.24). The thin and thick dashed lines indicate the boundaries of one and two standard devi-
ations according to (12.25). At large t the standard deviation settles at

√
D/(2k) ≈ 0.71 (stable

distribution). [Right] Some integrals of the process with a mean that attains the value x0/k = 10 in
the limit t → ∞ according to (12.26), and the variance that changes according to (12.27)

Let us again try to understand what (12.24–12.27) are saying by a computer sim-
ulation, based on the algorithm from p. 317. We choose k = D = 0.5, x0 = 5 and
�t = 0.01. Sample results are shown in Fig. 12.5.
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Long exampleWanderings of a heavymacroscopic particle in a gas (fluid) of smaller,
lighter particles—Brownian motion—can be approximately treated as a continuous
Markov process. In order to see this, we first reinterpret the propagator (12.10) as a
small change

�X (�t; x, t) = X (t + �t) − X (t), given X (t) = x .

By (12.13), �X is a normally distributed random variable with mean A(x, t)�t
and variance D(x, t)�t . We use the relation Y ∼ N (0, 1) ⇐⇒ aY + b ∼ N (b, a2)
which is valid for arbitrary real constants a and b and can be proven by using
methods of Sect. 2.7. Identifying b = A(x, t)�t and a2 = D(x, t)�t leads to�X ∼√
D(x, t)�t N (0, 1) + A(x, t)�t , therefore

X (t + �t) = X (t) + A(x, t)�t + √
D(x, t)�t N , (12.28)

where N ∼ N (0, 1). We have derived a specific form of the Langevin equation,
which is easy to code as it explicitly expresses the random variable X (t + �t) in
terms of the variables X (t) and N .

The analysis of Brownian motion, discovered in the early 19th century, has a long
history. Einstein’s approach was to treat the coordinate of the particles as a Wiener
process [9], while Langevin [10] placed his bet on their velocity as the key quantity.
A spherical particle with radius R and mass M , moving with velocity v in a fluid
with viscosity η, obeys Newton’s law M v̇ = −γv or

v(t + �t) = v(t) − (γ/M)v(t)�t,

where γ = 6πηR is the linear drag coefficient. (In both Langevin equation (12.28)
and Netwon’s law the time interval �t is assumed to be infinitesimally small.) The
“driving” term−γv(t)�t on the right represents the average linear momentum trans-
ferred to the wandering particle by the particles of the fluid (average force over �t).
But in general this momentum transfer fluctuates about its average. With this in mind
we augment Newton’s law by a term that provides the process with this kind of jitter:

V (t + �t) = V (t) − (γ/M)V (t)�t + √
c�t N , (12.29)

where N ∼ N (0, 1) and c is a positive constant which needs to be determined. We
have denoted the velocity by an upper-case letter as we are dealing with a random
variable. By comparing (12.29) and (12.28) we realize that Brownian motion can
be understood as a continuous Markov process in which the role of the generic
random variable X (t) is played by the physical velocity, V (t). The process has the
Ornstein-Uhlenbeck form with the drift and diffusion functions

A(v, t) = −(γ/M) v,

D(v, t) = c.

http://dx.doi.org/10.1007/978-3-319-31611-6_2


322 12 Markov Processes �

With the initial condition V (t0) = v0, (12.24) and (12.25) immediately give us the
expected value of the velocity and its variance for t ≥ t0:

E
[
V (t)

] = v0 e
−(γ/M)t , (12.30)

var
[
V (t)

] = cM

2γ

(
1 − e−2(γ/M)t

)
. (12.31)

This is precisely what we observe in Fig. 12.5 (left), where on the ordinate axis one
should imagine the velocity V (t) instead of the generic variable X (t): a particle
that starts moving in the fluid with velocity v0 at time zero, on average slows down
exponentially according to (12.30), but the velocity distribution settles into a stable
form with the variance (12.31).

The path (coordinate) of the particle is the integral of its velocity over time,
s = ∫

v(t) dt , so at the level of random variables we may resort to (12.14), where
X (t) is replaced by V (t), and formulas (12.26) and (12.27):

E
[
S(t)

] = v0M

γ

(
1 − e−(γ/M)t

)
, (12.32)

var
[
S(t)

] = cM2

γ2

(
t − 2M

γ

(
1 − e−(γ/M)t

) + M

2γ

(
1 − e−2(γ/M)t

))
. (12.33)

The content of these equations is expressed by Fig. 12.5 (right): the path traveled by
the particle with non-zero initial velocity v0 keeps increasing according to (12.32)
at short times, but on average it attains the terminal value v0M/γ, about which is
straggles with variance (12.33).

Asymptotically we have

lim
t→∞ E

[
V (t)

] = 0, lim
t→∞ var[V (t)

] = cM

2γ
, (12.34)

which aids us in determining the constant c. After a long time the particle is in ther-
modynamic equilibrium with the fluid at temperature T . We can then expect—that
was Langevin’s key assumption—that V (t → ∞) is a normally distributed random
variable with mean zero and variance kBT/M , since

∫ ∞

−∞
v2
x

√
M

2πkBT
exp

(
− Mv2

x

2kBT

)
dvx = kBT

M

1√
2π

∫ ∞

−∞
u2 e−u2/2 du = kBT

M
.

According to (12.34) we may therefore equate

cM

2γ
= kBT

M
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or c = 2γkBT/M2. It follows that

var
[
S(t)

] = (2kBT/γ) t, t � M/γ.

We have obtained the famous result that the variance of the particle’s position
at long times linearly increases with time and that it depends on the tempera-
ture and viscosity of the fluid. The main deficiency of this approach, of course,
is the treatment of collisions, in which velocity actually changes very rapidly, as
continuous (“smooth”) processes. This is why in the described approximation the
effective deviation depends neither on the mass of the Brownian particle, M , nor on
the mass of the fluid particles, m. A much improved calculation, in which Brownian
motion is analyzed as a discrete-time Markov process with continuous states (see,
for example, Sect. 4.5 in [8]) reveals these delicate dependencies as well. One then
obtains

var
[
S(t)

] = 1

2ρR2

(
πkBT

2m

)1/2

t, t � M

4ρR2

√
π

2mkBT
,

whereρ is the average particle density of the gas. The dependence of the variance onm
is particularly intriguing. The velocity of the gas particles has aMaxwell distribution
and, as we have seen in the Example on p. 105, all its characteristic velocities (mode,
expected value and effective deviation) exhibit the 1/

√
m dependence: the lighter

the gas particles, the more efficient they are in “kicking” the heavier particle and in
dispersing its position. �
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Chapter 13
The Monte–Carlo Method

Abstract The Monte–Carlo method is introduced as a generic tool for the solution
of mathematical physics models by means of computer simulation. These problems
range from simple one-dimensional integration to sophisticated multi-dimensional
models involving elaborate geometries and complex system states. A historical intro-
duction and an exposition of the basic idea are followed by a basic treatment of
numerical integration and discussing methods of variance reduction like importance
sampling and use of quasi-random sequences. Markov-chain Monte Carlo is pre-
sented as a powerful method to generate random numbers according to arbitrary,
even extremely complicated distributions. A specific implementation in the form of
the Metropolis–Hastings algorithm is offered.

The Monte Carlo (MC) method or simulation is a generic name for any procedure in
which drawing random numbers and statistical samples allows us to approximately
evaluate some mathematical quantity or expression, for example, a definite integral
or a system of equations, but it can also be applied to much more general problems of
mathematical physics [1]. The emphasis is on the word ‘approximately’: the quality
of the solution depends on the sample size one can afford. Yet from the viewpoint of
feasibility and precision as compared to standard numerical methods—in particular
in multi-dimensional integration with complicated integration boundaries and in
handling complex mathematical models—the Monte–Carlo method offers the only
reasonable approach.

13.1 Historical Introduction and Basic Idea

The French naturalist Georges–Louis Leclerc, count de Buffon (1707–1788), has
shown how throwing a needle onto a mesh of uniformly spaced parallel lines allows
one to estimate π. Let the needle length be L and the line spacing be D ≥ L . Take y
to be the shortest distance from the needle center to the closest line and φ the acute
angle of the needle with respect to the lines. At each throw any distance 0 ≤ y ≤ D/2
and any angle 0 ≤ φ ≤ π/2 are equally probable, which corresponds to the uniform

© Springer International Publishing Switzerland 2016
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Fig. 13.1 Determining π by the Monte–Carlo method. [Left] Simulation of the Buffon’s nee-
dle experiment (see text for explanation). [Right] Determination of π by drawing points uni-
formly distributed on the square [0, 1] × [0, 1] and checking whether the points fall within the
inscribed unit circle. Shown are N = 1000 points, n = 782 of which lie within the circle, hence
π ≈ 4n/N = 3.128

probability densities 2/D and 2/π and the joint density f (y,φ) = 4/(πD). The
probability of a needle crossing a line is then

P

(
y ≤ L

2
sin φ

)
=

π/2∫

0

dφ

(L/2) sin φ∫

0

f (y,φ) dy = 2L

πD
.

Let us check this result by a simple program, which is already our first Monte–
Carlo simulation!We draw a random number y1 with a uniform distribution between
0 and D determining the ordinate of one end of the needle (Fig. 13.1 (left)). The
ordinate y2 of the other end is obtained by drawing an angle φ from [0, 2π] and
calculating y2 = y1 + L sin φ. Then we check whether the needle crosses a line
(y2 > D or y2 < 0) or not. If the whole procedure is repeated N -times and we count
n crossings, it holds that

2L

πD
≈ n

N
.

The estimate of π is then

θ̂ = 2LN

Dn
≈ π.

The relative error (θ̂ − π)/π depends on the numbers of drawn and accepted events
and, of course, on the ratio D/L . Its dependence on N for D/L = 1.1 is shown in
Fig. 13.2 (left) indicating that in order to determine π to six-digit precision one needs
approximately 1012 throws. The importance of this dependence on N will become
evident shortly.

Let us try another way to “calculate” π. We draw N pairs of random numbers
(xi , yi ), uniformly distributed on [−1, 1] × [−1, 1]. By testing the condition
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Fig. 13.2 Statistical error of the Monte–Carlo method in dependence of the number of drawn
points, N . [Left] Relative error of the approximation for πwhen calculating the ratio of the areas of
the square and inscribed circle, and in the simulation of Buffon’s needle experiment (D/L = 1.1).
[Right] Relative error of the approximation for the volume of a hypersphere with dimension 4 or 10

x2i + y2i ≤ 1

we check whether a pair is within the inscribed unit circle, which we take to be a
“good” outcome (Fig. 13.1 (right)). The ratio between the number of good outcomes,
n, and the number of all drawn pairs, N , is an approximation for the ratio between
the area of the circle and the area of the square: n/N ≈ πR2/(2R)2 = π/4, thus

θ̂ = 4n

N
≈ π.

The error (θ̂ − π)/π as a function of N is also shown in Fig. 13.2 (left).
One can look at the problem from the opposite perspective. Assume we already

know π, but are interested in the volume of a d-dimensional hypersphere with radius
R, “inscribed” in the corresponding hypercube with side 2R. The exact volumes are

V©
d = πd/2

�
(
d
2 + 1

) Rd , V�
d = (2R)d .

Let us simply set R = 1 and make N draws of d random numbers {x1, x2, . . . , xd},
distributed according to U (−1, 1). At each draw we check the validity of

x21 + x22 + · · · + x2d ≤ 1.

The ratio of the number of draws n for which the condition is fulfilled, to the number
of all draws, N , is equal to the ratio of the volumes of the hypersphere and the
hypercube, n/N = V©

d /V�
d , so we can estimate
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θ̂ = n

N
V�
d ≈ V©

d . (13.1)

Fig. 13.2 (right) shows how the statistical error of this calculation depends on N
if d = 4 and d = 10. As in the circle-square case we notice the characteristic
inverse-square-root decrease of the error.

13.2 Numerical Integration

Numerical integration is among the most important problems that can be solved by
the Monte–Carlo method. We wish to calculate a definite integral of the form

θ =
∫

�

g(x) f (x) dx, (13.2)

where f is some probability density ( f ≥ 0 and
∫
�
f (x) dx = 1). We independently

draw N values {x1, x2, . . . , xN } of the random variable X , distributed according to
the density f . (How this can be done for an arbitrary distribution, is discussed in
Sect.C.2.) The value θ is then estimated as

θ̂ = 1

N

N∑

i=1

g(xi ). (13.3)

This estimator is unbiased, since its expected value is

E
[
θ̂
] = 1

N

N∑

i=1

E
[
g(Xi )

] = 1

N
N E

[
g(X)

] = θ.

Yet to control the integration we are interested in its variance, as it determines the
quality of the numerical approximation:

var
[̂
θ
] = 1

N 2

N∑

i=1

var
[
g(Xi )

] = 1

N 2 N var
[
g(X)

] = 1

N

{
E

[
g2(X)

] −
(
E

[
g(X)

])2}

= 1

N

{∫

�

g2(x) f (x) dx −
(∫

�

g(x) f (x) dx

)2
}

. (13.4)

In other words: the estimate for the value of the integral is θ̂, and the statistical error
of this estimate depends on the specific form of g, but, as usual, it decreases inversely
proportional to the square root of N ,

θ ≈ θ̂ ± σθ̂√
N

, σθ̂ =
√

θ̂2 − θ̂2, θ̂ = 1

N

N∑

i=1

g(Xi ), θ̂2 = 1

N

N∑

i=1

g2(Xi ).
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In the special case X ∼ U (a, b) and � = [a, b] one has f (x) = 1/(b − a), hence
(13.2)–(13.4) can be merged to

∫ b

a
g(x) dx ≈ (b − a) g ± b − a√

N

√
g2 − g2, (13.5)

where g = θ̂ and g2 = θ̂2 are the means of the functions g and g2 on the interval
[a, b]. An analogous formula can be written for multi-dimensional integration:

∫

�

g dV ≈ V g ± V√
N

√
g2 − g2.

Example Use the Monte–Carlo method to calculate the definite integral

I =
∫ π

0

2

π

(
1 − x

π

)
e−x/3 sin 3x dx, (13.6)

whose integrand is shown by the full curve in Fig. 13.3 (left)! The exact value is
27(41π − 3 − 3 e−π/3)/(1681π2) ≈ 0.203023214575878.

The MC integral can be performed in two ways. First the integrand is rewritten
by including a probability density f corresponding to the uniform distribution on
[a, b] = [0,π],

θ =
∫ π

0
g(x) f (x) dx, g(x) = 2

π

(
1 − x

π

)
e−x/3 sin 3x, f (x) = 1

π
.
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Fig. 13.3 Calculation of definite integrals by the Monte–Carlo method. [Left] The integrand of
the integral (13.6) and examples of probability densities used to generate random xi . [Right] A
geometric body whose mass and center of gravity can be computed by the Monte–Carlo method



330 13 The Monte–Carlo Method

We draw the values {xi }Ni=1 (N = 106) of a uniformly distributed random variable
X ∼ U (0,π) = πU (0, 1), and calculate the sums θ̂ = 1

N

∑N
i=1 g(xi ) ≈ 0.0649221

and θ̂2 = 1
N

∑N
i=1 g2(xi ) ≈ 0.0409225. (Of course each such draw sequence yields

different values.) The estimate for the integral by (13.5) is then

I ≈ πθ̂ ± π√
N

√
θ̂2 − θ̂2 ≈ 0.203959 ± 0.000602. (13.7)

On the other hand, the integrand can also be split like this:

θ =
∫ π

0
g(x) f (x) dx, g(x) = e−x/3 sin 3x, f (x) = 2

π

(
1 − x

π

)
.

In this case xi must be drawn according to the probability density f corresponding
to a triangular distribution on [0,π] (fifth row of TableC.1). Taking N = 106 again
we get θ̂ = 1

N

∑N
i=1 g(xi ) ≈ 0.203331 and θ̂2 = 1

N

∑N
i=1 g2(xi ) ≈ 0.269508, and

thence

I ≈ θ̂ ± 1√
N

√
θ̂2 − θ̂2 ≈ 0.203331 ± 0.000478.

The error of the integral is smaller than that obtained from (13.7) by using the first
method. The lesson is that by a different choice of the distribution used to generate
the integration variable the variance of the MC estimate can be influenced. This will
be the topic of Sect. 13.3. �
Example A homogeneous sphere with density ρ0 and radius R = 1 is carved out
by a cylinder with radius R/2 whose longitudinal symmetry axis is parallel to the
z-axis and goes through the point (x, y) = (R/2, 0). The resulting geometrical body
is shown in Fig. 13.3 (right). What are its mass and center of gravity?

The mass of a body in three-dimensional space is m = ∫
�

ρ(r) dV , where dV is
the volume element of the integration domain �. The spherical coordinate system
in which dV = r2 dr d(cos θ) dφ is the most convenient. We also know how to
uniformly generate random points in it (formula (C.4)), so for constant density the
integrand is nothing but g(r) = 1 andm = ρ0

∫
�
dV . But integration boundaries are

crucial: a cylinder carves out the region defined by

(
x − R

2

)2

+ y2 =
(
r sin θ cosφ − R

2

)2

+ (
r sin θ sin φ

)2 ≤ R2

4
. (13.8)

The MC estimate for the mass of the body is therefore simply

m = ρ0

∫

�

g(r)︸︷︷︸
1

dV ≈ ρ0V0

N

N∑

i=1

g(r i )︸ ︷︷ ︸
1

�i , (13.9)
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where V0 = 4πR3/3 and where�i = 0, if condition (13.8) is fulfilled or�i = 1 if it
is not. The points (ri , θi ,φi ) are therefore drawn only to check the validity of (13.8)!
With N = 106 we get, for instance,

m ≈ 2.98119 ρ0R
3.

With some geometric effort the mass can be, in fact, calculated exactly. The body is
split to the untouched “left” (L) half and the whittled “right” (R) half which, due to
its symmetry, consists of four equal parts. Their masses are

mL = ρ0
2πR3

3
, mR = 4ρ0

∫ π/2

0
dφ

∫ π/2

arcsin(cosφ)

sin θ dθ
∫ R

R cosφ
sin θ

r2 dr = ρ0
8R3

9
,

so the total mass of the body is m = (2π/3 + 8/9)ρ0R3 ≈ 2.98328 ρ0R3. What
about the center of gravity, r∗? Symmetry clearly dictates y∗ = z∗ = 0, while

x∗ = mLx∗
L + mRx∗

R

mL + mR
. (13.10)

Even this can still be handled analytically:

mLx
∗
L = ρ0

∫ 3π/2

π/2

∫ π

0

∫ R

0
r sin θ cos θ︸ ︷︷ ︸

x

dV = −ρ0
πR4

4
,

mRx
∗
R = 4ρ0

∫ π/2

0

∫ π/2

arcsin(cosφ)

∫ R

R cosφ
sin θ

r sin θ cos θ︸ ︷︷ ︸
x

dV = ρ0R4

8

(
π

2
− 16

15

)
.

By (13.10) it follows that x∗ ≈ −0.178774 R. How can we calculate x∗ by using
the MC method? Again we must calculate the sum as in (13.9), where we now
set g(r i ) = xi = ri sin θi cosφi . We independently draw the values ri , θi and φi

according to a uniform distribution within the sphere, and finally divide out the total
mass; the approximation for the abscissa of the center of gravity is then

x∗ = 1

m
ρ0

∫

�

r sin θ cosφ dV ≈ 1

m

ρ0V0

N

N∑

i=1

ri sin θi cosφi �i . (13.11)

With N = 106 we get x∗ ≈ −0.178382 R.
We are also interested in the mass and center of gravity of the body if the sphere

is inhomogeneous, for example, with the radial dependence of the density ρ(r) =
ρ0(r/R)2. In this case the recipes (13.9) and (13.11) become
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m = ρ0

∫

�

( r

R

)2
dV ≈ ρ0V0

N

N∑

i=1

( ri
R

)2
�i ,

x∗ = 1

m
ρ0

∫

�

r3

R2
sin θ cosφ dV ≈ 1

m

ρ0V0

N

N∑

i=1

r3i
R2

sin θi cosφi �i .

If we wish to deal with this analytically, we must again calculate four integrals for
mL, mR, mLx∗

L and mRx∗
R. This is an increasingly annoying procedure, especially

if one imagines a complex carved-out sculpture for which a clear overview of the
integration boundaries is lost. On the other hand, theMCmethod (right side of above
equations) only requires us to change a few powers and rerun the program. Which
avenue one should pursue depends on the compromise between the desired precision
and computing time—yours or computer’s. �

13.2.1 Advantage of Monte–Carlo Methods
over Quadrature Formulas

The statistical error ε of the integral θ̂ by the Monte–Carlo method decreases with
the square root of the sample size: θ ≈ θ̂ ± ε = θ̂ ± σθ̂/

√
N . One must therefore

draw N ≈ σ2
θ̂
/ε2 points in order to determine the value of the integral to a precision

of ε. Of course an integral of the type (13.2) could also be computed by using some
classical numerical method, say, a quadrature formula

θ ≈
∑

i

wi g(xi ) f (xi ).

Here wi are the weights depending on the method and xi are the quadrature points
that suitably fill the integration domain—e.g. the interval [a, b] or a d-dimensional
hypercube. The discrete nature of this formula implies an error, too; usually it is
estimated as ε ≤ Chk , where h is a measure of the distance between the points of the
domain, e.g. h = (b − a)/N on interval [a, b]. The error constant C and the power
k (quadrature order) depend on the method.

Let TQ and TMC denote the times needed to compute the integral by using quadra-
ture and the MC method, respectively. Clearly TQ grows linearly with the number of
points: TQ ∝ N ∝ (1/h)d where d is the space dimension. From ε ≤ Chk it follows
that h ≥ (ε/C)1/k or TQ ∝ (C/ε)d/k ∝ ε−d/k . The TMC is the product of the number
of drawn points and time t1 needed for an individual sample, TMC = t1N = t1σ2

θ̂
/ε2,

thus the ratio of computing times at given ε is

TMC

TQ
∝ εd/k

ε2
= εd/k−2. (13.12)
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The ratio TMC/TQ decreases with space dimension d and increases with order of
quadrature k. Indeed fancy quadrature formulas with high k exist, but the larger the
d, the harder it is to find a formula that still ensures d/k < 2 and thus TQ < TMC.
Therefore, at large d theMCmethod ismuchmore efficient than classical quadrature.
In practice this applies already at d � 6 − 10.

13.3 Variance Reduction

Procedures exist which allow us to reduce the variance of MC estimates; for details
see [2]. The simplest one is to analytically split the integration domain. Suppose we
are seeking the value of the integral θ = ∫

�
g(x) dx andwe can separate� = �1∪�2

such that �1 ∩ �2 = { }. The decomposition

θ =
∫

�

g(x) dx =
∫

�1

g(x) dx +
∫

�2

g(x) dx .

is useful if the integral can be solved exactly on�1 while theMCmethod is called for
in the remaining domain �2. A separation like this has been done in the Example on
page 330: there�1 was the untouched hemisphere that could be handled analytically,
while �2 was the carved-out piece where the MC method was applicable. However,
onemust ensure that there is no statistical correlation between g(x1) and g(x2), where
x1 ∈ �1 and x2 ∈ �2.

An obvious simplification is also the splitting the integrand, g = g1 + g2:

θ =
∫

�

(
g1(x) + g2(x)

)
dx =

∫

�

g1(x) dx +
∫

�

g2(x) dx .

This seemingly trivial intervention is very effective if the integral of g1 is relatively
easy to compute and g and g1—in the sense of their “wildness” within the integration
domain—are very similar. Then the MCmethod is only applied to the integral of the
“smooth” residual function g2.

13.3.1 Importance Sampling

The most effective way to reduce the variance of values of integrals by the MC
method is importance sampling. In the Example on page 329 we realized that the
variance can be influenced by the choice of probability density f in the integral (13.2).
When the density of the uniform distribution, f = 1/π, has been used (Fig. 13.3
(left)), the whole interval [0,π] has been sampled uniformly, although it is obvious
that the points near x ≈ 0.5 and x ≈ 1.5 make the dominant contribution to the
integral. If, however, sampling with respect to the triangular distribution with density
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f (x) = (2/π)(1− x/π) has been used, the relevant left part of the interval has been
sampled more often that the less important right part, thereby reducing the variance.

Instead of using f, therefore, the values xi can be drawn according to some other
distribution with density p called the importance function [2, 3]. With it we compute
the integral

θ =
∫

�

[
g(x) f (x)

p(x)

]
p(x) dx,

where p(x) ≥ 1,
∫
�
p(x) dx = 1 and |g(x) f (x)/p(x)| < ∞. What do we achieve

by doing this? The MC estimate based on the sample {xi }Ni=1 drawn according to the
distribution with density p is then

θ̂ = 1

N

N∑

i=1

g(xi ) f (xi )

p(xi )
.

The variance of this estimator is

var
[̂
θ
] = 1

N
var

[
g(X) f (X)

p(X)

]
= 1

N

{
E

[
g2(X) f 2(X)

p2(X)

]
−

(
E

[
g(X) f (X)

p(X)

])2
}

,

where all expected values are to be taken with respect to the distribution of X with
density p—this is crucial! We wish to find p that minimizes this variance. The
second term is simply (E[g(X) f (X)/p(X)])2 = (∫

�
g(x) f (x) dx

)2 = θ2, so the
key to success is hidden in the first term. Jensen’s inequality (4.10) dictates its lower
bound:

E

[
g2(X) f 2(X)

p2(X)

]
≥

(
E

[ |g(X) f (X)|
p(X)

])2

=
(∫

�

|g(x)| f (x) dx
)2

.

The bound is reached when

p(x) = |g(x)| f (x)∫
�

|g(x ′)| f (x ′) dx ′ .

Alas, we do not know the exact value of the integral in the denominator, otherwise
we would not be computing it! In practice we therefore seek a function p(x) which
is as similar as possible to the function |g(x)| f (x), i.e. such p(x) that the ratio
|g(x)| f (x)/p(x) is approximately constant throughout the integration domain.

Example (Adapted from [3].) Let us calculate the definite integral

θ =
∫ 1

0
cos

(πx

2

)
dx,

http://dx.doi.org/10.1007/978-3-319-31611-6_4
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Fig. 13.4 Weighting the integrand g by the importance function p. [Left] Graphs of functions
g(x) = cos(πx/2) and p(x) = 3

2 (1− x2). [Right] Variance of the plainMC estimate (upper graph)
and by using the importance function p (lower graph)

which is of the form (13.2) with � = [0, 1], g(x) = cos(πx/2) (Fig. 13.4 (left)) and
f (x) = 1. At first we ignore the importance function and do it the old way: with
values {xi }Ni=1 of the uniformly distributed variable X ∼ U (0, 1) we compute

θ̂ = 1

N

N∑

i=1

g(xi ), θ̂2 = 1

N

N∑

i=1

g2(xi ). (13.13)

The variance var[θ̂] of the estimate θ̂ at large N can even be calculated exactly:

lim
N→∞

(
θ̂2 − θ̂2

)
=

∫ 1

0
cos2

(πx

2

)
dx −

[∫ 1

0
cos

(πx

2

)
dx

]2

≈ 0.09472.

(13.14)

The obtained value log10 0.09472 ≈ −1.0236 can be seen in the upper graph of
Fig. 13.4 (right), showing the approximation for the variance as a function of N .

Now choose an importance function p which is “as similar as possible” to g, say,
p(x) = 3

2

(
1 − x2

)
. This function is non-negative and normalized to 1 on [0, 1], so

it satisfies the requirements for a probability density. Since we are now computing
the integral

θ =
∫ 1

0

g(x)

p(x)
p(x) dx,

the values xi in the sums

θ̂ = 1

N

N∑

i=1

g(xi )

p(xi )
, θ̂2 = 1

N

N∑

i=1

(
g(xi )

p(xi )

)2

, (13.15)
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must be drawn according to the density p! (Random values with such distribution
can be generated by using some method of Sect.C.2.) A pleasant surprise is in store:

lim
N→∞

(
θ̂2 − θ̂2

)
≈ 0.000990.

By a fortunate choice of p the variance has been reduced by two orders of magnitude
compared to the plain estimate (13.14); see the lower graph in Fig. 13.4 (right) which
stabilizes at log10 0.000990 ≈ −3.0044 for large N . �
Example (Adapted from [3].) In the case of singular functions or functions whose
certain moments do not exist, scaling the integrand by an importance function is
unavoidable. For instance, let us calculate the integral

θ =
∫ 1

0

1√
x(1 − x)

dx . (13.16)

The integrand g(x) = 1/
√
x(1 − x) is singular at x = 0 and x = 1 (Fig. 13.5 (left)),

hence the plainMCestimate has infinite variance:with increasing N the sums (13.13),
where the values xi are drawn according to the uniform distributionU (0, 1), as well
as the variance, keep increasing. This divergent behavior is demonstrated by the
upper graph of Fig. 13.5 (right).

In such case it is prudent to choose an importance function that has the singularities
at the same points and of the same order as g, for example

p(x) = 1

4
√
x

+ 1

4
√
1 − x

. (13.17)
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87654321
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Fig. 13.5 [Left] Choice of importance function p for singular integrands g(x). All singularities of g
should be included in p, so that the ratio g/p is regular at the problematic points and approximately
constant throughout the domain. [Right] The variance of the MC estimate for Example (13.16)
without the importance function and by using the g/p integrand
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Random numbers according to this distribution can be drawn by using the tools of
Sect.C.2, like the inverse method: it corresponds to a very simple algorithm

1. Draw ξ1, ξ2 ∼ U (0, 1).
2. If ξ2 < 1

2 , set X = ξ21 , otherwise X = 1 − ξ21 .

(For explanation see also Sect. 3.4.4 in [3].) The weighted integrand g(x)/p(x) is
plotted by the thick curve in Fig. 13.5 (left). The sums (13.15), where the values xi are
drawn according to the density (13.17), now yield a finite variance. Its dependence
on N is shown by the lower graph in Fig. 13.5 (right). �

13.3.2 The Monte–Carlo Method with Quasi-Random
Sequences

By a special kind of “drawing” the values {xi }Ni=1 the convergence of MC estimates
can be accelerated. Instead of the typical ∼N−1/2 behavior (see Fig. 13.2) trends
like ∼N−2/3 or even N−1 can be achieved, which, from the viewpoint of (13.12)
is an argument in favor of the MC method. The word “drawing” actually implies a
deterministic calculation of special sequences of d-plets

{xi }Ni=1, xi = (
x1,i , x2,i , . . . , xd,i

)
,

whichweuse to sample the d-dimensional integration region at N points. The essence
of the method is precisely the manner of this sampling: it is devised such that the
points in d-dimensional space, forming the so-called quasi-sequence, “maximally
avoid each other”. An illustration of such quasi-sequence for d = 2,where each value
in the pair (x1, x2)i corresponds to a normally distributed variable X ∼ U (0, 1), is
offered by Fig. 13.6.

10

1

0
10

1

0
10

1

0

Fig. 13.6 Points of the Sobol quasi-random sequence on the domain [0, 1]× [0, 1]. [Left] The first
128 points. [Center] The first 256 points. [Right] The first 1024 points
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The full circles in the left Figure denote the first N = 128 points. The center Figure
shows N = 256 points of the same sequence: the previous and the new 128 points are
denoted by empty and full circles, respectively. The right Figure contains N = 1024
points, ofwhich the 256 old points are again denoted by empty circles and the 768 new
ones with full circles. Apparently space is being filled by an almost regular pattern,
yet the straggling of the points is more random and more uniform across the whole
space than in drawing the values by pseudorandom algorithms (see AppendixC.1).
Quasi-random sequences therefore truly start to excel only at very large N and high
dimensions d.

Several brands of quasi-sequences and methods of their generation exist. Among
the most popular is the Sobol sequence [4, 5], which has been used to generate the
points in Fig. 13.6. The basic version is available in [6]; improvements for higher
dimensions and larger periods are discussed in [7, 8].

Example Let us redo the calculation of the volume of the four-dimensional hyper-
sphere by using the MC method (see (13.1) and Fig. 13.2 (right)), but now we draw
the points (x1, x2, x3, x4) in four-dimensional space as elements of the corresponding
d = 4 Sobol sequence. The statistical error of the calculated volume estimate as a
function of N is shown in Fig. 13.7. �

Fig. 13.7 Statistical error of
the MC approximation for
the volume of a
four-dimensional
hypersphere. (Compare to
Fig. 13.2). Shown is the
dependence of the error on
the number of points in the
Sobol quasi-sequence
(∝ N−2/3) as compared to
the usual generation of
pseudo-random numbers
(∝ N−1/2)

6 7 8 9 10 11 12

−2

−3

−4

−5

−6

−7

−8



13.4 Markov-Chain Monte Carlo � 339

13.4 Markov-Chain Monte Carlo �

Classical Markov chains (see Sect. 12.1) can be used to devise an effective method to
generate randomnumbers according to arbitrary, even very complicated distributions,
known asMarkov-chainMonte Carlo (MCMC) [9]. The essence of themethod is that
the generated values form the states of aMarkov chainwhose equilibriumdistribution
is precisely the required probability distribution.

The key property of the chain that we exploit is reversibility. An irreducible
Markov chain is reversible if the equilibrium probabilities π j (see (12.4) and (12.6))
satisfy the requirement of detailed balance

πi pi j = π j p ji , ∀i, j ∈ �. (13.18)

Recalling P(A|B) = P(B|A)P(A)/P(B) we see at once that detailed balance also
means

P
(
Xt−1 = i | Xt = j

) = P
(
Xt = j | Xt−1 = i

) P(Xt−1 = i)

P(Xt = j)

= pi j
πi

π j
= pi j

p ji

pi j
= p ji = P

(
Xt = i | Xt−1 = j

)
,

in plain words: the probability for a transition between given states forward in time
equals the probability for a transition between them backward in time. Assume that
the distribution π satisfying (13.18) is unique (see Sect. 12.1.1). In the following we
use this arsenal to formulate the core procedure of the MCMCmethod, the so-called
Metropolis–Hastings algorithm.

13.4.1 Metropolis–Hastings Algorithm

Let � be the state space of the Markov chain possessing the equilibrium distribution
π(x), where x ∈ �. We shall attempt a quite general description of the MCMC
method, where � may be discrete or continuous; the value x may even represent
some exceedingly complex entity, say, the state of a two-dimensional spin lattice on
which (at given temperature) some spins are oriented parallel to the magnetic field
and some opposite to it—the formalism remains essentially the same.

If, for example, we wish to use the MCMC method to estimate the value of a
one-dimensional integral of the form (13.2) by the sum (13.3), the random numbers
must be drawn according to the desired distribution f (x) = π(x). The equilib-
rium distribution is therefore also known as the target distribution. Why don’t we
simply generate the values with the target distribution π by using some method of
Sect.C.2, say, the rejection method (Sect.C.2.6)? In one dimension this is sensible,
but in multiple dimensions the fraction of rejected points increases to the level of

http://dx.doi.org/10.1007/978-3-319-31611-6_12
http://dx.doi.org/10.1007/978-3-319-31611-6_12
http://dx.doi.org/10.1007/978-3-319-31611-6_12
http://dx.doi.org/10.1007/978-3-319-31611-6_12
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Fig. 13.8 AMarkov chain in which only transitions between the states x and x ′ are allowed. [Left]
Chain with equilibrium distribution (13.20). [Right] Chain with equilibrium distribution (13.21)

the method being useless. Similar problems are encountered in importance sampling
(Sect. 13.3.1).

The main task is then: draw a sequence of values S = {x0, x1, . . .} of the Markov
chain such that its equilibrium distribution is precisely π(x). For this purpose we
first introduce the candidate distribution

q(x ′|x), x, x ′ ∈ S,

which is used to place a weight on the transitions between the states x and x ′.
(In previous notation q(x ′|x) is just pi j .) If the present state is x , the state x ′ is
a “candidate” for the next state, with probability q(x ′|x). At this point reversibility
and detailed balance (13.18) enter. To illustrate the main idea behind theMetropolis–
Hastings algorithm, imagine for a moment that we can only jump between the states
x and x ′, as shown in Fig. 13.8, with probabilities q(x |x) = 0.1, q(x ′|x) = 0.9 and
q(x |x ′) = q(x ′|x ′) = 0.5, corresponding to the stochastic matrix

P =
(
0.1 0.9
0.5 0.5

)
. (13.19)

If q satisfies the detailed-balance condition π(x)q(x ′|x) = π(x ′)q(x |x ′), we are
done, since then π(x) is already the equilibrium distribution of the chain. In the case
in Fig. 13.8 (left) the condition is fulfilled: the equilibrium distribution satisfying
π = πP is

π = (
π(x),π(x ′)

) =
(

5

14
,
9

14

)
, (13.20)

so

π(x)q(x ′|x) = 5

14

9

10
= π(x ′)q(x |x ′) = 9

14

1

2
= 9

28
.

But what if (13.20) is not our desired (target) distribution and we actually wish to
attain the equilibrium distribution

π =
(
2

3
,
1

3

)
? (13.21)
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The matrix (13.19) can not do it, since π �= πP . Besides, reversibility is gone:

π(x)q(x ′|x) = 2

3

9

10
> π(x ′)q(x |x ′) = 1

3

1

2
. (13.22)

The inequality reveals that the x → x ′ transitions are too frequent with respect to
x ′ → x for the chain to be in equilibrium. Equilibrium is restored if the left-hand side
if multiplied by a suitable factor, (5/18)π(x)q(x ′|x) = π(x ′)q(x |x ′). Then instead
of q(x ′|x) = 0.9 the transition probability is q̃(x ′|x) = (5/18)0.9 = 0.25, and one
must also fix q̃(x |x) = 1 − q̃(x ′|x) = 0.75. The new equilibrated chain with the
stochastic matrix

P̃ =
(
0.75 0.25
0.5 0.5

)

is shown in Fig. 13.8 (right). For the chain with such matrix the desired distribu-
tion (13.21) is indeed stationary, π = πP̃ .

This kind of tweaking of non-diagonal transition probabilities is the foundation
of the Metropolis–Hastings algorithm [10–12]. The guesswork of finding the correct
scaling factor for bothmatrix elements is replaced by aweightαwithwhich a “good”
state or configuration is accepted:

π(x)
[
q(x ′|x)α(x ′|x)] = π(x ′)

[
q(x |x ′)α(x |x ′)

]
.

If we wish to accept x while the chain tends to move to x ′, we should be very
generous in accepting the x ′ → x transitions, so we set α(x |x ′) = 1, while the
x → x ′ transitions should be stifled with probability α(x ′|x) which, by the above
equation, is

α(x ′|x) = π(x ′)q(x |x ′)
π(x)q(x ′|x) .

If the balance (13.22) tips in the opposite direction, in favor of the x ′ → x transitions,
we simply exchange the roles of x and x ′. The same reasoning applies to a chain with
many states, not just two. For any two states x and y we then define the acceptance
probability of y with respect to x :

ρ(x, y) = min

{
π(y)q(x |y)
π(x)q(y|x) , 1

}
. (13.23)

The Metropolis–Hastings (MH) algorithm that generates a Markov chain Xt with
states xt+1, xt+2, xt+3 . . . given the initial state xt , the desired target distribution π
and the chosen candidate distribution q, is therefore exceedingly simple:

1. Draw a value yt of the random variable Y ∼ q(y|xt ).
2. For the next state of the chain take
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xt+1 =
{
yt with probability ρ

(
xt , yt

)
,

xt otherwise.

3. Assign xt ← xt+1 and go to 1.

Independent Metropolis–Hastings Algorithm

If the candidate distribution does not depend on the present state of the chain, that
is, q(y|x) = g(y), the algorithm is even simpler:

1. Draw a value yt of the random variable Y ∼ g(y).
2. For the next state of the chain take

xt+1 =
⎧
⎨

⎩
yt with probability min

{
π(yt )g(xt )

π(xt )g(yt )
, 1

}
,

xt otherwise.

3. Assign xt ← xt+1 and go to 1.

Both versions of the algorithm generate the equilibrium distribution π even if its
normalization constant is unknown, as it cancels in the ratio π(y)/π(x). Moreover,
it is fascinating that it is generated regardless of the form of the function q! We
must only ensure that π and q have the same definition domains. However, from the
perspective of efficiency and precision of the algorithm it does matter what kind of
q is chosen: we learn this in the following Example. For additional details see [13].

Example We wish to generate random numbers according to a continuous distribu-
tion corresponding to a mixture of two normal densities of the form (3.7),

π(x) = w1 f
(
x;μ1,σ

2
1

) + w2 f
(
x;μ2,σ

2
2

)
, (13.24)

with weights w1 = 0.3, w2 = 0.7 and parameters μ1 = 0, μ2 = 10, σ1 = σ2 = 2.
The rotated graphs of π(x) are shown in the two small rectangles in Fig. 13.9 (right).

Such a density enters, for instance, in a numerical evaluation of the integral

θ =
∫ ∞

−∞
g(x)π(x) dx, (13.25)

where g is some function. Let the candidate function used to draw the new state y
in the MH algorithm also be a normal density with its mean equal to the previous
state x :

q(y|x) = f
(
y; x,σ2

q

)
, (13.26)

while σq is a free parameter. Choose σq = 0.3, initial state x0 = 0, and run the
algorithm for T = 10,000 steps. The obtained T states of the chain are shown in

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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Fig. 13.9 Illustrating the MH algorithm as a generator of sequences of states in a Markov chain.
[Top left] The states {x1, x2, . . . , x10000} of the chain generated by the algorithm with σq = 0.3
(poor mixing). [Top right] Normalized histogram of states after T = 10,000 steps compared to the
target probability density (13.24). [Bottom] Same as the panels above, but with σq = 3.0 (good
mixing)

Fig. 13.9 (top left), while the normalized histogram of these states compared to the
target density (13.24) is shown in Fig. 13.9 (top right).

The Figure tells us that the algorithm has spent about 2500 steps in sampling the
first region of the target density centered at x = μ1, switched to the other region
around x = μ2 after approximately 3000 steps, then changed its mind and quickly
returned to the first region, sampling it for the next 3000 steps, and spent most of its
remaining time in the second region. The histogram of the generated states xi poorly
matches the desired target density, because the algorithm dwelled at rather restricted
portions of the definition domain for too long. The culprit is the parameter σq being
too small, much smaller thanσ1 andσ2. The density (13.26) used to randomly explore
the neighborhood of the old value x in order to come up with the new value y, is
too “sharp” and leaves very limited freedom to the acceptance probability (13.23).
The algorithm spends too much time in the same place: we say the states are poorly
mixed.

If σq is chosen more prudently, setting e.g. σq = 3.0, which is comparable to
σ1 = σ2 = 2, we obtain something like Fig. 13.9 (bottom left and right). Now the
algorithm is very jittery and keeps on jumping between the two main prominences of
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Fig. 13.10 Numerical integration with the MCMC method (MH algorithm). [Left] The graph of
the integrand g(x)π(x). [Right] Convergence of the estimate (13.28) to the exact value (13.27). As
for any other statistical average, the relative error of integration by using the MCMC method and
the Metropolis–Hastings algorithm has the typical inverse-square-root dependence on the number
of steps

the target distributions; the smearing of the candidate function is just about right that
the algorithm can comb through all relevant parts of the domain. We have used the
same number of steps, but with a carefully tailored function q the agreement between
the generated and target distributions has greatly improved. A simple criterion for a
basic tune of the candidate function is the fraction of steps in which the new state is
accepted: it should hover around 0.5.

We know how to generate random numbers according to (13.24); now let us
calculate some nasty integral of the form (13.25), for example, with the function

g(x) = sin x

1 + x2/10
.

The graph of g(x)π(x) is in Fig. 13.10 (left), and the exact value of the integral is

θ =
∫ ∞

−∞
g(x)π(x) dx ≈ 0.001580506099596839. (13.27)

With random numbers {x1, x2, . . . , xT } generated by the MH algorithm we calculate
the estimates of the integral (partial sums)

θ̂ = 1

T

T∑

t=1

g(xt ) (13.28)

for various T . The relative error between the estimates θ̂ at each T and the exact
value θ is shown in Fig. 13.10 (right). �
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With this Example we have barely scratched the surface of Markov-chain Monte
Carlomethods.Approaches of theMCMCtype truly blossom inmultiple dimensions,
where the classicalmethods of generatingprobability distributions become inefficient
or—in the case of more general state spaces�—completely useless. Further reading
is offered by [14, 15].
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Chapter 14
Stochastic Population Modeling

Abstract Oneway to analyze the time evolution of discrete populations is to develop
models of birth, death and other mechanisms that influence the size of the population,
as well as interactions between two or more populations. Modeling of births and
deaths is introduced, followed by a discussion of a combined birth-death model
representable in matrix form. The existence of equilibrium states is questioned and
the time evolution of population distribution moments is presented.

This Chapter is devoted to population dynamics, i.e. modeling of birth, death and
other processes experienced by “individuals” in discrete populations. (Such phe-
nomena can be modeled as discrete-state Markov processes—see Chap. 12—but we
discuss them separately here in a slightly simpler form.) “Individuals” may be single
cells that die or successfully divide, people getting sick due to an infectious disease to
which they succumb or become immune, subatomic particles being born or decaying
in cosmic ray showers, or photons and electrons in resonant cavities of multi-level
lasers [1–4].

Let X (t) be the size of the population at time t . Births, deaths, emigration, immi-
gration and other mechanism that in any way modify the population size are treated
stochastically, so X (t) is a random variable. The probability that X at time t has
value n, is denoted by

pn(t) = P
(
X (t) = n

)
, n = 0, 1, 2, . . .

14.1 Modeling Births

Let us begin with the simple case of cells dividing at a constant rate λ > 0. The prob-
ability of one cell dividing in two in the interval (t, t + �t] is λ�t . The probability
that the whole population with X (t) cells at time t increases in size by precisely one
cell in the interval (t, t + �t], is therefore λX (t)�t . Assume that at time t + �t
the population contains n cells. If �t is small enough, multiple divisions may be
neglected, so the population could achieve this state by two ways only: from a state

© Springer International Publishing Switzerland 2016
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with n cells at time t and no division in (t, t + �t]; or from the state with n − 1 cells
at time t and precisely one division in (t, t + �t],

pn(t + �t) = pn(t)
(
1 − λ�t

)n + pn−1(t)
(
1 − λ�t

)n−1
λ(n − 1)�t

= pn(t)
(
1 − λn�t

) + pn−1(t)λ(n − 1)�t + O(�t).

Assume that the population at time zero contains N cells, X (0) = N . Of course, it
can only grow, thus one always has n ≥ N . For very small �t it holds that

(
pn(t +

�t) − pn(t)
)
/�t ≈ dpn(t)/dt = ṗn(t). In the�t → 0 limit the difference equation

therefore becomes a system of differential equations:

ṗN (t) = −λNpN (t),

ṗn(t) = −λnpn(t) + λ(n − 1)pn−1(t), n > N .
(14.1)

The first equation is simpler, as the probability for the state with N cells can not be
nourishedby the statewith N − 1cells, but canonly diminish, therefore pN−1(t) = 0.
The initial conditions are

pN (0) = 1,
pn(0) = 0, n > N .

(14.2)

The solution of the system (14.1) with initial condition (14.2) for general n is [3]

pn(t) =
(
n − 1

N − 1

)
e−λNt

(
1 − e−λt

)n−N
, n ≥ N ,

which corresponds to the negative binomial distribution (5.8) with probability p =
e−λt for a “good” outcome. The expected value of the population size at time t is

E
[
X (t)|X (0) = N

] = Neλt ,

which, of course, implies unhindered growth, and its variance is

var
[
X (t)|X (0) = N

] = Neλt
(
eλt − 1

)
.

14.2 Modeling Deaths

By analogy to the birth-only model it is easy to establish the time evolution of a
population that only experiences deaths. Let us stay with simple cellular division;
the probability that a single cell dies in the interval (t, t + �t] is μ�t , where μ > 0
is the mortality rate. The probability that in the whole population with size X (t) at
time t a single cell dies in the interval (t, t + �t], is μX (t)�t . The dynamics of the

http://dx.doi.org/10.1007/978-3-319-31611-6_5
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population is therefore described by the system of differential equations

ṗN (t) = −μNpN (t),

ṗn(t) = −μnpn(t) + μ(n + 1)pn+1(t), 0 ≤ n < N .
(14.3)

If the size of the population at time zero is N , the initial conditions are

pN (0) = 1,
pn(0) = 0, 0 ≤ n < N .

(14.4)

The solution of the system (14.3) with initial condition (14.4) for arbitrary n is [3]

pn(t) =
(
N

n

)
e−μnt

(
1 − e−μt

)N−n
, n = 0, 1, 2, . . . , N .

This is the usual binomial distribution with p = 1 − q = e−μt , so the expected value
and variance of the variable X at time t are at hand:

E
[
X (t)|X (0) = N

] = Np = Ne−μt , (14.5)

var
[
X (t)|X (0) = N

] = Npq = Ne−μt
(
1 − e−μt

)
.

Example A dying population can be modeled by a simple computer simulation.
The key realization is that death is a Poisson process with a known mortality rate
(Poisson parameter) μ. In the whole population with size X (t) at time t , on average
X = μX (t)�t cells die during the interval (t, t + �t]—while in an actual “experi-
ment” we may record zero, one, two,… deaths. The change of the population size at

each time step is then �X (t) = −P(μX (t)�t), where P denotes a discrete random
number, distributed according to the Poisson distribution with mean μX (t)�t . Pois-
son generators are available in standard libraries [5]. We begin the simulation with
X (0) = N and subtract

X (t + �t) = X (t) − P(
μX (t)�t

)
, (14.6)

until the population size drops to zero. Five such randomdeath “paths”with N = 250,
μ = 0.5 and �t = 0.1 are shown in Fig. 14.1.

The exponential decay is not surprising: due to the randomness of the process
the extinction times are somewhat scattered, but death of the entire population is
unavoidable as

lim
t→∞ p0(t) = lim

t→∞
(
1 − e−μt

)N = 1.

Amore relevant question iswhenon average the population dies out:we are interested
in the distribution of extinction times. We follow many random death “paths” and
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Fig. 14.1 Dying out of a populationwith Poisson-distributed number of deaths in each time interval.
[Left] Depiction on linear scale. [Right] Depiction on logarithmic scale, together with the expected
exponential dependence (14.5)

Fig. 14.2 Dying out of populations with different mortality rates. [Left] The distribution of extinc-
tion times te, generated by following 100,000 different random paths from the initial state with
X (0) = N = 250 to the final with X (te) = 0. [Right] Dependence of the average extinction time
te on the step length �t

note the times at which the population size drops to zero. A few such distributions
with the same N and �t as above are shown in Fig. 14.2 (left).

It is also interesting to know whether the calculated extinction time and the dis-
tribution of its averages depend on �t . The time step should not be too large, oth-
erwise one can mow down the entire population in a single �t . For small enough
steps, on the other hand, the results should be approximately independent of �t :
namely, if X1, X2, . . . , Xk are Poisson-distributed random variables with parameters
λ1,λ2, . . . ,λk , their sum X1 + X2 + · · · + Xk is also a Poisson-distributed variable
with parameter λ1 + λ2 + · · · + λk (convolution; see also Example on page 148). In
other words, in drawing random numbers we rely on the approximation

P(
λX (t)�t

) ≈ P(
λX (t)ξ�t

)+P(
λX (t)(1 − ξ)�t

)
, 0 ≤ ξ ≤ 1.

The quality of this approximation can be judged from Fig. 14.2 (right). �
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14.3 Modeling Births and Deaths

The dynamics of births and deaths can be merged in a unified model that can even
be endowed by a more general ansatz for natality and mortality rates in a population
with size n. Let us denote them by λn and μn . So far we have assumed that they
are proportional to the population size, i.e. λn = nλ and μn = nμ, but in general
they can have a richer functional form which, however, must always satisfy the
requirement λ0 = μ0 = 0: in a population with size n = 0 nothing can be born, and
such a population can not “die further”.

Birth and death are independent Poisson processes; the probability that a popula-
tion of size n faces b births and d deaths in the interval (t, t + �t] is therefore the
product of individual probabilities,

(λn�t)be−λn�t

b! · (μn�t)de−μn�t

d! .

If �t is small enough, only the terms with b = 0, 1 and d = 0, 1 may be considered.
Let us use

�X(t, t + �t) = X (t + �t) − X (t)

to denote the change in population size (increase or decrease) in the time interval
(t, t + �t]. We discuss a population model with the properties

�X = 1 : P
(
�X(t, t + �t) = 1

∣∣ X (t) = n
) = λn�t + O(�t),

�X = −1 : P(
�X(t, t + �t) = −1

∣∣ X (t) = n
) = μn�t + O(�t),

�X = 0 : P
(
�X(t, t + �t) = 0

∣∣ X (t) = n
) = 1 − (λn + μn)�t + O(�t),

otherwise : P
(|�X(t, t + �t)| > 1

∣∣ X (t) = n
) = O(�t),

whose dynamics is determined by the system of differential equations

pn(t + �t) = λn−1�t pn−1(t)︸ ︷︷ ︸
birth

+ [
1 − (λn + μn)�t

]
pn(t)︸ ︷︷ ︸

birth or death

+ μn+1�t pn+1(t)︸ ︷︷ ︸
death

+O(�t),

where n = 0, 1, 2, . . . The probabilities pn(t) can be arranged in the vector

p(t) = (
p0(t), p1(t), p2(t), . . .

)T
. (14.7)

Its dimension depends on the expected population dynamics. In the simple death
model with a population of initial size N one needs a (N + 1)-dimensional vec-
tor to accommodate all possible population sizes between 0 and N . In the simple
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birth model one needs an infinite-dimensional vector in principle, but in a computer
implementation it is whittled down according to the sizes we wish to monitor. The
coefficients of the system are stored in the matrix

M =

⎛

⎜⎜⎜⎝

1 − (λ0 + μ0)�t μ1�t 0 0 · · ·
λ0�t 1 − (λ1 + μ1)�t μ2�t 0 · · ·
0 λ1�t 1 − (λ2 + μ2)�t μ3�t · · ·
...

...
...

...
. . .

⎞

⎟⎟⎟⎠ ,

so that it can be expressed in matrix form

p(t + �t) = M p(t),

and precisely the way it has been written it is also solved (given the specific initial
condition)—see Example on page 356.

By analogy to the simple birth and death processes, the �t → 0 limit yields the
corresponding (tridiagonal) system of linear differential equations

ṗn(t) = λn−1 pn−1(t) − (λn + μn)pn(t) + μn+1 pn+1(t), (14.8)

where n = 0, 1, 2, . . . The system is solved with the initial conditions

pN (0) = 1, pn(0) = 0 (n �= N ), (14.9)

or with a more general condition p(0) = p0.

14.3.1 Equilibrium State

Does an equilibrium state exist for the system (14.8), i.e. a stationary (stable) distri-
bution with the property ṗ = 0? This question can be answered by setting all ṗn(t)
to zero and noticing that λ0 = μ0 = 0:

ṗ0 = μ1 p1 = 0 =⇒ p1 = 0,
ṗ1 = −(λ1 + μ1)p1 + μ2 p2 = 0 =⇒ p2 = 0,
ṗ2 = λ1 p1 − (λ2 + μ2)p2 + μ3 p3 = 0 =⇒ p3 = 0,

and so on. The only equilibrium state is therefore the state of total extinction, p0(t) =
1, as all pi (t) must sum to 1 at any t .
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14.3.2 General Solution in the Case λn = Nλ, μn = Nμ,
λ �= μ

In the case that natality and mortality rates are proportional to the number of indi-
viduals in the population and different from each other,

λn = nλ, μn = nμ, λ,μ > 0, λ �= μ,

the solution of the system (14.8) with initial condition (14.9) can be written in closed
form, dependingon the initial population size N [3]. If the process beginswith a single
individual, N = 1, corresponding to p(0) = (0, 1, 0, 0, 0, . . .)T, the solution is

p(N=1)
0 (t) = μρ,

p(N=1)
n (t) = (

λρ
)n

[
μρ − λ − μa(

μ − λa
)
λρ

]
, n ≥ 1,

where

ρ = 1 − a

μ − λa
, a = e(λ−μ)t .

For N ≥ 2 the general solution is

p0(t) = (
μρ

)N
,

pn(t) =
imax∑
i=0

(
N

i

) (
N+n−i−1

N−1

) (
μρ

)N−i(
λρ

)n−i[
1 − (λ + μ)ρ

]i
,

(14.10)

where n ≥ 1 and imax = min{N , n}.

14.3.3 General Solution in the Case λn = Nλ, μn = Nμ,
λ = μ

If natality and mortality rates are equal, λ = μ, the corresponding formulas for p0(t)
and pn(t) are obtained by taking the λ → μ limit in the above expressions. (The rule
of l’Hôpital comes to the rescue.)

14.3.4 Extinction Probability

The probability that a population dies out after time t (the extinction probability) is
coded in the zeroth element of vector p:
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p0(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
μ
(
e(λ−μ)t − 1

)

λ e(λ−μ)t − μ

)N

; λ �= μ,

(
λt

1 + λt

)N

, ; λ = μ.

Therefore

lim
t→∞ p0(t) =

{
1 ; λ ≤ μ,(μ

λ

)N ; λ > μ.

Even if natality and mortality rates are equal, the population certainly dies out!

14.3.5 Moments of the Distribution P(t) in the Case
λn = nλ, μn = nμ

Apart from the dynamics with initial condition p(0) = (
0, 0, 0, . . . , 1, . . . , 0, 0, 0

)T

corresponding to an exact initial population size N , we would like to understand
the time evolution of a population whose size at time t (possibly t = 0) has a more
general distribution, e.g.

(
0, 0, 0, . . . , 0.1, 0.2, 0.4, 0.2, 0.1, . . . , 0, 0, 0

)T
. For this

we need the i th moment of the variable X (t) with distribution p(t),

Mi (t) =
∞∑

n=0

ni pn(t).

We insist on the form λn = nλ, μn = nμ and calculate the time derivative of the first
moment, Ṁ1(t). This is done by rewriting (14.8) and considering p−1 = 0,

Ṁ1 =
∑∞

n=0
n ṗn =

∑∞
n=0

n
[
λ(n − 1)pn−1 − (λ + μ)npn + μ(n + 1)pn+1

]

= [−(λ + μ) + 2λ
]
p1 + [−4(λ + μ) + 2μ + 6λ

]
p2 + · · ·

= (λ − μ)p1 + 2(λ − μ)p2 + 3(λ − μ)p3 + · · ·
= (λ − μ)

∑∞
n=0

np1 = (λ − μ)M1. (14.11)

We have obtained the equation Ṁ1(t) = (λ − μ)M1(t) with the solution

M1(t) = M1(0) e
(λ−μ)t

and the message: if λ > μ, the mean of the population distribution (its “center of
gravity”) exponentially diverges; if λ < μ, it exponentially decreases to zero; if
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Fig. 14.3 Moments of the distribution p(t) or random variable X (t) with initial condition X (0) =
N in the case of dominating births (λ > μ), dominating deaths (λ < μ) and (quasi) equilibrium
(λ = μ). [Left] Expected value. [Right] Variance

λ = μ, the averagedoes not change—whichdoes notmean that X (t)does not change!
With a sharp initial condition pN (0) = 1, which means precisely M1(0) = N , the
same realization can be written as

E
[
X (t)|X (0) = N

] = N e(λ−μ)t , (14.12)

as shown in Fig. 14.3 (left).
A similar calculation yields the second moment. By analogy to (14.11) we obtain

the differential equation Ṁ2(t) = 2(λ − μ)M2(t) + (λ + μ)M1(t) with the solution

M2(t) = M2(0) e
2(λ−μ)t + M1(0)

λ + μ

λ − μ
e(λ−μ)t

[
e(λ−μ)t − 1

]
, λ �= μ.

Hence the variance is

σ2(t) = M2(t) − (
M1(t)

)2 = σ2(0) e2(λ−μ)t + M1(0)
λ + μ

λ − μ
e(λ−μ)t

[
e(λ−μ)t − 1

]

where σ2(0) = M2(0) − (
M1(0)

)2
. If the initial size of the population is sharply

defined, this expression can be further simplified, since then the initial variance is
zero, σ2(0) = 0, while the mean is M1(0) = N :

var
[
X (t)|X (0) = N

] =

⎧
⎪⎨

⎪⎩

N
λ + μ

λ − μ
e(λ−μ)t

[
e(λ−μ)t − 1

] ; λ �= μ,

2Nμt ; λ = μ.

(14.13)

The time evolution of the variance in three typical dynamical regimes (λ > μ, λ = μ
and λ < μ) is shown in Fig. 14.3 (right).
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Example Consider the example of stochastic analysis of a population with natality
rate λ = 0.2 and mortality rate μ = 0.4. We are interested in the time evolution of
the size of the population with initial size X (0) = N = 100 on the interval t ∈ [0, 3].
All we need is the recipe

X (t + �t) = X (t) + P(
λX (t)�t

) − P(
μX (t)�t

)
, (14.14)

where P denotes a random number generated according to the Poisson distribution
with the specified mean parameter (compare to (14.6)).

First we calculate the “paths” traced by the population (compare to Fig. 14.1).
Figure14.4 (left) shows 100 such paths. Mortality exceeds natality, thus on average
exponential decay (14.12) is observed.Yet in spite ofλ < μ a fewpaths evenmeander
beyond X (t) > N at short times. The path “fan” spreads out, as predicted by (14.13),
although at time t ≈ (log 2)/(μ − λ) ≈ 3.5 it should begin to shrink according to

Fig. 14.4 [Left] Simulation of 100 random paths generated according to (14.14) with X (0) = N =
100, λ = 0.2, μ = 0.4 and�t = 0.01 until time t = 3. Compare to Figs. 14.1 and 1.5 (left). [Right]
The distribution of final states for all 100 paths

Fig. 14.5 Components of p(t) expressing the state of the populationwith exact initial size N = 100
after time t , i.e. the fraction of paths ending in X (t) = n. The arrow indicates the initial distribution.
For t = 3 the analytic solution (14.10) is also plotted

http://dx.doi.org/10.1007/978-3-319-31611-6_1
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the lower curve in Fig. 14.3 (right). The distribution of the final states X (t) at t = 3
for all paths is shown in Fig. 14.4 (right).

The more paths we simulate, the smoother the histogram, which is nothing but a
snapshot of the vector p(t) (14.7) at arbitrary time.Let us compute a larger set (10,000
instead of 100) random paths, all started with X (0) = N = 100, i.e. p100(0) = 1.
The components of the vector p(t) at times t = 1, 3, 7 and 16 are shown in Fig. 14.5.
The population dies out, and of the distribution p(t) in the t → ∞ limit only the
p0(t) = 1 component survives. �

14.4 Concluding Example: Rabbits and Foxes

The time evolution of a population becomes truly interestingwhenwe consider immi-
gration and emigration, external factors like finite amounts of nutrients or energy, and
in particular when we treat several populations and their mutual interactions. So far
we have only learned the alphabet: thence the vast expanse of population dynamics
opens which is beyond the scope of this chapter and this textbook.

Nevertheless, let us discuss a simple problem of two populations in order to gain
at least some insight into the richness of possible states and their inter-dependence.
It is the classical conflict of rabbits and foxes. If food is abundant and there are no
threats, the rabbits multiply with natality rate λ1 and die (due to old age or disease)
with mortality rate μ1. The corresponding parameters for the foxes are λ2 and μ2.
But the crucial ingredient is the interaction between the two: in order for a fox to
catch the rabbit, they must meet, so the probability of their meeting is proportional
to the product of probabilities that the rabbit (R) and the fox (F) happen to be at
the same place at the same time. We can then imagine the random variables R(t)
and F(t) to be some sort of time-dependent “concentrations” of rabbits and foxes,
and the product R(t)F(t) a kind of measure for the success of the hunt. With this
guideline we write the differential equations

Ṙ(t) = λ1R(t) − μ1R(t) − γR(t)F(t),

Ḟ(t) = λ2F(t) − μ2F(t) + δR(t)F(t),

where γ > 0 and δ > 0 are interaction parameters. The last term in the first equation
is negative, since the foxes are killing the rabbits. The last term in the second equation
is positive, as the fox population is being strengthened.

Assume thatλ1/μ1 = μ2/λ2 = 5/4, so in truth only two parameters are genuinely
free, since we can write λ1 = 5α, μ1 = 4α, λ2 = 4β and μ2 = 5β. Suppose that the
rabbit and fox populations are in equilibrium with R0 = 200 rabbits and F0 = 50
foxes. Equilibrium means Ṙ(t) = Ḟ(t) = 0, thus

λ1R0 − μ1R0 − γR0F0 = 0,

λ2F0 − μ2F0 + δR0F0 = 0.
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The equilibrium condition allows us to compute the interaction parameters,

5αR0 − 4αR0 = γR0F0 =⇒ γ = α/F0,

4βF0 − 5βF0 = −δR0F0 =⇒ δ = β/R0,

so the original system of differential equations can be written as

Ṙ(t) = 5αR(t) − 4αR(t) − (α/F0) R(t)F(t),

Ḟ(t) = 4βF(t) − 5βF(t) + (β/R0) R(t)F(t).

This system with initial conditions R(0) = R0 and F(0) = F0 can be solved deter-
ministically, i.e. by a suitable program for integration of differential equations. Our
question about the state of the populations at a later time t will be given a unique
answer. But we can also solve it stochastically, so that in each termwe draw a Poisson
probability for the increase or decrease of the population with the argument which
is a product of the growth or decay parameter, the current population size, and the
step length �t . In short, we repeat the recipe (14.14), except that we now have two
interacting populations. We therefore initialize the populations with R(0) and F(0)
and enter the loop

R(t + �t) = R(t) + P(
5αR(t)�t

) − P(
4αR(t)�t

) − P(
(α/F0)R(t)F(t)�t

)
,

F(t + �t) = F(t) + P(
4βF(t)�t

) − P(
5βF(t)�t

) + P(
(β/R0)R(t)F(t)�t

)
,

which is repeated until one of the populations dies out. Two examples of random
population “paths” generated in this manner are shown in Fig. 14.6 (top). The two
panels at bottom show the corresponding phase portraits.

We see in Fig. 14.6 (top left) that at 0 � t � 200 an approximately constant num-
ber of rabbits are available, which benefits the foxes. At t ≈ 200 the rabbits become
a rare commodity, so the fox population dwindles soon thereafter. This is swiftly
exploited by the rabbits which happily multiply after t ≈ 300; this again aids the
foxes, and the rabbits are mercilessly devoured up to t ≈ 500. But this also implies
that the food becomes scarce for the foxes as well, so they, too, almost perish.

Figure14.6 (top right) shows a more interesting case of nearly periodic exchange
of predator and prey resurrections: the fox population recovers shortly after the rabbit
population culminates. Intervals with negative time derivative of R(t) correspond to
intervals with positive derivatives of F(t). As an exercise, repeat the simulation
many times and plot the distribution with respect to extinction times of rabbits and
foxes as in Fig. 14.2! In the meanwhile, pause to ponder upon miraculous Nature that
has managed to sustain such periodicity by using its own Monte–Carlo method for
eons!
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Fig. 14.6 Modeling Poissonian population dynamics of rabbits and foxes with parameters α = 2,
β = 1, R0 = 200, F0 = 50 and �t = 0.01. [Top left and right] Sample time evolutions of R(t) and
F(t). [Bottom left and right] Phase portraits
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Appendix A
Probability as Measure �

Abstract Probability is defined in a mathematically strict manner as a measure.
The Dirac delta is defined.

Here we give a mathematically more strict definition of probability and the Dirac
delta “function” (phenomenologically introduced in (2.1)) as measures.

σ-Algebra

Let X be a non-empty set. A family of subsets A of X is called a σ-algebra on X if
it has the following properties:

1. X ∈ A;
2. for each subset S ∈ A also X\S ∈ A;
3. for each countable family {Ai : i ∈ N} of elements from A, the union

⋃
i∈N Ai

also belongs to A.
The elements of the family A are called measurable sets, and the set X , furnished
with A, is called a measurable space. A measurable space is the pair (X,A).

Positive Measure

Examples of positive measures are: length of subset (interval) in R, area of planar
geometric shapes, volume of bodies in space. To generalize these special cases to
arbitrary measurable spaces, one defines a positive measure (or simply measure) on
a measurable space (X,A) as the function

μ : A → [0,∞],

satisfying the conditions

1. μ({ }) = 0 and
2. μ

(⋃∞
n=1 An

) = ∑∞
n=1 μ(An)

for each countable family of disjoint subsets An and A. A positive measure μ on a
measurable space (X,A) is called a finite measure if μ(X) < ∞.
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Probability as a Positive Measure

For random experiments with sample space S we define the event space E , which
is the power set of S, i.e. the set of all subsets of S, including the empty set and S
itself. The mapping P : E → R is called a probability measure on measurable space
(S, E) if the following holds true:

1. P(A) ≥ 0 for each A ∈ E ;
2. P(S) = 1;
3. if A1, A2, . . . are mutually exclusive events in E , then

P

( ∞⋃

n=1

An

)

=
∞∑

n=1

P(An).

In simple cases, e.g. in throwing a die, E may indeed be identified with the power
set of S, but often we restrict ourselves to a much smaller set: for example, it turns
out [1] that there does not exist a probability measure P that would be defined on all
subsets of the interval [0, 1] and would satisfy the requirement P({x}) = 0 for each
x ∈ [0, 1].
Dirac Measure

Let X be an arbitrary non-empty set,A its power set, and x ∈ X its arbitrary element.
Then the prescription

μ(A; x) =
{
1 ; x ∈ A,

0 ; x ∈ X\A,

defines a positive finitemeasure onmeasurable space (X,A) called theDiracmeasure
at x and denoted by δx . For each function f : X → R the integration with respect
to the Dirac delta represents the evaluation of the function at x ,

∫

X
f dδx = f (x).

In the special case X = R we have

∫

A
f dδx = f (x)δx (A) =

∫

A
f (t)δ(t − x) dt, A ⊆ X,

for each measurable function f : R → R, where dδx (t) = δ(t − x) dt and δ is the
Dirac delta “function”.
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Appendix B
Generating and Characteristic Functions �

Abstract Generating and characteristic functions are introduced as transformations
of random variables that facilitate the calculation of certain distribution properties, in
particular its moments and their convolutions. The problems of inverting probability-
generating and characteristic functions, as well as of the existence of generating
functions are presented.

Generating and characteristic functions are transformations of probability functions.
As such they are not as easy to interpret as the distributions themselves, but in certain
cases they offer immense benefits in terms of elegant calculation of distribution
properties—for example, their moments—or quantities relating the distribution to
each other, in particular their convolutions.

B.1 Probability-Generating Functions

Generating functions are applicable to random variables whose possible values are
non-negative integers or their subsets. Such variables are called non-negative integer
random variables. Let X be such a variable with the probability function

fn = P(X = n). (B.1)

Then the function of a real variable

GX (z) =
∞∑

n=0

P(X = n)zn =
∞∑

n=0

fnz
n, |z| ≤ 1,

is the [probability]-generating function of the random variable X , distributed accord-
ing to (B.1). The coefficients in this power expansion are probabilities with values
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between 0 and 1. Since they are bounded, the series is absolutely convergent for any
|z| < 1, and due to

G(1) =
∞∑

n=0

fn = 1

the series converges at least on [−1, 1]. By comparison to (4.7) we also see that the
generating function is equal to the expected value of the random variable zX ,

GX (z) = E
[
zX

]
. (B.2)

The generating function GX uniquely determines the probability function of X .
This can be seen if we take the derivative of the series with respect to z:

dr

dzr
GX (z) =

∞∑

n=r

n(n − 1) · · · (n − r + 1)zn−r fn, r = 1, 2, . . .

Namely, by setting z = 0 we obtain

fr = P(X = r) = 1

r !
[
dr

dzr
GX (z)

]∣
∣
∣
∣
z=0

, r = 0, 1, 2, . . . , (B.3)

so indeed by taking consecutive derivatives the complete distribution is determined,
as all its components fr are combed through. Why does this matter? Frequently
only the generating function of X is available, while its probability function is not
explicitly known. In such cases its components can be calculated by using (B.3): see
Sect. B.1.2. Besides, taking the derivatives of the generating function is an easy way
to produce the moments of X . For instance, by taking the first and second derivative
we get

G ′
X (z) =

∞∑

n=1

nzn−1 fn, G ′′
X (z) =

∞∑

n=2

n(n − 1)zn−2 fn.

On the other hand,

E[X ] =
∞∑

n=1

n fn = lim
z↗1

G ′
X (z) = G ′

X (1), (B.4)

E[X (X − 1)] =
∞∑

n=2

n(n − 1) fn = lim
z↗1

G ′′
X (z) = G ′′

X (1),

therefore

E[X2] = E[X (X − 1)] + E[X ] = G ′′
X (1) + G ′

X (1),

var[X ] = E[X2] − (E[X ])2 = G ′′
X (1) + G ′

X (1)
[
1 − G ′

X (1)
]
. (B.5)

http://dx.doi.org/10.1007/978-3-319-31611-6_4
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Individual moments can be calculated without such detours by using the formula

E[Xr ] =
[(

z
d

dz

)r

GX (z)

]∣
∣
∣
∣
z=1

.

Example The generating function of the binomial distribution (Definition (5.1)) with
the probability function fn = P(X = n; N , p) is

GX (z) =
N∑

n=0

fnz
n =

N∑

n=0

(
N

n

)

pnqN−nzn =
N∑

n=0

(
N

n

)

(pz)nqN−n = (pz + q)N .

Its first derivative isG ′
X (z) = Np(pz + q)N−1, and the second derivative isG ′′

X (z) =
N (N−1)p2(pz + q)N−2, thusG ′

X (1) = Np andG ′′
X (1) = N (N−1)p2. From (B.4)

and (B.5) it follows that

E[X ] = Np, var[X ] = N (N − 1)p2 + Np(1 − Np) = Npq,

which are familiar expressions (5.5). 

Example The generating function of the Poisson distribution (5.11) is

GX (z) =
∞∑

n=0

fnz
n =

∞∑

n=0

λne−λ

n! zn = e−λ
∞∑

n=0

(λz)n

n! = e−λeλz = eλ(z−1).

Differentiation gives G ′
X (z) = λeλ(z−1) and G ′′

X (z) = λ2eλ(z−1), hence G ′
X (1) = λ

and G ′′
X (1) = λ2. From (B.4) and (B.5) it follows that

E[X ] = λ, var[X ] = λ2 + λ(1 − λ) = λ,

which, again, we know from (5.12). 


B.1.1 Generating Functions and Convolution

Let us discuss mutually independent integer random variables X and Y with the
probability functions

fn = P(X = n), gn = P(Y = n), n = 0, 1, 2, . . .

Their sum Z = X + Y is also an integer random variable with the corresponding
probability function

hn = P(Z = n), n = 0, 1, 2, . . .

http://dx.doi.org/10.1007/978-3-319-31611-6_5
http://dx.doi.org/10.1007/978-3-319-31611-6_5
http://dx.doi.org/10.1007/978-3-319-31611-6_5
http://dx.doi.org/10.1007/978-3-319-31611-6_5
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The sum Z has value n when the variables X and Y have values (X,Y ) = (0, n) or
(1, n − 1) or (2, n − 2), and so on. Since X and Y are independent, the probabilities
of these simultaneous events are P(X = 0)P(Y = n) or P(X = 1)P(Y = n − 1)
or P(X = 2)P(Y = n − 2), and so on. In other words,

hn = P(Z = n) =
n∑

j=0

P(X = j)P(Y = n − j) =
n∑

j=0

f jgn− j , n = 0, 1, 2, . . .

We are looking at a discrete convolution of the sequences { fn} and {gn}, which we
denote as

{hn} = { fn} ∗ {gn}.

This a discrete analogue of the Definition (6.1) or

hZ (z) =
∫ ∞

−∞
fX (x)gY (z − x) dx =

∫ ∞

−∞
fX (z − y)gY (y) dy.

Where do generating functions come into play? Let

GX (z) =
∞∑

n=0

fnz
n, GY (z) =

∞∑

n=0

gnz
n

be generating functions of X and Y . The generating function of their sum is then

GZ (z) =
∞∑

n=0

hnz
n =

∞∑

n=0

⎛

⎝
n∑

j=0

f jgn− j

⎞

⎠ zn =
∞∑

n=0

n∑

j=0

f j z
jgn− j z

n− j .

The series on the right is just the product of the series GX (z) and GY (z), so

GZ (z) = GX (z)GY (z). (B.6)

The generating function of the sum of independent integer variables is therefore
equal to the product of the generating functions of the two terms. An even faster way
to this result would be to consider (B.2): if X and Y are independent, the variables
U = zX and V = zY are independent, too; since for independent variables U and V
one has E[UV] = E[U ]E[V ], this also means

E
[
zX+Y

] = E
[
zX zY

] = E
[
zX

]
E
[
zY

]
, (B.7)

whence (B.6) follows. This should not be read in the opposite direction: hav-
ing GZ (z) = GX (z)GY (z) does not necessarily mean that X and Y are inde-
pendent. But the relation can be generalized to several independent variables: if
X1, X2, . . . , Xn are mutually independent random variables with generating func-

http://dx.doi.org/10.1007/978-3-319-31611-6_6
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tions GX1(z),GX2(z), . . . ,GXn (z) and Z is their sum with the generating function
GZ (z), then

GZ (z) = GX1(z)GX2(z) · · ·GXn (z). (B.8)

Multiplying generating functions is a much simpler operation than computing con-
volution sums, so convolution of independent integer random variables is most easily
performed by using (B.6) and (B.8).

Example We demonstrate that the convolution of two Poisson distributions is a Pois-
son distribution. In theExample on p. 148wehave derived this result by a direct calcu-
lation of the convolution sum. But if one calls generating functions GX (z) = eλ(z−1)

and GY (z) = eμ(z−1) to the rescue, the effort is minimal:

GZ (z) = GX (z)GY (z) = eλ(z−1)eμ(z−1) = e(λ+μ)(z−1).

Clearly the variable Z has the generating function of the Poisson distribution with
parameter λ + μ, so indeed Z ∼ Poisson(λ + μ). 


B.1.2 Inverting the Probability-Generating Function

The functional form GZ (z) = e(λ+μ)(z−1) in the preceding Example immediately
allowed us to conclude that Z is Poissonian, as we already knew the relation between
the generating function and its inverse beforehand. The same procedure can be used
for more complicated generating functions, as long as they can be split into sums of
terms whose inverses are known.

But how do we compute the inverse of an arbitrary generating function? For-
mula (B.3) can be used for simple explicit functions, but analytic differentiation may
be strenuous and is numerically unstable. The solution—in particular when the gen-
erating function is only known at discrete points—is offered by the Cauchy integral
formula

GX (a) = 1

2πi

∮

∂D

GX (z)

z − a
dz,

where D = {z : |z − z0| ≤ R} is a subset completely contained in the definition
domain of GX (neighborhood of z0), ∂D is its boundary and a is any point in the
interior of D. For the nth derivative of GX it holds that

G(n)
X (a) = n!

2πi

∮

∂D

GX (z)

(z − a)n+1
dz,

so the components fn of the probability distribution of X—use of (B.3) requires
derivatives of GX at a = 0—are given by the integral
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fn = 1

2πi

∮

C

GX (z)

zn+1
dz.

The closed curve C is a circle in the complex plane. By the substitution z = R ei u ,
where R must be such that GX is analytic on D, we get

fn = 1

2πRn

∫ 2π

0
GX

(
R ei u

)
e−i nu du.

The integral can be evaluated by using the trapezoidal rule, resulting in the following
approximation for the true distribution fn (n = 0, 1, . . . , N − 1):

f̃n ≈ 1

N Rn

N−1∑

m=0

GX
(
R ei 2πm/N

)
e−i 2πmn/N , f̃n+N = f̃n, (B.9)

which is the inverse discrete Fourier transformation scaled by R. Due to the discrete
nature of the approximation, discretization and aliasing errors are thereby introduced
(see, for example, [1], page 166), which can be controlled by the parameter R. For
details see [2–4].

Example Let us pretend that we do not know the probability function of the Poisson
distribution fn(λ) = λne−λ/n!, but only its generating function GX (z) = eλ(z−1).
Take λ = 2, for instance: the exact values fn up to n = N = 20 are shown in Fig.B.1
(left). We compute the approximations for fn by inverting the generating function
via (B.9) with different R, say, R = 1.0, R = 2.0 and R = 0.5. The absolute errors
of these reconstructed probability functions are shown in Fig.B.1 (right). Note the
absence of the value at n = N : due to the periodicity of the Fourier transform one
has fN = f0. 


Fig. B.1 [Left] Poisson distribution with parameter λ = 2 in logarithmic scale. [Right] Difference
between the exact values fn and their approximations, calculated by inverting the probability-
generating function by the discrete Fourier transformation (B.9), at several values of the parameter R
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Fig. B.2 [Left] Poisson distribution with parameter λ = 2, binomial distribution with N = 10,
p = 0.3, and their convolution. [Right] The difference between the exact probabilities gn and their
approximations g̃n , calculated by inverting the generating function and by using the discrete Fourier
transformation with various values of R

Example It is instructive to compare the convolution of discrete distributions, calcu-
lated by the basic formula (6.4), and by multiplying generating functions according
to (B.6). Take, for instance, the Poisson distribution

P(X = n) = f (P)
n = λne−λ

n! , n = 0, 1, 2, . . . ,

where λ = 2, and the binomial distribution

P(Y = n) = f (b)
n =

(
N

n

)

pnqN−n, n = 0, 1, 2, . . . , N ,

where N = 10 and p = 0.3. These distributions are shown in Fig.B.2 (left) at its
left edge. By the definition of convolution we obtain the distribution

P(X + Y = n) = gn = (
f (P) ∗ f (b)

)
n =

n∑

i=0

f (P)
i f (b)

n−i , (B.10)

indicated by full circles in the figure.We should expect the same result bymultiplying
the generating functions of both distributions and computing the inverse Fourier
transformation of the product. Thus we compute

GZ (z) = GX+Y (z) = GX (z)GY (z) = eλ(z−1)(pz + q)N ,

and then use this function in formula (B.9):

g̃n ≈ 1

NDFTRn

NDFT−1∑

m=0

GZ
(
R ei 2πm/NDFT

)
e−i 2πmn/NDFT .

http://dx.doi.org/10.1007/978-3-319-31611-6_6
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(Think about it: what NDFT should one take in the above equation and what is the
range of n in (B.10), considering that the definition domains of the distributions
differ?) We thereby obtain the probabilities g̃n that should be equal to gn . How well
this holds is shown in Fig.B.2 (right). 


B.2 Moment-Generating Functions

Probability-generating functions have been defined for random variables with non-
negative integer values. The concept can be extended to random variables with arbi-
trary real values, if E[zX ] (see (B.2)) is replaced by E

[
et X

]
. If this expected value

is finite for t on the interval [t − T, t + T ] for some T > 0, we may define the
moment-generating function

MX (t) = E
[
et X

] =
∫ ∞

−∞
et x fX (x) dx, (B.11)

which is nothing but the continuous Laplace transform. In the case of a discrete
probability distribution of X , which we shall not discuss separately from now on,
the corresponding definition is

MX (t) = E
[
et X

] =
∑

i

et xi P(X = xi ).

The ‘moment-generating’ attribute is easy to explain if one expands et X in a power
series and exchanges the order of summation and taking the expected values:

E
[
et X

] = E

[ ∞∑

k=0

t k
Xk

k!

]

= 1 + t E[X ] + t2

2! E
[
X2

] + t3

3! E
[
X3

] + · · · .

Namely, individual distribution moments can be obtained by taking consecutive
derivatives

E
[
Xr

] =
[
dr MX (t)

dtr

]∣
∣
∣
∣
t=0

, r = 1, 2, . . . , (B.12)

thus E[X ] = M ′
X (0), E[X2] = M ′′

X (0), and so on. Compare (B.3) and (B.12)!

Example Let us calculate the moment-generating function of a random variable
distributed according to the Cauchy distribution (3.18):

MX (t) = E
[
et X

] =
∫ ∞

−∞
et x

1

π

1

1 + x2
dx =

{
1 ; t = 0,
∞ ; otherwise.

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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Now we see why Definition (B.11) had to be formulated so carefully: the expected
value E

[
et X

]
for arbitrary t may not even exist! This obstacle will be circumvented

in Sect. B.3. 

Example What about the moment-generating function of a random variable dis-
tributed according to the standardized normal distribution (3.10)? By elementary
integration1 we immediately obtain

MX (t) = E
[
et X

] =
∫ ∞

−∞
et x

1√
2π

e−x2/2 dx = et
2/2. (B.13)

The main dish follows: we expand the exponential in a power series

MX (t) = et
2/2 =

∞∑

k=0

(t2/2)k

k! =
∞∑

k=0

(2k)!
k!2k

t2k

(2k)! =
∞∑

k=0

E
[
Xk

] t k

k!

and compare the terms with equal powers of t on both sides of the last equality. This
gives us the odd moments

E
[
Xk

] = 0, k odd,

while the even ones are

E
[
X2k

] = (2k)!
k!2k = 1 · 3 · 5 · (2k − 1),

thus E
[
X2

] = 1, E
[
X4

] = 3, E
[
X6

] = 15, E
[
X8

] = 105, and so on. The first
two values should already be familiar from Sect. 4.7, while the others were derived
elegantly, with minimal effort. 


Let X and Y be random variables with moment-generating functions MX (t) and
MY (t). If X and Y are mutually independent, the same reasoning that brought us
to (B.6) implies also

MX+Y (t) = MX (t)MY (t). (B.14)

For random variables X and Y related through Y = aX + b, it holds that

MY (t) = ebt MX (at). (B.15)

So the obvious generalization of (B.14) to a sum of several variables is at hand:
if X1, X2, . . . , Xn are mutually independent random variables and Y = c1X1 +

1Gaussian integrals with linear terms in the exponent can be handled by using the formulas

∫ ∞

−∞
e−ax2/2+bx dx =

√
2π

a
eb

2/2a,

∫ ∞

−∞
e−ax2/2+i bx dx =

√
2π

a
e−b2/2a .

http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_4
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c2X2 + · · · + cn Xn is their linear combination with real coefficients ci , the moment-
generating function of Y is equal to the product of moment-generating functions of
individual variables Xi :

MY (t) = E
[
etY

] =
n∏

i=1

E
[
et Xi

] = MX1(c1t)MX2(c2t) · · · MXn (cnt). (B.16)

Just as in (B.7) these recipes may not be read in reverse: MX+Y (t) = MX (t)MY (t)
does not necessarily mean that X and Y are independent.

Example The convolution problem from the Example on p. 148 can also be solved
by generating functions. The moment-generating functions of X and Y are

MX (t) =
∞∑

n=−∞
fne

t xn , MY (t) =
∞∑

n=−∞
gne

t yn ,

that is,

MX (t) = 0.15 e−3t + 0.25 e−t + 0.1 e2t + 0.3 e6t + 0.2 e8t ,

MY (t) = 0.2 e−2t + 0.1 et + 0.3 e5t + 0.4 e8t .

Since X and Y are mutually independent, the moment-generating function MZ (t) of
their sum Z = X + Y is the product of the individual moment-generating functions
MX (t) and MY (t):

MZ (t) = MX (t)MY (t) =
∑

n

hne
t zn

= 0.03 e−5t + 0.05 e−3t + 0.015 e−2t + 0.045 e0t + 0.045 e2t

+ 0.01 e3t + 0.135 e4t + 0.06 e5t + 0.04 e6t + 0.16 e7t + 0.02 e9t

+ 0.04 e10t + 0.09 e11t + 0.06 e13t + 0.12 e14t + 0.08 e16t .

All we need, then, is to read off the coefficient in front of e4t , which is h4 = P(Z =
4) = 0.135, and analogously for any other hn . 


B.3 Characteristic Functions

Let X be a real (discrete or continuous) random variable and t a non-random real
variable. The quantity

φX (t) = E
[
ei t X

]
, t ∈ R, (B.17)
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is called the characteristic function of the random variable X [5, 6]. In contrast to
the moment-generating function a characteristic function exists regardless of the
distribution of X , and its definition domain is the whole real axis. Any characteristic
function satisfies

|φX (t)| ≤ 1, φX (0) = 1.

Besides, one has φX (t) = MX (i t) and φX (−i t) = MX (t), if MX exists. If the
distribution of X is discrete, with probability function fn = P(X = xn), where
n = 0, 1, 2, . . . , it has the characteristic function

φX (t) =
∞∑

n=0

fne
i t xn . (B.18)

If the distribution is continuous, with probability density fX , it corresponds to

φX (t) =
∫ ∞

−∞
ei t x fX (x) dx, (B.19)

which is the usual Fourier transformation of fX .

Example The Poisson distribution with the probability function

fn = λne−λ

n! , n = 0, 1, 2, . . .

has the characteristic function

φX (t) =
∞∑

n=0

fne
i tn =

∞∑

n=0

λne−λ

n! ei tn = e−λ
∞∑

n=0

(
λei t

)n

n! = e−λeλei t = eλ(ei t−1).

Calculate also the corresponding moment-generating function! 

Example The standard normal distribution (3.10) has the characteristic function

φX (t) = 1√
2π

∫ ∞

−∞
ei t xe−x2/2 dx = e−t2/2,

while the equivalent for the non-standardized normal distribution (3.7) is

φX (t) = eiμt−σ2t2/2, (B.20)

where we have used the formula in (see footnote 1). 

The following important properties of characteristic functions are given without

proof. If a and b are constants and Y = aX + b, it holds that

http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_3
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φY (t) = ei btφX (at), (B.21)

which is also seen from (B.15). If random variables X1, X2, . . . , Xn are mutually
independent and Y = c1X1 + c2X2 + · · · + cn Xn is their linear combination, then

φY (t) = φX1(c1t)φX2(c2t) · · · φXn (cnt). (B.22)

This theorem also can not be reversed: having φX+Y (t) = φX (t)φY (t) does not
necessarily mean that X and Y are independent.

As themoment-generating functions, the characteristic functions, too, can be used
to derive the statistical moments E[Xn], n = 0, 1, 2, . . . Namely, if φX is at least
p-times continuously differentiable at the origin, it holds that

E
[
Xn

] = 1

in

[
dnφX

dtn

]∣
∣
∣
∣
t=0

, n = 1, 2, . . . , p.

There is a one-to-one correspondence between the characteristic function and the
probability distribution: any two random variables X and Y have the same probability
distribution precisely when φX = φY , therefore

φX = φY ⇔ X ∼ Y.

Example Let us calculate the characteristic function of the binomial distribution

fn = P(X = n) =
(
N

n

)

pnqN−n, n = 0, 1, 2, . . . , N .

Imagine a Bernoulli (binomial) sequence of trials. To the j th trial in this sequence
we assign a random variable Y j with value 1 for a “good” event A (probability p),
or value 0 for the complementary event A (probability q = 1 − p). Since the trials
in the sequence are mutually independent, the same applies to the random variables
Y j . The variable X takes the value n if there were n occurrences of A in N trials:
in this case precisely n variables Y j have value 1, while the others are zero, hence
X = Y1 + Y2 + · · · + YN . For an individual Y j we then use (B.18) to calculate

φY j (t) =
1∑

k=0

P(Y j = yk)e
i t yk = P(Y j = 0)

︸ ︷︷ ︸
q

ei t0 + P(Y j = 1)
︸ ︷︷ ︸

p

ei t1 = p ei t + q.

By (B.22) we then obtain the characteristic function of the binomial distribution

φX (t) = (
φY j (t)

)N = (
pei t + q

)N
, (B.23)

which we shall use in the following. 
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B.3.1 Proof of Laplace’s Limit Theorem

Characteristic functions allow us to show why the discrete binomial distribution at
large N can be approximated by the continuous normal distribution, as claimed in
Sect. 5.4. One starts with a sequence of binomially distributed random variables
{XN } (N = 1, 2, 3, . . .) with the probability functions

P(XN = n) =
(
N

n

)

pnqN−n, n = 0, 1, 2, . . . , N , N = 1, 2, 3, . . .

By (B.23) each such distribution possesses the characteristic function

φ(t; N ) = (
pei t + q

)N
.

We introduce standardized random variables

YN = XN − E[XN ]√
var[XN ] = XN − Np√

Npq

and denote the characteristic function of each of them by φ̃(t; N ). By (B.21) we get

φ̃(t; N ) =
(
p ei qt/

√
Npq + q e−i pt/

√
Npq

)N
. (B.24)

The terms in the brackets can be expanded in a power series:

p ei qt/
√
Npq ≈ p + i t

√
pq

N
− qt2

2N
+ O(

t2/N
)
,

q e−i pt/
√
Npq ≈ q − i t

√
pq

N
− pt2

2N
+ O(

t2/N
)
.

Here for each t one has limN→∞ N O(
t2/N

) = 0. When this is inserted in (B.24),
we get

φ̃(t; N ) =
(

1 − t2

2N
+ O

(
t2

N

))N

∼ e−t2/2, when N → ∞. (B.25)

The limit of the sequence of characteristic functions φ̃(t; N ) is thus a continuous
function, which is just the characteristic function of the standardized normal distrib-
ution. The aid to the final result is the theorem (given without proof): “If the sequence
of characteristic functions {φn(t)} at any real t converges to the function φ(t) and if
φ is continuous on an arbitrary small interval (−T, T ), the sequence {Fn(x)} of cor-
responding distribution functions converges to the distribution function F(x), whose
characteristic function is precisely φ(t).” This means that for any x one has

http://dx.doi.org/10.1007/978-3-319-31611-6_5
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lim
N→∞ P(YN ≤ x) = 1√

2π

∫ x

−∞
e−u2/2 du,

so, at large N (and any x) also

P(XN ≤ x) ≈ 1√
2πNpq

∫ x

−∞
e−(u−Np)2/(2Npq) du.

Put in a more practical form: if the experiment outcome A has a probability p
(0 < p < 1, q = 1 − p) of occurring and X is its frequency in N trials of this
experiment, then for arbitrary real numbers a and b (a < b) it holds that

lim
N→∞ P

(

a ≤ X − Np√
Npq

≤ b

)

= 1√
2π

∫ b

a
e−x2/2 dx .

Nowwe understandwhy, at large N , the binomial distribution could be approximated
by the normal distributionwith the samemean and variance as possessed by the given
binomial distribution. This realization is known as the Laplace’s limit theorem (in
its integral form).

By the same token the general central limit theorem can be derived that applies
to any probability distribution, as long as its first and second moments exist. The
tool is always the same: we power-expand the characteristic function and analyze its
behaviour in the N → ∞ limit, which always has the form (B.25).

B.3.2 Inverting the Characteristic Function and Uniqueness
of the Density

The characteristic function—as well as its closest relative, the moment-generating
function—uniquely determine the probability distribution. In other words, the prob-
ability distribution and the characteristic functions offer equivalent description of
statistical properties of a random variable. Both worlds are linked by the Fourier
transformation: the inverse of (B.18) is

fn = 1

2π

∫ π

−π

φX (t) e−i tn dt (discrete case),

while the inverse of (B.19) is

fX (x) = 1

2π

∫ ∞

−∞
φX (t) e−i t x dt (continuous case).

But one must realize that the distribution is not necessarily uniquely determined if
all its moments are known. A well-known case [7] are the probability densities
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Fig. B.3 Example of different probability densities with identical moments. The function f1 is the
probability density of the log-normal distribution: is Y is a normally distributed continuous random
variable and X = eY , then X is log-normally distributed

f1(x) = 1√
2πx2

e−(log2 x)/2, x ≥ 0,

f2(x) = f1(x)
[
1 + sin(2π log x)

]
, x ≥ 0, (B.26)

which have very different functional dependencies (see Fig.B.3) yet identical
moments, namely

E
[
X
] = √

e, E
[
X2

] = e2, E
[
X3

] = e9/2, . . . , E[Xn] = en
2/2.

This is the so-called indeterminate moment problem, briefly outlined below.
If the variables X and Y have identical moments, their characteristic functions

φX (t) and φY (t) have identical expansions near the origin of the real axis. But having
equal expansions does not saymuch about the equality ofφX andφY , as the expansion
may not converge at all—the terms are calculable in principle, but they can not be
summed: in the case just mentioned the convergence of the Taylor series of the
characteristic function corresponding to the log-normal density (B.26),

φX (t) =
∞∑

n=0

an(i t)
n, an = 1

n! E
[
Xn

]
,

is zero:

ρ =
(

lim sup
n→∞

|an|1/n
)−1

= 0.

However, in specific cases the convergence is guaranteed (Theorem 9.6.2 in [8]): if
one can find ρ > 0 such that near the origin, |t | < ρ, the expected value of et |X | is
finite, i. e. E[et |X |] < ∞, then φX (t) is absolutely convergent for |t | < ρ. Then one
may conclude E[ei t X ] = E[ei tY ] ⇔ X ∼ Y or

φX (t) = φY (t), |t | < ρ ⇔ X ∼ Y,
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and under these conditions the equality of the moments of X and Y implies the
equality of their probability distributions.
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Appendix C
Random Number Generators

Abstract Methods of generating almost random numbers by means of computer
algorithms are presented, starting from integer-based linear and non-linear congru-
ential generators of uniformly distributed random numbers. They are followed by a
discussion of methods to draw random numbers from arbitrary continuous distribu-
tion, and a brief mention of the ways to generate truly random numbers.

Statistical methods and numerical procedures often require us to use random samples
or some kind of “source” of numbers that are as random as possible, that is, pseudo-
random. The computer namely can not do anything “by chance”, so in order to
generate pseudo-random numbers we rely on deterministic processes of computing
particular sequences that are only seemingly random [1]. Generating pseudo-random
numbers—labeled simply ‘random’ in the following—is called drawing.

C.1 Uniformly Distributed Pseudo-Random Numbers

In order to generate uniformly distributed pseudo-random numbers one uses uniform
generators. They are supposed to deliver uniform numbers X ∼ U (0, 1), distributed
according to (3.1).

The sequences {xi } generated by a good uniform generator are expected to be
uncorrelated: this means that the vectors of sub-sequences (xi , xi+1, . . . , xi+k) are as
weakly correlated as possible, for each k separately. One alsowishes for the sequence
to possess a long period: it should not repeat itself too quickly. Besides, one would
like the sequence {xi } to be uniform and unbiased, meaning that the same number
of generated points fall in the same volume of space. An important request is a good
uniformity of the distribution of the points (xi , xi+1, . . . , xi+k−1) in a k-dimensional
hypercube, with k as large as possible: this is known as the serial uniformity of the
sequence.
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Most uniform generators are devised in integer arithmetic. Such generators return
numbers with equal probabilities on the interval [0,m − 1], where m = 232 or
264. Uniform generators are standard components of general libraries and tools,
e.g. rand() in Matlab and C/C++, gsl_rng_rand in GSL or Random[]
in Mathematica. Random integers xi ∈ Zm generated by an integer generator
can be converted to uniformly distributed real numbers ξi ∼ U (0, 1) by using the
transformations

ξi = xi/m approximately uniform in [0, 1),
ξi = xi/(m − 1) [0, 1],
ξi = (xi + 1)/m (0, 1],
ξi = (xi + 1/2)/m (0, 1).

If one uses floating-point arithmetic (precision 2−n , mantissa length n), the numbers
generated in this way have b = log2 m random most significant bits, which is often
not enough, and certainly less than n. An approximation of a real number ξ on the
interval [0, 1) with all bits random is obtained by independently drawing integers
{xi ∈ Zm}hi=1 and using the formula ξ = x1m−1 + x2m−2 + · · · + xhm−h , where
(h − 1)b < n < (h + 1)b.

C.1.1 Linear Congruential Generators

Classical random generators are based on the relation of congruence.2 Congruential
generators of numbers xi ∈ Zm = [0,m−1], where i ∈ N0 = {0, 1, . . .}, are defined
by the transition function φ and the relation

xi+1 ≡ φ(xi , xi−1, . . . , xi−k+1) mod m,

where k is the generator order. Thus φ is restricted to Zm by the congruence relation
modulo m. The initial state of the generator {x0, x1, . . . , xk−1} is a unique function
of the number called the seed by which the sequence is completely determined: a
generator initialized by the same seed always delivers the same sequence of numbers.
If φ is a linear function of parameters, one refers to linear generators, otherwise they
are non-linear.

The simplest linear congruential generator (LCG) has the form

xi+1 ≡ (axi + c) mod m, (C.1)

2One has {x ≡ x mod m}; the congruence relation is commutative, {x ≡ y mod m} ⇔ {y ≡ x
mod m}, and transitive, {x ≡ y mod m} ∧ {y ≡ z mod m} ⇒ {x ≡ z mod m}.
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Fig. C.1 [Left] Zoom-in of the phase space [0, 1]3 of points 2−31(xi , xi+1, xi+2) of the sequence
xi obtained by the standard random generator from the glibc library with x0 = 12345. [Right]
The bits b of the random numbers xi (black = 1, white = 0)

where a is the multiplier and c is the carry parameter, while x0 is the seed. Since xi
are determined by xi−1 and can take only m different values, the period of a LCG is
at most m for c �= 0 and at most m − 1 for c = 0.

Example Take a LCG with m = 31, a = 3, c = 0 and x0 = 9. Run the recur-
rence (C.1) a hundred times: we get {x1, x2, x3, . . . , x30} = {27, 19, 26, . . . , 9}, then
again {x31, x32, x33, . . . , x60} = {27, 19, 26, . . . , 9}, and so on. The period of the
generator is therefore only 30, but this is not the only problem. If subsequent pairs
(xi , xi+1) = (9, 27), (27, 19), (19, 26), . . . are plotted on a graph—do it!—we real-
ize that all points lie on straight lines with slope 3. That certainly does not appear to
be random!

Is one better off by increasing m and a, and changing c? Take, for instance, m =
232,a = 1103515245and c = 123454: this corresponds to the default generator in the
32-bit glibc library. FigureC.1 (left) shows the distribution of subsequent triplets
(xi , xi+1, xi+2). Obviously the points are arranged in planes and this deficiency of
LCG persists at larger k as well: in general the pointsm−1(xi , . . . , xi+k−1) do not fill
the entire k-dimensional hypercube, but rather lie on at most (mk!)1/k hyperplanes.
Besides, the least significant bits are less random that the rest (Fig.C.1 (right)). A
good generator ought to produce points on many hyperplanes and make all their bits
random. In applications where such deficiencies are irrelevant, LCG-type generators
are nevertheless put to good use, as they are supported by all programming languages,
simple and fast. 

Further representatives of the LCG family are the generators of the Add-with-Carry
(AWC), Subtract-with-Borrow (SWB) and Multiply-with-Carry (MWC) type:

AWC : xi ≡ (xi−r + xi−k + ci−1) mod m, ci = �(xi−r + xi−k + ci−1)/m�,
SWB : xi ≡ (xi−r − xi−k − ci−1) mod m, ci = �(xi−r − xi−k − ci−1)/m�,
MWC : xi ≡ (axi−r + ci−1) mod m, ci = �(axi−r + ci−1)/m�.
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The SWB algorithm is the basis of the RANLUX generator from the GSL library.
Multiple recursive generators (MRG) are also in wide-spread use:

xi ≡ (a1xi−1 + · · · + akxi−k + ci ) mod m, (C.2)

where ak ∈ Zm are constants. TheMRgenerators usually exhibit much larger periods
than simple LC generators. If m is a prime, the maximal period may be as high as
mk − 1. An example of such a generator of the fifth order is

xi ≡ (
107374182 xi−1 + 104480 xi−5

)
mod

(
231 − 1

)
.

C.1.2 Non-linear Congruential Generators

In general, non-linear generators are more random than linear ones, but they are also
slower. Their main representatives are the inversive congruential generators (ICG)
defined by the recurrence

xi ≡ (axi−1 + b) mod m,

where 1 ≡ (xx) mod m, and the explicit inversive congruential generators (EICG)
based on the relation

xi ≡ a(i + i0) + b mod m.

For prime modules m the generators of IC and EIC types generate points that avoid
accumulation in planes, a behavior so typical of the LC generators, yet modular
inversion is a numerically intensive procedure, while the filling of space tends to be
slightly less uniform.

C.1.3 Generators Based on Bit Shifts

A completely different approach to generating random numbers is offered by feed-
back shift register generators. If the numbers xi are written as n-plets of bits, the
relation (C.2) can be written as

bi ≡ (apbi−p + ap−1bi−p+1 + · · · + a1bi−1) mod 2, (C.3)

where all variables can take only values 0 or 1. It turns out that the recurrence (C.3)
can be performed by shifting bits: an example is shown in Fig.C.2.

The evicted bit is then combined by the pattern of bits on its right by using a variety
of logical operations. The recurrence (C.3) often has the form bi ≡ (bi−p + bi−p+q)

mod 2 or bi ≡ bi−p ⊕bi−p+q , where⊕ is the exclusive “or” (adding 0 and 1 modulo
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Fig. C.2 Example of bit shifts in a FSR-type generator. The pushed-out bit 1 at the extreme left
and the bit 1 deeper in the register are combined by an exclusive “or” (XOR). The result 0 replaces
the missing bit at the extreme right

2). For n-tuples xi thismeans xi = xi−p⊕xi−p+q , where the operation⊕ is performed
bit-wise. This game can be continued: if xi are interpreted as n-dimensional vectors,
they can be multiplied by n × n matrices:

xi ≡ xi−p ⊕ Axi−p+q .

Where is all this heading? The matrix A can be used to twist the bit n-tuples prior
to being logically combined, thereby increasing the randomness of the generated
xi . Such “kneading” of bit samples is at the heart of the Mersenne twister genera-
tor [2] (algorithm MT19937), which we recommend for serious applications. It is
implemented in 32-bit integer arithmetic, has been theoretically well explored and is
accessible in standard packages and libraries. Its period is 219937 − 1 and is serially
uniform for dimensions k ∈ [1, 623]. Its weakness is a somewhat lower randomness
of subsequent bits between consecutive generated numbers.

C.1.4 Some Hints for Use of Random Generators

Any random number generator, no matter how sophisticated, has some deficiency,
which is usually very specific. Ifwe, as non-specialists, need a generator to be invoked
many times in our code, we may consider the following guidelines.

Only choose a generator devised and tested by experts. The code should be as terse
as possible and based on integer arithmetic in favor of greater speed. Use generators
with long periods and high serial uniformity in as many dimensions as possible. If
the generator is accessible in source code, incorporate it into the program, as modern
compilers can link the code segments in the form of inline functions. Before using
a generator, study its statistical properties and ascertain whether its deficiencies may
jeopardize the correctness of the result. Perform each calculation by using different
generators and different seeds.
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C.2 Drawing from Arbitrary Continuous Distributions

A generator of random numbers with arbitrary distribution is obtained by transform-
ing the numbers returned by a uniform generator. An exhaustive overview of the
area is offered by the classical monograph [3]; here we present some cases of trans-
formations to continuous distributions most commonly encountered in physics. For
transformation to discrete distributions see Sect. C.2 in [4].

C.2.1 Uniform Distribution Within a Circle or Sphere

How do we draw points that are homogeneously distributed within a circle? Homo-
geneity means: the ratio of a tiny probability dP that the drawn point falls in a tiny
surface element, to its area, dS = r dr dφ, is equal to the ratio of probability 1 that
the point falls in the whole circle, to its area, πR2:

dP

dS
= dP

r dr dφ
= 1

πR2

R=1=⇒ dP

d
(
r2
)
d
(
φ/2π

) = 1.

Therefore we must draw uniformly in r2 from 0 to 1 (not r from 0 to 1!) and in φ
from 0 to 2π. We need two random numbers U1,U2 ∼ U [0, 1) and compute

(
ri ,φi

) = (
R
√
U1, 2πU2

)
.

In the three-dimensional case the circle area S = πR2 needs to be replaced by
the sphere volume V = 4πR3/3, and the area element dS by the volume element
dV = r2 dr d(cos θ) dφ. Thus

dP

dV
= dP

r2 dr d(cos θ) dφ
= 3

4πR3

R=1=⇒ dP

d
(
r3
)
d
(
1
2 cos θ

)
d
(
φ/2π

) = 1.

Hence we must draw uniformly in r3 from 0 to 1, uniformly in cos θ from −1
to 1 (not θ from 0 to π!) and uniformly in φ from 0 to 2π. The three numbers
U1,U2,U3 ∼ U [0, 1) drawn according to these distributions define the point

(
ri , θi , φi

) = (
R 3
√
U1, arccos(2U2 − 1), 2πU3

)
. (C.4)



Appendix C: Random Number Generators 387

C.2.2 Uniform Distribution with Respect to Directions in R
3

and Rd

A uniform distribution over directions in space (usually R
3) is called isotropic.

Isotropy means that the ratio between the number of points dN on the small surface
dS on the unit sphere to an infinitesimal solid angle d�, is equal to the ratio of the
number of points N on the whole surface to the full solid angle � = 4π. A frequent
beginner’s mistake is to uniformly draw the angles θ and φ according toU (0,π) and
U (0, 2π), respectively, and compute (x, y, z) = (sin θ cosφ, sin θ sin φ, cos θ). But
this generates points that prefer to accumulate near the poles, as shown in Fig.C.3
(left). The correct way to draw is by recipe (C.4), where the radial coordinate is sim-
ply ignored. This results in a homogeneous surface distribution, as shown in Fig.C.3
(right).

The points x = (x1, x2, . . . , xd)T ∈ R
d , uniformly distributed over the (d − 1)-

dimensional sphere Sd−1 ∈ R
d , can be generated by independently drawing the

components of the vector y = (y1, y2, . . . , yd)T with probability density N (0, 1)
and normalizing it: xi = yi/‖ y‖2, where ‖ y‖2 = (∑d

i=1 y
2
i

)1/2
.

C.2.3 Uniform Distribution Over a Hyperplane

The points x = (x1, x2, . . . , xd)T, xi > 0, uniformly distributed over a hyperplane
defined by the equation

∑d
i=1 ai xi = b (ai > 0, b > 0), are generated by indepen-

dently drawing d components of the vector y = (y1, y2, . . . , yd)T with exponential
density f (y) = exp(−y) (see TableC.1) and calculating [5]

S =
d∑

i=1

ai yi , xi = b

S
ai yi .

Fig. C.3 Generating an isotropic distribution in R
3. [Left] Incorrect drawing by using θi = πξ,

ξ ∼ U [0, 1). [Right] Correct drawing by using θi = arccos(2ξ − 1)
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C.2.4 Transformation (Inverse) Method

Our knowledge of variable transformations from Sects. 2.7 and 2.10 can be used
to generate random numbers according to an arbitrary continuous distribution. We
know how uniform numbers Y ∼ U (0, 1) can be generated; but as for arbitrary
probability densities fX and fY one has | fX (x) dx | = | fY (y) dy|, this means that

fX (x) = dy

dx
,

since fY (y) = 1. The solution of this equation is y = ∫ x
−∞ fX (t) dt = FX (x), where

FX is the distribution function of X . In other words,

x = F−1
X (y), Y ∼ U (0, 1),

where F−1
X is the inverse function of FX (not its reciprocal value). Clearly we have

obtained a tool to generate random variables distributed according to FX (see Fig.C.4
(left)).

The transformation method is useful if the inverse F−1
X is relatively easy to com-

pute. The collection of such functions is quickly exhausted; some common examples
are listed in TableC.1.

Example Let us construct a generator of dipole electro-magnetic radiation! The
distribution of radiated power with respect to the solid angle is dP/d� ∝ sin2 θ,

f�(θ) = dP

dθ
= 3

4
sin3 θ, 0 ≤ θ ≤ π,

where the normalization constant has been determined by C
∫ π

0 sin3 θ dθ = 1. (The
radiation is uniform in φ.) The corresponding distribution function is

Fig. C.4 Generating random numbers according to arbitrary continuous distributions. [Left] Trans-
formation (inverse of distribution function) method. [Right] Rejection method

http://dx.doi.org/10.1007/978-3-319-31611-6_2
http://dx.doi.org/10.1007/978-3-319-31611-6_2
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Table C.1 Generating random numbers according to chosen probability distributions by the trans-
formation method

Distribution fX (x) FX (x) X = F−1
X (U )

Exponential

(x ≥ 0)
λe−λx 1 − e−λx − 1

λ
logU

Normal

(−∞ < x < ∞)

1√
2π

e−x2/2 1

2

[

1 + erf

(
x√
2

)] √
2erf −1(2U − 1)

Cauchy

(−∞ < x < ∞)

a

π(a2 + x2)

1

2
+ 1

π
arctan

( x

a

)
a tan πU

Pareto

(0 < b ≤ x)

aba

xa+1 1 −
(
b

x

)a b

U1/a

Triangular on [0, a]
(0 ≤ x ≤ a)

2

a

(
1 − x

a

) 2

a

(

x − x2

2a

)

a
(
1 − √

U
)

Rayleigh

(x ≥ 0)

x

σ
e−x2/(2σ2) 1 − e−x2/(2σ2) σ

√− logU

Note that drawing Y by the uniform distribution U (0, 1) is equivalent to drawing by 1 − U (0, 1).
For the normal distribution see also Sect. C.2.5

F�(θ) =
∫ θ

0
f�(θ′) dθ′ = 3

4

[
cos3 θ

3
− cos θ + 2

3

]

.

The desired distribution in θ is obtained by drawing the values x according toU (0, 1)
and calculating θ = F−1

� (x). The inverse of F� is annoying but can be done. By
substituting t = cos θ the problemamounts to solving the cubic equation t3−3t+2 =
4x , for which explicit formulas exist. Alternatively, one can seek the solution of the
equation F(θ) = F�(θ) − x = 0. 


C.2.5 Normally Distributed Random Numbers

If U1 and U2 are independent random variables, distributed as U1 ∼ U (0, 1] and
U2 ∼ [0, 1), their Box-Muller transformation [6]

X1 = √−2 logU1 cos(2πU2), X2 = √−2 logU1 sin(2πU2),

yields independent random variables X1 and X2, distributed according to the
standard normal distribution N (0, 1). The variables U1 and U2 define the length
R = √−2 logU1 and the directional angle θ = 2πU2 of a planar vector (X1, X2)

T.
The numerically intensive calculation of trigonometric functions can be avoided by
using Marsaglia’s implementation (see [7], Chap. 7, Algorithm P):
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repeat
Independently draw u1 by U (0, 1] and u2 by U [0, 1);
v = 2(u1, u2)T − (1, 1)T;
s = |v|2;

until (s ≥ 1 ∨ s �= 0);
(x1, x2)T = √−(2/s) log s v;

The drawn vector v on average uniformly covers the unit circle, while approximately
1−π/4 ≈ 21.5%generated points are rejected, so that for one pair (x1, x2) one needs
to draw 2/(π/4) ≈ 2.54 uniform numbers.

Values of the random vector X ∈ R
d , distributed according to the multivariate

probability density (4.23) with mean μ and correlation matrix � are generated by
independently drawing d components of the vector y = (y1, y2, . . . , yd)T by the
standardized normal distribution N (0, 1) and computing

x = L y + μ,

where L is the lower-triangular d × d matrix from the Cholesky decomposition of
the correlation matrix, � = LLT.

C.2.6 Rejection Method

Suppose we wish to draw random numbers according to some complicated density
f , while some very efficient way is at hand to generate the numbers according to
another, simpler density g. We first try to find C > 1 such that f is bounded by Cg
from above as tightly as possible (Fig.C.4 (right)), that is, to ensure f (x) < Cg(x)
for all x with C as close to 1 as possible. Then the random numbers Y distributed
according to f can be generated by the procedure:

1. Generate the value x of random variable X according to density g.
2. Generate the value u of random variable U according to U (0, 1).
3. If u ≤ f (x)/(Cg(x)), assign y = x (x is “accepted”), otherwise return to step 1

(x is “rejected”).

Does this recipe really do what it is supposed to do? Let us define the event B ={
U ≤ f (X)/

(
Cg(X)

)}
. From the given recipe and the Figure it is clear that

P
(
B | X = x

) = P

(

U ≤ f (X)

Cg(X)

∣
∣
∣
∣ X = x

)

= f (x)

Cg(x)
,

hence

P(B) =
∫ ∞
−∞

P
(
B | X = x

)
g(x) dx =

∫ ∞
−∞

f (x)

Cg(x)
g(x) dx = 1

C

∫ ∞
−∞

f (x) dx = 1

C
.

http://dx.doi.org/10.1007/978-3-319-31611-6_4
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Now define the event A = {X ≤ x}. We must prove that the conditional distribution
function for X , given condition B, is indeed F , that is, we must check

P(A|B) = P

(

X ≤ x

∣
∣
∣
∣U ≤ f (X)

Cg(X)

)
?= F(x).

For this purpose we first calculate P(B|A), where we exploit the definition of con-
ditional probability (1.10) in the form P(B|A) = P(AB)/P(A),

P(B|A) = P

(

U ≤ f (X)

Cg(X)

∣
∣
∣
∣ X ≤ x

)

= P
(
U ≤ f (X)/

(
Cg(X)

) ∩ X ≤ x
)

P(X ≤ x)

=
x∫

−∞

P
(
U ≤ f (X)/

(
Cg(X)

)∣
∣ X = z ≤ x

)

P(X ≤ x)
g(z) dz

= 1

G(x)

x∫

−∞

f (z)

Cg(z)
g(z) dz = 1

CG(x)

x∫

−∞
f (z) dz = F(x)

CG(x)
,

and then invoke the product formula (1.10) for the final result

P(A|B) = P(B|A)P(A)

P(B)
= F(x)

CG(x)

G(x)

1/C
= F(x).

Example For the Cauchy distribution with probability density (3.18) the distribution
function and its inverse are easy to calculate:

FX (x) = 1

2
+ 1

π
arctan x, F−1

X (t) = tan

[

π

(

t − 1

2

)]

. (C.5)

To generate the values of a Cauchy-distributed variable X one could therefore resort
to the transformation method by using in (C.5) a random variable U , uniformly
distributed over [−1/2, 1/2]—or, due to symmetry, over [0, 1]—and calculating
X = tan πU (third row of TableC.1). But since computing the tangent is slow, it is
better to seek the values of X as the ratios between the projections of the points within
the circle onto x and y axes. These points are uniformly distributed with respect to
the angles. We use the algorithm

repeat
Draw u1 according to U (−1, 1) and u2 according to U (0, 1).

until ( u21 + u22 > 1 ∨ u2 = 0 );
x = u1/u2;

Note that the fraction of rejected points is 1 − π/4 and that the accepted points
(u1, u2) lie in the upper half of the unit circle. (Check this!) 


http://dx.doi.org/10.1007/978-3-319-31611-6_1
http://dx.doi.org/10.1007/978-3-319-31611-6_1
http://dx.doi.org/10.1007/978-3-319-31611-6_3
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C.3 Generating Truly Random Numbers

If we wish to cast off the burden of the ‘pseudo’ attribute in our discussion and
generate truly random numbers, we must also reach for a genuinely random process.
An example of such process is the radioactive decay of atomic nuclei, which is
exploited by the HotBits generator of random bit sequences [8]. The laboratory
maintains a sample of radioactive cesium, decaying to an excited state of barium,
electron and anti-neutrino with a decay time of 30.17 years:

137Cs −→ 137Ba∗ + e− + νe.

The decay instant is defined by the detected electron. The time of the decay of
any nucleus in the source is completely random, so the time difference between
subsequent decays is also completely random. The apparatus measures the time
differences between two pairs of decays, t1 and t2, as shown in the figure.

If t1 = t2 (within instrumental resolution), the measurement is discarded. If t1 < t2,
the value 0 is recorded, and if t1 > t2, the value 1 is recorded. The sense of comparing
t1 to t2 is reversed with each subsequent pair in order to avoid systematic errors in
the apparatus or in the measurement that could bias one outcome against the other.
The final result is a random bit sequence like

1111011100100001101110100010110001001100110110011100111100000001
0100001010011111111001011101111001101001101110000100010110001111 ...

The speed of generation depends on the activity of the radioactive source.

Example Imagine a descent along a binary tree (Fig.C.5) where each branch point
represents a random step to the left (ni = 1)with probability p or to the right (ni = 0)
with probability 1− p. (The left-right decision can bemade, for example, by “asking”
the radioactive source discussed above.) The values ni corresponding to the traversed
branches are arranged in a k-digit binary number Bk = (

nk−1nk−2 . . . n1n0
)
2 and

suitably normalized,

Xk = Nk Bk = Nk

k−1∑

i=0

2i ni , Nk = (
2k − 1

)−1
,

so that we ultimately end up with 0 ≤ Xk < 1. What is the expected value of Xk in
the decimal system (base 10)? The individual digits ni take the values 0 or 1 with
probabilities Pi = pδi,1 + (1 − p)δi,0. Obviously E[ni ] = p, hence
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Fig. C.5 Binary tree used to generate a random k-digit binary number

E
[
Xk

] = E

[

Nk

k−1∑

i=0

2i ni

]

= NkE[ni ]
k−1∑

i=0

2i = Nk p
(
2k − 1

) = p.

The variance of Xk is

var[Xk] = E
[
X2
k

] − E
[
Xk

]2 = N 2
k

k−1∑

i=0

k−1∑

j=0

2i+ j

⎛

⎜
⎜
⎜
⎝
E[nin j ]
︸ ︷︷ ︸
pδi, j

− E[ni ]E[n j ]
︸ ︷︷ ︸

p2δi, j

⎞

⎟
⎟
⎟
⎠

= N 2
k p(1 − p)

k−1∑

i=0

4i = N 2
k p(1 − p)

4k − 1

3
= p(1 − p)

3

2k + 1

2k − 1
.

We have thus devised a generator of truly random numbers, distributed accord-
ing to U [0, 1). In particular, for p = 1/2 one indeed has E[Xk] = 1/2, while
limk→∞ var

[
Xk

] = 1/12, as expected of a uniform distribution. 
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Appendix D
Tables of Distribution Quantiles

Abstract Definite integrals of the normal distribution are given in tabular form,
along with the most frequently used quantiles of the χ2, t and F distributions.

Definite integrals of some distributions have awkward analytic expressions, so one
may prefer to read them off from tables. TableD.1 lists the integrals of the standard-
ized normal distribution (Fig.D.1 (top left)), TableD.2 contains the values of the erf
function, and TableD.3 has the quantiles χ2

p of the χ2 distribution with ν degrees
of freedom (Fig.D.1 (top right)). TableD.4 lists the quantiles tp of the Student’s t
distribution with ν degrees of freedom (Fig.D.1 (bottom left)). TablesD.5 and D.6
contain the 95. percentile (F0.95) and 99. percentile (F0.99), respectively, of the F
distribution with ν1 and ν2 degrees of freedom in the numerator and denominator,
respectively (Fig.D.1 (bottom right)).

Note that the integral of the standardized normal distribution (TableD.1) and the
value of the erf function (TableD.2) are related by

1√
2π

∫ z

0
e−t2/2dt = 1

2
erf

(
z√
2

)

.

The distribution function of the standardized normal distribution is

�(z) = 1√
2π

∫ z

−∞
e−t2/2 dt = 1

2
+ 1√

2π

∫ z

0
e−t2/2 dt = 1

2

[

1 + erf

(
z√
2

)]

.

D.1 Calculating Quantiles with MATHEMATICA

Arbitrary quantiles not given in the following tables can be calculated by interpo-
lation or by resorting to a general tool like Mathematica [1]. For example, to
obtain the 90. percentile of the χ2 distribution with ν = 5 degrees of freedom, the

© Springer International Publishing Switzerland 2016
S. Širca, Probability for Physicists, Graduate Texts in Physics,
DOI 10.1007/978-3-319-31611-6
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Table D.1 Integral of the standardized normal distribution (3.10) and (3.12) from 0 to z in steps
of 0.01

z 0 1 2 3 4 5 6 7 8 9

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359

0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0754

0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141

0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517

0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879

0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224

0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549

0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852

0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133

0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389

1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621

1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830

1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015

1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177

1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319

1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441

1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545

1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633

1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706

1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767

2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817

2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857

2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890

2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916

2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936

2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952

2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964

2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974

2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981

2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986

3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990

3.1 0.4990 0.4991 0.4991 0.4991 0.4992 0.4992 0.4992 0.4992 0.4993 0.4993

3.2 0.4993 0.4993 0.4994 0.4994 0.4994 0.4994 0.4994 0.4995 0.4995 0.4995

3.3 0.4995 0.4995 0.4995 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996 0.4997

3.4 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4998

3.5 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998

3.6 0.4998 0.4998 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999

3.7 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999

3.8 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999

3.9 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_3
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Fig. D.1 [Top left] Definite integral of the standard normal distribution (3.10) and (3.12) from 0 to
z. [Top right] Definition of the pth quantile of the χ2 distribution (3.21). [Bottom left] Definition
of the pth quantile of the t distribution (3.22). [Bottom right] Definition of the pth quantile of the
F distribution (3.23)

0.995th quantile of the Student’s t distribution with ν = 1 degree of freedom and
the 95. percentile of the F distribution for ν1 = ν2 = 10 we issue the commands

Quantile[ChiSquareDistribution[5], 0.90],

Quantile[StudentTDistribution[1], 0.995],

Quantile[FRatioDistribution[10,10], 0.95],

which give (in the same order as above)

9.23636,

63.6567,

2.97824.

(Compare these values to entries in the corresponding Tables.) Definite integrals of
all mentioned distributions can be obtained by commands of the form

NIntegrate[PDF[FRatioDistribution[7,9], x], {x, 0, 3.293}],
NIntegrate[PDF[FRatioDistribution[7,9], x], {x, 0, 3.70}],
NIntegrate[PDF[FRatioDistribution[7,9], x], {x, 0, 5.613}],
NIntegrate[PDF[FRatioDistribution[9,7], x], {x, 0, 1./3.70}].

Herewe have only demonstrated a sample calculation of integrating the density of the
F distributionwith parameters required by the Example on p. 187: the four command
lines listed above yield the values

http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_3
http://dx.doi.org/10.1007/978-3-319-31611-6_3
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Table D.2 Values of the erf function (3.8) from 0 to z in steps of 0.01

z 0 1 2 3 4 5 6 7 8 9

0.0 0.0000 0.0113 0.0226 0.0338 0.0451 0.0564 0.0676 0.0789 0.0901 0.1013

0.1 0.1125 0.1236 0.1348 0.1459 0.1569 0.1680 0.1790 0.1900 0.2009 0.2118

0.2 0.2227 0.2335 0.2443 0.2550 0.2657 0.2763 0.2869 0.2974 0.3079 0.3183

0.3 0.3286 0.3389 0.3491 0.3593 0.3694 0.3794 0.3893 0.3992 0.4090 0.4187

0.4 0.4284 0.4380 0.4475 0.4569 0.4662 0.4755 0.4847 0.4937 0.5027 0.5117

0.5 0.5205 0.5292 0.5379 0.5465 0.5549 0.5633 0.5716 0.5798 0.5879 0.5959

0.6 0.6039 0.6117 0.6194 0.6270 0.6346 0.6420 0.6494 0.6566 0.6638 0.6708

0.7 0.6778 0.6847 0.6914 0.6981 0.7047 0.7112 0.7175 0.7238 0.7300 0.7361

0.8 0.7421 0.7480 0.7538 0.7595 0.7651 0.7707 0.7761 0.7814 0.7867 0.7918

0.9 0.7969 0.8019 0.8068 0.8116 0.8163 0.8209 0.8254 0.8299 0.8342 0.8385

1.0 0.8427 0.8468 0.8508 0.8548 0.8586 0.8624 0.8661 0.8698 0.8733 0.8768

1.1 0.8802 0.8835 0.8868 0.8900 0.8931 0.8961 0.8991 0.9020 0.9048 0.9076

1.2 0.9103 0.9130 0.9155 0.9181 0.9205 0.9229 0.9252 0.9275 0.9297 0.9319

1.3 0.9340 0.9361 0.9381 0.9400 0.9419 0.9438 0.9456 0.9473 0.9490 0.9507

1.4 0.9523 0.9539 0.9554 0.9569 0.9583 0.9597 0.9611 0.9624 0.9637 0.9649

1.5 0.9661 0.9673 0.9684 0.9695 0.9706 0.9716 0.9726 0.9736 0.9745 0.9755

1.6 0.9763 0.9772 0.9780 0.9788 0.9796 0.9804 0.9811 0.9818 0.9825 0.9832

1.7 0.9838 0.9844 0.9850 0.9856 0.9861 0.9867 0.9872 0.9877 0.9882 0.9886

1.8 0.9891 0.9895 0.9899 0.9903 0.9907 0.9911 0.9915 0.9918 0.9922 0.9925

1.9 0.9928 0.9931 0.9934 0.9937 0.9939 0.9942 0.9944 0.9947 0.9949 0.9951

2.0 0.9953 0.9955 0.9957 0.9959 0.9961 0.9963 0.9964 0.9966 0.9967 0.9969

2.1 0.9970 0.9972 0.9973 0.9974 0.9975 0.9976 0.9977 0.9979 0.9980 0.9980

2.2 0.9981 0.9982 0.9983 0.9984 0.9985 0.9985 0.9986 0.9987 0.9987 0.9988

2.3 0.9989 0.9989 0.9990 0.9990 0.9991 0.9991 0.9992 0.9992 0.9992 0.9993

2.4 0.9993 0.9993 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 0.9995 0.9996

2.5 0.9996 0.9996 0.9996 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

2.6 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9999

2.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

2.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 1.000 1.000 1.000

2.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.95001,

0.96385,

0.99001,

0.03615 = 1-0.96385.

The calculation for other distributions proceeds along the same lines.

http://dx.doi.org/10.1007/978-3-319-31611-6_3
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Reference

1. S. Wolfram, Wolfram Mathematica. http://www.wolfram.com

http://www.wolfram.com


Index

A
Acceptance region, 260
Airplane engines, 125
Auto-correlation (temporal), 298
Auto-regression model, 303
Average (mean) value, 93

B
Ballistic diffusion, 163
Bayes formula, 16, 25
Binary communication channel, 310
Binomial

distribution, 123–128, 135–138, 140
formula, 8, 124
symbol, 7

Black-Body radiation, 56
Blood types, 19
Bombardment of London, 134, 270
Bootstrap, 276
Box diagram, 193
Box-Muller transformation, 391
Branching fraction, 88, 125
Breit-Wigner distribution, 78, 88, 393
Brownian motion, 321–323
Buffon’s experiment, 325

C
Cantelli’s inequality, 101
Carry, 384
Cauchy distribution, 41, 77, 105, 393
Characteristic

function, 376–382
scale of distribution, 163

Characterizing function, 315
Chebyshev inequality, 101

Coefficient
of determination, 234
of linear correlation, 108, 195

Combinations, 7, 8
Complete set of events, 5
Complex random variable, 101
Conditional probability, 11–18
Confidence

interval, 188, 235
for correlation coefficient, 196
for sample mean, 188
for sample variance, 191

level, 261
region, 191

Constraint equation, 245, 289
Constraint (Lagrange), 246, 289–303
Continuous distribution, 39, 47
Convolution, 143, 369

continuous, 143–147, 167
discrete, 147–149

Correlation
and causality, 111
coefficient, 108, 195
linear (Pearson), 108, 195
non-parametric (Spearman), 196

Covariance, 107, 110
matrix, 110, 112, 114

sample, 227
Cramér-Rao inequality, 209
Cumulative function, 38, 40, 48

D
Decay

η meson, 125
π0 → 2γ, 80
constant, 67
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410 Index

nuclear, 133
radioactive, 67, 87–90, 128, 134
time, 67, 213, 215, 219, 276

neutron, 242
width, 88
Z0 boson, 88

Decile, 96
Detailed balance, 339
Detection efficiency, 10, 106, 135, 140
Device failure time, 115, 129, 221
Difference of events, 4
Diffusion, 321

ballistic, 163
function, 315
log-normal, 163
normal, 163, 166
of thermal neutrons, 171
self-, 317

Dipole radiation, 390
Discrete distribution, 37, 45
Distribution

binomial, 123–128, 135–138, 140, 369,
378
normal approximation, 130

Boltzmann, 18
Bose-Einstein, 18, 295
Breit-Wigner, 78, 88, 393
candidate, 339
Cauchy, 41, 77, 105, 374, 393
χ2, 79
continuous, 39, 47
cumulative, 40, 48
discrete, 37, 45
equilibrium, 310, 339
exponential, 67–70, 84
F , 80
Fermi-Dirac, 18, 296
Fréchet, 158
function, 38, 40, 48

continuous, 40
discrete, 38
empirical, 271

Gumbel, 158
hyper-exponential, 86, 117
hypo-exponential, 89, 117
isotropic (R3, Rd ), 389
isotropic (hyperplane), 389
Lévy, 154
log-normal, 381
Lorentz, 78
maximum-entropy

continuous, 297
discrete, 289–297

Maxwell, 74, 85, 105
Maxwell-Boltzmann, 292
mode, 104
multinomial, 128
multivariate normal, 110, 300, 392
negative binomial, 129

order k, 129, 138
normal, 70–74, 109–111, 375, 377, 391
normal, multivariate, 110, 300, 392
of blood types, 19
of energy losses in detector, 57
of extreme rainfall, 159, 222–224
of extreme values, 63–64, 156–161, 172,
222–224

of maximal values, 63–64, 156–161
of minimal values, 63–64, 156–161
of sample median, 194
Pareto, 75–77, 97
Pascal, 129
Poisson, 132–135, 140–142, 369, 371,
372, 377

stable, 153–155
Student’s (t), 79
target, 339
uniform, 65, 80–84

in circle, 388
in sphere, 388
over directions (R3, Rd ), 389

Voigt, 169
Weibull, 158

Dosage of active ingredient, 201
Drawing, 37, 337, 383
Drift function, 315

E
Effective deviation, 100
Efficiency

of detector, 10, 106, 135, 140
of estimator, 210, 211
of vaccine, 133

Electron mobility in semiconductor, 255
El Niño, 254
Energy

free, 294
internal, 294

ENSO (El Niño Southern Oscillation), 254
Entropy

information (Shannon), 283
of continuous distribution, 286
of discrete distribution, 286
relative, 287
thermodynamic, 294–297



Index 411

Equation
Chapman–Kolmogorov, 308, 312, 314
constraint, 245
Fokker–Planck, 316, 317, 319
Langevin, 321
likelihood, 204
Montroll-Weiss, 166
Yule-Walker, 302

Error function (erf), 71
Estimate, 178

of spectrum (max-entropy), 298
Estimator, 178

biased, 178
consistent, 178
efficient, 210
unbiased, 178, 198, 199, 210

Eugene Onegin, 307
Event

certain, 4
complementary, 5
compound, 4
elementary, 4
exclusive, 4
impossible, 4
incompatible, 4
independent, 14–16, 21, 47, 48
universal, 4

Exam grades, 279
Expected value, 93–115
Experiment

Buffon, 325
random, 3

Exponential distribution, 67–70, 84
Extinction

probability, 353
time, 349

Extreme value distribution, 156–161

F
Fat tails, 155, 163
Fisher transformation, 196
Flu medicine, 279
Formula

Bayes, 16, 25
binomial, 8, 124
Planck, 56
product, 11
Sokhotsky–Plemelj, 34
total probability, 17

Free energy, 294
Function

characteristic, 376–382

characterizing, 315
(cumulative) distribution, 38, 40
diffusion, 315
Dirac (δ), 31, 364
distribution, 38, 40
drift, 315
erf, 71
Heaviside (step), 35
importance, 334
likelihood, 203
moment-generating, 374–376
partition, 290
probability-generating, 367–374
propagator moment, 314
step (Heaviside), 35
transition, 384

FWHM, 73

G
General linear regression, 248
Generating function

and convolutions, 369
probability, 367–374

Generator of random numbers
linear, 384–386
non-linear, 386–387

Global release of CO2, 251

H
HXRBS, 76
Hypercube, 327
Hypersphere, 327, 338
Hypothesis, 16, 259

alternative, 260
null, 259

I
Importance function, 334
Importance sampling, 333
Independent variables, 47, 48
Inequality

Cantelli’s, 101
Chebyshev, 101
Cramér-Rao, 209
Jensen’s, 99

Information, 12, 283
entropy (Shannon), 283
of sample, 209

Internal energy, 294
Inter-quartile range (IQR), 96, 193



412 Index

J
Jacobi matrix, 51
Jensen’s inequality, 99
Joint probability density, 47

K
Kullback-Leibler distance, 287
Kurtosis, 104

L
Lagrange multiplier, 246, 289–303
LCG, 384
Least median of squares (LMS), 249
Lévy flights, 163
Likelihood, 203

interval, 212–214
region, 217–219

Linear
congruential generator, 384
correlation, 108, 195
regression, 228–250

error in both coordinates, 240
Log-normal diffusion, 163
LOLA, 76
Lorentz distribution, 78

M
MAD, MADN, 193
Magnetic dipoles, 294
Magnetization in superconductor, 257
Marginal probability density, 48
Markov

chain, 308–313
at long times, 309
ergodic, 309
irreducible, 309
Monte Carlo, 339–345
reversible, 339

process, 307–323
propagator, 314

density function, 314
Matrix

covariance, 110, 112, 114, 227
Jacobi, 51
Markov (stochastic), 308
stochastic (Markov), 308
Toeplitz, 299

Maximum-entropy
distribution, 289–298
spectral analysis (MESA), 298

Maxwell distribution, 74, 85, 105

Mean, 93
sample, 179

Measurable set, space, 363
Measure, 363

Dirac, 364
Median, 95

absolute deviation (MAD), 193
of squares of residuals, 249
sample, 193

MESA (Maximum-entropy spectral analy-
sis), 298

Meteorites, 133
Method

maximum likelihood, 203–224
MCMC, 339–345
MESA, 303
Monte Carlo, 325–345

Markov-chain (MCMC), 339–345
numerical integration, 328–338
variance reduction, 333–338

of least squares, 227–257
rejection, 392
transformation (inverse), 390

Metropolis-Hastings algorithm, 341–345
Mixing (MCMC), 343
Mode, 104
Model

nested, 268
of births, 347
of births and deaths, 351–356
of deaths, 348
of weather, 311

Moment, 102–106
generating function, 374–376
indeterminate, 381

Multinomial
distribution, 128
symbol, 7, 128

N
Neutron decay time, 242
Nimbus 7 satellite, 192
Noise in electric circuit, 101, 119
Non-Parametric correlation, 196
Normal

diffusion, 163, 166
distribution, 70–74, 109–111, 375, 377,
391
multivariate, 110, 300, 392

system of equations, 229
Nuclear decay chain, 89



Index 413

O
Order of generator, 384
Outcome of experiment, 3
Outliers, 192, 193

P
Pareto

distribution, 75–77, 97
principle (80/20), 97

Partition function, 290
Percentile, 96, 397
Permutations, 6
Phase sum, 290
Photo-disintegration of 3He, 263
Planck formula, 56
Pochammer symbol, 6
Polymer molecule, 169
Population, 177

dynamics, 347–358
Power

of test, 261
set, 364
spectral density (PSD), 302
tails, 155, 163

Primary ionization, 140
Principle

maximum likelihood, 204
of indifference, 288
of insufficient reason, 288
of maximum entropy, 288
Pareto (80/20), 97

Probability
acceptance (MCMC), 341
conditional, 11–18
density, 39

in quantum mechanics, 99
joint, 47
marginal, 48
Markov propagator, 314

function, 37
generating function, 367–374
measure, 364
of event, 8
of extinction, 353
posterior, 17
prior, 17
transition (single-step), 308

Problem
Monty Hall, 22
newsboy, 136
of indeterminate moments, 381

Process

Markov, 307–323
continuous-time, 313–323
discrete-time, 308–313
propagator, 314

memoryless, 307
Ornstein–Uhlenbeck, 318
random, 162
Wiener, 317

Product
formula, 11
of events, 4

Propagation of errors, 111–115, 120
Propagator

density function, 314
moment function, 314
of Markov process, 314

Pseudo-random numbers, 383–393

Q
Q–Q plot, 199
Quantile, 96, 397
Quantum defects in atoms, 256
Quartile, 96
Quasi-random sequence, 337

R
Rabbits and foxes, 357–358
Radioactive decay, 213
Random

experiment, 3
process, 162
variable, 37

complex, 101
continuous, 39
discrete, 37
realization, 37

vector, 101
walk, 27, 162–167

continuous-time, 165
discrete-time, 162

Rank, 196
correlation coefficient, 197

Realization of random variable, 37
Regression

by singular-value decomposition, 248
fitting a constant, 240
fitting a polynomial, 230–236
fitting a straight line, 237–240
for binned data, 242–245
general linear, 248
linear, 228–250



414 Index

error in both coordinates, 240
with constraints, 245–247

non-linear, 250–257
robust, 249
with orthogonal polynomials, 236

Rejection region, 260
Residual, 232
Return

period, 159
value, 159

Risk level, 189
Robust

regression, 249
statistics, 192–194

ROC curve, 260, 263

S
Sample, 177

correlation, 195
covariance matrix, 227
distribution, 178

of sums and differences, 184
of variance ratios, 186
of variances, 185

mean, 179
rank, 197
space, 4
statistic, 178
variance, 179

Scintillator (light yield), 86
Searching for the lost plane, 22
Seed (random number generator), 384
Seismic velocity, 287
Self-diffusion, 317
Sensitivity of test, 25, 261
Sequence

quasi-random, 337
serially uniform, 383
Sobol, 337
unbiased, 383
uncorrelated, 383
uniform, 383

Set
measurable, 363
power, 364

Sharks and ice cream, 111
σ-algebra, 363
Significance of test, 260
Single-step transition probability, 308
Skewness, 103
Sokhotsky–Plemelj formula, 34
Southern oscillation, 254

Spatial resolution of detector, 140
Specificity of test, 25, 261
Spectral

analysis (maximum-entropy), 298
line shape, 73, 78
line width, 168

Stable distributions, 153–155
Standard deviation, 71, 100
State

periodic, 309
reproducible, 309

Statistic, 178
Statistical

significance, 260
tests, 259–276

Stochastic variable, 37
Student’s distribution, 79
Sub-diffusion, 166
Sum of events, 4
Super-diffusion, 163, 166
Symbol

binomial, 7
multinomial, 7, 128
Pochammer, 6

T
Temperature anomaly, 233
Tensile strength of glass fibers, 224
Test

Anderson-Darling, 276
χ2 (Pearson’s), 269–271, 278
comparing binned data, 271
comparing sample means, 265, 266
comparing sample variances, 267
confidence level, 261
F , 267–269
Kolmogorov–Smirnov, 271–275
of sample mean, 264
of sample variance, 265
parametric, 263–269
power, 261
risk level, 189
sensitivity, 25, 261
specificity, 25, 261
statistical, 259–276
statistical significance, 260
t (Student’s), 264

Theorem
Berry-Esséen, 151
central limit, 149–152

generalized, 155
Fisher-Tippett-Gnedenko, 158
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Gauss–Markov, 229
Laplace’s limit, 130, 379
Perron-Frobenius, 310
Szegő, 301

Thermal expansion of copper, 255
Thinning, 140
“Three-σ” rule, 193
Three-level system, 293
Time

decay, 67, 213, 215, 219, 276
of extinction, 349
to failure, 138

Total probability formula, 17
Transformation

Box-Muller, 391
Fisher, 196

of random variable
n-dim, 50–56
1-dim, 41–45

Transition function, 384

V
Variance, 100

lower bound, 209
minimal, 209
sample, 179

Variations, 6

W
Width of spectral line, 168
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