Chapter 1
Introduction

Turbulent flows are omnipresent in nature and in technology. In technology, turbulent
flows occur for example in nozzles and pipes, followed closely by the flow in devices
such as heat exchangers, combustion engines, and turbo machinery. Also, turbulent
flow is almost always observed around moving objects, such as airplanes, trains and
cars, influencing the flow resistance of those bodies. At the same time, turbulence
plays an important part in a variety of transport phenomena, such as heat and mass
transfer, but also in flow-induced mixing. An extra complication in this last case is
the occurrence of chemical reactions during the mixing, as is the case in combustion.
In nature, turbulence plays a part in flows on a geophysical scale, such as the flows
in the atmosphere and in the ocean. Transport phenomena in our atmosphere are, for
example, mainly controlled by turbulence. An example of this is the distribution of
air pollution by turbulent diffusion. Also, people traveling by plane may experience
turbulence at first hand by vigorous agitation of the aircraft. On a somewhat larger
scale, our weather and even our climate could be called a turbulent phenomenon.
Lastly, turbulence is not restricted to our planet, but also plays an important part in
flows occurring in the photosphere of stars, the closest being our own sun, and in the
formation of planets in accretion discs.

The interest in turbulent flows has increased considerably in the last several
decades. There are two main reasons for this. First, turbulence remains an unsolved
problem from both a physical and a mathematical point of view. Second, in many
practical flow problems, it appears that an inadequate model of turbulence is the most
obstructive factor to a solution of the problem at hand.

In a first introduction to fluid mechanics, the concept of laminar flow is often
introduced immediately, which is then followed by the definition of a turbulent flow
as ‘non-laminar’ flow. Let us compare the characteristics of both types of flow:

laminar turbulent
layered, regular |disordered
smooth fluctuating
ordered chaotic

© Springer International Publishing Switzerland 2016 1
F.T.M. Nieuwstadt et al., Turbulence, DOI 10.1007/978-3-319-31599-7_1



2 1 Introduction

Fig. 1.1 Laminar and turbulent flames. In the laminar flame the combustion is limited by diffusion,
whereas in the turbulent flames the combustion is much stronger due to mixing, which results
in a higher flame temperature. The laminar flame (Re ~ 400) is smooth and has no evident flow
structures, whereas the turbulent flames (increasing to Re ~ 4000) display a disordered structure and
chaotic motion which continuously changes. Images courtesy of: Luis Arteaga and Mark Tummers

On the basis of common experience, almost everyone is somewhat familiar with
these qualitative characteristics. An example is shown in Fig. 1.1 for laminar and
turbulent flames. The differences between the two types of flow might however lead
to the idea that turbulent flow obeys different equations of motion than laminar flow.
This idea is not confirmed by experiments, and nowadays there is no doubt that both
types of flow obey the same equations of motion. On this basis, we can now ask
a simple question: What is the essence of turbulence, and how can we understand
turbulent flow as a solution to the equations of motion?

The dynamics of liquids and gases can be described by the laws published by Isaac
Newton in 16871n his Principia. At first, Newton devised these equations for the
mechanics of solid bodies. However, in subsequent years these laws were extended
to frictionless fluids by, among others, Euler and Bernoulli. The formulation of the
complete set of equations of motion for a fluid, including flow with friction, did not
emerge until the middle of the 19th century. These are the Navier—Stokes equations
that have the form of a system of nonlinear partial differential equations, describing
the relation between the variables of flow, such as velocity and pressure, as a function
of position and time.

The Navier—Stokes equations are not sufficient to completely determine the flow in
a defined volume. For this we need to specify additional conditions. These conditions
determine what the flow on the volume boundaries should look like, that is the
so-called boundary conditions. Additionally, we need to know the so-called initial
condition, which is the complete flow as a function of position at an initial moment.

The essential aspect of Newton’s laws, and thus of the Navier—Stokes equations, is
that they are deterministic. This means that in principle, given the equations of motion
together with the initial and boundary conditions, the evolution of the flow field can
be computed as a function of time; hence, the solution to the equations and conditions
that describe the flow is completely determined. In other words, the deterministic
character of Newton’s mechanics implies full predictability of the fluid motion.
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This can be regarded as a philosophical world view; the mathematician Pierre-Simon
Laplace elaborated on this in detail, which was laid down in his work Mécanique
Céleste that appeared in three volumes between 1799 and 1825. Allegedly, Laplace
stated:

Give me the velocity and position of every molecule, and I will predict your future.

In the 19th century the mathematician Hadamard formulated the notion of a well-
posed problem. This means that a problem is well-posed when the solution of a set
of differential equations obeys the following conditions:

existence: a solution exists;
uniqueness: there is only a single solution;
stability: small disturbances in the initial or boundary conditions lead only to

small variations of the solution.

The first two conditions confirm a deterministic world view: with given initial and
boundary conditions, the solution is known. The third condition for a well-posed
problem yields an important restriction. Namely, this condition suggests that a deter-
ministic solution is in practice only possible when the solution is not susceptible to
small disturbances in the initial and boundary conditions. But why do we consider
the notion of ‘in practice’? Mathematically speaking, there would be no objection
against using exactly known initial and boundary conditions. In that case we speak
of mathematically ideal initial and boundary conditions, and for such a situation
the solution would be completely determined due to the first and second conditions.
However, this requires the initial and boundary conditions to be known with infinite
accuracy; this would of course ‘in practice’ not be feasible, since the initial and
boundary conditions are only known with finite accuracy. This is what we refer to as
realistic initial and boundary conditions. Only for a well-posed problem these imper-
fections in the initial and boundary conditions fail to significantly affect the solution.
In that case, the solution is ‘in practice’ completely predictable. If, however, the third
Hadamard condition is not satisfied, we can expect completely different behavior of
our solution when we do not exactly know the initial and boundary conditions, which
results in what we perceive as unpredictability. In that case, the problem is considered
to be ‘ill-posed’.

These ideas were first elaborated by the French mathematician Henri Poincaré,
who published his work Méthodes Nouvelles de la Mécanique Céleste in 1892. In this
work he tried to solve the famous so-called three-body problem. Newton had already
solved the two-body problem, where he found the elliptic Kepler-trajectories as the
solution, which are considered the hallmark of a completely predictable solution. In
other words, the two-body problem is well posed. This is in sharp contrast to the
three-body problem. Poincaré found that this problem is not integrable; in short, this
means that there is no simple solution in terms of a smooth or differentiable function.
He found that the solution had irregular and chaotic characteristics. The solution to
the three-body problem thus appears to be fundamentally unpredictable; the problem
is ill posed. This meant the end of Laplace’s orderly world view.
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The results of Poincaré were further elaborated in the theory of dynamical systems.
Dynamical systems can be imagined best as systems of coupled differential equations,
describing the behavior of so-called system variables as a function of time. Often
the number of system variables, or degrees of freedom, is kept relatively small. An
example of a dynamical system is that of two coupled pendulums, but other examples
of dynamical systems can be found in economics and certain biological processes.
Dynamical systems are deterministic by definition, and therefore full solutions as a
function of time can in principle be computed.

For these systems, consisting of sets of regular differential equations, it was proven
that, given an initial condition, a single and unique solution exists. Hence, the first and
second Hadamard conditions are satisfied. The third condition, however, is not always
satisfied. The validity of this condition can only be proven for a limited number of
systems, often only the linear ones. On the other hand, for many nonlinear dynamical
systems it has been found that the solution is extremely sensitive to small variations
of the initial conditions. The solution then becomes unpredictable after a certain
amount of time, after which it starts to fluctuate. We cannot predict the magnitude,
and often not even the sign of these fluctuations. This is called deterministic chaos.
It is one of the most fundamental new insights that has dominated the developments
in mechanics over the last couple of decades. It should be emphasized here that such
‘chaotic’ behavior is only anticipated for nonlinear dynamical systems.

Let us consolidate these findings to the solution of our flow equations. In doing
so, we should note that the preceding findings have only been demonstrated for
dynamical systems where the number of degrees of freedom is small. Nonetheless,
we expect similar findings for systems that have many degrees of freedom, although
this has only been proven in a few cases. Here, we interpret the equations of motion
for the flow as a system with many degrees of freedom.

Consider a solution of the Navier—Stokes equations for a given flow problem;
realistic initial and boundary conditions are given with finite accuracy. Suppose that
all conditions for a well-posed problem are be satisfied, so that the solution for the
flow is completely predictable. We define this as laminar flow.

However, the Navier—Stokes equations are nonlinear, and thus we have to expect
that only under very special circumstances it is possible to comply with the conditions
for a well-posed problem, especially the third one. In all other cases, the equations
of motion and initial and boundary conditions for the flow would be ill posed. The
solution is then susceptible to small variations in the initial or boundary conditions.
We argued above that in this case the solution eventually becomes completely unpre-
dictable, and this now defines a turbulent flow. In short, turbulence is associated with
the concept of deterministic chaos, as mentioned above. So, turbulence is a com-
pletely different kind of flow than laminar flow, which would be unaffected by small
variations in the initial and boundary conditions.

Now what does unpredictability on the basis of susceptibility to initial and bound-
ary conditions mean? Suppose that we consider two solutions of a turbulent flow with
the same realistic initial and boundary conditions. This would mean that for both
solutions the initial and boundary conditions may be different, but within a finite
degree of accuracy or tolerance. Such small differences will always be present in
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practice; for example, consider differences that are the result of molecular fluctu-
ations. Since the third condition for a well-posed problem is not satisfied, the two
solutions will, after a certain moment, begin to diverge completely. These two solu-
tions can be considered as two realizations of the turbulent flow. Thus, every solution
with the same realistic initial and boundary conditions yields a completely new real-
ization. For turbulent flow with given realistic initial and boundary conditions, we
are unable to predict the flow temporal and spatial evolution of the flow variables.

It now becomes plausible to consider the statistics of the flow variables, rather
than the individual realizations. This is the most widely applied approach to describe
turbulent flows. However, we cannot reverse this argument; from the turbulence
statistics we will never be able to reconstruct the full course of all realizations. This
underlies the so-called closure problem, which has remained the central fundamental
issue in the theoretical description of turbulence.

In the preceding part of this Introduction, an attempt was made to relate flow
turbulence to contemporary dynamical systems theory. It should be mentioned here
that this relation is mainly qualitative. Except for the routes to chaos that are treated
in Sect.3.4, the reader will look in vain for a more quantitative elaboration in the
remainder of this book. Nonetheless, the common understanding is that concepts and
results in modern chaos theory have aided to gain insight in the onset of turbulence in
flows. Some even say that this is the right way forward that will eventually lead us to
a full solution of the problem of turbulence; see for example the preface in the latest
edition of the famous book by Landau and Lifshitz on fluid mechanics. However,
many still question whether chaos theory will provide us with a theory of turbulence
that could, for example, predict the behavior of a turbulent flow. Note that chaos
theory has prepared us to accept that we may never reach a closed-form solution to
the problem of turbulence; the Navier—Stokes equations appear to be fundamentally
non-integrable.

Separate from the modern mathematical insights mentioned above, the field of
turbulent flows has passed through a long-term development. This mainly originated
from practical questions and problems. Ignoring older and primarily qualitative con-
siderations, research on turbulence commenced in the 18th and 19th centuries. Its
origins can be found in the field of hydraulics, because of the interest in studying
turbulent flow through pipes. Most of these investigations were empirical. This is
why the works of Osborne Reynolds in 1883 and 1895 are considered as the birth of
the theory of turbulence. His name will return multiple times in the ensuing chapters.

In this book we first focus on developments in the dynamics of turbulent flow.
In doing so, phenomenological considerations are often invoked, because there is in
fact no satisfactory theory of turbulence. This is despite the fact that many famous
physicists, for example Werner Heisenberg and Richard Feynman, worked on the
problem. Quoting from the Feynman Lectures on Physics:

Finally, there is a physical problem that is common to many fields, that is very old, and
that has not been solved. It is not the problem of finding new fundamental particles, but
something left over from a long time ago — over a hundred years. Nobody in physics has
been able to analyze it mathematically satisfactorily in spite of its importance to the sister
sciences. It is the analysis of circulating or turbulent fluids.
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In absence of a comprehensive theory, we have to resort to heuristics now and then.
The use of dimensional analysis, linked with an adequate insight into the physical
processes at hand, is then most appropriate. This may leave the reader who expects
a comprehensible theory of turbulence somewhat dissatisfied. However, it will be
shown that with this approach many important and useful results can be obtained.

To conclude this Introduction, we provide an overview of the material that is
covered in this book. After a brief introduction to the governing equations of motion
in Chap. 2, we start in Chap. 3 with a short treatise on the emergence of turbulence.
On the basis of linear stability analysis we discuss the circumstances and conditions
under which laminar flow becomes unstable and when we can expect turbulence to
appear. Also, we briefly address the transition to fully-developed turbulent flow. This
is referred to as the route to chaos. As mentioned previously, new insights from chaos
theory contributed to this particular topic.

In the next chapter we focus on a particular model of turbulence that has an
exact solution, that is Burgers equation. Equipped with the knowledge from this
model, we discuss the phenomenology of turbulence. Important concepts, such as
the macrostructure and microstructure are introduced, where each is characterized
by separate scaling law.

In Chap. 5 we derive the equations of motion for the mean velocity in a turbulent
flow. Here we are confronted for the first time with the closure problem. This closure
problem is key to the development of turbulence models; in particular, in this book
we pay attention to several closure models.

The first closure model is Ludwig Prandtl’s mixing length hypothesis, which we
apply to turbulent channel flow in Chap. 6. This also serves as an example of tur-
bulence in the vicinity of a solid boundary, or so-called wall turbulence. For wall
turbulence we can distinguish several regions with different scaling laws. The most
important of these regions is the so-called inertial sublayer that is characterized by a
logarithmic velocity profile. Wall turbulence is opposed to so-called free turbulence,
which can develop without the restrictive influence of a solid boundary. Examples
of free turbulence are discussed in Chap. 6.

The energetic aspects of turbulence are discussed in Chap.7. These are studied
using the equations for the kinetic energy for the mean flow and for the fluctuating
velocity in the turbulent flow. These equations lead to two basic results:

e Turbulent kinetic energy is produced in the macrostructure and is dissipated in the
microstructure by molecular viscosity;

e Production and dissipation of turbulent kinetic energy are, in a first approximation,
in local equilibrium.

We then address the question by what mechanism energy is transferred from the
macrostructure to the microstructure. For this, we introduce the vorticity equation in
Chap. 8. The process of vortex stretching appears to be responsible for the resulting
energy transfer from the macrostructure to the microstructure through what is called
the energy cascade process. Moreover, on the basis of a first-order approximation of
the equation for the vorticity fluctuations, we find that the microstructure is indeed
in local dynamic equilibrium. This implies that the microstructure is fully decoupled
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from the macrostructure, and also that the microstructure is isotropic. The theory
of the turbulence microstructure was first formulated by A.N. Kolmogorov around
1940. A second-order balance of the equation for the fluctuating vorticity leads to
an important closure model that is very useful in practice: the so-called k-e model.
Subsequently, we discuss also a couple of contemporary turbulence models, such as
the second-order closure model and the algebraic stress model.

Next, in Chap.9 we discuss the correlation function and its Fourier transform:
the spectrum. Here we mainly limit ourselves to two specific topics. The first topic
is the so-called one-dimensional spectrum, which can be interpreted as the spectrum
of the fluctuations in a flow property measured at a fixed point. The second topic
we discuss is the theory of isotropic turbulence. As one of the central results of the
theory of turbulence we deduce the so-called —5/3-law of the inertial subrange of
the spectrum. It is demonstrated that this result is directly related to the existence of
both the macrostructure and the microstructure, which are dynamically decoupled.

Finally, we conclude our description of turbulence in Chap. 10 with a brief dis-
cussion of turbulent diffusion and particle-laden turbulent flows.

Almost every section includes selected problems. These are intended to illustrate
the covered material, but occasionally expand on more advanced topics.

One final comment. For certain, turbulence is not one of the easiest subjects in fluid
mechanics. This book is therefore only an introduction and a gateway to wondrous
things beyond.
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