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Preface

Turbulence is a part of fluid mechanics. Therefore, in this book, it is assumed that
the reader is already familiar with the fundamentals of fluid mechanics. There are
many books that the uninformed reader can consult. A first introduction is provided
by the book of White (2011), which also can be recommended for its practical
approach, or the books by Acheson (1990), Faber (1995), or Kundu and Cohen
(2004), which can be recommended to the reader interested in the physical aspects
of fluid mechanics. Standard text books on fluid mechanics are those by Landau and
Lifshitz (1959), and especially by Batchelor (1967), which contains a solid math-
ematical treatise of fluid mechanics.

We are only able to dwell briefly on the results of linear stability theory and the
solution to Burgers equation. For further details on stability analysis the reader is
referred to the book of Drazin and Reid (1981), while for the Burgers equation the
reader is referred to the book of Whitham (1974), where a comprehensive treatise
on the Burgers equation is given. An introduction to nonlinear dynamical systems
and chaos theory is given in the books by Schuster (1984) and Bergé et al. (1984).

On the topic of turbulence, several text books can be recommended to be used
simultaneously with this book; it is often very clarifying when the same material is
considered from different viewpoints. Foremost, we suggest the book of Tennekes
and Lumley (1972), which has been among the most cited books on turbulence for
decades and which has been the inspiration for certain parts of the present book.
Traditional descriptions of turbulence that originate from statistical mechanics can
be found in the books by Monin and Yaglom (1973) and Landahl and
Mollo-Christensen (1986). Also, there are a number of standard works in the field
of turbulence, which can be consulted for various topics. Classic text books on
turbulence are those by Townsend (1976) and Hinze (1975), while more recent
books are those by Pope (2000) and Davidson (2004), which all can be used by
those who wish to continue on the topics introduced in this book. There are also
several books on specialized topics in turbulence, such as the book by Batchelor
(1953) on the theory of homogeneous turbulence, while developments in the field
of spectral models can be found in the book by Lesieur (2008) and in the field of
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renormalization methods in the book by McComb (1990). Also, much attention in
physics has been devoted recently to scaling of the microstructure, following the
theory of Kolmogorov. An overview of this modern theory can be found in the
book by Frisch (1995).

This book was originally written by Frans T.M. Nieuwstadt to support his lectures
on turbulence at the level of master students at the Delft University of Technology.
It was based on his lecture notes for a course taught at the University of Utrecht
before he was appointed at the Delft University of Technology. His objective had
been to write a concise introduction on the physical aspects of turbulence (partly
inspired by the work of Tennekes and Lumley), but substantially extended to
include insights from nonlinear dynamical systems and chaos theory, stability
analysis, modern numerical methods, and an overview of current turbulence closure
models used in computational fluid dynamics (CFD) codes. Besides, he wanted to
have a book that was also affordable to students.

The original work was written in Dutch, and it was used also at other Dutch
universities. However, since around the year 2000, courses had to be taught in
English, and we resorted to English language textbooks. Although various excellent
books have been available, we could not find the mix of topics that we were used to
in the original book by Frans T.M. Nieuwstadt. Since long we had planned to
translate, update, and extend the book. Also, we received requests from colleagues
to make available a translation of the book. The present book is the result of this
effort.

We are indebted to many colleagues who contributed to the completion of this
book; in particular we would like to thank Gijs Ooms for proofreading this book
and Herman Clercx of the Vortex Dynamics and Turbulence Group at the
Eindhoven University of Technology for writing a special topic on rotating tur-
bulence (Sect. B.4).

Delft Bendiks J. Boersma
April 2015 Jerry Westerweel

x Preface



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Incompressible Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 The Boussinesq Approximation . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Stability and Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Kelvin–Helmholtz Instability . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Stability of a One-Dimensional Flow . . . . . . . . . . . . . . . . . . . 28

3.3.1 Tollmien–Schlichting Instability. . . . . . . . . . . . . . . . . . 33
3.3.2 Rayleigh Stability Criterion. . . . . . . . . . . . . . . . . . . . . 35

3.4 Routes to Chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.1 The Logistic Map . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.2 The Lorenz Equations . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.3 Transition in Pipe Flow . . . . . . . . . . . . . . . . . . . . . . . 48

4 The Characteristics of Turbulence . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1 The Burgers Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Phenomenology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Experimental and Numerical Methods . . . . . . . . . . . . . . . . . . 66

5 Statistical Description of Turbulence. . . . . . . . . . . . . . . . . . . . . . . 75
5.1 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Stationarity and Homogeneity . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 The Reynolds Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4 Kinetic Theory of Momentum Transfer . . . . . . . . . . . . . . . . . . 83

xi



6 Turbulent Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1 Channel Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Mean Velocity Profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3 Scaling of Turbulent Wall Flows . . . . . . . . . . . . . . . . . . . . . . 95
6.4 Wall Roughness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.5 Pressure Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.6 Free Turbulent Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.7 The Free Jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Kinetic Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.1 Kinetic Energy of the Mean Flow . . . . . . . . . . . . . . . . . . . . . 125
7.2 Kinetic Energy of Turbulence . . . . . . . . . . . . . . . . . . . . . . . . 128
7.3 Prandtl’s One-Equation Model . . . . . . . . . . . . . . . . . . . . . . . . 132
7.4 Energy Equation per Component . . . . . . . . . . . . . . . . . . . . . . 134
7.5 Convective Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.6 The Convective Boundary Layer . . . . . . . . . . . . . . . . . . . . . . 145

8 Vorticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.1 Vorticity Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
8.2 Coherent Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.3 Enstrophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.4 The k-ε (e-ε) Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
8.5 Second-Order Closure and Algebraic Stress Models . . . . . . . . . 170
8.6 Large Eddy Simulation of Turbulence . . . . . . . . . . . . . . . . . . 176

9 Correlation Function and Spectrum . . . . . . . . . . . . . . . . . . . . . . . 183
9.1 Time Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
9.2 The Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
9.3 Spatial Correlations and Spectra. . . . . . . . . . . . . . . . . . . . . . . 188
9.4 The Taylor Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
9.5 Scaling of Turbulence Spectra . . . . . . . . . . . . . . . . . . . . . . . . 197
9.6 Isotropic Turbulence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

10 Turbulent Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
10.1 Statistical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
10.2 The Diffusion Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
10.3 Inertial Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Erratum to: Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E1

Appendix A: Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

Appendix B: Special Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

xii Contents



About the Authors

Frans T.M. Nieuwstadt (1946–2005) was director of the Laboratory for Aero and
Hydrodynamics at the Delft University of Technology from 1986 till 2005.
Previously he worked at the Royal Netherlands Meteorological Institute (KNMI),
where he conducted research on the atmospheric boundary layer. After completing
his studies in Aeronautics in Delft, he worked for 2 years under the supervision of
Anatol Roshko at the California Institute of Technology. At KNMI he obtained his
Ph.D. under the supervision of Henk Tennekes, Jakob Steketee and Jeff
Zimmerman. In Delft his interest in turbulence expanded to various areas, such as
polymer drag reduction, transition to turbulence in pipe flow, disperse multiphase
turbulent flows, and turbulent reacting flows, while maintaining an interest in
atmospheric turbulence. He was one of the initiators of the J.M. Burgers Centre,
which is the Netherlands research school for fluid mechanics that encompasses the
activities of entire fluid mechanics community in the Netherlands. Also he was
chairman of the Foundation for Fundamental Research on Matter (FOM) from
2000 till 2005. He was one of the founding editors of the scientific journal Flow,
Turbulence & Combustion.

Bendiks J. Boersma (1969–) studied mechanical engineering at the University of
Twente under supervision of Leen van Wijngaarden. He obtained his Ph.D. at the
Delft University of Technology in 1997 under supervision of Frans Nieuwstadt. His
main interests are the numerical simulation of turbulent flows, including aeroa-
coustics, drag reduction, and supercritical fluids. After his Ph.D. he worked for
2 years at the Center for Turbulence Research at Stanford University, and then
became a Research Fellow with the Royal Netherlands Academy of Arts and
Sciences. He was appointed full professor in 2007 at the Delft University of
Technology, and currently leads the Energy Technology section.

Jerry Westerweel (1964–) studied applied physics at the Delft University of
Technology. He obtained his Ph.D. in 1993 under supervision of Frans Nieuwstadt.
As a Research Fellow with the Royal Netherlands Academy of Arts and Sciences he

xiii



worked at Stanford University, the California Institute of Technology, and the
University of Illinois at Urbana-Champaign. He became an Anthony van
Leeuwenhoek professor at the Delft University of Technology in 2002, and leads the
Fluid Mechanics section since 2005. His scientific interests are turbulence and
coherent flow structures, and optical measurement techniques for quantitative
measurements in flows.

xiv About the Authors



Chapter 1
Introduction

Turbulent flows are omnipresent in nature and in technology. In technology, turbulent
flows occur for example in nozzles and pipes, followed closely by the flow in devices
such as heat exchangers, combustion engines, and turbo machinery. Also, turbulent
flow is almost always observed around moving objects, such as airplanes, trains and
cars, influencing the flow resistance of those bodies. At the same time, turbulence
plays an important part in a variety of transport phenomena, such as heat and mass
transfer, but also in flow-induced mixing. An extra complication in this last case is
the occurrence of chemical reactions during the mixing, as is the case in combustion.
In nature, turbulence plays a part in flows on a geophysical scale, such as the flows
in the atmosphere and in the ocean. Transport phenomena in our atmosphere are, for
example, mainly controlled by turbulence. An example of this is the distribution of
air pollution by turbulent diffusion. Also, people traveling by plane may experience
turbulence at first hand by vigorous agitation of the aircraft. On a somewhat larger
scale, our weather and even our climate could be called a turbulent phenomenon.
Lastly, turbulence is not restricted to our planet, but also plays an important part in
flows occurring in the photosphere of stars, the closest being our own sun, and in the
formation of planets in accretion discs.

The interest in turbulent flows has increased considerably in the last several
decades. There are two main reasons for this. First, turbulence remains an unsolved
problem from both a physical and a mathematical point of view. Second, in many
practical flow problems, it appears that an inadequate model of turbulence is the most
obstructive factor to a solution of the problem at hand.

In a first introduction to fluid mechanics, the concept of laminar flow is often
introduced immediately, which is then followed by the definition of a turbulent flow
as ‘non-laminar’ flow. Let us compare the characteristics of both types of flow:

laminar turbulent
layered, regular disordered
smooth fluctuating
ordered chaotic

© Springer International Publishing Switzerland 2016
F.T.M. Nieuwstadt et al., Turbulence, DOI 10.1007/978-3-319-31599-7_1
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2 1 Introduction

Fig. 1.1 Laminar and turbulent flames. In the laminar flame the combustion is limited by diffusion,
whereas in the turbulent flames the combustion is much stronger due to mixing, which results
in a higher flame temperature. The laminar flame (Re ∼ 400) is smooth and has no evident flow
structures, whereas the turbulent flames (increasing toRe ∼ 4000) display a disordered structure and
chaotic motion which continuously changes. Images courtesy of: Luis Arteaga and Mark Tummers

On the basis of common experience, almost everyone is somewhat familiar with
these qualitative characteristics. An example is shown in Fig. 1.1 for laminar and
turbulent flames. The differences between the two types of flow might however lead
to the idea that turbulent flow obeys different equations of motion than laminar flow.
This idea is not confirmed by experiments, and nowadays there is no doubt that both
types of flow obey the same equations of motion. On this basis, we can now ask
a simple question: What is the essence of turbulence, and how can we understand
turbulent flow as a solution to the equations of motion?

The dynamics of liquids and gases can be described by the laws published by Isaac
Newton in 1687 in his Principia. At first, Newton devised these equations for the
mechanics of solid bodies. However, in subsequent years these laws were extended
to frictionless fluids by, among others, Euler and Bernoulli. The formulation of the
complete set of equations of motion for a fluid, including flow with friction, did not
emerge until the middle of the 19th century. These are the Navier–Stokes equations
that have the form of a system of nonlinear partial differential equations, describing
the relation between the variables of flow, such as velocity and pressure, as a function
of position and time.

TheNavier–Stokes equations are not sufficient to completely determine the flow in
a defined volume. For this we need to specify additional conditions. These conditions
determine what the flow on the volume boundaries should look like, that is the
so-called boundary conditions. Additionally, we need to know the so-called initial
condition, which is the complete flow as a function of position at an initial moment.

The essential aspect of Newton’s laws, and thus of the Navier–Stokes equations, is
that they are deterministic. Thismeans that in principle, given the equations ofmotion
together with the initial and boundary conditions, the evolution of the flow field can
be computed as a function of time; hence, the solution to the equations and conditions
that describe the flow is completely determined. In other words, the deterministic
character of Newton’s mechanics implies full predictability of the fluid motion.
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This can be regarded as a philosophical world view; the mathematician Pierre-Simon
Laplace elaborated on this in detail, which was laid down in his work Mécanique
Céleste that appeared in three volumes between 1799 and 1825. Allegedly, Laplace
stated:

Give me the velocity and position of every molecule, and I will predict your future.

In the 19th century the mathematician Hadamard formulated the notion of a well-
posed problem. This means that a problem is well-posed when the solution of a set
of differential equations obeys the following conditions:

existence: a solution exists;

uniqueness: there is only a single solution;

stability: small disturbances in the initial or boundary conditions lead only to
small variations of the solution.

The first two conditions confirm a deterministic world view: with given initial and
boundary conditions, the solution is known. The third condition for a well-posed
problem yields an important restriction. Namely, this condition suggests that a deter-
ministic solution is in practice only possible when the solution is not susceptible to
small disturbances in the initial and boundary conditions. But why do we consider
the notion of ‘in practice’? Mathematically speaking, there would be no objection
against using exactly known initial and boundary conditions. In that case we speak
of mathematically ideal initial and boundary conditions, and for such a situation
the solution would be completely determined due to the first and second conditions.
However, this requires the initial and boundary conditions to be known with infinite
accuracy; this would of course ‘in practice’ not be feasible, since the initial and
boundary conditions are only known with finite accuracy. This is what we refer to as
realistic initial and boundary conditions. Only for a well-posed problem these imper-
fections in the initial and boundary conditions fail to significantly affect the solution.
In that case, the solution is ‘in practice’ completely predictable. If, however, the third
Hadamard condition is not satisfied, we can expect completely different behavior of
our solution when we do not exactly know the initial and boundary conditions, which
results inwhatwe perceive as unpredictability. In that case, the problem is considered
to be ‘ill-posed’.

These ideas were first elaborated by the French mathematician Henri Poincaré,
who published his workMéthodes Nouvelles de la Mécanique Céleste in 1892. In this
work he tried to solve the famous so-called three-body problem. Newton had already
solved the two-body problem, where he found the elliptic Kepler-trajectories as the
solution, which are considered the hallmark of a completely predictable solution. In
other words, the two-body problem is well posed. This is in sharp contrast to the
three-body problem. Poincaré found that this problem is not integrable; in short, this
means that there is no simple solution in terms of a smooth or differentiable function.
He found that the solution had irregular and chaotic characteristics. The solution to
the three-body problem thus appears to be fundamentally unpredictable; the problem
is ill posed. This meant the end of Laplace’s orderly world view.



4 1 Introduction

The results of Poincaréwere further elaborated in the theory of dynamical systems.
Dynamical systems canbe imaginedbest as systemsof coupleddifferential equations,
describing the behavior of so-called system variables as a function of time. Often
the number of system variables, or degrees of freedom, is kept relatively small. An
example of a dynamical system is that of two coupled pendulums, but other examples
of dynamical systems can be found in economics and certain biological processes.
Dynamical systems are deterministic by definition, and therefore full solutions as a
function of time can in principle be computed.

For these systems, consisting of sets of regular differential equations, it was proven
that, given an initial condition, a single and unique solution exists. Hence, the first and
secondHadamard conditions are satisfied. The third condition, however, is not always
satisfied. The validity of this condition can only be proven for a limited number of
systems, often only the linear ones. On the other hand, for many nonlinear dynamical
systems it has been found that the solution is extremely sensitive to small variations
of the initial conditions. The solution then becomes unpredictable after a certain
amount of time, after which it starts to fluctuate. We cannot predict the magnitude,
and often not even the sign of these fluctuations. This is called deterministic chaos.
It is one of the most fundamental new insights that has dominated the developments
in mechanics over the last couple of decades. It should be emphasized here that such
‘chaotic’ behavior is only anticipated for nonlinear dynamical systems.

Let us consolidate these findings to the solution of our flow equations. In doing
so, we should note that the preceding findings have only been demonstrated for
dynamical systems where the number of degrees of freedom is small. Nonetheless,
we expect similar findings for systems that have many degrees of freedom, although
this has only been proven in a few cases. Here, we interpret the equations of motion
for the flow as a system with many degrees of freedom.

Consider a solution of the Navier–Stokes equations for a given flow problem;
realistic initial and boundary conditions are given with finite accuracy. Suppose that
all conditions for a well-posed problem are be satisfied, so that the solution for the
flow is completely predictable. We define this as laminar flow.

However, the Navier–Stokes equations are nonlinear, and thus we have to expect
that only under very special circumstances it is possible to complywith the conditions
for a well-posed problem, especially the third one. In all other cases, the equations
of motion and initial and boundary conditions for the flow would be ill posed. The
solution is then susceptible to small variations in the initial or boundary conditions.
We argued above that in this case the solution eventually becomes completely unpre-
dictable, and this now defines a turbulent flow. In short, turbulence is associated with
the concept of deterministic chaos, as mentioned above. So, turbulence is a com-
pletely different kind of flow than laminar flow, which would be unaffected by small
variations in the initial and boundary conditions.

Nowwhat does unpredictability on the basis of susceptibility to initial and bound-
ary conditionsmean? Suppose that we consider two solutions of a turbulent flowwith
the same realistic initial and boundary conditions. This would mean that for both
solutions the initial and boundary conditions may be different, but within a finite
degree of accuracy or tolerance. Such small differences will always be present in
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practice; for example, consider differences that are the result of molecular fluctu-
ations. Since the third condition for a well-posed problem is not satisfied, the two
solutions will, after a certain moment, begin to diverge completely. These two solu-
tions can be considered as two realizations of the turbulent flow. Thus, every solution
with the same realistic initial and boundary conditions yields a completely new real-
ization. For turbulent flow with given realistic initial and boundary conditions, we
are unable to predict the flow temporal and spatial evolution of the flow variables.

It now becomes plausible to consider the statistics of the flow variables, rather
than the individual realizations. This is the most widely applied approach to describe
turbulent flows. However, we cannot reverse this argument; from the turbulence
statistics we will never be able to reconstruct the full course of all realizations. This
underlies the so-called closure problem, which has remained the central fundamental
issue in the theoretical description of turbulence.

In the preceding part of this Introduction, an attempt was made to relate flow
turbulence to contemporary dynamical systems theory. It should be mentioned here
that this relation is mainly qualitative. Except for the routes to chaos that are treated
in Sect. 3.4, the reader will look in vain for a more quantitative elaboration in the
remainder of this book. Nonetheless, the common understanding is that concepts and
results in modern chaos theory have aided to gain insight in the onset of turbulence in
flows. Some even say that this is the right way forward that will eventually lead us to
a full solution of the problem of turbulence; see for example the preface in the latest
edition of the famous book by Landau and Lifshitz on fluid mechanics. However,
many still question whether chaos theory will provide us with a theory of turbulence
that could, for example, predict the behavior of a turbulent flow. Note that chaos
theory has prepared us to accept that we may never reach a closed-form solution to
the problem of turbulence; the Navier–Stokes equations appear to be fundamentally
non-integrable.

Separate from the modern mathematical insights mentioned above, the field of
turbulent flows has passed through a long-term development. This mainly originated
from practical questions and problems. Ignoring older and primarily qualitative con-
siderations, research on turbulence commenced in the 18th and 19th centuries. Its
origins can be found in the field of hydraulics, because of the interest in studying
turbulent flow through pipes. Most of these investigations were empirical. This is
why the works of Osborne Reynolds in 1883 and 1895 are considered as the birth of
the theory of turbulence. His name will return multiple times in the ensuing chapters.

In this book we first focus on developments in the dynamics of turbulent flow.
In doing so, phenomenological considerations are often invoked, because there is in
fact no satisfactory theory of turbulence. This is despite the fact that many famous
physicists, for example Werner Heisenberg and Richard Feynman, worked on the
problem. Quoting from the Feynman Lectures on Physics:

Finally, there is a physical problem that is common to many fields, that is very old, and
that has not been solved. It is not the problem of finding new fundamental particles, but
something left over from a long time ago – over a hundred years. Nobody in physics has
been able to analyze it mathematically satisfactorily in spite of its importance to the sister
sciences. It is the analysis of circulating or turbulent fluids.

http://dx.doi.org/10.1007/978-3-319-31599-7_3


6 1 Introduction

In absence of a comprehensive theory, we have to resort to heuristics now and then.
The use of dimensional analysis, linked with an adequate insight into the physical
processes at hand, is then most appropriate. This may leave the reader who expects
a comprehensible theory of turbulence somewhat dissatisfied. However, it will be
shown that with this approach many important and useful results can be obtained.

To conclude this Introduction, we provide an overview of the material that is
covered in this book. After a brief introduction to the governing equations of motion
in Chap.2, we start in Chap.3 with a short treatise on the emergence of turbulence.
On the basis of linear stability analysis we discuss the circumstances and conditions
under which laminar flow becomes unstable and when we can expect turbulence to
appear. Also, we briefly address the transition to fully-developed turbulent flow. This
is referred to as the route to chaos. Asmentioned previously, new insights from chaos
theory contributed to this particular topic.

In the next chapter we focus on a particular model of turbulence that has an
exact solution, that is Burgers equation. Equipped with the knowledge from this
model, we discuss the phenomenology of turbulence. Important concepts, such as
the macrostructure and microstructure are introduced, where each is characterized
by separate scaling law.

In Chap.5 we derive the equations of motion for the mean velocity in a turbulent
flow. Here we are confronted for the first time with the closure problem. This closure
problem is key to the development of turbulence models; in particular, in this book
we pay attention to several closure models.

The first closure model is Ludwig Prandtl’s mixing length hypothesis, which we
apply to turbulent channel flow in Chap.6. This also serves as an example of tur-
bulence in the vicinity of a solid boundary, or so-called wall turbulence. For wall
turbulence we can distinguish several regions with different scaling laws. The most
important of these regions is the so-called inertial sublayer that is characterized by a
logarithmic velocity profile. Wall turbulence is opposed to so-called free turbulence,
which can develop without the restrictive influence of a solid boundary. Examples
of free turbulence are discussed in Chap.6.

The energetic aspects of turbulence are discussed in Chap. 7. These are studied
using the equations for the kinetic energy for the mean flow and for the fluctuating
velocity in the turbulent flow. These equations lead to two basic results:

• Turbulent kinetic energy is produced in the macrostructure and is dissipated in the
microstructure by molecular viscosity;

• Production and dissipation of turbulent kinetic energy are, in a first approximation,
in local equilibrium.

We then address the question by what mechanism energy is transferred from the
macrostructure to the microstructure. For this, we introduce the vorticity equation in
Chap.8. The process of vortex stretching appears to be responsible for the resulting
energy transfer from the macrostructure to the microstructure through what is called
the energy cascade process. Moreover, on the basis of a first-order approximation of
the equation for the vorticity fluctuations, we find that the microstructure is indeed
in local dynamic equilibrium. This implies that the microstructure is fully decoupled

http://dx.doi.org/10.1007/978-3-319-31599-7_2
http://dx.doi.org/10.1007/978-3-319-31599-7_3
http://dx.doi.org/10.1007/978-3-319-31599-7_5
http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_7
http://dx.doi.org/10.1007/978-3-319-31599-7_8
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from the macrostructure, and also that the microstructure is isotropic. The theory
of the turbulence microstructure was first formulated by A.N. Kolmogorov around
1940.A second-order balance of the equation for the fluctuating vorticity leads to
an important closure model that is very useful in practice: the so-called k-ε model.
Subsequently, we discuss also a couple of contemporary turbulence models, such as
the second-order closure model and the algebraic stress model.

Next, in Chap.9 we discuss the correlation function and its Fourier transform:
the spectrum. Here we mainly limit ourselves to two specific topics. The first topic
is the so-called one-dimensional spectrum, which can be interpreted as the spectrum
of the fluctuations in a flow property measured at a fixed point. The second topic
we discuss is the theory of isotropic turbulence. As one of the central results of the
theory of turbulence we deduce the so-called −5/3-law of the inertial subrange of
the spectrum. It is demonstrated that this result is directly related to the existence of
both the macrostructure and the microstructure, which are dynamically decoupled.

Finally, we conclude our description of turbulence in Chap.10 with a brief dis-
cussion of turbulent diffusion and particle-laden turbulent flows.

Almost every section includes selected problems. These are intended to illustrate
the covered material, but occasionally expand on more advanced topics.

One final comment. For certain, turbulence is not one of the easiest subjects in fluid
mechanics. This book is therefore only an introduction and a gateway to wondrous
things beyond.

http://dx.doi.org/10.1007/978-3-319-31599-7_9
http://dx.doi.org/10.1007/978-3-319-31599-7_10


Chapter 2
Equations of Motion

2.1 Incompressible Flow

The equations of motion describing the flow in a fluid are based on the three laws
of conservation of mass, momentum and energy. For a detailed formulation of these
equations, one of the standard works in fluid mechanics should be studied (see liter-
ature list). Here we limit ourselves to a short derivation of these equations.

We start with a so-called fluid element whose volume is δV . This fluid element
should be large compared to the molecules that make up the fluid (for example, it
should be much larger than the mean free path λv of a gas) while simultaneously
it should be small compared to the smallest dimensions of flow we are going to
describe. The position of this fluid element is determined in a right-handed Cartesian
coordinate system (x1, x2, x3). Using such a fluid element, the so-called continuum
hypothesis allows us to define a pressure p, a velocity ui, and a fluid density ρ at
every point xi and every instant in time t.

The fluid element moves through the mediumwith a velocity ui at a given position
of this element. For this reason, the fluid element is sometimes called a material
particle. In the trajectory of this fluid element, alterations as a function of time
are indicated by the so-called material derivative: D/Dt. In a Cartesian coordinate
system this material derivative is defined as:

D

Dt
≡ ∂

∂t
+ uj

∂

∂xj
. (2.1)

The material derivative consists of two terms: ∂/∂t, which is known as the local
derivative, and uj∂/∂xj, which is called the advection term. This advection term
describes the part of the material derivative due to transport in a velocity field varying
in space. In the literature this contribution to the material derivative is also called
convection. Here, however, we call it advection in order to distinguish it from thermal
convection when a non-isothermal flow is dominated by effects due to variation in
density.

© Springer International Publishing Switzerland 2016
F.T.M. Nieuwstadt et al., Turbulence, DOI 10.1007/978-3-319-31599-7_2
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As in Eq. (2.1) above, we make use of the Einstein notation. This means that a
repeated index (as in uiui for example) is summed over all directions of the coordinate
system: uiui ≡ u1u1 + u2u2 + u3u3. An exception iswhenwe use aGreek index letter
(for example uαuα; in that case we simply indicate the term without applying the
summation.

Conservation of mass for the fluid element defined previously can now be
described as

D(ρ δV)

Dt
= 0. (2.2)

This equation can be reduced to

1

δV

DδV

Dt
= −1

ρ

Dρ

Dt
. (2.3)

When the following approximation holds, we call a flow incompressible:

1

ρ

Dρ

Dt
≈ 0. (2.4)

This appears to be the case when the flow velocities are much smaller than the speed
of sound a (i.e., U ≡ |ui| � a).

In the remainder of this book we limit ourselves to incompressible flow. Conser-
vation of mass then reduces to

1

δV

DδV

Dt
≡ ∂ui

∂xi
= 0. (2.5)

The derivation of this equation can be found in the problems section. The velocity
field is thus shown to be divergence-free at all points. Eq. (2.5) is also known as the
continuity equation.

Next we consider the conservation ofmomentum for our fluid element. According
to Newton’s second law it follows that:

ρ δV
Dui

Dt
= Fi, (2.6)

where Fi represents the net force acting on the fluid element. For Fi we can write

Fi =
(

ρgi + ∂σij

∂xj

)
δV . (2.7)

The first term of the equation above is called the volume force. In this case we equated
this volume force to gravitation with gravitational acceleration gi = (0, 0,−g). The
second term on the right-hand side of (2.7) is called the surface force with a surface
stress tensor σij. For incompressible flow and for a Newtonian fluid it follows that
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σij = −pδij + μ

(
∂ui

∂xj
+ ∂uj

∂xi

)
, (2.8)

where δij represents the Kronecker-δ symbol: δij = 0 if i �= j, and δij = 1 when i =
j. The surface stress tensor thus consists of two parts. The first term represents
an isotropic pressure. The second term, which relates to deformations of the fluid
element, is called the shear stress. In this term, μ is known as dynamic viscosity.
This is a material property, and thus only depends on the fluid. In the following we
consider a Newtonian fluid and thus take μ as a constant.

We note that μ is often combined with the fluid density to form the kinematic vis-
cosity ν = μ/ρ. Some representative values for ν at standard atmospheric conditions
are: 1.5 × 10−5 m2/s for air, and 1.0 × 10−6 m2/s for water.

Substituting (2.8) in (2.7) and then in (2.6) leads to the following equation for the
conservation of momentum in an incompressible flow:

ρ
Dui

Dt
≡ ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= ρgi − ∂p

∂xi
+ μ

∂2ui

∂x2j
. (2.9)

Eqs. (2.9) (for i = 1, 2, 3) are better known as the Navier-Stokes equations. Together
with the continuity Eq. (2.5), they form a system of four equations containing five
unknown variables: ui, p and ρ. We thus have to specify an additional constraint in
order to solve the equations. For this we take ρ = constant, which means that the
fluid is homogeneous. In other words: the density is reduced to a material constant
(for air ρ ≈ 1.2kg m−3; for water ρ ≈ 1.0 × 103 kg m−3).

Another further simplification is possible when no free surface is present in our
flow. In that case we can absorb the gravity term in (2.9) in the pressure term, which
then is referred to as the modified pressure. The equations for the conservation of
momentum are then reduced to

ρ
Dui

Dt
≡ ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= − ∂p

∂xi
+ μ

∂2ui

∂x2j
. (2.10)

Equations (2.5) and (2.10) form the basis for describing incompressible flow of a
homogeneous fluid.We note that initial and boundary conditions have to be specified
before a solution of the equations of motion can be found.

2.1.1 Problem

1. Consider a material line segment δLx at xi. The segment is oriented parallel to the
x-axis. The change in length of this line segment follows from

DδLx

Dt
= u(xi + δLx) − u(xi),
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in which u represents the x-component of the velocity vector ui. Apply a Taylor-
series expansion to the right-hand side of the equation above. Next, consider
the line segments δLy and δLz, which are oriented parallel to he y- and z-axes
respectively and repeat the exercise. Now prove that

1

δV

DδV

Dt
= ∂ui

∂xi
,

using δV = δLx δLy δLz.

2.2 The Boussinesq Approximation

In Eqs. (2.5) and (2.10)we accounted for the influence of gravity on flowby absorbing
it into the pressure term.We argued that this is only possible for a homogeneous fluid
(ρ = constant) in the absence of a free surface.

In practice, however,we are often confrontedwith flows in fluidswhere the density
depends on position and time. These are called heterogeneous fluids. An example is
the density variation that can occur due to temperature differences. Also a variable
composition of the fluid can lead to variations of the density. An example of this
would be the salt concentration in the ocean.

The dynamics of heterogeneous fluids are directly affected by gravity, in which
case we speak of a stratified flow. The equations of motion for these flows are again
based on the laws of conservation of mass, momentum and energy.

For the conservation of mass we use again the continuity equation

∂ui

∂xi
= 0, (2.11)

provided, of course, that the condition U � a is satisfied, as mentioned in the previ-
ous section. Also, we need to take into account the fact that, in a heterogeneous fluid,
the density varies with height due to gravity. This is described by the hydrostatic
law: ∂p/∂z = −ρg. We now introduce the scale height as a measure of the distance
over which the density varies due to gravity. This scale height H is defined as

H =
(

− 1

p

∂p

∂z

)−1

= p0
ρg

. (2.12)

where p0 is a reference pressure (for example the pressure at the surface for an
atmospheric flow). It follows that (2.11) is only valid when L � H, where L is
representative of the extent of the vertical motion in the flow.
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Applying the conservation of momentum leads again to (2.9). However, the den-
sity ρ in (2.9) should now be seen as an unknown variable, which we have to compute
as a function of position and time. This means that we need an additional equation.
For this, we use a so-called equation of state, which reads, in general form

ρ = ρ(p, θ), (2.13)

where θ represents temperature. We first limit ourselves to liquids for which the
compressibility modulus (∂ρ/∂p) is negligible. This means that ρ is only a function
of temperature. Now we just need an additional equation describing the temperature,
and for this we apply the equation for the conservation of energy to a fluid element.
For a full discussion on the energy equation, one should consult one of the standard
works on thermodynamics or fluid mechanics. It follows that, for a liquid, the energy
equation can be approximated by the following equation for the temperature:

∂θ

∂t
+ uj

∂θ

∂xj
= α

∂2θ

∂x2j
, (2.14)

where α is the thermal diffusivity coefficient. For air the value for α is ∼2.0 × 10−5

m2s−1, and for water ∼1.4 × 10−7 m2s−1. The ratio between the material constants
ν and α is referred to as the Prandtl number

Pr = ν

α
. (2.15)

For air we find Pr ≈ 0.7 and for water Pr ≈ 8.
The set of Eqs. (2.11), (2.9) and (2.14) may now form a closed system, but is

still too complicated to solve. This is why we need to simplify them by applying
the so-called Boussinesq approximation. The first step of this approximation is the
definition of a reference state: p0, ρ0 and T0. This reference state has to obey the
equations of motion for the fluid at rest

θ0 ≡ T0 = constant and
∂p0
∂z

= −ρ0g. (2.16)

We now consider a flow with velocity ui, pressure p0 + p, density ρ0 + ρ, and tem-
perature T0 + θ. We impose the conditions that p/p0 � 1, ρ/ρ0 � 1, and θ/T0 � 1.
In other words, p, ρ and θ are small disturbances with respect to the reference state.
Substitution in (2.9) leads to

(ρ0 + ρ)
Dui

Dt
= (ρ0 + ρ)gi − ∂

∂xi
(p0 + p) + μ

∂2ui

∂x2j
. (2.17)

After multiplying this equation by 1/ρ0, and after substitution of the equation of
motion (2.16) for p0, we find
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Dui

Dt
= ρ

ρ0
gi − 1

ρ0

∂p

∂xi
+ μ

ρ0

∂2ui

∂x2j
. (2.18)

Here we used the condition ρ/ρ0 � 1 for the left-hand side of (2.17), so that (ρ0 +
ρ)Dui/Dt ≈ ρ0Dui/Dt. However, this simplification is not applied to the term (ρ0 +
ρ)gi. The physical background for this is that, for all flows considered here, g �
|Dui/Dt|.

Next, we apply a linearization of the equation of state (2.13) around θ0. Now we
have

ρ

ρ0
= −β

θ

T0
, (2.19)

where β is the volumetric expansion coefficient:

β = −T0

ρ0

∂ρ

∂θ
.

Onehas to pay careful attention here!We cannot apply the linearization to the velocity
term, that is, Dui/Dt ≈ ∂ui/∂t. The reason for this is that the velocity field is zero
for the reference state. Hence, the velocity is never small.

The result of these calculations is a set of three equations, which are referred to
as the Boussinesq equations

∂ui

∂xi
= 0, (2.20)

∂ui

∂t
+ uj

∂ui

∂xj
= −β

θ

T0
gi − 1

ρ0

∂p

∂xi
+ ν

∂2ui

∂x2j
, (2.21)

∂θ

∂t
+ uj

∂θ

∂xj
= α

∂2θ

∂x2j
. (2.22)

The set of equations above has, in principle, been derived for liquids. However, the
energy Eq. (2.14) is also applicable to gases, provided that θ is interpreted as the
so-called potential temperature. In this way the compressibility of a gas with height
is accounted for. The potential temperature is defined as the temperature of a fluid
element with pressure p and temperature T when it is brought to a standard pressure
p∗ via an isentropic process. For an ideal gas it follows that

θ = T

(
p∗
p

) κ−1
κ

, (2.23)

where κ = cp/cv is the ratio between the specific heat at constant pressure cp and the
specific heat at constant volume cv. For air, cp = 1005J kg−1 K−1 and R(= cp − cv)

= 287 Jkg−1 K−1, so that κ ≈ 1.4.
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It should be mentioned here that Eq. (2.23) is commonly known as the Poisson
equation for an isentropic process, i.e. the entropy S of the fluid element remains
constant during the process. It follows from this definition of potential temperature
that θ ∼ S. The background for this is that the energy equation, using the concept of
entropy, can be written in its most general form as

DS

Dt
= QS

where QS represents all processes that increase entropy, such as molecular conduc-
tion. Simplification of this equation forms the fundamental basis for Eq. (2.14).

We can now calculate the difference between the normal temperature T and the
potential temperature θ. We take the atmosphere as an example, for which κ = 1.4.
The standard pressure p∗ is taken to be equal to 1000 mbar (or 105 Pa), which is
approximately the pressure at ground level. If p does not vary too much from p∗, in
other words T ≈ θ (that is, we limit ourselves to the lower layer of the atmosphere,
which is the so-called atmospheric boundary layer), then substitution of (2.23) in
the hydrostatic law (2.16) yields for p

∂θ

∂z
= ∂T

∂z
+ γd, with: γd = g

cp
. (2.24)

Here γd is the so-called adiabatic temperature gradient. For our atmosphere this is
0.01◦C m−1. This means that we obtain the potential temperature by multiplying the
temperature in the atmosphere with γdz (where z is measured from the surface of the
earth).

It is clear that the correction of the potential temperature matters only to the
atmosphere; this term is therefore often seen in the meteorological literature. In a
laboratory, z is virtually negligible with respect to the atmospheric scale height. This
means that flows of liquids and gases are indistinguishable in the laboratory. That
is why, from now on, we use the term ‘temperature’ for θ, rather than ‘potential
temperature’ (although one should be aware that in the atmosphere a correction
should be applied to the term).

In addition, we also limit ourselves to ideal gases, that is: p = ρRT . For such
gases the volumetric expansion coefficient β is unity (β = 1).

2.2.1 Problems

1. Compute the scale height of an isothermal atmosphere (meaning that T is constant
with increasing height). We consider air to be an ideal gas: p = ρRT , where
R is the gas constant, which has a value for air of R = 287.04 m2 s−2 K−1.
Show that turbulence occurring in the atmospheric boundary layer (the lower few
kilometers of the atmosphere) can be considered as an incompressible flow, while



16 2 Equations of Motion

compressibility is not negligible for turbulence related to thunderstorms (which
are spread out over the lower 10Km of the atmosphere).

2. Consider the atmospheric boundary layer at rest with an average temperature
gradient dT0/dz = constant as the initial state (the average potential temperature
gradient is then equal to dT0/dz + γd).We consider the verticalmotion ofmaterial
air particles. Show that for small disturbances, neglecting molecular effects, it
follows that for the vertical position zp of an air particle

d2zp

dt2
+ N2zp = 0,

where:

N2 = g

T0

(
dT0

dz
+ γd

)
≡ g

T0

(
d�0

dz

)

is called the Brunt–Väisälä frequency.

At t = 0 we shift the position of the particle by zp(0) relative to its initial position.
Using the equation above it follows that for

(a) dT0/dz = −γd (or: d�0/dz = 0) the particle will not move. The atmosphere
is called neutral.

(b) dT0/dz > −γd (or: d�0/dz > 0) the particle will start oscillating with fre-
quency N . The atmosphere is called stable.

(c) dT0/dz < −γd (or: d�0/dz < 0) the particle is unstable. The atmosphere is
called convective.

Fig. 2.1 Plume from a smokestack in a stable atmosphere
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Fig. 2.2 Definition of
coordinate systems in the
laboratory and in the
atmosphere
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Fig. 2.1 shows a plume from a smokestack on a cold winter day; despite a strong
wind there is little mixing due to the strong stratification of the atmosphere. The
clear sky allows a strong radiation of heat, so that the temperature near the surface
is lower than higher up in the atmosphere (i.e., d�0/dz > 0).

2.3 Coordinate System

Asmentioned inSect. 2.1,weprimarily use aCartesian coordinate system: (x1, x2, x3)
or (x, y, z). However, two conventions for the vertical axis can be used.

In the so-called laboratory coordinate system the y-axis is taken vertical. However,
for flows in the atmosphere and in the ocean, most often the z-axis is chosen as the
vertical axis. Both coordinate systems, illustrated in Fig. 2.2, are used throughout
this book.



Chapter 3
Stability and Transition

3.1 Stability Analysis

Suppose we acquired a solution to the Navier–Stokes and Boussinesq equations for
a certain flow geometry. Of course the next question is whether this solution can
be realized in practice. With this we arrive at a subject we discussed previously in
Chap. 1, i.e. whether the problem is well posed or ill posed. In that chapter it was
stated that for given (‘mathematically ideal’) initial and boundary conditions, it is in
principle always possible to find a solution of the Navier–Stokes equations. However,
only when the problem is well posed, small perturbations in the initial and boundary
conditions will remain small, and thus only then a solution can be realized; in that case
the flow is called ‘laminar’. In the case of an ill-posed problem, small disturbances or
perturbations lead instead to finite perturbations in the solution, capable of growing
rapidly in a finite amount of time. Such solutions are not physically feasible; as a
result, the flow becomes unpredictable. This behavior, which we call deterministic
chaos, is associated with a turbulent state of the flow.

It seems obvious to start studying the circumstances for which the solutions to the
Navier–Stokes equations are physically feasible, that is, when the flow is laminar.
In other words, under what circumstances will the influence of the perturbations in
the initial and boundary conditions remain small? In order to find the answer to this
question, we use stability analysis.

Stability analysis works as follows: very small, i.e. infinitesimal, perturbations are
superimposed on a certain solution of the Navier–Stokes equations, which we call
the base flow. Next, with the use of the equations of motion, it is calculated how these
perturbations behave as a function of time. When the perturbations remain small, we
call the solution stable, and the flow is in a laminar flow state. When the perturbations
grow as a function of time, the solution is called unstable, and we expect that the
solution leads to a turbulent flow state.

In this analysis, we make use of the fact that the applied perturbations are initially
small (i.e., infinitesimal). In that case the quadratic and higher-order terms in the
equations of motion for the perturbations are negligible. Since the equations for the

© Springer International Publishing Switzerland 2016
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perturbations remain linear, which allows us to avoid all the problems associated
with the nonlinearity of the complete equations of motion, we therefore speak of
linear stability analysis.

It should be clear that the linear stability theory is only a first step on the way
to investigating the emergence of turbulence. The theory can certainly not be used
to calculate the development into a fully turbulent flow. After all, in fully turbulent
flow, the perturbations can no longer considered to be small, and thus the higher-order
nonlinear terms can not be neglected any more. Indeed, in one of the later chapters
we see that the nonlinear terms in particular determine the essence of turbulent flow.

However, linear stability analysis remains a useful instrument, because it yields
the conditions for which solutions of the Navier–Stokes equations become unstable.
These conditions might just determine when a flow becomes turbulent, and thus
provides us with some information on how turbulence is generated. We illustrate this
in the remainder of this chapter using some specific examples, and we conclude by
discussing how an unstable flow becomes fully turbulent.

As a guide for the following discussions, we first list the steps that make up a
linear stability analysis:

1. A base flow is defined that represents a particular solution to the equations of
motion. In general, we take for this the stationary solution, which means that we
consider flow variables that are not a function of time.

2. On this base flow we superimpose a small non-stationary, often wave-like, per-
turbation.

3. The combination of the perturbation and the basic flow is substituted into the
equations of motion. The higher-order perturbation terms are ignored (under the
assumption that the perturbations are essentially small), and a set of linear differ-
ential equations for the perturbations remains.

4. This set of linear differential equations is homogeneous; this also holds for the
boundary conditions we impose on the perturbations. The set of linear differential
equations can be interpreted as a generalized eigenvalue problem.

5. A nontrivial solution of this eigenvalue problem is only possible under certain
mathematical conditions. These conditions determine the development of the per-
turbation as function of time.

6. In case the perturbation grows as a function of time, the flow is called unstable;
if the perturbation decays as a function of time the flow is called stable. If the
perturbation is independent of time, the flow is called neutrally stable.

3.2 Kelvin–Helmholtz Instability

Consider a base flow as illustrated in Fig. 3.1. At y = 0 there is an interface between
the two fluid regions. Above the interface the velocity is − 1

2 U, below the interface
the velocity is + 1

2 U. At the interface, there is thus a discontinuity in the tangential
velocity. Furthermore, the static pressure P is assumed to be the same in the whole
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Fig. 3.1 Flow geometry for
the Kelvin–Helmholtz
instability
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domain. Hence, this velocity profile is the solution of the frictionless equations of
motion (2.10) in which the density variations are neglected.

We now determine the stability of this flow, neglecting the effect of the viscosity.
This approach is referred to as the inviscid stability analysis. In accordance with
the procedure described previously, we apply small perturbation ηs to the interface,
combined with small perturbations u, v and p to the velocity and pressure. From here
on we denote the base flow with uppercase symbols, while lowercase symbols are
used for the perturbations.

The first question that has to be answered is: what type of perturbation should be
considered? The answer depends on the geometry of the base flow, which in this case
is defined for −∞ < x < ∞. Furthermore, given that U is independent of x, we can
use Fourier’s theorem. This theorem states that every perturbation (provided that it
remains bounded for x → ±∞) can be represented by a Fourier series. It is thus
sufficient to limit our analysis to a Fourier series, that is to wave-like perturbations,
given by:

ηs(x, t) = A ei(kx−ωt), (3.1)

where A denotes the amplitude of the wave. In principle, A is a complex number.
However, without explicitly repeating this, we consider here only the real part of the
expression in (3.1). The wavenumber k relates to the wavelength λ of the perturbation
according to λ = 2π/k. In order to apply Fourier’s theorem as mentioned above,
we have to demand that the wavenumber k is real; if k would be complex, then the
perturbation (3.1) would not be bounded for either x → ∞ or x → −∞. We take ω
in (3.1) to be complex:

ω = ωr + i ωi. (3.2)

The real part ωr is the angular frequency, which relates to the period T of the wave
according to T = 2π/ωr. Using this, we can interpret (3.1) as a traveling wave that
propagates with a phase velocity c that equals:

c = ωr/k. (3.3)

The imaginary part of ω gives the variation of the amplitude as a function of time. If
ωi > 0, the amplitude grows exponentially, in which case we call the flow unstable.
In other words, the goal of our stability analysis is to determine the value of ωi.

We first calculate the velocity components u and v. One of the starting points is
that in both regions the flow is irrotational (i.e., free of rotation). This directly follows

http://dx.doi.org/10.1007/978-3-319-31599-7_2
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from Kelvin’s theorem, which states that (Kundu and Cohen 2004): if at any moment
in a homogeneous frictionless flow a rotation free velocity field can be observed, the
velocity field will always remain rotation free. In our case, the starting point is a base
flow that is irrotational. This means that we can use potential flow theory (Kundu
and Cohen 2004). Thus, the perturbation velocities follow from: u = ∂�/∂x, and:
v = ∂�/∂y, in which the potential � satisfies the Laplace equation:

�� ≡ ∂2�

∂x2
+ ∂2�

∂y2
= 0. (3.4)

Depending on our choice for the perturbation in ηs, and in accordance with (3.1), we
choose:

� = F(y)ei(kx−ωt). (3.5)

Substitution in (3.4) gives:
d2F

dy2
− k2F = 0,

which has a solution:
F = C1 e−ky + C2 eky,

in which the integration constants C1 and C2 follow from the boundary conditions.
In this case these conditions are that the perturbation vanishes for y → ±∞. This
leads to: C1 = 0 in region II and C2 = 0 in region I, so that

�I = BI e−kyei(kx−ωt),

�II = BII ekyei(kx−ωt).
(3.6)

Here we replaced C1 and C2 by BI and BII respectively, which can be determined by
applying the boundary conditions at the interface.

At the interface, two types of boundary conditions can be formulated: a kinematic
one and a dynamic one. The kinematic boundary condition implies that the interface
can be regarded as a material surface. This implies that ηs should obey

Dηs

Dt
≡ v(y = ηs) = ∂�

∂y
. (3.7)

Applying this equation to the interface y = ηs in regions I and II yields:

in region I(y ↓ ηs) : Dηs

Dt
≡ ∂ηs

∂t
+

(
uI − 1

2
U

)
∂ηs

∂x
= ∂�I

∂y
,

in region II(y ↑ ηs) : Dηs

Dt
≡ ∂ηs

∂t
+

(
uII + 1

2
U

)
∂ηs

∂x
= ∂�II

∂y
.

(3.8)
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We retain only the linear terms, so that the term u ∂ηs/∂x disappears, and we apply
the two conditions (3.8) to y = 0 instead of y = ηs, given that ηs is small. Using
(3.1) and (3.6) we find the following relations for BI and BII:

−kBI = iA

(
−ω − 1

2
Uk

)
,

kBII = iA

(
−ω + 1

2
Uk

)
.

(3.9)

Next we consider the dynamic boundary condition. It states that all forces (in our
case only the pressure) should be continuous across the interface. For a potential
flow the pressure can be calculated from Bernoulli’s law. For both flow regions, this
reads:

ρI
∂�I

∂t
+ 1

2
ρI

{(
−1

2
U + uI

)2

+ v2
I

}
+ (P + pI) + ρIgηs = CI,

ρII
∂�II

∂t
+ 1

2
ρII

{(
1

2
U + uII

)2

+ v2
II

}
+ (P + pII) + ρIIgηs = CII,

(3.10)

where CI and CII are, in principle, two different constants.
The equations in (3.10) are formulated for the general case that the density ρI

in region I is different from the density ρII in region II. For reasons of simplicity
we assume that ρ = ρI = ρII. Consequently, the gravity term gηs in (3.10) has
no further influence on the solution. (See Problem 1 below for an analysis that
includes two fluids with different densities.) The remaining equations should hold
for y → ±∞, where u, v and p vanish. For the constants CI and CII this implies that:
CI = CII = P + 1

2ρ( 1
2 U)2. After applying (3.10) above and below the interface, and

after linearization of the expressions, it follows:

∂�I

∂t
− 1

2
U

∂�I

∂x
+ pI

ρ
+ gηs = 0,

∂�II

∂t
+ 1

2
U

∂�II

∂x
+ pII

ρ
+ gηs = 0.

(3.11)

The dynamic boundary condition requires that: pI = pII, and after substituting the
expressions for � in (3.11) this leads to:

iBI

(
−1

2
Uk − ω

)
= iBII

(
1

2
Uk − ω

)
. (3.12)

Equations (3.9) and (3.12) form a set of three linear algebraic equations for the
variables A, BI and BII. This set only has a non-trivial solution (that is, a solution that
is not identical zero) when the determinant of the linear system equals zero. This
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Fig. 3.2 Example of a
Kelvin–Helmholtz instability
from a numerical simulation
of a jet issuing with a
uniform profile through a
round hole in a spherical
volume (Vuorinen et al.
2011) See also Fig. 3.3

condition can be used to calculate ω. In mathematical terms: we can interpret (3.9)
and (3.12) as a generalized eigenvalue problem, where ω is the eigenvalue.

The determinant of the set of Eqs. (3.9) and (3.12) reads:

(
iω + 1

2
Uik

)
k

(
1

2
iUk + iω

)
+ k

(
iω − 1

2
iUk

) (
−1

2
iUk + iω

)
= 0, (3.13)

which reduces to:

ω2 = −1

4
U2k2, or: ω = ±1

2
i Uk. (3.14)

We observe that ω is indeed complex, and that there always exists a solution with
ωi > 0. We have to conclude that the flow is always unstable for every perturbation.
This instability, i.e. the instability related to the base flow depicted in Fig. 3.1, is
known as the Kelvin–Helmholtz instability.

As a result of the nonlinear terms, the growing wave deforms. The final result
is a cylindrical vortex structure with its axis positioned normal to the direction of
the base flow, as illustrated in Fig. 3.2. These vortices naturally occur in flows with
(asymptotic) discontinuities in the velocity. Examples of these are mixing layers
and the edges of free jets. This last example is illustrated in Fig. 3.3. Also, Kelvin–
Helmholtz waves are sometimes visible atop cloud layers under specific atmospheric
conditions (see Fig. 3.4).

A slightly different situation occurs when, aside from a velocity discontinuity, also
a jump in the density occurs, i.e. when ρI �= ρII. The only difference compared to
the analysis above is that the term gηs contributes to the Bernoulli equation in (3.10).
The resulting determinant of the set of linear algebraic equations is then different,
and the result now reads:

ω2 = −1

4
U2k2 + 1

2
g
�ρ

ρ
k

(
1 + 2Uω

g

)
,

where: �ρ = ρII − ρI, and: ρ = 1
2 (ρII + ρI).

In most cases we can take: 2Uω � g. (This is a condition identical to the Boussi-
nesq approximation, which states that the acceleration of the velocity field is negli-
gible compared to gravity.) In that case:
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Fig. 3.3 A laminar free jet turning into a turbulent free jet due to a Kelvin–Helmholtz instability.
The instability leads here to vortex rings that merge before the complete flow becomes turbulent.
See also Fig. 6.18

Fig. 3.4 Kelvin–Helmholtz instability in the atmosphere

ω2 = −1

4
U2k2 + 1

2
g
�ρ

ρ
k.

We find that the flow is always unstable when: �ρ < 0 (even when U = 0). This
is obvious, because in this case the heavier fluid is on top of the lighter fluid. For
�ρ > 0, that is, the heavier fluid is found beneath the lighter one, the flow will be
unstable when:

k > k∗ ≡ �ρ g
1
2ρU2

.

http://dx.doi.org/10.1007/978-3-319-31599-7_6
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Fig. 3.5 Visualization of the roll-up, pairing, and breakdown of the Kelvin–Helmholtz vortices in
a weakly stratified two-dimensional mixing layer with Re = 2200 and Ri = 0.022 in a tilted tank
with two fluids with different density (�ρ = 0.01, tilt angle γ = 16◦; see also Problem 1 below).
The image width corresponds to about 12 cm. The duration of the image sequence is about 7.7 τ ,
with τ = 1

2 λ/�U. From: Atsavapranee and Gharib (1997)

This means that only short waves are unstable. For long waves satisfying k < k∗, it
holds that: ωi ≡ 0. Under such a condition the flow is called stable. The resulting flow
consists of waves propagating along the interface. Figure 3.5 shows the development
of a planar mixing layer with a small density difference in a channel with a finite
height (see also Problem 1 below); note how small waves are most unstable and how
the mixing layer rapidly transits to a turbulent flow state.

Problems

1. Consider a flow in a two-dimensional channel with a width of H. In the upper half
of the channel the speed is − 1

2 U and the density is ρI, while in the lower half of
the channel the speed is + 1

2 U and the density is ρII (see Fig. 3.6). Consider small
perturbations at the interface of both fluids. Derive that, using the Boussinesq
approximation, the condition for stability reads:

(
ωH

U

)2

= −1

4
(kH)2 + 1

2
F−1kH tanh

(
1

2
kH

)
,
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Fig. 3.6 Flow geometry for
Problem 1

x

y 1
2

U , I

+ 1
2

U , II

I

II

H

where:

F = ρU2

g�ρH

represents a Froude number, with: �ρ = ρII − ρI, and ρ = 1
2 (ρII + ρI). Show

that the flow is unstable for every perturbation when F < 0 or F > 1. Give an
interpretation for the Froude number.

2. Consider a liquid medium between two horizontal infinite plates at a distance of
H from each other. The origin of the coordinate system lies on the lower plate and
z represents the vertical coordinate. The lower plate has a temperature T1 and the
upper plate has temperature T2, with T1 > T2. The velocity is zero everywhere in
the initial state, and the temperature is initially given by the equation

T = T1 − z

H
�T ,

with: �T = (T1 − T2).

Superimpose small perturbations for the temperature θ and the velocity ui on the
initial state. The resulting total flow (i.e., base flow plus small perturbations) satisfies
the Boussinesq equations (2.20–2.22). Solve the linear perturbation problem with
the boundary conditions: θ = 0, w = 0 and ∂u/∂z = ∂v/∂z = 0 at z = 0 and
z = H. These last two conditions mean that the flow along the two horizontal plates
is frictionless.

Show that the base flow becomes unstable when the Rayleigh number

Ra ≡ gH3�

T0νκ
= 27

4
π4,

and that the most unstable wavelength λ equals:

λ = 4√
2

H.

This instability is called Bénard convection. This instability leads to a flow consisting
of so-called convection cells that are illustrated in Fig. 3.7.

http://dx.doi.org/10.1007/978-3-319-31599-7_2
http://dx.doi.org/10.1007/978-3-319-31599-7_2


28 3 Stability and Transition

Fig. 3.7 Convection cells in
Bénard convection as
observed from above towards
the lower heated plate. From:
Van Dyke (1982)

3.3 Stability of a One-Dimensional Flow

We saw in the previous section that a flow with a discontinuity in the velocity profile
is always unstable. In this section we focus on the linear stability analysis of a flow
with a continuous velocity profile.

As the base flow we consider a so-called one-dimensional flow. This means that the
velocity vector has only one non-zero component, for which choose the x-component,
so that: ui = (U, 0, 0). In addition, we assume that all flow variables, such as the
velocity U, the pressure P and the temperature � are functions of one coordinate only,
for we take the z-direction. This flow geometry is illustrated in Fig. 3.8. An example
of one-dimensional flow is the channel flow, which we discuss in more detail in
Chap. 6. Another example of a one-dimensional flow, as depicted in Fig. 3.8, is the
boundary layer over a flat plate, provided that the (slow) development of the boundary
layer in the x-direction is neglected.

A flow with U = U(z), P = P(z) and � = �(z) is a solution to the frictionless,
or inviscid, Boussinesq equations when it satisfies:

1

ρ0

∂P

∂z
− g

T0
� = 0. (3.15)

According to the procedure for linear stability analysis, we superimpose small per-
turbations w′, p′, and θ′ on the base flow. Here we limit ourselves to two-dimensional
perturbations, that is u′, w′, p′ and θ′ are functions of x and z only. Actually, according
to Squire’s theorem it can be demonstrated that the critical Reynolds number above
which perturbations become unstable (see Fig. 3.10) is lower for two-dimensional
perturbations than for three-dimensional perturbations.

http://dx.doi.org/10.1007/978-3-319-31599-7_6
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Fig. 3.8 Definition of a
one-dimensional flow

x

z
(z)

U(z)

P(z)

The total velocity, pressure and temperature, i.e. U + u′, w′, P + p′ and � + θ′,
should obey the complete equations of motion. After substitution of the perturbations
in the equations of motion and applying (3.15), the following set of linear partial
differential equations can be obtained, where quadratic and higher-order terms have
been ignored:

∂u′

∂x
+ ∂w′

∂z
= 0,

∂u′

∂t
+ U

∂u′

∂x
+ w′ ∂U

∂z
= − 1

ρ0

∂p′

∂x
,

∂w′

∂t
+ U

∂w′

∂x
= − 1

ρ0

∂p′

∂z
+ g

T0
θ′,

∂θ′

∂t
+ U

∂θ′

∂x
+ w′ ∂�

∂z
= 0.

(3.16)

Based on the same line of reasoning as applied in the previous section, we limit
ourselves to wavelike perturbations:

u′
i = ûi(z)e

ik(x−ct)

θ′
i = θ̂i(z)e

ik(x−ct)

p′ = p̂i(z)e
ik(x−ct)

(3.17)

where the wavenumber k is real by definition. The phase velocity c can be complex:
c = cr + ici. The real part cr represents the phase velocity of the wave; the imaginary
part ci is the exponent of the growth rate, where: ci > 0 is an indicator for an unstable
perturbation. The terms ûi, θ̂ and p̂ represent complex amplitudes that are all functions
of z. The expressions (3.17) are complex, but we always consider the real part of
the expression, unless indicated otherwise. Substitution of the perturbations (3.17)
in (3.16) gives four ordinary differential equations for the complex perturbation
amplitudes as a function of z:



30 3 Stability and Transition

ikû + dŵ

dz
= 0,

−ikcû + ikûU + ŵ
dU

dz
= −ik

p̂

ρ0
,

−ikcŵ + ikŵU = − 1

ρ0

dp̂

dz
+ g

T0
θ̂,

−ikcθ̂ + ikθ̂U + ŵ
d�

dz
= 0.

(3.18)

We eliminate û using the first of these equations, and subsequently we eliminate p̂
from the second and third equations. From the resulting equations we then eliminate
θ̂, which results in a single equation for ŵ, which we call the Taylor–Goldstein
equation:

(U − c)2

{
d2ŵ

dz2
− k2ŵ

}
−

{
(U − c)

d2U

dz2
− g

T0

d�

dz

}
ŵ = 0. (3.19)

Equation (3.19) is a homogeneous differential equation with homogeneous boundary
conditions: ŵ = 0, or: dŵ/dz = 0. A non-trivial solution, that is a solution: ŵ �= 0,
is only possible under specific conditions. Thus, again we arrive at a generalized
eigenvalue problem, and only for certain values of c (i.e., for certain eigenvalues)
a non-trivial solution exists. This gives the condition under which the perturbation
will either grow or decay as a function of time.

For the Taylor–Goldstein equation no fully closed solution is known. That is why
we simply limit ourselves to discuss some examples for which a solution to Eq. (3.19)
is available. As our first example we take a base flow with U = 0 and d�/dz =
constant. The Taylor–Goldstein equation then reduces to:

d2ŵ

dz2
−

{
k2 − 1

c2

g

T0

d�

dz

}
ŵ = 0. (3.20)

The solution to this equation is: ŵ = B exp(imz), where m can be interpreted as a
vertical wavenumber. The value of c follows from the condition that ŵ is a non-trivial
solution. Substitution of this solution for ŵ in (3.20) yields:

c2 =
g
T0

d�
dz

m2 + k2
. (3.21)

This expression, describing the relationship between c and the wavenumbers k and
m, is called a dispersion relation.

We can distinguish two cases:

1. d�/dz > 0
The solution for c is real. The flow is stable, and (3.17) can be interpreted as a
propagating internal gravitational wave. If ω = ck is inserted in (3.21), then:
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ω = N cos �, with: N =
√

g

T0

d�

dz
,

where N is referred to as the Brunt–Väisälä frequency and � is the angle between
the wave vector (k, m) and the horizontal plane. (Compare this result to Problem 2
of Sect. 2.2.)

2. d�/dz < 0
The solution for c is now purely imaginary, indicating that a solution with ci > 0
is always a possibility, in which case the perturbation is unstable. We already
encountered this result in Problem 2 of Sect. 3.2, where it was referred to as
convection.

Physically, case 2 is a situation where a hot fluid exists beneath a colder fluid,
which typically represents a situation where a fluid with a lower density exists under
a fluid with a higher density. It will be immediately clear that this flow geometry
is unstable. We refer to this as the Rayleigh–Taylor instability. Note that this is
fundamentally different from the Kelvin–Helmholtz instability from the previous
section.

The next example of a solution to the Taylor–Goldstein equation concerns a base
flow with d�/dz = 0; thus, no effects occur due to variations in fluid density. We
now derive a necessary condition for instability in this flow.

Our point of departure is the assumption that the base flow is defined in the region
z1 � z � z2 with homogeneous boundary conditions for the perturbations, that is:
ŵ = 0, or: dŵ/dz = 0 for z = z1 and z = z2. We multiply the Taylor–Goldstein
equation with the complex conjugate ŵ∗ of ŵ (by definition, ŵŵ∗ = |ŵ|2). We
integrate the result for z1 � z � z2, to find:

z2∫
z1

ŵ∗
[

d2ŵ

dz2
− k2ŵ − d2U/dz2

U − c
ŵ

]
dz = 0. (3.22)

We can rewrite the first term in this expression, with the aid of partial integration and
the given boundary conditions, to:

z2∫
z1

ŵ∗ d2ŵ

dz2
dz = ŵ∗ dŵ

dz

∣∣∣∣
z2

z1

−
z2∫

z1

dŵ

dz

∗ dŵ

dz
dz = −

z2∫
z1

∣∣∣∣dŵ

dz

∣∣∣∣
2

dz.

Now it follows from (3.22) that:

z2∫
z1

{∣∣∣∣dŵ

dz

∣∣∣∣
2

+ k2|ŵ|2
}

dz +
z2∫

z1

d2U/dz2

U − c
|ŵ|2 dz = 0. (3.23)

http://dx.doi.org/10.1007/978-3-319-31599-7_2
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Fig. 3.9 Rayleigh’s
inflection point criterion
states that it is necessary that
the velocity profile U(z) in a
one-dimensional flow has at
least an inflection point, i.e.
d2U/dz2 = 0, in order to
become unstable. This is
equivalent to having a
maximum in the amplitude of
the vorticity �(z)

U(z)

(z)
x

z

However, the expression in (3.23) is complex, since c is also complex. Taking the
imaginary part of this expression, it follows that:

ci

z2∫
z1

d2U/dz2

(U − cr)2 + c2
i

|ŵ|2 dz = 0. (3.24)

For unstable perturbations, ci should never become zero. In that case, it follows from
(3.24) that d2U/dz2 should change sign somewhere in [z1,z2], so that the integral in
(3.24) equals zero. In other words, we just found that d2U/dz2 = 0 is a necessary
condition for instability to occur; in other words, flow instability can only occur when
the velocity profile has an inflection point. This is referred to as Rayleigh’s inflection
point criterion; see Fig. 3.9.

This result is best interpreted in terms of vorticity, defined as ωi = εijkduk/dxj.
(Please do not confuse here the symbol for vorticity with that of the frequency used
previously in this chapter.) For our one-dimensional flow there is only one non-zero
component of the vorticity: �(= ωy) = −dU/dz. The condition d2U/dz2 = 0
means that the amplitude |�| of the vorticity has a maximum; see Fig. 3.9.

Some care should be taken here. Rayleigh’s inflection point criterion only states a
necessary condition for instability. Later, Fjørtoft found another necessary criterion
for instability, which is a stronger version of Rayleighs theorem.

The inflection point criterion is in fact a generalization of the Kelvin–Helmholtz
instability. This can be clearly seen as the vorticity in the Kelvin–Helmholtz instabil-
ity is concentrated at the discontinuous velocity interface. We refer to this situation
as a vortex sheet or shear layer. In other words, the vorticity amplitude in this case
acquires a maximum in the form of a δ-function. In the preceding part of this section it
was demonstrated that a continuous vorticity distribution with a maximum amplitude
will also give rise to unstable behavior.
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3.3.1 Tollmien–Schlichting Instability

However, we can sense that the presence of an inflection point is not the only criterion
for instability. Take for example plane Poiseuille flow between two parallel plates,
or boundary layer flow over a flat plate. These are both examples of flows without
an inflection point, but these flows can certainly become unstable. For an analysis of
these types of flows we again assume a base flow with U = U(z) and d�/dz = 0. The
perturbations applied to this base flow should satisfy the complete set of equations
of motions including the terms associated with friction. After following an analysis
comparable to the one shown above, we arrive at an equation that is comparable to
the Taylor–Goldstein equation in (3.20). This equation is called the Orr–Sommerfield
equation. In dimensionless form, this equation reads:

(
Ũ − c̃

) {
d2w̃

dz̃2
− k̃2w̃

}
− d2Ũ

dz̃2
w̃ = − i

k̃ Re

{
d4w̃

dz̃4
− 2k̃2 d2w̃

dz̃2
+ k̃4w̃

}
, (3.25)

where Ũ, c̃, w̃, z̃ and k̃ are dimensionless variables comparable to U, c, ŵ, z and k,
as introduced above. The term Re is a characteristic Reynolds number of the flow.
Based on this equation we find that a flow becomes unstable at a certain critical
Reynolds number Recr. This is illustrated in Fig. 3.10 for the case of pressure-driven
laminar flow between two parallel plates, i.e. plane Poiseuille flow, which has a
critical Reynolds number of 5,772 (Drazin and Reid 1981). In the case of a laminar
boundary layer flow a similar diagram is found, but with a critical Reynolds number
of 1, 200 (based on the boundary layer thickness and the free stream velocity).

This type of instability, related directly to the effect of viscosity, is called a
Tollmien–Schlichting instability. At first glance such a result might be surprising,
because intuitively one may expect that friction would dampen the perturbations and
thus would have a stabilizing effect. Further on we encounter examples of this more
conventional behavior of friction.

Fig. 3.10 Stability diagram
of the solutions of the
Orr–Sommerfeld equation
for a plane channel flow with
height 2H . The shaded
region with ci > 0 indicates
the domain of unstable
solutions. Below the critical
Reynolds number Recr =
5,772 (Drazin and Reid
1981) the solutions are stable
for all wave numbers k
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Fig. 3.11 Visualization of a turbulent spot in a boundary layer as seen from above. This is repre-
sentative of a perturbation that developed from a Tollmien–Schlichting instability. The fluid flow is
from left to right, but the spot develops in the upstream direction (i.e., to the left). From: Cantwell
et al. (1978)

The instability of Tollmien–Schlichting waves is rather weak. It therefore takes
a long time before any infinitesimal perturbation reaches a noticeable amplitude.
However, as soon as the perturbations become sufficiently large, a next phase in the
instability process begins. Because we are now looking at finite perturbations, the
effects of the nonlinear terms in the equations of motion start to play a dominant
role, and the perturbations grow rather quickly. The flow becomes turbulent, at first
limited to some isolated regions that, in the case of a boundary layer, are so-called
turbulent spots. In Fig. 3.11 such a turbulent spot is shown. The individual spots grow
in size while being carried by the flow until they merge into larger structures until
the whole boundary layer becomes turbulent.

This transition scenario, where a laminar boundary layer flow becomes a turbu-
lent one by means of a Tollmien–Schlichting instability, can only occur when very
small perturbations are initially present in the flow outside the boundary layer. Such
a transition can be observed in the flow over the wing of an airplane. When pertur-
bations are present in the outer flow, these can influence the flow in the boundary
layer such that a transition to turbulence occurs by the Tollmien–Schlichting process.
This type of process is therefore called bypass transition. Another example of this
transition process occurs in the flow around turbine blades when a blade is in the
slipstream of the other blades, and thus experiences large perturbations.

The transition processes discussed above indicate that the transition from laminar
to turbulent flow does not only take place by the growth of infinitesimal perturbations,
but also by the growth of finite perturbations. One could even say that in most practical
cases the transition from laminar to turbulent flow occurs by this last process. Above
the critical Reynolds number, the base flow is linearly stable for perturbations with
very small and very large wave numbers, that is perturbations with a very long
wavelength and very short wavelength (e.g., surface roughness). Please note that the
stability analysis of the Orr–Sommerfeld equation is for infinitesimal perturbations;
when the perturbations have a large amplitude, then the non-linear terms can still
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induce unstable behavior and a transition to turbulence. Such a transition is called sub-
critical. This scenario is important in flows that are insusceptible to all infinitesimal
perturbations. Well-known examples are plane Couette flow between moving parallel
plates and axisymmetric Poiseuille flow through a pipe. From experiments we know
that these flows do become turbulent. For example, for the Poiseuille flow in a pipe,
the empirical critical Reynolds number, defined by the pipe diameter and the average
speed, is known to be around 2, 300. However, a theoretical analysis points out that
laminar pipe flow is linearly stable for all infinitesimal perturbations (Drazin and
Reid 1981). The emergence of turbulence in these flows can thus only be due to
nonlinear growth of finite perturbations. To describe such a transition process we
need to set up a nonlinear theory which is, for both flows described above, still an
open problem. We return to this at the end of the Sect. 3.4.

3.3.2 Rayleigh Stability Criterion

Another example of stability for a one-dimensional flow is that of a viscous flow
between two concentric rotating cylinders (see Fig. 3.12). The inner cylinder has a
radius Ri with a rotational speed �i, while the outer cylinder has a radius Re with
a rotational speed �e. The tangential component of the Navier–Stokes equations in
cylindrical coordinates reduces to:

0 = ν
∂

∂r

1

r

∂rvθ

∂r
.

After integration the following velocity profile is obtained:

vθ(r) = A/r + Br,

in which the constants A and B are determined by the boundary conditions at the
inner and outer radii, with the result:

vθ(r) = 1

R2
e − R2

i

[
R2

i R2
e

�i − �e

r
+ (

�eR2
e − �iR

2
i

)
r

]
.

If the radius of the inner cylinder vanishes, i.e. Ri = 0, then vθ(r) is simply �er, i.e.
a solid body rotation. The pressure gradient in the radial direction is given by the
radial component of the Navier–Stokes equation:

v2
θ

r
= 1

ρ

∂p

∂r
.

To study the stability of the velocity profile between the concentric cylinders the
following approach can be followed: Consider a small particle with the same density
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Fig. 3.12 In a rotating flow between two concentric rotating cylinders (left) a centrifugal force (Fc)
and a pressure force (Fp) act on a particle with the same density as the surrounding fluid (right)

as the fluid (i.e., a fluid element) that is rotating with the same velocity as the flow.
The forces acting on the particle are the centrifugal force Fc and the pressure force
Fp; see Fig. 3.12. These forces are given by the following expressions:

Fc = ρv2
s

r
V, and: Fp = ρv2

θ

r
V,

in which ρ is the fluid density, vs the velocity of the particle, vθ the fluid velocity, r the
distance between the center of rotation and the particle location, and V is the particle
volume. It is assumed that initially the particle and fluid velocity are identical, i.e.
vθ = vs and thus Fc = Fp. Now consider that the particle position is perturbed
with an infinitesimal small perturbation δ; see Fig. 3.12. If Fp(r + δ) > Fc(r + δ)
the particle is pushed back to its original position, and the flow is considered to be
stable. If Fp(r + δ) < Fc(r + δ) the particle is pushed further away from its original
position, and the flow is unstable.

The forces at the location r + δ can be written as:

Fc(r + δ) = ρ[vs(r + δ)]2

r + δ
, and: Fp(r + δ) = ρ[vθ(r + δ)]2

r + δ
.

The angular momentum of the particle should be conserved, thus: rvs(r) =
[r + δ]vs(r + δ), and Fc(r + δ) can be written as

Fc(r + δ) = ρv2
s r2

[r + δ]3
.
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The pressure force can be written as:

Fp(r + δ) = ρ[r + δ]2[vθ(r + δ)]2

[r + δ]3
.

The expressions for both forces have now the same denominator, and the flow is thus
stable if v2

s r2 > (r + δ)2[vθ(r + δ)]2. A Taylor series expansion gives

(r + δ)2[vθ(r + δ)]2 ≈ r2[vθ(r)]2 + 2rδ[vθ(r)]2 + r2δ
d

dr
[vθ(r)]2.

The term r2[vθ(r)]2 equals r2vs, and the flow is stable if:

2 rδ[vθ(r)]2 + 2r2δvθ(r)
d

dr
vθ(r) > 0, or:

d

dr
rvθ(r) > 0.

The condition for stability is thus: d
dr (rvθ) > 0. This condition is known as the

Rayleigh stability criterion. If vθ ∝ rα with α > −1 the flow is stable. For the flow
between the two rotating cylinders this implies that for an outer rotating cylinder the
flow is stable: vθ(r) ≈ r; for an inner rotating cylinder the flow is marginally stable:
vθ ≈ r−1, and in practice unstable.

Turbulent flows in the presence of a background rotation have a behavior that is
quite different than that of turbulent flows in a non-rotating system. Such flows occur
in geophysical and astrophysical flows, and in rotating machinery in industrial appli-
cations. Rotating turbulent flows are discussed as a special topic in Appendix B.4.

Problems

1. Derive the Taylor–Goldstein equation for perturbations on a one-dimensional
inviscid flow.

2. Derive for a flow with a velocity gradient and a temperature gradient, on the basis
of the complete set of Taylor–Goldstein equations, that such a flow is stable when
the Richardson number:

Ri ≡
g
T0

d�
dz(

dU
dz

)2 >
1

4
.

Hint: First substitute: ŵ = (U − c)1/2F, and then derive an equation for F with
the first term

d

dz

{
(U − c)

dF

dz

}
.

Multiply this equation with F∗, then integrate the result between its boundaries.
Then, consider the imaginary part of the integral.

3. Derive the pressure force on a small particle with dimensions dx, dy and dz in a
flow with a varying pressure field in one of the coordinate directions.
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3.4 Routes to Chaos

In the section above we discussed the conditions for which a laminar flow becomes
unstable. This is more or less the first step to a completely turbulent flow. The question
that remains: how does complete turbulence emerge? To answer this question we now
explore the field of non-linear dynamical systems and study how solutions from non-
linear deterministic equations, such as the Navier–Stokes equations, make a transition
from a stable and ordered regime into an unstable and chaotic regime.

3.4.1 The Logistic Map

One of the simplest non-linear systems is the so-called logistic map, defined as:

xi+1 = μ xi (1 − xi), with: xi ∈ [0, 1], and: μ ∈ [0, 4]. (3.26)

When we substitute:

xi = ui + 1

2
, with: ui ∈ [−1, 1],

the logistic map can be re-written in a form that has the equivalent of a non-linear
term, a (linear) viscous term, and a forcing term, as in the Navier–Stokes equations:

⎧⎪⎨
⎪⎩

ut+1 − ut = − 1
2μ u2

t − ut + ( 1
2μ − 1)

∂ui

∂t
= −

(
uj

∂ui

∂xj
+ 1

ρ0

∂p

∂xi

)
+ ν

∂2ui

∂x2
j

+ fi
(3.27)

Therefore, it is sometimes referred to as the poor man’s Navier–Stokes equation
(Frisch 1995), although it has no spatial structure. Nonetheless, it can be used to
demonstrate several aspects of non-linear dynamical systems that have their phenom-
enological counterparts in turbulent flows, such as a transition to turbulence, fractal
structure, intermittency, and—most importantly—a finite range of predictability.

Figure 3.13 shows the construction of a cobweb graph for the logistic map, where
subsequent iterations of (3.26) can be visualized. In Fig. 3.14 cobweb graphs and
corresponding transients {xi} are shown for different values of the parameter μ. For
μ < 1, the iterations converge to x = 0, for all initial values x0 ∈ [0, 1]. In light
of the earlier discussion on stability, the solution x = 0 is considered to be stable.
The solution x = 0 is called a stable node or fixed point. This means that once a
solution has reached this point, it will remain there forever. When μ becomes larger
than 1, there is still a fixed point to which the solution converges, but no longer at
x = 0, but now at x = 1 − μ−1. This continues for increasing μ, until it reaches
a value μ = 3. Then the solution changes its behavior. Now the solution becomes
periodic and alternates between two values. It is said that the solution has undergone
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Fig. 3.13 Construction of a
cobweb graph for the
subsequent mapping
xi �−→ xi+1 of the logistic
map (3.26); here shown for
x0 = 0.3 and r = 3.6
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a bifurcation. The periodic ‘orbit’ is stable, and the original fixed point has changed
its character, and is now an unstable node, or repeller. This type of bifurcation is
called super-critical. The behavior of the solution for increasing values of μ has been
depicted in Fig. 3.17.

For μ = (1 + √
6) = 3.45 . . . a second bifurcation occurs. The solution now

alternates between four values and the period of the ‘orbit’ has doubled to four.
We call this a period doubling, which occurs with each bifurcation. When μ further
increases, subsequent bifurcations follow up in rapid succession, each time leading to
a doubling of the period. At a value of μ = μc, with μc = 3.57699457..., the system
has undergone an infinite number of bifurcations, so that also the period of the orbit
has become infinitely long. Hence, we have reached a state where the solution has
lost any obvious periodicity.

For μ = μc it seems at a first glance that the solution is a periodic orbit with period
8. However, closer inspection reveals that each part of the orbit is a ‘band’ with a
finite width, and that each band consists of three narrower bands, which each consist
of three yet smaller bands, and so on. This is illustrated in Fig. 3.15. Hence, the orbit
is not periodic. Interestingly enough, the same structure is found for different initial
values x0. So, the solution has a degree of stability, although the sequence does not
reach a state that is made up of a finite number of fixed points. Instead, the state has
a fractal structure with a dimension of 0.548 (Schuster and Just 2005). In dynamical
systems theory such a solution is called a ‘strange attractor’.

The transition from a stationary solution to a periodic one is often encountered as
solutions to the Navier–Stokes equations. A well-known example is the formation of
a von-Kármán vortex street behind a long cylinder. Another example is the forma-
tion azimuthal rolls in Taylor–Couette flow at specific flow conditions. Even period
doubling is observed when these rolls become modulated in the axial direction.

The subsequent bifurcations suggest a possible transition scenario to reach a
‘turbulent’ state after an infinite number of bifurcations. The turbulent state is then
characterized by a strange attractor. This transition scenario is known as Landau’s
route to chaos, which is illustrated in Fig. 3.16. Experimentally, Landau’s route has
never been observed, and in particular the newest discoveries in the area of non-linear
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Fig. 3.14 Cobweb graphs and transients of the logistic map (3.26) for increasing values of μ. The
transients are drawn as gray lines in the cobweb graphs; the fixed points and period orbits are shown
as bold symbols and lines, respectively. When μ increases from 3.3 to 3.5 a period doubling occurs
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Fig. 3.15 Transient and cobweb graphs of the logistic map for μ = 3.5699457... There appears to
be an orbit with period 8, but it is actually a strange attractor with a fractal structure

Fig. 3.16 Transition
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dynamical systems have led to different insights in the emergence of turbulence. We
come back to this point later on.

For values μ > μc the logistic map shows chaotic behavior, apart from some
‘islands’ with ‘laminar’ motion. The bifurcation diagram is shown in Fig. 3.17b.
However, the orbits are all generated by (3.26), which is purely deterministic. This
implies that once an initial value x0 is given, the whole transient for all i > 0
is completely determined. This reminds us of Laplace’s quote in the Introduction.
However, the predictability of the orbit depends on the precision by which the initial
condition has been specified. This is illustrated in Fig. 3.18, where we take two initial
conditions that differ by only 10−12. The two solutions are nearly identical for many
iterations, but at a certain point the two transients suddenly diverge. The initially very
small difference grows exponentially with time; this is further explored in Problem 1.



42 3 Stability and Transition

1 1.5 2 2.5 3 3.5
0.0

0.2

0.4

0.6

0.8

1.0

x

1 1

3.4 3.5 3.6 3.7 3.8 3.9 4

(a) (b)

Fig. 3.17 Bifurcation diagram of the logistic map (3.26) for a 0 � μ � 3.57, and b 3.4 � μ � 4.
In b the gray scale is proportional to the logarithm of the probability density of x
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Fig. 3.18 Comparison of two transients of the logistic map for μ = 3.8 with a difference of �x0
= 10−12 in the initial value. The transients suddenly diverge after 56 iterations

For values of μ larger than 3.57 the logistic map contains several so-called ‘lami-
nar islands’ with stable orbits, for example near μ = 1+√

8 ≈ 3.83 where an stable
orbit with a period of 3 occurs. For larger values of μ the orbit undergoes period dou-
bling bifurcations. For slightly smaller values, i.e. μ = 1 + √

8 − � with �→0, the
transient alternates between ‘laminar’ periods and chaotic ‘bursts’. Such an intermit-
tent transient is illustrated in Fig. 3.19. The mean time between these ‘bursts’ grows
proportional to �−1. This behavior is explained in Fig. 3.19 by considering the 3-fold
logistic map.

This suggests another transition scenario, where the laminar flow is occasionally
disrupted by turbulent bursts. As the flow Reynolds number increases, the laminar
periods become shorter and shorter, until they eventually vanish and the flow has
become fully turbulent. This type of transition is observed for turbulent spots (see
Fig. 3.11) in boundary layers, Taylor–Couette flow, and pipe flow. In the case of pipe
flow these spots are referred to as ‘puffs’ (Wygnanski and Champagne 1973) (see
also the paragraph ‘transition in pipe flow’ below).

In conclusion, the logistic map, despite its obvious simplicity, displays very com-
plex behavior that is common to all non-linear dynamical systems. This behavior is
phenomenologically similar to that of the Navier–Stokes equations, although it does
not provide with a direct explanation, let alone a useable model, for turbulence itself.
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Fig. 3.19 (left) The intermittent occurrence of ‘laminar’ periods and chaotic ‘bursts’ in a transient of
the logistic map with μ = 1+√

8−�. (middle) This behavior can be understood when considering
the 3-fold map xi �−→ xi+3 that nearly intersects the identity mapping; (right) the narrow ‘passage’
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Fig. 3.20 Plot of the
mapping for two consecutive
iterations of the logistic map
(for μ = 4) shows the
‘stretching and folding’ that
is typical for a non-linear
dynamical system
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The key feature of non-linear dynamical systems is the so-called ‘stretching and
folding’. This means that to nearby points always increase their distance, while at the
same time the solution is folded back onto itself. This is illustrated for the logistic
map in Fig. 3.20. We can see multiple examples of such behavior in (turbulent) flows,
for example in Fig. 3.5, where the interface between two fluids is first stretched and
then folded into vortices.

3.4.2 The Lorenz Equations

It was earlier mentioned that Landau’s route to chaos has never been observed exper-
imentally. Instead, it is observed that a flow can undergo only two bifurcations .After
the second bifurcation the flow is not periodic anymore, but shows chaotic behavior
(characterized by a strange attractor), which we identify with turbulence. In short,
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the flow reaches a turbulent state in only two steps. This transition scenario is known
as the Ruelle–Takens-Newhouse route to chaos, and is illustrated schematically in
Fig. 3.16.

We can illustrate this transition scenario using another simple dynamic system:
the Lorenz equations (Lorenz 1963). The background of these equations is the flow
due to free convection between two flat parallel plates, which we already discussed
in Problem 2 of Sect. 3.2. We present here the equations without the derivation; for
a more extensive discussion of these equations we refer to the book by Schuster and
Just (2005):

dX

dt
= −σX + σY ,

dY

dt
= −XZ + rX − Y ,

dZ

dt
= XY − bZ.

(3.28)

To arrive at this set of equations both the velocity field and the temperature field
have been expanded in Fourier components, and X, Y and Z represent the amplitudes
of these Fourier components. The symbol σ represents the Prandtl number, and b
and r functions of the aspect ratio of the convection problem and Rayleigh number,
respectively. Here, r is related to the temperature difference between the plates (which
occurs in the Rayleigh number), and thus can be seen as the main forcing term in
the problem. We therefore consider the solution as a function of r, while the other
parameters are taken as: σ = 10 and b = 8/3.

A solution of X, Y and Z as a function of time can be presented as a trajectory in
so-called phase space. This is a three-dimensional space where the axes are defined
by X, Y and Z . (The phase space has a similar function as the cobweb graph for the
logistic map.) We now consider different solutions as a function of r. This is also
illustrated in Fig. 3.21.

For r < 1 all trajectories approach the origin in phase space at X = Y = Z = 0,
which is a fixed point for (3.28). We can interpret this solution as a complete damping
of the flow between the two plates. In other words, the heat transport occurs solely
through molecular conduction.

For r = r1 = 1 we find the first bifurcation. The fixed point at the origin becomes
unstable. This can be shown directly using linear stability analysis; see Fig. 3.22 Two
new fixed points emerge at:

Z = r − 1, X = Y = ±√
b(r − 1).

In physical terms we can interpret the solution represented by these two points as
cylindrical flow patterns between the two plates, i.e. so-called convection rolls. We
find that all trajectories for r > 1 approach either of the two fixed points. Please note
the two solutions for large t in the two transients for r = 1.3 in Fig. 3.21.

We can apply linear stability analysis to the Lorenz equations for r > 1. The
eigenvalues of the linearized set of equations are shown in Fig. 3.22. For r = 1 the



3.4 Routes to Chaos 45

-20
-10

0
10

20 -40
-20 0

20
40

0
10
20
30
40
50
60

X
Y

Z

-20
-10

0
10

20 -40
-20 0 20

40

0
10
20
30
40
50
60

X
Y

Z

-20
-10

0
10

20 -40
-20 0

20
40

0
10
20
30
40
50
60

X
Y

Z

-20
-10

0
10

20 -40 -20
0 20

40

0
10
20
30
40
50
60

X
Y

Z

-10

0

10

t

X

-10

0

10

t

X

0 5 10 15 20 25

0 5 10 15 20 25

0 5 10 15 20 25

-10

0

10

t

X

0 5 10 15 20 25

-10

0

10

t

X

r = 0.7

r = 1.3

r = 18

r = 23

Fig. 3.21 Trajectories in phase space (left) and transients of X(t) (right) of the Lorenz equations for
different values of r (with: σ = 10, b = 8/3) and two symmetric initial conditions: (10,−10, 60)

and (−10, 10, 60)
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Fig. 3.22 The eigenvalues for the linear stability analysis of the Lorenz equations as a function of
r for the two fixed points after the first bifurcation at r = 1

three eigenvalues are all real and negative. When r increases beyond 1.345 two of
the eigenvalues become complex and are each others complex conjugate, but the
complex parts remain negative. This implies that the fixed points are approached in
an oscillating manner; see Fig. 3.21 for r = 18.

The second bifurcation occurs for:

r = r2 = σ(σ + b + 3)

σ − b − 1
≈ 24.74, with: σ = 10, b = 8

3
.

At this point the complex parts of the two complex conjugate eigenvalues become pos-
itive, and fixed points become unstable. For values of r just below r2 the trajectories
can show very long transients, where the solutions alternately orbit one of the fixed
points; see Fig. 3.21 for r = 23. No new fixed points emerge when r > r2. Instead, we
find the trajectory in phase space forms an almost two-dimensional ‘butterfly-like’
surface around the two unstable fixed points, as illustrated in Fig. 3.23. This complies
with the Ruelle–Takens-Newhouse transition scenario depicted in Fig. 3.16. The tra-
jectory for X, Y and Z fluctuates randomly as a function of time, similar to a turbulent
signal. The essence is that the trajectory has become chaotic. This is demonstrated
by comparing two trajectories with almost the same initial condition.

The Lorenz equations represent an extreme simplification of flow with convection,
which serves as a model for weather forecasts. This demonstrated that no matter
how accurate one knows the initial conditions, the solution at some point loses its
predictive value. This implies that a tiny difference in initial conditions, for example
the fluttering of a butterfly, could eventually make a critical difference in the trajectory
of a hurricane.1 This is called ‘Lorenz’s butterfly’, which is also the nickname of the
strange attractor in Fig. 3.21.

The transition to turbulence for the Lorenz equations follows the scenario of
the Ruelle–Takens-Newhouse route to chaos. A very similar transition scenario has
been observed in experimental data obtained from Bénard convection; see Fig. 3.24.

1In popular literature this is often misinterpreted in the sense that hurricanes would be caused by
the fluttering of butterflies.
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Fig. 3.23 A trajectory given by the Lorenz equations for r = 28 (with: σ = 10, b = 8/3). For
r > 24.74 the Lorenz equations have reached a chaotic state, which is characterized by the Lorenz
attractor, which here has a fractal dimension of 2.06. The transients are sensitive to the accuracy of
the initial conditions, as demonstrated in the right graph, where the difference in initial conditions
is 0.000001. The trajectories diverge suddenly at t ≈ 19

Fig. 3.24 Experimental
power spectrum of the
velocity measured in Bénard
convection by means of
laser-Doppler velocimetry
(Gollub and Benson 1980).
With increasing relative
Rayleigh number Ra∗ =
Ra/Rac, where Rac is the
critical Rayleigh number, the
following states are
observed: a periodic motion
with a single frequency and
its harmonics; b
quasi-periodic motion with
two incommensurate
frequencies and their linear
combinations; c non-periodic
chaotic motion with some
sharp lines; d chaotic
motion. After: Schuster and
Just (2005)

Yet, there is an important difference between the systems we studied above and
the actual Navier–Stokes equations and turbulence. The logistic map and Lorenz
equations are examples of so-called low-dimensional systems with only a limited
number of degrees of freedom. Turbulent flows have a very large number of degrees
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of freedom. Hence, we cannot simply transfer the results from non-linear dynamical
systems to turbulence. So far, no strange attractor could be directly associated with the
Navier–Stokes equations. Nonetheless, the phenomenological similarities between
non-linear dynamical systems and (the onset of) turbulence are striking, and help us
to understand the very complex behavior associated with a relatively simple set of
equations, such as the Navier–Stokes equations.

To complete this chapter we review recent findings in the transition to turbulence in
pipe flow, which has not only remained an unsolved problem of classical mechanics,
but also where the fields of turbulence and non-linear dynamics strongly interact.

3.4.3 Transition in Pipe Flow

When a transition occurs as the result of a finite-amplitude perturbation below a
critical Reynolds number (or, more general, outside the domain where the flow is
considered to be unstable; see Fig. 3.10), the transition is called sub-critical. How-
ever, this does not apply to pipe flow and plane Couette flow, which do not have
a critical Reynolds number; in other words, these flows are linearly stable for all
infinitesimal perturbations. However, in practice these flows do become turbulent
at a finite Reynolds number. For example, pipe flow in engineering is considered
to become turbulent at a Reynolds number above about 2,300. However, when the
flow conditions are carefully prepared, such as a very smooth pipe with a funnel-
shaped inlet, it is possible to maintain a laminar flow state up to Reynolds numbers
of 105. In Fig. 3.25 is shown the measured friction factor (see Sect. 6.3) for tran-
sitional pipe flow, between the fully laminar state and fully turbulent state. In the
transitional region (between Reynolds numbers of about 2,000 and 2,700) the lam-
inar flow contains so-called ‘puffs’ (Wygnanski and Champagne 1973), which are
localized turbulent states comparable to the turbulent spot in Fig. 3.11. The frequency
of occurrence of these puffs increases with Reynolds number. (This resembles phe-
nomenologically the intermittent behavior shown in Fig. 3.19.) Above a Reynolds
number of about 2,700 these puffs begin to increase their length, and they are then
referred to as ‘slugs’.

A single ‘puff’ is often considered as a minimal flow unit that can sustain a
turbulent flow state, in which the generation of turbulent motion is balanced by the
destruction of kinetic energy by viscosity. Such a process is shown schematically in
Fig. 3.26.

It remains an open question how pipe flow and plane Couette flow become tur-
bulent, and this has been the goal of a substantial body of research. Several different
mechanisms have been proposed, and below we briefly review two of them.

A limitation of the stability analysis presented in the previous sections, is that it
only considers the behavior of perturbations in the limit t → ∞. Hence, conven-
tional stability analysis fails to describe the short-term behavior of perturbations. The
linearized Navier–Stokes equations typically yield a non-orthogonal set of eigenvec-
tors. This enables large transient growth of the perturbation energy, even when all

http://dx.doi.org/10.1007/978-3-319-31599-7_6
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Schematic of a simple pipe flow

friction factor

turbulent puff

Fig. 3.25 a Schematic of a simple demonstration for transitional pipe flow. The flow is driven by
the pressure head in the large container. In the transitional region the jet at the pipe exit intermittently
dips, which is the result of the lower velocity in the central region of the pipe in comparison to that
of laminar flow. From: Hof et al. (2006) b The friction factor as a function of Reynolds number
(for a pipe with a 3 mm inner diameter and a length of about 1 m). The solid line is the friction
coefficient for Hagen–Poiseuille flow; Langhaar theory (dotted line) describes the friction factor
including the development length at the pipe inlet; the dashed line represents Blasius’ friction law
(see Sect. 6.3). The first turbulent puffs appear at the pipe exit for Re ≈ 2,260. c Reconstruction of
a puff in a pipe flow at Re = 2,000 from planar stereoscopic PIV data showing streamwise vortices.
From: Doorne and Westerweel (2009)

http://dx.doi.org/10.1007/978-3-319-31599-7_6
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Fig. 3.26 Schematic of a self-sustaining process (SSP) in shear flow according to Waleffe (1997):
streamwise vortices (or ‘rolls’) redistribute the mean shear to create streamwise low-speed and high-
speed ‘streaks’ (see also Sect. 8.2); these streaks are unstable and begin to meander with increasing
amplitude, which eventually leads to the creation of streamwise rolls
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non-orthogonal eigenmodes transient growth in pipe flow

Fig. 3.27 a Example of transient growth. From left to right: the vector f is the difference between
nearly collinear eigenvectors �1 and �2. As time progresses �1 decays at a faster rate than �2.
This makes f turn towards �1, while it temporarily grows in length, before decaying. When �1
and �2 would be orthogonal, f would decay monotonically. After: Schmid (2007). b Energy of
the Fourier modes (m, n) of a perturbation in pipe flow, where m is the azimuthal mode and n the
temporal mode. Only the (1,1) mode is imposed in the shaded area. Mode (0,0) is the deviation of
the mean velocity profile from the parabolic profile. After: Gavarini et al. (2004)

eigenvalues are confined to the stable half-plane (i.e., ci < 0). This is illustrated by
a simple example in Fig. 3.27. The idea should be clear by now: a perturbation can
grow substantially in amplitude before it decays; this makes it possible for small per-
turbations to grow until their amplitude becomes sufficiently large until non-linear
effects take over (before the final exponential decay of the perturbation sets in) and
cause a transition to turbulence. The initial conditions that maximize the transient
growth are referred to as optimal perturbations. Typically, such initial conditions
contain streamwise vortices, which can be associated with the rolls encountered in
Bénard convection and Taylor–Couette flow, and thus have similarities to the Ruelle–
Takens-Newhouse route-to-chaos. Such stream wise vortices are also found in puffs
in pipe flow (see Fig. 3.25c), and in the turbulent spots that occur in transitional
boundary layers (see Fig. 3.11).

http://dx.doi.org/10.1007/978-3-319-31599-7_8


3.4 Routes to Chaos 51

Fig. 3.28 Comparison of traveling wave solutions in pipe flow, obtained in experimental data
a, b, e and the exact solutions b, d, f. The solutions are characterized by their rotational symmetry;
shown here are: C3 (a, b), C2 (c, d), and C6 (e, f). From: Hof and van Doorne et al. (2004)

So far, it was assumed that only a single base solution exists for laminar pipe flow,
that is the Hagen–Poiseuille flow with a parabolic velocity profile. In 2004 alternative
solutions were found of the Navier–Stokes equations that have the form of traveling
waves (Faisst and Eckhardt, 2003; Wedin and Kerswell, 2004). These alternative
solutions are all unstable, so that it is not possible to generate these solutions in an
experiment. However, experimental data revealed flow patterns with the same degree
of symmetry and a strong qualitative resemblance to the traveling wave solutions;
see Fig. 3.28.

The fixed point that represents Poiseuille flow represents a fixed point in phase
space, while the family of traveling wave solutions form a strange repeller. When
a large perturbation is introduced, the dynamic system undergoes a long transient,
where the flow solutions wanders among the traveling wave solutions but eventually
returns to the fixed point. This is illustrated in Fig. 3.29. First results obtained by
both numerical simulations appeared to indicated that these transients would become
infinitely long at a certain critical Reynolds number Rec, which would indicate the
transition of the strange repeller into a strange attractor. This behavior was initially
confirmed in an actual experiment by considering the lifetime of localized turbulent
spots, or ‘puffs’. However, later experiments demonstrated that the lifetimes of these
transients do not diverge at a finite Reynolds number.

Instead, it appears that puffs split up in multiple puffs above a certain Reynolds
number. This happens at an increasing rate with increasing Reynolds number, until
the entire pipe volume has become turbulent (Moxey and Barkley 2010; Avila et al.
2011). Figure 3.29d shows the relaxation of a fully-developed turbulent pipe flow
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Fig. 3.29 a Transients for finite-amplitude perturbations and increasing Reynolds number in pipe
flow; from: Faisst and Eckhardt (2004). b Representation of a transient in phase space (graph
courtesy of T. Schneider, Univ. of Marburg). c The mean life time τ of transients (——) and of
puffs before splitting (– – –) as a function of Reynolds number; with data of Hof et al. (2006, 2008);
Kuik et al. (2010); Avila et al. (2011). d Space-time diagram of the perturbation energy in a pipe flow
when fully-developed turbulent pipe flow at Re = 2,800 is relaxed to Re = 2,250 (time increases
from bottom to top of the graph). The flow is from left to right, but the mean flow speed Ub has been
subtracted, so that the puffs (that move slower than the mean flow speed) appear to move backwards
(i.e., to the left). After: Moxey and Barkley (2010)

at Re = 2,800 to a lower Reynolds number of Re = 2,250. The gray value along
each horizontal line in this graph represents the flow speed at the centerline along
the length of the pipe; the darker regions represent turbulent flow regions where
the velocity profile is flatter and the centerline flow speed is lower than in Poiseuille
flow. As the Reynolds number is lowered in time (time increases from bottom to top),
isolated pockets of turbulent flow, or ‘puffs’ (dark bands) appear that are separated
by laminar flow regions (lighter areas). At intermediate Reynolds numbers (Re ≈
2300-2400) one can observe the splitting of individual puffs.
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Problems

1. Program the logistic map in Matlab and determine how many iterations it takes
before two nearby transients diverge as a function of the initial difference. The
small difference remains undetectably small for a significant time, but grows
exponentially with time. Plot the difference in a semi log plot and determine the
exponent of the growth rate of the difference between the two transients. This
exponent is called the Lyapunov exponent.

2. Find the stationary solutions to the Lorenz equations by equating the left-hand
side of Eq. (3.28) to zero and solving the resulting algebraic equations. Find the
stability of these stationary solutions by applying linear stability analysis.

3. Program the Lorenz equations (3.28) in Matlab and calculate the behavior as
discussed above as a function of r. Determine the growth rate, i.e. Lyapunov
exponent, for small differences in the solution of the Lorenz equations in the
chaotic regime; see also Problem 1.

4. Continue with Problem 3 and determine the mapping of two subsequent maxima
in Z for r = 28. Compare this qualitatively with the logistic map.

5. Set up a small experiment as shown in Fig. 3.25a. Determine the pressure drop
�P over the pipe from the difference �h in elevation between the free surface
in the container and the pipe exit. Make a correction for the pressure at the pipe
inlet. Determine the (Darcy) friction factor2, λ from

�P = λ
L

D

1

2
ρU2

b ,

where L is the pipe length, D the pipe diameter, ρ the fluid density (103 kg/m3

for water), and Ub the mean bulk velocity. Determine an accurate value for D
from measurements at low Reynolds number, where λ = 64/Re. Determine the
frequency of puffs that emerge at the pipe exit as a function of Reynolds number.

2In this book we use the Darcy friction factor λ, defined in (6.34); this should not be confused with
the alternatively defined Fanning fraction factor which is equal to λ/4.

http://dx.doi.org/10.1007/978-3-319-31599-7_6


Chapter 4
The Characteristics of Turbulence

We are now concerned with fully developed turbulence. However, before we derive
the equations of motion for turbulent flow in Chap.5, we summarize in this chapter
the most important characteristics and physical properties of turbulent flow.

4.1 The Burgers Equation

Nonlinearity plays an essential role in turbulence. A general solution to the complete
set of Navier–Stokes equations is still lacking just because of this nonlinearity. That
is why we first focus on a model problem that is on the one hand analytically man-
ageable, and on the other hand contains the essential ingredients of a turbulent flow.
This is the Burgers equation:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
. (4.1)

In this equation we recognize the second term on the left as a nonlinear term, resem-
bling the advection term in the Navier–Stokes equations. The term on the right can
be interpreted as friction. Let us consider these two physical processes in the Burgers
equation separately. For this, we first focus on the equation:

∂u

∂t
= ν

∂2u

∂x2
. (4.2)

This equation is known as the one-dimensional diffusion equation. As an example
of a solution to this equation we consider a problem satisfying the following initial
and boundary conditions:

u = Iδ(x) for: t = 0, and: u = 0 for: x → ±∞ and ∀t. (4.3)

© Springer International Publishing Switzerland 2016
F.T.M. Nieuwstadt et al., Turbulence, DOI 10.1007/978-3-319-31599-7_4
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Fig. 4.1 The solution (4.4) of the diffusion equation in (4.2) for the initial and boundary conditions
in (4.3) with I = 1 and ν = 1. After: Csanady (1973)

where δ(x) is the Dirac δ-function. The solution reads:

u = I

2
√

πνt
e− x2

4νt , (4.4)

which is illustrated in Fig. 4.1 for different values of t .We see that the gradient ∂u/∂x
decreases as t increases. We can thus conclude that friction suppresses the gradients
in the solution. This has a stabilizing effect.

Next we consider the equation

∂u

∂t
+ u

∂u

∂x
= 0. (4.5)

This is the so-called nonlinear advection equation. The general solution of this equa-
tion reads:

u = f (x − ut), (4.6)

where f is an arbitrary differentiable function. This implies that the value of u for
t = 0 propagates unaltered through the x, t-surface along a so-called characteristic:
x − ut = constant. The slope of this characteristic is dx/dt = u. In other words, the
slope is determined by the value of the solution itself. This leads to an important
phenomenon that is illustrated in Fig. 4.2. Here we see that, assuming an initial
triangular profile for u, the gradient of the solution, ∂u/∂x , is locally sharpened
as a function of time. After a certain time the solution even becomes multi-valued,
which would be physically impossible. The conclusion thus reads: the nonlinear term
sharpens the gradients in the solution. This has a destabilizing effect.

The behavior described by Eq. (4.5), is perhaps best understood using the analogy
of shallow water waves, as they develop on the beach. From our own experience we
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Fig. 4.2 Solution of the nonlinear advection equation in (4.5) for an initial triangular profile for u

Fig. 4.3 Definition of the
macroscopic scales U and L
in a turbulent flow

know that these waves break. Namely, by these nonlinear effects, the waves become
steeper and steeper, until finally they break and dissipate in the surf.

On the basis of these solutions we can conclude that the solution to the complete
Burgers equation is determined by two opposing processes. The first is due to the
nonlinear term, which is gradient sharpening, while the second is due to the diffusive
term, related to friction, which suppresses the gradients. It is clear that the ratio of
these processes determines the appearance of the solution.

How can we describe this ratio in a more quantitative manner? To this end, we
write down the Burgers equation in dimensionless form. For this we introduce both
a velocity scale U and a length scale L, which are illustrated in Fig. 4.3. Next, we
define the following dimensionless variables:

ũ = u

U , x̃ = x

L , t̃ = t
U
L . (4.7)
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Substitution of these variables in (4.1) leads to the dimensionless Burgers equation

∂ũ

∂ t̃
+ ũ

∂ũ

∂ x̃
= 1

Re

∂2ũ

∂ x̃2
. (4.8)

Here Re = UL/ν can be considered as a Reynolds number, because it yields the
ratio between the nonlinear advection term and the friction term. For Re < 1, friction
dominates, and we characterize the solution as ‘stable’ (or laminar). For Re � 1, the
nonlinear advection term dominates, and the behavior of the solution is ‘unstable.’
We characterize the solution for this last case as ‘turbulent.’

Let us take a closer look at the case Re � 1 using an exact solution to the complete
Burgers equation. This solution reads:

u = U
2

{
− tanh

(Ux

4ν

)
+ x

L
}

(4.9)

for −L � x � L, and with:

U = 4U0

1 + 2U0t/L . (4.10)

This solution is illustrated in Fig. 4.4 in the case of the characteristicReynolds number
Re = UL/ν � 1.We find that on the scales of orderO(L) the solution is dominated
by the solution of the nonlinear equation (4.5), because in that case we can approxi-
mate (4.9) by

u =
{ U

2

{
x
L + 1

}
for x < 0

U
2

{
x
L − 1

}
for x > 0

(4.11)

We refer to this as themacrostructure. Nonlinear processes dominate themacrostruc-
ture and friction is negligible at this scale.

On the other hand, near the origin there is a small region defined by |x | < 4δ, with
δ = ν/U where the gradient becomes so large that friction is no longer negligible
(see Problem 3a). Here the solution can be approximated by:

u = −U
2
tanh

(η

4

)
, with: η = Ux

ν
. (4.12)

This is called the microstructure, which is dominated by friction.
The Burgers equation now leads to an important insight. In the limit Re → ∞

we can identify both a microstructure and a macrostructure in the solution, each
dominated by different physical processes. In particular, we found that the effects of
friction shift to the small scales, to the microstructure.

These properties originate from the fact that in (4.8) the Reynolds number multi-
plies the term with the highest derivative. This means that in the limit Re → ∞ the
equation changes its character. In mathematical terms such a limit is called singular.
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Fig. 4.4 Exact solution (4.9)
of the Burgers equation in
(4.1) for U0 = 1, L = 1,
ν = 0.05, and t = 1. The
shaded area of width 2 × 4δ,
with δ = ν/U , near the
origin indicates the region
where friction is dominant
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In the following section it is shown that this behavior for the Burgers equation also
holds for the complete set of Navier–Stokes equations.

Despite the fact that theBurgers equation provides uswith insight into the structure
of turbulent flows, as discussed in the next section, we have to admit that the solution
to the Burgers equation can not really be considered turbulent; chaotic solutions of
this equation simply do not exist. This relates to the fact that the Burgers equation is
integrable. The meaning of this concept was discussed in Chap.1.

Problems

1. Derive the solution (4.4) of the diffusion equation (4.2).
2. Rephrase the nonlinear advection equation (4.5) in terms of the gradient S =

∂u/∂x . Derive the following equation for S:

d S

dt
+ S2 = 0.

Consider the solutions of this equation for S = S0 and t = 0. Interpret this solution
for S0 > 0 and for S0 < 0.

3. Consider the solution (4.9) of the Burgers equation.

(a) Show that this equation is an exact solution to theBurgers equation. Consider
this solution for UL/ν � 1. Show that friction is dominant in the region
−4ν/U < x < 4ν/U and that outside this region the solution approximately
satisfies the frictionless Burgers equation.

(b) Define the averaging operator

uL = 1

2L
∫ L

−L
u dx .

http://dx.doi.org/10.1007/978-3-319-31599-7_1
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Derive that for UL/ν � 1 the following equations hold:

u2
L = 1

12
U2, and: (∂u/∂x)2

L = 1

24

U3

Lν
.

From this it follows for the dissipation ε ≡ ν(∂u/∂x)2 = 1
24U3/L. Provide

an interpretation for this last relationship.

4. Analyze the equation:

ε
d2y

dt2
+ dy

dt
+ y = 0,

for ε → 0 and with the initial conditions: y = 0 and dy/dt = e−1 for t = 0.
Consider the limit ε → 0 in the differential equation and in the exact solution to
it.

4.2 Phenomenology

Wenow discuss the characteristics and properties of turbulent flows that are solutions
to the full three-dimensional Navier–Stokes equations. It is best to base a phenom-
enological description on our own observations. For this we take the famous drawing
by Leonardo da Vinci, shown in Fig. 4.5. This represents a turbulent flow of water
issuing into a reservoir. What can we see in this drawing?

The flow appears to be chaotic, but certainly not random if we define random as
‘completely determined by chance.’ Indeed, we see in Fig. 4.5 that turbulence exists
in vortex-like structures, often called eddies. Consequently, the velocity measured in
two nearby points is correlated as a function of the distance between these positions,

Fig. 4.5 Drawing of water
issuing into a reservoir by
Leonardo da Vinci (1507)
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but also as a function of time. We would never find such a correlation (which will
be elaborated more in Chap.9) in a process that is purely random. Thus, our first
observation reads:

Turbulence consists of chaotic vortex-like structures with varying dimensions.

It has to be emphasized however, that not every chaotic flow is turbulent (think for
example of waves at the surface of the ocean or acoustic noise).

We refer to the turbulence structure with the largest dimensions as themacrostruc-
ture. The macrostructure is associated with a length scaleL and with a velocity scale
U . These scales are related directly to the geometry of the flow. We later see that we
can characterize turbulence at first by U and L. The reader should not be surprised
to learn that the smallest dimensions in Fig. 4.5 are referred to as the microstructure,
which is further elaborated later in this book.

We now line up the properties of turbulent flow, keeping in mind the solutions of
the Burgers equation, as discussed in the previous section.

First of all, the Reynolds number for a turbulent flow is very large, i.e. Re =
UL/ν � 1. This means that nonlinear processes dominate the macrostructure, while
viscous effects are negligible at this scale. The macrostructure is thus described
essentially by the limit Re → ∞. Consequently, the macrostructure is independent
of the Reynolds number. The only relevant parameter ν, which is determined by
the fluid, is contained in the Reynolds number, and thus we find that the large-scale
structure is independent of ν. We call this Reynolds similarity, and this is concisely
expressed as:

Turbulence is a property of the flow, not of the fluid.

Secondly, we know from experience that turbulence is strongly dissipative and diffu-
sive. By ‘dissipative’ we mean that a turbulent flow quickly loses its kinetic energy,
and thus quickly decays (provided we do not continually add energy to the flow). We
call the kinetic energy per unit mass e, and this energy e scales as e ∼ U2, which indi-
cates that the macrostructure contains most of the kinetic energy. For e the following
equation holds, which is derived in Chap.7,

de

dt
= −ε, (4.13)

where ε represents the dissipation rate of kinetic energy. One of the most important
results of turbulence theory now reads:

ε ∝ U3

L . (4.14)

In other words, the dissipation rate scales with the macrostructure. This is referred
to as the Kolmogorov relation, which we can interpret as follows: a turbulent eddy
with energy ∼ U2 either loses its energy in one time scale T ∼ L/U , or the eddy
breaks up in a period ∼ T by instability into smaller eddies.

http://dx.doi.org/10.1007/978-3-319-31599-7_9
http://dx.doi.org/10.1007/978-3-319-31599-7_7
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We now focus on the diffusivity of turbulence. From practice we know that turbu-
lent flows are very effective in mixing a fluid. Take as an example stirring your coffee
with milk, a mixing process used on a daily basis. Now effective mixing is related to
the macrostructure. The larger eddies stir the flow at a scale L, and we expect that
the flow variables are transported and mixed at this same scale. Now suppose that
diffusion in turbulent flow can be described using a diffusion equation, that is

∂χ

∂t
= K

∂2χ

∂x2
, (4.15)

for the concentration χ. The solution to this equation is discussed in Sect. 4.1, and
from this it follows that K plays the role of a diffusion coefficient. In this case we
refer to K as a turbulent diffusion coefficient, or exchange coefficient, and in the
light of our discussion above, we can scale it as follows:

K ∼ UL. (4.16)

It is noweasy to see that K ismuch larger than themolecular diffusion coefficientκ; in
the case that the Schmidt number1 is Sc ≡ ν/D ≈ 1, it follows that K/D ≈ Re � 1.

Finally, the most important property of turbulence in terms of its dynamics is
vorticity. Thus, the most compact definition of turbulence should read:

Turbulence is ‘chaotic vorticity.’

The importance of vorticity could have been expected given our discussion of the
Kelvin–Helmholtz instability in terms of vorticity. However, a complete discussion
on the role of vorticity in turbulence is postponed till Chap.8.

So far we have only briefly discussed some properties of turbulence related to
its macrostructure. Now we focus to the microstructure. We have seen that the
macrostructure loses its energy through instability processes within one characteris-
tic time scale. Obviously, the kinetic energy can only be dissipated, i.e. transformed
into heat, by viscosity. This viscous dissipation takes place at themicroscale, because
the gradient of the velocity can become so large at these small scales that friction
can no longer be neglected. Please take recourse to our discussion on the role of the
microstructure in the solution of the Burgers equation.

How can we characterize the microstructure in terms of scaling parameters? First,
an essential parameter should be the viscosity ν. Second, we expect that U and L,
which describe the macroscale, are not of direct importance to the microstructure,
because the information of the macrostructure would, as it were, be lost in the insta-
bility processes where larger eddies break up into smaller eddies. The only parameter
of physical importance to the microstructure is the amount of energy per unit time
that is dissipated. This is characterized by ε. Thus, the scaling parameters for the

1In case we consider the diffusion of heat with a molecular diffusion coefficient α, χ refers to the
temperature, and the ratio Pr = ν/α is the so-called Prandtl number.

http://dx.doi.org/10.1007/978-3-319-31599-7_8
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microstructure are ν and ε. With this the following scales for the length, time, and
velocity can be defined as:

η =
(

ν3

ε

) 1
4

, τ =
(ν

ε

) 1
2
, υ = (νε)

1
4 , (4.17)

respectively. These are known as theKolmogorov scales. On the basis of the equations
mentioned above, it follows that the Reynolds number for the microstructure is
Re = υη/ν = 1. Again, this reflects how themicrostructure is dominated by friction.

Combining the expressions (4.14) and (4.17) gives the following scaling for the
macroscopic length scaleL relative to the Kolmogorov length scale η that represents
the microscale: L

η
∼ Re 3/4. (4.18)

This scaling implies that L � η for large enough Re. This is an important result,
as it represents the dynamic decoupling of the macrostructure and microstructure,
provided that the Reynolds number is sufficiently large. This is further explained in
Chaps. 8 and 9.

The complete picture now becomes clear. We identified a macrostructure, which
is fed by energy drawn from the average flow through instability processes. These
energetic large eddies are in their turn unstable and break up into smaller eddies. This
process is known as the energy cascade. The breakup of larger eddies into smaller
ones continues until the microstructure has been reached. There, the kinetic energy
is dissipated into heat through viscous friction. The energy cascade is summarized
by the following famous verse by L.F. Richardson (1922):

Big whirls have little whirls,
That feed on their velocity;
And little whirls have smaller whirls
And so on to viscosity

Table4.1 summarizes the properties of the macrostructure and the microstructure.
Finally, Fig. 4.6 illustrates how the macrostructure and the microstructure form the
ingredients of turbulence.

Problems

1. Give an estimate of the dissipation of the turbulence in a cumulus cloud, both
per unit mass and for the total cloud. Base this estimation on the velocity scale
and length scale of a typical cumulus cloud. What are the magnitudes of the
Kolmogorov scales?

2. Figure4.7 shows the turbulent flow behind a grid. The turbulence is advected
downstream at a constant mean velocity U0. Consider a square box that moves
alongwith the flow at a velocityU0 with a characteristic sizeL. There is no energy
source, so that the turbulence eventually decays.

http://dx.doi.org/10.1007/978-3-319-31599-7_8
http://dx.doi.org/10.1007/978-3-319-31599-7_9
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Table 4.1 Summary of the properties of the macrostructure and the microstructure in turbulence

Macrostructure Microstructure

– Produced by the average flow (active) Energy
−→
Cascade
ε

– Fed by the cascade process (passive)

– Frictionless – Dominated by friction

– Effective transport of: mass, momentum
and energy

– Molecular transport processes

– Depends on flow geometry – Universal

– Anisotropic – Isotropic

– Scales: U , L – Scales: υ, η

Fig. 4.6 Visualization of the density variations in a turbulent mixing layer, taken by Brown and
Roshko (1974), showing the macrostructure andmicrostructure in a turbulent flow. From: Van Dyke
(1982)

(a) For the turbulent length scale we can takeL. Explain why. Derive an expres-
sion for the behavior of the kinetic energy as a function of time on the basis
of the equation de/dt = −ε.

(b) Whenever the Reynolds number UL/ν (where U =
√

2
3e is a characteristic

velocity) becomes less than 10, the estimate of the dissipation ε needs to be
adjusted to ε = cνU2/L2. Provide arguments for this. Calculate the constant
c given that the dissipation rate is continuous for UL/ν = 10. How does the
turbulent energy decrease in this so-called final period of decay? Calculate
a numerical example with L = 1m, ν = 1.5 × 10−5 m2/s and U = 1m/s.

(c) Until now we have neglected the effects of the walls of the box. Can this
assumption be supported?

3. We assemble a hot-wire anemometer (see Sect. 4.3) on the nose of an airplane to
measure the fluctuations of the velocity while the airplane flies through a turbulent
atmosphere at a speed of 50m/s. The length scale and velocity scale of the large
vortices are 100m and 0.5m/s, respectively. What is the highest frequency of the
velocity fluctuations that we measure with the hot-wire? What is the maximum
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Fig. 4.7 Turbulent flow behind a grid. The turbulence gradually decays as it is convected down-
stream. The smallest scales decay first, while energy is transferred from the larger scales to the
smaller scales. Image courtesy of H. Nagib, Illinois Institute of Technology

length of this hot-wire if we want to measure the complete turbulence spectrum?
Estimate the minimum signal-to-noise level of the electronic measurement circuit
that is needed for these measurements?

4. In a turbulent flow of a fluid with viscosity ν the largest eddies have the size L
and characteristic velocity U . These eddies break up into multiple smaller eddies
with a size αL (with α < 1). The number of these smaller eddies is n < α−3.
This process repeats itself for the smaller eddies, forming a cascade process.

(a) Calculate the energy of the eddies at the subsequent scales in this cascade
process.

(b) Howmany steps are required for this cascade process until themicrostructure
is reached? Calculate the Kolmogorov scales and the dissipation rate. How
long does it take until an eddy has run through the complete cascade process?

(c) At the end of this process, the distribution of energy over space is as illus-
trated in Fig. 4.8. Such an object is called a ‘fractal.’ Determine the spatial
dimension of this fractal. Why would the fractal model for turbulence be
unrealistic?

5. Compare the visualizations of a turbulent mixing layer (see Sect. 6.6) in Figs. 4.6
and 6.16. Which of the two flows has the highest Reynolds number?

http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_6


66 4 The Characteristics of Turbulence

Fig. 4.8 A fractal as a model of the spatial energy distribution in turbulence. From:
Mandelbrot (1977)

4.3 Experimental and Numerical Methods

In order to characterize turbulent flows one can either use an experimental or numer-
ical method. Experimental methods generally provide measurements of one or more
components of the velocity in a point, a plane, or even a volume. Mostly, experi-
mental data provide statistical information on the turbulent flow (see Chap.5) or pro-
vide insight in the instantaneous flow to reveal vortical flow structures (see Chap. 8).
However, most experimental methods provide only an incomplete picture of the flow,
either in terms of a reduced number of velocity components, a reduced spatial repre-
sentation, a limited spatial resolution, or limited flow information (e.g., velocity data,
without data on the pressure or temperature of the flow). Numerical methods aim to
solve the Navier–Stokes equations, either the full set of equations, or a reduced set of
equations including modeling part of the turbulent flow. In this chapter we describe
direct numerical simulation, or DNS, which is a full numerical simulation of a tur-
bulent flow that does not rely on any modeling of the flow. However, this approach
is computationally intensive, and it requires substantial computing facilities. Hence,
for many practical problems one has to rely on turbulencemodels, which is described
in later chapters.

Flow Visualization

Many qualitative aspects of flows, also turbulent flows, can be observed by means
of flow visualization. Mostly, fluid motion is not directly visible, as common fluids,
such as air and water, are optically transparent. In order to visualize the motions in

http://dx.doi.org/10.1007/978-3-319-31599-7_5
http://dx.doi.org/10.1007/978-3-319-31599-7_8
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the fluid, it is necessary to add a dye, smoke, or small particles to the flow that reveal
the fluid motion; it is important to introduce these materials at specific locations to
observe specific features of the flow. The images in Figs. 3.7 and 3.11 were obtained
by adding aluminiumflakes to the fluid (silicone oil andwater, respectively), whereas
the images shown in Figs. 3.5, 4.3, 6.17, and 6.21awhere obtained bymeans of adding
a dye to the (turbulent) fluid. Similar results can be obtained in gas flows (i.e., air)
by means of adding smoke (Figs. 6.21b and 8.7), or a fog of tiny droplets of water
(Fig. 2.1) or oil (Fig. 6.7). Tracers, in the form of tiny hydrogen bubbles (with a
typical diameter of a few tens of micrometers), can be introduced into a water flow
bymeans of electrolysis from a thin wire at a specific location in the flow; an example
is shown in Fig. 8.5.

Other approaches are so-called shadowgraphy and Schlieren imaging that visual-
ize small variations in refractive index (caused by differences in density or solution
concentration), which causes refraction of light that passes through the fluid. Exam-
ples of shadowgraphs and Schlieren imaging are shown in Figs. 4.6, 6.16, and 6.23.

For technical details of these different approaches we refer to the book by
Merzkirch (1987). A collection of flow visualization images can be found in the
book by Van Dyke (1982).

Single-Point Measurements

Most conventional measurement methods in fluid mechanics, and in particular for
turbulent flows, determine the flow velocity (either directly or indirectly) in a single
point as a function of time. These methods are: the Pitot tube, the hot-wire anemome-
ter (HWA), and the laser-Doppler velocimeter (LDV). Here we limit ourselves to
a very concise description; for details on these methods we refer to any review
paper, text book or reference book on experimental methods in fluid mechanics (e.g.,
Comte-Bellot 1976; Goldstein 1996; Tropea et al. 2007).

APitot tubemeasures themeandifference between the static anddynamic pressure
�p, which is proportional to:

�p = 1

2
ρ

(
u1

2 + u′
1
2
)

,

in case the probe is alignedwith the x1-axis. Formost turbulent flows,we have: u1
2 �

u′
1
2, so that the measurement yields essentially the mean velocity. The superpipe data

shown in Fig. 6.3 were determined by means of accurate Pitot-tube measurements.
A major limitation is that only the mean flow velocity can be determined.

However, a strongly fluctuating velocity is characteristic for turbulence. A hot-
wire anemometer is ideally suited for the measurement of these rapid fluctuations.
The measurement principle is based on the fact that the convective heat transfer of an
electrically heated thin wire depends on the flow speed of a gas (i.e., air) that passes
over the wire. The cooling of the wire reduces the electrical resistance. The most
common implementation uses an electrical circuit, which consists of a Wheatstone
bridge and differential amplifier, that maintains a constant wire temperature.2 Then,

2Hence, this implementation is often referred to as constant temperature anemometry (CTA).

http://dx.doi.org/10.1007/978-3-319-31599-7_3
http://dx.doi.org/10.1007/978-3-319-31599-7_3
http://dx.doi.org/10.1007/978-3-319-31599-7_3
http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_8
http://dx.doi.org/10.1007/978-3-319-31599-7_2
http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_8
http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_6
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the voltage E is related to the flow velocity U by:

E2 ∼= (Tw − T0)
[
A + BUn]

, or: U ∼= C0 + C1E + C2E2 + C3E3 + C4E4 + C5E5,

with: n ∼= 0.5 (typical value), and where Tw and T0 are the wire temperature and gas
temperature respectively, and A, B, and {C0, C1, . . . , C5} are calibration constants.
The wire is typically a millimeter or so in length and has a thickness around 5µm,
and is made of tungsten (for its high strength). The wires are most sensitive to the
flow normal to the wire, and therefore require careful calibration. This arrangement
yields a very high frequency response of around 100kHz, which can resolve even
the smallest variations in velocity, proportional to frequencies of U0/η (where U0

is the advection velocity by which the turbulent flow passes the wire; see Sect. 9.4).
Hence, this makes HWA ideally suited for the measurement of the spectral density
of the velocity fluctuations (see Chap.9). So-called X-wire probes (Comte-Bellot
1976) can measure the correlation between two fluctuating velocity components, or
Reynolds stress introduced in Sect. 5.3. Also, two-wire probes exist that measure
the correlation of the same velocity component but separated in space; this is fur-
ther elaborated in Chap.5. Complicated multi-wire probes were developed that can
determine instantaneous spatial gradients of the velocity, which reveals one or more
components of the deformation tensor and vorticity vector (Wallace and Foss 1995).

Many of the experimental results shown in this book were obtained by means of
HWA; for example, most of the data in Figs. 6.19, 9.4, 9.9, and 9.14.

Laser-Doppler velocimetry (or, sometimes called laser-Doppleranemometry) uses
the physical phenomenon that the frequency of light reflected by a moving object is
shifted in proportion to the velocity of the object toward or away from the observer;
this is known as theDoppler effect. In most approaches in laser-Doppler velocimetry,
or LDV, a heterodyne approach is used where two laser beams cross each other at an
angle θ in a small measurement volume; see Fig. 4.9. The two beams can be thought
of to create an interference pattern with a fringe spacing d f given by:

d f = λ0

2 sin(θ/2)
, (4.19)

where λ0 is the light wavelength. When a small tracer particle passes through the
fringes in the small measurement volume, the light that is scattered by the particle
fluctuates with a frequency f = u⊥/d f , where u⊥ is the component of the particle
velocity normal to the planes of the fringes. The modulated scattered light from the
small particles passing through the measurement volume is detected by a sensitive
photomultiplier. Typical laser beam angles are 10–12◦, giving a typical fringe spacing
of a fewmicrometers and a light modulation frequency of 500kHz for a particle with
a velocity of 1m/s. Typical dimensions of the small tracer particles, which are either
naturally present in the flow or have been added for this purpose, are 1–10µm. The
small size ensures that the particles accurately follow the fluid motion, even when
there is a considerable difference in density between the particle material and fluid.

http://dx.doi.org/10.1007/978-3-319-31599-7_9
http://dx.doi.org/10.1007/978-3-319-31599-7_9
http://dx.doi.org/10.1007/978-3-319-31599-7_5
http://dx.doi.org/10.1007/978-3-319-31599-7_5
http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_9
http://dx.doi.org/10.1007/978-3-319-31599-7_9
http://dx.doi.org/10.1007/978-3-319-31599-7_9
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Fig. 4.9 Schematics of common measurement methods for turbulent flows. Images a–d are
adapted from those at: www.engineeringtoolbox.com, Chen et al. (2003), www.newton.ex.ac.uk,
www.thermopedia.com, andWesterweel et al. (2009). a Pitot tube. bHot-wire anemometry (HWA).
c Laser-Doppler velocimetry (LDV). d Particle image velocimetry (PIV)

The typical dimensions of a measurement volume is 0.1 × 0.1 × 1mm3; hence, the
velocity is effectively measured in a point.

Using two laser beam pairs, with the plane defined by one pair normal to that of
the other pair, it is possible to measure simultaneously two velocity components.3

This enables the direct measurement of the Reynolds stress (see Sect. 5.3) in a much
simpler manner than with an X-wire HWA probe. Figures5.2, 6.2, 6.4, and 6.5 are
examples of experimental data obtained with LDV.

Particle Image Velocimetry

In particle image velocimetry, or PIV, the flow is seeded with small tracer particles
that accurately follow the fluid motion. Typically, a planar cross section of the flow is
illuminated with a thin light sheet that is generated from a dual pulsed-laser system.
The light scattered from the particles in the light sheet is recorded by a camera in two
subsequent image frames (one for each laser light pulse from the dual laser system).
The images are subdivided in small interrogation sub-images, and the displacement
of the particle images between the two laser pulses, separated by a time delay �t ,
is determined in each sub-images. This gives, after dividing the displacements by

3Dedicated LDV systems that use three laser beam pairs can measure all three velocity components.

www.engineeringtoolbox.com
www.newton.ex.ac.uk
www.thermopedia.com
http://dx.doi.org/10.1007/978-3-319-31599-7_5
http://dx.doi.org/10.1007/978-3-319-31599-7_5
http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_6
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Fig. 4.10 Schematic of the arrangement of a four-camera tomographic PIV setup for the measure-
ment of a boundary layer in a wind tunnel. From: Westerweel et al. (2013)

the image magnification and time delay, the instantaneous velocity field in the plane
of the light sheet. Using a single camera gives the two in-plane components of the
velocity field, while the use of stereoscopic images with two cameras gives all three
velocity components in the observation plane. The two in-plane components of the
velocity make it possible to determine the vorticity component that is normal to the
measurement plane. This is key to understanding the dynamics of turbulent flows (see
Chap.8) and the identification of coherent flow structures, such as hairpin vortices
(see Fig. 8.6). Examples of velocity fields measured with PIV are shown in Figs. 5.1
and 8.8. Experimental data obtained with PIV can be found in Figs. 6.19, 6.20, 6.22,
and 9.11 (Fig. 4.10).

In tomographic PIV a flow volume is illuminated, rather than a plane, and four
or more cameras are used to record the particle images. From these data the origi-
nal particle positions within the measurement volume are computed by means of a
tomographic reconstruction. Although time consuming, this provides the full volu-
metric measurement of all three components of the velocity field in the measurement
volume. This makes it possible to extract all nine components of the deformation
rate tensor, and enables the experimental evaluation of the vortex stretching term in
Eq. (8.4).

A typical spatial resolution for PIV is 1 × 1 × 1mm3 for each velocity measure-
ment, with an accuracy of about 1% for the velocity.4 Large-format electronic image
sensors (containing 16 million pixels) can yield around 250,000 velocity measure-
ments per image. The use of high-speed digital cameras make it possible to record
time-resolved sequences of turbulent flows. For further reading on PIV we recom-
mend the book by Adrian and Westerweel (2011).

4The relative error for the velocity is based on the displacement measurement error relative to the
(nominal) maximum measurable displacement in each sub-image domain.

http://dx.doi.org/10.1007/978-3-319-31599-7_8
http://dx.doi.org/10.1007/978-3-319-31599-7_8
http://dx.doi.org/10.1007/978-3-319-31599-7_5
http://dx.doi.org/10.1007/978-3-319-31599-7_8
http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_9
http://dx.doi.org/10.1007/978-3-319-31599-7_8
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Direct Numerical Simulation

In a direct numerical simulation (DNS) the equations of motion (2.20–2.22) are
integrated numerically to solve the velocity, pressure, and temperature fields for
given initial and boundary conditions. Herewe provide a brief description of theDNS
method; for further readingwe suggest the review paper byMoin andMahesh (1998).

The objective of a DNS is to solve the complete set of equations of motion without
relying on any modeling of the turbulent flow. This implies that both the macrostruc-
ture and the microstructure are resolved by the numerical grid on which the flow is
computed and by the temporal integration of the discretized equations. Suppose that
the numerical grid has a spatial resolution �, given by:

� ≡ (�x �y �z)1/3, (4.20)

where �x , �y, and �z are the dimensions of a grid cell in the x , y, and z directions,
respectively. In order to resolve both the macrostructure and the microstructure, it
is required that the simulation domain is large enough to contain the large-scale
motions of a size L, while at the same time the spatial resolution � should be small
enough to resolve the Kolmogorov scale η. Given the scaling in (4.18), this implies
that the total number of grid cells N in the simulation should be:

N ≈
(L

η

)3

= O (
Re9/4

)
. (4.21)

Furthermore, the integration time step �t should be small enough to resolve the
Kolmogorov timescale τ , while the total integration should be continued sufficiently
long to cover a certain number of integral timescales T . Given that T = L/U , it can
be shown that: T

τ
∼ Re1/2, (4.22)

so that the total computational effort, that is the total number of computations
required, scales according to:

N × M = O (
Re 9/4 · Re 1/2) = O (

Re 11/4) , (4.23)

where M is the total number of time integration steps. Hence, the computational
effort for a DNS grows almost with the cube of the Reynolds number. This is quite
unfavorable, and therefore DNS has been primarily limited to rather low to moderate
Reynolds numbers and simplified flow geometries, such as channels and pipes. Such
simplified and generic flow geometries allow the use of periodic boundary condi-
tions (BC) in one or more principal directions; examples are: isotropic turbulence
(3 periodic BC), pipe and channel flows (2 periodic BC), and boundary-layer flow
(1periodicBC).Theseperiodic boundary conditions represent quasi-infinite domains.
Also, this makes it possible to represent the equations and solution as spectral modes,

http://dx.doi.org/10.1007/978-3-319-31599-7_2
http://dx.doi.org/10.1007/978-3-319-31599-7_2
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which not only reduces the computational effort, but also improves the accuracy and
spatial resolution of the simulation.

Spatial and Temporal Discretization

The spatial discretization should be as accurate as possible for the whole range of
scales and not add artificial diffusion to the flow. A first-order discretization of the
non-linear term, here for simplicity represented by f , gives the following:

∂ f

∂x
= f (x) − f (x − �x)

�x
+ 1

2
�x

∂2 f

∂x2
. (4.24)

In this equation �x is the grid spacing. The truncation error is proportional to the
second derivative of f , and the finite grid spacing �x can be interpreted as an
additional viscosity. This additional viscosity leads to a non-physical damping of the
turbulence. Higher-order upwind methods have in general similar problems. Instead,
central-difference numerical schemes using x + �x and x − �x have a truncation
error that is proportional to the third derivative of f and do not introduce an additional
viscosity. The first derivative of f is then written as:

∂ f

∂x
= f (x + �x) − f (x − �x)

2�x
+ O (

�x2
)
. (4.25)

If periodicity of f is assumed, then f can be written as a sum of spectral modes,
that is

f (x) =
∑

f̂k exp(ikx),

where: i = √−1, and k is the wave number. This gives for mode f̂k :

ik f̂k exp(ikx) = f̂k
exp[ik(x + �x)] − exp[ik(x − �x)]

2�x
+ O(�x2). (4.26)

Thus,

error = O(�x2) = ik f̂k exp(ikx)

(
1 − sin[k�x]

k�x

)
. (4.27)

The error depends thus on the wave number k. For small wave numbers k the ‘sinc’
term vanishes, i.e.

sin(k�x)

k�x
→ 0.

For large wave numbers, i.e. small wavelengths and thus small scales, the error
becomes large. If a wavelength is approximated by n points, the wave number can
be expressed as:

k = 2π

n�x
.
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Table 4.2 Overview of representative direct numerical simulations

Type Re N Reference

Isotropic turbulence 150 2403 Vincent and
Meneguzzi (1991)

Isotropic turbulence 1,200 40963 Ishihara et al. (2009)

channel flow 3,300 192 × 129 × 160 Kim et al. (1987)

Channel flow 34,200 768 × 768 × 769 del Álamo et al. (2004)

Boundary layer 1,410 432 × 80 × 320 Spalart (1988)

Boundary layer 4,300 4096 × 385 × 384 Schlatter et al. (2010)

Pipe flow 5,300 96 × 128 × 256 Eggels et al. (1994)

Pipe flow 44,000 300 × 1024 × 2048 Wu and Moin (2008)

Jet flow 2,400 450 × 80 × 64 Boersma et al. (1998)

For the differentiation of a simple wave with an error less than 5% already 12 points
are needed. Higher-order methods (i.e., methods that also use: f (x ± 2�x), f (x ±
3�x), . . .) need in general fewer points for the same accuracy. The same is true for
methods using Chebyshev or Fourier expansions. From the previous analysis it can
be observed that numerical methods in general accurately predict the large scales
and that the accuracy of the small scales is certainly an issue. This is especially the
case in problems where the small scale play an important role, e.g. turbulent mixing
and combustion.

The equations are in general advanced in time with an explicit numerical method
for the non-linear terms. Popular methods are Runge–Kutta and Adams–Bashford
methods. The viscous term is often integrated with an implicit Crank–Nicolson
method. A fully implicit treatment is in general not advisable, because in that case the
non-linear term has to be linearized, e.g. the mechanism responsible for turbulence
generation is slightly modified (Table4.2).

One of the first successful attempts of a DNS of turbulent flow is described by
Kim et al. (1987), who simulated a turbulent channel flow at Reynolds number
of 3,300 using about 4 × 106 grid points. The first DNS of turbulent pipe flow at
Re = 5, 300 was performed by Eggels et al. (1994); with the increase of computing
power, contemporary simulations can represent a turbulent pipe flowwith a Reynolds
number of 44 × 103 (Wu and Moin 2008).5 Despite such substantial increase in
computer power, the Reynolds numbers that can be represented by such simulations
are still far away from those of flows of industrial interest. For example, the Reynolds
number of a commercial airliner at cruise speed is of the order of 109; see Problem 1
below.

Hence, it is evident that for many practical problems one has to resort to other
approaches for the design and optimization of apparatus that involve turbulent flows.
This implies that wemust reduce the complexity of the equations ofmotion andmake

5This increase inDNSperformance that is reflected in the resolved flowReynolds number from1994
to 2008 is in accordance with Moore’s law that computer resources double about every 18months.
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use of models that represent the effects of turbulence. This is the main topic of the
remainder of this book. Nonetheless, DNS has provided substantial insights in the
physical aspects of turbulence, and many of the processes that have been studied at
low to moderate Reynolds numbers help us to understand what happens in practical
situations at much higher Reynolds numbers. Therefore, DNS remains one of the
principal tools for the fundamental investigation of turbulent flows.

Problem

1. Derive the expression in (4.22). Make an estimate of the required computational
power to represent the flow around a commercial airliner at cruise speed in a
direct numerical simulation. What is the required memory for the computation,
and how long would it take to perform the simulation per integral time scale using
a 1 PFLOPS (=1015 floating point operations per second) computer? And what
if you would use 1,000 of such computers simultaneously?



Chapter 5
Statistical Description of Turbulence

A turbulent flow is a chaotic and fluctuating flow state, and for most applications we
are not interested in all the details of the flow. It thus seems obvious to focus our
attention on statistical quantities, such as the average and the standard deviation of
fluctuating flow variables. We first deal with the general requirements these statistical
variables have to meet. Next we deduce the equations of motion for these variables.

5.1 Statistics

As a starting point we say that, in turbulent flow, an instantaneous quantity can be
split into an average plus a fluctuation. Take for example the velocity component ui ,
which can be expressed as

ui = ui + u′
i . (5.1)

The averaging operator is denoted by a bar above the quantity and the fluctuation is
denoted by a prime. This expression (5.1) is commonly referred to as the Reynolds
decomposition. If we want to be able to apply this averaging operator later in the
equations of motion, it is required that this operator satisfies the following general
conditions that are better known as the Reynolds conditions:

(i) f + g = f + g,

(ii) α f = α f ,

(iii)
∂ f

∂s
= ∂ f

∂s
,

(iv) f g = f g.

(5.2)

© Springer International Publishing Switzerland 2016
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Here f and g are fluctuating quantities and α is a constant. On the basis of these
Reynolds conditions we can for example infer the following relationships:

u′ = 0, u = u, and f g = f g. (5.3)

How do we define the average? In practice, as we would do in a laboratory mea-
surement, we often use the time average, which is defined as

uT (t) = 1

T

+ 1
2 T∫

− 1
2 T

u(t + τ ) dτ , (5.4)

where T represents the averaging time. In the same way we can define a line average
as

uL(x) = 1

L

+ 1
2 L∫

− 1
2 L

u(x + ξ) dξ. (5.5)

For now we use superscripts to indicate what kind of average we are considering. It
is not hard to see that we can generalize (5.5) to surface averages or space averages
as well.

While the averaging operators defined in (5.4) and (5.5) are very useful in a
practical sense, they have one big disadvantage: they do not meet the Reynolds
conditions in (5.2); in particular they do not satisfy condition (iv). The reason for
this is that when, for example, we apply expression (5.4) twice to compute u, the
integration interval over which the function u(t + τ ) should be known would double
from T to 2T . In other words, u �= u. For this reason, the definitions are theoretically
not applicable. That is why we focus on another average: the so-called ensemble
average.

The principle underlying the ensemble average is the following. Suppose that we
repeat the turbulence experiment (with the same initial and boundary conditions) N
times. Every realization of the experiment will in principle be different. The ensemble
average is then, by definition, equal to

u = lim
N→∞

1

N

N∑
α=1

u(α), (5.6)

where the index α indicates the realization of the experiment. The definition in (5.6)
meets all four Reynolds conditions in (5.2). In the following we therefore always
interpret a bar above a quantity as the ensemble average.

For a mathematical description of the ensemble average it is most appropriate to
use the theory of stochastic processes. In this theory variables are described in terms
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of a probability distribution. Take for example the turbulent velocity component u.
We now introduce a probability distribution p(u). The probability that u∗ < u <

(u∗ + du∗) is then equal to pM(u∗)du∗. The superscript ∗ indicates a reference to
a particular value of u. The subscript M means that a probability distribution is
basically a function of the position M(x, t) in space-time. By integration over all
values of u, we can rewrite (5.6) as

u(x, t) =
∫

∀u
u∗ pM(u∗) du∗. (5.7)

This expression is the formal definition of the ensemble average.
Using the probability distribution pM(u) we can calculate other statistics as well.

An example is the variance, which is defined as

u′2(x, t) =
∫

∀u
(u∗ − u)2 pM(u∗) du∗. (5.8)

The standard deviation is then, by definition, equal to

σu(x, t) =
√

u′2. (5.9)

We can generalize this expression to

f (u) =
∫

∀u
f (u∗) pM(u∗) du∗. (5.10)

This description can easily be extended to two variables: for example, to the velocity
components ui and u j . The probability that u∗

i < ui < u∗
i +du∗

i and that u∗
j < u j <

u∗
j + du∗

j is now by definition equal to pM(u∗
i , u∗

j )du∗
i du∗

j . With this it follows that

ui u j (x, t) =
∫∫

∀ui , u j

u∗
i u∗

j pM(u∗
i , u∗

j ) du∗
i du∗

j , (5.11)

which is called the covariance at M = (x, t). It will be clear that this description
can be extended to all other quantities that are defined at M , such as pressure and
temperature.

Thus far, we have limited ourselves to the probability distribution pM at a single
position M . We call these single-point distributions. The quantities calculated with
(5.7) and (5.8) using this method are called first-order and second-order single-point
moments, respectively. The step towards stochastic variables defined at two points
is now obvious. The probability that the variables ui at M1 = M(x1, t1) and u j at
M2 = M(x2, t2) satisfy u∗

i < ui < u∗
i + du∗

i and u∗
j < u j < u∗

j + du∗
j equals

pM1,M2(u
∗
i , u∗

j )du∗
i du∗

j . From this it follows that
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ui (x1, t1)u j (x2, t1) =
∫∫

∀ui , u j

u∗
i u∗

j pM1 M2(u
∗
i , u∗

j ) du∗
i du∗

j . (5.12)

This is called the correlation between ui and u j at M1 and M2, respectively, which
is a two-point average. With this type of average we can acquire information on the
structure of turbulence. We further elaborate on this in Chap. 9.

It can be proven that, for a complete statistical description of a turbulent field, we
would have to specify the probability distribution at an infinite number of positions
and for an infinite number of statistical moments. However, in this book we limit
ourselves in most cases to single-point and two-point averages.

5.2 Stationarity and Homogeneity

We now consider a couple of special stochastic processes. First of all, we take a
stationary process. The formal definition for such a process is that the probability
distribution p is invariant to translations in time. For a single-point distribution this
means that

pt = pt+dt . (5.13)

In other words, p is independent of t . Consequently, all single-point averages are
independent of time: for example, u and u′2 �= f (t). For two-point averages (for
example at two times t1 and t2) stationarity would mean that the probability distrib-
ution is only a function of the time difference t1 − t2. Thus, for a stationary process
it holds that for the correlation:

ui (t1)u j (t2) = f (t1 − t2). (5.14)

The second special process is a homogeneous stochastic process. For this the prob-
ability distribution is invariant to translations along a line in space. In this case the
single-point averages are independent of the coordinates along that line, and the
two-point averages are just a function of the distance between the two points.

Until now we discussed several types of averages. On the one hand the time
and spatial averages uT and uL , respectively, and on the other hand the ensemble
average u. How can we relate these averages to each other? For this we invoke the
so-called ‘ergodicity hypothesis.’ On the basis of this hypothesis, it is assumed that
for a stationary process

lim
T →∞ uT = u. (5.15)

So, for a stationary process we can treat the time average as the ensemble average.
On the basis of the same theorem, it holds that for a homogeneous process that

lim
L→∞ uL = u. (5.16)

http://dx.doi.org/10.1007/978-3-319-31599-7_9
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For details on the proofs for (5.15) and (5.16) we refer to the literature and to one of
the problems at the end of this section.

Qualitatively, we can understand these results. In a stationary process the fluctua-
tions have by definition a limited time scale, which we later identify with the integral
time scale T . When we now consider an averaging time that is sufficiently long, i.e.
T > T , we can think about it as constructed from many intervals with a duration
T , which are statistically independent. It now follows that the time average must be
equivalent to the ensemble average.

In Fig. 5.1 is shown the instantaneous velocity field in a planar cross section
of a turbulent pipe flow (measured with PIV), for which the axial (x) direction is
homogeneous. The mean velocity profile u(r) was determined from an ensemble of
100 statistically independent measurements. Subtraction of the mean velocity profile
yields the fluctuating velocity field (u′, v′). This clearly reveals the turbulent flow
structures near the wall and in the central region of the pipe.

Problem

1. The mean quadratic difference between the time average and the ensemble average
reads:

I = (u − uT )2.

Assuming stationarity, show that the following holds:

I = 2

T

T∫
0

(
1 − τ

T

)
R(τ ) dτ ,
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Fig. 5.1 Instantaneous flow field in a planar cross section through the centerline of a turbulent pipe
flow at Re = 5,300. The top and bottom of the graph coincide with the inner pipe wall. The left
arrow plot shows the absolute velocities (u, v), while the right arrow plot shows the fluctuations
(u′, v′) after subtraction of the mean velocity profile u(r), revealing the instantaneous turbulent
flow structure. (The arrows in the right plot have been enlarged 6 times with respect to those in the
left plot.) Data from: Westerweel et al. (1996)
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where R(t ′′ − t ′) = u(t ′)u(t ′′) is the time correlation function. Derive on the basis
of this equation an estimate of the error in the time average.

5.3 The Reynolds Equations

The decomposed instantaneous quantities, which consist of an average and a fluctu-
ation, are now applied to the equations of motion. For this we define

ui = ui + u′
i

p = p + p′

θ = θ + θ′
(5.17)

where we emphasize again that the averaging operator is actually the ensemble
average.

The procedure is now as follows. We substitute (5.17) into the equations of motion
for the instantaneous quantities. The result then becomes an average, and this yields
the equations for the average flow. After this we subtract the equations for the average
flow from the original equations of motion, yielding the equation for the fluctuating
quantities.

Application of this method to the continuity equation (2.20) for incompressible
flows yields

∂ui

∂xi
= 0, (5.18)

∂u′
i

∂xi
= 0. (5.19)

Both the average velocity field and the fluctuating velocity field are thus divergence-
free.

Next, we apply this procedure to the Navier–Stokes equations in the Boussinesq
approximation (2.21) with the result

∂ui

∂t
+ ∂ui u j

∂x j
= − 1

ρ0

∂ p

∂xi
+ g

T0
θδi3 + ν

∂2ui

∂x2
j

− ∂u′
i u

′
j

∂x j
, (5.20)

and:

∂u′
i

∂t
+u j

∂u′
i

∂x j
+u′

j

∂ui

∂x j
+ ∂u′

i u
′
j

∂x j
− ∂u′

i u
′
j

∂x j
= − 1

ρ0

∂ p′

∂xi
+ g

T0
θ′δi3 +ν

∂2u′
i

∂x2
j

. (5.21)

http://dx.doi.org/10.1007/978-3-319-31599-7_2
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For the energy conservation equation (2.22) we find

∂θ

∂t
+ u j

∂θ

∂x j
= κ

∂2θ

∂x2
j

− ∂u′
jθ

′

∂x j
(5.22)

and
∂θ′

∂t
+ u j

∂θ′

∂x j
+ u′

j

∂θ

∂x j
+ ∂u′

jθ
′

∂x j
− ∂u′

jθ
′

∂x j
= κ

∂2θ′

∂x2
j

. (5.23)

In Eqs. (5.20) and (5.22) the molecular terms are negligible. This is because the
average quantities in these equations scale with the macroscopic scales. The ratio of
the inertia terms compared to the molecular terms is then proportional to the Reynolds
number, and we know this Reynolds number is large for a turbulent flow.

Apart from this, we observe that in these equations new and previously unfamiliar
terms appear for ui and θ: u′

i u
′
j and u′

jθ
′. These terms are called the Reynolds terms.

We first focus on the term u′
i u

′
j . This term can be interpreted as the transport in

the j-direction of momentum per unit mass in the i-direction. Such a transport of
momentum has the same effect as a stress acting on a surface, and for this reason
it is commonly referred to as the Reynolds stress. Figure 5.2 shows a measurement
of the stream wise and wall-normal velocity components in a turbulent flow near
a solid wall. The velocity fluctuations u′ and v′ are obviously correlated, yielding
a negative Reynolds stress u′v′; this implies a momentum transfer in which slower
moving fluid is transported away from the wall and faster moving fluid towards the
wall, i.e. a net transfer of momentum towards the wall that induces a (friction) force
on the plate. In a similar way we can interpret the term u′

jθ
′ as temperature transport.

Both transport terms u′
i u

′
j and u′

jθ
′ originate from the nonlinear advection terms in

the Navier–Stokes equations and the energy equation.
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Fig. 5.2 (left) Time series of the measured stream wise (u) and wall-normal (v) velocity (measured
by means of laser-Doppler velocimetry) in a turbulent boundary layer over a flat plate (see Sect. 6.2).
(right) The correlation of the fluctuations u′ = u − u and v′ = v − v. The ellipse represents the
correlation between the two velocity components, i.e. u′v′, or Reynolds stress. The main axes of
the ellipse are proportional to σu and σv , respectively. The measurement was taken at a distance of
y+ = 20 viscous wall-units from the plate; see (6.19) for a definition of wall units (Data courtesy
of A.D. Schwarz-van Manen.)
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The problem is that both terms are new unknown quantities in the equations for
ui and θ, and because of this the number of unknown quantities increases past the
number of equations. We thus need another relationship to solve our problem. This
is known as the closure problem. This is one of the central problems in theory of
turbulence.

To get to a first closure hypothesis, we compare the turbulent stress tensor �i j =
−ρu′

i u
′
j to the molecular stress tensor σi j = −pδi j + τi j , which we encountered

before in Sect. 2.1. The first term in σi j is the isotropic pressure and the second term
is known as the deviatoric stress tensor. In other words, this is the stress that relates
to deviations from isotropy. For a Newtonian fluid the deviatoric stress is directly
proportional to the strain rate tensor si j , with the result

τi j = 2μsi j = ρ0ν

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (5.24)

This equation is called the constitutive equation.
Analogously, we write for the turbulent stress tensor �i j :

�i j = −1

3
ρ0u

′2
k δi j + ρ0

(
−u′

i u
′
j + 1

3
u

′2
k δi j

)
. (5.25)

Here the first term is referred to as the normal stresses, which we recognize as
equivalent to a ‘turbulent’ pressure. However, in most flows the turbulent pressure
is negligible compared to the static pressure p. The second term on the right-hand
side of (5.25) can be considered as the deviatoric strain. On the basis of (5.24) it is
obvious to write this as

ρ0

(
−u′

i u
′
j + 1

3
u

′2
k δi j

)
= 2ρ0 K si j = ρ0 K

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (5.26)

Here K is the so-called turbulent viscosity coefficient or the ‘eddy viscosity.’ The
relationship (5.26) is known as the Boussinesq closure hypothesis. In a similar way,
it follows for the turbulent temperature flux that

− u′
iθ

′ = Kθ
∂θ

∂xi
, (5.27)

where Kθ is the turbulent diffusion coefficient for the heat transfer.
We are now confronted with two problems. First, under which circumstances are

an hypotheses like (5.26) and (5.27) valid, and second, how do we determine K and
Kθ? We deal with these problems in the following section.

Problems

1. Under what circumstances do you expect that the turbulent pressure becomes
equal the static pressure?

http://dx.doi.org/10.1007/978-3-319-31599-7_2
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5.4 Kinetic Theory of Momentum Transfer

To understand the transport of momentum we first focus on the molecular stress
tensor, and we ask ourselves the following question: How can we couple the friction
forces in a flow to the molecular structure? Let us limit ourselves to an ideal gas, where
momentum is only transferred through collisions between individual molecules. To
this model gas we apply a simple kinetic theory to describe the momentum transfer.

Consider the special case of a one-dimensional flow with a velocity U (y) as
illustrated in Fig. 5.3. According to the continuum hypothesis we have to interpret
the velocity U (y) as the average of the velocities of a large number of individual
molecules in a small volume. Now consider a single molecule at the level y0, and
thus with an average velocity in the x-direction equal to U (y0). The velocities of
the individual molecules of course deviate from this average. Assume here that the
molecule has a velocity component in the direction of the y-axis equal to a, where
a represents the characteristic velocity of individual molecules. This characteristic
velocity is by definition equal to the speed of sound, since that is, in a matter of sense,
the speed at which information can propagate through the fluid.

The molecule displaces itself over a vertical distance λ (where λ is called the mean
free path) before it collides with a molecule at the level y0 − λ. This last molecule
has an average horizontal velocity U (y0 − λ).

Due to this collision, the horizontal momentum M of the gas at the level y0 − λ
changes by an amount of

�M = I1 − I2 = m {U (y0) − U (y0 − λ)} , (5.28)

where m is the mass of the molecule. Per unit time and per unit area there are Nt

collisions, which is
Nt ≈ a n, (5.29)

where n is the number of molecules per unit volume. The total change in momen-
tum per unit time and unit area now follows from the product of (5.28) and (5.29).
According to Newton’s laws, we can interpret this as a force per unit area, that is a
stress, which is

Fig. 5.3 Kinetic momentum
transfer by collisions of
molecules in a gas for
one-dimensional shear flow
U (y). The molecules move
at approximately the speed
of sound a with a mean-free
path λ

U(y0)

U(y0 )

a

y
1

2
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τ12 ≈ Nt�M = α n m a {U (y0) − U (y0 − λ)} , (5.30)

where α is a proportionality constant that equals about 2/3. The term τ12 is the stress
in the x-direction that is applied by the gas at position y0 to the gas at position y0 −λ,
which is called the shear stress. Using a Taylor series expansion of Eq. (5.30), it
follows that

τ12 = α ρ a λ
∂U

∂y

(
1 + 1

2

λ

L
+ · · ·

)
, (5.31)

where ρ = nm is the density of the gas, and L represents a characteristic length
scale, defined as

L = ∂U

∂y

/
∂2U

∂y2
. (5.32)

In all cases for which the continuum hypothesis is valid, λ 	 L , so that

τ12 = ρν
∂U

∂y
, (5.33)

where ν = αaλ is the kinematic viscosity. This expression is consistent with (5.24).
With λ ≈ 7×10−8 m and a ≈ 3.4×102 m/s, it follows that: ν ≈ 1.5×10−5 m2/s,
which is a representative value for the kinematic viscosity of air.

We thus find that our hypothesis (5.24) for a Newtonian fluid can in this case
be supported by a molecular model. Next we attempt to apply this derivation to the
turbulent shear stress −u′

1u′
2 in a one-dimensional flow u(y). For this we apply the

following substitution to the argumentation above:

λ ⇒ L
a ⇒ U

where L and U are characteristic length and velocity scales of an eddy.
Instead of colliding molecules, we now consider interacting ‘eddies.’ After an

analysis that is similar to the analysis above, we find an expression for the turbulent
shear stress −u′

1u′
2 that similar to (5.33), where ν is replaced by the eddy viscosity

K . This eddy viscosity now follows from

K ∼ UL (5.34)

At first, this result seems to confirm the Boussinesq closure hypothesis. However, in
our derivation we made use of the assumption L 	 L , and this is not generally true
for turbulent flows, where the characteristic scale L is of the order of the geometry
of the flow, which is L . In other words, we cannot disregard the second-order and
higher-order terms in the Taylor series.
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From this we have to conclude that the Boussinesq closure hypothesis, sometimes
referred to as K -theory, is, to say the least, only a crude approximation of reality. This
theory suggests that turbulent stresses at certain positions can be described using local
quantities only (such as the strain rate tensor). This goes well for molecular stresses,
but turbulence is not ‘local,’ becauseL ∼ L . In short, K -theory is completely lacking
a physical basis. Consequently, the application of K -theory is purely empirical.

Yet, in practice it turns out that K -theory can provide an apt approximation of
reality under quite a number of circumstances. This holds in particular for flows
with simple geometries. That is why for now we maintain to apply K -theory, or the
Boussinesq closure hypothesis. We have to be aware, however, of the limitations of
this theory. At a later stage we look at some more complicated closure models.

We have found that the eddy viscosity is proportional to the characteristic velocity
and length scale of the turbulence. This is in agreement with our phenomenological
findings in Sect. 4.2. However, our closure problem is not yet completely solved,
because the actual value of K is not yet determined. We will thus have to specify a
relationship describing K in terms of known quantities. These are often empirical re-
lationships. The most common one is the so-called Prandtl mixing length hypothesis.
This hypothesis is based on an estimate of U according to

U ∼ L
∣∣∣∣∂u

∂y

∣∣∣∣ ,
and with this it follows that

K = UL = L2

∣∣∣∣∂u

∂y

∣∣∣∣ . (5.35)

The mixing length L (‘Mischungsweg’) is however still unknown, and for every flow
geometry the mixing length differs. This again underlines the empirical character of
K -theory.

Von Kármán proposed a formulation for K that no longer contains any unknown
quantities. It reads

K = kL2

∣∣∣∣∂u

∂y

∣∣∣∣ , (5.36)

where L is given by (5.32) and where k is the von-Kármán constant with a value
k ≈ 0.4. This formulation is no longer generally used, since it only yields correct
results for turbulent flows in the vicinity of a wall (as we will see in the following
chapter). In all other turbulent flows, Eq. (5.36) fails completely.

Problems

1. The smallest flow scale in a turbulent fluid is the Kolmogorov scale. For the
continuum hypothesis to hold in a turbulent fluid, the condition λ 	 η should be
met, where λ is the mean free path. Show that this condition can be written as
Re1/4 Ma−1 � 1, where Ma represents the Mach number: Ma = u/a.

http://dx.doi.org/10.1007/978-3-319-31599-7_4


Chapter 6
Turbulent Flows

In this chapter we describe some basic turbulent flows in detail, where the turbulence
is generated by shear. These flows can be divided into two categories.

The first category consists of so-called wall turbulence. These are flows near a
fixed wall, such as channel flow (see Sect. 6.1), pipe flow, and a turbulent boundary
layer over a flat wall. The other category entails so-called free turbulence. These are
flows that are unaffected by a wall, and thus take place, so to speak, in free space.
An example is the turbulent jet (see Sect. 6.6). Other free turbulent flows are the
turbulent wake behind a bluff body and the turbulent mixing layer.

6.1 Channel Flow

In this section we consider the flow in a channel with parallel walls, as illustrated
in Fig. 6.1. Our point of departure in the analysis of this flow is a stationary and
horizontally homogeneous turbulent flow. In other words, for the average quantities
it holds that: ∂/∂t = 0, and ∂/∂x = ∂/∂z = 0 (for the velocity only). The average
velocity is given by: ui = (u, v, 0), that is, u = 0. Variations in fluid density and
temperature are not taken into consideration. For this geometry the equations of
motion can be simplified substantially.

Given that for the velocity ∂/∂x = ∂/∂z = 0, the Reynolds-averaged continuity
equation (5.18) reduces to

∂v

∂y
= 0, (6.1)

and using the boundary condition v = 0 for y = 0, it follows that v ≡ 0 (∀y), or, in
other words, the average velocity has a component in the x-direction only, so that:
ui = (u(y), 0, 0).

© Springer International Publishing Switzerland 2016
F.T.M. Nieuwstadt et al., Turbulence, DOI 10.1007/978-3-319-31599-7_6
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Fig. 6.1 The geometry of a
channel flow between two
parallel plates separated by a
distance 2H
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Again, given that: ∂/∂x = ∂/∂z = 0, and ∂/∂t = 0, the Reynolds-averaged
Navier-Stokes equations (5.20) in the x- and y-directions reduce to:

0 = −∂ p

∂x
+ ∂τt

∂y
, (6.2)

with τt/ρ0 = −u′v′ + ν ∂u/∂y, and:

0 = −∂ p

∂y
− ρ0

∂v′2

∂y
. (6.3)

This last equation yields for the pressure: p/ρ0 = f (x) − v′2, which means that:
∂ p/∂x �= f (y). Hence, the pressure in the channel can be written as:

p(x, y) = p0(x) − ρ0v′2(y), (6.4)

where p0 is the mean pressure at the channel wall, which is evidently a function of
x only. Hence, ∂ p/∂x = d p0/dx .

The boundary conditions for this flow read:

τt = 0 for y = H, and: u = 0 for y = 0. (6.5)

Next, we introduce the wall friction velocity u∗, which is defined as:

u∗ =
√

τs

ρ0
, (6.6)

where τs is the wall shear stress. It thus holds that:

τs = ρ0u2
∗ = τt (0). (6.7)

http://dx.doi.org/10.1007/978-3-319-31599-7_5
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A relation exists between u∗ and d p/dx . We can find this by integrating (6.2) in the
y-direction between 0 and H , with the result:

u2
∗ = − H

ρ0

d p0

dx
. (6.8)

With this we can write the integral of (6.2) as:

τt

ρ0
≡ −u′v′ + ν

∂u

∂y
= u2

∗
(

1 − y

H

)
. (6.9)

In other words, the total shear stress is a linear function of y.
Until now all results have been exact. However, without introducing a closure

hypothesis we can not proceed any further. This subsequent step in the analysis is
the focus of the next section.

6.2 Mean Velocity Profile

In older literature, the mean velocity profile in a turbulent channel or pipe flow is
commonly represented as a 1/nth power law with n = 7 for intermediate Reynolds
numbers of 104–105 (Schlichting 1979; White 2011). This form is purely empirical
and lacks any physical background. In Fig. 6.2 such a profile is compared against
experimental data. Although the agreement is reasonable in the central region of the
flow, significant deviations occur near the wall. In addition, the power-law velocity
gradient is discontinuous at the centerline, and it diverges at the wall, i.e., |∂u/∂y| →
∞ for y → 0 (implying infinite friction!). Instead, the mean velocity profile derived
in this section is founded on the equations of motion, in combination with physically
acceptable closure models.

In order to compute the velocity profile in a turbulent channel flow, based on the
equations of motion derived in the previous section, we use of the Prandtl mixing
length hypothesis, defined in (5.35). In this hypothesis an unknown mixing length
occurs, denoted by L. We can also interpret this length L as a characteristic length
scale of an eddy. The choice of L is dependent on the location in the channel. Below
we consider four regions where we use different definitions for L.

I. Core Region

We first consider the region in the center (or the core) of the channel. In that case the
characteristic size of the eddies scales with the dimension of the channel, that is:

L = βH. (6.10)

Recall that in Sect. 4.2 the point of departure for the analysis was that the characteristic
size of the eddies scales with the geometry of the flow domain. In the core region

http://dx.doi.org/10.1007/978-3-319-31599-7_5
http://dx.doi.org/10.1007/978-3-319-31599-7_4
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Fig. 6.2 The dimensionless mean velocity profile u+ of a turbulent flow in a pipe at Re = 10,000 as
a function of the distance r from the centerline of a pipe with diameter D, compared to experimental
data from den Toonder and Nieuwstadt (1997). On the right half are plotted the velocity profiles
in (6.12), (6.15), and (6.18). On the left half is plotted a 1

7 th power profile (Schlichting 1979)

of the channel the flow is completely turbulent, and viscous stresses are negligible
compared to the Reynolds stress. The equation for the velocity profile in the core
region then reduces to:

β2 H 2

∣∣∣∣∂u

∂y

∣∣∣∣ ∂u

∂y
= u2

∗
(

1 − y

H

)
, (6.11)

with the solution:

u = u0 − 2

3

u∗
β

(
1 − y

H

)3/2
. (6.12)

Here u0 is an integration constant that represents the velocity at the center plane of
the channel. The value of β can be obtained from experimental data. For turbulent
pipe flow the value for β is about 0.13; see Fig. 6.2.

II. Wall Region

When we get closer to the wall, the eddies become limited in size because of the
influence of the wall. This means that (6.10) is no longer valid, and it thus follows
for L:

L = k y. (6.13)

Here, k is the ‘Von Kármán’ constant, which was introduced previously in Sect. 5.4.
On the basis of experiments a value of k ∼= 0.4 has been found for this constant.

http://dx.doi.org/10.1007/978-3-319-31599-7_5
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Moreover, close to the wall experimental data indicate that τt
∼= ρ0u2∗. For this

reason, the wall region is sometimes called the constant stress layer or surface layer.
If we assume that the flow is completely turbulent, then the following equation holds:

k2 y2

∣∣∣∣∂u

∂y

∣∣∣∣ ∂u

∂y
= u2

∗, (6.14)

with the solution:

u = u∗
k

ln

(
y

y0

)
. (6.15)

Here, y0 is an integration constant. The velocity profile is thus logarithmic, and
therefore this region is also referred to as the logarithmic wall layer. The result
(6.15) is one of the most fundamental properties of the turbulent velocity profile near
a solid wall. In a later section of this book we return to this velocity profile and to
the interpretation of the constant y0.

III. Viscous Sublayer

It is clear that (6.15) is not valid for y = 0. Thus, one can expect a different velocity
profile very close to the wall. We first consider the eddy viscosity K , which in this
case is defined by the relation: u2∗ = K∂u/∂y. With (6.15), it follows that

K = k u∗ y. (6.16)

We see that K becomes smaller and smaller as we approach the wall. At a certain
distance from the wall, K ∼= ν. This means that the flow can no longer be turbulent,
since viscosity effects become dominant. Turbulent stresses are negligible here, and
for the equation of motion it follows that:

u2
∗ = ν

∂u

∂y
, (6.17)

with the solution:

u = u2∗
ν

y. (6.18)

This expression satisfies the boundary condition: u = 0 for y = 0.
The region where (6.18) is valid is called the viscous sublayer. This does not

mean that the flow is laminar here, because that would imply that there are no
fluctuations whatsoever. In the viscous sublayer velocity fluctuations do occur, but
they are induced by the turbulence above the viscous sublayer.

We have now deduced the velocity profile in three separate regions. In order to
determine the complete velocity profile, we need to specify the so-called matching
conditions.
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Fig. 6.3 Dimensionless mean velocity profile u+ as a function of the dimensionless wall distance
y+ for turbulent pipe flow with Reynolds numbers between 4 × 103 and 36 × 106. Data from
Nikuradse (1932), Laufer (1954), den Toonder and Nieuwstadt (1997), and McKeon et al. (2004).
The solid line (——) corresponds to the logarithmic profile in (6.15); the broken line (− − −)
corresponds to the linear profile in (6.18). The open symbols (o) correspond to the data in Fig. 6.2

IV. Viscous Sublayer ⇔ Logarithmic Layer

In order to match the viscous sublayer to the logarithmic layer, we introduce the
dimensionless variables y+ and u+, which are defined as follows:

u+ = u

u∗
, and: y+ = y

u∗
ν

. (6.19)

These dimensionless units for wall distance and velocity are commonly referred to
as wall units.

Figure 6.3 shows the results of several measurements of the mean velocity profile
in the viscous sublayer and in the logarithmic layer. It follows that the viscous sublayer
profile (6.18) is valid for y+ < 5 and that the logarithmic profile (6.15) is valid for
y+ > 30. The value y+ = 5 can be interpreted as the thickness δv of the viscous
sublayer, or

δv = 5
ν

u∗
.
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It is found that (6.15) and (6.18) are in good agreement, provided that the two solutions
match at y+ = 11 (see Fig. 6.3). This means that y0 equals

y0 = 0.135
ν

u∗
. (6.20)

In other words, y0 is proportional to the thickness of the viscous sublayer.
Thus, the mean velocity profile is given by:

u+ =
{

y+ 0 < y+ < 5
1
k

[
ln(y+) + �

]
y+ > 30

(6.21)

where k is the Von Kármán constant with a value k ∼= 0.4, and � = 2.0, which
follows from the intersection of the two solutions at y+ = 11; see Fig. 6.3. Conven-
tionally, we refer to the intermediate region 5 < y+ < 30 as the buffer layer, where
both the viscous stress and the turbulent stress are important, but no simple solution
exists. However, the mean velocity profile in the buffer layer and logarithmic layer
can be described by a displaced log-law (Hunt et al. 2006), that is

u+ = 1

k

[
ln

(
y+ − �+

v

) + �
]
, (6.22)

with: �+
v

∼= 6. The physical interpretation is that the strong shear layer that occurs
at the top of the viscous sublayer effectively blocks eddies to reach the solid wall
and implies a scaling of the eddy length scale in the turbulent flow above the viscous
sublayer proportional to (y − �v).

V. Logarithmic Layer ⇔ Core Region

For the transition between the core region and the logarithmic wall layer, as described
by (6.12) and (6.22) respectively, we assume that the mean velocity profiles are
matched at a position y = αH . From this it follows that:

u∗
k

{
ln

(
α

u∗ H

ν

)
+ 2.0

}
= u0 − 2

3β
u∗(1 − α)3/2, (6.23)

where the integration constant u0, which is yet unknown, is expressed in other vari-
ables. Experimental data indicate that α ∼= 0.15.

Now on the basis of (6.12), (6.21) and (6.23) we have a mean velocity profile
that is valid over the whole channel. We can consider the expression in (6.23) as an
equation for u0/u∗. We call this a friction law, which is further elaborated in Sect. 6.3.

In Figs. 6.4 and 6.5 are shown the turbulent stress and viscous stress measured in
a turbulent pipe flow at Re = 10,000 (den Toonder and Nieuwstadt 1997). In the
core region (I) the total stress is dominated by the turbulent stress and is directly
proportional to the distance from the centerline; in the wall layer (II) the turbulent
stress is nearly constant, while the viscous stress is still negligible; in the viscous
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Fig. 6.4 The total normalized stress τt/ρ0u2∗ (− − −), defined in (6.9), as a function of the distance
r from the centerline of a pipe with diameter D. The total stress consists of a contribution from the
Reynolds stress-u′v′ (•) and the viscous stress ν∂u/∂r (o). Experimental data for a turbulent pipe
flow at Re = 10,000 (den Toonder and Nieuwstadt 1997); cf. Fig. 6.2
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Fig. 6.5 The same data as in Fig. 6.4, but now as a function of the dimensionless distance y+ from
the pipe wall in a semi-log plot. I core region; II logarithmic wall region; III viscous sublayer; IV
buffer layer. Experimental data for a turbulent pipe flow at Re = 10,000 with D+ = 624 (den
Toonder and Nieuwstadt 1997) (note that r = 0 corresponds to y+ = 312 and r = 1

2 D to y+ = 0)

sublayer (III) the viscous stress is dominant, while in the buffer layer (IV) both the
viscous stress and the turbulent stress are important. The logarithmic wall region
ranges from y+ = 30 to r/D = 0.34 (y+ ∼= 100), where the data begin to deviate
from the profile in (6.22); see also Fig. 6.3. This corresponds to a value of α = 0.16.

Problem

1. Consider a turbulent Couette flow, defined as the flow between two plane walls
moving at a speed U0 relative to each other. The distance between the walls is
2H .
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(a) Identify the different regions in this turbulent flow, and deduce for each of
those regions an expression for its velocity profile.

(b) Deduce an expression for the friction coefficient c f = 2(u∗/U0)
2, see (6.31),

when we use the Prandtl mixing length hypothesis for the eddy viscosity K
in the core region. Repeat this calculation for a constant eddy viscosity K
in the core region.

(c) Calculate or estimate all the terms in the kinetic energy equation (see Chap. 7)
of the average flow and of the turbulence. Sketch the profiles of these terms.

6.3 Scaling of Turbulent Wall Flows

In the previous section we focused on the special geometry of channel flow. In this
section these results are generalized to any turbulent wall flow. We mean by a wall
flow basically any turbulent flow in the vicinity of a solid wall. Besides channel flow
or pipe flow, another example of this type of turbulent flow is boundary layer flow,
as illustrated in Fig. 6.6. Both channel flow and pipe flow are homogeneous in the
axial direction, i.e., in the direction of the x-axis as defined in Fig. 6.1. However,
boundary layer flow is not horizontally homogeneous, but develops as a function of
the x-coordinate; see Fig. 6.6.

This development is slow, as can be seen in Fig. 6.7, where a visualization of a
boundary layer over a flat plate is shown. We can describe such a slow development
using the boundary layer equations that are discussed in Sect. 6.6. For now it can
be assumed that this development does not directly influence the structure of the
turbulence. The turbulent boundary layer is, so to speak, in a local equilibrium at every
x-position. For this reason we can describe the turbulent boundary layer structure in
the same way we could describe the turbulent flow in a channel or pipe.

y

x

(x)
u(x,y)

U0
V 0

u

v

Fig. 6.6 Another wall-bounded turbulent flow: the turbulent boundary layer; cf. turbulent channel
or pipe flow in Fig. 6.1. Illustration adapted from: Tennekes and Lumley (1972)

http://dx.doi.org/10.1007/978-3-319-31599-7_7
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Fig. 6.7 Visualization of a turbulent boundary layer flow over a flat plate. Image from Van Dyke
(1982)
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scaling regions scaling parameters

In every turbulent wall flow we can distinguish two scaling regions: the outer
region and the inner region. Both regions can be described in terms of characteristic
scaling parameters. This is illustrated in Fig. 6.8.

For the outer region the velocity scale is the friction velocity u∗ and the length
scale is H , where H is a characteristic length scale of the flow geometry: for example,
the diameter of a pipe or the thickness of a boundary layer. On the basis of these
observations we find that in the outer region the following scaling law is valid for
the velocity profile:

u0 − u

u∗
= F

( y

H

)
, (6.24)

where u0 is a reference velocity. This would be the mean velocity at the centerline
of a pipe or center plane of a channel, while for boundary layer flow u0 would be the
free-stream flow velocity outside the boundary layer. Equation (6.24) is known as the
defect law. In Fig. 6.9 the defect law is illustrated for three different flow geometries.
In all three cases the defect law attains the same ‘slope’, that is −2.5 (which is the
reciprocal of the Von Kármán constant), when approaching the wall. The constants in
each case, i.e., 0.8, 0.65 and 2.35 respectively, are determined by the definition for the
outer region length scale (see Fig. 6.8). Hence, the defect law describes a universal
scaling behavior of the outer flow region. Note how the experimental data for defect
law in Fig. 6.9a collapse onto the solid line towards smaller y/R for increasing
Reynolds number. This implies that full universality of the outer scaling is reached
for Re → ∞.

For the inner region the scaling parameters are u∗ and y0. In the next section it is
shown that y0 is a length scale that relates to the properties of the wall. On the basis
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Fig. 6.9 The defect law for a turbulent pipe flow (with R = 1
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of experimental data the following scaling law holds for the mean velocity profile in
the inner region:

u

u∗
= f

(
y

y0

)
. (6.25)

This equation is known as the ‘law of the wall’. It expresses how the velocity profile
becomes independent of the flow geometry close to the wall, that is, it is independent
of the length scale H . This is illustrated in Fig. 6.3 for a smooth wall, for which
y+

0 = 0.135, according to (6.20). We previously interpreted y0 as being proportional
to the thickness of the viscous sublayer.

For a turbulent wall flow it holds that H/y0 � 1, because with the value for y0

as mentioned above, it follows that

H

y0
∼ Hu∗

ν
� 1.
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This means that both scaling laws (6.24) and (6.25) are valid in completely different
regions of the flow. We expect, however, an overlap region where both scaling laws
are valid at the same time (see Fig. 6.8). This area is called the inertial sublayer.
The solutions of (6.24) and (6.25) have to be continuous here, and we refer to this
as the matching condition. A direct matching of the velocity profiles is however not
possible, due to the difference in the expressions for the outer and inner regions. That
is why we apply the matching condition to the velocity gradients, according to:

lim
y/H→0

(
∂u

∂y

)
outer

= lim
y/y0→∞

(
∂u

∂y

)
inner

. (6.26)

Here, the limit y/H → 0 means that we are, so to speak, considering the ‘bottom’
of the outer region, while y/y0 → ∞ indicates the ‘top’ of the inner region.

After substitution of ye = y/H and yi = y/y0 in (6.24) and (6.25), respectively,
we find after some manipulation that

lim
ye→0

ye
∂F

∂ye
= lim

yi →∞ yi
∂ f

∂yi
. (6.27)

Both limits are a function of different variables, and a solution of (6.27) is only
possible when both limits equal a constant value. This constant is equal to 1/k,
where k is the Von Kármán constant. This limit is considered to be the most general
definition of the Von Kármán constant.

It then follows for the velocity profile in the overlap region that

F = 1

k
ln ye + A ⇒ u − u0

u∗
= 1

k
ln

( y

H

)
+ A, (6.28)

f = 1

k
ln yi ⇒ u

u∗
= 1

k
ln

(
y

y0

)
. (6.29)

In the solution of f we take the integration constant equal to zero. We thus retrieve
the logarithmic velocity profile in (6.22). However, the essence of this result is that
the logarithmic velocity profile appears to be a direct consequence of the existence
of two different scaling regions that partially overlap each other.

Equations (6.28–6.29) can be further elaborated by eliminating the velocity u. It
then follows that

u0

u∗
= 1

k
ln

(
H

y0

)
− A. (6.30)

With y0 = 0.135ν/u∗ in (6.20), we can rewrite this equation as:

u0

u∗
= 1

k
ln

(
Hu∗
ν

)
+ 5.0 − A.
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Fig. 6.10 Friction law for pipe flow, with the friction factor λ, defined in (6.34), as a function of
the Reynolds number ReD = Ub D/ν, based on the bulk velocity Ub and pipe diameter D. The
lines represent: 1 the friction factor for laminar Poiseuille flow (λ = 64/ReD); 2 the friction law
(for a smooth wall) in (6.35), with A = 1.884 and B = 0.331 (Zagarola and Smits 1998); 3 the
Blasius friction law (λ = 0.316Re−1/4

D ). Experimental data from: Nikuradse (1932), den Toonder
and Nieuwstadt (1997), McKeon et al. (2004)

This expression is referred to as a friction law. Commonly, u0/u∗ relates to a friction
coefficient c f , defined as:

c f ≡ τs
1
2ρ0u2

0

= 2

(
u∗
u0

)2

, (6.31)

where τs is again the wall shear stress, defined in (6.7).
The friction law for a turbulent pipe flow is illustrated in Fig. 6.10. For pipe flow

it is common to use the average velocity Ub taken over the entire pipe cross section,
given by

Ub = Q
1
4πD2

, (6.32)

where Q is the volume flow rate (and ṁ = ρ0 Q is the mass flow rate). Hence, Ub

is commonly referred to as the bulk flow velocity. The ratio of the bulk velocity and
mean centerline velocity in a turbulent pipe flow is approximately given by

Ub/u0
∼= 0.8167, (6.33)

which is found by integrating a 1
7 th power velocity profile1 (Schlichting 1979; White

2011). For a pipe flow with diameter D and length L , it holds that (White 2011)

− 1

ρ0

d p0

dx
= 4u2∗

D
and �p0 = λ · L

D
· 1

2ρ0U 2
b ⇒ λ = 8

(
u∗
Ub

)2

. (6.34)

1For: u(y) = u0(y/R)1/n we find for a pipe flow that: Ub/u0 = 2n2

(2n+1)(n+1)
.
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Then, by substitution, the friction law in (6.30) for turbulent pipe flow can be writ-
ten as:

1√
λ

= A log
(

ReD · √
λ
)

− B, (6.35)

where A and B are constants. This implicit expression is due to Prandtl, and can be
used to iteratively determine the value of λ for given ReD . In Fig. 6.10 the friction
coefficient λ is plotted as a function of the Reynolds number. Prandtl found A = 2.0
and B = 0.8 by fitting the data of Nikuradse (1932). Recent measurements over a
very large range in Reynolds number yielded: A = 1.884 and B = 0.331 (Zagarola
and Smits 1998). Although these constants differ from the previous set of constants,
the resulting friction law is nearly identical. The friction law in (6.35), which is
essentially based on the equations of motion and the Prandtl mixing length closure,
is valid over the full range of Reynolds numbers for which experimental data exist,
i.e., between ReD = 3 × 103 and 36 × 106; see Fig. 6.10. An expression similar to
(6.35) can be obtained for channel flow by rearranging (6.23). Using the constants:
k = 0.40, y+

0 = 0.135 (� = 2.0), α = 0.16, β = 0.13, and (6.33), one finds:
A = 1.67 and B = 0.5.

Figure 6.10 also includes the Blasius friction law (Schlichting 1979):

λ = 0.316 Re−1/4
D , (6.36)

which is approximately valid for Reynolds numbers between 104 and 105. The Blasius
friction law is frequently used, although it is based on the empirical 1

7 th power law
for the mean velocity profile:

u(y)

u∗
= C

( yu∗
ν

)1/7 ⇒ u0

u∗
= C

(
Ru∗
ν

)1/7

⇒ Ub

u∗
= C ′

(
Ru∗
ν

)1/7

⇒ Ub

u∗
= C ′′

(
RUb

ν

)1/8

,

with: R = 1
2 D, Ub/u0 = 0.8167, and where C ′′ (=1.217 × 10−6) is an empirical

constant (likewise C and C ′). Thus, despite its attractively simple form, the Blasius
friction law lacks a solid physical basis.

Problems

1. Consider a turbulent boundary layer. Suppose we are capable of doubling the
thickness of the viscous sublayer. Will the friction increase or decrease?

2. Argue how neither y0 nor D form a characteristic length scale in the overlap area
between the outer and the inner region. The only scales that remain are u∗ and
y. Using dimensional analysis, derive a scaling law for the velocity gradient and
show that this leads to a logarithmic velocity profile.



6.4 Wall Roughness 101

6.4 Wall Roughness

So far we did not consider the properties of the wall. Every wall and every wall
material is characterized by (small) irregularities, which we refer to as roughness.
These roughness elements have a characteristic height h (see Fig. 6.11). Examples
of wall roughness include the sand and pebbles on the bottom of a riverbed (h ∼
1–100 mm), landscapes covered by grass, crops, and the tree canopy of a forest
(h ∼ 1 cm to 1–5 m). Apart from roughness with a random structure (Fig. 6.11a),
one may also encounter more or less structured roughness, such as the inside of a
drawn pipe (Fig. 6.11b) or a corrugated pipe, riblets on shark skin, a planned city
(h ∼ 10–100 m), or sand dunes (h ∼ 10–500 m). Even surfaces that are considered
to be ‘smooth’ have a finite roughness height, as illustrated in Fig. 6.11a, b.

Nikuradse made a thorough study of turbulent flows in pipes with rough surfaces
by covering the inner walls of pipes with sand grains with a rather narrow size distri-
bution, which provides a rather well-defined roughness scale. These measurements
have been the basis of friction charts defined by Moody and Colebrook that can be
found in almost any text book on fluid mechanics (e.g. White 2011).

Now consider the Reynolds number hu∗/ν, which can be interpreted as the ratio
between the roughness height h and the thickness of the viscous sublayer, ∼ ν/u∗.
When hu∗/ν < 1, the roughness height is smaller than the thickness of the viscous
sublayer. In that case the wall is considered to be smooth, and the mean velocity

(a) drawn aluminium pipe (b) steel pipe surface (c) shark skin

(d) forest canopy (e) cityscape (f) desert dunes

Fig. 6.11 Wall roughness of a characteristic height h (∼=4 krms). Examples of wall roughness: a
surface (0.20 × 0.16 mm2) of a drawn aluminum pipe: krms = 0.16 µm (Shockling et al. 2006); b
scanned surface (1.4×1.1 mm2) of a non-rusted commercial steel pipe: krms = 5µm (Langelandsvik
et al. 2008); c scales of the great white shark: krms ∼= 0.1 mm (Bechert et al. 2000); Aerial views of
d tropical forest in Gabon (photo J. Westerweel), and e Barcelona and f the Namib desert (source
Google Earth)
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profile in (6.21) remains valid. In other words, the roughness is too small to affect
the mean velocity profile. The value of y0 is given by (6.20), which was considered
to scale with the thickness of the viscous sublayer.

The situation changes when hu∗/ν > 1. The roughness now protrudes through
the viscous sublayer, and the surface is now considered to be a rough wall. The flow
in the vicinity of the wall is now mainly dominated by separating flow from the
roughness elements and the generation of small detached eddies. This is essentially
an inertial process, and therefore viscous effects are negligible. In other words, a
viscous sublayer can no longer be identified.

Consequently, the integration constant y0 is no longer proportional to ν/u∗, but
to the roughness height h. On the basis of experimental data from pipe flows, where
the wall was roughened using sand grains, it is found that:

y0 = 1

30
h. (6.37)

For this reason, y0 is sometimes referred to as the roughness length. In short, the
integration constant y0 is representative of the wall properties.

We now combine the velocity profiles for the smooth and the rough wall as follows:

u = u∗
{

1

k
ln

( y

h

)
+ B ′

}
, (6.38)

where B ′ is a function of the Reynolds number hu∗/ν. The term B ′ is illustrated in
Fig. 6.12. It has to meet the following asymptotic behavior:

B ′ =

⎧⎪⎨
⎪⎩

2.5 ln

(
hu∗
ν

)
+ 5 for:

hu∗
ν


 1 (i.e., a smooth wall),

8.5 for:
hu∗
ν

� 1 (i.e., a rough wall).
(6.39)

Fig. 6.12 The roughness
parameter B ′ in (6.38) as a
function of the dimensionless
roughness hu∗/ν. After:
Monin and Yaglom (1973)
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This last expression implies that the influence of viscosity on the wall region vanishes
for a rough wall. Consequently, in the limit hu∗/ν → ∞ the thickness of the viscous
sublayer becomes infinitely small. In that case every wall becomes eventually rough.
Hence, given that in many technical applications and in nature the Reynolds numbers
can be very high, smooth-wall turbulent flows are the exception, rather than the rule.

The asymptotes in (6.39) have been indicated by lines in Fig. 6.12. As a direct
consequence of this expression for B ′ it follows that the friction law (6.30) becomes
a function of hu∗/ν. The result of this being that all our scaling relations for the mean
velocity profile, as discussed in Sect. 6.3, remain valid. The effect of roughness is, so
to speak, absorbed in adjusting the constant in the logarithmic profile. In particular,
the velocity profile in the outer region remains unchanged. This type of roughness
is commonly referred to as k-type roughness. Other types of roughness do exist for
which such simplifications does not hold. Take for example a grooved wall where the
grooves appear at a regular spacing perpendicular to the direction of the flow. Then,
under certain circumstances, the wall geometry does influence the velocity profile in
the outer region; then the roughness is referred to as d-type roughness.

Although in general, a rough wall increases friction, or flow drag, it happens that
special surfaces can effect a drag reduction. It appears that small riblets that are
aligned with the flow direction can achieve a significant drag reduction up to 10 %.
The maximum drag reduction occurs for a rib spacing s between 14 and 20 viscous
wall units, i.e., 14 < s+ < 20, as illustrated in Fig. 6.13. This is an example of bio-
mimetics, since the development and application of ribbed surfaces has been inspired
by the presence of ribbed scales on sharks (Bechert et al. 2000); see Fig. 6.11c.

Problem

1. In Fig. 6.10 we find that the wall friction ρu2∗ for a smooth pipe wall is a function
of the Reynolds number. For a rough wall the wall friction eventually becomes
independent of the Reynolds number. Explain this by generalizing (6.30) for a
rough wall.
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(a) general riblet geometry
(b) performance of various rib geometries

Fig. 6.13 a General geometry of a ribbed surface with a rib spacing s and rib height h. b Drag
reduction performance of various rib geometries. From: Bechert et al. (2000)
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6.5 Pressure Gradient

So far we have ignored the influence of any possible pressure gradients on the mean
velocity profile. This implies that for the case of a turbulent boundary layer the results
so far apply to a boundary layer over a flat plate with a constant-speed outer flow.
In a channel flow or a pipe flow, however, a pressure gradient is evidently present,
in order to force the fluid through the channel or pipe. It appears that, for a channel
or pipe, the pressure gradient has no noticeable effect on the mean velocity profile,
and thus its effect can be safely ignored. On the contrary, in boundary layer flows
(in particular those over curved surfaces) pressure gradients can occur that cannot
be neglected and that significantly affect the flow.

The question is, how does a pressure gradient modify the velocity profiles dis-
cussed in Sect. 6.3? Before this question can be answered, we first elaborate on the
velocity profile in the outer region. Here, we limit ourselves to turbulent boundary
layer flow.

The reference velocity u0 is in this case the undisturbed velocity outside the
boundary layer. For the length scale in the outer region we take the boundary layer
thickness δ. In its general form the mean velocity profile in the outer region is given
by the defect law (6.24). However, this is not really a suitable approach, since in
practice we often need an explicit expression for the mean velocity profile.

When we consider the difference of the mean velocity profile in the outer region
and the logarithmic velocity profile (6.29), it appears that this difference has a uni-
versal shape. This difference is referred to as the ‘law of the wake’. It is defined as

u

u∗
= 1

k
ln

(
y

y0

)
+ 2�

k
fw

( y

δ

)
, (6.40)

where � is a constant, known as the Coles parameter. Incidentally, the expression
‘law of the wake’ suggests that the function fw resembles the profiles that are found
in the wake flow behind bluff bodies. This underlines the notion that the turbulence in
the outer regions of wall-bounded turbulent flows is reminiscent of free turbulence,
which is discussed in Sects. 6.6 and 6.7.

Several expressions for the function fw have been proposed in the literature. One
of the most well-known expressions is due to Hinze (1975):

fw(η) = sin2
(π

2
η
)

, (6.41)

with η = y/δ. Using (6.40) and (6.41), the mean velocity profile in the outer region
(including the wake region and the overlap area) can be described completely.

Now that we have an explicit expression for the mean velocity profile, we can
consider the influence of the pressure gradient on the velocity profile. We assume that
in the inner region the velocity profile is dominated by the wall shear stress τs ≡ ρu2∗.
It then follows that in this area the mean velocity profile remains unaffected. Hence,
the law of the wall (6.25) retains its universality.
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The influence of the pressure gradient thus appears to be restricted to the outer
region. The pressure gradient d p0/dx forms, so to speak, an additional variable with
which we can define a new dimensionless parameter. For this we take

β∗ = δ∗

τs

d p0

dx
, (6.42)

where δ∗ represents the so-called displacement thickness, defined as (White 2011):

δ∗ =
∞∫

0

(
1 − u

u0

)
dy. (6.43)

The parameter β∗ is known as the Clauser parameter. When β∗ < 0 the pressure
decreases in the direction of the flow, which is referred to as a favorable pressure
gradient. The opposite case, i.e., β∗ > 0, is then referred to as an unfavorable, or
adverse, pressure gradient; the fluid then flows against a rising pressure. Conse-
quently, for increasing values of β∗ the boundary layer eventually separates from the
wall and reverses its direction (White 2011).

The defect law (6.24) in the outer region of the turbulent boundary layer is now
generalized to:

u − u0

u∗
= F

( y

δ
,β∗

)
. (6.44)

It has to be noticed here that this profile is actually only valid for a so-called equi-
librium boundary layer. This is a boundary layer for which β∗ is constant. Only in
that case it can be proven that the velocity profile retains its similarity as suggested
by (6.44). However, in practice the profile described by (6.44) appears to provide a
satisfactory description under other non-equilibrium circumstances as well.

There remains to exist an overlap region (Fig. 6.8) in which a logarithmic velocity
profile (6.29) occurs. However, as β∗ increases, this logarithmic region becomes
increasingly thinner. In the limiting case of separating flow, when by definition the
shear stress on the wall vanishes (i.e., u∗ = 0), there is no logarithmic layer left. The
velocity profile then appears to be proportional to y2 (see Problem 1 below). The
velocity profile for various values of the pressure gradient is illustrated in Fig. 6.14.

The attractiveness of the law of the wake, as it was described above, is that its
dependence on β∗ is fully described by the Coles parameter �. On the basis of
experimental data it is found that

β∗ ≈ −0.4 + 0.76 � + 0.42 �2. (6.45)

With this expression the mean velocity profile in a turbulent boundary layer exposed
to a pressure gradient is completely described.
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Fig. 6.14 The dimensionless mean velocity profile u+ as a function of yu∗/ν for various values
of the pressure gradient, expressed in terms of the Clauser parameter, β∗, defined in (6.42). The
experimental data show the mean velocity profiles in a favorable pressure gradient (β∗ < 0,� =
0.25), a (nearly) neutral pressure gradient (β∗ ≈ 0,� = 0.6), mild (β∗ ≈ 1,� = 1.1), strong
(β∗ ≈ 3,� = 2.2), and very strong (β∗ ≈ 12,� = 4.5) adverse pressure gradients, and a
separating boundary layer. (� is the Coles parameter in (6.40).) After: White (1991)

To finalize this section, we briefly discuss the friction coefficient c f defined in
(6.31). The effect of a pressure gradient on the value of c f is commonly described
by empirical correlations. The one that is most commonly used is due to Ludwieg
and Tillmann (1950):

c f = 0.246

(
u0θ

ν

)−0.268

10−0.678H , (6.46)

where θ is the momentum loss thickness, and H the shape factor, defined as
(White 2011)

θ =
∞∫

0

u

u0

(
1 − u

u0

)
dy, and: H = δ∗

θ
, (6.47)

with δ∗ given in (6.43).

Problems

1. Consider a boundary layer over a smooth flat plate exposed to a pressure gradient
d p0/dx > 0. The wall shear stress equals τs ≡ ρ0u2∗ and the free-stream velocity
outside the boundary layer is equal to u0.
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(a) Define a length scale L p as

L−1
p = 1

τs

d p0

dx
.

Discuss the physical background of this length scale. (Notice the resem-
blance to the Obukhov length defined in (B.3).)

(b) Discuss the velocity profile in the boundary layer as a function of y/L p.
(c) Derive an explicit expression for the mean velocity profile for y/L p � 1.
(d) Determine the shape of the velocity profile for τs = 0.

2. Calculate the value of β∗ in a channel flow and interpret the result.

6.6 Free Turbulent Flows

In this section we focus on the other type of turbulent flow: free turbulent flows.
At the beginning of this chapter this was defined as unbounded turbulent flow, i.e.,
turbulence that is not influenced by the presence of a solid wall. The most important
examples are the free jet, the wake flow behind a bluff body, and the turbulent mixing
layer. These examples are illustrated in Fig. 6.15.

In all examples of Fig. 6.15 the flow develops as a function of the x-coordinate.
However, this development is slow. In other words, the length scale of the flow field
in the x-direction is much larger than the length scale in the y-direction. This implies
that the gradients in the x-direction are much smaller than those in the y-direction, i.e.,

∂

∂x
≈ 1

L

 ∂

∂y
≈ 1

�
, (6.48)

or � 
 L . This geometrical condition enables us to reduce the Reynolds-averaged
continuity equation (5.18) and Navier-Stokes equations (5.20) to a set of equations
that is referred to as the boundary layer equations. For the case of a two-dimensional
flow (for example, a planar jet, the wake behind a very long cylinder, or the mixing
layer behind a flat splitter plate), the complete equations of motion for a stationary
average flow then read:

∂u

∂x
+ ∂v

∂y
= 0, (6.49)

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ0

∂ p

∂x
− ∂

∂x

(
u′2

)
− ∂

∂y

(
u′v′

)
, (6.50)

u
∂v

∂x
+ v

∂v

∂y
= − 1

ρ0

∂ p

∂y
− ∂

∂y

(
v′2

)
− ∂

∂x

(
u′v′

)
. (6.51)

http://dx.doi.org/10.1007/978-3-319-31599-7_5
http://dx.doi.org/10.1007/978-3-319-31599-7_5
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Fig. 6.15 Examples of free turbulent flows: the turbulent jet, wake, and mixing layer, including the
definitions of the coordinate systems and of the length scales and velocity scales. After: Tennekes
and Lumley (1972)

In these equations the molecular terms have also been ignored (see the discussion in
Sect. 5.3). We also disregard any density effects.

In order to estimate the magnitude (and thus importance) of the various terms
in (6.49–6.51), we need to introduce an appropriate velocity scale. For the mean
velocity u in the x-direction we define us (see Fig. 6.15) as the characteristic velocity
scale. It is also assumed that the spatial variation in u scales with us . An example
of such a condition is a jet flow, where often us is taken equal to the mean velocity
at the jet axis (see Sect. 6.7). However, alternative conditions can occur in which the
spatial variation in u is much smaller than u itself. An example of this is situation is
found in Problem 1 below.

http://dx.doi.org/10.1007/978-3-319-31599-7_5
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Using the continuity equation (6.49) and the expression (6.48) it follows that

∂v

∂y
∼ O

(vs

�

)
= −∂u

∂x
∼ O

(us

L

)
,

so that we find for the characteristic scale vs of v that: vs = us�/L . For the scaling
of turbulence we use the macroscale U . We now assume that the following relation
exists between both velocity scales:

U2

u2
s

= O
(

�

L

)
. (6.52)

This needs to be verified for every flow.
Given the characteristic scales for the means of the two velocity components, we

now estimate the magnitude of the terms in Eq. (6.51) for the y-momentum. Under
the condition (6.52) it follows that when the largest terms are retained:

0 = − 1

ρ0

∂ p

∂y
− ∂

∂y

(
v′2

)
.

Integration of this expression yields:

p = p0 − ρ0v′2,

where p0 represents the pressure outside the turbulent flow region. Here we assume
that p0 �= f (x), so that the pressure gradient term in (6.50) can be expressed as:

1

ρ0

∂ p

∂x
= − ∂

∂x

(
v′2

)
.

Substitution in the equation of the x-momentum (6.50) leads to:

u
∂u

∂x
+ v

∂u

∂y
= − ∂

∂x

(
u′2 − v′2

)
− ∂

∂y

(
u′v′

)
.

Once more, we apply the scaling in (6.52) to this last equation, which indicates that

the first term on the right is very small. (In addition, it is observed that u′2 ≈ v′2 in
most free turbulent flows; see for example Fig. 6.19.) It now follows that

u
∂u

∂x
+ v

∂u

∂y
= − ∂

∂y

(
u′v′

)
. (6.53)

This expression taken together with the continuity equation (6.49), describe a flow
geometry for which the dimension in one direction is much smaller compared to the
other directions. This has coined the name ‘boundary layer equations’.
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Fig. 6.16 Visualization of a turbulent mixing layer, taken by Brown and Roshko (1974), in simul-
taneous top view and side view. From: Van Dyke (1982)

For a three-dimensional axisymmetrical geometry, a similar set of equations can
be found that describe the fluid motion in a cylindrical coordinate system with an
axial coordinate x and a radial coordinate r . The result reads:

∂u

∂x
+ 1

r

∂

∂r
(rv) = 0, (6.54)

u
∂u

∂x
+ v

∂u

∂r
= −1

r

∂

∂r

(
ru′v′

)
. (6.55)

For details on the derivation of these equations we refer to any of the standard text
books from the literature list.

Given that the evolution of the flow in the x-direction is slow, the sizes of turbulent
eddies do not directly depend on L . The dimensions of the eddies at position x are thus
only determined by the local length scale �(x) (see Fig. 6.15), which is for example
proportional to the thickness of the turbulent region. This is further illustrated in
Fig. 6.16.

Thus, � appears to be the only characteristic length scale. This is an important
difference from wall-bounded turbulence where different scaling regions are present
with their own characteristic length scale. In particular, we can associate the length
scale � with the length scale H of the outer region, which we introduced in Sect. 6.3.
That is why in many ways free turbulence is comparable with turbulence in the outer
region. This was already noted in the discussion of the law of the wake in Sect. 6.5.

On the basis of the scaling arguments discussed above, we can write

u = us f
( y

�

)
, and: − u′v′ = U2 g

( y

�

)
. (6.56)
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Here, �, U and us are essentially functions of x , expressing how turbulent eddies
grow with increasing x (see Figs. 6.15 and 6.16). The principal difference with wall-
bounded turbulent flows is that the expressions in (6.56) are valid everywhere in the
flow. When we use a closure model that relates the Reynolds stress to the gradient
of the mean velocity (see Sect. 5.4), the function g can be expressed in terms of the
function f . This means that we can describe the structure of the flow, provided it is
appropriately scaled, by a single function. This result is referred to as self-similarity
or self-preservation of the flow.

The fact that the turbulent region increases in size for increasing x means that
the external fluid, which is not yet turbulent (i.e., which is irrotational), has to be
absorbed, so to speak, by the turbulent flow region. This process is called entrainment.
This suggests that a clear distinction can be made between the turbulent flow region
and the flow region that is not turbulent. This indeed appears to be the case when we
look at the visualizations of the boundary layer in Fig. 6.7 and the mixing layer in
Fig. 6.16. Here the turbulent and non-turbulent flow regions are clearly separated by
a sharp boundary.

Another striking feature of Figs. 4.6 and 6.16 is that we can recognize in the mixing
layer large-scale structures (associated with the macrostructure) in the presence of
small-scale structures (i.e., the microstructure). In Sect. 4.2 we discussed the physical
aspects of these different structures. In Fig. 6.16 the large-scale structure is clearly vis-
ible. The top view indicates that these large-scale vortices are two-dimensional. They
remind us of the vortices that relate to the Kelvin–Helmholtz instability (Sect. 3.2),
which is also responsible for the emergence of turbulence in this flow geometry. Such
large-scale, regular and reproducible structures are observed in nearly all turbulent
flows, and they are commonly referred to as ‘coherent structures’. A significant
amount of research has been dedicated to these coherent structures, primarily aimed
at a better understanding of their dynamics and thus at a better understanding of
turbulence as a whole. We return to these structures Sect. 8.2.

Finally, it is noticed that the interface between the turbulent and non-turbulent
flow regions is strongly convoluted with many larger and smaller bulges, as shown
in Figs. 6.17 and 6.18. It has been suggested that this interface would have a fractal
structure (Sreenivasan 1991), which we encountered before in Problem 4 of Sect. 4.2.
A direct consequence of this particular shape is that a fixed measurement probe
close to the interface would only measure a turbulent signal part of the time. This
phenomenon is called intermittency and is thus attributable to the fact that a particular
variable, in this case turbulence, is not uniformly distributed in space.

Problems

1. In deriving (6.53), we made use of the fact that u ∼ us . This may not always be
the case. An example is the wake flow or a free jet in a fluid moving along with it,
i.e., a so-called coflowing jet. In that case the velocity scale us that characterizes
the average velocity in the turbulent region, is much smaller than the total average
velocity. In other words, ∂u/∂x ∼ O(us/L), but: u � us . Show that in this case
the equation for the x-momentum reduces to

http://dx.doi.org/10.1007/978-3-319-31599-7_5
http://dx.doi.org/10.1007/978-3-319-31599-7_4
http://dx.doi.org/10.1007/978-3-319-31599-7_4
http://dx.doi.org/10.1007/978-3-319-31599-7_3
http://dx.doi.org/10.1007/978-3-319-31599-7_8
http://dx.doi.org/10.1007/978-3-319-31599-7_4
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Fig. 6.17 Visualization image of the far-field of a jet observed in a plane normal to the jet x-axis.
The jet Reynolds number is 9 × 103. The fractal dimension of the turbulent/non-turbulent interface
of a jet is approximately 2.4 (Sreenivasan 1991). Image from: Catrakis and Dimotakis (1996)

Fig. 6.18 Visualization of the vorticity magnitude of a round jet at Re = 3 × 103 developing from
laminar to turbulent flow. Notice the development of the shear layers in the laminar domain, akin
the Kelvin–Helmholtz instability discussed in Sect. 3.2. Data are obtained from a direct numerical
simulation (DNS) by Moore (2009)

http://dx.doi.org/10.1007/978-3-319-31599-7_3
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U0
∂u

∂x
= − ∂

∂y

(
u′v′

)
,

where U0 represents the mean flow speed outside the turbulent region.
2. Apply the scaling we used in this section to the equation

−u′v′ = K
∂u

∂y
,

with K ∼ UL.

(a) Determine a scaling relation for L.
(b) Suppose that L ∼ x . A typical value for �/x is 6×10−2. Use this to compute

the magnitude of the other relevant scales.

6.7 The Free Jet

In this section we apply the boundary layer equations, derived in the previous section,
to the problem of a turbulent free jet. We represent the jet in a three-dimensional axi-
symmetrical geometry. In that case the equations of motion are given by (6.54–6.55).

A submerged turbulent round jet is formed when a fluid is issued through a round
nozzle with a diameter d into a stagnant environment of the same fluid with zero
pressure gradient. It is assumed that the fluid in the nozzle has a uniform profile with
a velocity u0. We define a coordinate system with the x-axis in the direction of the
flow and with its origin at the nozzle exit opening of the nozzle. The environment
has an infinite size (i.e., there is no influence from any walls). The flow inside this
domain develops into a free jet, as illustrated in Figs. 6.15 and 6.18.

The initial condition for this flow is determined by the momentum flux in the
x-direction. The momentum flux is introduced at the position of the nozzle exit
(x = 0), given by:

M0 = π

4
d2ρ0u2

0. (6.57)

It is easily shown that the momentum is conserved in the x-direction, under the
conditions stated in the previous paragraph (Rajaratnam 1976). For this we multiply
(6.55) by ρ0r and integrate with respect to r from r = 0 to ∞:

∞∫
0

ρ0u r
∂u

∂x
dr +

∞∫
0

ρ0v r
∂u

∂r
dr = −

∞∫
0

ρ0
∂(r u′v′ )

∂r
dr. (6.58)
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The three terms in the equation above can be expressed as

∞∫
0

ρ0u r
∂u

∂x
dr = 1

4π

d

dx

∞∫
0

(
ρ0u2) 2πr dr,

∞∫
0

ρ0v r
∂u

∂r
dr = ρ0u v

∣∣∣∞
0

−
∞∫

0

ρ0u
∂(r v)

∂r
dr =

∞∫
0

ρ0u
∂(r u)

∂x
dr

= 1

4π

d

dx

∞∫
0

(
ρ0u2) 2πr dr,

∞∫
0

ρ0
∂(r u′v′ )

∂r
dr = ρ0r u′v′

∣∣∣∞
0

= 0.

For the second term we applied the continuity equation (6.54), and we applied the
boundary conditions:

u = 0 for: r → ∞, v = 0 for: r = 0, u′v′ = 0 for: r = 0 and r → ∞.

Then, (6.58) becomes:

d

dx

∞∫
0

(
ρ0u2) 2πr dr = 0, (6.59)

which states that the x-momentum is conserved. We call this condition, which must
be satisfied by the flow for every x-position, an integral property of the flow.

Because the mean flow is axisymmetric we can introduce a stream function ψ,
defined as:

u = 1

r

∂ψ

∂r
, v = −1

r

∂ψ

∂x
. (6.60)

With this, the continuity equation (6.54) is implicitly satisfied. Next, we apply the
similarity condition (6.56). It follows that

ψ = us �2 F
(r

�

)
, and: − u′v′ = U2g

(r

�

)
, (6.61)

where the scales us , U and � are functions of x only. With (6.60) it now follows that

u = us
F ′(η)

η
= us f (η), (6.62)
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with: η = r/�(x). We normalize the function f (η) using f (0) = 1. This implies that
us represents the velocity at the jet axis. Substitution in (6.59), and integration with
the given initial condition (6.57), leads to the integral equation for the momentum M :

M ≡
∞∫

0

ρ0u2 2πr dr = 2π ρ0 u2
s �2

∞∫
0

η f 2(η) dη = M0. (6.63)

The integral of η f 2 is equal to a constant, so that we find that the product us � is
constant. This implies that the Reynolds number of a round jet has a constant value
for all x , and that it is essentially determined by the Reynolds number of the flow at
the nozzle exit. Application of (6.60) and (6.61) now leads to

v = us
d�

dx

{
F ′ − F

η

}
(6.64)

∂u

∂x
= dus

dx

F ′

η
− us

�

d�

dx
η

d

dη

(
F ′

η

)
(6.65)

∂u

∂r
= us

�

d

dη

(
F ′

η

)
. (6.66)

Substitution of these expressions in the equation of motion for u, and after applying:

1

us

dus

dx
= −1

�

d�

dx
,

which follows from us� = constant, we arrive at:

− u2
s

U2

d�

dx

{(
F ′

η

)2

+ F

η

d

dη

(
F ′

η

)}
= 1

η

d

dη
(ηg) , (6.67)

where we used (6.61) for −u′v′. A similarity solution is only possible when:

u2
s

U2

d�

dx
= c = constant. (6.68)

This matches the assumption in (6.52) of which we mentioned that it needed to be
verified.

There are now two possibilities to move forward. The first, and most common one,
is that an assumption is made on the ratio us/U . The term us is the mean velocity at
the jet axis, while U is a characteristic velocity scale of the turbulence. For example,
take U2 = 2

3 e0, where e0 represents the turbulent kinetic energy at the jet axis, with
e defined as (see Chap. 7):

e = 1
2 u′

i u
′
i .

http://dx.doi.org/10.1007/978-3-319-31599-7_7
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Fig. 6.19 The turbulence intensities urms =
√

u′2 and vrms =
√

v′2 as functions of x/d at the axis
of a free jet. Experimental data from: Fukushima et al. (2002) at Re = 2 × 103 (closed symbols),
Panchapakesan and Lumley (1993) (broken lines) at Re = 1.1 × 104, Tong and Warhaft (1995) at
Re = 1.8 × 104, and Wygnanski and Fiedler (1969) at Re = 105 (open symbols)

In Fig. 6.19 are shown experimental data for the components of e as a function of x/d
for three jets at different Reynolds numbers. It follows that e0/u2

s , and thus also us/U ,
approaches a constant value for x/d > 60. It is often assumed that this constant is
universal, that is, the ratio us/U does not depend on the details of the flow, and is
thus would be the same for all jet flows. In other words, us is directly proportional
to U , and we only need to consider a single velocity scale in our problem, for which
we use us . (Note, however, that the experimental data in Fig. 6.19 indicate a (weak)
dependence of us/U on Reynolds number; we return to this aspect at the end of this
section.)

For U/us = constant, (6.68) gives:

� =
( U

us

)2

(x − x0) , (6.69)

where x0 represents the so-called virtual origin for which the similarity solution is
valid (from experimental data it follows that x0/d ≈ 0.5–10, depending on the flow
condition at the nozzle). Also, the constant c in (6.68) has been absorbed into the
ratio us/U without loss of generality. Consequently, we notice that �(x) must be
universal as well. In other words, the jet spreading rate is identical for all jet flows.
This can be verified by comparing the jets pictured in Fig. 6.23.

We can now integrate (6.67) to find

ηg + F F ′

η
= A. (6.70)
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The integration constant A equals zero, given the boundary conditions that both
g = 0 and F ′/η = 0 for η → ∞. We now reached the point at which we cannot
continue without a closure hypothesis. On the basis of K -theory, we find

− u′v′ ≡ U2 g(η) = K
∂u

∂r
= K

us

�

d

dη

(
F ′

η

)
. (6.71)

The self-similarity hypothesis then implies that:

K us

U2�
= B = constant. (6.72)

Substitution in (6.70) leads again to an integrable equation with the solution:

− 1

2
F2 = B

(
η F ′ − 2F

) + C. (6.73)

Here C is an integration constant that equals zero, since F = 0 for η = 0. (This
boundary condition follows from the fact that the jet axis is also a streamline.) Further
integration of (6.73) yields:

F = 2Dη2

1 + Dη2/(2B)
,

from which it follows that

f (η) = F ′

η
= 4D[

1 + Dη2/(2B)
]2 .

Here D is again an integration constant, which can be evaluated using the normaliza-
tion condition f (0) = 1 (i.e., D = 1

4 ). This leads to the final solution for the mean
axial velocity profile of a free self-similar jet

u

us
=

(
1 + η2

8B

)−2

, (6.74)

with: η = r/�(x). The constant B can be determined from experimental data. First
we define � as r1/2, that is, � equals the radial distance where u = 1

2 us (or, jet
half-width). From the experimental data in Fig. 6.20 we obtain:

� = 0.0965 (x − x0). (6.75)

On the basis of (6.69) this means that: U2/u2
s

∼= 0.0965. This is consistent with the
data presented in Fig. 6.19, given the earlier definition U = ( 2

3 e0)
1/2. (For the jet
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Fig. 6.20 The mean centerline velocity us relative to the nozzle exit velocity U0 and the jet half-
width � relative to the nozzle diameter d of a round jet as a function of the distance x from the
nozzle exit. The jet Reynolds number is 2 × 103. Experimental data from: Fukushima et al. (2002)

centerline we take v′2 = w′2, so that: e0 = 1
2 u′2 + v′2.) Application of the definition

� = r1/2 in the solution (6.74) then gives:

B = 0.302.

Together with (6.71) this gives for the eddy viscosity K :

K ≈ 0.302 us

( U
us

)4

(x − x0) = 0.00281 us(x − x0). (6.76)

The solution with this value for K is plotted in Fig. 6.21. We see that this solu-
tion (in particular for small values of r/(x − x0)) is in very good agreement with
experimental data. For larger values of r/(x − x0) the theoretical solution appears
to overestimate the velocity in comparison with the experimental data. This could
be explained by the occurrence of intermittency that was discussed in the previous
section. Because of this, the effective eddy viscosity K is reduced in the outer region
of the jet. A correction of K for intermittency indeed leads to a better agreement of
the theoretical result with experimental data. Note that the present analysis yields
an eddy viscosity K that is valid over the entire flow domain; this then implies that
the external irrotational (viz., non-turbulent) fluid has a finite non-zero value for K ,
which is strictly speaking physically incorrect.

Finally we compute a representative length scale on the basis of the solution
above, based on: K ∼ UL. We use (6.69), (6.76), and U/us ≈ 0.311, to find that:

L = 0.094 �.

In other words, L 
 �. In light of our discussion in Sect. 5.4 this result explains the
reasonable success of K -theory for the description of a free jet. This is illustrated in
Fig. 6.22; compare a similar picture of the mixing layer in Fig. 6.16, where L ≈ �.

http://dx.doi.org/10.1007/978-3-319-31599-7_5
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Fig. 6.21 The normalized profiles of the mean axial velocity u, the mean radial velocity v, and
Reynolds stress u′v′ of a self-similar free jet. The solid lines represent the solutions in (6.74), (6.64),
and (6.71), respectively, with � given by (6.75) and K given by (6.76). The symbols represent
experimental data from Fukushima et al. (2002) of a Re = 2 × 103 jet

We stated previously that there exists two possibilities to solve the equations of
motion for a free jet on the basis of Eq. (6.68). In the alternative approach we assume
that d�/dx is constant, although it can still depend on the details of the flow, such
as the initial conditions (George 1989). This is for example the shape of the velocity
profile in the nozzle exit, which can either be laminar or turbulent. This means that
d�/dx can vary from experiment to experiment, and in this case the spreading rate
of a free jet is not universal. The ratio between us and U would then follow from
the application of (6.68). The subsequent analysis would be along a similar path
as described above. An indication for the dependence on initial conditions at the jet
nozzle are the different values forU/us in Fig. 6.19, as one jet develops from a laminar
Poiseuille flow at the nozzle, while the other jet develops from a laminar uniform
profile. Table 6.1 summarizes the decay rates Bu of the mean centerline velocity and
virtual origins x0 of different jet experiments and simulations. Please take note that
variation of Bu and d�/dx may also result as a consequence of realistic boundary
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Fig. 6.22 Shadowgraph of a jet of warm fluid issuing in a colder reservoir. Note the very sharp
boundary at the outer jet interface, and the detailed structure of the turbulence, which underlines
that the length scale L of the turbulence is much smaller than the length scale � that defines the jet
half width (Given that the full width of a turbulent jet is about 4� and that �/L ≈ 10, one would
expect a ‘grain size’ in the shadowgraph of about 1/40th of the full jet width)

Table 6.1 Comparison of different jets

Reference Re Bu x0/d d�/dx

Wygnanski and Fiedler (1969) exp. ∼105 5.7 3 0.086

Rodi (1975) exp. 8.7 × 104 5.9 – 0.086

Hussein et al. (1994) exp. ∼105 5.8 4.0 0.094

Panchapakesan and Lumley (1993) exp. 1.1 × 104 6.1 – 0.096

Boersma et al. (1998) sim. 2.4 × 103 5.9 4.9 0.093

Fukushima et al. (2002) exp. 2.0 × 103 6.7 6.8 0.096

The decay parameter Bu and virtual origin x0 for the centerline mean velocity are defined in Fig. 6.20
(see also Problem 1 below): exp = experimental; sim = simulation. Adopted from: Boersma et al.
(1998)

conditions imposed by the presence of wall at a finite distance. The presence of walls
reduces the jet growth rate and induces a back flow of the external fluid, which both
affect the results for Bu and d�/dx . In general the effects of walls can be ignored
when the cross section of external domain is at least 105 times the cross section π

4 d2

of the nozzle.
Problems

1. For the velocity at the axis of the free jet the following equation can be derived:

us = U0
Bud

x − x0

(see also Fig. 6.20). Compute the theoretical value for the constant Bu . Compare
this result with the values reported in Table 6.1.
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2. A free jet in two dimensions, or planar jet, is described by the following equations
of motion:

∂u

∂x
+ ∂v

∂y
= 0

u
∂u

∂x
+ v

∂u

∂y
= − ∂

∂y
u′v′.

Find the following similarity relations for this flow:

� ∼ (x − x0), us ∼ (x − x0)
−1/2, and: u = us

1

cosh2(η/
√

2)
,

with: η = y/�(x).
3. In Problem 1 of Sect. 6.6 it was found that the equation for two-dimensional wake

flow reads

U0
∂u

∂x
= −∂u′v′

∂y
.

Find the following similarity relations for this flow:

� ∼ (x − x0)
1/2, us ∼ (x − x0)

−1/2, and: u = us e− 1
2 Bη2

,

where B is a constant, and η = y/�(x). Solve the same problem for the three-
dimensional wake.

4. A free jet flows with an initial speed U0 along the x-axis in a fluid moving along
with a velocity of U1 (i.e., a co-flowing jet). It is given that: U0 � U1.

(a) Discuss the development of this free jet at the initial and final phase in a
qualitative manner.

(b) Define the velocity u∗ as:
u = U1 + u∗.

Derive on the basis of the continuity equation that the total mass m of the
jet fluid increases at a rate:

∂m

∂x
≡ ∂

∂x

∞∫
0

ρ0(U1 + u∗) 2πr dr = E,

where E , which is called the entrainment rate, is defined as

E = −2πρ0[r v]∞.
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(c) Show from the momentum equation that for the total momentum M of the
jet:

∂M

∂x
≡ ∂

∂x

∞∫
0

ρ0(U1 + u∗)u∗ 2πr dr = 0.

(d) Use the following similarity relation for u∗:

u∗ = us f
(r

�

)
,

with: f ≡ 1 for r � �, and: f = 0 for r > � (i.e., the so-called top-hat
profile). In connection with this we take the following hypothesis for the
entrainment rate:

E = β · 2π ρ0 � us

(a) Re = 2×103 (b) Re = 2×108

Fig. 6.23 a Visualization of a submerged round free jet with a Reynolds number of 2 × 103. The
jet is issued from 1 mm diameter nozzle, and the displayed image height corresponds to 45 mm.
Image taken by: Fukushima et al. (2002). b Photograph of the exhaust plume of a TITAN IV rocket
discharging upward during a ground-based test. The bright plume is approximately 120 m high
atop a 30 m test stand. The Reynolds number is about 2 × 108. Details are given by Mungal and
Hollingsworth (1989). Use a compass or protractor to compare the jet spreading rates
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where β is a constant. Provide an interpretation of this expression for the
entrainment.

(e) Formulate two ordinary differential equations for � and us . Show that for
small values of x , when us � U1, the solutions of these equations are
consistent with the results for a free jet issuing into stagnant fluid. What is
the solution for large values of x when us 
 U1?

(f) Determine the complete solution for the differential equations of � en us .

5. The hot exhaust gasses of the jet shown in Fig. 6.23b evidently have a much lower
density than the surrounding air. The Morton length �M is the distance from the
jet nozzle over which the buoyancy effects are negligible, and is defined by:

�M = M3/4
0

B1/2
0

, with: M0 = Q0u0, and: B0 = Q0g
�ρ

ρ
,

where Q0 is the volume flow rate at the nozzle. Estimate the Morton length for
the jet in Fig. 6.23. The TITAN IV rocket engine delivers a thrust of 7 × 106 N at
a mass flow rate of 268 × 103 kg in 2 min.



Chapter 7
Kinetic Energy

In Chap. 4 we stated that turbulence is dissipative, in other words, turbulence converts
kinetic energy into heat. In this chapter we reinforce this statement using the equations
for kinetic energy. In this way we will also gain a better understanding of the dynamics
of turbulence.

7.1 Kinetic Energy of the Mean Flow

Before focusing on the kinetic energy of turbulence, we first consider the mean
flow. We define the kinetic energy per unit mass as E = 1

2 u2
i (pay attention to the

summation convention as introduced in Sect. 2.1). An equation for E is found by
multiplying Eq. (5.20) for the mean velocity ui with ui. When we neglect density and
temperature effects, it follows that:

DE

Dt
≡ ∂E

∂t
+ uj

∂E

∂xj
= Pu + Tu + Du, (7.1)

with:

Pu = − 1

ρ0
ui

∂p

∂xi
,

Tu = ∂

∂xj

(
−uiu′

iu
′
j

)
, (7.2)

Du = u′
iu

′
j

∂ui

∂xj
.

The left-hand side of (7.1) describes how the kinetic energy E changes for a point
that moves at an average speed of ui. The right-hand side consists of three parts,
which we discuss below.

© Springer International Publishing Switzerland 2016
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Pu: production This first term represents the work that is done by the mean pressure
gradient to maintain the mean flow. (In some flow configurations the flow is driven
by the boundary condition, e.g. a moving wall.) It is therefore obvious to call this
term the production term of mean kinetic energy. In the case of a channel flow, we
saw in Sect. 6.1 that dp/dx < 0. An equilibrium must exist between the pressure
gradient and the wall shear stress that relates to u > 0 in the channel; in other
words: Pu > 0.

Tu: transport This term has the form of a divergence. In the remainder of this book
we will encounter divergence terms in other equations as well, which is why we
discuss here the effect of this term in more detail. We can rewrite the divergence
term as:

Tu = ∂Fj

∂xj
, with: Fj = −ui u′

iu
′
j. (7.3)

We can interpret Fj as the flux. Using the divergence theorem, it follows that

∫∫∫
V

∂Fi

∂xi
dV =

∫∫
S

Fjnj dS, (7.4)

where V is a volume of the flow enclosed by the surface S, with nj as the outside
normal to the surface. We now choose V so that at the boundary S the flux Fi = 0.
This can be done in various ways: for example, we can choose S at a fixed wall,
where it often holds that Fi = 0; or we choose S in an area where the mean flow
or the turbulence equals zero. The result is that the right-hand side of (7.4) equals
zero. This can be interpreted as follows. The transport term (7.3) can only result
in a redistribution inside the volume V without a net increase or decrease. For this
reason, (7.3), and thus Tu, is sometimes called the redistribution term or transport
term.

Du: deformation work This term can be understood with help of Eq. (5.26), with
which we have coupled the Reynolds stress to the average strain rate tensor accord-
ing to the molecular analogy. If we also use the fact that u′

iu
′
j is symmetric, it follows

that:

Du ≡ u′
iu

′
j

∂ui

∂xj
= 1

2
u′

iu
′
j

(
∂ui

∂xj
+ ∂uj

∂xi

)

= −K

2

(
∂ui

∂xj
+ ∂uj

∂xi

)2

� 0. (7.5)

This term is thus always negative; in other words, this term is a sink for the kinetic
energy in the flow. The mechanism is, in this case, the deformation work that is
performed by the Reynolds stress. Indeed,

1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)

http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_5
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is the deformation rate tensor of the mean flow, and (7.5) can be interpreted as the
work that has to be done by the Reynolds stress to deform the fluid elements.

The viscous terms that occur in the equation for E are negligible on the basis of the
usual scaling using the Reynolds number, which is based on the macrostructure.

To illustrate the use of the energy equation, we apply the equation to the plane
channel flow discussed in Chap. 6. The flow is in this case stationary and horizontally
homogeneous. Equation (7.1) then reduces to:

0 = − 1

ρ0
u
∂p

∂x
+ ∂

∂y

(−u u′v′) + u′v′ ∂u

∂y
. (7.6)

In Fig. 7.1 the various terms in this equation are shown schematically as a function
of the distance to the wall. For this, we used the profile for u and for −u′v′ as derived
in the previous chapter.

We observe that E is mostly produced in the middle of the channel, while the
deformation work is done primarily close to the wall. Indeed, in the inner region,
(6.15) and −u′v′ ≈ u2∗ hold, so that the following holds for the deformation work:

u′v′ ∂u

∂y
≈ −u3∗

ky
.

We find that the deformation work strongly increases when approaching the wall.
The difference between the production (in the center) and the loss (at the wall) is
compensated by the transport term, which provides the exchange of energy between
both regions in the flow.

viscous sublayer

buffer layer

logarithmic layer

core region
(wake region)

y+

destruction production
+

1

0
u p

xy
( u u’v’)

+u’v’ u
y

u(y)

u’v’

Fig. 7.1 Terms in Eq. (7.1) for E for channel flow (Note the profile of u′v′ has been exaggerated
with respect to u(y).)

http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_6
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7.2 Kinetic Energy of Turbulence

The kinetic energy (per unit mass) of the turbulent velocity fluctuations is defined as

e = 1
2 u′

i
2, thus again summed over the three coordinate directions. When the kinetic

energy is scaled with the mean velocity u, it is referred to as the turbulence intensity:

i = e

u2 . (7.7)

An equation for e is found by multiplying Eq. (5.21) for u′
i with u′

i and then by
applying the standard Reynolds averaging procedure. The result is:

De

Dt
≡ ∂e

∂t
+ uj

∂e

∂xj
= Pk + Tk + �k + Dk − ε, (7.8)

with:

Pk = −u′
iu

′
j

∂ui

∂xj
,

Tk + �k + Dk = ∂

∂xj

(
−u′

je
′ − 1

ρ0
p′u′

j + ν
∂e

∂xj

)
,

ε = ν

(
∂u′

i

∂xj

)2

,

where: e′ = 1
2 u′

i
2. In this derivation the density and temperature effects have been

neglected. At the left-hand side of Eq. (7.8) we have again the change of e along a
point that moves at the average speed ui. The right-hand side of (7.8) consists of
three terms that we discuss separately.

Pk: production This is the same term as the deformation work in Eq. (7.1) for E. We
demonstrated there that the deformation work is, in general, a loss term. Here we
find the same term, but with the opposite sign. This implies that Pk in the equation
for e is a production term, or source term. In other words, the average flow supplies
energy to the turbulence via deformation work. The mechanisms taking care of
the energy transfer are the instability processes discussed in Chap. 3. This term
relates the gradient in the average flow (i.e., shear) to the turbulent kinetic energy.
Therefore, this term is sometimes called shear production.
Let us determine the order of magnitude of the production term. Both the gradient
∂ui/∂xj and the Reynolds stress −u′

iu
′
j scale with characteristic length and velocity

of the macrostructure U and L, so for the production term Pk it follows that:

Pk = O
(U3

L
)

. (7.9)

http://dx.doi.org/10.1007/978-3-319-31599-7_5
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This estimate is somewhat obvious, because we couple the physical mecha-
nism responsible for the production of turbulent kinetic energy to the instability
processes, which generated the macrostructure.

Tk + �k + Dk: transport Here we again have a term in a divergence form. In the
previous section we showed that such a term is responsible for redistribution in
space. In this case we find three contributions: (i) transport by velocity fluctuations
(Tk), (ii) transport by pressure fluctuations (�k), and (iii) transport by viscosity
(Dk). A scaling of these three transport terms gives:

Tk = O
(U3

L
)

, �k = O
(U3

L
)

, Dk = O
(U2

L2

)
.

From this it follows that, for large Reynolds numbers, the viscous transport Dk is
negligible compared to the other transport terms Tk and �k .
Another aspect of the transport term is t hat we again have a closure problem.
The transport term is of a higher order than e, and thus it forms a new unknown
variable in the equation for e. On the basis of the same arguments as used in
Chap. 5, in relation to (5.26), we can formulate the following closure hypothesis:

u′
je

′ + 1

ρ0
p′u′

j = − K

σk

∂e

∂xj
, (7.10)

where σk is a constant that is often taken equal to unity. This means that the flux
of turbulent kinetic energy is taken proportional to the gradient of the kinetic
energy. We can use the K-theory again, with all the drawbacks associated with it,
as discussed in Chap. 5. However, in many flows, the transport of e is negligible,
so fortunately any problems related to the closure hypothesis in (7.10) play only
a minor role.

ε: dissipation The last term is by definition always negative, and can be considered
a loss term, or sink, for turbulent kinetic energy. How should we interpret this
term? Equation (7.8) is an equilibrium equation for e. Let us limit ourselves to
the situation with De/Dt = 0, that is, the turbulence is in an equilibrium. An
equilibrium is only possible when the dissipation is of the same order of magnitude
as the production. This holds because the transport term cannot produce or destroy
any kinetic energy. Based on estimates of the order of magnitude of the production
term Pk , as discussed above, it follows now that:

ε = O
(U3

L
)

. (7.11)

In other words, we find the result that we postulated as the Kolmogorov relation
in Sect. 4.2; here we just demonstrated that this result is based on the balance:

production ≈ dissipation. (7.12)

http://dx.doi.org/10.1007/978-3-319-31599-7_5
http://dx.doi.org/10.1007/978-3-319-31599-7_5
http://dx.doi.org/10.1007/978-3-319-31599-7_5
http://dx.doi.org/10.1007/978-3-319-31599-7_4
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This result can be considered as one of the cornerstones of turbulence. Of course,
Eq. (7.11) does not give the complete picture; from the definition of ε in (7.8) it
follows that the viscosity ν appears in the dissipation term, while this is absent
in (7.11). Therefore, let us scale the dissipation term in (7.8) directly using the
viscosity. In this case it follows that:

ε = O
(

ν
U2

λ2

)
, (7.13)

where we used the velocity scale U as a measure for the velocity fluctuations. For
the length scale we introduced a new scale λ. By applying the balance in (7.12)
we find that:

λ

L ∼ Re−1/2, (7.14)

where the Reynolds number is defined as: Re = UL/ν. The length scale λ is thus
much smaller than the length scale L of the macrostructure. The term λ is known
as the so-called Taylor microscale.
What can be concluded from the relation above? It seems that we need a small
length scale to satisfy the balance between production and dissipation in (7.12).
Also, we know that the dissipation of turbulent kinetic energy eventually has to
take place through viscosity. Together this leads to the conclusion that viscosity
can only be effective at small scales, because large gradients can be generated
at small scales only. When these large gradients are multiplied with the small
viscosity ν (given that we consider a flow at high Reynolds number), this leads to
finite dissipation rates that can have the same order of magnitude as the production
term. In other words, the microstructure is necessary for the dissipation to occur.
This is in agreement with the picture we sketched in Chap. 4 in the context of
the Burgers equation and the phenomenology of turbulence: viscous dissipation
occurs at the microscale.
The Taylor microscale should not be interpreted as a length scale for the smallest
eddies in the flow. For this we derived the Kolmogorov length scale η in Chap. 4.
The apparent contradiction is found in the fact that it is not allowed to use the
velocity scale U for the microstructure, as we did in (7.13); instead, we should use
the Kolmogorov velocity scale υ. Physically speaking the most correct scaling of
ε is then

ε = ν
υ2

η2
.

From this, a relation between λ and η can be derived. We return to the Taylor
microscale in Chap. 9.

Let us summarize the most important results. Turbulent kinetic energy is produced
in the macrostructure as a result of a hydrodynamic instability processes. The
macrostructure loses its energy according to (7.11). Via the cascade process this

http://dx.doi.org/10.1007/978-3-319-31599-7_4
http://dx.doi.org/10.1007/978-3-319-31599-7_4
http://dx.doi.org/10.1007/978-3-319-31599-7_9
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Fig. 7.2 Terms in the
equation for e for a channel
flow: × gradient production
Pk ; � dissipation ε; �
transport by velocity
fluctuations Tk ; o transport
by pressure fluctuations �k ;
+ viscous transport Dk . The
Reynolds number of the flow
is: Re∗ (= Hu∗/ν) = 180.
From: Mansour et al. (1988)
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energy eventually ends up at the microstructure, where it is transferred into heat by
viscosity.

As an illustration we consider the energy balance for a channel flow. Equation (7.8)
can then be simplified to:

0 = −u′v′ ∂u

∂y
− ∂

∂y

(
v′e′ + 1

ρ0
p′v′ + ν

∂e

∂y

)
− ε. (7.15)

The terms in this equation are illustrated in Fig. 7.2 as a function of the dimensionless
distance from the wall. These results are based on direct numerical simulations of
turbulence in a channel with a relatively low Reynolds number. We find that the
largest production occurs in the buffer layer and that the balance between production
(Pk) and dissipation (ε) is approximately valid over the major part of the channel.

Problems

1. Derive that for the Taylor microscale, defined in (7.13), it holds that: λ/L =
Re−1/2, where the Reynolds number is defined as: Re = UL/ν. Compare this with
the ratio η/L, where η is the Kolmogorov length scale. Explain this difference by
calculating the ratio η/λ.

2. Estimate the characteristic velocity of an eddy with a size λ equal to the Taylor
microscale. Show on the basis of this estimate that the energy loss of eddies with
a size λ by direct viscous dissipation is small.
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7.3 Prandtl’s One-Equation Model

The kinetic energy equation can be utilized to model turbulent flow. We return to
relation (5.34), where we assumed for K that:

K ∼ UL,

with U and L the characteristic scales of the macrostructure. The kinetic energy e is
dominated by the macrostructure. This implies that the large eddies are the ones that
carry the most kinetic energy. Hence, it is obvious to relate the velocity scale U to e.
Based on this we now introduce the following closure hypothesis:

K = c′
μ

√
eL, (7.16)

where c′
μ is a constant. The turbulent kinetic energy e is determined by (7.8), which

can be written, using the closure hypothesis in (7.10), as:

De

Dt
= −u′

iu
′
j

∂ui

∂xj
+ ∂

∂xj

(
K

σk

∂e

∂xj

)
− cD

e3/2

L . (7.17)

Here we used the Kolmogorov relation (4.14) with the constant cD as a closure
hypothesis for the dissipation term. For given mixing length L, in combination with
(5.20) and (5.26), we have a closed system of equations. This is known as Prandtl’s
one-equation model.

Let us, as a first approximation of Eq. (7.17), neglect the left-hand side and also
the transport term at the right-hand side of this equation. Thus, we assume that the
turbulence is in an equilibrium state and that turbulent transport is negligible. The
equation then reduces to an exact balance between production and dissipation. Using
(5.26), we find that:

K =
√

c′
μ

3

2cD
L2

∣∣∣∣∂ui

∂xj
+ ∂uj

∂xi

∣∣∣∣ . (7.18)

This equation is commonly known as the Smagorinsky model. It is congruous with the
Prandtl mixing length hypothesis, which we discussed in Chap. 5. Hence, Prandtl’s
one-equation model can be considered as a generalization of the Prandtl mixing
length hypothesis.

In (7.16) and (7.17) the constants c′
μ, cD and σk are still unknown, in addition

to the length scale L. The constant σk is often chosen equal to unity, while the
values of the other constants are determined by calibrating the model to a canonical
flow, such as the logarithmic layer in a wall-bounded turbulent flow. (Recall that the
logarithmic layer is considered to be universal to all wall-bounded turbulent flows.)
In this logarithmic layer it holds that:

http://dx.doi.org/10.1007/978-3-319-31599-7_5
http://dx.doi.org/10.1007/978-3-319-31599-7_4
http://dx.doi.org/10.1007/978-3-319-31599-7_5
http://dx.doi.org/10.1007/978-3-319-31599-7_5
http://dx.doi.org/10.1007/978-3-319-31599-7_5
http://dx.doi.org/10.1007/978-3-319-31599-7_5
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u2
∗ ∼= −u′v′ = c′

μ

√
eL∂u

∂y
,

and the energy equation (7.17) reduces to:

u2
∗
∂u

∂y
= cD

e3/2

L ,

where the transport terms have been neglected on the basis of Fig. 7.2. Given the
logarithmic velocity profile (6.15), it follows that:

c′
μcD = u4∗

e2
,

c′
μL = k

u∗
e1/2

y.

On the basis of experimental data and simulation data it follows that: e/u2∗ ≈ 3.7
(see Fig. 7.3), and if we further take L = ky, we find that:

c′
μ = 0.52, and: cD = 0.14.
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Fig. 7.3 The profiles of u′
iu

′
i for turbulent pipe flow, where i represents the axial (x), radial (r), and

circumferential (φ) directions, respectively. The Reynolds number is Re = 5,300, based on the bulk
velocity and pipe diameter. The inset shows the square root e1/2 of the kinetic energy relative to u∗.
The lines represent simulation data from Eggels et al. (1994); the symbols represent experimental
data from van Doorne and Westerweel (2007)
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7.4 Energy Equation per Component

In the previous sections we considered the energy equation summed over the contri-
bution from the three velocity components. In this section we consider the separate
contributions from each velocity component. We define:

eα = 1

2
u′

α
2,

where it is noted that the Greek index letter indicates that no summation is taken over
the index. If density and temperature effects are again neglected, we find:

Deα

Dt
≡ ∂eα

∂t
+ uj

∂eα

∂xj
= −u′

αu′
j
∂uα

∂xj
− ∂

∂xj

(
u′

je
′
α + 1

ρ0
p′u′

αδjα

)
+ 1

ρ0
p′ ∂u′

α

∂xα
− ν

(
∂u′

α

∂xj

)2

(7.19)

We can recognize several term from (7.8), except for the fourth term at the right-hand
side, which is new. This term is the so-called pressure–velocity correlation. For the
interpretation of this term we consider the case of a turbulent channel flow in the
absence of temperature and density effects, as described in Chap. 6. The equations
for the three separate energy components read in this case:

Pαα �αα Tαα εαα

0 = −u′v′ ∂u

∂y
+ 1

ρ0
p′ ∂u′

∂x
− ∂

∂y

(
1

2
u′2v′

)
−ν

(
∂u′

∂xj

)2

0 = + 1

ρ0
p′ ∂v′

∂y
− ∂

∂y

(
1

2
v′3 + 1

ρ0
p′v′

)
−ν

(
∂v′

∂xj

)2

0 = + 1

ρ0
p′ ∂w′

∂z
− ∂

∂y

(
1

2
w′2v′

)
−ν

(
∂w′

∂xj

)2

(7.20)

where transport by viscous effects, Dαα has been neglected.

Pαα: production This term is the shear production, which we already encountered
in Eq. (7.8). We see that the influence of this term is limited to the u-component (in
the case of plane channel flow). This means that the production of turbulent kinetic
energy primarily occurs in a single velocity component. With this, the preferred
orientation, or anisotropy, in the turbulence is introduced. This is confirmed by
the data presented in Fig. 7.3, from which it follows that fluctuations in the u-
component are larger than those in the two other directions. This anisotropy is
initially related to the macroscales, because those are directly involved in the
processes that lead to the production of turbulent kinetic energy.

http://dx.doi.org/10.1007/978-3-319-31599-7_6
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Tαα: transport Again, this term represents the transport or redistribution term that
we encountered before. This term, which occurs in the three coordinate directions,
takes care of a redistribution of energy over space. We have neglected the viscous
contribution to the transport term, using the same reasoning as we used for the
transport term Tk in the kinetic energy equation (7.8).

εαα: dissipation This is the dissipation per coordinate-direction. We saw that the
viscous dissipation takes place at the microscales. In a later stage (in particular in
Sect. 8.3) we demonstrate that the microstructure is isotropic for large Reynolds
numbers. This means that the dissipation per velocity component is equal, and
we can therefore say that:

εαα = 1

3
ε. (7.21)

�αα: pressure–velocity correlation This is the a new term. We saw above that the
production of energy at the macroscales is anisotropic, while the dissipation at
the microscales is isotropic. During the cascade process the energy thus have to
be redistributed over the three coordinate directions. The term �αα is responsible
for this, and this is only possible because of the fact that:

∑
α

�αα = 1

ρ0
p′

(
∂u′

∂x
+ ∂v′

∂y
+ ∂w′

∂z

)
= 0 (7.22)

(for an incompressible flow). Hence, this term, when summed over the three
coordinate directions, does not contribute to the total turbulent kinetic energy e.
In other words, �αα only achieves a redistribution over the coordinate directions.
For our example of turbulence in a plane channel flow, where production takes
place in the u-direction, we thus expect that: �11 < 0, with �22 and �33 > 0.
This is confirmed by results from simulations, which that are illustrated in Fig. 7.4

This behavior of �αα suggests a closure hypothesis of the form:

1

ρ0
p′ ∂u′

α

∂xα
=

1
3 e − 1

2 u′
α

2

T , (7.23)

which is known as the Rotta hypothesis. In (7.23), the term T is a characteristic
time scale that is proportional to L/U . It can easily be seen that (7.23) satisfies the
expression in (7.22).

On the basis of this expression it follows that when an energy component exceeds
the isotropic value 1

3 e, the term �αα is a loss term, while in the opposite case �αα

is a production term. The turbulence is, so to speak, driven to an isotropic state, and
therefore the process represented by these terms is denoted as ‘return to isotropy’.

http://dx.doi.org/10.1007/978-3-319-31599-7_8
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Fig. 7.4 The terms of the energy equation per component eα = 1
2 u′

αu′
α, with α = 1, 2, 3, in a

channel flow: × production term Pαα; � dissipation εαα; + transport by velocity fluctuations Tαα;
o pressure–velocity correlation �αα (in these graphs �αα is defined as −u′

α∂p′/∂xα); � transport
by viscous diffusion Dαα. Note that the vertical scale for α = 1 is different from those for α = 2
and 3. Data from: Mansour et al. (1988)

Problem

1. In a wind tunnel decaying turbulence behind a grid is used for investigating
isotropic turbulence. For grid-induced turbulence the velocity fluctuations in the
flow direction are larger than in the cross-stream direction: q1 > q2 = q3, with:
qi = 1

2 u′
iu

′
i, where qi is the kinetic energy (per unit mass) of the i-component

of the velocity. The degree of isotropy in the turbulence can be improved by the
placement of a contraction directly behind the grid; see Fig. 7.5.
At the entrance of the contraction the flow has a mean velocity u1 along the x1-
axis, and the flow accelerates as it passes through the contraction. The contraction
ratio c is defined as:

c = u1(L)

u1(0)
,

where u1 is the velocity at the inlet and u1(L) the velocity at the outlet of the
contraction.
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Fig. 7.5 Flow through a
contraction
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The equation for qi is:

∂qi

∂t
+ uj

∂qi

∂xj
= −u′

iu
′
j

∂ui

∂xj
− ∂

∂xj

(
u′

iq
′
i + 1

ρ
p′u′

i δij

)
+ 1

ρ
p′ ∂u′

i

∂xi
− ν

(
∂u′

i

∂xj

)2

,

with: q′
i = 1

2 uiui.

(a) Give the physical meaning of the terms in the equation given above, and
identify terms for which a closure relation is required.

(b) Apply this equation to the flow through a contraction; see figure. To satisfy
continuity (for an incompressible flow) and for this geometry, the flow near
the centerline of the contraction satisfies the following relations:

∂u1

∂x1
= −2

∂u2

∂x2
, and:

∂u2

∂x2
= ∂u3

∂x3
,

where it is assumed that u1 is not a function of x2 and x3.
The behavior of the turbulence in the contraction is in close approximation
given by the following simplified equations:

u1
∂q1

∂x1
= −2q1

∂u1

∂x1
, u1

∂q2

∂x1
= −2q2

∂u2

∂x2
, u1

∂q3

∂x1
= −2q3

∂u3

∂x3
,

State the arguments for such a simplification that has been applied to the full
set of equations for qi to arrive at the above results for q1, q2 and q3. Under
which condition is it acceptable to ignore the dissipation of the turbulent
kinetic energy during the passage of the contraction?

(c) Solve the equations for q1, q2 and q3 given above with the boundary conditions
at the contraction inlet (x1 = 0):

u1 = u1(0), q1 = q1(0), q2 = q2(0), and: q3 = q3(0),
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where: q1(0) > q2(0) = q3(0). Show that the total kinetic energy, e =∑
i qi, has a minimum, and that the turbulence is isotropic at the minimum.

Determine the value of u1(x1)/u1(0) where this minimum is reached.
Compute the required contraction ratio c for grid-generated turbulence with:
0.25q1 = q2 = q3, to reach an isotropic state.

(d) Explain the previous result in a qualitative manner on the basis of vortex
stretching (see Sect. 8.1).

A contraction to improve the isotropy of grid-generated turbulence is referred to
as a Comte–Bellot contraction (Comte–Bellot and Corrsin 1966).

7.5 Convective Turbulence

So far we neglected the influence of variations in density on turbulence. However, in
some cases, for example in geophysical flows, density effects play an important role.
We can study this using the turbulent kinetic energy equation, where the effect of
variations in density and temperature have been taken into account. This means that
in the derivation of the kinetic energy equation we have to start with the complete
Boussinesq equations given in (5.21) for the velocity fluctuation u′

i, including the
temperature term. The result then reads:

De

Dt
= −u′

iu
′
j

∂ui

∂xj
+ g

T0
u′

jθ
′δj3 − ∂

∂xj

(
u′

je
′ + 1

ρ0
p′u′

j

)
− ε. (7.24)

In this equation the z-axis is taken vertically, that is, parallel to gravity, which is rep-
resented by a vector gi = (0, 0,−g). We see that a new term, (g/T0)w′θ′, appeared.
This term is called the buoyancy production. The influence of this term is better
understood when we couple the temperature flux w′θ′ to the temperature gradient
using K-theory:

− w′θ′ = KH
∂θ

∂z
. (7.25)

We can now distinguish two cases:

w′θ′ > 0, or: ∂θ/∂z < 0
In Chap. 3 we saw that ∂θ/∂z < 0 is an unstable situation for small perturbations
(that is, a cold (heavy) fluid on top of warm (lighter) fluid). The situation is then
characterized by rising (w′ > 0) and warm (θ′ > 0) or descending (w′ < 0) and
cold (θ′ < 0) fluid. In both cases we have: w′θ′ > 0, which is in agreement with
(7.25).
On the basis of (7.24) we find that such a temperature flux leads to an increase of
turbulent kinetic energy. This is consistent with the unstable character of the flow.
The velocities caused by the density differences thus directly enhance the turbu-
lent kinetic energy. This is called buoyant production of turbulence, as opposed to
the production by shear, which we encountered in Sect. 7.2. In a situation where

http://dx.doi.org/10.1007/978-3-319-31599-7_8
http://dx.doi.org/10.1007/978-3-319-31599-7_5
http://dx.doi.org/10.1007/978-3-319-31599-7_3
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(g/T0)w′θ′ is the dominant source of turbulence, we refer it as convective turbu-
lence.

w′θ′ < 0, or: ∂θ/∂z > 0
In Chap. 3 we saw that in this case the flow is stable for small perturbations.
Indeed, it takes energy to displace fluid elements away from their equilibrium
position. In this case the generation of velocity fluctuations requires energy, which
is confirmed by (7.24). This is called buoyant destruction. In such a situation work
has to be done to move the cold (θ′ < 0) fluid upwards (w′ > 0) or the warmer
(θ′ > 0) fluid downwards (w′ < 0). This work is done at the expense of the
turbulent kinetic energy.

We now have an equation with two production terms: the shear production and the
buoyant production. The ratio between both terms determines the character of the
turbulence. This ratio is called the flux Richardson number:

Rif =
g

T0
w′θ′

u′
iu

′
j

∂ui

∂xj

. (7.26)

We now distinguish three cases:

1. Rif < 0 In this case the flow is unstable, or convective. Both the shear and the
buoyant production terms are sources of turbulent kinetic energy, and we expect
a high turbulence intensity.

2. Rif > 0 The flow is now called stable. In general such a flow has a low turbulence
intensity.

3. Rif = 0 Buoyancy effects are negligible, and only the shear production plays a
role. We call this flow neutral.

In the case Rif > 0 we can expect that, as the stability, or Rif , increases, the turbulence
eventually decays. We can deduce an upper limit for Rif on the basis of the following
consideration. We neglect the transport term in the energy equation so that:

De

Dt
= −u′

iu
′
j

∂ui

∂xj

(
1 − Rif

) − ε. (7.27)

From this it follows that turbulence always decays (i.e., De/Dt < 0) when Rif > 1.
As already mentioned, this is an upper limit, because measurements indicate that
turbulence already decays for Rif ∼ 0.2.

In the remainder of the section we focus on turbulence that is dominated by
production due to variations in density, which are effectively caused by variations
in temperature. The simplest flow geometry in which this kind of turbulence can be
studied consists of two flat horizontal plates separated by a distance of 2H. We already
encountered this geometry in Chap. 3 when we discussed the Bénard instability.
The lower plate is heated with a constant temperature flux w′θ′

s. The upper plate

http://dx.doi.org/10.1007/978-3-319-31599-7_3
http://dx.doi.org/10.1007/978-3-319-31599-7_3
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is considered to be insulated, so that: w′θ′(2H) = 0. Moreover, we assume that
the average flow velocity ui equals zero. (With this we eliminate the possibility of
turbulence production by shear.)

In such a geometry, we can consider turbulence as horizontally homogeneous. On
the basis of (5.22) it follows for the equation of the average temperature that

∂θ

∂t
= −∂w′θ′

∂z
. (7.28)

Due to the constant heat input of the lower plate, the average temperature increases
continuously as a function of time. However, we can expect that, after damping of
possible transient phenomena, the temperature profile attains a time-invariant shape,
that is: ∂θ/∂z 	= f (t). Application of this condition in (7.28) leads to

∂2w′θ′

∂z2
= 0,

or equivalently:

w′θ′ = w′θ′
s

(
1 − z

2H

)
. (7.29)

The temperature flux profile thus varies linearly with height. This situation, where
the average field does depend on time but where the gradients are time-independent,
is called: quasi-stationary. This means that the turbulence in particular is station-
ary, because the production terms of turbulent kinetic energy generally relate to the
gradients of the average field.

Let us now consider the characteristic scaling of this flow as we applied it for
example in Sect. 6.3. It is clear that in the center region, or core region, of the channel,
H represents the characteristic length scale. But, how do we select an appropriate
velocity scale? For this we use the kinetic energy equation (7.24) for stationary and
horizontally homogeneous turbulence. We integrate this energy equation between
both plates, where the contribution of the transport terms is zero by definition. It then
follows that:

0 =
2H∫

0

(
g

T0
w′θ′ − ε

)
dz.

For the term w′θ′ we use the profile (7.29), and for ε we use the Kolomogorov relation
(4.14) with L ∼ H. Then it follows for the characteristic velocity scale U that

w∗ ≡ U =
(

g

T0
w′θ′

sH

)1/3

. (7.30)

The term w∗ is called the convective velocity scale. Finally, we can introduce a
convective temperature scale T∗ as

http://dx.doi.org/10.1007/978-3-319-31599-7_5
http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_4
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T∗ = w′θ′
s

w∗
(7.31)

Following to the same procedure as we used in Sect. 6.3, we can now define scaling
laws for the core region, or outer region, of our channel; for example,

w′2 = w2
∗ fw

( z

H

)
, u′2 = w2

∗ fu
( z

H

)
, θ′2 = T 2

∗ fθ
( z

H

)
(7.32)

Such scaling is known as convective scaling. Let us apply our convective scaling to
the average temperature profile. It follows that:

θ − Tcl

T∗
= F(ζ), with: ζ = z

H
, (7.33)

for the scaling law in the outer region, where Tcl is the temperature in the center of
the channel, i.e. z = H. Close to either of the plates, that is in the inner region, we
have to consider a different length scale, which describes the characteristics of the
plate. This length scale is denoted as zH . We still expect that the temperature flux
w′θ′

s dominates the turbulence. It then follows for the velocity scale in the inner
region that:

wf =
(

g

T0
w′θ′

s zH

)1/3

, (7.34)

so that the characteristic scale for the temperature becomes:

Tf = w′θ′
s

wf
. (7.35)

Now, what would be a suitable choice for zH? For a smooth plate, zH should relate
to the molecular conduction that takes care of the temperature flux in the proximity
of the plate, where the turbulence has vanished (analogous to the viscous sublayer).
It follows that:

zH = O
(

α

wf

)
.

With this we find for wf :

wf =
(

g

T0
w′θ′

s α

)1/4

.

Another extreme case is when zH = constant. This could for example be the asymp-
totic limit for a very rough surface. However, this situation is not as straightforward
as for the roughness length z0 in turbulent shear flow, which reaches a constant value.
The reason that the behavior of zH is more complicated, is that momentum transport
is effected both by molecular transport and by buoyancy. However, near the wall

http://dx.doi.org/10.1007/978-3-319-31599-7_6
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heat can only be transported by molecular effects, so it is not likely that zH becomes
independent of α. Anyway, for the temperature profile in the inner region we can
formulate the following scaling law:

Ts − θ

Tf
= f (z∗) with: z∗ = z

zH
, (7.36)

where Ts is the wall temperature. On the basis of symmetry it follows that

�T = 2(Ts − Tcl)

where �T represents the temperature difference between the lower and the upper
plates. By matching the profiles in the overlap area between the inner region and the
outer region, we can now derive an explicit expression for the temperature profile.
Here we use a matching condition that is similar to the one formulated in Sect. 6.3:

lim
z/H→0

(
∂θ

∂z

)
outer

= lim
z/zH→∞

(
∂θ

∂z

)
inner

.

By substitution of (7.33) and (7.36) in this relationship and after some straightforward
manipulation, using the definitions (7.31) and (7.35) for T∗ and Tf , respectively, we
find:

ζ4/3 ∂F

∂ζ
= − z4/3

∗
∂f

∂z∗
= constant,

where ζ is defined in (7.33) and z∗ in (7.36). This result appears to be independent
of the choice for zH , as discussed above. Integration of the equations above shows
that in the overlap area the temperature varies with z as:

θ ∼ z−1/3.

Also, on basis of these matching results we can find an expression for the relation
between �T and w′θ′

s. For this we follow a procedure similar to the one we used in
Sect. 6.3 to derive the friction law in (6.30). The found relation is often expressed as
a Nusselt number Nu, defined as:

Nu = w′θ′
s2H

α�T
.

We now find for a smooth wall under the condition zH � H:

Nu = c (Ra Pr)1/3, (7.37)

where the Rayleigh number Ra is defined as:

http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_6
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Ra =
g
T0

�T(2H)3

να

and the Prandtl number Pr as:
Pr = ν

α
.

Especially the dependence of Nu as a function of the Rayleigh number, given by
(7.37), has been confirmed by experimental data. An empirical relation based on
observations reads:

Nu = 0.069 Ra1/3Pr 0.074.

Problems

1. Derive the energy equation per component for turbulent flow, including density
effects. Show that the buoyancy production only contributes to the vertical com-
ponent. Interpret the result. (See also Problem 1 of Sect. 7.6.)

2. Define the average potential energy (per unit mass) in the Boussinesq approxi-
mation as:

Pe = 1

ρ0

z2∫
z1

ρ g z dz = − g

T0

z2∫
z1

z θ dz,

where z1 and z2 are the boundaries of the turbulent region. Furthermore, assume
that the turbulence is horizontally homogeneous (∂/∂x = ∂/∂y = 0). Derive on
the basis of Eq. (5.22) for θ (neglecting the molecular conduction term) that:

∂Pe

∂t
= − g

T0

z2∫
z1

w′θ′ dz.

Assuming (7.8), it follows for turbulence with density effects that:

∂Ee

∂t
= g

T0

z2∫
z1

w′θ′ dz −
z2∫

z1

ε dz,

with:

Ee =
z2∫

z1

e dz.

From this it follows that the term (g/T0) w′θ′ can be considered as the rate of
conversion for potential energy into kinetic energy.

http://dx.doi.org/10.1007/978-3-319-31599-7_5
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3. Consider a one-dimensional flow: ui = (u(z), 0, 0). On the basis of K-theory,
derive a relation between the flux Richardson number Rif and the Richardson
number Ri, defined as:

Ri =
g

T0

∂θ

∂z(
∂u

∂z

)2 .

With this, estimate a critical value for the flux Richardson number. (In Problem 2
of Sect. 3.3 we found a critical value of 1

4 for the Richardson number.)
4. Expand Prandtl’s one-equation model described in Sect. 7.3 to include density

effects. With this, generalize the Smagorinsky model in (7.18) to:

K =
√

c′
μ

3

2cD
L2

∣∣∣∣∂ui

∂xj
+ ∂uj

∂xi

∣∣∣∣ (1 − Rif
)1/2

.

Also, derive that in this case the following holds:

e =
(
1 − Rif

)1/2

√
2c′

μcD

(
τ (t)

ij τ (t)
ij

)1/2
,

where: τ (t)
ij = −u′

iu
′
j + 1

3 u′
k

2δij represents the deviatoric turbulent stress.
5. Derive the following equation for the temperature fluctuations in a turbulent flow:

D

Dt

1

2
θ′2 ≡ ∂

∂t

1

2
θ′2 + uj

∂

∂xj

1

2
θ′2 = −u′

jθ
′ ∂θ

∂xj
− ∂

∂xj
u′

j

1

2
θ′2 − N,

where N = α (∂θ′/∂xj)
2 is called the molecular destruction of temperature fluc-

tuations. The term α is the molecular diffusion coefficient for temperature.

(a) Interpret each of the terms in this equation, and give an estimation of the
order of magnitude for each of them.

(b) Introduce the Taylor microscale for temperature fluctuations, and compare
this to the Taylor microscale for velocity fluctuations λ.

(c) Derive expressions for the microscales of the temperature fluctuations as a
function of the Reynolds number and the Prandtl number. (Doing this, use
the Corrsin scales derived in Problem 2 of Sect. 10.2.)

6. Derive relation (7.37) for a smooth wall. Show that for a ‘rough’ wall, that is zH ∼
constant) this relation changes to:

Nu ∼ (Ra Pr)1/2.

http://dx.doi.org/10.1007/978-3-319-31599-7_3
http://dx.doi.org/10.1007/978-3-319-31599-7_10
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7. Consider the convective scaling relations in (7.32).

(a) Match the expressions for w′2 and θ′2 with the relations for these variables as
given in Appendix B.1 by application of Monin–Obukhov similarity. With
this, derive the expressions found in Problem 3 of Appendix B.1.

(b) In Appendix B.1 it is stated that u′2 does not satisfy the Monin–Obukhov
similarity. It appears that this variable meets the convective scaling and that
this scaling relation remains valid into the surface layer. With this, derive an

expression for u′2/u2∗ in the surface layer.
(c) Suppose that in the surface layer it holds that:

θ − Ts

θ∗
= f

( z

L

)
,

where θ∗ is given by (B.4) and L by (B.3). Match this profile to (7.33), and
derive an expression for the Nusselt number Nu.

8. Consider convection between two flat horizontal plates separated by a distance
2H. The lower plate has a temperature Ts and the upper plate has a temperature
T1, with �T = Ts − T1. After a certain time a stationary situation develops, that
is: θ 	= f (t).

(a) Calculate the temperature flux profile.
(b) Suppose that in the outer region the characteristic scales are: H and �T ,

and in the inner region: zH and �T . Use matching in order to determine the
temperature gradient in the overlap area.

(c) Suppose that the scaling of turbulent quantities for this flow must yield the
same results as the convective scaling discussed previously. What conditions
must be satisfied by the Nusselt number Nu?

(d) It follows from the results for (b) and (c) that, using the scaling as proposed in
this problem, results are found that differ from those found using convective
scaling. This seems inconsistent. Give a reason why the scaling proposed
here is incorrect as opposed to convective scaling.

7.6 The Convective Boundary Layer

We now continue our discussion on convective turbulence with a somewhat more
complex geometry, that is the convective atmospheric boundary layer. The difference
with the flow between two flat plates, as discussed in the previous section, is that the
upper plate has been removed. In the atmosphere the upper confinement is formed
by a free surface, which forms the interface between the turbulent boundary layer
close to the earth’s surface and the free (laminar) atmosphere above this boundary
layer.
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The average temperature profile in this convective boundary layer is illustrated
schematically in Fig. 7.6. Note that in atmospheric flows we often use the potential
temperature (see Sect. 2.2), but the equations that describe the flow remain the same.
We now indicate the thickness of the boundary layer with zi (which thus replaces H
that we used above). In the largest part of the boundary layer the average tempera-
ture θbl is constant due to the strong mixing that occurs because of the convective
turbulence. That is why this layer is referred to as the atmospheric mixing layer.

When approaching the surface (z → 0) the temperature in the surface layer
increases significantly until it reaches the surface temperature Ts. The thickness of
this surface layer is often small compared to the thickness of the complete boundary
layer, and therefore it has been neglected in Fig. 7.6.

At the upper side of the boundary layer at z = zi we find a temperature jump �,
which characterizes the free surface as discussed above. In the atmosphere above
the boundary layer the temperature generally rises with height. Such an increase is
called an inversion. We assume that in our case the temperature gradient is constant
here, which we indicate by �.

Turbulence is produced because the lower wall (i.e., the earth’s surface) is heated,
in this case by the sun. We use approach of the quasi-stationary turbulence, that is the
temperature gradient is independent of time, so that the temperature flux is linear.
At the end of this section we justify this approach.

A difference with convective turbulence between two parallel plates, described in
Sect. 7.5, is that in this case the temperature flux (or, actually heat flux) at the upper
side of the boundary layer (z=zi) does not equal zero. In general we find here a neg-
ative temperature flux: w′θ′

i, as illustrated in Fig. 7.6. We see later that this negative
temperature flux relates to the growth of the boundary layer due to entrainment, that
is air is captured from the free atmosphere into the boundary layer. Because of this
entrainment, the thickness of the boundary layer increases as a function of time.

On the basis of the properties discussed above, that is θbl = constant and the
linearity of w′θ′, it follows for the temperature equation that

Fig. 7.6 Average
temperature and temperature
flux as a function of the
height in the atmospheric
convective boundary layer.
The symbols are explained in
the text

bl

z i

w’ ’s

w’ ’i

z

http://dx.doi.org/10.1007/978-3-319-31599-7_2
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dθbl

dt
= w′θ′

s − w′θ′
i

zi
. (7.38)

Next we integrate the temperature equation (7.28) over the temperature jump at
z = zi:

lim
δ→0

(∫ zi(t)+δ

zi(t)−δ

∂θ

∂t
dz = −w′θ′

∣∣∣zi(t)+δ

zi(t)−δ

)
,

with:
zi(t)+δ∫

zi(t)−δ

∂θ

∂t
= ∂

∂t

(∫ zi(t)+δ

zi(t)−δ

θ dz

)
− [θ(zi + δ) − θ(zi − δ)]

dzi

dt
.

Then, it follows for this limit that:

�
dzi

dt
= −w′θ′

i, (7.39)

which indicates the relation between w′θ′
i and the growth rate of the boundary layer.

The last equation is found by differentiating the temperature profile for the free
atmosphere:

θ = θbl + � + � · (z − zi).

Because in the free atmosphere we have: w′θ′ = 0, it follows that: ∂θ/∂t = 0, so
that:

d�

dt
= �

dzi

dt
− dθbl

dt
. (7.40)

We now have a complete set of equations to describe the convective boundary layer.
However, we have three equations and four unknown variables. When w′θ′

s and �

are assumed to be given, the remaining unknown variables are: θbl, zi, � and w′θ′
i.

Again, we encounter a closure problem. We can solve this by formulating a closure
hypothesis for w′θ′

i. For this, we use the equation for turbulent kinetic energy in
(7.24). Application of this equation at z = zi yields:

0 = g

T0
w′θ′

i + Tk,

where we neglected the dissipation. Given that: w′θ′
i < 0, kinetic energy is thus lost.

The equation above states that the energy is supplied by the transport term Tk . On
the basis of convective scaling we can estimate this transport term as follows:

Tk = O
(

w3∗
zi

)
,
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so that, with definition (7.30), it follows that:

w′θ′
i = −c w′θ′

s, (7.41)

where on the basis of experimental data the value for the constant c is found to be
0.1–0.2.

We can now solve the system of equations in (7.38–7.41). For this we first for-
mulate the equation

d�

dzi
= � − 1 + c

c

�

zi
.

The solution for this reads:

� = c

1 + 2c
�zi + Az

− 1+c
c

i , (7.42)

where A is an integration constant. The second term at on the right-hand side of (7.42)
rapidly approaches zero (for c ≈ 0.1 for increasing zi. We therefore can neglect this
term, so that:

� = c

1 + 2c
�zi.

After substitution in (7.39) and using the closure hypothesis in (7.41), it now follows
for the solution for zi that:

z2
i (t) = z2

i (0) + 2(1 + 2c)
w′θ′

s

�
t. (7.43)

This solution appears to describe the behavior of the convective boundary layer in the
atmosphere quite well. When we consider some typical values: w′θ′

s = 0.1 Km/s,
and: � = 5×10−3 K/m, we find through (7.43) that the boundary layer thickness
initially grows at about 400 m per hour.

Finally we have to justify why we can assume quasi-stationary turbulence. An
obvious condition is that the time scale relating to the change of the boundary layer
thickness is much larger than the time scale of the turbulence. In that case the tur-
bulence experiences a ‘constant’ (or at least very slowly varying) boundary layer
thickness. This condition implies:

1

zi

dzi

dt
� w∗

zi
,
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hot water
(60o C)

cold water
(dyed, 5o C)

heater plate

z

T

z

T

w s

t0 t0 + t

Fig. 7.7 (Left) Schematic of a simple demonstration of a convective boundary layer. The preparation
of the experiment is described in Problem 1. (Right) Initial state and the growth of the convective
boundary layer when the heater plate has been switched on. The turbulent mixing in the convective
boundary layer results in a uniform temperature. (Bottom) Images of the developing turbulent
flow region. Turbulent fluctuations are primarily in the vertical direction. The initial growth of the
boundary layer thickness zi follows (7.43)

where we take zi/w∗ for the turbulent time scale. After substitution of (7.43), it
follows that:

(1 + 2c)
w′θ′

s

w∗zi�
� 1.
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With the values for w′θ′
s and � mentioned above, and also with the value zi ≈

1000 m, from which it follows that w∗ = 1.5 m/s using (7.30), we find:

(1 + 2c)
w′θ′

s

w∗zi�
≈ 0.02 � 1.

This indeed justifies the assumption of quasi-stationary turbulence.
Appendix B.1 contains a further discussion on the atmospheric boundary layer,

in particular on the Monin-Obukov scaling similarity.

Problems

1. Set up a small experiment such as depicted in Fig. 7.7. Slowly fill a glass con-
tainer with hot water (avoid introducing swirl and turbulence). Then carefully
syphon in dyed cold water, to form a layer of a few millimeter at the bottom of
the container. Allow 1–2 min for the heat transfer between the two layers, so that
a vertical temperature profile is formed as depicted. Then switch on the heating
plate. Observe the growth of the turbulent region with time. Notice that the tur-
bulent fluctuations are dominated by the vertical component. (Incidentally, this
explains the dominant up-and-down motion, or heaving, of an airliner that passes
through a turbulent atmosphere; see also Problem 1 of Sect. 7.5.)

2. Consider an atmospheric boundary layer for which w′θ′
s = 0. Nevertheless, the

structure of the boundary layer is comparable to that as shown in Fig. 7.6, that is
the temperature in the boundary layer is constant, and a temperature discontinuity
exists at the upper side of the boundary layer. Apart from this, the boundary layer
grows by entrainment. The turbulence in the boundary layer is caused by friction
at z = 0. The friction is characterized by a friction velocity u∗. Define a closure
hypothesis for this situation comparable to (7.41). Next, solve the equations for
this boundary layer, and show that the solution is given by:

z3
i (t) = z3

i (0) + 6c
T0

g

u3∗
�

t.



Chapter 8
Vorticity

Vorticity is formally defined as the curl of the velocity field:

ω = ∇ × u, or: ωi = εijk
∂uk

∂xj
, (8.1)

and can be interpreted as a measure of the rotation of a fluid element. In Chap.4 we
already mentioned the importance of vorticity for turbulence. We even characterized
turbulence as ‘chaotic vorticity’. In this chapter this is further elaborated.

To get a first notion on the importance of vorticity we rewrite the Reynolds stress
as:

∂u′
iu

′
j

∂xj
= −εijk ω′

ku′
j + ∂

∂xi

(
1

2
u′

j
2
)

. (8.2)

The second term on the right in (8.2) is a gradient of the scalar 1
2u′

j
2, and when we

consider the complete equations of motion for ui in (5.20), this term can be added to
the pressure gradient. The first term on the right in (8.2) is much more interesting,
because it expresses that Reynolds stress implies the existence of fluctuating vorticity.
We already established the essential role of the Reynolds stress in the preceding
chapters. In short, flows void of fluctuating vorticity can not be considered turbulent.

Problem

1. Derive Eq. (8.2). In doing so, make use of

εijk ω′
k = ∂u′

j

∂xi
− ∂u′

i

∂xj
, and:

∂u′
iu

′
j

∂xi
= u′

i

∂u′
j

∂xi

(for an incompressible flow).
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8.1 Vorticity Equation

The equation for vorticity can be derived from the Navier–Stokes equations (2.10)
by applying the curl to both sides of the equation. Clearly, the pressure term vanishes
because the curl of a gradient is identical zero. The result reads:

Dωi

Dt
≡ ∂ωi

∂t
+ uj

∂ωi

∂xj
= ωj

∂ui

∂xj
+ ν

∂2ωi

∂x2j
. (8.3)

This equation describes how the vorticity changes as we move along with a fluid
element. The second term on the right-hand side of (8.3) is recognized as the diffusion
of vorticity due to viscosity. The first term on the right is new.We rewrite this term as:

ωj
∂ui

∂xj
= ωjsij, (8.4)

where

sij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)

represents the rate-of-strain tensor that was introduced in (5.24). The expression in
(8.4) thus describes the interaction between the fluid deformation and the vorticity.

The first term on the right-hand side of (8.3), taken together with the complete
time derivative on the left-hand side, is identical to the equation for a material line
segment δXi in a flow, which reads:

D δXi

Dt
= δXj sij.

It is easy to imagine the motion of such a line segment. Under the action of the
flow, the length and orientation of the line segment change. This is analogous to
the evolution of ωi; see (8.4). Based on this analogy, we can roughly distinguish
two types of interactions, which are coupled to the off-diagonal and diagonal terms
respectively of sij:

i �= j In this case, sij describes the angular displacement of a material line segment.
With this, (8.4) can be interpreted as a tilting of the vorticity vector ωj from the
j-direction to the i-direction. As an illustration we consider a vortex line oriented
along the x3-axis, as in Fig. 8.1. In a vortex line all vorticity is concentrated along a
line (Kundu andCohen 2004). Here a vortex line, with componentsωj = (0, 0,ω),
lies in a flowfieldwith s13 �= 0. Because the vortex line (whenwe ignore viscosity)
behaves like a material line segment, it is tilted from the x3-axis towards the x1-
axis, as depicted in Fig. 8.1. Thismeans that the vorticity vector obtains a non-zero
component in the x1-direction.

http://dx.doi.org/10.1007/978-3-319-31599-7_2
http://dx.doi.org/10.1007/978-3-319-31599-7_5
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x1

x3

x1

x3

vortex axis

Fig. 8.1 Tilting of a line vortex in a deformation field s13 �= 0 (The deformation field is indicated
in the left graph.)

Fig. 8.2 Vortex line
stretching

x1

x3

stretching

x2
compression

i = j Now, sij describes the change in length of a material line segment, where1

sαα > 0 means that the line segment is stretched, and sαα < 0 means that the
line segment is compressed (see Problem 1 of Sect. 2.1). Consider for example
the situation illustrated in Fig. 8.2, where we show a vortex line ωj = (0, 0,ω) in
a velocity field with s33 �= 0. When we neglect viscosity, (8.3) reduces to:

Dω

Dt
= ω s33,

with the solution:
ω = ω(0) exp(s33 t).

We find that the vorticity increases or decreases depending on the sign of s33. In
case s33 > 0 (i.e., line segments are being stretched) the vorticity increases; we
refer to this as vortex stretching.

1Notice that we apply here the convention that we do not sum over the Greek index.

http://dx.doi.org/10.1007/978-3-319-31599-7_2
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Next to the increase of vorticity, it appears that an energy transfer takes place
from the deformation field to the vortex line. In other words, by vortex stretch-
ing, the vortex spins up. The energy needed for this is evidently supplied by the
deformation field.

Vorticity, and in particular vortex stretching, is a fundamental process in turbu-
lence.We already saw in Chap.3 how vorticity plays an important part in the stability
of flows. Due to these instability processes the larger eddies are created, determining
the macrostructure. In turn, these larger eddies supply energy to the smaller eddies
through the cascade process. We have now found the key mechanism of this process:
vortex stretching. The larger eddies deform the smaller eddies, and so the vorticity
of the smaller eddies increases, while at the same time energy from the larger eddies
is transferred to the smaller eddies. An important consequence of this is that we en-
counter the largest vorticity magnitude at the microstructure. We come back to this
in the sections below; in Appendix B.2 we describe the special case of how vortices
interact with the flow deformation field.

The process of vortex stretching is thus an essential aspect of turbulence.However,
this process can only occur in three-dimensional flows, because in two-dimensional
flows vortex lines cannot be deformed. In short, turbulence as described here can not
exist in two dimensions. Hence, the wave motion at the surface of the ocean is not
turbulent. Also, the fluid motion in thin soap films is essentially two-dimensional;
see Fig. 8.3.

Since vorticity is a vector quantity, it is not straightforward to graphically visualize
it. In the case of a planar cross-section of a flow, or a two-dimensional flow, the
vorticity component normal to the plane of observation can be plotted as a scalar
quantity. In the case of a three-dimensional representation, vortical structures are

Fig. 8.3 The flow behind a grid in a thin soap film. The flow is nearly two-dimensional, and thus
there is no energy cascade effective (although some vortex pairing may be observed). Compare this
to the three-dimensional flow behind a grid in Fig. 4.7. Image courtesy of: M.A. Rutgers (1998)

http://dx.doi.org/10.1007/978-3-319-31599-7_3
http://dx.doi.org/10.1007/978-3-319-31599-7_4
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typically visualized by means of the so-calledQ criterion. The quantityQ is defined
as the second invariant of the deformation tensor ∂ui/∂uj, defined as (Chong et al.
1990):

Q = 1

2

(
P2 − ∂ui

∂xj

∂uj

∂xi

)
, with: P = −∂ui

∂xi
. (8.5)

Evidently, the first tensor invariant P = 0 for an incompressible flow, so that we
can write

Q = 1

2

(
1

2
ω2

i − sijsji

)
(8.6)

Hence, vortical regions are characterized by large values ofQ, so that a region with
Q > QE identifies vortices or eddies. In practice, an additional criterion for the
pressure, i.e. p < −pE , would be required to make a distinction between shear layers
and eddies (Hunt et al. 1988).

The third invariant R of the deformation tensor is given by its determinant (Chong
et al. 1990)

R = − det[∂ui/∂xj], (8.7)

which is essentially the product of the tensor eigenvalues. A plot of theQ-R proba-
bility density function shows a characteristic ‘teardrop’ shape, as shown in Fig. 8.4.
The insets in the figure also show the local flow topology identified for the sections
of the Q-R diagram. Note that section I is dominant, which represents an inward
spiraling flow in one plane and a strong stretching in a direction away from this
plane. This is related to so-called vortex stretching discussed at the beginning of the
section; this is the dominant small-scale dynamical process in turbulence.

Problems

1. Derive Eq. (8.4).
2. Derive the vorticity equation (8.3). Show that this equation reads in two-

dimensional flow:
∂ωi

∂t
+ uj

∂ωi

∂xj
= ν

∂2ωi

∂x2j
,

with: ωi = (ω1,ω2).
Note that the equation does not include a vortex stretching term. Hence, two-
dimensional flows do not have an energy cascade; see Fig. 8.3.

3. Show that the solution of (8.3) when excluding the viscosity term reads:

ωi(t) = δXi

δX(0)
j

ωj(0),
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Fig. 8.4 The probability density function (with logarithmic contour intervals) of the second and
third invariants, that is Q and R respectively, of the deformation tensor. The values of Q and
R are normalized with respect to the mean of the second invariant of the rotation tensor. The
solid curve represents a zero value for the discriminant of the deformation tensor. Insets represent
the local flow topology: I: stable focus/stretching; II: unstable focus/compressing; III: unstable
node/saddle/saddle; IV: stable node/saddle/saddle. After: Ooi et al. (1999)

where δXi represents a material line segment parallel to the vorticity vector ωi(0)
with a value δX(0)

j at time t = 0. This solution is known as Cauchy’s equation.
Provide an interpretation for this relationship.

4. Derive Eq. (8.6).

8.2 Coherent Structures

We can use the process of vortex stretching to get a first impression of how turbulent
eddies develop. Let us focus on turbulent flow near a wall. We consider a flow
with ui = (u(y), 0, 0). The deformation coupled to this velocity field consists of a
stretching along a line that makes a 45◦ angle with the wall.

Velocity measurements close to the wall show regions where the velocity is small
compared to the direct surroundings. These are called ‘low-speed streaks,’ and these
are characteristic for all near-wall turbulent flows; see Fig. 8.5. This figure also shows
that the low-speed streaks are most visible close to the wall and slowly blur as the
distance from the wall increases.
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Fig. 8.5 Visualization of the flow in a turbulent boundary layer. The flow is visualized using
hydrogen bubbles that are generated by electrolysis from a thin wire parallel to the wall, at different
distances y (in dimensionless wall units) from the wall. Note the low-speed streaks very close to
the wall. Images from: Kline et al. (1967). a y+ = 2.7. b y+ = 38. c y+ = 101. d y+ = 407
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Fig. 8.6 The ‘bursting process’ according to Smith (1984). The evolution of line vortices in a
turbulent flow near a wall: a the starting point is a ‘low-speed streak’ that becomes perturbed;
b these perturbations grow because of a Kelvin–Helmholtz instability; c the vortex sheet around
the low-speed streak rolls up into a hairpin vortex; d the hairpin vortices are stretched by the mean
deformation field until the vortex structure becomes fully unstable and disintegrates in the form of
a ‘burst’

The development of a low-speed streak is illustrated schematically in Fig. 8.6.
Because the velocity inside a streak is smaller than its surroundings, we can interpret
the boundary of the streak as vortex sheets.

This flow geometry is comparable to that of the Kelvin–Helmholtz instability, so
that any perturbation of these vortex sheets will grow. As a result of the instability the
vortex sheet rolls up. The final result is a vorticity distribution concentrated in several
so-called hairpin vortices. This is illustrated in Fig. 8.6. The tips of these hairpin
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Fig. 8.7 The visualization of hairpin vortices in a turbulent flow near a wall; the flow is visualized in
a thin light sheet that is placed at an angle to the flow as shown in (c) and (d). The upper visualization
(a) is for a flow with a smaller Reynolds number than the lower visualization (b). From: Head and
Bandyopadhyay (1981)

vortices move away from the wall under the influence of the velocity field induced
by these vortices. This process is called self-induction. This makes the vortex move
even further away from the wall into a region with a higher flow speed. The result
is that the vortex becomes stretched along the direction of maximal strain, which
is along a 45◦-line with the wall. Hence, this leads to a physical picture where the
boundary layer consists of elongated vortex structures. This is illustrated In Fig. 8.7.

During the stretching process the vorticity grows at the expense of the average
flow, until at a certain moment the strength of the hairpin vortex has increased so
much that it becomes unstable. The vortex structure then disintegrate into smaller
structures. This event is called a turbulent ‘burst.’ Frommeasurements it follows that
most of the turbulent kinetic energy and turbulent shear stress is produced during
burst events.
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The hairpin vortex ‘pumps’ low-speed fluid that is close to the wall into a region
away from the wall with a higher mean velocity. This motion is induced by the two
counter-rotation vortices that form the ‘legs’ of the hairpin vortex. This process is
referred to as ‘ejection.’ It is obvious that this ejection contributes to the Reynolds
stress −u′v′. After the burst, the fluid close to the wall is replaced by high-speed
fluid moving towards the wall. This process is called a ‘sweep.’ Both ejections and
sweeps can be clearly seen in Figs. 5.1 and 5.2, where fluid that moves slower than
the (local) mean velocity (u′ < 0) moves away from the wall (v′ > 0), and faster
fluid (u′ > 0) moves toward the wall (v′ < 0).

The complete process, as sketched here, has a cyclic character with a characteristic
time scale of TB ≈ 5δ/U0, where δ is the characteristic scale of the outer region
(for example the boundary layer thickness). The term U0 is the average free-stream
velocity. We notice here that this process occurs in a region close to the wall (the
complete bursting process takes place in the buffer layer), but it apparently scaleswith
the parameters of the outer region. This seems to contradict the scaling principles
described in Sect. 6.3. This point has not yet been clarified.

We also saw that vortex stretching plays an important part in the dynamics of
these coherent structures. In particular, a preferred direction exists, which is related
to the direction of maximum strain, at a 45◦ downstream angle with the wall. This
explains why the large vortices in a turbulent flow are generally anisotropic.

We thus find both structures and processes that can be recognized as such and
that are recurrent in a turbulent flow near a wall. These are: the burst, the low-
speed streak, the sweep and the ejection. It appears that all these phenomena can be
explained in terms of the dynamics of a special vortex structure: the hairpin vortex
(Adrian 2007). The structures mentioned above, where the hairpin vortex plays a
central role, are called coherent structures. Coherent structures are also encountered
in other types of turbulent flows; for example, the mixing layer, which we discussed
in Sect. 6.6 and shown in Figs. 4.6 and 6.16. These coherent structures are considered
as an elementary building block for turbulent flow, and for this reason a significant
amount of research is dedicated to these structures. An example of an experimental
observation is shown in Fig. 8.8. This is an observation by means of PIV of the
instantaneous flow field normal to the wall. The structures near the wall can be
considered as signatures of the hairpin vortices that occur in the bursting process
depicted in Fig. 8.6. These structures have also been identified in state-of-the-art
numerical simulations of turbulent flows near a wall (Wu and Moin 2009); see for
example Fig. 8.9.

The premise is that when we understand these structures and their dynamics,
better closure models for turbulence can be formulated. Perhaps it is even possible to
manipulate these structures directly in order to influence turbulent transport processes
related to mixing and drag. Examples of the latter one is to achieve a drag reduction
by adding polymers to a turbulent flow or by applying small grooves, or riblets, to
the wall; see also Sect. 6.4.

http://dx.doi.org/10.1007/978-3-319-31599-7_5
http://dx.doi.org/10.1007/978-3-319-31599-7_5
http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_4
http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_6


160 8 Vorticity

Fig. 8.8 Signatures of hairpin vortices in a PIV measurement in a streamwise-wall-normal plane
of a turbulent boundary layer at Reθ = 930. Labels A–D indicate the heads of the hairpin vortices.
Note the correspondence with the flow structure sketched in Fig. 8.6d. The arrow plot is generated
for a reference frame that is moving at 80% of the free-stream velocity. From: Adrian et al. (2000)

Fig. 8.9 Vortex structures in a downstream section of a zero-pressure-gradient turbulent boundary
layer, computed by means of a DNS. The structures are visualized as iso-surfaces of the second
invariantQ of the deformation tensor, where the color indicates the local streamwise velocity. From:
Wu and Moin (2009)
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Problem

1. Show for a mean flow with a velocity profile ui = (u(y), 0, 0) that the direction
of maximum strain is at a 45◦ angle with the flow direction (i.e., x-axis). Hint:
find the eigenvalues and eigenvectors of the rate-of-strain tensor sij near a point x.

8.3 Enstrophy

In Chap.7 we studied the equation for the turbulent kinetic energy. Because vorticity
plays such an important part in turbulence, it is obvious to consider also the equation
for the vorticity fluctuations. We split the instantaneous vorticity ωi in mean and

fluctuating parts, i.e. ωi = ωi + ω′
i . We then define 1

2ω
′
i
2 as the enstrophy. How to

interpret this new quantity? It can be proven that for homogeneous and isotropic
turbulence

ε = ν ω′
i
2
. (8.8)

This expression is known to be a good approximation for other types of turbulent
flows at large Reynolds numbers, for which the turbulence can be considered to be
locally isotropic. This relationship means that the enstrophy is dominated by the
microstructure, where the viscous dissipation occurs. This can also be understood
from the fact that ω′

i is directly coupled to ∂u′
i/∂xj, and we already saw that the

largest contribution to the gradient of the velocity fluctuations occurs at the mi-
croscale. Hence, we have the turbulent kinetic energy e that is representative of the

macrostructure, and the enstrophy 1
2ω

′
i
2 that represents the microstructure.

An equation for the enstrophy can be derived in a similar way as for the turbulent
kinetic energy e. In Eq. (8.3) for the vorticity we substitute: ωi = ωi + ω′

i . After
averaging this expression we obtain an equation for ωi. This expression is then we
subtracted from (8.3), so we arrive at an equation for ω′

i . Finally we multiply this last
equation with ω′

i . After averaging, the result reads:

D

Dt

1

2
ω′

i
2 ≡ ∂

∂t

1

2
ω′

i
2 + uj

∂

∂xj

1

2
ω′

i
2 = Pω + Tω + Dω + Sω − εω, (8.9)

with:

Pω = −u′
jω

′
i

∂ωi

∂xj
,

Tω + Dω = ∂

∂xj

{
−u′

j

1

2
ω′

i
2 + ν

∂

∂xj

(
1

2
ωi

2

)}

Sω = ω′
iω

′
js

′
ij + ω′

iω
′
j sij + ωi ω

′
js

′
ij (8.10)

εω = ν

(
∂ω′

i

∂xj

)2

.

http://dx.doi.org/10.1007/978-3-319-31599-7_7
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The left-hand side of (8.9) describes how the enstrophy changes for a point moving
with the mean flow. The four combined terms on the right-hand side describe the
processes that result in a change of enstrophy. These are:

Pω: gradient production We can consider this first term as the gradient production
of enstrophy, and as such it is comparable with the gradient production term in
the equation for the turbulent kinetic energy. Based on this, it follows that via this
term enstrophy is exchanged between the average and the fluctuating vorticity
field.

Tω + Dω: enstrophy transport Due to this term, enstrophy is redistributed in space.
We find two contributions: transport by velocity fluctuations (Tω) and transport
by viscosity (Dω).

Sω: stretching This is the combination of terms relating directly to the process of
vortex stretching.We see here both the contribution from the average deformation
field sij and from the fluctuating deformation field s′

ij.
εω: molecular destruction This term is always negative, and is thus a loss term. It

represents the destruction of enstrophy by molecular diffusion.

We can get a first impression of the various terms in (8.9) on the basis of a direct
numerical simulation of a channel flow, of which the results are shown in Fig. 8.10.
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Fig. 8.10 Terms in the enstrophyEq. (8.9) for a channel flow:� gradient productionPω ;� transport
Tω and � viscous diffusion Dω ; stretching terms Sω , with: + turbulent production ω′

iω
′
js

′
ij , �mixed

production ωi ω
′
js

′
ij , and o production by the mean gradient ω′

iω
′
j sij; and, × molecular destruction

εω . After: Mansour et al. (1988) (Note: our notation is somewhat different from the labeling of the
original data.)
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We see that in the middle of the channel, (8.9) is virtually reduced to an equilibrium
between two terms, namely:

ω′
iω

′
js

′
ij ≈ εω.

This simplification of the enstrophy equation can be justified through a scaling
analysis,where the orders ofmagnitude of the various terms in (8.9) are estimated.We
define the following scaling for the average and the fluctuating parts of the vorticity
field and the deformation field:

ωi = O
(U
L

)
, ω′

i = O
(U

λ

)
, sij = O

(U
L

)
, s′

ij = O
(U

λ

)
, (8.11)

where λ is the Taylor microscale that we introduced in (7.13). U and L are the
macroscales, which we already know. Based on this we can scale the terms in (8.9)
as follows:

ω′
iω

′
js

′
ij = O

(U2

λ2

U
λ

)
= O

(U3

λ3
1

)
,

∂

∂t

1

2
ω′

i
2 = O

(U
L

U2

λ2

)
= O

(U3

λ3

λ

L
)

,

uj
∂

∂xj

1

2
ω′

i
2 = O

(U
L

U2

λ2

)
= O

(U3

λ3

λ

L
)

,

∂

∂xj
u′

j

1

2
ω′

i
2 = O

(U
L

U2

λ2

)
= O

(U3

λ3

λ

L
)

,

ω′
iω

′
j sij = O

(U2

λ2

λ

L
U
L

)
= O

(U3

λ3

λ2

L2

)
,

−u′
jω

′
i

∂ωi

∂xj
= O

(U2

L
U
L2

)
= O

(U3
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λ3
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)
,

ωi ω
′
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′
ij = O

(U
L

U2
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)
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(U3

λ3
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,

ν
∂2

∂x2j

(
1

2
ω′

i
2
)

= O
(

ν

L2

U2

λ2

)
= O

(U3

λ3

λ3

L3

)
.

(8.12)

For details of this analysis we refer to the book of Tennekes and Lumley (1972) and
to one of the problems at the end of this section.

We have put all terms in increasing order of λ/L. We know on the basis of (7.14)
that for large Reynolds numbers the ratio λ/L → 0. It then follows that the lowest-
order terms in λ/L form a first-order approximation of the enstrophy equation. For
the destruction term εω we did not make an estimation, but we expect that this term is
the dominant loss term, i.e. of the lowest-order in λ/L. On this basis of this argument
it follows that:

http://dx.doi.org/10.1007/978-3-319-31599-7_7
http://dx.doi.org/10.1007/978-3-319-31599-7_7
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ω′
iω

′
js

′
ij = ν

(
∂ω′

i

∂xj

)2

(8.13)

holds as a first-order approximation of the enstrophy equation in (8.9).
We can interpret this expression as follows. Production of enstrophy by vortex

stretching is in equilibrium with molecular destruction. The essence of the equation
is, however, that the production and the destruction both take place at themicroscales,
and in (8.13) no terms occur that relate directly to the macrostructure. In other words,
the microstructure is dynamically independent of the macrostructure; that is, the
microstructure and the macrostructure are decoupled and only connected indirectly
through the cascade process.

The result (8.13) is known as the local equilibrium of the microstructure. It is
one of the cornerstones of current turbulence theory. In particular, it forms the basis
of the Kolmogorov scaling of the microstructure, which we discussed in Sect. 4.2.
Also, the absence of a direct influence of the macrostructure in (8.13) means that
the microstructure has no preferred direction. In other words, the microstructure is
isotropic. This confirms our postulate in Sect. 4.2, based on flow visualizations such
as in Figs. 4.6, 4.7, and 6.23.

Problems

1. Prove that the relation ε = νω′
i
2 is exact for homogeneous and isotropic turbulence

at large Reynolds numbers.
2. Show by scaling of the first-order approximation (8.13) that the Kolmogorov

length scale is the characteristic length scale for the gradient of vorticity fluctua-
tions.

3. Experimental and numerical data suggest that the dissipation ε is not distributed
uniformly over the complete turbulent flow; see Fig. 8.11. It is said that the dissi-
pation is intermittent, i.e. the value of the dissipation is large in a small volume,
while in most of the domain dissipation is negligible.
Construct a model that assumes that dissipation takes place in thin vortex tubes
with a diameter η (i.e., the Kolmogorov length scale) and in which the charac-

teristic velocity is U =
√

2
3e. What fraction of the volume is occupied by these

vortex tubes? Does the model satisfy the simplified enstrophy budget in (8.13)?
(Note: one is free to make a choice for the scaling of s′

ij.)
4. Derive the equation for ωi. Show that Pω is the exchange term between the ex-

pressions for ωi and 1
2ω

′
i
2.

5. Show that the enstrophy equation for a fluctuating two-dimensional flow reads

D

Dt

1

2
ω′

i
2 = −u′

jω
′
i

∂ωi

∂xj
− ∂

∂xj

{
u′

j

1

2
ω′

i
2 − ν

∂

∂xj

(
1

2
ω′

i
2
)}

− ν

(
∂ω′

i

∂xj

)2

.

Compare this expression with (7.8) for e. Based on this equation for e we have
given arguments for the cascade process. Argue on the basis of the equation

http://dx.doi.org/10.1007/978-3-319-31599-7_4
http://dx.doi.org/10.1007/978-3-319-31599-7_4
http://dx.doi.org/10.1007/978-3-319-31599-7_4
http://dx.doi.org/10.1007/978-3-319-31599-7_4
http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_7
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Fig. 8.11 The
three-dimensional
distribution of the vorticity
magnitude (above a certain
threshold) in a simulation of
homogeneous and isotropic
turbulence. The vorticity
magnitude, which is
proportional to the
enstrophy, is spatially
localized in thin worm-like
structures. From: Vincent
and Meneguzzi (1991)

above that for two-dimensional flows an enstrophy cascade occurs with εω as
the destruction of enstrophy (where the term εω can be compared with ε in the
equation for e). What are the microscales in this flow?

6. Show that the term ω′
iω

′
js

′
ij in the enstrophy equation always leads to an increase

of enstrophy. (Hint: consider this term in a so-called principal coordinate system
in which s′

ij reduces to a diagonal form s′
ij = s′

ikδjk with s11 + s22 + s33 = 0.)

7. Derive the scaling relations in (8.12) using (8.11). When scaling ω′
iω

′
j , we use the

fact that the microstructure is isotropic. From this it follows that the correlation
between ω′

i and ω′
j is small, that is O(λ/L). For the scaling of the term ω′

is
′
ij we

use Eq. (8.2). The scaling of ω′
is

′
ij follows from Eq. (8.4) and from the fact that the

correlation between u′
j and ω′

i is also small, that isO(λ/L). The reason for this is
that u′

j is determined by the macrostructure and ω′
i by the microstructure.

8.4 The k-ε (e-ε) Model

We now consider a second-order approach of the enstrophy equation according to
the scaling given in (8.12), i.e. we include all terms down to order O(λ/L). At the

same time we substitute: ε = ν ω′
i
2, and: ε′ = ν ω′

i
2, with the result:
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Dε

Dt
≡ ∂ε

∂t
+ uj

∂ε

∂xj
= − ∂

∂xj

(
u′

jε
′
)

+ Pε − Dε (8.14)

with

Pε = 2ν ω′
iω

′
js

′
ij, and: Dε = 2ν2

(
∂ω′

i

∂xj

)2

. (8.15)

Hence, we obtained a balance equation for ε in which we can interpret Pε as the
production and Dε as the destruction of ε. The remaining terms in (8.14) are a
transport term on the right-hand side and on the left-hand side a term that describes
the change of ε along a point which moves with the average flow speed.

Based on Eq. (8.14) we can formulate a turbulence model. Indeed, using the dis-
sipation ε we can introduce a length scale: L ∼ U3/ε. We notice that this expression
is identical to the Kolmogorov relation in (4.14). We could object that the equation
for enstrophy, on which the equation for ε is based, was introduced as an equation
for the microstructure, while here we apply it for estimating the length scale L of the
macrostructure. The answer to this problem lies in the fact that we interpret ε here
as the energy (per unit time) that is transported along the cascade to be dissipated at
the microstructure. For turbulence in an equilibrium state it holds that the dissipation
rate ε is determined by the rate at which turbulent kinetic energy is supplied at the
‘top’ of the energy cascade through the macrostructure. This implies that we can use
ε (in the equilibrium case) to determine the length scale L of the macrostructure.

For the velocity scale U we use again the kinetic energy e. This means that we can
define both a characteristic velocity scale and a characteristic length scale, so given
that K ∼ UL we can write:

K = cμ
e2

ε
, (8.16)

where cμ is a constant. Equation (8.16) is known as the k-ε model, although in view
of the notation used in this book it would be more appropriate to call it the e-εmodel.

In order to apply the k-ε model (8.16) we need to specify another equation for e
and for ε. We have already discussed the equation for e in Sect. 7.2. The equation
for ε is given above in (8.14), but cannot be used in that particular form. This is
because some unknown terms occur in (8.14), for which we need to specify yet
another closure hypothesis.

In the previous section we found that Pε and Dε form a first-order equilibrium.
The difference between those two terms is of secondary order, and we assume here
that this difference is proportional to the production and dissipation terms in the
expression for the turbulent kinetic energy, i.e.

Pε − Dε = ε

e
(c1εP − c2εε). (8.17)

http://dx.doi.org/10.1007/978-3-319-31599-7_4
http://dx.doi.org/10.1007/978-3-319-31599-7_7
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Here

P = −u′
iu

′
j

∂ui

∂xj
+ g

T0
u′

jθ
′δj3

is the production of kinetic energy. The terms c1ε and c2ε in (8.17) are unknown
constants, and T = e/ε can be considered as a characteristic time scale. For the
transport term we choose the usual gradient hypothesis (or, K-theory):

− u′
jε

′ = K

σε

∂ε

∂xj
, (8.18)

where σε is a constant. A somewhat more sophisticated closure for the transport term,
which takes into account the anisotropy of this term, is given by:

−u′
jε

′ = cεu′
ku′

j

e

ε

∂ε

∂xk
,

where cε is a constant for which a value of 0.15 has been proposed.
With this our k-ε model is closed, and for completeness we here summarize the

complete set of equations:

K = cμ
e2

ε
,

Dε

Dt
= ∂

∂xj

(
K

σε

∂ε

∂xj

)
+ ε

e
(c1εP − c2εε), (8.19)

De

Dt
= P + ∂

∂xj

(
K

σk

∂e

∂xj

)
− ε.

In combination with Eqs. (5.20) and (5.26), this forms a closed system of equations.
The constants cμ, c1ε, c2ε, σk , and σε in (8.19) are determined on the basis that the
k-ε model should satisfy some canonical turbulent flows.

We first consider decaying homogeneous turbulence. In practice, this type of
turbulence is produced by placing a grid in a wind tunnel. In the wake of the grid,
turbulence emerges that slowly decays while being advected downstream by the
main flow. A visualization of such a flow is shown in Fig. 4.7. In the ideal case
of homogeneous and isotropic turbulence all spatial gradients of the average flow
properties are equal to zero. With this, Eq. (8.19) reduces to:

∂ε

∂t
= −c2ε

ε2

e
,

∂e

∂t
= −ε.

(8.20)

http://dx.doi.org/10.1007/978-3-319-31599-7_5
http://dx.doi.org/10.1007/978-3-319-31599-7_5
http://dx.doi.org/10.1007/978-3-319-31599-7_4
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First, we consider an expression for the timescale T = e/ε, for which we can derive,
on the basis of (8.20), that:

∂T
∂t

= c2ε − 1, (8.21)

with the solution:
T = T0 + (c2ε − 1) t. (8.22)

An obvious condition for decaying turbulence is that: c2ε > 1. This means that the
timescale T increases linearly as a function of t. We can interpret this as the ‘growth’
of the turbulent eddies (or rather, the smaller eddies decay first, while the larger eddies
remain; because of this, the apparent time scale and length scale of the turbulence
increases). This increase of scales is clearly visible in Fig. 4.7. If we substitute (8.22)
in (8.20), we get for e:

e = (A t + B)
1

1−c2ε , (8.23)

where A and B are determined by the initial conditions. Based on experimental data
it follows that the exponent in (8.23) is about equal to −1.09, so that: c2ε = 1.92.

The second flow to which the k-ε model should comply with is the logarithmic
layer in a turbulent channel flow that we encountered in Sect. 6.2. Recall that the
logarithmic layer is universal to all wall-bounded turbulent flows. When we apply
(8.19) to this flow, we find that:

u2
∗ ≡ −u′v′ = cμ

e2

ε

∂u

∂y
,

0 = −u′v′ ∂u

∂y
− ε,

0 = ∂

∂y

(
K

σε

∂ε

∂y

)
+ ε

e
(c1εP − c2εε).

When we substitute the logarithmic velocity profile (6.15), i.e.:

u

u∗
= 1

k
ln

(
y

y0

)
,

it follows that:

cμ =
(

u2∗
e

)2

, and: c1ε = c2ε − k2

σε
√

cμ
.

Based on experiment data, we find: cμ = 0.09. Finally, we choose for the constants
σk and σε the values 1 and 1.3, respectively.

http://dx.doi.org/10.1007/978-3-319-31599-7_4
http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_6
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With this, all constants in the k-ε model For completeness we summarize here the
model constants:

cμ = 0.09, σk = 1, σε = 1.3, c2ε = 1.92, c1ε = 1.44, k = 0.43. (8.24)
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Fig. 8.12 Examples where conventional K-theory (and thus the k-ε model) fails. Top left in con-
vection along a vertical wall the turbulent transport w′θ′ is in a direction normal to the direction
with the strongest temperature gradient (that is, ∂T/∂y); K-theory would assume that the transport
is proportional to ∂T/∂z, which nearly vanishes. Top right in penetrative convection in a stable
atmosphere (with ∂T/∂z > 0) with a positive turbulent heat flux at the surface (w∗θ0 > 0) there is
a counter-gradient transport, whereas K-theory is based on gradient transport. Bottom left a cyclone
is used in the process industry to separate droplets and solid particles from a fluid by inducing a
strongly swirling flow. Experimental results show that the peak in the tangential velocity component
occurs near the centerline of the cyclone, whereas CFD results with the k-ε model show a solid
body rotation in the central part of the device (Gronald and Derksen 2011). Bottom right for an
impinging jet the flow experiences a very high deformation rate where the turbulence is strongly
compressed in the direction normal to the wall and highly stretched in the plane parallel to the wall.
This induces a strong anisotropy, which violates the assumption of local equilibrium that underlies
the k-ε model
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The k-ε model is applicable to many practical turbulent flow problems. It is the most
widespread model found in commercial and open-source codes for computational
fluid dynamics, or CFD.

Although, K-theory, and with that the k-ε model, provide a suitable approach
in many CFD computations, there can be situations where it fails. Often, when it
fails, it can provide results that are erroneous, rather than results that have only
slight numerical differences. The main problem here is that there exists no suitable
theoretical framework to predict when K-theory (and thus the k-ε model) fails. In
Fig. 8.12 several typical examples are shown.

8.5 Second-Order Closure and Algebraic Stress Models

All turbulent closure models that we discussed so far assume the Boussinesq closure
hypothesis (5.26), which is referred to as K-theory in this book. In other words,
these models assume a relation between the Reynolds stress and the local average
strain rate tensor. In Sect. 5.4 we argued that the basis for this is, to say the least,
shaky. We thus have to expect that when we model turbulent flows, K-theory can
lead to erroneous results, especially in cases where the underlying assumptions for
K-theory do not hold. That is why, in this section, we revisit the closure problem in
more general terms.

It is obvious to take the exact equations for the Reynolds stress as our point of
departure. These can be derived using Eq. (5.21) for the velocity fluctuations u′

i. The
procedure is as follows. Wemultiply the equation for ∂u′

i/∂t with u′
j and then add the

result to the equation for ∂u′
j/∂t multiplied with u′

i. For simplicity we limit ourselves
to a flow with a homogeneous density ρ0. In that case we find the following equation
for the Reynolds stress:

Du′
iu

′
j

Dt
≡ ∂u′

iu
′
j

∂t
+ uk

∂u′
iu

′
j

∂xk
= Pij + Tij + �ij − εij, (8.25)

with:

Pij = −u′
iu

′
k

∂uj

∂xk
− u′

ju
′
k

∂ui

∂xk
,

Tij = − ∂

∂xk

(
1

ρ0
p′u′

j δik + 1

ρ0
p′u′

i δjk + u′
iu

′
ju

′
k − ν

∂u′
iu

′
j

∂xk

)
,

�ij = 1

ρ0
p′

(
∂u′

i

∂xj
+ ∂u′

j

∂xi

)
,

εij = 2ν
∂u′

i

∂xk

∂u′
j

∂xk
.

http://dx.doi.org/10.1007/978-3-319-31599-7_5
http://dx.doi.org/10.1007/978-3-319-31599-7_5
http://dx.doi.org/10.1007/978-3-319-31599-7_5
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Equation (8.25) describes the spatial and temporal variation of the Reynolds stress
due to the physical processes represented by the terms at the right-hand side. Notice
that under contraction (that is, for i = j) this equation becomes identical to the
equation for the turbulent kinetic energy, save for a multiplication factor 2.

It should be clear that by formulating the expression for u′
iu

′
j we cannot avoid

the closure problem. Most of the terms on the right-hand side of (8.25) contain new
unknown variables and thus need a closure hypothesis. However, the closure problem
has beenmoved to an equation of a higher order. Instead of closure in the equation for
the average velocity (i.e., the first statistical moment of the velocity) we now have to
formulate a closure for the terms in the equation for the second moment. That is why
we refer to this as a second-order closure hypothesis. The motivation for this is of
course the assumption (or expectation) that our flow problem would be less sensitive
to a higher-order closure hypothesis than to a first-order closure. (We could interpret
this as a sort of asymptotic expansion: approximations for the higher-order terms are
considered to be less important than those of lower order.) However, a proof for this
assumption is absent.

We now discuss the various terms in (8.25) and formulate a closure hypothesis
when needed.

Pij: production This term describes the production of Reynolds stress by gradients
in the average velocity field. We notice that for this term no closure hypothesis is
needed; in other words, the production of Reynolds stress is described exactly by
the second-order closuremodel. This fact is oftenmentioned as themost important
reason to use second-order closure.

εij: molecular destruction This term describes the destruction of Reynolds stress
by molecular viscosity. On the basis of the discussion from Chap.7 we know that
these molecular effects take place at the microstructure. Also, we saw in Sect. 8.3
that for large Reynolds numbers, the microstructure can be considered be in local
equilibrium, and therefore we concluded that the microstructure is isotropic. This
implies that εij has to be an isotropic tensor. When we use the fact that (8.25) turns
into the equation for the turbulent kinetic energy for i = j, it follows that:

εij = 2

3
ε δij, (8.26)

where ε represents the viscous dissipation of turbulent kinetic energy. We have
already encountered in Sect. 7.4 a comparable result for the energy equation per
component (7.19). This implies for theReynolds stress that the viscous destruction
of this stress equals zero, with the argument that at the microscales, where viscous
destruction takes place, the Reynolds stress due to the condition of local isotropy
is negligible.

Tij: transport As mentioned several times before, this divergence term fulfills the
function of a spatial distribution of, in this case, the Reynolds stress. We see
that this term consists of several contributions, namely: transport by velocity
fluctuations and transport by pressure fluctuations. Transport by molecular effects

http://dx.doi.org/10.1007/978-3-319-31599-7_7
http://dx.doi.org/10.1007/978-3-319-31599-7_7
http://dx.doi.org/10.1007/978-3-319-31599-7_7
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is negligible here, based on the same arguments given for the transport term in
the kinetic energy Eq. (7.8).
There are several closure hypotheses for the transport term, and almost all of them
are based on the gradient hypothesis. For transport by velocity fluctuations, the
closure hypothesis that is mostly applied reads:

u′
iu

′
ju

′
k = −cs

e

ε
u′

ku′
m

∂u′
iu

′
j

∂xm
, (8.27)

where cs is an empirical constant, for which the value of 0.22 is chosen. In this
equation, the term e/ε represents again a characteristic timescale. A closure hy-
pothesis such as (8.27) can in principle be avoided by deducing an equation for
u′

iu
′
ju

′
k . In this way we reach a so-called third-order closure model. However,

such an expansion is not often applied, because the third-order equations, and the
subsequent closure hypotheses in these equations, can become very complicated
without really leading to any substantial improvement for the model results.
Often, no separate closure hypothesis is formulated for transport by pressure
fluctuations. In other words, the effect of pressure fluctuations is incorporated in
the closure hypothesis (8.27). Transport bymolecular diffusion is often neglected.

�ij: pressure-velocity correlation For this term we can formally derive an expres-
sion, but for this we need to assume an expression for the pressure fluctuations p′.
We can find this expression by taking the divergence of Eq. (5.21) for u′

i and using
the fact that the velocity field is incompressible, i.e. ∂u′

i/∂xi = 0. This results in
a so-called Poisson equation for p′, which reads

1

ρ0

∂2p′

∂x2m
= −2

∂uk

∂xl

∂u′
l

∂xk
− ∂u′

l

∂xk

∂u′
k

∂xl
− ∂ u′

lu
′
k

∂xl∂xk
. (8.28)

For the Poisson equation:
1

ρ0

∂2p′

∂x2m
= f (x),

the following exact solution exists:

1

ρ0
p′(x) = − 1

4π

∫∫∫
V

f (x′)
|x − x′| dx′,

where the integral is taken over the entire volume V that encompasses the flow.
Here we implicitly assumed that: f (x) = 0 at the boundaries of V , or: f (x) → 0
for |x| → ∞. Using this solution we can obtain an expression for �ij in terms of
volume integrals over various combinations of the velocity fluctuations. It follows
that the term �ij can be constructed from two contributions: �ij = �

(1)
ij + �

(2)
ij :

http://dx.doi.org/10.1007/978-3-319-31599-7_7
http://dx.doi.org/10.1007/978-3-319-31599-7_5
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�
(1)
ij (x) = 1

4π

∫∫∫
V

∂u′
k

∂x′
l

∂u′
l

∂x′
k

(
∂u′

i

∂xj
+ ∂u′

j

∂x′
i

)
dx′

|x − x′| ,

�
(2)
ij (x) = 1

4π

∫∫∫
V

2
∂uk

∂x′
l

∂u′
l

∂x′
k

(
∂u′

i

∂xj
+ ∂u′

j

∂xi

)
dx′

|x − x′| .

We have already encountered�ij in Sect. 7.4 when we discussed the energy equa-
tion per component.We showed there that this term ‘restores isotropy.’ This result,
better known as Rotta’s hypothesis, here forms the basis of the closure hypothesis
for �

(1)
ij , with the result:

�
(1)
ij = −c1

ε

e

(
u′

iu
′
j − 2

3
δije

)
. (8.29)

The term �
(2)
ij describes that the pressure-velocity correlation also depends on

the gradients of the average velocity. The first step that is often taken to a find
solution of this term is to assume that the term ∂uk/∂x′

l is constant, so that it
can be excluded from the integration. The remainder of the integral can then be
evaluated using correlation functions (see Chap. 9). A complete calculation can
be pretty complicated, and therefore the closure hypothesis is often simplified to:

�
(2)
ij = −c2

{(
Pij − 1

3
δijPkk

)
−

(
Cij − 1

3
δijCkk

)}
, (8.30)

where Pij represents the production term in (8.25) and Cij the advection term:

Cij = uk

∂ u′
iu

′
j

∂xk
.

The effect of this first term in (8.30) is that the production of Reynolds stress is
decreased. In other words, the pressure-velocity correlation suppresses the effec-
tiveness of the Reynolds-stress production.
For the constants c1 and c2 in (8.29) and (8.30), respectively, various values have
been proposed. This is illustrated in Fig. 8.13, where c1 is plotted against c2. Note
that these all appear to lie on a straight line (see Problem 1 at the end of this
section). It is recommended to use: c1 = 1.8, and: c2 = 0.6.

With this, the equation for Reynolds stress is closed, and our second-order clo-
sure model is complete. As an illustration, we apply this model to the channel
flow, to which we already have become familiar with, and for which we have:
ui = (u1(x2), 0, 0). We use the approximations: Du′

iu
′
j/Dt ≈ 0, and Tij ≈ 0. These

approximations appear to hold quite well in the region close to the wall. The equation
for the Reynolds stress component u′

1u′
2 then reduces to

http://dx.doi.org/10.1007/978-3-319-31599-7_7
http://dx.doi.org/10.1007/978-3-319-31599-7_9
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Fig. 8.13 Closure constants
in the pressure-velocity
correlation
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0 = −(1 − c2)u′
2
2 ∂u1

∂x2
− c1

ε

e
u′
1u′

2,

with the solution:

−u′
1u′

2 = (1 − c2)

c1

e

ε
u′
2
2 ∂u1

∂x2
.

We essentially retrieve the K-theory result. In other words, the second-order closure
model yields K-theory as the limit solution. This result also suggests the circum-
stances for which K-theory would no longer hold, namely: when Du′

iu
′
j/Dt and Tij

are no longer negligible. This is the case when turbulence is strongly non-local in
time and/or in space. This limitation is not surprising given our discussion on the
validity of K-theory in Sect. 5.4. For those cases we thus have to solve the complete
second-order closure model.

However, we have to realize that a solution of the complete second-order closure
model is significantly more complicated. Apart from the three equations for the
average velocity ui, we also need to solve six equations for the components of the
Reynolds stress tensor u′

iu
′
j, and an additional equation for ε. Thus, we are confronted

nowwith a system of 10 coupled, nonlinear partial differential equations. Apart from
an substantial computational effort, we are also confronted with many numerical
complexities.

Thus, a simplification of the second-order closure model is highly desirable. The
most common simplification is the so-called algebraic stress model. As its name
clearly suggests, the partial differential equations for the Reynolds stresses are re-
duced to more simple algebraic equations. The basis of this model is formed by the
following approximation:

http://dx.doi.org/10.1007/978-3-319-31599-7_5
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Du′
iu

′
j

Dt
− Tij = u′

iu
′
j

e

(
De

Dt
− Tk

)
, (8.31)

where Tij is the transport term in the Reynolds stress equation, and Tk the transport
term in Eq. (7.8) for the turbulent kinetic energy. The advection and transport in the
Reynolds stress equation are taken to be proportional to the advection and transport
in the kinetic energy equation. The proportionality constant is then related to the
anisotropy in the Reynolds stress. Using the equation for e, it then follows that:

Du′
iu

′
j

Dt
− Tij = u′

iu
′
j

e
(Pk − ε) , (8.32)

where Pk = 1
2Pii is the production of turbulent kinetic energy. After substituting

(8.32) in (8.25), using the closure hypotheses (8.26) for εij, and after substituting
(8.29) and (8.30) for �

(1)
ij and �

(2)
ij , respectively, we arrive at the following implicit

equation for the Reynolds stress:

u′
iu

′
j − 2

3
e δij = (1 − c2)(Pij − 2

3δijPkk)

Pk − ε + c1ε
. (8.33)

Actual computations demonstrate that the algebraic stress model in wall-bounded
turbulence yields results that can be compared with results for the complete second-
order closure model. However, for free turbulence, in particular in the case of an
axisymmetric flow geometry, we find large differences. In those situations we need
to solve the problem through the full second-order closure model.

Problems

1. Apply the equation for u′
iu

′
j and the closure hypotheses discussed above

to the logarithmic layer in a turbulent channel flow. It can be assumed that:
Du′

iu
′
j/Dt ≈ 0, and: Tij ≈ 0. Show that we then have the following relation

for the constants c1 and c2:
1 − c2

c1
= u4∗

e u′
2
2
.

2. Derive Eq. (8.33).
3. Consider decaying grid turbulence. Apply the equations for u′

iu
′
j and the closure

hypotheses for �ij to the turbulent kinetic energy for each velocity component,
that is:

u′
1
2
, u′

2
2 and: u′

3
2
.

At time t = 0, we have:

u′
1
2 �= u′

2
2 �= u′

3
2
.

Show that this flow, for t → ∞, can only reach an isotropic state, that is:

http://dx.doi.org/10.1007/978-3-319-31599-7_7
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u′
1
2 = u′

2
2 = u′

3
2
,

when c1 > 1.

8.6 Large Eddy Simulation of Turbulence

In Sect. 4.3 we discussed the method of direct numerical simulation (DNS) to study
turbulent flows. This is a very powerful numerical technique that resolves all scales
of motion in a turbulent flow. However, even with today’s fast (super-) computing
systems, direct numerical simulation is still limited to low Reynolds number flows.
However, inmany cases it is not necessary to capture all scales ofmotion in a turbulent
flow. If we are, for instance, interested in the lift and drag forces on an object, we only
have to consider the large scales, because these scales carry most of the momentum.
In a large-eddy simulation (LES) we only resolve the large scales in the flow, which
reduces the computational costs considerably.

The first step in a large-eddy simulation is to eliminate the small scales (mi-
crostructure) from the problem. This is possible by filtering the turbulent field. For-
mally, we can write this filter operation as:

[f (x1, x2, x3)] =
∫∫∫

V

G(ξ − x)f (x) dξ1 dξ2 dξ3, (8.34)

where G(ξ − x) represents the filter function. A commonly used filter is the ‘top hat’
filter. This filter has a value of 1/Vf inside the volume Vf = �3

f , while it is zero
outside this volume, i.e.:

G(ξ − x) =
{

V −1
f for: ξ − x ∈ Vf ,

0, elsewhere,

where the integration volume Vf is centered around the point (x1, x2, x3). The term
�f is usually called the filter length. By this filter operation, for which we use the
notation: [· · · ], all fluctuations with a scale smaller than the filter length �f are
removed. When we adjust �f to the characteristic size of our numerical grid �,
it follows that the filtered velocity field represents the macrostructure that we can
represent with our numerical grid. For this reason the filtered variables are sometimes
referred to as the ‘resolved’ scales.

We have to formulate equations for the filtered variables that should be solved
numerically. We find these equations by applying the filter operation in (8.34) to
the Navier–Stokes equations. Before we perform this operation, we first rewrite the
non-linear term and the viscous term as:

http://dx.doi.org/10.1007/978-3-319-31599-7_4
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uj
∂ui

∂xj
= ∂uiuj

∂xj
, and: ν

∂2ui

∂x2j
= ∂

∂xj
ν

(
∂ui

∂xj
+ ∂uj

∂xi

)
,

respectively, where we have used the fact that the flow is incompressible, that is:
∂ui/∂xi = 0. The filtered Navier–Stokes equations can now be written as:

∂[ui]
∂t

+ ∂[uiuj]
∂xj

= −∂[p]
∂xi

+ ∂

∂xj
ν

(
∂[ui]
∂xj

+ ∂[uj]
∂xi

)
, (8.35)

where the filtering operation has introduced a new unknown quantity: [uiuj]. This
new unknown quantity can be written as:

[uiuj] = [ui][uj] + [uiuj] − [ui][uj]︸ ︷︷ ︸
subgrid stress

.

For the last term on the right hand side we introduce a new symbol, the so-called
subgrid stress:

τsgs = −ρ0
([uiuj] − [ui][uj]

)
(8.36)

They idea behind large eddy simulation is that the difference between [uiuj] and
[ui][uj], i.e. the subgrid stress τsgs, is small because of the limited extend of the
spatial filter. The filtered Navier–Stokes equations now read:

∂[ui]
∂t

+ ∂[ui][uj]
∂xj

= − 1

ρ0

∂[p]
∂xi

+ ∂

∂xj
ν

(
∂[ui]
∂xj

+ ∂[uj]
∂xi

)
+ 1

ρ0

∂τsgs

∂xj
, (8.37)

The subgrid stress in (8.36) expresses how the filtered microstructure exerts an effec-
tive stress to the large eddies. In principle, this term can be compared to the Reynolds
stress−u′

iu
′
j. However, here τsgs only describes the stress of the microstructure, while

−u′
iu

′
j is the stress on the average flow due to all the turbulence scales.

Again, we are confronted with a closure problem, because in order to solve
Eq. (8.37) we have to specify a closure relation for (8.36). In most cases the Prandtl
mixing length hypothesis, or its generalized form: the Smagorinsky model (7.18), can
be used. Let us consider here the Smagorinsky model for τsgs:

τsgs = τ (s)
ij = Ks

(
∂[ui]
∂xj

+ ∂[uj]
∂xi

)
,

where Ks is the subgrid eddy viscosity. We can rewrite the last two terms on the
right-hand side of (8.37) as:

∂

∂xj
ν

(
∂[ui]
∂xj

+ ∂[uj]
∂xi

)
+ ∂τsgs

∂xj
= ∂

∂xj
(ν + Ks)

(
∂[ui]
∂xj

+ ∂[uj]
∂xi

)
.

http://dx.doi.org/10.1007/978-3-319-31599-7_7
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For the eddy viscosity Ks the following relation can be used:

Ks = L2

∣∣∣∣∂[ui]
∂xj

+ ∂[uj]
∂xi

∣∣∣∣ . (8.38)

Based on the kinetic energy equation it can be demonstrated that the mixing length
L is in this case proportional to the filter length �f , that is: L = β �f , where the
proportionality constant β = O(1) depends on the type of filter. We now introduce
the constant Cs, which is defined as:

Cs = L
�

, (8.39)

where � is the characteristic grid distance. Using Cs we can control the effective
resolution of the large eddy simulation. For small values ofCs,L (and thus also�f ) is
small compared to the numerical grid. This means that the grid is too coarse to solve
all fluctuations; we can expect some influence of numerical truncation errors. On the
other hand, when Cs is large, it follows thatL (and thus also�f ) is large compared to
the numerical grid. The grid is then sufficient to represent all large eddies. You could
even say that when we increase Cs too much, we filter away too many fluctuations.
The optimal state is found when �f ∼ �. On the basis of a theoretical consideration
it then follows that Cs ∼ 0.1–0.2 (see Problem 1 at the end of this section).

Although we computed a few things, it seems that we did not makemuch progress
using our large eddy model as compared to the turbulence models that we discussed
before. Indeed, we still have to use a closure hypothesis. However, there is an im-
portant difference. So far we have discussed the closure of average quantities, such
as the Reynolds stress, which is mainly determined by the macrostructure. In a large
eddy simulation we compute the macrostructure explicitly, and we only have to spec-
ify closure for the effects of the subgrid scales, or the microstructure. This is much
simpler, because in the next chapter we shall see that the microscales have a uni-
versal structure, which can be described with a relatively simple theory. Apart from
this it appears from simulation results using large eddy models that the statistics for
large simulated structures are relatively insensitive to the subgrid closuremodel. This
means that, despite possible errors in the closure hypothesis of the microstructure,
large eddies can be computed reliably, which is, after all, the objective of the large
eddy model.

The principal advantage of a large eddy model is thus that we can simulate flows
at large Reynolds numbers with relatively modest computer capacity. We illustrate
his by presenting some of the simulation results for a plane channel flow with a
Reynolds number of 13,800. In Fig. 8.14 are presented some of the results in the
form of a contour plot of the velocity fluctuations in the flow direction. In this graph
some clearly elongated structures can be recognized, which we can associate with
the low-speed streaks discussed in Sect. 8.2. Another result obtained by means of
large eddy simulation is shown in Fig. 8.15. In this case small particles parallel to the
wall are released in the simulated flow domain. This visualization of the simulation
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Fig. 8.14 Low-speed streaks in a large eddy simulation of a channel flow at a Reynolds number
of 18,300 (based on the centerline velocity and channel half-width H). The contours indicate the
fluctuations of the streamwise component of the velocity in a plane at a distance of y+ = 6.26
parallel to the channel wall; the uninterrupted contour lines indicate regions with a flow speed that
is less than the local mean velocity. The streamwise extend of the figure is 2πH(4021ν/uτ ), and its
spanwise extent is πH . From: Moin and Kim (1982)

Fig. 8.15 Particle trajectories in wall turbulence, simulated using the large eddy model described
in Fig. 8.14. The particles are generated from a ‘z-wire’ located at y+ = 12 (cf. Fig. 8.5). From:
Moin and Kim (1982)
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results can be compared to the hydrogen bubble visualizations in Fig. 8.5. As can be
expected, the patterns of both figures show a clear resemblance.

The Smagorisky model discussed above was one of the first large eddy models
that was described in the literature. Over the recent years several improvements were
reported. It is outside the scope of this book to discuss these improvements here. For
a good overview and further details we refer to the book by Sagaut (2005). We also
refer to a review by Cabot and Moin (1999) who examines different approximate
wall boundary conditions for channel flow and separated flow for the cases where
the numerical grids near the wall are not resolved.

Problem

1. For the average deformation of the resolved velocity field, which we calculate
with our large eddy model, it can be derived that:

(
∂[ui]
∂xi

+ ∂[uj]
∂xj

)2

= S2 ≈ 4

2π/�f∫
0

k2E(k) dk,

where the energy spectrum E(k) is defined in (9.19). This relation is exact in the
case of isotropic turbulence, which we discuss in Sect. 9.6. It can be shown that
the following relation holds for the average values of the subgrid energy:

e(s) ≡ 1

2
(ui − [ui])2 =

∞∫
2π/�f

E(k) dk.

Furthermore, assume for E(k) the relation that is valid in the inertial subrange
(see Sect. 9.5):

E(k) = βε2/3k−5/3,

with β ≈ 1.6 (Fig. 8.16).

(a) Show that the energy equation for the subgrid energy, whilst neglecting the
advection and transport terms, leads to:

ε = 1

2
S3�2,

where we used Smagorinsky’s model in (8.38).
(b) Using this relation, derive that:

L
�f

= 0.17,

http://dx.doi.org/10.1007/978-3-319-31599-7_9
http://dx.doi.org/10.1007/978-3-319-31599-7_9
http://dx.doi.org/10.1007/978-3-319-31599-7_9


8.6 Large Eddy Simulation of Turbulence 181

1st order closure

Prandtl mixing
length

von-Karman
eddy viscosity

Prandtl 1-equation
model

(3+1 equations)

k- model
(3+2 equations)

2nd order closure
(10 equations)

algebraic stress
model

(7 equations)

m
ea
n
fl
ow

on
ly

m
ea
n
fl
ow

an
d
tu
rb
ul
en
t

ki
ne
tic

en
er
gy

local equilibrium no local equilibrium

3rd order closure
(>10 equations)

si
m
ul
at
io
n

direct numerical
simulation

large-eddy
simulation

Fig. 8.16 Summary of turbulence closure models.White boxes refer toReynolds-averaged Navier–
Stokes (RANS) models; shaded boxes refer to simulation methods, such as large-eddy simulation
(LES) and direct numerical simulation (DNS). RANS approaches where the flow (ensemble) sta-
tistics, such as the mean velocity and turbulent kinetic energy, can vary as a function of time are
referred to as unsteady RANS, or URANS. The arrows indicate an increasing computational effort

from which it follows that:

Cs = 0.17
�f

�
.

(c) Show that:

ε = 1.69
e(s)

3/2

�f
.



Chapter 9
Correlation Function and Spectrum

So far we have mainly dealt with the so-called single-point statistical moments of the
turbulent flow. These are statistical quantities, such as the average or the variance,
defined at a single point in space (see Chap. 5). However, these single-point moments
do not describe the spatial and temporal structure of turbulence. For this we need
multiple-point moments that describe the relation between the various variables in
space and time.

The simplest multiple-point moment is the correlation function of two variables at
two different points. We formally defined such a correlation in (5.12). In this chapter
we focus on this correlation function and its Fourier transform, referred to as the
spectrum.

9.1 Time Correlations

Consider a turbulent variable as a function of time. Take for example the fluctuating
velocity component u′(t) with u′ = 0. There are two ways to define such a variable
as a function of time:

Eulerian:Here we measure u′ at a fixed point as a function of t. You could think for
example of an instrument that is permanently installed in a flow (see Sect. 4.3),
and with which we register turbulent fluctuations as a function of time.

Lagrangian: In this case we do not have a fixed coordinate system, but we move
along with a material fluid element on its way through the flow. As it moves along
we register the turbulent velocity fluctuations as a function of time.

The latter description has some theoretical advantages for certain applications. The
measurement of the Lagrangian velocity fluctuations can in practice only be done
through particle tracking velocimetry. Later we return to the properties of the Eulerian
and Lagrangian measurements. For now it only matters that we define the turbulent
variable u′(t), which we interpret as a velocity fluctuation as a function of time.

© Springer International Publishing Switzerland 2016
F.T.M. Nieuwstadt et al., Turbulence, DOI 10.1007/978-3-319-31599-7_9
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When we consider u′(t) at times t1 and t2, we can introduce the following time
correlation:

u′(t1)u′(t2). (9.1)

Because we consider the same velocity components at the two times we call this the
autocorrelation function. For a formal definition of this correlation in terms of the
probability distribution we refer to Sect. 5.1. Here we limit ourselves to a stationary
process, or, stationary turbulence. For this we found in Chap. 5 that the correlation
is only a function of the difference in time, or:

u′(t1)u′(t2) = R(t2 − t1) = R(τ ) = u′2ρ(τ ), (9.2)

where: τ = t2−t1. The term ρ(τ ) is called the correlation coefficient. For a stationary

process, u′2 is, by definition, independent of t. (It should be clear that we can define
a correlation like (9.1) for any other time-varying scalar variable in a turbulent flow.)
Some properties of ρ(τ ) are:

i : ρ(0) = 1,

ii : |ρ(τ )| � ρ(0) = 1 ∀ t,

iii : ρ(τ ) = ρ(−τ ),

iv : ρ(τ ) → 0 for: τ → ∞.

(9.3)

The last property means that the correlation vanishes for large time differences. In
other words, with a given velocity, it is impossible to predict the velocity for a large
time difference. We saw in Chap. 1 that this is an essential property of chaos. In short,
a chaotic process, and thus turbulence, has a finite timescale. We can quantify this
timescale, but only when ρ(τ ) approaches zero fast enough when τ → ∞, using:

T =
∞∫

0

ρ(τ ) dτ , (9.4)

where T is called the integral timescale. This timescale is a measure for the time
difference over which the significant correlation persists. It is therefore obvious to
identify the T with the timescale of the macrostructure.

Next, we consider the correlation function of the time derivatives:

∂u′(t1)
∂t1

∂u′(t2)
∂t2

. (9.5)

http://dx.doi.org/10.1007/978-3-319-31599-7_5
http://dx.doi.org/10.1007/978-3-319-31599-7_5
http://dx.doi.org/10.1007/978-3-319-31599-7_1
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This correlation function can be related to the correlation function for the velocities
that we introduced above. For a stationary process it follows on the basis of τ = t2−t1
that

∂

∂t1
= − ∂

∂τ
, and:

∂

∂t2
= ∂

∂τ
,

so that:
∂u′(t1)

∂t1

∂u′(t2)
∂t2

= −u′2 ∂2ρ(τ )

∂τ 2
. (9.6)

When: t1 = t2, (or: τ = 0) we now find that:

(
∂u′

∂t

)2

= −u′2 ∂2ρ(τ )

∂τ 2

∣∣∣∣
τ=0

. (9.7)

In Chap. 7 we argued that the differential of a fluctuation, as it occurs on the left-
hand side of (9.7), is dominated by the microstructure, and in the same chapter we
introduced the following scaling:

(
∂u′

∂t

)2

= u′2

λ2
T

, (9.8)

where λT is the Taylor micro-timescale.1 Based on (9.7), we find that this Taylor
microscale is coupled to the second derivative of ρ(τ ) at τ = 0. We can interpret this
second derivative as the curvature of the correlation function at τ = 0, since we can
write, based on a power series expansion, that:

ρ(τ ) = ρ(0) + 1

2
τ 2 ∂2ρ

∂τ 2

∣∣∣∣
τ=0

+ · · · , (9.9)

where, based on property iii in (9.3), the term with ∂ρ/∂τ equals zero. In other words,
the behavior of the correlation function for τ ≈ 0 relates to the microstructure.

With this we demonstrated that the autocorrelation function (or the autocorrela-
tion coefficient function) contains information about the temporal structure of tur-
bulence. For τ ∼ T this correlation describes the macrostructure and for τ ∼ 0 the
microstructure. This is schematically represented in Fig. 9.1.

Problem

1. Consider the quantity {u′(t2) − u′(t1)}2 � 0, and use it to prove property ii in
(9.3).

1Please note that λT has the dimension of time and is the Taylor microscale for temporal fluctuations.

http://dx.doi.org/10.1007/978-3-319-31599-7_7
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Fig. 9.1 The temporal
autocorrelation function of a
turbulent signal
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9.2 The Spectrum

Because ρ(t) satisfies property iv in (9.3), we can formally introduce the following
Fourier transform pair:

S(ω) = 1

2π

∞∫
−∞

e−iωτ R(τ ) dτ

R(τ ) =
∞∫

−∞
eiωτ S(ω) dω.

(9.10)

The background for this transformation is that, on the basis of the harmonic analysis
of time series, every stationary time series can be represented as a superposition of
Fourier components, that is waves with a period T = 2π/ω. The term S(ω) can then
be interpreted as the square of the amplitude of the wave with angular frequency ω.
S(ω) is often called the energy spectrum, because on the basis of (9.10) for τ = 0
and R(0) = u′2 it follows that:

u′2 =
∞∫

−∞
S(ω) dω, (9.11)

So, S(ω) contributes to u′2, which is here the x-component of the energy, for frequen-
cies between ω and ω+dω. When the integral (9.4) exists, or in other words when the
turbulence has a finite timescale, it can be shown that the spectrum is continuous. If
a process would consist of a finite number of (quasi-)periodic orbits in phase space,
then its spectrum would contain discrete peaks, each associated with a periodic orbit;
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hence, a continuous spectrum is sometimes referred to as a characteristic property
of a chaotic process (see also Fig. 3.24).

The spectrum S(ω) has the following properties:

i : S(ω) > 0 ∀ω,

ii : S(ω) = S(−ω),

iii : S(ω) = S∗(ω),

(9.12)

where the superscript ∗ indicates the complex conjugate. (On the basis of (9.10),
S(ω) can have a complex value.) When S(ω) does not satisfy these conditions, it can
not be the spectrum of a stationary process.

The first property in (9.12) follows from the fact that S(ω) is equal to the energy
of a wave with a frequency ω. The two other properties follow from (9.3) and (9.10),
and these properties lead to the conclusion that S(ω) is an even and real function
of ω. Based on this we can simplify the transformation (9.10) to a cosine transform,
defined as:

E(ω) = 2

π

∞∫
0

R(τ ) cos(ωτ ) dτ ,

R(τ ) =
∞∫

0

E(ω) cos(ωτ ) dω,

(9.13)

with: E(ω) = 2S(ω). A final property is found by substitution of ω = 0 in (9.10),
that is:

S(0) = 1

2π

∞∫
−∞

R(τ ) dτ = u′2 T
π

. (9.14)

We defined T in (9.4) as the integral timescale that relates to the macrostructure.
This suggests that the behavior of S(ω) close to ω ∼ 0 is representative for the
macrostructure. This is in accord with the fact that ω → 0 corresponds to long
waves of which an interpretation in terms of large eddies is obvious. However, we
need to emphasize that a wave and an eddy are substantially different; in principle,
a wave has an infinite extent, while an eddy has definitely finite dimensions. That is
why we should actually interpret the spectrum S(ω) for turbulence as wave packets
of bandwidth �ω centered around the frequency ω. For a further elaboration on this
interpretation we refer to the book of Tennekes and Lumley (1972).

Based on similar arguments, where smaller eddies are associated with smaller time
periods (or high frequencies), we can couple the region ω → ∞ to the microstructure.
These results for the spectrum are summarized schematically in Fig. 9.2. We have
seen that both the correlation R(τ ) and the spectrum S(ω) contain information about
the structure of turbulence. In practice however, we often consider the spectrum,
because we can make a more direct link between the eddy size and the frequency.

http://dx.doi.org/10.1007/978-3-319-31599-7_3
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Fig. 9.2 The turbulent time
spectrum with a bandwidth
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Problems

1. Define the bandwidth ωB of the spectrum as: ωB = (
∫ ∞

0 S(ω) dω)/S(0). Find a
relation between ωB and T . Interpret the limits ωB → 0 and ωB → ∞, both in
terms of the spectrum and in terms of the correlation function.

2. Determine the spectra for the following correlation functions:

(a) ρ(τ ) = 1 for τ < T and ρ(τ ) = 0 for τ > T ;
(b) ρ(τ ) = exp(−τ/T).

Which of the spectra is physically realistic? Does the correlation function behave
realistically for (b) when τ → 0?

9.3 Spatial Correlations and Spectra

Now consider the simultaneous measurement of the velocity fluctuations in two
points x1 and x2. With this we can define the two-point correlation u′

i(x1)u
′
j(x2).

For homogeneous turbulence this quantity is a function of the separation vector
r = x2 − x1 only, so it follows that:

Rij(r) = u′
i(x1)u

′
j(x2), (9.15)

which we call the correlation tensor. The correlation Rij has the following properties:

i : Rij(0) = u′
iu

′
j,

ii : Rij(r) = Rji(−r),

iii : Rij(r) → 0 for: |r| → ∞,

(9.16)
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Fig. 9.3 Correlations between the velocities measured at two points

where the last property relates to the fact that the spatial dimensions of a turbulent
eddy are finite.

The correlation tensor has in principle nine components of which six are inde-
pendent. Every one of those components is a function of the separation vector r. For
the tensor components we distinguish between different configurations of the direc-
tions of the velocity vectors u′

i and u′
j with respect to the separation vector. These

configurations, illustrated in Fig. 9.3, are:

longitudinal correlation: this describes the correlation between two velocity com-
ponents that are parallel to the separation vector r in both points. In case the sepa-
ration vector is chosen along the x-axis, i.e. r = (r, 0, 0), R11(r) = u′(x)u′(x + r)
is a longitudinal correlation; in case r = (0, r, 0) lies along the y-axis, it follows
that R22(r) is also a longitudinal correlation.

transversal correlation: in this case we consider the correlation between two veloc-
ities that have the same direction and are perpendicular to the separation vector r.
In principle there are two transversal correlations. As an example we take again
r = (r, 0, 0); in that case, R22(r) = v′(x)v′(x + r) and R33(r) = w′(x)w′(x + r)
are two transversal correlations that are generally not identical.

cross-correlations: this is the remaining correlation where the velocities in both
points have different directions; for example, R12(r) = u′(x)v′(x + r) with r =
(r, 0, 0) is a cross-correlation.

The correlation functions provide insight in the spatial structure of turbulence.
As an illustration we show in Fig. 9.4 some measurements of the longitudinal and
transversal correlations in a turbulent channel flow. From these measurements it is
clear that the length scale of the turbulence decreases as we approach the wall. This
agrees with our discussion of the length scale in the inner layer in Chap. 6.

Because Rij(r) satisfies property iii in (9.16) we can again define a Fourier trans-
form pair:

φij(κ) = 1

8π3

+∞∫∫∫
−∞

Rij(r)e
−iκ·r dr,

Rij(r) =
+∞∫∫∫
−∞

φij(κ)eiκ·r dκ,

(9.17)

http://dx.doi.org/10.1007/978-3-319-31599-7_6
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Fig. 9.4 Longitudinal and transversal spatial correlations in a channel flow. Measurements by G.
Comte-Bellot using hot-wire anemometers. (Note that the distance from the wall is taken as the
z-coordinate; see Fig. 2.2.) After: Townsend (1976)

where φij is the spectral tensor. The theoretical background is that we can represent
a homogeneous series as a sum of Fourier components. In this case these are waves
with a wave vector κ, which relates to the wavelength λ as

κ = 2π

λ2
λ, (9.18)

where: κ = |κ|, and: κ/κ ≡ λ/λ represents the direction of propagation of the wave.
Using φij(k) we can describe the spatial structure of homogeneous turbulence, where
we can couple the wave number |κ| to the dimension of an eddy: a small |κ| relates
to the macrostructure, while the microstructure is related to waves with large |κ|.
However, the complete spectral tensor φij(κ) is in practice not easily handled. That
is why we often look at simplified or reduced expressions.

First, we consider the so-called energy spectrum. The turbulent kinetic energy,

e = 1

2
u′

i
2 = 1

2
Rii(0),

is related to the trace of the spectral tensor: 1
2φii(κ). However, we are only interested

in the distribution of the energy in relation to the eddy size, that is κ = |κ|, and

http://dx.doi.org/10.1007/978-3-319-31599-7_2
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not over the direction of κ. We can eliminate this information about the direction by
integrating 1

2φii(κ) over a spherical surface in κ-space, with the result:

E(κ) = 1

2

∫∫
|κ|

φii(κ) dσ, (9.19)

where the integration is carried out over a spherical surface κ = |κ| and where dσ is
a surface element of this spherical surface. On the basis of (9.17) and (9.19) it then
follows that:

e =
∞∫

0

E(κ) dκ. (9.20)

The term E(κ) yields the distribution of energy over the various wave numbers κ,
which is why E(κ) is called the turbulent energy spectrum.

In Fig. 9.5, E(κ) is illustrated schematically. We identify κe ∼ 1/L, where the
spectrum has a maximum, with the large and energetic eddies. Close to κd ∼ 1/η, the
spectrum represents the microstructure. The region in between describes the energy
cascade process. We return to the shape of the spectrum in this intermediate region
in one of the following sections of this chapter.

The second simplification of the spectral tensor φij(κ) is the so-called one-
dimensional spectrum, where the separation vector r only varies along a given line.
For example, if we take for this the x1-axis, so that: r = (r1, 0, 0), it follows for
(9.17) that:

isotropic range

dissipation
rangeenergy

containing
eddies

E( ) anisotropic range

inertial subrange

~ 4

~ 5/3

( e) ( d)

Fig. 9.5 The three-dimensional energy spectrum. The inertial subrange occurs roughly between
κe = 2π/L and κd = 2π/η and scales with κ−5/3; see Sect. 9.5. The κ4-scaling for κ → 0 is
described in Problem 6 of Sect. 9.6. The scaling for the dissipative range is discussed in Problem 12
of Sect. 9.6; see also Fig. 9.14
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Rij(r1, 0, 0) =
∞∫

−∞
eiκ1r1

⎧⎨
⎩

∞∫∫
−∞

φij(κ1,κ2,κ3) dκ2 dκ3

⎫⎬
⎭ dκ1.

This can be rewritten as:

Rij(r1, 0, 0) =
∞∫

−∞
eiκ1r1 Fij(κ1) dκ1, (9.21)

where:

Fij(κ1) =
∞∫

−∞

∞∫
−∞

φij(κ1,κ2,κ3) dκ2 dκ3, (9.22)

is the one-dimensional spectrum and Rij(r1) the one-dimensional correlation func-
tion. The terms Fij(κ1) and Rij(r1) are a Fourier transform pair, comparable with
(9.10). Based on the orientation of the i and j-components with respect to the x1-
axis, we define F11(κ1) as the longitudinal spectrum and F22(κ1) and F33(κ1) as the
transversal spectra. The term Fij(κ1) for i 
= j is usually called the co-spectrum.

The term Fij(κ1) describes the spatial structure along a line. The spatial structure
is actually three-dimensional, so how should we interpret this? The answer lies in
the definition (9.22) for Fij(κ1), from which it follows that Fij(κ1) consists of the
integral over all contributions to the spectrum φij(κ) with the x1-component of the
wavenumber κ equal to κ1. In other words, in Fij(κ1) we interpret all waves placed
under an angle to the x1-axis as waves along the x1-axis with a wavenumber equal to
the projection of κ on the x1-axis. This effect is called aliasing, and it is illustrated in
Fig. 9.6. Aliasing explains the difference between the shape of the energy spectrum
E(κ) in Fig. 9.5 and the shape of the one-dimensional spectrum F11(κ1), which is
illustrated in Fig. 9.7. We find that this difference reaches a maximum for a small κ,
where: E(0) ≈ 0, while: F11(0) 
= 0.

Following a procedure similar to the one for the time correlation, we can define
characteristic length scales on the basis of the one-dimensional correlation function.
It thus follows that:

u′2�L =
∞∫

0

R11(r1, 0, 0) dr1,

u′2�T =
∞∫

0

R22(r1, 0, 0) dr1,

(9.23)

where we call �L the longitudinal length scale and �T transversal length scale. These
are representative for the macrostructure. It should be clear that a second transversal
length scale can be defined on the basis of R33. We associate the microstructure to
the second derivative of the correlation function at r = 0, that is:
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an oblique angle with respect to the direction of measurement. After: Tennekes and Lumley (1972)
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(
∂u′

∂x

)2

≡ − ∂2R11

∂r2

∣∣∣∣
r=0

= u′2

λ2
T

, (9.24)

where λT is the Taylor microscale that we introduced already in (7.13) for the scaling
of the dissipation. Here we again distinguish between longitudinal and transversal
components.

The one-dimensional spectrum and the one-dimensional correlation function are
often considered in practice, because they can be obtained relatively easy by means
of experimental methods. We focus on this in the next section.

Problems

1. Prove property ii in (9.16).
2. Prove the relation:

λ−2 = 2

u′2

∞∫
0

κ2F11(κ) dκ.

What is the consequence of this relation for the behavior of F11 when κ → ∞?

9.4 The Taylor Hypothesis

We assume an Eulerian measurement, which means that we measure a time series
u′(t) at a fixed point in the flow. How should we interpret the correlation and the
spectrum, which we can determine on the basis of this measurement?

For this, consider an eddy with the characteristic macroscales U and L. This
eddy is transported along the measuring point with an average speed u, as shown
schematically in Fig. 9.8. In the measuring point we measure local time variations,
which, on the basis of the definition of the material derivative (2.1), can be written
as

∂

∂t
= D

Dt
− u

∂

∂x
. (9.25)

A local time variation at the measuring point is thus built up of two contributions.
The term D /Dt describes the change in time while traveling along with the eddy at
an average speed u. The second, so-called advection term, describes the influence of

Fig. 9.8 Transport of an
eddy along a fixed measuring
point

measuring
point

u

http://dx.doi.org/10.1007/978-3-319-31599-7_7
http://dx.doi.org/10.1007/978-3-319-31599-7_2
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the spatial structure, which is transported along the fixed measuring point. We can
estimate the order of magnitude of both terms as follows:

∂

∂t
≈ U

L − u

L = u

L
(U

u
− 1

)
,

where we take L/U for the characteristic timescale of an eddy. The ratio U/u is
proportional to the so-called turbulence intensity and in most flows this is very small
(typically less than 10 %). From this it follows that the first term in (9.25) is negligible
compared to the second term, or:

∂

∂t
≈ −u

∂

∂x
. (9.26)

We can interpret this relation as follows. The time it takes for an eddy to advect past
the measuring point by the average velocity is much shorter than the time that it
takes for the eddy to change its shape. This is referred to as the hypothesis of ‘frozen
turbulence’, or Taylor hypothesis (Taylor 1938).

The measured fluctuations are thus only determined by the advection of the spatial
structure of the flow along the measuring point. This means that we should not couple
the correlation function and the spectrum of the measured time series to the time
structure of the turbulence, but to the spatial structure. In other words, the measured
time spectrum S(ω) should be interpreted as the one-dimensional spatial spectrum
F(κ), of which we saw in the previous section that it describes the spatial structure
of the turbulence along a line. Here, the relation between ω and κ is given by:

κ = ω

u
.

It thus follows that:

F(κ) dκ = F
(ω

u

) dω

u
= S(ω) dω ⇒ S(ω) = 1

u
F

(ω

u

)
.

In short, Eulerian measurements in a single point give no information whatsoever
about the temporal structure of turbulence, but instead about the spatial structure
along a line that is parallel to the average transport velocity u. In order to deter-
mine the true temporal structure of turbulence, we have to resort to the Lagrangian
measurements.

Problems

1. Define the Lagrangian (L) and Eulerian (E) Taylor micro-timescales as:

(
Du′

Dt

)2

∼
(

U
λ(L)

T

)2

,
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(
∂u′

∂t

)2

∼
(

U
λ(E)

T

)2

,

respectively.

(a) Show that, at the same time, the following holds:

(
Du′

Dt

)2

∼
(υ

τ

)2
,

where υ and τ are the Kolmogorov scales. Such a scaling does not hold for

(∂u′/∂t)2. Why not?
(b) Derive a relation between the integral timescale T and λ(L)

T , and for λ(L)
T and

the Kolmogorov timescale τ .
(c) Show that λ(E)

T /λ(L)
T is a function of a Reynolds number, from which it

follows that λ(E)
T � λ(L)

T . Give an interpretation of this result.
(d) Consider a turbulent flow with u = 0. Do the results above have to be

adjusted?

2. We consider a Lagrangian correlation and the associated Lagrangian spectrum
S(ω). Prove that

u′2

λ(L)
T

2 =
∞∫

−∞
ω2 S(ω) dω.

Next, consider the spectrum

S(ω) = u′2T
π

e−τ 2ω2

1 + ω2T 2
,

where τ is a timescale.

Using this spectrum, calculate the energy and λ(L)
T . Make use of the following

integrals:
∞∫

0

e−μ2x2

x2 + β2
dx = [1 − �(βμ)]

π

2β
eβ2μ2

,

∞∫
0

x2e−μ2x2

x2 + β2
dx =

√
π

2μ
− π

2
βeβ2μ2

[1 − �(βμ)] ,

where �(s) represents the error function:
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�(s) = 2√
π

s∫
0

e−t2
dt.

Show that, under the condition that: λ(L)
T � T , τ is proportional to the Kol-

mogorov timescale.

What does in this case the correlation function look like?

9.5 Scaling of Turbulence Spectra

We argued that we can interpret the spectra φij(κ), E(κ) and F11(κ1) in terms of
the spatial structure of turbulence. We already discussed this spatial structure exten-
sively in another context; in particular, we found that there is a macrostructure and
a microstructure, which are dynamically decoupled, and therefore each have their
own scaling parameters. Now what is the consequence of this for the turbulence
spectrum?

We focus on the one-dimensional spectrum F11(κ), although the arguments are
in principle valid for the other spatial spectra as well. Based on the scaling of the
macrostructure mentioned above, it is obvious to describe the spectrum in this region
as:

F11(κ) = LU2 φe(κL), (9.27)

which is thus valid for the region around κ ≈ κe = 2π/L. Here, U and L are the
characteristic scales of the macrostructure. The term φe describes the shape of the
spectrum in the macroscale range for the larger eddies. This function is basically dif-
ferent for every flow geometry, because we know that the large eddies are determined
by this geometry.

For the spectrum in the region of the microstructure, that is close to κ ≈ κd =
2π/η, it follows that:

F11(κ) = η υ2 φd(κη), (9.28)

where η and υ are the Kolmogorov length scale and velocity scale, respectively. The
term φd describes the shape of the spectrum in the microscale range. Based on this
scaling it follows that (9.28) does not depend on the macroscales, and thus not on
the flow geometry. This leads to the important conclusion that φd is universal, or
the structure of the microscales is the same for all turbulent flows. This is known
as the universal equilibrium theory of Kolmogorov (1991, 1962). For additional
support of this theory we refer to Sect. 8.3. There we showed, based on a first-order
approximation of the enstrophy equation, that the dynamics of the microstructure are
determined by the local equilibrium between production and destruction of enstro-
phy, independent of the macrostructure.

http://dx.doi.org/10.1007/978-3-319-31599-7_8
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Fig. 9.9 One-dimensional spectra scaled with respect to the microstructure from various turbulent
flows. This demonstrates the universal character of the microstructure and illustrates the ‘−5/3’
behavior of the inertial subrange. Data of: cylinder wake (Uberoi and Freymuth 1969); grid turbu-
lence (Kistler and Vrebalovich 1966; Comte-Bellot and Corrsin 1971); DNS of channel flow (Kim
and Antonia 1993); homogeneous shear flow (Champagne et al. 1970); pipe flow (Laufer 1954);
boundary layer (Saddoughi and Veeravalli 1994); round jet (Gibson 1963); tidal current (Grant et al.
1962). Reλ is the Reynolds number based on the Taylor microscale. After: Saddoughi and Veeravalli
(1994)

In Fig. 9.9 we show experimental and numerical data that provide a validation of
this universal character of the microstructure. Several turbulence spectra are shown,
scaled according to (9.28) with ηυ2 = (εν5)1/4, plotted against κ1η. Despite the fact
that the flows occur in very different geometries and under different conditions, the
spectra in the region of large wave numbers are nearly identical.
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We have also seen in Sect. 8.3 that this local equilibrium for the microstructure
is only valid for large values of the Reynolds number UL/ν. In terms of the spec-
trum this means that the regions in the spectrum that can be associated with the
macrostructure and the microstructure are well separated, or: κd/κe � 1. Now let
us turn our attention to the intermediate region, where the energy cascade process
occurs. This region is called the inertial subrange, and the spectrum in this range
does not depend on the macroscales, because for this intermediate region it holds
that κ � κe. On the other hand, the spectrum cannot depend on ν either, because:
κ � κd . Based on this the following shape for the inertial subrange is found using
dimensional analysis:

F11(κ) = αε2/3κ−5/3, (9.29)

where α is a universal constant, which is called the Kolmogorov constant. From
experimental data it is found that: α ≈ 0.26.

The result (9.29) can also be found based on a formal matching between (9.27)
and (9.28) in a manner similar to the approach that we applied in Sect. 6.3 to derive
the logarithmic velocity profile. The matching condition for the inertial subrange can
be formulated as follows:

lim
κL→∞

LU2φe(κL) = lim
κη→0

η υ2φd(κη).

If we apply the relation ε = U3/L = υ3/η to substitute for U and υ, respectively,
and then divide both sides by ε2/3κ−5/3, it follows that

lim
κL→∞

φe(κL)

(κL)−5/3
= lim

kη→0

φd(κη)

(κη)−5/3
.

This equality can only be satisfied when both limits equal the same constant α.
Equation (9.29) represents one of the most important foundations of current tur-

bulence theory, and many measurements were performed to verify this result. In
Fig. 9.9 we already saw several experimental and numerical (DNS) data that indeed
verify the existence of this −5/3-behavior. Furthermore, it can be noted that for
increasing Reynolds numbers the range increases over which (9.29) is valid. This
relates of course to the increasing separation between the macrostructure and the
microstructure with increasing Reynolds number.

So far, we limited ourselves to one-dimensional spectra. The inertial subrangecan
also be derived for the turbulent energy spectrum defined in (9.19). It follows that:

E(κ) = βε2/3κ−5/3, (9.30)

where the constant β is approximately 1.6. In case of isotropic turbulence a relation
exists between α and β, and for this we refer to Problem 1 of Sect. 9.6.

The −5/3-behavior in the inertial subrange is a very important result, because it
implies an indirect validation of our picture of turbulence in terms of a macrostructure

http://dx.doi.org/10.1007/978-3-319-31599-7_8
http://dx.doi.org/10.1007/978-3-319-31599-7_6
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and a microstructure. At the same time, we can consider this as a confirmation of all
our previous findings that are all based on this presumed picture of the structure of
turbulence. At the same time, the universality of the microstructure provides a strong
rationale for the method of large-eddy simulation (LES) described in Sect. 8.6.

Problems

1. Explain why the range where (9.29) is valid varies for the different flows depicted
in Fig. 9.9.

2. Show that for an Eulerian time spectrum in the inertial subrange we have: S(ω)

= α(u ε)2/3ω−5/3, while for the Lagrangian time spectrum in this region we have:
S(ω) = βLε ω−2. (For isotropic turbulence: βL ≈ 0.8).

3. Define D11(r) = {u′(x) − u′(x + r)}2 as the longitudinal structure function. What
is the relation between D11 and the correlation function R11? Discuss the physical
meaning of D11, and determine on the basis of this an expression for D11 in the
inertial subrange. (See also Problem 2 of Sect. 10.1.)

4. Consider the following model spectrum:

F11(κ) =

⎧⎪⎨
⎪⎩

F(0) for: κ < κe

αε2/3κ−5/3 for: κe � κ � κd

0 for: κ > κd

Based on this spectrum, determine:

(a) The relation between κe and �L.
(b) The relation between ε, u′2, and �L.

5. An energy spectrum with the following shape is given:

E(κ) =
{

Aκm for: κ < κe,

βε2/3κ−5/3 for: κ > κe,

where β is the Kolmogorov constant for the energy spectrum. Using this spec-
trum, calculate the decay of homogeneous turbulence. First determine a relation
between κe and ε given that the spectrum must be continuous at κ = κe. Next,
determine a relation between the total kinetic energy e and the dissipation ε. Sub-
stitute this relation in the kinetic energy equation for homogeneous turbulence.
Based on the solution, show how e and κe vary as a function of time.

6. Consider a wall-bounded turbulent flow, such as a boundary layer flow, where the
size of the large-scale eddies is limited by the distance from the wall, as described
in Sect. 6.2. Use the matching approach described in this section to show that

F11(κ) ∼ κ−1 for:
1

δ
< κ <

1

�
,

http://dx.doi.org/10.1007/978-3-319-31599-7_8
http://dx.doi.org/10.1007/978-3-319-31599-7_10
http://dx.doi.org/10.1007/978-3-319-31599-7_6
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with: � ≈ ky, and where δ is the boundary-layer thickness. This −1 scaling
behavior can also be observed in Fig. 9.9; further experimental data are given by
Perry et al. (1986).

7. Suppose that the dissipation ε0 is not distributed uniformly in space, but that it
is intermittent according to a fractal structure, as illustrated in Fig. 4.8 (see also
Fig. 8.11). This implies that, when we divide the volume V0 = O(�3

0) (with:
�0 ∼ L) into sub-volumes Vn = O(�3

n), the dissipation is not identical zero only
in a fraction χ of all sub-volumes Vn in V0. The representative value for the dis-
sipation in this volume �Vn = χV0 is εn.

We can now write:

ε0 ≡ 〈ε〉 =
(

�Vn

V0

)
εn =

(
�n

�0

)3−D

εn,

where D is a fractal dimension. (When D = 3, the dissipation is distributed uni-
formly in space.) Here, 〈· · · 〉 indicates a spatial averaging. (Note that 〈εa〉 = 〈ε〉a

only holds when the dissipation is distributed uniformly in space.)

For εn we can write: εn ∼ v3
n/�n, where vn is a characteristic velocity in a volume

with a dimension �n.

(a) The dissipation eventually occurs in the microstructure �η. Suppose that this
microstructure is characterized by εη = v3

η/�η = νv2
η/�

2
η. Derive a relation

for �η/�0 as a function of the Reynolds number. Consider the Kolmogorov
scale, defined as: η = ν3/4/〈ε1/4〉. Derive a relation between �η and η as a
function of the Reynolds number.

(b) We can write the contribution to the energy at the scale �n as:

en =
(

�n

�0

)3−D

v2
n.

Define the spectrum when E(κn) ∼ en�n, with κn ∼ �−1
n . Use this to deter-

mine the spectrum as a function of κ and compare the result with (9.29).
(c) Argue that, on the basis of Kolmogorov scaling, it follows for the microstruc-

ture that: (
∂u′

∂x

)n

∼ ν−n/2 εn/2.

Using the model above, calculate the skewness

S = (∂u′/∂x)3

{
(∂u′/∂x)2

}3/2 ,

http://dx.doi.org/10.1007/978-3-319-31599-7_4
http://dx.doi.org/10.1007/978-3-319-31599-7_8
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and kurtosis

K = (∂u′/∂x)4

{
(∂u′/∂x)2

}2 ,

of the velocity gradients as a function of the Reynolds number Re = UL/ν.

8. Consider homogeneous turbulence with temperature fluctuations. The tempera-
ture field is also homogeneous.

Define the correlation function:

Rθ(r) = θ′(x)θ′(x + r).

Then, the spectrum Fθ(κ) of the temperature fluctuations is defined as:

Rθ(r) =
∫∫∫

Fθ(κ)eiκ·r dκ,

Fθ(κ) = 1

8π3

∫∫∫
Rθ(r)e

−iκ·r dr.

Define Eθ(κ), with κ = |κ|, as the integral of 1
2 Fθ(κ) over a spherical surface in

κ-space with a radius κ.

(a) Show that:

1
2θ′2 =

∞∫
0

Eθ(κ) dκ,

and give an interpretation of Eθ on the basis of this result.
(b) Consider the Prandtl number Pr = ν/α = 1, where α is here the thermal

diffusivity. Deduce an explicit expression for Eθ(κ) in the inertial subrange.
(c) Consider Pr = ν/α � 1. Argue that the inertial subrange for the temper-

ature spectrum is smaller than the inertial subrange for the velocity energy
spectrum. Do this by making use of the Corrsin scales ηθ, which are derived
in Problem 2 of Sect. 10.2.

(d) Consider Pr = ν/α � 1. Argue that the temperature spectrum is wider
than the velocity spectrum, and show that for κ > 1/η (where η is the
Kolmogorov scale) it holds that:

Eθ(κ) ∼ κ−1.

This is called the Batchelor spectrum, and the range where this spectrum is
valid is called the viscous convective subrange.

(e) Make sketches of the spectrum Eθ(κ) for various values of the Prandtl num-
ber.

http://dx.doi.org/10.1007/978-3-319-31599-7_10
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9.6 Isotropic Turbulence

To conclude this chapter we take a closer look at a specific type of turbulence,
namely homogeneous isotropic turbulence. In addition to homogeneity, which means
that the statistical properties of this type of turbulence are invariant with respect
to translation, isotropy implies that the statistical properties are also invariant to
rotation and reflections of the coordinate system. (It should be noted that isotropy
of turbulence implies that the turbulence must also be homogeneous; we therefore
simply refer to isotropic turbulence is the remainder of this section.)

Before we discuss the theory of isotropic turbulence, we must first question how
realistic this type of turbulence is. In Chap. 7 we saw that the production of turbulent
energy implies that the macrostructure of turbulence is anisotropic. Thus, the model
of isotropic turbulence is definitely not applicable to the macrostructure. The situa-
tion is different for the microstructure. During the cascade process, with every step,
information on the anisotropy of the production processes is lost. The microstructure
that lies at the end of the cascade process thus has lost any preferred direction, which
means that the microstructure is isotropic. Recall that because of its isotropic charac-
ter, the microstructure has universal properties; it is therefore relevant to consider the
special case of isotropic turbulence. Please note that this is of particular relevance to
defining suitable sub-grid closure models for large-eddy simulation (see Sect. 8.6).

Above, we defined isotropic turbulence as invariant to rotations and reflections.
This immediately implies that the variance of the velocity fluctuations is identical in
all directions:

u′2
α = 2

3
e, (9.31)

with no summation over the index α. Moreover, we can simplify the correlation
tensor Rij. Based on invariance with respect to reflections of the coordinate system
it follows that:

Rij(r) = Rji(−r) = Rji(r),

or, in other words, that the correlation tensor is symmetric. Next, we show that all
cross correlations (as defined in Fig. 9.3) are equal to zero. For example, consider
R13(r), with: r = (r, 0, 0), as illustrated in Fig. 9.10; based on a rotation around the
x1-axis in this figure it follows that:

R13(r) = −R13(r) = 0.

Fig. 9.10 The cross
correlation R13(r) for
isotropic turbulence; due to
rotational symmetry:
R13(r) = −R13(r) = 0

R13

r

http://dx.doi.org/10.1007/978-3-319-31599-7_7
http://dx.doi.org/10.1007/978-3-319-31599-7_8
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The only correlations that do not vanish are the longitudinal correlation and the
transversal correlation, which are indicated by the functions f (r) and g(r), respec-
tively. As a consequence of the rotational symmetry, f (r) and g(r) are independent
of the direction, and thus only a function of r = |r|. Also, it is easy to see that
there is only a single transversal correlation function. Based on these functions we
can introduce a longitudinal integral length scale �L and transversal integral length
scale �T :

u′2�L =
∞∫

0

f (r) dr, and: u′2�T =
∞∫

0

g(r) dr. (9.32)

The functions f (r) and g(r) can be utilized to define also longitudinal and transversal
Taylor micro scales:

λ2
L = u′2

/ (
∂u′

∂x

)2

= −u′2
/

∂2f

∂r2

∣∣∣∣
r=0

,

λ2
T = v′2

/ (
∂v′

∂x

)2

= −v′2
/

∂2g

∂r2

∣∣∣∣
r=0

.

(9.33)

We can now completely describe the correlation tensor between two random velocity
components using the functions f (r) and g(r). The result reads:

Rij(r) = {f (r) − g(r)} rirj

r2
+ g(r)δij. (9.34)

This equation represents a decomposition of the general correlation Rij into a lon-
gitudinal component and a transversal component, that is in projections that are
perpendicular and parallel to the direction of r. We can completely describe the
structure of the isotropic velocity field with (9.34). Instead of the nine components
in the general correlation tensor Rij we now only need two functions.

So far we have limited ourselves to a geometric description of the structure of
isotropic turbulence. Now we require that (9.34) satisfies the equations of motion.
First, we take the continuity equation, which states that ∂ui/∂xi = 0. When we apply
this condition to the correlation function Rij it follows that: ∂Rij/∂ri = 0. Using the
relations:

∂

∂ri
= ri

r

∂

∂r
,

∂rj

∂ri
= δij, and:

∂ri

∂ri
= 3,

we can derive a relation between f (r) and g(r), which reads:

r
∂f

∂r
+ 2 (f − g) = 0. (9.35)
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Fig. 9.11 The longitudinal (left) and transversal (right) correlations in the central region of a
turbulent jet at three distances from the jet nozzle: x/d = 53 (�), 72 (�), and 80 (o). The spatial
correlations Rij(x′ − x) in the jet become self-similar when plotted as a function of ξ′ − ξ, with:
ξ = ln(x/d), and: ξ′ = ln(x′/d) (Ewing et al. 2007). The solid lines represent fitted functions for
f and g, which satisfy (9.35). The dashed lines correspond to the Taylor scaling in (9.24), with:
λ(L)

T /λ(T)
T = √

2. Experimental data from: Fukushima et al. (2002)

This relation means that we can describe the structure of isotropic turbulence with a
single scalar function f (r). Figure 9.11 shows the longitudinal and transversal spatial
correlations in the central region of a turbulent jet. The correlation f (r) has been
fitted to the experimental data, and then (9.35) is used to determine g(r), which is
compared in the right graph with the experimental data for the transversal correlation.

Figure 9.12 shows a reconstruction of the conditionally averaged flow field for a
given velocity fluctuation (represented by the large arrow); the conditional velocity
field is computed by means of linear stochastic estimation (LSE), which estimates
the most likely flow field on the basis of Rij(r) (Adrian, 1979). The reconstruction
in Fig. 9.12 is based on (9.34) and (9.35) for given f (r).

Next, we define the Fourier transforms of f (r) and g(r) as the longitudinal spec-
trum F(κ) and the transversal spectrum G(κ):

F(κ) = 1

2π

∞∫
−∞

f (r)e−iκr dr, and: G(κ) = 1

2π

∞∫
−∞

g(r)e−iκr dr. (9.36)

In addition, we introduce the energy spectrum E(κ), which is defined according to
(9.19) and (9.20). For isotropic turbulence we can calculate the relation between
these spectra explicitly; the derivation is found in Problem 1, and the result reads:

E(κ) = κ3 d

dκ

(
1

κ

dF

dκ

)
, with: G(κ) = 1

2
F(κ) − 1

2
κ

dF

dκ
. (9.37)

With these equations we can convert the various spectra into each other.
We argued above that isotropic turbulence applies to the microstructure. We also

know that the viscous dissipation ε takes place at this microstructure. It is therefore
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Fig. 9.12 Conditional velocity field for a velocity fluctuation (large arrow in the center parallel
to the x-axis) in isotropic turbulence computed using a linear stochastic estimate (Adrian 1979)
based on Rij(r) given (9.34), with arrows shown in the (x, y)-plane. The structure is rotationally
symmetric with respect to the x-axis. The conditional flow pattern has the shape of a vortex ring
with a radius of about 2�L

obvious to use the results for isotropic turbulence to calculate ε. By definition it holds
that:

ε = ν

(
∂u′

i

∂xj

)2

.

Using the definition in (9.17) of the spectral tensor φij and the definitions (9.19) and
(9.20) for E(κ), it follows for ε that:

ε = −ν
∂2Rii

∂r2
j

∣∣∣∣∣
r=0

= 2ν

∞∫
0

κ2E(κ) dκ. (9.38)

When we apply (9.37) to this expression, it follows that:

ε = 30 ν

∞∫
0

κ2F(κ) dκ = 15 ν

(
∂u′

∂x

)2

. (9.39)
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This means that we can calculate ε using the derivative of only one velocity compo-
nent. This equation is very useful in case we perform measurements in a single point
(that is, Eulerian measurements). Using the Taylor hypothesis, we can now calculate
∂u′/∂x as: (

∂u′

∂x

)2

=
(

∂u′

∂t

)2
/

u2,

where ∂u′/∂t follows from differentiation of the measured time series.
So far we only considered the kinematics of isotropic turbulence. We conclude

this section by taking also into consideration the Navier–Stokes equations, that is the
dynamic properties of the turbulence. On the basis of the Navier–Stokes equations
we can derive an equation that describes f (r) as a function of time. The result reads:

∂

∂t

(
u′2 r4f

)
− ∂

∂r

{
r4k(r)

} = 2 ν u′2 ∂

∂r

(
r4 ∂f

∂r

)
. (9.40)

This expression is known as the von Kármán–Howarth equation. For details on its
derivation we refer to the book by Hinze (1975). We see that a new unknown function
k(r) emerges in this equation; this is a third-order longitudinal correlation, defined
as:

k(r) = u′(x)u′(x)u′(x + r), (9.41)

which is illustrated in Fig. 9.13, and it has the following properties:

k(0) = u′3 = 0, k(r) = −k(−r), and: k(r) = 1

6

(
∂u′

∂x

)3

r3 for: r → 0,

(9.42)
which can be proven using the rotational and reflectional symmetries of isotropic
turbulence (see also Problem 2 below).

The most important conclusion following from (9.40) is that again we encounter
a closure problem; we find a new unknown function k(r) in the equation for f (r), and
solving (9.40) is only possible when we specify a closure relation for k(r). However,
to this date a suitable closure relation that would be valid under general conditions
has not been found.

Problems

1. Define E1 and E2 as:

Fig. 9.13 The third-order
correlation k(r)

k (r)

r
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E1 = 2

π

∞∫
0

f (r) cos(κr) dr, and: E2 = 2

π

∞∫
0

g(r) cos(κr) dr.

(a) Show that: E1(k) = 2F(k).
(b) In the inertial subrange it follows that:

E(κ) = βε2/3κ−5/3,

F(κ) = αε2/3κ−5/3,

E1(κ) = α′ε2/3κ−5/3,

where, based on experimental data, it follows that: β ≈ 1.5–1.7. Prove that:
α = 9

55β, and that: α′ = 18
55β.

(c) Prove that in the inertial subrange it holds that:

G(κ) = 4

3
F(κ).

2. Prove that:

k(r) = 1

6

(
∂u′

∂x

)3

r3,

for: r → 0. (Hint: consider K(r) = {u′(x) − u′(x + r)}3, and expand this in a
Taylor series.)

3. Prove, on the basis of (9.35), that:

�T = 1

2
�L,

and that: ∞∫
0

r g(r) dr = 0.

Show, on the basis of this last relation, that g(r) has to be negative somewhere.
Discuss the shape of f (r) and g(r), as illustrated in Fig. 9.11, based on this last
relation.

4. Prove that: λT = λL/
√

2. Using this, derive Eq. (9.39).
5. Based on symmetry and invariance properties, it follows for the spectrum of

isotropic turbulence that:

φij = κiκj

κ2
φ(L)(κ) +

(
δij − κiκj

κ2

)
φ(T)(κ),
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with: κ = (κiκi)
1/2, and where φ(L) and φ(T) are called the longitudinal and

transversal components.

(a) Based on the continuity equation, derive that:

φ(L)(κ) = 0,

which means that the spectrum φij is orthogonal to the vector κ.
(b) Next, using Eq. (9.19), derive that:

φij =
(
δij − κiκj

κ2

) E(κ)

4πκ2
.

(c) Now consider the special case in which r = (r1, 0, 0) and κ = (κ1, 0, 0).
Using the definition in (9.21) for R11(r1), it follows that:

F(κ1) =
∞∫

κ1

(
1 − κ2

1

κ2

)
E(κ)

2κ
dκ.

Use this expression to derive the relation between E(κ) and F(κ) in (9.37).

6. Based on the relation in (9.37) and the properties of F(κ) for κ → 0, derive that:

E(κ) = 1

3π
Bκ4,

for: κ → 0. Here, B is given by:

B =
∞∫

0

r4f (r) dr,

and is known as Loitsyanskiy’s invariant.

Derive, on the basis of the Von Kármán–Howarth equation in (9.40), the condition
under which the Loitsyanskiy’s invariant is constant, that is: B 
= f (t).

7. Based on a series expansion of the Von Kármán–Howarth equation, derive the
following expressions for r → 0:

∂e

∂t
= −ε,

∂ω′2

∂t
= −35

(
∂u′

∂x

)3

− 70ν

(
∂2u′

∂x2

)2

.
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Interpret these expressions and describe the physical processes represented by
the various terms.

8. Consider decaying isotropic turbulence. Assume that the longitudinal correlation
function f (r) can be described by the following similarity equation:

f (r) = U2F
( r

L
)

,

where the scales U and L are functions of t.

(a) Derive, on the basis of the kinetic energy equation and Loitsyanskiy’s invari-
ant how U and L vary as a function of t.

(b) Apply the similarity hypothesis to the complete Von Kármán–Howarth equa-
tion in (9.40), so that k(r) = U3K(r/L). How do U and L vary as a function
of t in this case?

9. We argued that isotropic turbulence is a valid model for the microstructure only.
It is therefore not convenient to work with the correlation function. Explain why.

Instead, we can use the longitudinal structure function, defined as: D(r) =
{u′(x + r) − u′(x)}2. Derive on the basis of the Von Kármán–Howarth equation
the following expression for D(r):

∂D

∂t
+ 1

3

1

r4

∂

∂r

(
r4D3/2S

)
− 2ν

1

r4

∂

∂r

(
r4 ∂D

∂r

)
= −4

3
ε, with: S = {u′(x + r) − u′(x)}3

D3/2 .

Argue that, in the inertial subrange, the first term and the last term at the left-hand
side of this equation are negligible. Derive, using the remainder of the equation,
an expression for D(r) in the inertial subrange, assuming that S is a constant.
Compare the result with that of Problem 3 in Sect. 9.5.

10. Consider the correlation between the velocity u′
i(x) and the pressure p′(x + r) in

isotropic turbulence. Show that this correlation equals zero when the orientation
of u′

i(x) is normal to the separation r. Based on this result, argue that for an
arbitrary orientation of u′(x), this correlation can be written as:

Ri(r) = u′(x)p′(x + r) = fp(r)
ri

r
,

with: r = |r|, and where fp(r) is the correlation between u′
i(x) and p′(x + r), and

u′
i(r) is parallel to r. Next, apply the continuity equation, and show that fp(r)

should satisfy:
∂fp
∂r

+ 2
fp(r)

r
= 0.

Prove, using the solution of this equation and its boundary conditions, that:
fp(r) ≡ 0. Link this to the Rotta hypothesis mentioned in Chaps. 7 and 8.

http://dx.doi.org/10.1007/978-3-319-31599-7_7
http://dx.doi.org/10.1007/978-3-319-31599-7_8
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11. The equivalent to the Von Kármán–Howarth equation in the spectral domain
reads

∂E

∂t
+ ∂T

∂κ
= −2νκ2E(κ),

where T(κ) is here the spectral energy transfer function. Prove that:

∞∫
0

∂T

∂κ
dκ = T(∞) − T(0) = 0.

Argue that:

(a) for small values of κ: ∂E/∂t = ∂T/∂κ,
(b) in the inertial subrange: T(κ) = ε = constant,
(c) for large values of κ: ∂T/∂κ = −2νκ2E(κ).

Sketch the shape of T(κ) as a function of κ.
12. Consider the spectral equation from the previous problem. Suppose that in the

inertial subrange, T(κ) ∼ E(κ). Then it follows, based on dimensional analysis,
that:

T(κ) = β−1ε1/3κ5/3E(κ),

where β is the Kolmogorov constant. Apply this closure hypothesis for T(κ) for
k → ∞, given that:

∂T

∂κ
= −2νκ2E(κ).

Use this result to derive the following expression for the spectrum in the viscous
region:

E(κ) = βε2/3κ−5/3e− 3
2 β(κη)4/3

,

where η is the Kolmogorov length scale. This relation is known as Pao’s spec-
trum; in Fig. 9.14 it is compared to some experimental data.

13. Consider the spectral shape of the Von Kármán–Howarth equation, which was
introduced in Problem 11. We limit ourselves to large values of the wavenumber
κ where the turbulence is isotropic, that is at least to in the inertial subrange.

(a) Show that, in this region, the following expression is approximately valid:

T(κ) + 2ν

κ∫
0

κ′2E(κ′) dκ′ = ε.
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Fig. 9.14 The one-dimensional energy spectrum E1 (defined in Problem 1 of this section) in the
viscous region. The broken line is the expression according Pao, given in Problem 12. Experimental
data were obtained in a tidal current with Reλ ≈ 2,000 (Hinze 1975) and in a turbulent jet with
Reλ ≈ 350. (The Reynolds number Reλ is based on the Taylor length scale λ and the turbulent
velocity fluctuation level.) Jet data courtesy of D. Fiscaletti

(b) Heisenberg proposed the following closure hypothesis for T(κ):

T(κ) = 2K(κ)

κ∫
0

κ′2E(κ′) dκ′.

This relation is equivalent to Smagorinsky’s closure model in (7.18), where
the term

∫ κ

0 κ′2E(κ′) dκ′ represents the deformation due to the scales at wave
numbers smaller than κ, and K(κ) represents the effective diffusion due to
the scales at wave numbers larger than κ. For K(κ) the following relation
follows on the basis of a dimensional analysis:

K(κ) = γ

∞∫
κ

√
E(κ′)
κ′3 dκ′.

Now substitute:

H(κ) =
κ∫

0

κ′2E(κ′) dκ′,

http://dx.doi.org/10.1007/978-3-319-31599-7_7
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and then solve the resulting equation for H, to arrive at the result:

E(κ) = 4

3

ε2/3

(2γ3)1/3

κ−5/3

(1 + Cκ4)
,

where C represents an integration constant that follows from: T(κm) = 0
when H = ε/(2ν). For κ → 0 this spectrum satisfies the −5/3 law.

14. Use (9.38) and Pao’s spectrum in Problem 12 above to show that the maximum
in the dissipation spectrum occurs for κη ∼= 0.2 (for given β = 1.6).



Chapter 10
Turbulent Diffusion

As our final topic, we consider turbulent dispersion of particles and scalars (such
as temperature or the mass of a specific material). We know from experience that
turbulence is diffusive, and we daily use this property when we mix two fluids
by stirring. This property of turbulence is of great practical importance; imagine
the turbulent dispersion processes in the atmosphere. Without these, impermissibly
high concentration values of pollution would occur. Now, turbulent diffusion can be
described by either of two approaches, which are discussed in the following sections.

10.1 Statistical Approach

The starting point of the statistical approach of turbulent diffusion is a stationary
and homogeneous turbulent velocity field. We only take into account the dispersion
along one coordinate direction, for which we select the x-axis. With respect to this
coordinate system we have:

u = 0, and: u′2 �= f (x, t).

At t = 0 we release a labeled particle at the origin of the coordinate system, and we
track the motion of this particle in the flow.We consider a so-called material particle
that exactly follows the fluid motion. Such a particle is called passive (as opposed to
an inertial particle that does not exactly follow the fluid motion and also modifies
the flow). In short, the velocity of our particle is a Lagrangian variable: u′

L(t), and
by definition it holds that:

u′
L(t) = d X

dt
, (10.1)

where X (t) is the trajectory of the particle along the x-axis as a function of time,
with an initial condition: X (0) = 0.

© Springer International Publishing Switzerland 2016
F.T.M. Nieuwstadt et al., Turbulence, DOI 10.1007/978-3-319-31599-7_10
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Fig. 10.1 Dispersion for an
ensemble of material
particles

~X 21/2source

x

t

We repeat this experiment many times, or, in other words, we construct an ensem-
ble of individual realizations. This can be achieved for example by releasing many
particles in succession at the origin. The dispersion of these particles can be studied
using the statistics of this ensemble. We focus here on two statistics: X and X2,
which stand for the center of gravity and the cross-section, respectively, of the par-
ticle cloud that represents the ensemble, as illustrated in Fig. 10.1. (The term X2 is
often referred to as the dispersion parameter.) We emphasize that we consider here
the dispersion with respect to a fixed source (in our case the origin). We call this
absolute dispersion.

Based on Eq. (10.1), the following equations for X and X2 can be derived:

X =
t∫

0

u′
L(t

′) dt ′, (10.2)

d 1
2 X2

dt
=

t∫
0

u′
L(t

′)u′
L(t) dt ′. (10.3)

In the last equationwefind aLagrangian time correlation of the velocity at times t and
t ′ along a trajectory of the particle, as discussed in Sect. 9.1. Due to the fact that the
turbulence is stationary and homogeneous, it follows that the time correlation is only

a function of the time difference τ = t−t ′, so that u′
L(t

′)u′
L(t) = RL(τ ) = u′

L
2ρL(τ ).

Here,ρL(τ ) is the correlation coefficient. Substitution in (10.3) and integrationyields:

1

2
X2 = u

′2
L

t∫
0

⎧⎨
⎩

t ′∫
0

ρL(τ ) dτ

⎫⎬
⎭ dt ′. (10.4)

http://dx.doi.org/10.1007/978-3-319-31599-7_9
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When we further assume that the turbulent field is unbounded, it can be proven that:

u′
L = u = 0, and that: u′

L
2 = u′2, where u and u′2 are now Eulerian statistics. With

this, it follows for (10.2) that:
X(t) = 0. (10.5)

Partial integration of (10.4) gives:

X2(t) = 2 u′2
t∫

0

(t − τ )ρL(τ ) dτ . (10.6)

This equation is known as Taylor’s equation.
As mentioned before, X2(t) yields the cross section of the particle cloud as a

function of time. We can basically only calculate this explicitly when ρL(τ ) is given.
However, we can gain further insight into the diffusion process when we use some
known properties of ρL(τ ), that is:

ρL(τ ) ≈ 1 for: t → 0, and:

∞∫
0

ρL(τ ) dτ = T L (10.7)

where TL is the Lagrangian time scale. Using the properties in (10.7), we can
derive that:

X2(t) ≈
{

u′2 t2 for: t → 0,

2 u′2 TL t for: t → ∞.
(10.8)

This means that, for short times, the width of the particle cloud, which is proportional
to σ = (X2)1/2, increases linearly with time, while at a later stage the width of the
particle cloud grows at a rate proportional to

√
t . The latter case is called the diffusion

limit.

Problems

1. Derive the following relation on the basis of Eq. (10.6):

X2(t) = t2
∞∫
0

sin2
(
1
2ωt

)
(
1
2ωt

)2 EL(ω) dω,

where EL(ω) is the Lagrangian spectrum that is defined as:

EL(ω) = 2

π

∞∫
0

RL(τ ) cos(ωτ ) dτ .
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Here we applied Parseval’s relation, which reads:

∞∫
0

f (τ )RL(τ ) dτ = π

2

∞∫
0

C(ω)EL(ω) dω,

where C(ω) is the cosine transform of f (τ ).
Make a sketch of the factor before EL(ω) in the equation for X2 for different
times t . Use this to discuss the dispersion X2(t) in terms of the contributions for
varying eddy time scales.

2. Define the structure function DL(τ ) = {u′
L(t) − u′

L(t
′)}2, and derive an explicit

expression for it in the inertial subrange. Use this expression to determine the
behavior of X2(t) in the intermediate time domain of (10.8) when t ∼ TL . (See
also Problem 3 of Sect. 9.5.)

3. Consider a stationary and horizontally homogeneous turbulent velocity field; the
turbulence is non-homogeneous in the vertical (y) direction. Consider the disper-
sion of a fluid particle along the y-axis that is released in ys at t = 0. The particle
follows the fluid motion and satisfies the following equations:

dY

dt
= v,

Dv

Dt
= 0,

where we neglected viscosity.
Use a Taylor series expansion, for t → 0 around ys to show that:

Y = ys + 1

2
t2

∂v′2

∂y

∣∣∣∣∣
ys

+ 1

12
t3

∂2v′3

∂y2

∣∣∣∣∣
ys

(
Y − Y

)2 = v′2
∣∣∣

ys

t2 + 1

2
t3

∂v′3

∂y

∣∣∣∣∣
ys

.

4. Consider the Langevin equation as a model for the motion of a material particle

along the x-axis in a homogeneous turbulent fluid with: u = 0 and σ2
u ≡ u′2 =

constant:
du

dt
+ u

TL
= η,

where η is a stochastic process with: η = 0, and:

η(t)η(t ′) = 2σ2
u

TL
δ(t − t ′).

http://dx.doi.org/10.1007/978-3-319-31599-7_9
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The position of the material particle is given by

d X

dt
= u.

Solve these equations for X ′2 with the following initial conditions:

(a) u′2(0) = σ2
u , and: X (0) = 0. For these conditions, show that the particle

velocity u is described by a stationary process. Derive that the result for

X ′2 agrees with the solution to Taylor’s equation in (10.6) for ρL(τ ) =
exp(−τ/TL).

(b) u′2(0) = 0 and X (0) = 0. Show for this case that:

X ′2 = 2

3
σ2 t3

TL
,

for: t → 0. This scaling is know as the Richardson-Obukhov scaling.

5. In a turbulent flowwith a characteristic length scaleL and a characteristic velocity
scale U , an amount of material is released. Estimate how the size of the cloud of
dispersed material grows as a function of time when this size is in the scale region
of the inertial subrange. (This problem is called relative diffusion.)
Compare the result with Problem 4b.

10.2 The Diffusion Equation

We now consider our dispersion problem from an Eulerian point of view, that is,
in a fixed coordinate system. In the previous section we discussed the release and
subsequent tracking of labelled particles. Herewe consider the concentrationχ [m−3]
of these particles at a fixed point as a function of time. We limit ourselves again to
a passive additive, which means that χ does not influence the dynamics of our flow.
The quantity χ satisfies the following conservation law:

Dχ

Dt
≡ ∂χ

∂t
+ u j

∂χ

∂x j
= D

∂2χ

∂x2
j

. (10.9)

The left-hand side is a material derivative and thus describes the change of χmoving
along with a fluid element. We see that this change is equal to the (molecular)
diffusion of χ, with the diffusion coefficientD. (The molecular diffusion of a species
concentration is similar to the molecular diffusion of heat, although the physical
processes are essentially different.) We neglected these molecular processes in the
previous section when we discussed the statistics of the particle trajectories.

Consider a turbulent flow, for which we apply the Reynolds decomposition,
according to:
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χ = χ + χ′, and: u j = u j + u′
j ,

with: χ′ = 0, and: u′ = 0. We limit ourselves here to a stationary and homogeneous
velocity field with u j = 0. Substitution in (10.9) then yields:

∂χ

∂t
= − ∂

∂x j
u′

jχ
′ + D

∂2χ

∂x2
j

(10.10)

where u′
jχ

′ represents the turbulent concentration flux. This equation is known as
the turbulent diffusion equation. We can interpret the term χ as the concentration in
a certain point, which is determined as the ensemble average over a large number
of point particles marked with χ. We still have to formulate the initial and boundary
conditions for Eq. (10.10). As the initial condition we often take that, at t = 0, at
a certain position, an amount Q per unit of time is introduced into the flow. This
geometry is called a point source with strength Q.

The concentration flux in (10.10) is a new unknown quantity. Again we arrive
at a closure problem. We make use of the familiar K -theory to formulate a closure
hypothesis:

− u′
jχ

′ = K
∂χ

∂x j
, (10.11)

where K ∼ UL is the turbulent diffusion coefficient, which is constant in our case
of a stationary and homogeneous turbulent flow. With this, (10.10) becomes

∂χ

∂t
= (K + D)

∂2χ

∂x2
j

. (10.12)

The molecular diffusion coefficient D in gases and liquids is generally small; for
example, the molecular diffusion of salt in water at 15 ◦C is D = 1.1×10−9 m2/s. It
is then clear that, in the equation above, the term D is negligible with respect to K in
almost all cases, and therefore we disregard the molecular diffusion in the remainder
of this chapter. The fact that K � D is of course the essence of turbulent dispersion.

Subsequently, we limit our diffusion problem to a single coordinate, for which
we select the x-axis. We can achieve this in two ways: (i) We can consider a source
strength Q that is uniformly distributed in the y − z-plane; in that case we speak of
a planar source. (ii) We consider the integral of Eq. (10.12) over y and z, which is
referred to as the surface-integrated concentration field that is a function of x and t
only. In both cases the equation becomes:

∂χ

∂t
= K

∂2χ

∂x2
. (10.13)
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The solution of this equation for: −∞ < x < ∞, and with the initial condition:
χ = Q δ(x) at t = 0 was already encountered in Sect. 4.1 on the Burgers equation.
When we substitute the proper quantities in (4.4), we arrive at the following solution
for χ:

χ(x, t) = Q

2
√

πK t
e− x2

4K t . (10.14)

This solution describes a concentration distribution that spreads out in space as a
function of time (see Fig. 4.1). We define the width σ of this concentration distribu-
tion as:

σ2 =
∞∫

−∞
x2 χ(x, t) dx = 2K t,

where we assume that χ is normalized with Q. This width is directly comparable
with the cross-section X2 of the particle cloud that we discussed in the previous
section.

When we compare the results for σ2 and X2, we only find agreement in the so-
called diffusion limit for X2. This means that the diffusion Eq. (10.13) can only be
applied for large times, i.e. t � TL . This can be easily understood, because for large
times, the size of the cloud or the size of the concentration distribution is larger than
the characteristic length scale L of the turbulence. This is exactly what we used in
Chap.5 as the condition for the validity of the gradient hypothesis, such as (10.11).
Also, based on a comparison between σ2 and X2, we find an explicit expression for
K , that is:

K = u′2 TL .

This confirms that the turbulent exchange coefficient K is determined by the
macrostructure of the turbulence.

Problems

1. Consider the wall region in a turbulent channel flow, where the turbulence is
homogeneous in the x and z directions, but inhomogeneous in the y direction.
We consider a uniformplanar source at thewall, i.e. y = 0. Show that the diffusion
equation for this case reads:

∂χ

∂t
= ∂

∂y

(
ku∗y

∂χ

∂y

)
,

with the initial condition: χ = Q δ(y) at t = 0. Show that the solution of this
problem, with the boundary condition: χ → 0 for y → ∞, reads:

χ = Q

ku∗t
e− y

ku∗ t .

http://dx.doi.org/10.1007/978-3-319-31599-7_4
http://dx.doi.org/10.1007/978-3-319-31599-7_4
http://dx.doi.org/10.1007/978-3-319-31599-7_4
http://dx.doi.org/10.1007/978-3-319-31599-7_5
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Discuss the evolution of this result as a function of time and compare it to the
solution for homogeneous turbulence.

2. Consider Eq. (2.14) for the instantaneous temperature. Apply this equation to the
following initial value problem:

θ =
{
0 for: y < 0,
θ0 for: y > 0,

with θ0 �= f (x, z). The velocity field is a pure straining flow, that is: u = γx and
v = −γy, with γ > 0. The term γ [1/s] is the strain rate.

(a) Reduce the temperature Eq. (2.14) to the following simplified form for this
problem:

∂θ

∂t
− γy

∂θ

∂y
= κ

∂2θ

∂y2
.

(b) Show that this equation has a stationary solution.
(c) Suppose that this problem describes the dynamics of the temperature fluctu-

ations at the microscale. In that case, derive that the so-called Corrsin scale
ηθ for temperature fluctuations, which is the equivalent of the Kolmogorov
scale η for velocity fluctuations, equals:

ηθ

η
=

{
Pr− 1

2 for: Pr � 1,
Pr− 3

4 for: Pr � 1,

with: Pr = ν/α.

3. Consider a material line segment with a length L0 in a turbulent flow. The line
segment is deformed by the turbulence, resulting in a length increase (see
Fig. 10.2).

Fig. 10.2 Deformation of a material region in a turbulent flow. After: Monin and Yaglom (1973)

http://dx.doi.org/10.1007/978-3-319-31599-7_2
http://dx.doi.org/10.1007/978-3-319-31599-7_2
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For this process, we introduce the following model. Assume a cascade process,
where initially the line segment is divided into N separate elements, each with a
length L1. Subsequently, the cascade process further divides each line segment
with length L1 into N line segments, eachwith a length L2. This process continues
until the Kolmogorov length scale is reached.
Assume that:

L1

L0
= L2

L1
= · · · = β.

We now introduce a fractal dimension D, defined as:

D = − log N

logβ
.

(a) Show that, after i steps in the cascade process, the total length L of the
material line segment equals:

L = L0

(
Li

L0

)1−D

.

(b) Now consider a material surface with an initial area: S0 ∼ L2
0. Show that

the total surface S changes during the cascade as follows:

S = S0

(
Li

L0

)2−D

.

(c) Suppose that L0 equals the integral scaleL. Calculate the total surface area S
as a function of the Reynolds number when the cascade process has reached
the Kolmogorov scale.

(d) Assume that the material surface encloses a region with concentration χ0.
This concentration can only mix with its environment due to molecular
diffusion, with a diffusion coefficient D across the surface S. Suppose that
this diffusion problem can be described by the stationary solution of (see
Problem 2):

∂χ

∂t
− γn

∂χ

∂n
= D

∂2χ

∂n2
,

where γ [1/s] represents the strain rate of the surface, and n the coordinate
normal to the surface.
Use this solution to calculate the total flux F through the surface:

F = D
∂χ

∂n
S.

Show that this flux becomes independent of the Reynolds number when
D = 7/3 (cf. Fig. 6.17). Interpret this result.

http://dx.doi.org/10.1007/978-3-319-31599-7_6
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10.3 Inertial Transport

So far we have considered the dispersion of ideal massless particles that perfectly
follow the fluid motion, do not alter the flow, and that do not interact with each
other. In many practical situations, such as sediment transport by air or water, or the
dispersion of small droplets in a cloud, the particulate matter has a finite size and
a density that does not match the density of the fluid. This implies that the finite
inertia of the particles interacts with the fluid and affects the flow properties. This
determines the spatial and temporal distribution of the particles in the flow (referred
to as one-way coupling), while the inhomogeneous distribution of particles in the
fluid and the generation of wakes by the particles alter the flow properties (two-way
coupling), and at high concentrations the fluid motion even affects the collisions of
the particles, which in turn affects the fluid motion (four-way coupling).

The forces on a small rigid sphere with mass m p and velocity vp in a nonuniform
flow are given by Maxey and Riley (1983), Mei (1996), Adrian and Westerweel
(2011):

m p
dvp

dt
= FG-B + FQS + FH + FAM + FFS + FL, (10.15)

where:
FG-B = π

6
d3

p(ρp − ρ f )g (10.16)

is the weight of the particle minus the buoyancy force;

FQS = −3πμ f dpφ(vp − u) (10.17)

is the quasi-Stokes drag modified by a factor φ to account for finite Reynolds number
effects;

FH = 3πμ f

t∫
−∞

K (t − τ )
d(vp − u)

dt
dτ (10.18)

is theBasset history term that is associatedwith the retarded variation of the boundary
layer around the particle (represented by the history kernel K (t)) as the velocity
difference between the particle and the ‘free stream’ outside the boundary layer
changes over time;

FAM = m pρ f

2ρp

(
Du
Dt

− dvp

dt

)
(10.19)

is the added mass according to the formulation of Auton et al. (1988);

FFS = m f
Du
Dt

(10.20)
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is the net force on the particle due to the variation of fluid stress around the particle;
and FL is a transverse lift force due to shear and particle rotation, as described by
Saffman (1965), Auton (1987), McLaughlin (1993), Joseph and Ocando (2002),
among others. Note that in these expressions d

dt is the time derivative as seen by an
observer moving with the particle, and D

Dt is the material derivative of an observer
moving with the fluid.

It is common to simplify the expression in (10.15) for the case of a small and
heavy solid particle, that is a particle with a diameter dp less than the Kolmogorov
scale and with a density that is much larger than that of the surrounding fluid (i.e.
ρp � ρ f ); for heavy particles, the history term (10.18) and the added mass term
(10.19) become negligible, while the lift force becomes negligible for very small
particles. In that case we retain for the force F (=m pdvp/dt) on a particle:

F = m p
u − vp

τp
+ m pg, (10.21)

where τp is the particle response time, given by:

τp = ρpd2
p

18ρ f ν
. (10.22)

The assumption of a ‘small heavy particle’ means that the particle Reynolds number
is very small and that the particle can be represented as a ‘point particle’ with finite
inertia and drag force. Note that τpg ≡ ws is the terminal velocity of a single small
particle in a quiescent fluid.

The Stokes number St is defined as the ratio of the (Stokes) particle response time
and the turbulent time scale:

St = τp

τK
, (10.23)

where τK is the Kolmogorov time scale. For St  1 the particles accurately follow
the fluid motion and thus behave as material particles (or flow tracers), which were
described in the previous sections; for St � 1 the motion of the particles is barely
affected by the flow (see also Problem 2 below). Evidently, it is the intermediate
range with St = O(1) where the strongest interactions between the particles and
fluid flow occurs.

Consider a turbulent channel flow that carries small inertial particles with a local
concentration χ. Under the influence of gravity, the particles have a (concentration-
dependent) terminal velocity ws,m . Then, based on mass-conservation equation, the
ensemble-averaged vertical mass flux φ is given by:

φ ≡ −KD

dχ

dy
= ws,m χ (1 − χ), (10.24)
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whereχ is themean particle concentration, and KD is the eddy particle diffusivity.We
assume that the eddy particle diffusivity is proportional to the eddy viscosity K , that
is: KD ≈ ϕK/β, where β is the turbulent Schmidt number for the particle diffusion,
and ϕ a number that represents the damping of the turbulence due to the presence of
the particles. It can be generally assumed that β = 1 and ϕ = 1. Furthermore, we
assume that the particle concentration is low, that is χ  1, and that ws,m is equal to
the terminal velocity ws of a single particle. Then, (10.24) reduces to:

K
dχ

dy
= −ws χ. (10.25)

A simple solution for the concentration profile of sediment in a riverbed or open
channel is discussed in Problem 1 at the end of this section.

Consider the particle equation of motion (10.21). Excluding the gravity term and
averaging the equation over time, gives:

v p = v f − τp
dvp

dt
,

with the particle derivative:

d

dt
= ∂

∂t
+ vp, j

∂

∂x j
.

Substitution of the particle derivative in the expression for vp andmultiplication with
the mean concentration then gives:

φ ≡ v p χ = χ v f − χ τp

(
v p

∂v p

∂y
+ ∂v′

p
2

∂y

)
. (10.26)

(Here we use that: ∂vp, j/∂x j ≈ 0 for particles with a small Stokes number.) This
can be written as:

φ = φdiff + φadv + φturbo,

where φdiff is called the diffusive flux (Simonin et al. 1993), φadv the contribution due
to the advection term in (10.21), and φturbo is called the turbophoretic flux. This last
term describes the drift of particles towards regions with a low turbulence intensity,
or turbophoresis (Caporaloni et al. 1975; Reeks 1983). This process is responsible
for the uneven distribution of inertial particles in a turbulent flow.

In Fig. 10.3 are shown the particle fluxes, defined in (10.3), for aDNSof a turbulent
channel flow (in the absence of gravity) with a no-slip boundary at y+ = 0 and a free-
slip boundary at y+ = 180; see also the channel configuration in Fig. 10.5. Details
of the DNS are given by van Haarlem et al. (1998). The gravity was neglected in
this study to concentrate on the turbulent fluxes. Two particle types were simulated,
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Fig. 10.3 Cross-channel particle fluxes, as defined in (10.26), for a particle-laden channel flow
with a no-slip wall (at y+ = 0) and a free-slip wall at y+ = 180 (see Fig. 10.5) for particles with
τ+

p = 5 and 15. Plotted are: total flux φ (�); turbophoretic flux φturbo (�); and, the advection term
φadv (——). Data obtained from a DNS of a channel flow by van Haarlem et al. (1998)

with a particle response time of τ+
p (=τpu∗/ν) of 5 and 15, respectively. A clear

difference between the two particles can be observed for the turbophoretic flux near
the no-slip boundary (at y+ = 0). The flux τ+

p = 5 particles increases towards
the wall, reaching a maximum at y+ = 10–20, while for the τ+

p = 15 particles
φturbo maintains to increase towards the wall. The difference can be attributed to the
difference in inertia of the two particles, leading to significantly different particle
deposition rates. Please note that the turbophoretic flux should be primarily balanced
by the diffusive flux v f χ (which could not be evaluated directly in this DNS), since
the advection term φadv remains small over the height of the channel; see also van
Haarlem et al. (1998).

The dominant flux term (in the absence of gravity) is determined by turbophore-
sis. This also visible in the instantaneous flow fields, where the inertial particles
tend to accumulate in regions with low turbulence levels; this type of preferential
concentration is illustrated in Fig. 10.4 for particles with τ+

p = 15.

Problems

1. Consider a sloping riverbed or open channel with depth H that contains a particle-
laden turbulent flow, as depicted in Fig. 10.5. The eddy viscosity is supposed to
have the following approximate form:

K =
{ y

H

(
1 − y

H

)
ku∗ H for: y/H < 1

2
1
4ku∗ H for: y/H � 1

2

where k is the Von-Kármán constant and u∗ the wall friction velocity. Show,
using (10.25) that the mean concentration profile in the channel with respect to a
reference concentration χa at a height y = a is given by:
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Fig. 10.4 Instantaneous results of a DNS of a particle-laden channel flow with a no-slip wall at
y+ = 0 and a free-slip wall at y+ = 180; see Fig. 10.5. (top) Instantaneous flow field in the plane
y+ = 175 with the mean flow subtracted. (bottom) Instantaneous particle distribution for τ+

p = 15
particles that lie in the domain 167 < y+ < 175, corresponding to the flow field above. DNS data
of van Haarlem et al. (1998)
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Fig. 10.5 Turbulent flow in a sloping open channel with depth H that carries sediment, with a
velocity profile U (y) and an eddy viscosity K . The graph on the right shows the concentration
profile for a Rouse parameter Z = 0.85; see Problem 1

χ = χa ·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
a

y

H − y

H − a

]Z

for: y/H < 1
2[

a

H − a

]Z

exp

[
−4Z

(
y

H
− 1

2

)]
for: y/H � 1

2

with the Rouse parameter:

Z = ws

ku∗
.

The profile for the sediment concentration, or Rouse profile, is show in Fig. 10.5
for Z = 0.85. Consider the sediment concentration profiles for Z � 1 and
Z  1.

2. Consider a small particle that is falling through a homogeneous and stationary
turbulent velocity field. The density of the particle is higher than the density of
the liquid. The velocity of the particle is:

v p = gτp,

where g is the gravitational acceleration, and τp the response time of the particle.
The velocity fluctuation of the particle, v′

p, compared to v p, can approximately
be described by:

τp

dv′
p

dt
+ v′

p = u′,

where u′ represents the velocity fluctuation that the particle encounters on its way
through the liquid. The statistical properties of u′ are described by:

u′ = 0, and: u′(t1)u′(t2) = Ru(τ ),
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with: τ = |t1 − t2|. By definition, it holds that:

∞∫
0

Ru(τ ) dτ = u′2 Tu,

where Tu represents the timescale of the particle motion. This timescale can be
chosen as follows:

• When the time constant (τp) of the particle is small (that is, the particle follows
almost all turbulent velocity fluctuations), it then holds that: Tu ≈ TL , or:

Ru(τ ) ≡ RL(τ ) = u′2e−τ/TL .

In other words, the particle approximates a material fluid particle.
• However, when τp increases, this implies that the particle can no longer follow
all fluidmotion. Thismeans that the correlation function Ru has to be corrected
with respect to the correlation function RL for a material fluid element. For
this we use the followingmodel: Under the influence of gravity, the particle, so
to speak, ‘falls’ through the eddies at an average velocity v p; The correlation
function Ru can be corrected for this as follows:

Ru(τ ) = u′2e−τ/TL e−v pτ/L,

where L represents here the Eulerian length scale along the trajectory of the
particle. We see that in the limit v p → ∞ (that is, a very heavy particle), the
statistical properties of u′ are completely described by L and no longer by TL ,
so that:

Ru(τ ) = u′2 e−v pτ/L.

This effect is called streamline crossing.

The following questions arise:

(a) We assume that both u′ and v′
p can be described by a stationary process.

Show that in this case, for the correlation function of the particle velocities,
Rp = v′

p(t1)v
′
p(t2), it can be written that:

−τ 2
p

d2Rp

dτ 2
+ Rp(τ ) = Ru(τ ).

(b) By definition, it holds for Rp that:

∞∫
0

Rp(τ ) dτ = v′
p
2τp.
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Use this expression to prove that:

τpv′
p
2 = u′2Tu,

where τp and v′
p
2 are the integral timescale and the velocity variance of the

particle velocity, respectively. What does this relation imply when τp ≈ TL?

(c) Solve the above equation for Rp. Use this solution to calculate v′
p
2, τp, and

λp, where the last variable represents the Taylor microscale of the particle
motion, defined as:

(
∂v′

p

∂t

)2

= v′
p
2

λ2
p

= −d2Rp

dτ 2

∣∣∣∣
τ=0

.
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Appendix A
Equations of Motion

Conservation of mass:
∂ρ

∂t
+ uj

∂ρ

∂xj
+ ρ

∂ui

∂xi
= 0

incompressible fluid (continuity):
∂ui

∂xi
= 0

Conservation of momentum: ρ
∂ui

∂t
+ ρuj

∂ui

∂xj
= ρgi +

∂σij

∂xj

gravitational acceleration: gi = (0, 0, −g)
stress tensor: σij

Newtonian fluid: σij = −pδij + 2μsij

rate-of-strain tensor: sij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)

Navier-Stokes equations: ρ
∂ui

∂t
+ ρuj

∂ui

∂xj
= ρgi − ∂p

∂xi
+ μ

∂2ui

∂x2
j

Equation of state: ρ = f(θ, p)

(potential) temperature: θ

Conservation of energy:
∂θ

∂t
+ uj

∂θ

∂xj
= κ

∂2θ

∂x2
j

Vorticity equation:
∂ωi

∂t
+ uj

∂ωi

∂xj
= ωj

∂ui

∂xj
+ ν

∂2ωi

∂x2
j

ωi = εijk
∂uk

∂xj

Boussinesq equations:

∂ui

∂xi
= 0

∂ui

∂t
+ uj

∂ui

∂xj
= −α

θ

T0
gi − 1

ρ0

∂p

∂xi
+ ν

∂2ui

∂x2
j

∂θ

∂t
+ uj

∂θ

∂xj
= κ

∂2θ

∂x2
j

.
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Reynolds-averaged
Navier-Stokes equations:

∂ui

∂xi
= 0

∂ui

∂t
+

∂uiuj

∂xj
= − 1

ρ0

∂p

∂xi
+

g

T0
θδi3 + ν

∂2ui

∂x2
i

−
∂u′

iu
′
j

∂xj

∂θ

∂t
+ uj

∂θ

∂xj
= κ

∂2θ

∂x2
i

−
∂u′

jθ
′

∂xj

Reynolds averaging:
ui = ui + u′

i with: u′
i = 0

p = p + p′ with: p′ = 0
θ = θ + θ′ with: θ′ = 0

Turbulent kinetic energy: e =
1
2

(
u′2 + v′2 + w′2

)
=

1
2
u′

iu
′
i

e′ =
1
2

(
u′2 + v′2 + w′2

)
De

Dt
≡ ∂e

∂t
+ uj

∂e

∂xj
= −u′

iu
′
j

∂ui

∂xj
+

g

T0
u′
3θ

′ − ∂

∂xj

(
u′

je
′ +

1
ρ0

p′u′
j + ν

∂e

∂xj

)
− ν

(
∂u′

i

∂xj

)2

per component (eα):

Deα

Dt
≡ ∂eα

∂t
+ uj

∂eα

∂xj
=

− u′
αu′

j

∂uα

∂xj
+

g

T0
u′

αθ′δj3 − ∂

∂xj

(
−u′

je
′
α − 1

ρ0
p′u′

αδjα

)
+

1
ρ0

p′ ∂u′
α

∂xα
− ν

(
∂u′

α

∂xj

)2

Note: no summation over the index α

Reynolds stress equation:

Du′
iu

′
j

Dt
≡

∂u′
iu

′
j

∂t
+ uk

∂u′
iu

′
j

∂xk
= −u′

iu
′
k

∂uj

∂xk
− u′

ju
′
k

∂ui

∂xk
+

− ∂

∂xk

(
u′

iu
′
ju

′
k +

1
ρ0

p′u′
jδik +

1
ρ0

p′u′
iδjk

)
+

1
ρ0

p′
(

∂u′
i

∂xj
+

∂u′
j

∂xi

)
− 2ν

∂u′
i

∂xk

Temperature variance:
D 1

2θ
′2

Dt
≡

∂ 1
2θ

′2

∂t
+ uk

∂ 1
2θ

′2

∂xk
=

− u′
jθ

′ ∂θ

∂xj
− ∂

∂xj

(
u′

j

1
2
θ′2

)
− κ

(
∂θ′

∂xj

)2

Temperature flux:

Du′
kθ

′

Dt
≡ ∂u′

kθ
′

∂t
+uk

∂u′
kθ

′

∂xk
= −u′

ju
′
k

∂θ

∂xj
−u′

jθ
′ ∂uk

∂xj
+

g

T0
θ′2δ3k − ∂

∂xj

(
u′

ku
′
jθ

′
)
+

1
ρ0

θ′ ∂p′

∂xk



Appendix B
Special Topics

B.1 Monin–Obukhov Similarity

We saw in Sect. 7.5 that buoyancy and density effects can directly affect turbulence.
It seems obvious that they can, for example, also influence the average profiles of
velocity and temperature. We discuss this on the basis of horizontally homogeneous
turbulence close to a solid wall with an average velocity ui = (u(z), 0, 0). This
flow configuration is discussed extensively in Chap. 6. An important application for
this is the flow in the lower part of the atmosphere, which is called the atmospheric
boundary layer; see Sect. 7.6.

Here we limit ourselves to the wall region. In the atmosphere this region is known
as the surface layer. In Sect. 6.2 we argued that in this region the shear stress τt =
−u′w′ is approximately constant and equal to

− u′w′ ≈ u2
∗, (B.1)

where the friction velocity u∗ is defined in (6.6).
We expand this turbulent wall flow with a temperature flux w′θ′ (for example

caused by heating or cooling of the wall). This situation is representative for the flow
in our atmosphere, where the surface of the earth heats the air above it during the
day (i.e., w′θ′ > 0) and cools it down at night (i.e., w′θ′ < 0). Analogous to (B.1),
it follows for the wall region that:

w′θ′ ≈ w′θ′
s, (B.2)

where w′θ′
s is the temperature flux at the surface. This temperature flux w′θ′

s adds a
new characteristic parameter to our problem, but instead of directly using w′θ′

s , we
consider a derived quantity. For this we use the kinetic energy equation (7.24). We
neglect the time derivative and the transport terms in this equation, which is justified
in the wall region. It then follows that:
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0 = u2
∗
∂u

∂z
+ g

T0
w′θ′

s − ε.

In order to calculate the velocity gradient, we consider the logarithmic velocity
profile:

u = u∗
k

ln

(
z

z0

)
,

where k is the Von-Kármán constant, and z0 the roughness length. (The term z0 is
equivalent to the term y0, which was introduced in Sect. 6.4 as the roughness length.)
It then follows that:

0 = u2
∗

u∗
kz

(
1 − z

L

)
− ε.

Here L is the so-called Obukhov length, which is defined as:

L = − u3∗
k

g

T0
w′θ′

s

. (B.3)

For L < 0 the flow is unstable, for L > 0 the flow is stable, and for L = 0 the flow
neutral. This has the same consequences for the flow as discussed in Sect. 7.5. On
the basis of the expressions above it follows that:

z < L: shear production is dominant;
z > L: buoyant production is dominant.

In other words, inwall turbulence the flow close to thewall is, in good approximation,
always neutral. Density effects only come into play away from the wall.

Let us consider the Obukhov length as one of characteristic scales close to wall
the wall and also consider the previously introduced scales u∗, z and z0. Furthermore,
we define a temperature scale:

θ∗ = − w′θ′
s

u∗
. (B.4)

We limit ourselves to thematching region or overlap region. In Problem 2 of Sect. 6.3
we argued that in this region the average gradients can be scaled with u∗ and z, and
we argued that z0 does not appear in the result. In the present case, we expand these
scaling parameters with L . It then follows on the basis of dimensional analysis for
the dimensionless velocity gradient and the dimensionless temperature gradient in
the overlap region that:

kz

u∗
∂u

∂z
= φm

( z

L

)
, (B.5)

kz

θ∗
∂θ

∂z
= φh

( z

L

)
, (B.6)

http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_7
http://dx.doi.org/10.1007/978-3-319-31599-7_6
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Fig. B.1 Measurements of
the dimensionless velocity
(φm ) and temperature (φh)
gradients as a function of
height z from the surface
relative to the Obukhov
length L , defined in (B.3).
The solid lines represent the
fitted models in (B.7–B.8).
After: Fleagle and Businger
(1980)
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where φm and φh are two unknown functions. The expression for φm is normalized,
so that for L → ∞ it follows that φm(0) = 1. Indeed, for z/L → 0, the flow is
neutral, and we retrieve the logarithmic velocity profile. The results (B.5) and (B.6)
are referred to as the Monin–Obukhov similarity.

First we convince ourselves that these similarity relations provide adequately
descriptions of the actual gradients. For this we plot in Fig. B.1 experimental data of
the dimensionless velocity gradient (φm) and of the dimensionless temperature gradi-
ent (φh) as a function of ζ = z/L . We find that all experimental data indeed coincide
on a single curve, although it needs to be emphasized that these measurements were
done at different heights. This result can be considered as experimental support for
of the validity of the Monin–Obukhov similarity. It needs to be emphasized that the
functions φm and φh can only be determined empirically; no arithmetical expression
can be found using dimensional analysis.

By fitting a function to the experimental data from Fig. B.1 we can formulate an
explicit relationship for φm and φh as a function of z/L . Although many different
functional relations have been proposed, we consider here:

⎧⎪⎨
⎪⎩

φm =
(
1 − 16

z

L

)−1/4

φh =
(
1 − 14

z

L

)−1/2 for: L < 0, (B.7)
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and:
⎧⎪⎨
⎪⎩

φm = 1 + 4.7
z

L

φh = 1 + 4.7
z

L

for: L > 0. (B.8)

Integration of these relations gives the profiles for the velocity and the temperature
in the wall region. The result for L < 0 reads:

u = u∗
k

{
ln

(
z

z0

)
− 2 ln

[
1 + x

2

]
− ln

[
1 + x2

2

]
+ 2 arctan x − π

2

}
,

θ − Ts = θ∗
k

{
ln

(
z

z0

)
− ln

[
1 + y2

2

]}
, (B.9)

with: x = φ−1
m (z/L), and: y = φ−1

h (z/L), and for L > 0:

u = u∗
k

{
ln

(
z
z0

)
+ 4.7 z

L

}
,

θ − Ts = θ∗
k

{
ln

(
z
z0

)
+ 4.7 z

L

}
.

(B.10)

Here we applied the boundary condition: u(z0) = 0, and we introduced the surface
temperature Ts , although formally Ts represents the temperature at the height z = z0.
(In applying these boundary conditions we have neglected the terms with z0/L ,
because in general z0 � L and close to the wall the flow can be considered neutral.)

The equations above for the profiles of the average velocity and the average
temperature are very useful in practice. This is because they specify a relationship
between the turbulent fluxes:−u′w′ ≡ u2∗ andw′θ′

s , and the average profiles u and θ.
From this it follows that we can derive the fluxes −u′w′ and w′θ′

s from observations
of u and θ at various heights without having to use any direct measurements that
require expensive and complicated measurement equipment. This is referred to as
the profile method.

It appears that theMonin–Obukhov similarity can also be applied to other turbulent
quantities in the wall region. Here we demonstrate this for the vertical velocity

variance w′2 and the temperature variance θ′2. On the basis of dimensional analysis,
it follows that:

w′2 = u2
∗ fw

( z

L

)
,

θ′2 = θ2∗ fθ
( z

L

)
.

In Fig. B.2 we show some experimental data for these quantities, which indeed
confirm the validity of the Monin–Obukhov similarity for these quantities. However,
other experimental data appear to show that the Monin–Obukhov similarity does not

hold for the horizontal velocity variance u′2.
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Fig. B.2 Observations of (w′2)1/2 and (θ′2)1/2 as a function of z/L according to the Monin–
Obukhov similarity. From: Wyngaard et al. (1971)

Problems

1. Using (B.7) and (B.8), calculate the exchange coefficients K and K H as a function
of z/L . Plot these relations in a single graph and show that in unstable circum-
stances the exchange coefficients are larger than in stable circumstances. Is this
physically explainable?

2. Calculate the flux Richardson number Ri f defined in (7.26) in the wall region.
Derive that for L > 0 the critical value of Ri f equals Ri(cr)f = 5.2−1 = 0.19.

3. The condition z/L 	 1 is called free convection. In that case, turbulence produc-
tion by shear is virtually negligible.

(a) Calculate that u∗ is no longer relevant as a velocity scale.
(b) Derive that, in this case, it holds that:

w′21/2 ∼ u∗
(

z
L

)1/3
,

θ′21/2 ∼ −θ∗
(

z
L

)−1/3
.

Compare this result with the experimental data in Fig. B.2.
(c) Show that in this case the eddy diffusion coefficient K H is given by:

K H = c

(
g

T0
w′θ′

s

)1/3

z4/3,

where c is a constant.Using this expression for K H , calculate the temperature
profile θ. Does this result agree with (B.9)?

4. Can you think of a reason why the Monin–Obukhov similarity is not valid for the

horizontal velocity variance u′2?

http://dx.doi.org/10.1007/978-3-319-31599-7_7
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B.2 Rapid Distortion Theory

Based on the vorticity equation (8.3) we can make some general statements on the
effect of deformation on the turbulent flow structure. To explain the effect of the
deformation field, we consider the flow around a solid body, such as a cylinder, as
illustrated in Fig. B.3. The body, with a characteristic dimension d, is located in a
turbulent flow. Far from the body, the average flow speed equals U0. The eddies in
this flow have a characteristic length scaleL, while the turbulent velocity fluctuations
are characterized by U . We limit ourselves to turbulence with a low intensity, that is:
U � U0.

In a thin layer around the front of the body, indicated by B in Fig. B.3, shear forces
(both viscous and turbulent) are present, satisfying the boundary condition for the
tangential velocity with respect to the body surface. The thickness of this layer is δ
andwhen the Reynolds number, based onU0 and d, is sufficiently large, then: δ � L.
Under these conditions the effect of this boundary layer can be neglected.Generally, a
large region with separated flow or wake, is found behind the body, indicated by W in
Fig.B.3. For the present analysis we disregard the interaction between the wake and
the turbulence outside the wake. Finally, we identify a region T, where inertial forces
dominate. These inertial forces relate to the deformation related to the presence of
the body in the flow field. The size of this region, which is thus characterized by the
deformation field, scales in a first approximation with the size of the body, d.

We now distinguish two cases: L < d, and: L > d.

LLL < d: Deformation Dominates

In this case, the eddies are smaller than the size of the body. We can imagine that
these eddies in region T are deformed by the deformation field that relates to the
presence of the body. In a first approximation, the eddies are then transported at an

turbulent
wake

x2

x1

streamline

1
2
d

U0

B

T
W

P0 P0

P1

P1

2

1

Fig. B.3 A cylinder with diameter d in a turbulent flow with a mean velocity U0 and a typical eddy
length scaleL. Line elements are deformedwhen approaching (P0−P ′

0) and passing along (P1−P ′
1)

the cylinder. B thin boundary layer in front of the cylinder; T turbulent flow region dominated by
inertial motion; W wake or separation region behind the cylinder. From: Britter et al. (1979)

http://dx.doi.org/10.1007/978-3-319-31599-7_8
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average speed of order O(U0) (see Sect. 9.4). The characteristic timescale Td for the
deformation of the eddies is then given by:

Td ≈ d

U0
. (B.11)

Additionally, the characteristic timescale T of the eddies is defined as

T ≈ L
U . (B.12)

We now assume that:
Td � T , (B.13)

or the timescale of the deformation is much smaller than the characteristic timescale
of the eddies. We therefore call this condition rapid distortion. In physical terms,
this means that the turbulent vortices do not have any time, so to speak, to exchange
energy during the deformation phase, for example through the cascade process. The
relations (B.11–B.13) then imply:

U
U0

� L
d

.

Because we already said that L < d, it follows that U � U0. In other words, we
have to limit ourselves to turbulence with a very weak intensity.

We write the instantaneous velocity and vorticity as:

ui = ui + u′
i , and: ωi = ω′

i ,

where we adopt the notation that a prime indicates the fluctuating part. The average
velocity is ui , which has a magnitude O(U0). The average vorticity equals zero,
which implies that the mean flow can be described as potential flow (Kundu and
Cohen 2004). This is not essential to the theory, but is considered here for reasons
of simplicity. We substitute these expressions for the velocity and vorticity in the
vorticity equation (8.3) to arrive at the following equation:

∂ω′
i

∂t
+u j

∂ω′
i

∂x j
+u′

j

∂ω′
i

∂x j
−u′

j

∂ω′
i

∂x j
= ω′

j

∂u′
i

∂x j
+ν

∂2ω′
i

∂x2
j

+ω′
j

∂ui

∂x j
−ω′

j

∂u′
i

∂x j
. (B.14)

The last two terms on the left-hand side of this equation represent the advection of
the vorticity fluctuations by the fluctuating velocity field. Because we assumed that
the turbulence intensity is weak, i.e.,

u′
i ∼ U � ui ∼ O(U0),

http://dx.doi.org/10.1007/978-3-319-31599-7_9
http://dx.doi.org/10.1007/978-3-319-31599-7_8
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it now follows that these terms are negligible compared to the advection by the mean
flow. The last two terms on the right-hand side of (B.14) represent a change of the vor-
ticity fluctuations due to the deformation by the fluctuating velocity field. In Sect. 8.1
we argued that this term is represents the cascade process, that is the interaction
between the eddies. As we stated before, the time scale T coupled to this interac-
tion is in this case larger than the time scale Td . In other words, these terms on the
right-hand side of (B.14) are negligible compared to the first term that represents the
deformation by the average velocity field. Finally, we notice that the Reynolds num-
ber (as applied to the macrostructure): LU/ν) is generally much larger than 1. From
this it follows that the viscous term on the right-hand side of (B.14) can be neglected.
We thus limit ourselves to the dynamics of the larger and most energetic eddies.

We now obtain the following linearized vorticity equation:

∂ω′
i

∂t
+ u j

∂ω′
i

∂x j
= ω′

j

∂ui

∂x j
. (B.15)

When the average (irrotational) velocity field is given, this equation can be solved
as an initial value problem. Because the equation is linear, the solution is found by
means of standard methods. This means that, given the turbulence characteristics of
the inflowing fluid, we can explicitly calculate the turbulence around the body.

In the remainder of this case we limit ourselves to a quantitative evaluation of
this solution, where we use the concept of vortex stretching introduced in Sect. 8.1.
Consider two material line segments �1 and �2 at a point P0 far away from the
cylinder at the symmetry line, as indicated in Fig. B.3).When the flow approaches the
cylinder, line segment �1,which is oriented in the direction of the x1-axis, compresses,
while the line element �2 that is oriented in the direction of the x2-axis becomes
stretched. The resulting configuration is shown in point P ′

0. In Problem 3 of Sect. 8.1
Cauchy’s solution was deduced; this essentially says that vorticity in a non-viscous
flowbehaves like amaterial line segment. Thus, we can directly translate the behavior
of the line segments in Fig. B.3 to vorticity. The vorticity along the x2-axis thus
increases due to vortex stretching, while the vorticity along the x1-axis is reduced.
Vorticity along the x2-axis is coupled to the velocity components u1 and u3, while
vorticity along the x1-axis is coupled to the components u2 and u3. It thus follows that
the u1 component increases and that u2 decreases when we approach the cylinder.
In short, the fluctuations normal to the wall of our body increase; this is a rather
surprising result.

We can expand our consideration of the flow to other places than the symmetry-
axis. An example is given in Fig. B.3. Besides a change in length, the line element
now also experiences a change in orientation. In Sect. 8.1 we described this process,
where through an angular rotation of line segments, vorticity changes its orientation.
This means that a vortex line, which was oriented in the direction of the x2-axis at P1,
obtains a component in the x1-direction at P ′

1. The result is that a velocity component
in the x2-direction is induced, while at first (in P1) only the velocity components u1

and u3 had non-zero values. The orientation of the vortex line segment at P ′
1 suggest

http://dx.doi.org/10.1007/978-3-319-31599-7_8
http://dx.doi.org/10.1007/978-3-319-31599-7_8
http://dx.doi.org/10.1007/978-3-319-31599-7_8
http://dx.doi.org/10.1007/978-3-319-31599-7_8
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that the components u1 and u2 are correlated. In other words, there is a Reynolds
stress −u′

1u′
2 here, which was not yet present at P1. Hence, Reynolds stresses can be

generated by the deformation of a turbulent flow field.

LLL > d: Blocking Dominates

In the preceding case (L < d) we neglected the fact that turbulent eddies at the body
should satisfy a boundary condition for the normal component of the velocity, since
the fluid can not penetrate the body. This is called blocking. This boundary condition
affects the structure of the eddy, which has a dimension O(L). We stated above that
the length scale over which the deformation field acts is limited to an area with a
dimension O(d). So, whenever L > d, the flow is dominated by blocking.

The velocity field can now be written as:

ui = u(0)
i + u(b)

i , (B.16)

where u(0)
i is the instantaneous velocity far away from the body. The term u(b)

i is the
velocity field induced by blocking. Because we have neglected the deformation field,
u(b)

i can only be created by pressure forces. Pressure forces cannot produce vorticity
(at least, not in a velocity field with a homogeneous density). This result is known in
fluid mechanics as Kelvins theorem (Kundu and Cohen 2004). Therefore the velocity
field has to satisfy the following equations in the case of blocking:

∇ · u(b) = 0, and: ∇ × u(b) = 0, (B.17)

with the boundary condition:
u(b) · n = −u(0)

n ,

where n represents the normal to the body surface and u(0)
n the normal component of

the undisturbed velocity. This boundary condition ensures that the normal velocity
component at the body surface equals zero. Based on Eq. (B.17), it follows that, using
potential flow theory, the blocking can be solved for an irrotational flow.

The behavior of the solution can be easily seen when we imagine the blocking
effect. When the flow moves from P0 to P ′

0 in Fig.B.3, the normal component of
velocity u1 decreases until it eventually reaches zero at the body surface. On the
other hand, the tangential velocity component increases. By the blocking, energy is
transferred from the wall-normal velocity component to the tangential one. Hence,
we notice that in this case the behavior of the u1-component and the u2-component
of the velocity is the opposite of what we found for the case L < d. This has
been confirmed by experimental data. An example is shown in Fig. B.4, where the
component of the velocity fluctuations along the symmetry-axis of a cylinder flow
is shown.
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Fig. B.4 The component of the velocity fluctuations along the symmetry-axis of a turbulent flow
approaching a cylinder for various values of 2L/d, where d is the cylinder diameter. The closed
symbols are for the case L < d and the open symbols for the case L > d. Data from: Britter et al.
(1979)

B.3 Aeroacoustics

Liquids and gasses flowing around obstacles often induce periodic flow behavior.
One of the well known examples of this is the Von Kármán vortex street behind a
(circular) cylinder. Under certain conditions these flows can also generate audible
sound. Examples are numerous, e.g., the noise generated by a high speed train, by the
side mirror of a car, or by flowing water in a small river. Unbounded high speed flows
also generate sound, e.g., the sound generated by high speed jets of modern aircrafts.
The loudness of sound is often characterized by the so-called sound pressure level
(SPL), which is defined as:

SPL = 20 log

⎛
⎝

√
p′2

pref

⎞
⎠ (dB)

where p′ is the acoustic pressure fluctuation, and pref a reference value, which for air
takes the value pref = 2×10−5 Pa. A sound pressure level of 100 dB thus corresponds
to a root mean square pressure value of only 1 Pa. The acoustic component of the
pressure is in general several orders smaller than the hydrodynamic pressure (which
scales with ρU 2), which is again much smaller than the ambient pressure.

In the early 1950s Sir James Lighthill (1952) developed a theoretical framework
connecting aerodynamics and acoustics. Nowadays this field of research is known
as aeroacoustics. Below this theory is considered shortly. A concise introduction is
given in the book by Howe (2003).
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Consider the equations for the conservation of mass and momentum for com-
pressible flow:

∂ρ

∂t
+ ∂ρui

∂xi
= 0, (B.18)

∂ρui

∂t
+ ∂ρui u j

∂x j
= − ∂ p

∂xi
+ ∂

∂x j
τi j , (B.19)

where ρ is the fluid density, ui the fluid velocity vector, p the pressure, and τi j the
viscous stress tensor. The divergence operator ∂/∂xi is applied to the equation for
the conservation of momentum, and the time derivative ∂/∂t to the equation for the
conservation of mass, resulting in:

∂2ρ

∂t2
+ ∂2

∂t∂xi
ρui = 0, (B.20)

∂2

∂xi∂t
ρui + ∂2

∂xi∂x j
ρui u j = −∂2 p

∂x2
i

+ ∂2

∂xi∂x j
τi j . (B.21)

With help of Eq. (B.20), Eq. (B.21) can be rewritten as:

− ∂2ρ

∂t2
+ ∂2 p

∂x2
i

= ∂2

∂xi∂x j

[−ρui u j + τi j
]
. (B.22)

For isentropic flow (denoted by the subscript ‘s’) and a small (linear) acoustic dis-
turbance, the following holds

c2 =
(

∂ p

∂ρ

)
s

= p − p0

ρ − ρ0
= p′

ρ′ ,

where c is the speed of sound, and the subscript ‘0’ denotes the reference or ambient
state. With the help of this relation, Eq. (B.22) can be written as:

∂2ρ′

∂t2
− c2

∂2ρ′

∂x2
i

= ∂2

∂xi x j

[
ρui u j + δi j

(
p′ − c2ρ′) τi j

]
, (B.23)

where we used the simple mathematical relation: p′ = c2ρ′ + (p′ − c2ρ′) to convert
the pressure fluctuation p′ in a density fluctuation ρ′. Equation (B.23) is the well-
known Lighthill equation for the acoustic density fluctuation ρ′. The term on the
right hand side is often referred to as the Lighthill stress tensor Ti j :

Ti j ≡ ρui u j + δi j
(

p′ − c2ρ′) − τi j .
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The Lighthill equation (B.23) is an exact reformulation of the Navier-Stokes equa-
tions. The operator on the left hand side side takes the form of a wave equation. The
term on the right hand side can be seen as a forcing term. In the present form this
equation cannot be solved directly. However, some simplifications can be made for
flows with a high Reynolds number and lowMach number. For small Mach numbers
Ma = u/c it can be assumed that: ρ′ � ρo. Furthermore, for high Reynolds number
flows the viscous stresses can be ignored, and the right hand side of (B.22) reduces
to: ρoui u j , and Eq. (B.23) then takes the form:

∂2ρ′

∂t2
− c2

∂2ρ′

∂x2
i

= ∂2

∂xi x j
ρoui u j . (B.24)

From the equation above it is clear that there is a relation between non-linear flow
phenomena, the termui u j and acoustics. The solution of this equation canbe obtained
via a free-space Green’s function; see e.g., Howe (2003):

p′(xi , t) = 1

4π

∂2

∂xi x j

∞∫
−∞

ρoui u j (yi , t − |xi − yi |/c)

|xi − yi | d3yi , (B.25)

where xi is the position of the observer of the sound with respect to the origin on
the coordinate system, and yi the vector from the origin of the coordinate system
to the source location. The term between parenthesis indicates that the term ρoui u j

should be evaluated at position yi at time t = |xi − yi |/c, i.e., in the past. For a
compact source, i.e., a source with: (i) a spatial extent that is much smaller than the
wavelength of the acoustic wave it generates, and (ii) with the observer far away of
the acoustic source, it can be assumed that: |yi | � |xi |, so that the equation above
can be reformulated as:

p′(xi , t) = 1

4π

∂2

∂xi x j

∞∫
−∞

ρoui u j (yi , t − |xi |/c)

|xi | d3yi . (B.26)

Furthermore, far away from the source region, the spatial derivative can be replaced
by1

∂

∂x j
= −1

c

x j

|xi |
∂

∂t
.

Then, (B.26) can be written as:

1

with:
∂ f (x, t)

∂x j
= ∂ f (x, t)

∂t

∂

∂x j
(x, t) = ∂ f (x, t)

∂t

x j

|x| .
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p′(xi , t) = xi x j

4πc2|x|3
∂2

∂t2

∞∫
−∞

ρoui u j (yi , t − |xi |/c)

|xi | d3yi . (B.27)

This equation gives a prediction of the acoustic far field of a localized turbulent
source region.

Acoustic Emissions of a Jet

Lighthill developed his theory primarily to predict the acoustic emissions of turbulent
jets. He assumed that the non-linear term ρoui u j , in Eq. (B.27) scales with a velocity
scale U , i.e., ρui u j = O(ρo U2). The non-linear term evolves with the flow, and
therefore the derivative ∂/∂t of the non-linear term scales with the flow velocity U
and length scale L, i.e.,

∂2

∂t2

∫
ρoui u j dy3 = O

(
ρo U4L

)
.

The acoustic pressure fluctuation p′ in Eq. (B.27) thus scales as:

p′ = O
(
1

c2
U4L

)
.

The acoustic power emitted by an eddy at the observer location |xi | is determined
by a surface integral of the acoustic intensity I = p′2/(ρoc) over a sphere centered
at the eddy, i.e.,

power ≈ 4π|xi |2 p′2

ρoc
= ρoL2 U8

c5
.

This is the famous eighth-power law for acoustic emission, which illustrates the
effect of increasing flow speed on the acoustic power.

Lighthill’s theory is very useful for understanding the relation betweenflow, turbu-
lence and acoustics, but it is not very suited for actual acoustic predictions. Important
effects, such as the advection of the acoustic source and the refraction of sound by
the flow, are not included in the theory. Since the late 1950s other techniques have
been developed that give a better prediction of acoustic emissions from a flow field.
For an overview of the techniques we refer to the work of Howe (2003).

To illustrate certain features of jet acoustics, some results of numerical simulations
(Moore 2009) are included. In Fig. B.5 the near and far acoustic fields of a turbulent
jet are shown. The acoustic field is visualized with help of the divergence of the
velocity (dilatation), which in the far field is directly related to the acoustic pressure
fluctuation, via

∂ p′

∂t
= −ρc2

∂ui

∂xi
.
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Fig. B.5 The dilatation
(∂ui /∂xi ) overlaid with the
vorticity amplitude field in a
subsonic jet with a Reynolds
number of 4,000 and a Mach
number of 0.9, based on
nozzle conditions. From:
Moore (2009)

Dilatation waves (i.e., sound waves) are generated in regions with large spatial fluc-
tuations in the vorticity. In Fig. B.6 is shown the acoustic far field of the jet, which is
is here obtained by means of the so-called Ffowcs-Williams and Hawkings (FWH)

Fig. B.6 Contours of vorticity amplitude (
√

ωi ωi ), superimposed on contours of pressure. Note
that Mach and Reynolds numbers are identical to those in Fig. B.5. Differences between the flow
fields in this figure and the previous figure are due to differences in the initial velocity profile.
Within the rectangular box, the pressure field is computed by means of direct numerical simulation
(DNS), while outside the box it is computed bymeans of theFfowcs-Williams and Hawkings (FWH)
equation (Howe 2003)
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equation (Howe 2003). Sound is predominately emitted at angles of about 30◦–40◦
with respect to the jet centerline. At smaller angles with the jet centerline the ampli-
tude of the acoustic waves decreases. This is due to the fact that sound waves are
refracted by the turbulent flow field. The area with relatively low sound levels in the
direction of the jet is sometimes referred to as the ‘cone of silence.’

B.4 Rotating Turbulence

Herman Clercx

This section briefly sketches the effect of background rotation on turbulent flows,
which is of relevance in many geophysical and astrophysical flows and in many
industrial flows (such as in rotatingmachinery). Statistical homogeneity and isotropy
cannot be a starting point for the basic analysis of rotating turbulence as with the
presence of background rotation anisotropy is introduced. This anisotropy distin-
guishes the coordinate parallel to the rotation axis with those perpendicular to the
rotation axis. At best we can thus assume statistical homogeneity (in 3D) and statisti-
cal isotropy in the 2D plane perpendicular to the rotation axis (provided the turbulent
flow is not confined).

Depending on the integral-scale Reynolds number and the rotation rate (usually
quantified by the Rossby number, Ro ∝ �−1; see ‘basic equations’ below) a dis-
tinction can be made between three-dimensional (3D) homogeneous isotropic turbu-
lence, quasi-two-dimensional (2D) turbulence and wave turbulence. In the schematic
in Fig. B.7 the different regimes are illustrated in the (Re, Ro)-plane. In the linear
low-Reynolds number regime in rapid rotating fluids (Ro � 1) inertial waves are
observed. For similar rotation rates but increased Reynolds number non-linear inter-
actions become dominant and we arrive in the wave-turbulence regime. Finally, for

Fig. B.7 A very schematic representation of the different regimes in rotating turbulence in the (Re,
Ro)-plane
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rotation-dominated turbulence (Ro < 1) at high Reynolds number we arrive at a kind
of quasi-two-dimensional turbulence in planes perpendicular to the rotation axis.

One of the famous experiments exploring the role of background rotation on
turbulence was conducted by Hopfinger et al. (1982). They investigated the large-
scale effects induced by rotation on turbulence. Their experiment consisted of a
large container filled with fluid, rotating about its vertical axis. Near the bottom
of the container the flow was continuously forced by a vertically oscillating grid
(i.e., the grid motion was parallel to the rotation axis). The turbulent flow in the
neighborhood of the oscillating grid, where typical turbulence time scales are much
smaller than the rotation time scale (Re 	 1 and Ro > 1), is more or less unaffected
by rotation and behaves thus like 3D homogeneous isotropic turbulence. However,
sufficiently far above the oscillating grid, where the turbulence intensity has already
decreased such that characteristic advection time scales have become substantially
larger than the rotation time scale (Ro < 1), vertically-aligned vortical structures
have been observed (and an overall increase of the turbulent integral length scale with
increasing rotation rate). At first sight onemight thus conclude that the turbulent flow
behaves quasi-two-dimensional, roughly independent of the vertical axis.

Which processes in rotating flows are responsible for the specific statistical prop-
erties and large-scale anisotropic flow structuring of rotating turbulence? Below
we provide a concise introduction into some of these aspects including quasi-two-
dimensionalization of the flow (Taylor–Proudman theorem), the role of domain
boundaries and rotating boundary layer flows, and the origin of inertial waves. For
a more detailed analysis of rotating flows the monograph by Greenspan (1968) can
be consulted. For rotating flows in a geophysical context the reader is referred to the
textbook by Pedlosky (1987). For an extensive overview of the theory of rotating
and stratified turbulence the reader is referred to a recent monograph by Davidson
(2013).

Basic Equations

Background rotation can strongly affect the dynamics of turbulent flows. A proper
analysis of such flows is most conveniently carried out in a co-rotating frame of refer-
ence although additional terms appear in the Navier-Stokes equations (the so-called
fictitious forces as we are analyzing the flow in a non-inertial frame of reference). In
the remainder of this section we use vector notation, in which a vector is represented
by a bold symbol, e.g., the velocity vector is written as u (which is equivalent to ui

and u), and the gradient ∂
∂xi

is written as the nabla operator ∇; the inner and outer
vector products are written as · and ×, respectively.

Consider a frame of reference that is rotating steadily with angular velocity �

with respect to a laboratory frame (the inertial frame of reference). For any vector Q
the following relation exists between the time-derivative of Q in the inertial and the
rotating frame of reference (denoted by subindices I and R, respectively):

(
dQ
dt

)
I

=
(

dQ
dt

)
R

+ � × Q. (B.28)
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From this relation we obtain for the position vector r of a fluid element:

(
dr
dt

)
I

=
(

dr
dt

)
R

+ � × r, (B.29)

or: uI = uR +� × r. Applying relation (B.28) once again with uI gives the relation
between the acceleration of a fluid element in the inertial frame and the rotating
frame of reference
(

duI

dt

)
I

=
(

duI

dt

)
R

+ � × uI =
(

duR

dt

)
R

+ 2� × uR + � × (� × r). (B.30)

Here, 2� × uR is the Coriolis acceleration and � × (� × r) is the centrifugal
acceleration. The latter contribution can be reformulated as a gradient of a scalar:
−∇( 12�

2r2⊥), with r⊥ the distance of the point r from the rotation axis and � = |�|.
With (B.30) the Navier-Stokes equation in the rotating frame of reference reads

∂u
∂t

+ (u · ∇)u + 2� × u = −1

ρ
∇P + ν∇2u, (B.31)

where P = p − 1
2ρ�2r2⊥ is the reduced pressure. The momentum equation is com-

plemented with mass conservation: ∇ · u = 0.
Before proceeding it is convenient to introduce here the relevant dimensionless

numbers which characterize the flow. These numbers indicate the relative importance
of inertial, viscous and Coriolis forces in the momentum equation. For this purpose
L and U represent the typical length and velocity scales of the flow, respectively.
Together with the kinematic viscosity ν and system rotation � we can define three
dimensionless numbers: the Reynolds number Re (ratio of inertial over viscous
force), the Rossby number Ro (ratio of inertial over Coriolis force), and the Ekman
number Ek (ratio of viscous over Coriolis force), defined as:

Re = UL
ν

, Ro = U
2�L , Ek = ν

�L2
,

respectively. Obviously, only two of these dimensionless numbers are independent.
Therefore, the dimensionless momentum equation contains two dimensionless num-
bers only: Ro and Ek (note that we have non-dimensionalized time by �−1 and the
reduced pressure by ρ�UL), and reads

∂u
∂t

+ Ro (u · ∇)u + 2k × u = −∇P + Ek ∇2u, (B.32)

where k is the unit vector in the direction of �.
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Taylor–Proudman Theorem

When the Reynolds number is sufficiently large the flow becomes turbulent, and
viscous effects are almost negligible in the bulk sufficiently far away from bound-
aries. In the boundary layers viscous effects are non-negligible and compete with
the Coriolis force; see: ‘Ekman boundary layers’ for some further discussion. For
large Reynolds number flow (Re 	 1) in the bulk (far away from walls), combined
with small Ekman number (Ek � 1), an almost (statistically) steady (mean) flow
is fully characterized by the Rossby number. For rapid system rotation Ro � 1 (or
U � �L) we are allowed to ignore the advective and viscous contribution in (B.32).
As we also assumed (statistical) steadiness of the (mean) flow the fluid motion is
governed by

2 k × u = −∇P, (B.33)

and fluid particle acceleration is fully determined by the balance between the pressure
gradient and the Coriolis force. They both act perpendicular to the fluid motion,
i.e., u ⊥ ∇P . This is known as the geostrophic balance and is of importance for
atmospheric and large-scale oceanic (turbulent) flows.

An important relation for geostrophically-balanced flows can be obtained by tak-
ing the curl of the geostrophic balance (B.33). As ∇ × ∇P = 0 we obtain that
∇ × (k × u) = 0. Applying some vector algebra and taking into account flow
incompressibility we arrive at the following relation:

∂u
∂z

= 0, (B.34)

where we assign a coordinate system such that the rotation vector � is aligned with
the z-axis. From (B.34), known as the Taylor–Proudman theorem (Taylor 1917;
Proudman 1916), we can immediately conclude that for rapidly rotating flows the
velocity components will not change in the direction parallel with the rotation axis.
This implies two-dimensional flow behavior in planes perpendicular to the rotation
axis although the velocity component parallel to the rotation axis does not necessarily
vanish (but takes on a constant value). Note again that we are considering (rapidly)
rotating flows away from boundaries. Inside boundary layers the Taylor–Proudman
theorem cannot be applied, see ‘Ekman boundary layers’.

Taylor (1917) provided the experimental proof of this theorem by conducting
laboratory experiments on steadily towing submerged obstacles through a rotating
fluid. He observed that the flow was around the obstacle and not over it. In this way
the obstacle carries a stagnant column of fluid as if the obstacle was extended over the
full fluid layer. This stagnant volume of fluid is now known as the Taylor column. The
emergence of Taylor columns are not restricted to these idealized experiments where
the flow is more or less laminar. The formation of column-like structures are also
observed in both laboratory experiments and in direct numerical simulations (DNS)
of rotating turbulence. An example is shown in Fig. B.8 and concerns the decay of
rotating turbulence behind a stroke of a vertically towed grid as visualized by the
pearlescence technique in the experiments byStaplehurst et al. (2008) and reported by
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Fig. B.8 Experimental observation of columnar vortical structures in rotating turbulence exper-
iments (Staplehurst et al. 2008). The pearlescence technique was used to visualize the vorticity
field. Turbulence decays behind a stroke of a grid vertically towed through the fluid. From left to
right snapshots are shown for increasing inertial times �/2π after the grid moved out of the field
of view (instantaneous Rossby number is decreasing due to decreasing root mean square velocities
promoting emergence of Taylor–Proudman like structures). From: Dalziel (2011)

Fig. B.9 Isovorticity surfaces of rotating turbulence from direct numerical simulations. Snapshots
from left to right are taken at increasing inertial times, and the formation of columnar vortical
structures aligned with the background rotation is evident. From: Yoshimatsu et al. (2011)

Dalziel (2011). The formation of columnar vortical structures is evident.Yoshimatsu
et al. (2011) reported recently the formation of vertically aligned vortical structures
(parallel with the rotation axis) in a DNS. Isosurfaces of vorticity in a subregion of
a 2563 simulation grid points are shown in Fig. B.9.

Ekman Boundary Layers

In many geophysical and engineering applications it is reasonable to consider the
bulk flow to be inviscid to good approximation. However, near domain boundaries
(either a solid wall or an interface such as water-air) viscous effects likely become
important and boundary layers emerge. For rotating flows these boundary layers have
their specific characteristics and are not alike the classical Prandtl–Blasius boundary
layers. The analysis of viscous boundary layers in rotating systems started at the end
of the 19th century when it was observed by Nansen that the drift velocity of icebergs
tend to be under a certain angle with respect to the wind (assumed to be constant
on average for sufficient time). This observation challenged Ekman (1905) in the
beginning of the last century to analyse the wind-driven motion and he succeeded to
derive the boundary-layer structure at the ocean surface. Since then these are called
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Ekman boundary layers. One should realize, however, that for turbulent flows (like
in the atmosphere and oceans) one should not speak about viscous effects caused by
molecular transport processes of momentum (like in laminar flows). The momentum
transport is due to the turbulent eddies and the boundary-layer analysis is then actually
based on a turbulent viscosity and mean boundary-layer profiles. In oceanography
it is common to call the turbulent viscosity the ‘Austausch’ coefficient and its value
depends on the position in the flow field as well as the direction of the turbulent
momentum flux (perpendicular or parallel to the rotation axis). It includes therefore
the statistical anisotropy of rotating turbulent flows.

For rapidly rotating (turbulent) flows the (mean) flow in the bulk is dictated by the
geostrophic balance. As illustrated in the previous section the bulk might be popu-
lated with on average vertically-aligned cyclonic and anticyclonic vortical structures
(‘columns’) with large-scale (mean) horizontal flows and associated pressure fields
(low pressure regions in cyclones, high pressure regions in anticyclones). These pres-
sure fields propagate more or less independently from the vertical coordinate to the
boundary layers where friction becomes important. Friction will reduce the magni-
tude of the (mean) large-scale horizontal velocity components, and in its turn the
Coriolis contribution. As the balance between Coriolis force and pressure gradient is
now partly violated an inward swirl in cyclones and outward swirl in anticyclones is
set up inside the Ekman boundary layer. Mass conservation then yields for horizontal
convergence in cyclones a local upward flow from the boundary layer into the bulk
and, the other way around, local downward flow from bulk into boundary layer in
anticyclones. These mechanisms are known as pumping and suction, respectively,
and is one of the distinctive differences of the Ekman boundary layer compared to the
Prandtl–Blasius boundary layer: it actively influences the flow deep in the fluid bulk.
Analysis of Ekman boundary layers is provided in textbooks (e.g., Kundu and Cohen
2004) and at higher technical level in the famous monograph by Greenspan (1968).

For practical purposes we align the system rotation with the (vertical) z-axis.
A flat infinitely extended domain boundary (the bottom plate) is assumed to be in
the (horizontal) xy-plane, see Fig. B.10. The (statistical) properties of the flow near
this boundary are thus horizontally homogeneous and vertically inhomogeneous.
The ‘Austausch’ coefficient generally has different values for the ‘horizontal’ and

Fig. B.10 A schematic
representation of the Ekman
boundary layer just above a
horizontal plate. The angular
velocity vector is pointing
upwards (perpendicular to
the bottom plate)
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‘vertical’ diffusivity (Ah and Av , respectively) implying

A∇2u → Ah∇2
hu + Av

∂2u
∂z2

, (B.35)

where: ∇2
h = ∂2

∂x2 + ∂2

∂y2 is the Laplacian operator in a plane parallel to the bottom
plate. For laminar flows Ah = Av = ν. Keeping the orientation of the domain
boundary and the rotation axis in mind we can conclude that it is only needed to
retain the z-derivative as changes in the velocity profile are largest in the direction
perpendicular to the boundary.By again assuming (statistically) quasi-stationary flow
with Ro � 1 and retaining the z-derivative of the viscous contribution we arrive at:

2 k × u = −∇P + Ek
∂2u
∂z2

, (B.36)

with Ek � 1. In laboratory experiments and in ocean applications we find typically
Ek ≈ 10−5. Equation (B.36) is a linear partial differential equation for the flow
field uE = (uE , vE , wE ) in the Ekman boundary layer and is the starting point for
a mathematical analysis of this boundary layer, assuming an interior geostrophic
flow field uI = (uI , vI ) and given boundary conditions. The general solution for the
horizontal flow components is (assuming no-slip boundary conditions at the wall,
see Fig. B.10):

uE = uI − [uI cos(z/δ) + vI sin(z/δ)] exp(−z/δ), (B.37)

vE = vI + [uI sin(z/δ) − vI cos(z/δ)] exp(−z/δ). (B.38)

Here, δ = √
Ek is the dimensionless boundary layer thickness of the Ekman layer.

The physical thickness is δEk = √
ν/� and is independent of the flow velocity. The

Ekman boundary layer thickness is constant and thus independent of the particular
flow configuration.

The Ekman boundary layers play an active role and they strongly influence the
bulk properties of rotating turbulence, for example by pumping and suction of fluid
into and out of the bulk of the fluid.

Inertial Waves

Rotating fluids support inertial waves, which are anisotropic and dispersive of nature.
The propagation of internal waves is due to the restoring nature of the Coriolis force.
It may be possible to describe rotating turbulence and its main features (for example,
the formation of Taylor–Proudman-like coherent structures) in terms of interacting
inertial waves and turbulence.

To quantify inertial wave motion we need to derive the relevant wave equation.
In the limit Ro � 1 and Ek � 1 Eq. (B.31) reduces to

∂u
∂t

+ 2� × u = −1

ρ
∇P, (B.39)
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and taking the curl yields
∂ω

∂t
= 2(� · ∇)u, (B.40)

with ω = ∇ × u. Differentiation of (B.40) with respect to time and subsequently
taking its curl yields the wave equation:

∂2(∇2u)

∂t2
+ 4(� · ∇)2u = 0. (B.41)

Solutions of this equation are plane waves of the form

u(r, t) = R (A exp[i(l · r − ω̃t)]) , (B.42)

with R (··) denoting the real part of a complex function, A the wave amplitude, i
the imaginary unit, l = (lx , ly, lz) the wave vector, and ω̃ the angular frequency of
Fourier mode l. The latter is described by the dispersion relation ω̃ = ±2l̂ · �, with
l̂ the unit vector in the direction of the wave vector l (with magnitude l). Phase and
group velocities are

cp = ω̃

l
l̂ = ±2

l
(l̂ · �)l̂, and cg = ∂ω̃

∂l
= ±2

l

[
l̂ × (� × l̂)

]
, (B.43)

respectively, with ∂ω̃
∂l =

(
∂ω̃
∂lx

, ∂ω̃
∂ly

, ∂ω̃
∂lz

)
.

A few remarkable observations can be made. First of all we see that the absolute
value of ω̃ = ±2 l̂ · � varies from zero to 2� and that low frequency waves have
wavevectors almost perpendicular to �. Inertial waves are thus anisotropic. More-
over, the group and phase velocity of inertial waves are perpendicular: cp ·cg = 0. As
a consequence, waves travelling in a certain direction l̂ (not parallel to �) propagate
energy in a plane set up by l̂ and � but perpendicular to l̂. More specifically, waves
traveling in a direction perpendicular to the rotation axis propagate energy parallel
to the rotation axis. Finally, low-frequency waves (with l̂ almost perpendicular to
the rotation axis) propagate energy at a speed close to 2�L (with L either a typical
length scale of turbulent patches or the size of a disturbance) in a direction parallel
to the rotation axis. High-frequency waves (almost parallel with�) hardly propagate
energy in that direction.

Conclusion

In this appendix we have introduced some of the basic mechanisms and phenomena
needed for a phenomenological understanding of the behavior of rotating (turbulent)
flows. For example, the formation of elongated structures in rotating turbulence, the
global character of turbulence in the (Re, Ro)-plane, and the statistical anisotropy
of many turbulence quantities when the flow is subjected to background rotation.
Moreover, for confined rotating turbulence the Ekman boundary layers influence the
turbulent flow in the bulk. Similar ingredients as discussed in this appendix may help



Appendix B: Special Topics 257

elucidating the interpretation of more complicated aspects like, e.g., spectral scaling
in rotating turbulence, structure function exponents and the behavior of velocity
correlations in space and time. For a recent review on some of these topics, see
Godeferd and Moisy (2015).

Problems

1. Provide an estimate of the Rossby number for large-scale atmospheric flows.
Take, for example, a low-pressure system as a characteristic large-scale coherent
structure.

2. Derive the components of the velocity field, see Eqs. (B.37) and (B.38), in the
Ekman boundary layer for the geometry discussed in the ‘Ekman boundary layer’
section above.

3. Consider rotating turbulence and as observer youmovewith the co-rotating frame
of reference. Give the equations for the kinetic energy of the mean flow and the
kinetic energy of the turbulence. Explain the presence/absence of contributions
directly related with system rotation (thus terms containing �i ).

4. Consider now the Boussinesq equation in a rotating frame of reference. Gravity
and the background rotation are parallel. Derive the analogon of the Taylor–
Proudman theorem for the rotating Boussinesq equation. Give a physical expla-
nation. This relation is known as the ‘thermal wind balance’ in the geophysical
fluid dynamics community.

B.5 Drag Reduction by Polymer Additives

Small amounts of certain polymer additives to fluids can achieve a significant reduc-
tion of friction drag, which is know as the Toms effect (Toms 1948; Virk 1975). This
is quite a remarkable effect, as the addition of a polymer to the solvent somewhat
increases the fluid viscosity, while a significant reduction of the friction occurs, even
up to 70% with respect to that of the original solvent. Due to the viscoelastic proper-
ties of the polymers the fluid can no longer be considered as Newtonian. The effect
occurs for various polymers; polyethylene-oxide (PEO) and polyacrylamide (PAM)
are commonly used water-soluble polymers, while polyisobutylene is a commonly
used drag reducing agent in hydrocarbon fluids (viz., oil). Polymer drag reduction has
found several practical applications in reducing the economic costs of fluid transport
through pipes; perhaps the most well-known application is that of the increase of oil
transport through the trans Alaska pipe line (Burger et al. 1982). However, special
care must be taken to avoid degradation of the polymers, for instance as the result
of intense shearing (which typically occurs in certain pumps), by which the drag
reducing effect is lost.

This section provides a brief description and analysis of this effect, and for further
reading we refer to reviews by Lumley (1969), Nieuwstadt and den Toonder (2001),
and White and Mungal (2008).

Early studies of polymer drag reduction involve observations of the pressure drop
as a function of the flow rate in a pipe flow. For a pipe flow, the friction factor
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Fig. B.11 The friction factor
λ for pipe flow, plotted as
λ−1/2 versus Re

√
λ, showing

the onset and trajectories of
polymer drag reduction for
different polymers (PEO:
polyethylene-oxide; PAM:
polyacrylamide, where M
indicates the polymer
molecular weight in g/mol)
at various concentrations c
(in weight parts per million,
or wppm) and pipe diameters
D (in mm). The lines
represent the laminar friction
law (λ = 64/Re), the
Prandtl–Kármán law (6.35)
with A = 1.884 and
B = 0.331, and the drag
reduction asymptote (B.44).
After: Virk (1975); data
represented by the symbols ∗
and � are from Ptasinski
et al. (2001)
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λ, that defines a relation between the bulk flow rate and pressure drop, is given in
(6.34). Figure B.11 shows a Prandtl–Kármán plot of λ−1/2 versus Re

√
λ, where the

Reynolds number is based on the flow rate Q (=π
4 D2Ub) and the viscosity of the

solvent.
At lowReynolds numbers (Re

√
λ < 400) all flows are in the laminar flow regime,

i.e., λ = 64/Re. When the flow rate increases, a transition to turbulence occurs,
which is especially clear for the solid dots in Fig. B.11. Initially, the data follow the
Prandtl–Kármán law (6.35) that is valid for a Newtonian fluid, until a certain flow
rate, where the data diverge to lower values of the friction factor; this is the onset
of polymer drag reduction. Experiments indicate that the onset of drag reduction
occurs only after a certain wall shear stress has been exceeded, which means that
the onset of drag reduction depends on the pipe diameter. Hence for pipes with a
small diameter the onset of drag reduction occurs for lower Reynolds number, and
can even occur directly at the transition to turbulence, as can be seen in Fig. B.11.
After onset, the drag reduction increases with increasing Reynolds numbers, where
it follows approximately a straight line in the Prandtl–Kármán plot, until it reaches
another straight line that is described by2:

2Here we express this asymptote for the Darcy friction factor λ, whereas the asymptote by Virk
(1975) was given for the Fanning friction factor that is equal to λ/4.

http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_6
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1√
λ

= 9.5 log
(
Re

√
λ
)

− 16.2. (B.44)

This is an empirical asymptote for which a further increase in the concentration of
the polymer does not lead to a further reduction of the drag (Virk 1975). Equation
(B.44) is commonly referred to as the ‘maximum drag reduction asymptote’ or Virk
asymptote.

The common thought is that the onset of drag reduction occurs when the polymer
time scale TP , i.e., the average time it takes for a stretched polymer to return to
its coiled configuration, becomes comparable to the near-wall turbulence time scale
ν/u2∗. The ratio of these two time scales is defined as the wall-shear Weissenberg
number:

Wi∗ = TP u2∗
ν

.

However, it should be noted that the onset of drag reduction is also clearly dependent
on the polymer concentration (see Fig. B.11), which is not reflected in Wi∗.

In Sect. 6.3 the friction law (6.35) for Newtonian fluids was derived from the
logarithmic law (6.15) by assuming that it could be used as an approximation for the
velocity profile across the entire pipe cross section. The reverse procedure was used
by Virk et al. (1967) to derive the following ultimate profile from the maximum drag
reduction asymptote (B.44):

u+ = 11.7 ln
(
y+) − 17.0. (B.45)

Figure B.12 shows experimental data of the measured velocity profiles for various
flows with polymer additives. In the viscous sublayer, the velocity profile does not
show any changes from (6.21) for Newtonian fluids. Further from the wall a loga-
rithmic region is observed in case of the drag-reducing flows, with the same slope as
in (6.21) for a Newtonian fluid. In between the viscous region and the logarithmic
region, the profiles for the drag-reducing flows seem to follow the ultimate profile.
The result appears as a thickened buffer layer in which the velocity increases by an
amount ��/k, which is called the effective slip relative to the solvent velocity.

This is also evident from measurements of the turbulence intensities, as shown
in Fig. B.13. The addition of the polymers causes the peak in the axial velocity
fluctuations to broaden and move outward from y+ = 20 to y+ = 50, while the
peak value is first increased, but returns to an amplitude comparable to that for a
Newtonian fluid when the polymer concentration reaches the value for maximum
drag reduction (at 435 wppm in Fig. B.13). A similar outward movement can be
observed for the radial velocity fluctuations, while the amplitude of the velocity
fluctuations continuously reduces with increasing polymer concentration.

Hence, the drag reduction phenomenon may be attributed to changes in the buffer
layer. With increasing drag reduction, the effective slip ��/k increases, until the
buffer layer, with the ultimate profile (B.45), would span the entire pipe cross section

http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_6
http://dx.doi.org/10.1007/978-3-319-31599-7_6
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Fig. B.12 The mean velocity profiles for various cases of polymer drag reduction. The solid lines
represent the viscous sublayer and logarithmic profile in (6.21), and the ultimate profile in (B.45).
The profiles for drag-reducingflows have logarithmic profileswith the same slope as for aNewtonian
fluid, but with an offset, or effective slip. Experimental details and references can be found in the
paper by Virk (1975). The parameter SF equals the fractional increase in flow rate Q′ relative to
the Newtonian flow rate Q at equal pressure drop, i.e., SF = √

λ/λ′ − 1 = Q′/Q − 1. From: Virk
(1975), with data of Ptasinski et al. (2001) included
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Fig. B.13 The root mean square of the axial (left) and radial (right) components of the fluctuating
velocity (normalized by the wall friction velocity) in a pipe flow for various polymer concentrations
in weight parts per million (wppm). Data were obtained through LDV measurements in a pipe flow
at Re = 104. Symbols correspond to those in Figs. B.11 and B.12. From: Ptasinski et al. (2001)
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(with the exception of the viscous sublayer near the wall), as illustrated in Fig. B.12.
The enlarged buffer layer in drag-reducing flow is referred to as the elastic sublayer.

It was noted by Lumley (1969) that the profiles for the drag-reducing flows retain
essentially the basic structure as for the flow of a Newtonian fluid, which were
described in Sect. 6.3. Hence, if one assumes that the velocity profile in the viscous
sublayer (6.18) matches the logarithmic profile (6.15) at y+ = y+

v , then one can
write

�

k
= y+

v − 1

k
ln

(
y+
v

)
. (B.46)

Then, following the scaling arguments mentioned in Sect. 6.3 we can formulate a
friction law:

u0

u∗
= 1

k
ln

(
Ru∗
ν

)
+ y+

v − 1

k
ln

(
y+
v

) − C, (B.47)

where R(= 1
2 D) is the pipe radius and C a constant. From this expression it follows

that if u∗ is decreased at equal u0 (that is, the friction coefficient is reduced as a result
of drag reduction), then y+

v is increased. This then implies that a drag reduction indeed
must appear as a thickened sublayer.

For a further analysis of the physical aspects of drag reducing flows we return to
the basic equations of motions for turbulent flow. To account for the non-Newtonian
behavior of the polymers, we modify the stress tensor σi j , defined in (2.8), by adding
a term that represents the polymeric stress τ P

i j :

σi j = −pδi j + μ

(
∂ui

∂x j
+ ∂u j

∂xi

)
+ τ P

i j . (B.48)

Substitution of (B.48) in (2.7) yields a modified momentum equation (2.10). Then
separating all turbulent quantities in mean and fluctuating parts, as explained in
Sect. 5.3, yields the following Reynolds-averaged Navier-Stokes equations:

Dui

Dt
= − 1

ρ0

∂ p

∂xi
+ ∂

∂x j

(
ν

∂ui

∂x j
− u′

i u
′
j + 1

ρ0
τ P

i j

)
, (B.49)

cf. (5.20). In order to solve this equation, we need a closure relation for τ P
i j , in addition

to a closure relation for u′
i u

′
j .

For fully developed pipe flow, the left-hand side of (B.49) vanishes and the total
stress τt increases linearly with the radial distance r from the pipe centerline. Fol-
lowing the notation of (6.9), with: y = R − r , where R is the pipe radius, we find:

τt

ρ0
= −u′v′ + ν

∂u

∂y
− τ P

r x

ρ0
= u2

∗
(
1 − y

R

)
, (B.50)
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Fig. B.14 Radial profiles of the total shear stress normalized by the wall friction velocity in a tur-
bulent pipe flow at Re = 104 for various polymer concentrations in weight parts per million (wppm).
The light gray region corresponds to the viscous stress, while the dark gray region corresponds
to the Reynolds stress; the difference is the polymer stress, represented by the hashed region. The
graph for the Newtonian fluid case (top left) is equivalent to Fig. 6.4. Data of Ptasinski et al. (2001),
corresponding to those in Fig. B.13

where u is the mean axial velocity. The Reynolds stress u′v′ and viscous stress
ν∂u/∂y can be measured directly, e.g., by means of two-component LDV. Then,
the polymeric stress can be inferred from the deficit between the total stress and the
measured Reynolds stress and viscous stress. Figure B.14 shows the contributions
of these three terms to the total stress; the polymer stress is inferred from the deficit
between the total stress and the measured viscous stress and Reynolds stress.

Following the steps explained in Sect. 7.1, we obtain the following expression for
the kinetic energy of the mean flow in a pipe:

0 = − 1

ρ0
u

d p

dx︸ ︷︷ ︸
Pu

+ 1

r

∂
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[
ru
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+ 1
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x u′

r
du
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(
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)2

︸ ︷︷ ︸
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− 1
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τ P

r x
du

dr︸ ︷︷ ︸
E p

,

(B.51)

where Pu is the pressure work, Tu transport of mean-flow energy by: (i) Reynolds
stress, (ii) viscous stress, and (iii) mean polymeric stress, Du the deformation work
by Reynolds stress, Es viscous dissipation, and E p the polymeric dissipation. As
previously explained in Sect. 7.1, the terms in Tu are divergences of the energy
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flux, and only redistribute the energy, while Du is always negative and appears
as a source term in the equation for the turbulent kinetic energy. The term Es is
typically very small, and is usually neglected. The new term E p is also a loss term
that is considerable (as can be inferred from Fig. B.14). This implies that most of
the energy is transferred directly to the polymers, and not through the route of a
turbulence energy cascade.

A solid theoretical basis that explains and can predict the drag reduction for
polymer additives is still lacking. Several theories have been proposed, but none of
them iswithout criticism. It is however instructive to review themechanismdescribed
by Lumley (1969).

According to Lumley (1969) the drag reduction effect can be explained in terms
of the scaling of the various wall turbulence regions defined in Sect. 6.2. The basic
assumption is that the polymers are expanded in the flow outside the viscous sub-
layer due to the fluctuating rate-of-strain, which causes an increase of the effective
viscosity. This changes the scaling behavior of the wall turbulence, as illustrated in
Fig. B.15. In this figure are plotted the length scale L+ of the energy-containing
eddies (6.13) and the length scale �+

ε of the dissipative eddies, both in dimensionless
wall units (6.19). The peak of the turbulent kinetic energy spectrummay be expected
to occur at κy = 1, so that L+ = y+, while the peak in the dissipation spectrum
occurs at κη = 0.2 (see Problem 14 in Sect. 9.6). Since production and dissipation
are mainly balanced in the wall region (see Sect. 7.2), it follows that

ε = u3∗
ky

, and thus: �+
ε = 5

(
ky+)1/4 , with: 5η+ = 5

u∗
ν

(
ν3

ε

)1/4

. (B.52)

Turbulence can only maintain itself when L 	 �ε, which is indicated by the hashed
region in Fig. B.15. This then occurs for y+ > 6.3, which is consistent with the
thickness δ+

v = 5 of the viscous sublayer (see Sect. 6.2).
Since the polymer molecules do not become stretched in the viscous sublayer,

i.e., the viscosity in the viscous sublayer is effectively unchanged, the normalization

Fig. B.15 Scaling relation
in the viscous and inertial
sublayers, with and without
polymers according to
Lumley (1969)
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Fig. B.16 Schematic of polymer stretch and relaxation in shear flow. The polymer extension is
characterized by the change in qi . The polymer stretch can be modeled by a single dumbbell model.
After: White and Mungal (2008)

in terms of wall units in Fig. B.15 remains the same. Outside the viscous sublayer,
the viscosity is increased. The dissipation is determined by the energy-containing
eddies (and not by the dissipative eddies), so that the local value of the viscosity
simply shifts upward the line for �ε (reducing the turbulent flow region to the gray
region), so that the intersection occurs at a larger distance from the wall. In the case
of maximum drag reduction the sublayer thickness would have increased to reach
the pipe center.

The concept of Lumley’s theory (1969) is attractively simple, but remains quali-
tative. Also note that it predicts a thickening of the viscous sublayer, while we have
seen earlier from experimental data that it is the buffer layer that becomes thickened
(e.g., see Fig. B.12).

Modern investigations of polymer drag reduction utilize numerical simulations of
the flow. Constitutive relations are derived from modeling the polymers as a single
dumbbell, i.e., two beads connected by an elastic spring; see Fig. B.16. The dynamics
of the polymers are then represented by the evolution of the end-to-end vector qi

connecting the beads. The beads are interacting through hydrodynamic forces with
the fluid motion, while a diffusive process accounts for Brownian fluctuations in
the configuration of the polymers, represented as the phase-averaged configuration
tensor ci j = qi q j . The most commonly used dumbbell model is the FENE-P model.3

Then, apart from the continuity equation and momentum equations, and additional
equation for the evolution of ci j needs to be solved.

When qi is written in dimensionless form, i.e., q̃i = qi/
√

kB T/H , where kB is the
Boltzmann constant, T the temperature, and H the spring constant, then the evolution
equation for the dimensionless configuration tensor c̃i j and polymer stress read:

Dc̃i j

Dt
= c̃k j

∂uk

∂xi
+c̃ik

∂uk

∂x j
− 1

TP

τ P
i j

�0
, and: τ P

i j = �0

⎛
⎝−δi j + c̃i j

1 − c̃kk

q̃2
0

⎞
⎠ , (B.53)

3FENE stands for finite extensible non-linear elastic and P for the closure proposed by Peterlin.
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with: �0 = nkB T . Here TP = ζ/4H is the relaxation time of the dumbbell, where
ζ is the Stokes friction coefficient of the beads. Further details can be found in the
literature (e.g., Sureshkumar et al. 1997; Ptasinski et al., 2003; White and Mungal
2008).

The numerical simulations give results that resemble those of the experimental
observations presented in the figures above, at least for low polymer concentrations.
As with any other closure models reviewed previously in this book, there are several
assumptions that underlie the closure hypothesis, so it can be expected that this
model is imperfect. For example, the single dumbbell model is rather simplistic for
the representation of very long polymer chains, and polymer-polymer interactions are
not included. Also, the dumbbell model assumes that the drag reduction is related to
the elasticity of the polymers, while recent measurements and numerical simulations
have shown that stiff polymers, or fibers, can also achieve substantial drag reduction
(Gillissen et al. 2008).
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Index

A
Added mass, see Particle
Advection, 9, 55, 194, 226, 247

equation (nonlinear), 56, 57, 59
Aeroacoustics, 244, see also Sound
Alaska pipe line, 257
Algebraic stress model, see Closure
Aliasing, see Spectrum
Anisotropy, 134, 159, 167, 169, 175, 203

rotation, 249, 254
Atmosphere, see Boundary layer
Attractor, see Dynamical system
Austausch coefficient, see Eddy viscosity
Average, see Statistics

B
Bénard convection, see Convection
Bandwidth, see Spectrum
Basset history force, see Particle
Batchelor spectrum, see Spectrum
Bernoulli’s law, 23
Bifurcation, see Stability analysis
Blasius friction law, see Pipe flow
Boundary, see Interface

condition, 2, 22, 87, 114, 117, 137, 220,
238, 243, 255
dynamic -, 22
ideal -, 3
kinematic -, 22
periodic -, 71

layer, see Boundary layer
Boundary layer, 33, 34, 81, 95, 95, 100, 104,

106, 157, 160, 200, 235, 240, 240,
252

atmospheric -, 15, 16, 235
inversion, 146

neutral -, 16, 236
stable -, 16, 16, 236
unstable -, 16, 236

convective -, see Convection
closure, see Closure

defect law, 97, see also Wall turbulence
Ekman -, see Rotating turbulence
equations, 95, 107, 109, 113
pressure gradient, see Pressure
separation, 105, 106, see also Pressure
gradient

shape factor, 106
thickness, 104, 146

displacement -, 105
momentum loss -, 106

transition, 34, 42
visualization of -, 96

Boussinesq
approximation, 12, 13, 24, 26, 80, 143
closure, see Closure
equations, 14, 19, 138, 235

rotating frame of reference, 257
reference state, 13

Brunt–Väisälä frequency, 16, 31
Buffer layer, see Wall turbulence
Buoyancy, 139, 224, 236

Morton length, 123
production, see Kinetic energy

Burgers equation, 6, 55, 62, 130, 221
dimensionless -, 58
solution, 58, 59, 59

Burst, see Intermittency, see Structure (tur-
bulent)

Bypass transition, see Transition
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C
Cascade, 6, 63, 65, 130, 135, 154, 154, 155,

164–166, 191, 199, 203, 223, 241,
242, 263

Cauchy’s equation, 156, 242
Centrifugal acceleration (force), see Rotat-

ing turbulence
Channel flow, 6, 26, 87, 88, 107, 131, 131,

134, 136, 162, 162, 173, 175, 178,
179, 225, 227, 229, see also Wall tur-
bulence

closure, 89
defect law, 97, see also Wall turbulence
diffusion, 221
direct numerical simulation, 73
kinetic energy, 127, 127
laminar -, see Poiseuille flow (plane)
scaling, 95
stability analysis of -, 28
velocity profile (mean), 89

Chaos, 3, 4, 19, 60–62, 151, 184, 187
route to -, see Transition

Clauser parameter, see Pressure gradient
Closure, 5, 6, 82, 85, 89, 111, 113, 129, 137,

159, 166, 175, 178, 181, 203, 220,
261

algebraic stress model, 170, 174, 175
convective boundary layer, 147
dissipation (k-ε model), see also k-ε
model

Heisenberg -, 212
K -theory (Boussinesq -), 82, 84, 117,
118, 129, 138, 144, 167, 170, 174, 220,
221
failure of -, 169, 174

Kármán, von -, 85
large-eddy simulation, see Large-eddy
simulation (LES)

mixing length (Prandtl -), 6, 85, 89, 95,
100, 132, 177, 178

one-equation model (Prandtl -), 132, 144
pressure-velocity correlation (Rotta
hypothesis), 135, 173, 210

second-order -, 7, 170, 175
channel flow, 173
destruction, 171
pressure-velocity correlation, 172
production, 171, 173
transport, 171, 175

Smagorinsky model, 132, 144, 177, 180,
212

spectral transfer function, 211
third-order -, 172, 207

Cobweb graph, see Dynamical system
Coherent structure, see Structure (turbulent)
Coles parameter, see Pressure gradient
Compressibility, 245, 247, 248

modulus, 13
volumetric expansion coefficient, 14

Concentration
flux, 220, 226, 227
planar source, 220
point source, 220
preferential -, see Particle

Conservation law
energy -, 13, 235
mass -, 10, 12, 235, 251

compressible flow, 245
momentum -, 10, 11, 83, 235, 261, see

also Navier-Stokes equations
compressible flow, 245
with background rotation, 251

species -, see Diffusion equation
Constitutive equation, see Stress
Continuity, 10, 12, 80, 87, 107, 109, 114,

121, 137, 204, 209, 210, 235, see also
Conservation law, mass -

Continuum hypothesis, 9, 83–85
Contraction (Comte-Bellot -), 136, 137
Convection, 9, 16, 31, 46, 138, 139, 145, 169,

see alsoAdvection, see alsoWall tur-
bulence

Bénard -, 27, 28, 46, 47
boundary layer, 145, 146, 149, 169

growth rate, 147
cells, 27, 28
free -, 239
Nusselt number, 142, 145
Prandtl number, 13, 62, 143, 202, 222
Rayleigh number, 142
Richardson number (flux -), seeRichard-
son number

scaling, 140–142, 145, 147
temperature, 140
velocity, 140

stable, 139
temperature

flux, 140, 145, 146
profile, 142, 239
scale, 141

thermal diffusivity, 13
unstable, 138, 139

Coordinate system, 17, 17, 108, 110, 183
Cartesian -, 9, 17
rotating -, 250
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Coriolis acceleration, see Rotating turbu-
lence

Correlation, 60, 78, 80, 81, 183, 183, 184,
188, 194, see also Statistics

auto-, 184
coefficient, 184, 216
cross-, 189, 203
function, 7, 230
longitudinal -, 189, 190, 204, 205, 210
one-dimensional -, 192
spatial -, 188, 189
tensor, 188, 203, 204

isotropic -, 203
properties, 188

third-order -, 207, 207, 208
time -, 183, 184

auto-, 186
Lagrangian -, 216
properties, 184

transversal -, 189, 190, 204, 205
two-point -, see Spatial correlation

Corrsin scale, 144, 202, 222
Cosine transform, 187, 207, 218, see also

Fourier transform
Couette flow (plane), 35, 48, 94, see also

Taylor–Couette flow
Covariance, see Statistics
Curl, 151
Cyclone, 169
Cylinder, 242

D
Decay (turbulence), 63, 65, 139, 167, 168,

175, 200, 210
Defect law, see Wall turbulence
Deformation, see Strain rate

work, see Kinetic energy (of the mean
flow)

Density, 84, 138, 139
buoyancy, see Buoyancy
difference, 23
variation of -, 12, 143, 144

wall turbulence, 235
Derivative

advective -, 9
local -, 9
material -, 9, 194

Deterministic chaos, see Chaos
Diffusion, 7, 59, 62

coefficient
molecular -, 62, 220, 223
turbulent -, 62, 82, 220

equation, 55, 56, 62, 219, 219, 221
turbulent -, 220

Eulerian description, 219
limit, see Dispersion, 221
molecular -, 219
planar source, 221
relative -, see Dispersion
thermal -, 202
turbulent -, 215, 222
wall region (turbulence), 221

Dilation, see Compressibility
Dimensional analysis, 6, 236
Dirac δ-function, 56
Direct numerical simulation (DNS), 71, 112,

176, 181
additional viscosity, 72
computational effort, 71
discretization, 72

Discontinuity, see Interface
Dispersion, 216, 218

absolute -, 216
diffusion limit, 217
parameter, 216
particle -, 216
relation, see Perturbation
relative -, 219
Richardson-Obukhov scaling, 219
Taylor’s equation, 217, 219
turbulent, 215

Displacement thickness, see Boundary layer
Dissipation, 6, 60–65, 65, 129, 130, 131,

131, 161, 164, 166, 171, 191, 200,
201, 205, see also k-ε model, see
also Enstrophy, see also Taylor
microscale

closure, 132
equation, 165

destruction, 166
production, 166
transport, 166

temperature fluctuations, 144
Dissuasion

Schmidt number, 62
Disturbance, see Perturbation
Divergence, 126, 129

theorem, 126
Divergence-free, see Continuity
Drag

reduction, 103, 159, 257
asymptote (maximum -), 258, 258
dumbbell model, 264, 264
effective slip, 259, 260
elastic sublayer, 261
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FENE-P model, 264
kinetic energy, 262
onset of -, 258, 259
polymeric stress, 261, 262, 264
turbulence intensity, 259
ultimate profile, 259, 260
Weissenberg number, 259

Stokes -, 224
Dumbbell model, see Drag reduction
Dynamical system, 4, 41

attractor, 39, 41, 43, 47, 51
bifurcation, see Stability analysis
cobweb graph, 39–41
logistic map, 38, 39, 40, 41, 41, 42, 42,

43, 53
Lorenz equations, 43, 44, 45–47, 53
Lyapunov exponent, 53
period doubling, 39, 40
repeller, 39, 51
self-sustaining process, 50

E
e-ε model, see k-ε model
Eddy, 60–63, 65, 90, 110, 111, 130, 131,

154–156, 168, 177, 187, 194, 195,
197

deformation, see Rapid distortion
diffusivity, 221, 226, 239
length scale, 84, 89, 90, 189, 190, 240,

240
wall effect, 200

time scale, 195, 218
velocity scale, 84
viscosity, see Viscosity

Einstein notation, 10
Ejection, see Structure (turbulent)
Ekman boundary layer, see Rotating turbu-

lence
Elastic sublayer, see Drag reduction
Energy spectrum, see Spectrum
Ensemble, see Statistics
Enstrophy, 162, 165, see also Dissipation

cascade, 165
destruction, 162, 162, 163, 165
equation, 161, 164, see also k-ε model

simplified -, 163, 164, 166, 197
production, 162, 162
scaling, 163
stretching, 162, 162, 165
transport, 162, 162

Entrainment, 111, 121, 146
Equation(s)

- ofmotion, 3, 9, 75, 80, seeConservation
law

- of state, 13, 235
advection - (nonlinear), see Advection
boundary layer -, see Boundary layer
Boussinesq -, see Boussinesq
Burgers -, see Burgers equation
consititutive -, see Stress
diffusion -, see Diffusion
enstrophy -, see Enstrophy
Ffowcs-Williams and Hawkings -, see
Sound

Gauchy’s -, 156
Kármán-Howarth -, see Kármán-
Howarth equation

kinetic energy, see Kinetic energy
Langevin -, 218
Lighthill -, see Sound
Lorenz -, see Dynamical system
Navier-Stokes -, seeNavier-Stokes equa-
tions

Orr–Sommerfeld -, see Stability analysis
Reynolds stress, see Stress (Reynolds -)
Taylor’s -, see Dispersion
Taylor–Goldstein -, see Stability analysis
temperature fluctuations, see Tempera-
ture

vorticity -, see Vorticity
Equilibrium (local -), 6, 95, 164, 166, 169,

171, 197
- of production and dissipation, 129, 132

Ergodicity, see Statistics
Error function, 196
Eulerian

length scale, 230
measurement, see Measurement

Expansion coefficient, see Compressibility

F
FENE-P model, see Drag reduction
Feynman, 5
Ffowcs-Williams and Hawkings equation,

see Sound
Fjørtoft theorem, see Transition
Flame, 2
Flow rate (volume), 99
Fluid

element, 9, 151, 152
heterogeneous -, 12
homogeneous -, 11
Newtonian -, 10, 82, 84, 235

Fourier
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theorem, 21
transform, 183, 186, 189

Fractal, 39, 41, 47, 65, 66, 111, 112, 201, 223
Free turbulent flow, 6, 87, 104, 107, 108, 175,

see also Jet flow, mixing layer, wake
flow

boundary layer equations, see Boundary
layer

closure, 111, see also Closure
length scale(s), 107, 110
pressure gradient, 109
scaling of -, 108, 109
similarity (self-), 111, 114, 117, see also
Jet flow

Friction, 55, 58, 63, 83, 100
coefficient, 95, 99, 106
factor, 53, 99

Fanning -, 53
law, 93, 99, 99, 261, see alsoDrag reduc-
tion, see also Roughness

velocity, 88, 96, 99, 103, 126, 150, 227,
235

Froude number, 27
Frozen turbulence, see Taylor hypothesis

G
Geophysical flow, 249
Geostrophic balance, see Rotating turbu-

lence
Gradient, see also Divergence
Gravity, 10, 12, 138, 226, 229, 235

hydrostatic law, 12
scale height, 12, 15

Grid
simulation, 176, 178
turbulence, 65, 136, 154, 167, 175, 250

H
Hagen–Poiseuille flow, see Pipe flow
Hairpin vortex, see Structure (turbulent)
Heat flux, see Temperature flux
Heat transfer, see Conservation law(s),

energy -
Heisenberg, 5, 212
Homogeneous turbulence, 140, 143, 188,

190, 202, 203, 215, 218, 220, 235
Hot-wire anemometry, 64, 67
Hydrostatic law, see Gravity

I
Ideal gas, 14, 15, 83

Incompressible flow, 9, 10, 11, 15, 135, 137,
151, 155, 172, 177, see also Continu-
ity

Inertial subrange, see Energy spectrum
Inflection point criterion, seeStability analy-

sis
Initial condition, 113, 220
Instability, 63, 128, 130, 154

Kelvin–Helmholtz -, 20, 21, 24, 24, 25,
32, 62, 111, 112, 157, 157
with density difference, 23, 24, 26

Rayleigh–Taylor -, 31
Tollmien–Schlichting -, 33, 33, 34, 34

Integral time scale, see Time scale
Intensity (turbulence -), 128, 195, 241

drag reduction, 259, 260
Interface, 20, 22, 26, 111, 112, 120, 145, 253
Intermittency, 42, 43, 48, 111, 118, 164, 201
Irrotational flow, 21, 111
Isentropic flow, 245
Isotropic turbulence, 7, 161, 164, 165, 167,

180, 199, 203, 203, 206, 249
closure, 207, 212
correlation function, 208
pressure-velocity correlation, 210
similarity equation, 210
spectral tensor, 208
structure, 204

Isotropy (turbulence), 136, 138, 164, 165,
175, 203

microstructure, 135

J
Jet flow, 24, 25, 107, 108, 112, 113, 113, 116,

118, 120, 122, 205, 212, 248, see also
Free turbulent flow

- in vicinity of a wall, 120
acoustic emission, see Sound
centerline velocity (decay rate of -), 118,
119, 120, 120

closure, 117, see also Closure
coflowing -, 111, 121
entrainment, see Entrainment
impinging -, 169
initial condition, 119
momentum (conservation of -), 113, 122
planar -, 121
Reynolds number of -, 115
similarity (self-), 114, 115, 117, 119,
122, 205

spreading rate, 116, 119
velocity profile, 117, 119
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virtual origin, 116, 119, 120
width (half-), 117, 118

K
k-ε (e-ε) model, 7, 132, 165, 166, 167

constants, 169
K -theory, see Closure, Boussinesq -
Kármán, von -

closure, see Closure
constant, 85, 90, 98, 227, 236
vortex street, see Vortex street

Kármán-Howarth equation, 207, 209–211
Kelvin’s theorem, 22, 243
Kelvin–Helmholtz instability, see Instability
Kinetic energy, 6, 61, 63, 64, 95, 115, 125,

125, 161, 166, 190, 200, 210
- of the mean flow, 125, 262

deformation work, 126, 128
production, 126
transport, 126, 127

- of the turbulence, 128, 131, 166, 171,
235
dissipation, see Dissipation
production, 128, 167, 175, 236
transport, 129, 175

- per component, 134, 173, 175, 235
density effect, 143
dissipation, 135, see also Dissipation
pressure-velocity correlation, 134,

135
production, 134
transport, 135, 136

channel flow, 127, 131, 134, 136
convection, 138, 143, 147, 235

buoyancy destruction, 139
buoyancy production, 138, 143, 236

flow through a contraction, 137
pipe flow, 133
production, 139
rotating frame of reference, 257
transport, 135

Kolmogorov, 7
constant, 199, 200, 211
relation, 129, 132, 140, 166, see also
Equilibrium (local -)

scale(s), 63, 65, 71, 85, 130, 164, 196,
197, 201, 223, 225

universal equilibrium theory, 197
Kronecker-δ, 11
Kurtosis, see Statistics

L
Lagrangian, 215

measurement, see Measurement
spectrum, 217
time scale, 217

Laminar flow, 1, 4, 19, 38, 42, 58
Langevin equation, 218
Langhaar theory, see Pipe flow
Laplace, 3

equation, 22
Large-eddy simulation (LES), 179, 181, 200,

203
channel flow, 178
closure model, 177
filter, 176
Navier–Stokes equations (filtered), 177
resolution, 176, 178
sub-grid

energy, 180
model, 180
stress, 177
viscosity, 177

Laser-Doppler velocimetry, 68, 81
Law

- of the wake, see Pressure gradient
- of the wall, see Wall turbulence

Length scale, 85, 189
integral -, 223
longitudinal -, 192, 194, 204, 208
transversal -, 192, 194, 204, 208

Leonardo da Vinci, 60, 60
Lift force, see Particle
Lighthill, 244

equation, see Sound
Linear stochastic estimate, 205, 206
Logarithmic layer, see Wall turbulence
Logistic map, see Dynamical system
Loitsyanskiy’s invariant, see Spectrum
Lorenz

attractor, see Dynamical system
butterfly, 46
equations, see Dynamical system

Low-speed streak, see Structure (turbulent)
Lyapunov exponent, see Dynamical system

M
Mach number, 85, 246
Macrostructure, 6, 57, 58, 61–63, 64, 71, 81,

111, 127, 128, 130, 134, 154, 161,
166, 178, 190, 197, 199, 203, 221,
242

length scale, 57, 61, 63, 89, 130, 192
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scaling, 184
time scale, see Time scale, integral -
velocity scale, 61, 109, 130, 132

Matching, seeSpectrum, seeWall turbulence
Material

derivative, 9, 219
line (segment), 11, 152, 153, 156, 222,
223, 242

particle, 9, 215, 218, 230
surface, 22, 223, see also Interface

Mean free path, 83, 83, 85
Measurement

Eulerian -, 183, 194, 195, 200, 207, 217
Lagrangian -, 183, 195, 200
single-Point, 67

Microstructure, 6, 58, 61–63, 64, 65, 71, 111,
130, 131, 135, 154, 161, 164–166,
171, 176–178, 185, 187, 190, 192,
197, 198, 199, 201, 203, see alsoTay-
lor microscale

isotropy of -, see Isotropy
scale(s), see Kolmogorov scale(s)
spectrum, 211
temperature, 144, 222
universality of -, 197

Mixing
layer, 24, 26, 64, 65, 107, 108, 110, 111,
118, 159, see also Free turbulent flow
atmospheric -, 146
equations of motion, see Boundary

layer equations
length, see Closure

Momentum loss thickness, see Boundary
layer

Monin-Obukhov similarity, 145, 235, 237,
239

application, 238
profile method, 238

Morton length, see Buoyancy

N
Navier–Stokes equations, 2, 5, 11, 19, 35,

38, 48, 55, 59, 207, 235, 246, see also
Conservation law, momentum -

boundary layer equations, see Boundary
layer

filtered -, see Large-eddy simulation
(LES)

poor man’s -, see Logistic map
Reynolds-averaged -, 80, 88, 235, 261
rotating frame of reference, 251

Newton, 83

fluid (Newtonian), see Fluid
Nikuradse, 92, 99, 100, 101
Nusselt number, see Convection

O
Obukhov length, 107, 236, 237
One-dimensional flow, 28, 29, 35, 83, 83,

144
Orr–Sommerfield equation, see Stability

analysis
Outer region, see Wall turbulence

P
Pao’s spectrum, see Spectrum, viscous

region
Parseval’s relation, 218, see also Fourier

transform
Particle

- image velocimetry (PIV), 69
dispersion, see Dispersion
flux, 226, 227

turbophoresis, 226, 227, 227
forces on -, 224

added mass, 224
Basset history force, 224
buoyancy, 224
lift, 225
Stokes drag, 224

heavy -, 225, 229, 230
inertia, 215, 224
material -, 9, 183
passive -, 215
point -, 225
preferential concentration, 227
pressure force, 36, 36, 37
response time, 225, 229
Rouse parameter, 229, 229
Stokes number, 225
streamline crossing, 230
terminal velocity, 225
trajectory, 179, 215

Period doubling, see Dynamical system
Perturbation, 29, 36, 48, 138

acoustic -, 245
angular frequency, 21

complex -, 24
dispersion relation, 30
finite -, 34
growth rate, 29
infinitesimal -, 19
Lyapunov exponent, see Dynamical sys-
tem
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phase velocity, 21, 29
traveling wave, 21, 51, 51
wavenumber, 21

Pipe flow, 5, 35, 50, 51, 51, 53, 79, 90, 99,
260, 262, see also Wall turbulence

critical Reynolds number, 35
defect law, 97, see also Wall turbulence
direct numerical simulation, 73
friction factor, 258
friction law, 99, 258

Blasius -, 99, 100
kinetic energy, 133
laminar -, 99
Langhaar theory, 49
mean velocity profile, 90, 92
stress profile, 94
transitional -, 42, 48, 48, 49, 52

Pitot tube, 67
Poiseuille flow (plane), 33, see also Channel

flow
Poisson equation, 15, 172
Polymer, see Drag reduction
Potential flow, 22, 241, 243
Prandtl

mixing length, see Closure
number, see Convection
one-equation model, see also Closure

Pressure, 88, 155
drop, 53
fluctuation, 172

kinetic energy transport by -, see
Kinetic energy

force, see Particle
gradient, 35, 37, 104, 106, 106, 109, 126,
151, 254
adverse -, 105, 106
Coles parameter, 104, 105, 106
dimensionless - (Clauser parameter),

105, 106, 107
effect on friction law, 106
favorable -, 105, 106
law of the wake, 105
neutral -, 105, 106

hydrostatic -, see Gravity
isotropic -, 11, 82
modified -, 11
reduced -, 251
sound, see Sound
turbulent -, see Stress (normal -)

Pressure-velocity correlation, 171–173, 174,
see also Closure, see also Kinetic
energy

Probability distribution, see Statistics

Production, see Kinetic energy
Puff, 42, 48, 49

Q
Q-criterion, see Strain rate tensor invari-

ant(s)
Quasi-two-dimensional turbulence, see

Taylor–Proudman theorem

R
Rapid distortion, 240, 240, 241

blocking, 243
eddy deformation, 241

Rayleigh
number, see Convection
stability criterion, see Stability

Rayleigh number, 27
Rayleigh–Taylor instability, see Instability
Repeller, see Dynamical system
Reynolds

averaging, 128, 235
conditions, see Statistics
decomposition, 75, 80, 219
equations, 80
number, 58, 61, 63, 81

critical, 33
roughness -, 101

similarity, 61
stress, see Stress, 159, 170, 243

Riblet, see Roughness
Richardson

number, 37, 144
number (flux -), 139, 144, 239

stability, 139
verse, 63

Richardson-Obukhov scaling, see Disper-
sion

Rocket exhaust, 122, 123
Rossby number, see Rotating turbulence
Rotating turbulence, 249

basic equations, 250, 257
centrifugal force, 36, 251
Coriolis force, 251, 252, 254, 255
Ekman

boundary layer, 253, 257
number, 251
pumping, 254, 255

geostrophic balance, 252, 254
inertial waves, 255
Rossby number, 251, 257
Taylor column, 252, 253, 254, 255
Taylor–Proudman theorem, 252, 257
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Rotta hypothesis, see Closure
Roughness, 101, 101, 103

convection, 141, 144
d-type, 103
friction law, 103
k-type, 103
length (height), 101, 102, 141, 236
parameter (velocity profile), 102, 102
Reynolds number, 101
riblet, 101, 103, 103, 159

Rouse parameter, see Particle

S
Scale height, see Gravity
Schmidt number, see Diffusion
Sediment, see Particle
Separated flow, 240, 240, see also Boundary

layer
Shape factor, see Boundary layer
Shark scales, 101, 103
Shear, 239

flow, 83, 87
layer, see Mixing layer
production, see Kinetic energy
stress, see Stress

wall -, see Friction velocity
Similarity (self-), see Free turbulent flow
Skewness, see Statistics
Smagorinsky model, see Closure
Soap film, 154, 154
Sound

emission, 248
eighth-power law, 247
jet flow, 247

Ffowcs-Williams and Hawkings equa-
tion, 248, 249

Lighthill
equation, 245
stress tensor, 245

pressure level (SPL), 244, 247, 248
speed of -, 10, 83, 83
waves, 248

Specific heat, 14
Spectrum, 7, 180, 183, 183, 186, 186, 188,

188, 190, 191, 191, 194, 200, 201,
205

−5/3 law, see Inertial subrange
bandwidth, 188
Batchelor -, 202
co-, 192
inertial subrange, 7, 180, 191, 199, 202,
208, 210, 211, 213, 218, 219

Loitsyanskiy’s invariant, 209, 210
longitudinal -, 192, 205
matching, 199, 200
microstructure, 211
one-dimensional -, 191, 193, 195, 197,

198, 200, 209, 212
aliasing, 192, 193

properties, 187
scaling of -, 197
temperature -, 202
tensor, 190, 206, 208
time -, 195, 200
transfer function, 211
transversal -, 192, 205
viscous region (Pao’s spectrum), 211,
212

Spot (turbulent), see Tollmien–Schlichting
instability, see also Puff

Squire’s theorem, see Transition
Stability

Rayleigh criterion, 35
Stability analysis, 6, 19, 19, 46

base flow, 20, 28
bifurcation, 39, 41, 42, 43, 44

super-critical -, 39
eigenvalue problem, 20, 24, 30, 44, 46,
50

fixed point, 38
inflection point criterion, 32, 32
inviscid -, 21
Kelvin–Helmholtz, 20
linear -, 20, 28, 53
one-dimensional flow, 28, 28
Orr–Sommerfeld equation, 33, 33, 34
repeller, see Dynamical system
Taylor–Goldstein equation, 30, 31, 37

Standard deviation, see Statistics
Stationary process, see Statistics
Stationary turbulence, see Statistics
Statistics, 5, 75

average, 75
ensemble -, 76, 77, 79
line -, 76
time -, 76, 79
two-point -, see Correlation

averaging time, 76
conditional -, 206
correlation, see Correlation
covariance, 77
ensemble, 216
ergodicity, 78
kurtosis, 202
probability distribution, 77, 78
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single-point -, 77, 78
Reynolds conditions, 75
skewness, 201
standard deviation, 77
stationary process (turbulence), 184,
185, 187, 215, 218, 220, 230

stochastic process, 76, 78, 218
homogeneous -, 78, see also Homo-

geneous turbulence
stationary -, 78, 219

structure function, 200, 210, 218
variance, 77

Stochastic process, see Statistics
Stokes

drag, see Drag
number, see Particle

Strain rate (deformation), 152–154, 156,
162, 163, 222, 240

direction of maximum -, 159, 161
tensor, 82, 126, 127, 152, 170, 235

invariant(s) (Q,R), 155
time scale, 242

Stratified flow, 12, 26, 250, see also Density
Stream function, 114
Streamline crossing, see Particle
Stress, 11, 83, 84, 94

consititutive equation, 82
deciatoric - (turbulent), 144
molecular -, 82, 83
normal -, 82
polymeric -, see Drag reduction
Reynolds -, 81, 81, 84, 90, 94, 119, 126,
151, 175, 262
equation, 170, 235

sub-grid -, see Large-eddy simulation
(LES)

tensor, 82, 235, 261
deviatoric -, 82
Lighthill -, see Sound
molecular -, 10

turbulent -, 82, see Stress, Reynolds -
viscous -, 94, 246, 262

Structure
coherent -, 156, 159

burst, 157, 158
ejection, 159
hairpin vortex, 157, 157, 158, 159
low-speed streak, 50, 156, 157, 157,

178
sweep, 159

column (Taylor -), see Rotating turbu-
lence

function, see also Correlation

isotropic turbulence, 205
spatial -, 195
turbulent -, 78, 79, 111, 120, 157, 183,
185, 189, 190, 200, 204

Sweep, see Structure (turbulent)

T
Taylor

column, see Rotating turbulence
equation, see Dispersion
hypothesis, 194, 194, 195, 207
micro-timescale, 196

Eulerian -, 195
Lagrangian -, 195

microscale, 130, 131, 163, 185, 194, 204,
205, 208, 231
temperature fluctuations, 144

Taylor–Couette flow, 42
Taylor–Goldstein equation, see Stability

analysis
Taylor–Proudman theorem, seeRotating tur-

bulence
Teardrop, 156, see also Strain rate tensor

invariant(s)
Temperature, 13, 82, 215, 222

correlation function, 202
equation, 222
fluctuation, 144, 202, see also Spectrum

equation, 144, 235
microstructure, 222

flux, 138, 139, 235, 235
gradient, 37, 146

adiabatic -, 15
dimensionless -, 236, 237

jump, 146, 147
potential -, 14, 146, 235
profile (surface layer), 238
surface -, 238

Terminal velocity, see Particle
Thermal

diffusivity, see Convection
wind balance, 257

Time scale, 230
integral -, 79, 187, 196
Lagrangian -, 217

Tollmien–Schlichting instability, see Insta-
bility

Toms effect, 257, see also Drag reduction
Transient growth, see Transition
Transition, 41

bypass -, 34
Fjørtoft theorem, 32
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pipe flow, 48
Rayleigh’s theorem, 32
route to chaos, 5, 6, 38, 41

Landau -, 39, 41, 43, see also Period
doubling
Ruelle–Takens-Newhouse -, 41, 44,

46
Squire’s theorem, 28
sub-critical -, 35
Tollmien–Schlichting, see Instability
transient growth, 48, 50

Transport, see Kinetic energy
Turbophoresis, see Particle
Two-dimensional flow, 164

U
Ultimate profile, see Drag reduction

V
Variance, see Statistics
Velocity

gradient, 37
dimensionless -, 236, 237

profile
logarithmic -, see Wall turbulence
power law -, 99, 100
surface layer, 238

scale, 85
Virk asymptote, see Drag reduction
Virtual origin, see Jet flow
Viscosity, 33, 61, 62, 65, 91, 103, 130, 131,

152, 162, 171, 263
additional -, see Direct numerical simu-
lation (DNS)

dynamic -, 11
eddy -, 82, see Viscosity, 84, 85, 91, 95,
118, 132, 166, 227, 229, 239, 254
anisotropic -, 254
sub-grid -, 177

kinematic -, 11, 84
Viscous

sublayer, see Wall turbulence
subrange (convective -), 202

Visualization (flow -), 66, 96, 110, 112, 120,
122, 157, 253

Vortex, 43, 60, 61, 153, 155, 164
columnar -, see Taylor column
hairpin -, see Structure (turbulent)
line, 152, 242
ring, 206
self-induction, 158
sheet, 32, 157

street, 39, 244
stretching, 6, 153, 153, 154–156, 162,
164, 242

Vorticity, 62, 70, 112, 151, 163, 235, 243,
248

diffusion of -, 152
equation, 152, 155, 235, 241

linearized -, 242
fluctuation, 151, 161, 241, see also
Enstrophy

W
Wake flow, 104, 108, 111, 121, 240, 240, see

also Free turbulent flow
similarity profile, 121

Wall
roughness, see Roughness
shear stress, see Friction velocity
smooth -, 97, 101, 103, 142, see alsoWall
roughness

temperature, 142, 146
turbulence, see Wall turbulence
units, 92

Wall turbulence, 6, 87, 110, 175, 179, 200,
see also Boundary layer, channel
flow, pipe flow, shear flow

buffer layer, 92, 93, 94, 94, 96, 131, 159,
259

coherent structure, see Structure (turbu-
lent)

convection, 139
core region, 89, 93, 94, 96, 140
defect law, 96, 97, 104, 105
density effects, see Density
dimensionless scaling (wall units), 92
inertial sublayer, 98
inner region, 96, 104, 127

convection, 141, 145
law of the wall, 97, 104
logarithmic layer, 91, 92, 94, 96, 98, 100,
104, 132, 168, 175, 236, 260

matching, 91, 98, 261
convection, 142, 145, 236

outer region, 96, 103, 105, 110
convection, 141, 145
length scale, 96
velocity profile, 104
velocity scale, 96

overlap region, 93, 98, 100, 105, 236
pressure gradient, see Pressure
scaling of -, 95, 96, 96, 103, 263
viscous sublayer, 91, 92, 94, 94, 96, 97,
100, 101, 141, 260, 263
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roughness length, 102
wall region (surface layer), 90, 93, 145,
221, 235

Wave, 186, 187, 193
- versus eddy, 187
equation, 246
gravity -, 30
inertial -, 249
length, 190

number, 21, 29
packet, 187
Tollmien–Schlichting -, see Instability
traveling -, see Perturbation
turbulence, see Rotating turbulence
vector, 190, 256
water - (analogy), 56

Weissenberg number, see Drag reduction
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