
Chapter 6

Further Results on Two Families
of Nanostructures

Zahra Yarahmadi and Mircea V. Diudea

Abstract A topological index is a numeric quantity derived from the structure of a

graph which is invariant under automorphisms of the graph under consideration. In

this chapter, the Wiener, Szeged, and Cluj-Ilmenau indices and one-alpha descrip-

tor will be calculated for an infinite family of nanocones, CNC4[n], and eccentric

connectivity; augmented eccentric connectivity; and Wiener, Szeged, PI, vertex PI,
and the first and second Zagreb indices of N-branched phenylacetylenes nanostar

dendrimers will be obtained. For obtaining Wiener and Szeged indices, we use a

powerful method given by Klavžar.

6.1 Introduction

In the past years, nanostructures involving carbon have been the focus of an intense

research activity which is driven to a large extent by the request for new materials

with specific applications. Throughout this section, G is a simple connected graph

with the vertex and edge sets V(G) and E(G), respectively. Usually, the distance

between the vertices u and v of a connected graph G is denoted by dG(u,v), and it is
defined as the number of edges in a minimal path connecting the vertices u and v. A
topological index is a numeric quantity, derived from the structure of a graph,

which is invariant under automorphisms of the graph under consideration. One of

the most famous topological indices is the Wiener index, introduced by Harold

Wiener, see (Wiener 1947). The Wiener index of G is the sum of distances between

all unordered pairs of vertices of G,
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WðGÞ ¼
X

fu,vg�VðGÞdGðu, vÞ:

The Szeged index is another topological index which is defined by Ivan Gutman

(Gutman 1994) as Sz Gð Þ ¼
X

e¼uv2E Gð Þnu eð Þnv eð Þ, where nu(e) is the number of

vertices ofG lying closer to u than to v and nv(e) is the number of vertices ofG lying

closer to v than to u. If in the definition of Szeged index, we consider the sum of

contributions, then we obtain a recently defined topological index, named vertex PI

index. In mathematical language, the vertex PI index of G is defined as PIv Gð Þ
¼

X
e¼uv2E Gð Þ nu eð Þ þ nv eð Þ½ � (see Ashrafi et al. 2008; Ashrafi and Rezaei 2007).

Let G(V, E) be a connected bipartite graph, with the vertex set V(G) and edge set
E(G). Two edges e¼ (x,y) and f¼ (u,v) of G are called codistant (briefly: e co f) if

d x; vð Þ ¼ d x; uð Þ þ 1 ¼ d y; vð Þ þ 1 ¼ d y; uð Þ:

Let C eð Þ :¼ f 2E Gð Þ; f co ef g denote the set of edges in G, codistant to the edge
e2E Gð Þ. If relation co is an equivalence relation, then G is called a co-graph. The

set C(e) is called an orthogonal cut (oc for short) of G, with respect to edge e. If G is

a co-graph, then its orthogonal cuts C1,C2, . . .,Ck form a partition of E(G):
E Gð Þ ¼ C1 [ C2 [ . . . [ Ck, Ci \ Cj ¼ ϕ, i 6¼ j. Observe co is a Θ relation

(Djoković-Winkler) (Djoković 1973).

We say that edges e and f of a plane graph G are in relation opposite, e op f, if

they are opposite edges of an inner face of G. Note that the relation co is defined in

the whole graph, while op is defined only in faces. Using the relation op, we can

partition the edge set of G into opposite edge strips, ops. An ops is a quasi-

orthogonal cut qoc, since ops is not transitive.

Let G be a connected graph and S1, S2, . . ., Sk be the ops strips of G. Then the ops
strips form a partition of E(G). The length of ops is taken as maximum. It depends

on the size of the maximum fold face/ring Fmax/Rmax considered, so that any

result on Omega polynomial will have this specification.

Denote bym(G,s) the number of ops of length s, and define the Omega polynomial

as: Ω G; xð Þ ¼
X

s
m G; sð Þxs (see Diudea et al. 2008). Its first derivative (in x¼ 1)

equals the number of edges in the graph: Ω
0
G; 1ð Þ ¼

X
s
m G; sð Þ :s ¼ e ¼ ��E Gð Þ��.

On Omega polynomial, the Cluj-Ilmenau index (see John et al. 2007), CI¼CI
(G), was defined:

CI Gð Þ ¼ Ω
0
G; 1ð Þ

h i2
� Ω

0
G; 1ð Þ þ Ω

00
G; 1ð Þ

h i� �
:

The formulas for calculating CI index are established on cones of various apex rings
and various extensions of the cone shirt.

Recently, one-two descriptor has been defined, and it has been shown that it is a

good predictor of the heat capacity at P constant (CP) and of the total surface area

84 Z. Yarahmadi and M.V. Diudea



(TSA). In this chapter, we analyze its generalizations by replacing the value 2 by

arbitrary positive-value α. The molecular descriptor is the final result of a logical

and mathematical procedure which transforms chemical information encoded

within a symbolic representation of a molecule into a useful number or the result

of some standardized experiment (Todeschini and Consonni 2000). Molecular

descriptors have been shown to be useful in modeling many physicochemical

properties in numerous QSAR and QSPR studies (Trinajstić 1992), (Devillers and

Balaban 1999; Karelson 2000).

One-alpha descriptor is defined as the sum of the vertex contributions in such a

way that each pendant vertex contributes 1, each vertex of degree two adjacent to

pendant vertex contributes α, and also each vertex of degree higher than two also

contributes α. If we take α ¼ 2, we get one-two descriptor. In Vukičević et al. 2010,

this is the definition for 3-ethyl-hexane by Fig. 6.1:

One-alpha descriptor of graph G will be denoted by OA(G). For instance, if G is

3-ethyl-hexane, then OA Gð Þ ¼ 3þ 4α.
The Padmakar-Ivan (PI) index of the graph G is defined as

PI Gð Þ ¼
X

e¼uv2E Gð Þ mu eð Þ þ mv eð Þ½ �, where mu(e) is the number of edges of

G lying closer to u than to v and mv(e) is the number of edges of G lying closer to

v than to u (see Khadikar 2000; Khadikar and Karmarkar 2001). Finally, the first

and second Zagreb indices of the graph G are defined as Zg1 Gð Þ ¼
X

u2V Gð Þdeg
2
Gu

and Zg2 Gð Þ ¼
X

e¼uv2E Gð ÞdegGu degGv, respectively (see Gutman and Das 2004;

Gutman and Trinajstic 1972; Khalifeh et al. 2009) for mathematical properties and

chemical applications.

For a given vertex u of V(G), its eccentricity ε(u) is the largest distance between
u and any other vertex v of G. The maximum eccentricity over all vertices of G is

called the diameter ofG and denoted by d(G), and the minimum eccentricity among

the vertices ofG is called radius ofG and denoted by r(G). Also, u is a central vertex
if ε uð Þ ¼ r Gð Þ: The center of G, C(G) is defined as

C Gð Þ ¼ u2V Gð Þ��ε uð Þ ¼ r Gð Þ� �
. The eccentric connectivity index is a topologi-

cal index that has been much used in the study of various properties of many classes

of chemical compounds. This index is defined as

ξ Gð Þ ¼
X

u2V Gð Þdeg uð Þε uð Þ

Fig. 6.1 Vertex

contributions of 3-ethyl-

hexane
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where deg (u) denotes the degree of vertex u in G and ε(u) is its eccentricity. It used
in a series of papers concerned with QSAR/QSPR studies. Its mathematical prop-

erties started to be studied only recently (see Ashrafi et al. 2011; Ilić and Gutman

2011 for details). The investigation of its mathematical properties started only

recently, and so far, results in determining the extremal values of the invariant

and the extremal graphs where those values are achieved are also in a number of

explicit formulas for the eccentric connectivity index of several classes of graphs

(see Fischermann et al. 2002; Gupta et al. 2002; Kumar et al. 2004; Sardana and

Madan 2001; Sharma et al. 1997).

Another topological index that we attended in this paper is augmented eccentric

connectivity index. This is defined as the summation of the quotients of the product

of adjacent vertex degrees and eccentricity of the concerned vertex, for all vertices

in the hydrogen-suppressed molecular graph. It is expressed as

ξ Gð Þ ¼
X

u2V Gð Þ
M uð Þ
ε uð Þ ;

where M(u) denotes the product of degrees of all neighbors of vertex u (see Dureja

and Madan 2007).

A chemical graph is a graph such that each vertex represents an atom of the

molecule and covalent bonds between atoms are represented by edge between the

corresponding vertices.

The nanocone is an important type of nanostructure involving carbon. In recent

years, some researchers considered the mathematical properties of such

nanostructures (Alipour and Ashrafi 2009a, b). One type of nanocones is the C4

nanocone, which is symbolized by CNC4[n] (Fig. 6.2).

Fig. 6.2 The nanocone

CNC4[3]
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Nanostar dendrimer is a kind of nanostructure. One type of nanostar dendrimer is

N-branched phenylacetylenes, and it is shown that by NSB[n], some topological

indices were obtained in Yarahmadi (2010) (Yarahmadi and Fath-Tabar 2011). In

Fig. 6.3, the molecular graph of NSB[1] and in Fig. 6.4 the molecular graph of NSB
[2] are shown.

In this chapter, at first we compute the Wiener and Szeged and Cluj-Ilmenau

indices of a family of cones, denoted CNC4[n]. Moreover, we present explicit

formula for Wiener, Szeged, PI, vertex PI, the first and second Zagreb eccentric

connectivity, and augmented eccentric connectivity indices of N-branched

phenylacetylenes nanostar dendrimer. For terms and concepts not defined here,

we refer the reader to any of several standard monographs, such as Cameron (1994)

and Trinajstić (1992).

6.2 The Wiener, Szeged, and Cluj-Ilmenau Indices
of CNC4[n] Nanocones

In this section, we study on some graph invariant of CNC4[n]. In order to compute

some topological indices of CNC4[n], firstly the number of vertices of this nano-

structure is computed.

Lemma 6.2.1 The number of vertices of CNC4[n] is computed by the formula:

V
�
CNC4 n½ ��� �� ¼ 4 nþ 1ð Þ2:

Fig. 6.3 The molecular

graph of NSB[1]
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For computing the Wiener index of CNC4[n], the method of Klavžar (2008) is used.
In what follows, we recall some useful concepts.

Let G be a connected graph. Then edges e¼ xy and f¼ uv of G are in the

Djoković-Winkler relation Θ (Djoković 1973; Winkler 1984), if

d x; uð Þ þ d y; vð Þ 6¼ d x; vð Þ þ d y; uð Þ:

The relation Θ is always reflexive and symmetric. Let Θ* be the transitive

closure of Θ. Then Θ* is an equivalence relation on E(G) for any connected

graph, and it partitions the edge set ofG intoΘ*-classes. For computingΘ*-classes,
it is useful to know the following facts. Since two adjacent edges ofG are in relation

Θ if and only if they belong to a common triangle, all the edges of a given complete

subgraph of G will be in the same Θ*-class. Also, since an edge e of an isometric

cycle C of G is in relation Θ with its antipodal edge(s) on C, all the edges of an odd
cycle will be in the same Θ*-class.

In what follows a powerful method, given by Klavžar (see Klavžar 2006, 2008),
enabling to compute the Wiener index of a graph is presented. The canonical metric

representation α of a connected graph G is defined as:

• Let G be connected graph and F1,F2,. . .,Fk its Θ*-classes.

Fig. 6.4 The molecular graph of NSB[2]
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• Define quotient graph G/Fi, i¼ 1,. . .,k, as follows. Its vertices are the connected
components of G-Fi, two vertices C and C0 being adjacent if there exist vertices

x2C and y2C0 such that xy2Fi.

• Define α : G !
Yk
i¼1

G=Fi with α: u! (α1(u),..,αk(u)),

where αi(u) is a connected component of G-Fi that contains u. Let G be an arbitrary

connected graph and

α : G !
Yk
i¼1

G=Fi

the canonical metric representation of G. Let (G/Fi, wi) be natural weighted graphs;

the weight of G/Fi is the number of vertices in the corresponding connected

component of G-Fi.

Theorem 6.2.2 (Klavžar 2008) For any connected graph G,

W Gð Þ ¼
Xk
i¼1

W G=Fi,wið Þ:

Theorem 6.2.3 The Wiener index of CNC4[n] is computed as follows:

W CNC4 n½ �ð Þ ¼ 1

2

��V��X n

k¼1
kαn þ k k � 1ð Þ����V��� kαn � k k � 1ð Þ� �

;

where
��V�� ¼ ��V�CNC4 n½ ��� and αn ¼ 2nþ 3.

In the following theorems, Szeged and Cluj-Ilmenau indices for CNC4[n] are
computed.

Theorem 6.2.4 The Szeged index of CNC4[n] is computed as follows:

Sz CNC4 n½ �ð Þ ¼ nþ 1ð Þ��V�� 2
þ
X n

k¼1
nþ k þ 1ð Þ kαn � k k � 1ð Þð Þ���V�� kαn � k k � 1ð Þð Þ;

by notation of pervious theorem.

Theorem 6.2.5 The Cluj-Ilmenau index of CNC4[n] is computed by:

CI CNCp evenð Þ n½ �� � ¼ 1=12ð Þp nþ 1ð Þ
� 27pn3 � 28n2 þ 63pn2 � 50nþ 48pnþ 12p� 24ð Þ;

CI CNCp oddð Þ n½ �� � ¼ CI CNCp evenð Þ n½ �� �þ p nþ 1ð Þ2:
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Theorem 6.2.6 One-alpha descriptor of CNC4[n] is computed as follows:

OA
�
CNC4 n½ � ¼ 4α n2 þ nþ 1

� �
:

6.3 Topological Indices of N-Branched Phenylacetylene
Nanostar Dendrimer

The nanostar dendrimer is a part of a new group of macromolecules that seem

photon funnels just like artificial antennas, and also, it is a great resistant of photo

bleaching. Experimental and theoretical insight is needed in order to understand the

energy transfer mechanism. In recent years, some people investigated the mathe-

matical properties of these nanostructures (Ashrafi and Mirzargar 2008; Dorosti

et al. 2009; Iranamanesh and Gholami 2009; Mirzargar 2009; Yousefi-Azari

et al. 2008). One type of nanostar dendrimers is N-branched phenylacetylenes

(see Bharathi et al. 1995). It is shown by NSB[n] (see Fig. 6.1). In order to compute

some topological indices of the nanostar dendrimer NSB[n], we first compute the

number of vertices and edges of this nanostructure.

Lemma 6.3.1 The numbers of vertices and edges of dendrimer NSB[n] are given

as:

V NSB n½ �ð Þj j ¼ 87� 2n � 38;

E NSB n½ �ð Þj j ¼ 99� 2n � 45:

Also for computing the Wiener index of NSB[n], we use the method of Theorem

6.2.2 (see Klavžar 2008).

Theorem 6.3.2 The Wiener index of NSB[n] is given as follows:

W NSB n½ �ð Þ ¼ 27
Xn
k¼0

2n�k αk Vj j � αk
2 � 14

� �þ 9� 2n 87� 2n � 39ð Þ;

where αn ¼ 29� 2n � 19, Vj j ¼ V NSB n½ �ð Þj j:
Theorem 6.3.3 With notation of Theorem 6.3.2, the Szeged index of NSB[n] is
given by:

SZ NSB n½ �ð Þ ¼ 5� 32
Xn
k¼0

2n�k αk Vj j � α2k � 14
� �þ 9� 2n 87� 2n � 39ð Þ:
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Theorem 6.3.4 The PI index of the dendrimer NSB[n] is obtained by:

PI NSB n½ �ð Þ ¼ 9801� 22n � 9081� 2n þ 2106:

Theorem 6.3.5 The vertex PI index of the dendrimer NSB[n] is obtained as

follows:

PIV NSB n½ �ð Þ ¼ 8613� 22n � 7677� 2n þ 1710:

Theorem 6.3.6 The first and second Zagreb indices of NBS[n] are computed as

follows:

Zg1 NSB n½ �ð Þ ¼ 492� 2n � 222, Zg2 NSB n½ �ð Þ ¼ 591� 2n � 273:

In the following lemma, the eccentricity of each vertex of NSB[n] is obtained, by
using the eccentricity of the central vertex.

Lemma 6.3.7 Let v0 be the central vertex and u is a vertex of NSB[n], such that d(u,
v0)¼ k. Then

ε v0ð Þ ¼ 9nþ 10 ;

ε uð Þ ¼ 9nþ k þ 10:

By Lemma 6.3.1 and 6.3.7, we can compute the eccentric connectivity index of

N-branched phenylacetylenes.

Theorem 6.3.8 The eccentric connectivity index of NSB[n] is computed as

follows:

ξ NSB n½ �ð Þ ¼ 945nþ 3015

2

	 

2nþ1 � 810n� 1359þ 837

Xn

i¼1
i2i:

Finally, in the following theorem, we obtained the augmented eccentric connectiv-

ity index of NSB[n].

Theorem 6.3.9 The augmented eccentric connectivity index of NSB[n] is given by
the following formula:

Aξ NSB n½ �ð Þ ¼ 32:22
Xn

i¼0

X9

j¼2

2i

9 n� ið Þ þ 10þ j

þ 34
Xn�1

i¼0

1

9 nþ ið Þ þ 19
þ 32:2n

18nþ 19
þ 32:2nþ1 þ 33

9nþ 10
:
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