
Chapter 4

Distance Under Symmetry: (3,6)-Fullerenes

Ali Reza Ashrafi, Fatemeh Koorepazan�Moftakhar,

and Mircea V. Diudea

Abstract A (3,6)-fullerene is a planar 3-connected cubic graph whose faces are

triangles and hexagons. In this chapter, the modified Wiener and hyper–Wiener

indices of three infinite classes of (3,6)-fullerenes are considered into account.

Some open questions are also presented.

4.1 Introduction

Throughout this paper all graphs are assumed to be simple. This means that our

graphs don’t have multiple edges and loops. A graph G is called connected if for

each vertex x and y in G, there is path connecting them. The graph G is said to be

3-connected, if G has more than three vertices and remains connected whenever

fewer than three vertices are removed fromG. A chemical graph is a graph in which
the vertices are atoms and edges are the chemical bonds. The distance between two
vertices of G is defined as the length of the shortest path connecting them. The

distance matrix D(G) ofG is a square matrix of order n¼ |V(G)|, where (i, j) entry is
the distance between the ith and jth vertices of G.

A group is a pair (G, •) such that •: G� G ! G is a function and the following

three axioms are satisfied:
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1. For each x, y, z 2 G, x•(y•z)¼ (x•y)•z. This equation is called associative law.
2. There exists an element e 2 G such that for each x 2 G, x•e¼ e•x¼ x. The

element e is called the identity of G.
3. For each element x 2 G, there exists an element y 2 G such that x•y¼ y•x¼ e.

The element y is unique. It is called the inverse of x and denoted by x�1.

The concept of group is very useful in explanation of the symmetry properties of

molecules. A subgroup of G is a nonempty subset that is closed under taking group

product and inverse. A group containing a finite set of elements is said to be finite.

Fix an element x 2 G and define

xh i ¼ xn
�� n is an integer

� �
:

Then hxi is called a cyclic subgroupofGwith generator x.G is said to be cyclic, if there

exists an element a 2 G such that G¼hxi. A cyclic group of order k is denoted by Zk.
Suppose X¼ {1, . . ., n} and Sn denote the set of all one to one and onto mapping

from X onto X. Then it is easy to see that the set Sn has a group structure under

composition of functions. This group is called the symmetric group on n symbols.

Clearly, the symmetric group on n symbols has order n!. The elements of the

symmetric group Sn is called a permutation on X, and a permutation α on X is said

to be even, if α can be obtained from an even number of two-element swaps. The set of

all even permutations of Sn constitutes a subgroup An of order n!/2. This subgroup is
called the alternating group on n symbols. A dihedral group is the group of symme-

tries of a regular polygon containing rotations and reflections. This group can be

considered as the rigid motions of the plane preserving a regular n-gon with respect to
composition of symmetries. Obviously, this group has order 2n denoted by D2n.

Suppose G is a graph and α: G ! G is a function. The mapping α is called an

automorphism, if α has an inverse and α, α�1 preserve adjacency in G. The set of all
such mappings is denoted by Aut(G). This set has a group structure under compo-

sition of functions and so it is named the automorphism group of G. If G is a

chemical graph, then the automorphism group of G represents the maximum

possible symmetry elements in the molecule under consideration. In some classes

of molecules like fullerenes, this group and the symmetry group are the same.

4.2 Distance Under Symmetry for (3,6)-Fullerenes

A cubic graph is a graph in which all vertices have degree 3. A (3,6)-fullerene graph
((3,6)-fullerene or fullerene for short) is a planar 3-connected cubic graph whose

faces are only triangles and hexagons. A pyramid is a (3,6)-fullerene with the

minimum possible number of vertices. It is possible to define (4,6)- and (5,6)-

fullerene graphs in a similar way, but by Euler’s theorem, there is no (k,6)-fullerene
graphs for other values of k. We encourage the interested readers to consult the

famous book of Fowler and Manolopoulos (1995). The books (Cataldo et al. 2011;

Ashrafi et al. 2013) also contain recent literature reviews on theory and experiment
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of fullerenes. We refer also to two important computer packages FuiGui (Myrvold

et al. 2007) and Program Fullerene (Schwerdtfeger et al. 2013) for investigating

conjectures and constructing and analyzing structures of fullerenes. For the math-

ematical properties of (3,6)-fullerenes, the interested readers can consult Fowler

et al. (2000), John and Sachs (2009), Devos et al. (2009), Yang and Zhang (2012),

Ashrafi and Mehranian (2013), and Behmaram et al. (2013).

This chapter is mainly concerned with the symmetry and distance topology of

(3,6)-fullerenes. In Ghorbani et al. (2015), it is proved that the order of the

automorphism group of a (3,6)-fullerene divides 24. It is merit to state here that

Deza et al. (2009) proved that there are five possible symmetry groups for a (3,6)-

fullerene. These are D2ffi Z2� Z2, D2hffi Z2� Z2� Z2, D2dffiD8, TffiA4, and

Tdffi S4. The 2D and 3D perceptions of (3,6)-fullerenes with these symmetry groups

and minimum possible number of vertices are depicted in Figs. 4.1 and 4.2,

respectively.

Aut(G) ≅ S4 ≅ Td Aut(G) ≅Z2 × Z2≅D2

Aut(G) ≅ Z2 × Z2× Z2≅D2h Aut(G) ≅A4 ≅ T

Aut(G) ≅ D8≅ D2d

Fig. 4.1 2D perception of (3,6)-fullerenes with five different symmetry groups
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The Wiener index of G, W(G), is defined as the sum of distances between all

pairs of vertices in G (Wiener 1947). This graph invariant has remarkable applica-

tions in chemistry and also in computer science. We refer to Gutman and Šoltés

(1991) for application of this number in chemistry.

A connected graph G without cycles is said to be an acyclic graph. The hyper–
Wiener index of acyclic graphs was introduced by Milan Randić, as a generaliza-

tion of the Wiener index. Then Klein et al. (1995) extended this graph invariant for

arbitrary graphs. It is defined as

WWðGÞ ¼ 1

2
WðGÞ þ 1

2

X
fx,ygdðx,yÞ

2:

The mathematical properties and chemical meaning of this topological index are

reported in Khalifeh et al. (2008) and Gutman et al. (1997). It is merit to mention

here that there is a matrix version of the hyper–Wiener index introduced by

Fig. 4.2 3D perception of (3,6)-fullerenes with five different symmetry groups
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M.V. Diudea (1996a, b, 1997, Diudea et al. 1997). To explain, we assume thatG is a

connected graph andD¼D(G) is its distance matrix. TheWiener matrixW¼W(G)

is another n� n matrix such that its ijth entry is defined as the number of paths

containing the (i, j) path. These matrices are basis for calculating W, whereas

distance path and Wiener path are basis for the calculation of hyper–Wiener

index. We encourage the interested readers to consult the mentioned papers by

Diudea and references therein for more information on this topic.

Graovac and Pisanski (1991) in their seminal paper combine distance and

symmetry to propose a generalization of the classical Wiener index. To explain,

we assume that G is a graph with automorphism group Γ¼Aut(G). The modified

Wiener index of G is defined as

W
^

Gð Þ ¼ V Gð Þj j
2
��Γ��

X
x2V Gð Þ

X
α2Γd x, α xð Þð Þ :

Firouzian et al. (2014) introduced in a similar way the modified hyper–Wiener

index of a graph G as follows:

WW
^

Gð Þ ¼ 1

2
W
^

Gð Þ þ V Gð Þj j
4
��Γ��

X
u2V Gð Þ, α2Γd u,α uð Þð Þ2:

The aim of this chapter is to compute the modified Wiener and modified hyper–

Wiener indices of three classes of fullerene graphs. To compute these graph

invariants, we need their symmetry groups. The symmetry group of some classes

of ordinary fullerenes ((5,6)-fullerenes) is reported in Djafari et al. (2013) and

Koorepazan�Moftakhar and Ashrafi (2013). For symmetry of our three classes of

(3,6)-fullerenes, we refer to Koorepazan�Moftakhar and Ashrafi (2014) and

Koorepazan�Moftakhar et al. (2014a, b). In our calculations, we use the computer

packages HyperChem (HyperChem Package Release 7.5 for Windows 2002),

TopoCluj (Diudea et al. 2002), GAP (The GAP Team 1995), and MAGMA

(Bosma et al. 1997). We refer the interested readers to consult papers (Ashrafi

et al. 2008, 2009; Ashrafi and Sabaghian�Bidgoli 2009) and references therein for

more information on topological properties of fullerenes.

We are now ready to construct the first (3,6)-fullerene series B[n] of order 8n,
n� 2. The ninth term of the fullerene sequence B[n] is depicted in Fig. 4.3. This

sequence can be constructed by an inductive argument. To explain, we assume that

Fig. 4.3 The fullerene B[9]
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the term B[n] is constructed. To obtain B[nþ 1], we add eight new vertices to the

tube-shaped part of B[n] and connect them to their corresponding vertices in B
[n]. By a result in Koorepazan�Moftakhar et al. (2014a, b),

AutðB½n�Þ ¼
S4 n ¼ 2

D8 n � 4 is even

Z2 � Z2 n � 3 is odd

:

8<
:

We first notice thatW B 1½ �ð Þ ¼ 294 andWW B 2½ �ð Þ ¼ 981:TheWiener index of B
[n] is computed in general in Ashrafi and Mehranian (2013). In this paper, the

authors proved that if n� 3, then

W B n½ �ð Þ ¼ 64

3
n3 þ 464

3
n� 206 :

Using a similar argument given the mentioned paper, it is possible to prove

WW B n½ �ð Þ ¼ 64

3
n4 þ 32

3
n3 � 16

3
n2 þ 3112

3
n� 1729:

In Koorepazan–Moftakhar and Ashrafi (2015), a representation theory method for

computing the modified Wiener index of graphs is presented. Applying this method

and the general form of the automorphism group of this fullerene series, we have:

Result 4.1 The modified Wiener and hyper–Wiener indices of B[n] can be com-

puted as follows:

bW B n½ �ð Þ ¼ 16n3 þ 32n2 þ 20n n≢2 mod4ð Þ
16n3 þ 32n2 þ 36n n�2 mod4ð Þ :

�

WW
^ ðB½n�Þ ¼

32

3
n4 þ 8n3 þ 232

3
n2 þ 64n n � 1, 3 ðmod 4Þ

32

3
n4 þ 8n3 þ 208

3
n2 þ 56n n � 4 ðmod 4Þ

32

3
n4 þ 8n3 þ 208

3
n2 þ 128n n � 2 ðmod 4Þ

:

8>>>>>>><
>>>>>>>:

We now continue our calculations to obtain the same invariant for another

sequence of fullerenes, C[n]. The general term of this sequence is a fullerene

with exactly 8nþ 4 carbon atoms. Again, by a result in Koorepazan�Moftakhar

et al. (2014a, b) (Fig. 4.4),

Aut C n½ �ð Þ ¼ S4 n ¼ 1

D8 n > 1

�
:
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In a similar way as B[n], the general term of C[n] can be constructed by an

inductive argument. A result in Ashrafi and Mehranian (2013) states that for n� 1,
we have

W C n½ �ð Þ ¼ 64

3
n3 þ 64n2 þ 152

3
nþ 2:

Again, we use calculations given this paper to show that

WW C n½ �ð Þ ¼ 64

3
n4 þ 96n3 þ 464

3
n2 þ 148n� 21:

Result 4.2 The modified Wiener and hyper–Wiener indices of the fullerene

sequence C[n] can be computed as follows:

W
^ ðC½1�Þ ¼ 138 and W

^ ðC½n�Þ ¼ 16n3 þ 72n2 þ 40nþ 4ðn � 2Þ:

WW
^ ðC½n�Þ ¼ 32

3
n4 þ 136

3
n3 þ 388

3
n2 þ 152

3
n� 2ðn � 1Þ:

Our final fullerene sequence is D[n] of order 16nþ 48. The general term of this

fullerene series can be constructed inductively from D[16]. The automorphism

groups of these fullerenes were reported in Koorepazan�Moftakhar et al. (2014a,

b), and its Wiener index can be found in Ashrafi and Mehranian (2013) (Fig 4.5):

AutðD½n�Þ ¼ Z2 � Z2 n is even
Z2 � Z2 � Z2 n is odd

:

�

The reported Wiener index of this fullerene series is not correct. Its correct

value is

WðD½n�Þ ¼ 256

3
n3 þ 768n2 þ 14912

3
nþ 3540 ðn � 4Þ:

In the exceptional cases that n¼ 1, 2, 3, we have W D 1½ �ð Þ ¼ 9968, W D 2½ �ð Þ ¼
17432 and W D 3½ �ð Þ ¼ 27714. The hyper–Wiener index of D[n] in some special

Fig. 4.4 The fullerene C[9]
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cases can be computed as WW D 1½ �ð Þ ¼ 62872; WW D 2½ �ð Þ ¼ 121392; and

WW D 3½ �ð Þ ¼ 212167. In general, if n� 4,

WW D n½ �ð Þ ¼ 256

3
n4 þ 3200

3
n3 þ 14912

3
n2 þ 131488

3
n� 1022:

Our calculation shows that:

Result 4.3 The Wiener and hyper–Wiener indices of D[n] can be computed as

follows:

W
^

D 1½ �ð Þ ¼ 9728, W
^

D 2½ �ð Þ ¼ 16160, W
^

D 3½ �ð Þ ¼ 26400, WW
^

D 2½ �ð Þ ¼ 69080:

W
^ ðD½n�Þ ¼

64n3 þ 832n2 þ 3664nþ 5232 n � 0, 2 ðmod 4Þ
49n3 þ 1237n2 þ 547nþ 14871 n � 1 ðmod 4Þ
64n3 þ 832n2 þ 3888nþ 5904 n � 3 ðmod 4Þ

n � 4:

8>><
>>:

WW
^

D n½ �ð Þ ¼ 128

3
n4 þ 544n3 þ 11200

3
n2 þ 14872nþ 22248, n is even:

4.3 Conclusions

In this chapter, the modified Wiener and hyper–Wiener indices of three fullerene

series are considered into account. In each case, exact formulas for computing these

invariants are presented. Our calculations show that in computing the modified

hyper–Wiener index of D[n], when n is odd, there is no regularity. We end this

chapter by the following open questions:

Open Question 4.4 Find a general formula for the modified hyper–Wiener of D
[16nþ 48] in odd case.

Fig. 4.5 The fullerene D[9]
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Open Question 4.5 Is it true that the modified Wiener and hyper–Wiener indices

of (3,6)-fullerenes can be evaluated by polynomials of degrees 3 and

4, respectively?
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