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A Lower Bound for Graph Energy
of Fullerenes
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and Fatemeh Koorepazan-Moftakhar

Abstract A molecular graph is a graph in which vertices are atoms and edges are

molecular bonds. These graphs are good mathematical models for molecules.

Suppose G is a molecular graph with adjacency matrix A. The graph energy G is

defined as the sum of the absolute values of the eigenvalues of A. The aim of this

chapter is to describe a method for computing energy of fullerenes. We apply this

method for computing a lower bound for energy of an infinite class of fullerene

graphs with exactly 12n vertices. Our method is general and can be extended to

other class of fullerene graphs.

26.1 Introduction

All graphs in this chapter are finite, simple, and connected. SupposeG is such a graph

with vertex and edge sets V(G) and E(G), respectively. The eigenvalues of G are

defined as the eigenvalues of its adjacency matrix and the set of all eigenvalues is

called the spectrum, Spec(G), of G. Set Spec(G)¼ {λ1, λ2,. . ., λn}. The graph energy
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ofG, εðGÞ, is defined as εðGÞ ¼ Pn
i¼1 jλij (Gutman 1978, 2012). This graph invariant

has some important applications in H€uckel theory, and so it has been extensively

studied. An extension of this graph invariant was done byNikiforov (Nikiforov 2007).

We refer the interested readers to (Li et al. 2012) for more information on this topic.

Suppose Kn and Kn,n denote the complete graph on n vertices and balanced

complete bipartite graph on 2n vertices. Define K(an(k)), K(bn(k)), K(cn(k)), and
K(dn(k)) to be graphs obtained from Kn by deleting k edges so that all of them have

a common endpoint, by deleting k independent edges, by deleting a complete set of

k(k� 1)/2mutually incident edges, and by deleting the edges of a k-membered cycle,

respectively. In (Gutman and Pavlović 1999), some inequalities among the energies

of the above graphs are given, and in Gutman (2001), the connection between the

energy and the total electron energy of a class of organic molecules is investigated.

A graph G is called 3-connected, if there does not exist vertices x, y 2 V(G)

whose removal disconnects the graph. If all vertices of G have degree 3, then we

say G is cubic. A fullerene graph is a cubic planar and 3-connected graph such

that its faces are pentagon and hexagon. Suppose p, h, n, and m are the number of

pentagons, hexagons, vertices, and edges of a fullerene graph F, respectively. Then
f ¼ p þ h and the Euler’s theorem implies that n�mþ f¼ 2. Since F is cubic,

m¼ 3n/2 and since each vertex lies in exactly three faces, n¼ (5pþ 6h)/3 and m¼
(5pþ 6h)/2¼ 3/2n. So (5pþ 6h) /3� (5pþ 6h) /2þ pþ h¼ 2. Therefore, p¼ 12,
n¼ 2hþ 20, and m¼ 3h þ30. We encourage the interested readers to consult the

famous book (Fowler and Manolopoulos 2006) for the mathematical properties of

this important class of molecular graphs and (Djafari et al. 2013; Koorepazan–

Moftakhar et al. 2014) for more information on this topic.

26.2 Algebraic Background

Some of the present authors (Katona and Faghani 2014) applied Ky Fan theorem

(Fan 1951) to obtain a lower bound for the graph energy of a sequence of fullerenes.

To describe this method, we need some algebraic notions. A matrix An�n is called

centrosymmetric if aij¼ an�iþ1,n�jþ1, 1� i,j� n. The mathematical properties of

this special class of matrices can be found in (Liu 2003). In Gutman et al (2007), the

authors proved that the energy of any n-vertex regular graph G of degree r> 0 is

greater than or equal to n with equality if and only if every component of G is

isomorphic to the complete bipartite graph Kr,r. If G is triangle- and quadrangle-

free, then ε(G)� nr / √(2r� 1). In particular, every n-vertex fullerene F satisfies

1.34n� ε(F)� 1.73n. In (Katona and Faghani 2014), the authors improved the last

inequality. They proved that a particular 10n-vertex fullerene graph can have a

centrosymmetric adjacency matrix. Then by applying the mathematical properties

of these matrices and an iterative use of the Key–Fan theorem, a relation between

energies of two fullerenes of orders 10� 2km andm, respectively, is provided. They
observed that the relation gives a better lower bound to the energy of an n-vertex
fullerene than the lower bound 1.34n, for the special cases that n¼ 10� 2� 5,
10� 2� 7, 10� 2� 11, or 10� 2� 13. We encourage the interested readers to
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consult (Ghorbani et al. 2014) for more information on the energy of this infinite

sequence of fullerenes. In this paper, the authors applied the centrosymmetricity of

adjacency and PI adjacency matrices to approximate the energy and PI-energy of

this class of fullerenes with exactly 10n vertices. It is noteworthy to mention here

that the centrosymmetricity of adjacency matrix of fullerene usually implies the

same property for other vertex- or edge-weighted matrices obtained from the

adjacency matrix of the fullerene graph under consideration.

Suppose G is a graph and x, y 2 V(G). The distance between x and y is defined as
the length of a shortest path connecting x and y. The Wiener index of G, W(G), is

then the sum of all such distances over all pairs of vertices in G. Wiener called this

graph invariant, the path number (Wiener 1947). It is the oldest distance-based

graph invariant applicable in molecular branching. A fullerene graph is said to be

centrosymmetric if it has a vertex labeling for which its adjacency matrix is

centrosymmetric. (Graovac et al. 2011) considered a sequence of centrosymmetric

fullerenes and applied this property to obtain exact formula for the Wiener index of

the general term of fullerene sequence under consideration. In the mentioned paper,

the authors conjectured that all fullerenes are centrosymmetric. In a recent paper

(Fowler and Myrvold 2014), this conjecture was disproved; in fact, it proved that

most fullerenes are not centrosymmetric. In this paper the necessary and sufficient

conditions are stated in terms of the 28 possible fullerene automorphism groups: if

the group is C1 or C3, the fullerene is not centrosymmetric; for C3h, C3v, or Cs, the

fullerene is centrosymmetric unless some vertex is fixed by a mirror plane; for all

other groups, the fullerene is centrosymmetric. Briefly, they noticed that most

fullerenes have trivial C1 symmetry group and hence they are not centrosymmetric.

Let Jn be an n� n, {0 , 1} matrix in which an entry is unit if and only if it lies on

counterdiagonal of Jn. It is clear that the matrix A is centrosymmetric if and only if

AJ¼ JA. The set of all centrosymmetric matrices is denoted by Cen.

Theorem 26.1 (Cantoni and Buter 1976) If n¼ 2m and An�n 2 Cen, then

A ¼ B JmCJm
C JmBJm

� �

where B and C are m�m matrices. Moreover, we have,

QTAQ ¼ B� JmC 0

0 Bþ JmC

� �
;

where

Q ¼
ffiffiffi
2

p

2

Im Im
�Jm Jm

� �
:
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Let

A ¼

A11 A12 0 0 0 A1m

A21 A22 0 0 0 A2m

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Am1 Am2 0 0 0 Amm

0
BBBBBB@

1
CCCCCCA

be the block form of A¼ [ai,j], 1� i, j� n, and all blocks are s� s matrices. The

following theorem is useful when the adjacency matrix have a block form (Katona

and Faghani 2014):

Theorem 26.2 Let

A ¼

A11 0 0 0 A1m

0 0 0 0 A2m

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Am1 0 0 0 Amm

0
BBBBBB@

1
CCCCCCA

be the block form of A. If m¼ 2k and Ai,jJ¼ JA2k�iþ1,2k�jþ1, then A is orthogonally

similar to the following block matrix:

‘þΨ
S

o
o

‘�Ψ
S

� �

in which

a
¼

A1,1 0 0 0 A1,k

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Ak, 1 0 0 0 Ak,k

0
BBBB@

1
CCCCA and U ¼

Akþ1,1 0 0 0 Akþ1,k

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

A2k, 1 0 0 0 A2k,k

0
BBBB@

1
CCCCA

Proof See (Katona and Faghani 2014) for details.

26.3 A Lower Bound for the Energy of C12n

We are now ready to describe our method for an infinite sequence of fullerenes,

C12n, with exactly 12n carbon atoms, Fig. 26.1. By tedious calculations, we can find

a centrosymmetric labeling for the vertices of C12n. The adjacency matrix of the

general term of this fullerene series is as follows:
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A C12nð Þ ¼

X I 0 0 0 0 0 0 0

I 0 P 0 0 0 0 0 0

0 Q 0 I 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 I 0 0

0 : : : 0 I 0 P 0

0 0 : : : 0 Q 0 I
0 0 : : : : 0 I X

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

;

in which Q¼Pt and all blocks are 6� 6 matrices given by:

I ¼

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0
0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

0
BBBBB@

1
CCCCCA
, p ¼

1 1 0

0 1 1

0 0 1

0 0 0

0 0 0

1 0 0
0 0 0

0 0 0

1 0 0

1 1 0

0 1 1

0 0 1

0
BBBBB@

1
CCCCCA
,

X ¼

0 1 0

1 0 1

0 1 0

0 0 1

0 0 0

1 0 0
0 0 1

0 0 0

1 0 0

0 1 0

1 0 1

0 1 0

0
BBBBB@

1
CCCCCA
:

By Theorem 26.2, we can take the adjacency matrix as follows:

A B
C D

� �

Fig. 26.1 The fullerene C12n, n¼ 7
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in which

A ¼

X I 0 0 0 0 0 0 0

I 0 P 0 0 0 0 0 0

0 Q 0 I 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 I 0 0

0 : : : 0 I 0 P 0

0 0 : : : 0 Q 0 I
0 0 : : : : 0 I X

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

and

D ¼

0 I 0 0 0 0 0 0 0

I 0 P 0 0 0 0 0 0

0 Q 0 I 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 I 0 0

0 0: : : 0 I 0 P 0

0 0 : : : 0 Q 0 I
0 0 : : : : 0 I X

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

C ¼

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0: : : 0 0 0 0 0

0 0 : : : 0 0 0 0

0 0 : : : : 0 0 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

B ¼

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 Q 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 : : : 0 0 0 0 0

P 0 : : : 0 Q 0 I
0 0 : : : : 0 0 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

:

So, the matrix A (C12n) is similar to the matrix

Aþ ΨC 0

0 A� ΨC

� �
:

Furthermore,

Aþ ΨC ¼

X I 0 0 0 0 0 0 0

I 0 P 0 0 0 0 0 0

0 Q 0 I 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 I 0 0

0 : : : 0 I 0 P 0

0 0 : : : 0 Q 0 I
0 0 : : : : 0 I JQ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
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and

A� ΨC ¼

X I 0 0 0 0 0 0 0

I 0 P 0 0 0 0 0 0

0 Q 0 I 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 I 0 0

0 : : : 0 I 0 P 0

0 0 : : : 0 Q 0 I
0 0 : : : : 0 I �JQ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

:

So, ε(A(C12n))¼ ε(AþΨC)þ ε(A�ΨC). Notice that

A þ ΨCð Þ þ

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 I 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 : : : 0 0 0 0 0

0 0 : : : 0 0 0 0

0 0 : : : : 0 X �JQ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

¼

X I 0 0 0 0 0 0 0

I 0 P 0 0 0 0 0 0

0 Q 0 I 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 I 0 0

0 : : : 0 I 0 P 0

0 0 : : : 0 Q 0 I
0 0 : : : : 0 I X

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

:

This means that we can reduce the order of A(C12n) into half such that the

centrosymmetricity preserves.

Notice that, ε(X� JQ)� 7.4641. and ε(Xþ JQ)� 11.4641. By an iterative use of
the Key–Fan Theorem, one can prove the following inequality:
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E A C12nð Þð Þð Þ � 2E

X I 0 0 0 0 0 0 0

I 0 P 0 0 0 0 0 0

0 Q 0 I 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 I 0 0

0 : : : 0 I 0 P 0

0 0 : : : 0 Q 0 I
0 0 : : : : 0 I X

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

� 18:9282:

The right-hand side matrix is again centrosymmetric as its size is half the size of

A(C12n). So, if n is even, then by repeating the above procedure, we can obtain the

following lower bound for the energy of A(C12n) as follows:

Theorem 26.3 If n¼ 2km then ε(A(C12n))¼ ε(A(C12(2
k
m)))> 2k ε(A(C12m))�

18.9282(2k� 1).
In Table 26.1, the exact values of energy in some cases are compared with our

bound. It seems that the bound is good, but it is important to always compare the exact

energy with the computed bound. Since the fullerene is a huge molecule, this is an open

question that the error is small. In Fig. 26.2, these values are compared in a diagram.

Table 26.1 The energy and

bounds for some fullerenes
n k M Energy 2kE A C12mð Þð Þ � 18:9282 2k � 1

� �
:

3 0 3 55.244 55.244

5 0 5 93.174 93.174

6 1 3 112.075 91.5598

7 0 7 130.97 130.97

9 0 9 168.733 168.733

11 0 11 206.481 206.481

0

50

100

150

200

250

0 2 4 6 8 10 12

Enargy

Bound

Poly. (Enargy)

Poly. (Bound)

Fig. 26.2 The diagrams for exact and estimated energies
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