
Chapter 25

Enhancing Gauge Symmetries Via
the Symplectic Embedding Approach

Salman Abarghouei Nejad and Majid Monemzadeh

Abstract One of the best ways to increase the fundamental symmetries of the

physical systems with singular Lagrangian is the gauging of those models with the

help of symplectic formalism of constrained systems. The main idea of this

approach is based on the embedding of the model in an extended phase-space.

After the gauging process had done, we can obtain generators of gauge trans-

formations of the model.

25.1 Introduction

Every high energy physicist is aware of the importance of gauge theories. As a

matter of fact, gauge invariance is the most significant and practical concept in high

energy physics. The standard model of elementary particles is founded on this

concept. Gauge invariance occurred due to the presence of the physical variables

which are called gauge-invariant variables, and they are independent of local

reference frames (Henneaux and Teiltelboim 1992).

It is very important to know that the quantization of gauge theories is as simple as

it is thought to be due to the presence of internal symmetries which are called gauge

symmetries. These symmetries exist some nonphysical degrees of freedom, that must

be wiped out before and after the quantization is applied (Abreu et al. 2012).

On the other hand, in gauge theory, using the equations of motion, the dynamics

of the system cannot be determined completely at every moment. Hence, one of the

features of gauge theory is the advent of arbitrary time-dependent functions in

general solutions of the equations of motion. The emergence of such functions

forms some relations between phase-space coordinates, called constraints

(Bergmann and Goldberg 1955).

To quantize such systems, Dirac classified the identities between phase-space

coordinates into two main groups (Dirac 1967). The first group is identities that
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present in the phase-space, like coordinates or momentum variables, which trans-

form the physical system without any changes in the phase-space. These identities

are called first-class constraints. Dirac, as the pioneer of constrained systems,

named them as generators of the gauge transformations in the phase-space. The

second group is not related to any degrees of freedom and must be eliminated.

Presence of such identities indicates the absence of the gauge symmetry in the

system. These identities are called second-class constraints. Therefore, to gauge a

system which contains second-class constraints, we must convert them to first-class

ones (Dirac 1950; Shirzad and Monemzadeh 2004).

To achieve this aim, there have been invented some approaches like BFT

method (Batalin and Fradkin 1987; Batalin et al. 1989; Batalin and Tyutin 1991;

Shirzad and Monemzadeh 2005; Ebrahimi and Monemzadeh 2014) and F-J

approach or its newer version the symplectic formalism (Abreu et al. 2012; Faddeev

and Jackiw 1988; Woodhouse 1992; Neto et al. 2001). The main strategy which

these methods are based on is embedding a non-invariant system in an extended

phase-space (Becchi et al. 1976; Batalin and Vilkovisky 1981; Monemzadeh and

Ebrahimi 2012).

25.2 The Symplectic Formalism

The F-J formalism which was formulated first by Faddeev and Jackiw (Faddeev and

Jackiw 1988) existed to prevent us from the consistency problems which deviate

Poisson brackets algebra from common one, which consequently spoils all quanti-

zation techniques in constrained systems (Abreu et al. 2013; Monemzadeh

et al. 2014). This method is mathematically founded on the symplectic structure

of phase-space. Thus, it is different from approaches with similar usage. Moreover,

the interpretation and classification of constraints which are presented by this

formalism are different from other congener ones. As we mentioned before, in

order to solve the quantization problems of any system, Dirac presented a theory

and classified constraints into primary and secondary and first- and second-class

constraints (Dirac 1967), whereas in symplectic formalism, all constraints are

presumed to be equal and there is no dissimilarity between first- and second-class

constraints. However, both formalisms are verified to be equivalent (Govaerts

1990; Montani 1993).

To use the symplectic method, we should start using the first-order Lagrangian,

whose corresponding equation of motion does not imbue any acceleration. Thus,

one can obtain the Hamiltonian equation of motion from the variational principle

(Abreu et al. 2013; Jackiw 1994). So, we must start with first-order Lagrangian, and

any other second-order Lagrangian should be transformed into a first-order one by

expanding the configuration space, including conjugate momentum and coordinate

variables. Also, one can use the Legendre transform to pass from Lagrangian to

Hamiltonian (Paschalis and Porfyriadis 1996). We consider a non-invariant
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mechanical model with the dynamics which are described by the Lagrangian L

qμ; _qμ; t
� �

with μ ¼ 1, . . . ,N and its corresponding spatial variables qμ and

velocities _qμ.

The singularity nature of the Lagrangian due to its configuration constraint

ϕi(qμ) can be imposed by a new dynamical variable (say undetermined Lagrange

multiplier) λi in such a way that adds the constraints to free Lagrangian:

L 0ð Þ ¼ _qμp
μ � Hc � λiϕ

i qμ
� �

: ð25:1Þ

Mutually we can calculate Hc as

Hc ¼ ∂L
∂ _qμ

_qμ � L 0ð Þ: ð25:2Þ

The symplectic variables and symplectic one-form can be read off from the

model straightforwardly:

ξ 0ð Þ
α ¼ qμ; pμ; λi

� �
:

Að0Þ
α ¼ ðpν, 0ν, 0jÞ: ð25:3Þ

Then, the symplectic two-form, f
0ð Þ
αβ ¼ ∂αA 0ð Þ

β � ∂βA 0ð Þ
α , will be obtained in the

form of the following matrix:

f
0ð Þ
αβ ¼

0μν �δμν 0μj
δμν 0μν 0μj
0iν 0iν 0ij

0@ 1A: ð25:4Þ

This matrix is apparently singular, and so, it has some zero-modes which are

defined by n
ið0Þ
α . As a matter of fact, because of our knowledge from linear algebra,

we know that the linear combination of these null vectors is also a zero-mode.

Using the zero iterative potential,

V 0ð Þ ¼ Hc þ λiϕ
i: ð25:5Þ

Primary constraints will be obtained from the following relation:

ϕi ¼ ni 0ð Þ
α ∂αV 0ð Þ; ð25:6Þ

where ∂α
is the derivation with respect to the symplectic variables.

We can put the constraint into the kinetic part of the Lagrangian by substituting

these constraints, obtained from (25.6) into the original Lagrangian. It means that

we make primary constraints ϕi, as momenta conjugate to the variables λi. In other

words, we convert strongly nonlinear constraints, ϕi, into the momenta (linear
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constraint) of the phase-space. Hence, the first iterative Lagrangian will be

obtained as

L 1ð Þ ¼ _qμp
μ � _λ iϕ

i � Hc; ð25:7Þ

and the first iterative potential we have

V 1ð Þ ¼ Hc: ð25:8Þ

New symplectic variables and one-form are defined as follows:

ξ 1ð Þ
α ¼ qμ; pμ; λi

� �
:

A 1ð Þ
α ¼ pν; 0ν;ϕj

� �
: ð25:9Þ

The corresponding symplectic two-form is

f
1ð Þ
αβ ¼

0μν �δμν uT
iν

δμν 0μν 0μj
�uiν 0iν 0ij

0@ 1A; ð25:10Þ

where

uiμ ¼ ∂ϕi

∂qμ
: ð25:11Þ

This matrix (25.10) is a singular matrix, and it has some null vectors n
ið1Þ
α .

Using (25.6), we obtain secondary constraints as

ϕi
0 ¼ A 0ð Þ

α ∂αϕi: ð25:12Þ

We can write the second iterative Lagrangian as

L 2ð Þ ¼ _qμp
μ � _λ iϕ

i � _λ i
0ϕi

0
� Hc: ð25:13Þ

New symplectic variables and one-form are as follows:

ξ 2ð Þ
α ¼ qμ; pμ; λi; λi0

� �
:

A 2ð Þ
α ¼ pν; 0ν;ϕj;ϕj

0
� �

: ð25:14Þ
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The corresponding two-form symplectic matrix is non-singular. Thus, it does not

have any null vector, and consequently, there is no other constraint:

f
2ð Þ
αβ ¼

0μν �δμν uT
iν vT

i
0
ν

δμν 0μν 0iν wT
i
0
ν�uiν 0μj 0ij 0ij0�vi0 ν �wi

0
ν 0i0 j 0i0 j0

0BB@
1CCA; ð25:15Þ

where vα and wα are defined as follows:

vi0μ ¼
∂ϕi

0

∂qμ
:

wi
0
μ ¼

∂ϕi
0

∂pμ
: ð25:16Þ

25.3 Symplectic Embedding Formalism

The corresponding symplectic two-form is non-singular. Thus, it does not have any

null vector and consequently, the iterative process stops and no other constraint will

be obtained.

Now, we start the symplectic embedding procedure to convert second-class

constraints to first ones. The main idea of this procedure is to adjoin the Wess-

Zumino variables to the original phase-space (Wess and Zumino 1971). In order to

do that, we expand the original phase-space by introduction of a function G as WZ

Lagrangian, depending on the original phase-space variables and the WZ variable

θ, as the expansion in terms of the WZ variables, defined by

G qμ; pμ; λi; θ
� � ¼ X1

n¼0

G nð Þ: ð25:17Þ

This function is gauging potential and satisfies the following boundary condition

by vanishing G 0ð Þ:

G qμ, pμ, λi, θ ¼ 0
� � ¼ 0: ð25:18Þ

Introducing the new term G into the Lagrangian (7),

eL 1ð Þ ¼ L 1ð Þ þ LWZ

¼ L 1ð Þ þ G qμ; pμ; λi; θ
� �

:
ð25:19Þ
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With the corresponding symplectic variables and one-form,

eξ 0ð Þ
α ¼ qμ; pμ; λi; θ

� �
;eA 0ð Þ

α ¼ pν; 0ν;ϕj; 0
� �

; ð25:20Þ

the two-form symplectic matrix will be

ef 1ð Þ
αβ

¼ f
1ð Þ
αβ 0α1
01β 01�1

� �
; ð25:21Þ

which has the following null vectors eni 1ð Þ
α :

en1 1ð Þ
α ¼ �

0α 1
�
:

en2 1ð Þ
α ¼ �

ni 1ð Þ
α 0

�
: ð25:22Þ

We define enα as the linear combination of the corresponding null vectors:

enα ¼ X
i

eni 1ð Þ
α ¼ ni 1ð Þ

α a
� �

: ð25:23Þ

Using the following relation,

enα ∂V 1ð Þ

∂eξ 0ð Þα ¼
∂G nð Þ

∂θ
: ð25:24Þ

To start the iterative process, we substitute (25.8) into (25.24), using the zero-

mode (25.23) to obtain G 1ð Þ as

G 1ð Þ ¼ θϕi
0 : ð25:25Þ

Putting G 1ð Þ into (25.19), the potential will be

eV 1ð Þ ¼ Hc � G 1ð Þ: ð25:26Þ

Using (25.24) for the second time with respect to the modified first iterative

potential (25.26), one can obtain G 2ð Þ. Also, with the help of (25.24), one can find

the explicit relation which gives G nð Þ for n � 2, as

ni 1ð Þ
α

∂G n�1ð Þ

∂eξ 0ð Þα

" #
þ a

∂G nð Þ

∂θ
þ b

∂G nð Þ

∂pθ
¼ 0: ð25:27Þ
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Substituting G 2ð Þ into the first iterative Lagrangian, we will obtain the second

iterative Lagrangian. Thus,

eV 1ð Þ ¼ Hc � G 1ð Þ � G 2ð Þ: ð25:28Þ

Again, using (25.24) to obtain, considering the (25.28) as the modified potential,

we obtain G 3ð Þ. This process should be continued so far forth that ∂G
nð Þ

∂θ become null.

Therefore, the zero-mode eneα does not make a new constraint. Thus, the gauged

symplectic potential will be obtained as eV
eV 1ð Þ qμ; pμ; λi

� � ¼ eV 0ð Þ qμ; pμ
� �� G 1ð Þ � G 2ð Þ � � � � � G n�1ð Þ; ð25:29Þ

and for the canonical Hamiltonian, we have

eHc ¼ Hc þ λiϕ
i � G qμ; pμ; λi

� �
: ð25:30Þ

The gauged Lagrangian is obtained as

eL 1ð Þ ¼ L 1ð Þ þ G qμ; pμ; λi
� �

: ð25:31Þ

25.4 Gauged Lagrangian

As we mentioned before about the relation (25.19), the gauged Lagrangian of an

ungauged system, i.e., eL 1ð Þ, will be obtained by adding a Lagrangian-like term to the

first-order Lagrangian. This term depends on a new dynamical variable, which is

called a WZ variable.

As we have shown in the previous section, an iterative differential equation with

the help of zero -modes of the symplectic two-form and the potential of the model in

(25.27) (Abreu et al. 2012) has been driven to obtain this added term. As a matter of

fact, for most cases, and particularly for the studied model in this chapter, that

iteration will not go more than two levels. Thus, a shortcut formula to make the WZ

Lagrangian con be introduced here (Abarghouei Nejad et al. 2014).

To start with, let’s imagine that our model has some primary constraints which

are introduced by ϕi. First, we should find the constraint which is first class in

comparison to other primary constraints. We call this primary first-class constraint

as ϕj:

ϕi;ϕj

� 	 ¼ 0: ð25:32Þ
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Applying the symplectic approach will give us some secondary constraints,

denoted by ϕ
0
i. We construct the WZ Lagrangian by adding two generators G(1)

and G(2), as

LWZ ¼ G 1ð Þ þ G 2ð Þ; ð25:33Þ

where

G 1ð Þ ¼ θϕ
0
i ;

G 2ð Þ ¼ �θ2 ϕ
0
i;ϕj

n o
: ð25:34Þ

Also, θ is the WZ variable, and its conjugate momentum, pθ, which will not appear

in the gauged model is a first-class constraint. According to Dirac’s guess, the

presence of the first-class constraint guarantees the presence of a gauge symmetry

in the model.

25.5 Constraint Structure of the Gauged Lagrangian

Using the symplectic method, we enhance the gauge symmetry of the primary

model. In the following, we derive constraints and phase-space structure of the

gauged Lagrangian (25.31). In this gauged model, new dynamical variables λi and θ
appear first orderly in the Lagrangian. So, their momenta are primary constraints in

the phase-space. Thus,

∂eL 0ð Þ

∂ _λ i
¼ 0 :! ρ1i ¼ pλi ; ð25:35Þ

∂eL 0ð Þ

∂ _θ
¼ 0 :! ρ2 ¼ pθ: ð25:36Þ

So, for the total Hamiltonian, corresponding to Lagrangian (25.31) and

redefining the constraints ρs ¼ ρ1i ; ρ2
� �

, we can write

eHT ¼ eHc þ ωsρs: ð25:37Þ

In the chain-by-chain method (Shirzad and Mojiri 2001), the consistency of each

individual constraint starts a chain and gives the next element of that chain. Also,

the consistency of second-class constraints determines some of the Lagrange

multipliers, ωs, while the consistency of first-class ones leads to constraints of the

next level:
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0 ¼ ρs; eHT

n o
:

0 ¼ ρs; eHc

n o
þ ωr ρs; ρrf g: ð25:38Þ

We see that primary constraints are Abelian, i.e., ρr; ρsf g ¼ 0. So, we arrive to

secondary constraints ψ s ¼ ρs; eHc

n o
.

The consistency of second level of constraints may give us new constraints, like

ψ s; eHc

n o
¼ Λs; ð25:39Þ

or may determine a Lagrange multiplier due to the fact that ψ2; ρ2f g 6¼ 0, as

ψ s; eHc

n o
6¼ 0: ð25:40Þ

The relation (25.39) is identically true on the constrained surface. We should

check the consistency condition (25.38) for Λs to see whether there exists any new

constraint in the model or the chain is truncated.

Calculating all Poisson brackets, one can find first-class constraints. As we

mentioned before, the first-class constraint, ΦFCi
, is one whose Poisson bracket

with other constraints vanishes:

ΦFCi
;ϕj

� 	 ¼ 0: ð25:41Þ

Also, the Poisson bracket matrix of all second-class constraints, Δij, must be

non-singular.

In order to determine all Dirac brackets of the original and gauged model, we put

the inverse of Δij in the following formula:

ξα; ξβ

n o∗
¼ ξα; ξβ

n o
� ξα;ΦSCi
f gΔ�1

ij ΦSCj
; ξβ

n o
; ð25:42Þ

where ΦSCi
is the set of all second-class constraints.

Also, by characterizing first-class constraints and Dirac brackets of a classical

system, its quantized model, say Hilbert space of the quantum states, is fully

available at tree level, according to Dirac prescription:

A;Bf g∗ ! 1

ih
A;B½ �; ð25:43Þ

Φ̂ FCi



phys >¼ 0; ð25:44Þ

where Φ̂ FCi
is the quantized version of first-class constraints.

25 Enhancing Gauge Symmetries Via the Symplectic Embedding Approach 455



25.6 Gauge Invariance of the Extended Lagrangian

We can obtain all gauge symmetries of the Lagrangian (25.19), using the Poisson

brackets of the first-class constraints, ΦFCi
, and symplectic variables (Shirzad and

Shabani Moghadam 1999; Henneaux et al. 1990):

δeξ 0ð Þ
α ¼ eξ 0ð Þ

α ;ΦFCj

n o
εj ð25:45Þ

Also, the generators of infinitesimal gauge transformations can be obtained with

the help of zero-modes of the symplectic two-form (25.23), using δeξ 1ð Þ
α ¼ εienα:

δxi ¼ 0;

δpi ¼ uiε1;

δλ ¼ ε2;

δθ ¼ ε1; ð25:46Þ

where εi is the infinitesimal time-dependent parameter (Abreu et al. 2013; Kim

et al. 2004). Thus, the gauge symmetry of the model is determined via these

transformations. In other words, the gained model is invariant under these

transformations.

Apparently the results obtained from (25.45) are the same as the infinitesimal

gauge transformations (25.46). Considering constrained analysis of the Lagrangian

(25.31) and detaching its corresponding constraints in the following section, we

study the gauge symmetry of the following model easily.

25.7 Particle Model on Hyperplane as a Toy Model

We consider a nonrelativistic particle with unit mass, which is confined on a

hyperplane. We try to gauge the model using the symplectic formalism and extract

its corresponding generators of infinitesimal gauge transformations.

The Hamiltonian of such a particle is defined as

H ¼ 1

2
pμp

μ þ λ1ϕ
1; ð25:47Þ

where ϕ1 is the constraint which is imposed by the condition of the presence of the

particle on the hyperplane. This model has been studied via the Skyrme model

(Neto et al. 2001):

ϕ1 ¼ qμq
μ � 1 ð25:48Þ
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Aswementioned before, we start with the zeroth-iterated first-order Lagrangian as

L 0ð Þ ¼ _qμp
μ � 1

2
pμp

μ þ λ1 qμq
μ � 1

� �
: ð25:49Þ

Symplectic variables and one-form can be read off from the Lagrangian (25.49) as

ξ 0ð Þ
α ¼ qμ; pμ; λ1

� �
;

A 0ð Þ
α ¼ pν; 0ν; 0ð Þ: ð25:50Þ

Then, the symplectic two-form will be obtained in the form of the following

matrix:

f
0ð Þ
αβ ¼

0μν �δμν 0μ1
δμν 0μν 0μ1
01ν 01ν 01�1

0@ 1A; ð25:51Þ

which is apparently singular.

The corresponding some zero-mode is defined as

n 0ð Þ
α ¼ 0μ 0μ 0ð Þ: ð25:52Þ

Using the relation (25.6), one can again find the primary constraint of the model as

ϕ1 ¼ qμq
μ � 1: ð25:53Þ

Now, we redefine the zeroth iterative potential as

V 0ð Þ ¼ 1

2
pμp

μ � λ1 qμq
μ � 1

� �
: ð25:54Þ

The first iterative Lagrangian is

L 1ð Þ ¼ qμp
μ þ _λ 1ϕ

1 � 1

2
pμp

μ: ð25:55Þ

Then the symplectic variables and one-form are as follows:

ξ 1ð Þ
α ¼ qμ; pμ; λ1

� �
:

A 1ð Þ
α ¼ pν; 0ν;ϕ1ð Þ: ð25:56Þ
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Therefore, the corresponding symplectic two-form tensor is obtained as

f
1ð Þ
αβ ¼

0μν �δμν 2qμ1
δμν 0μν 0μ1

�2q1ν 01ν 01�1

0@ 1A: ð25:57Þ

Since the above tensor is singular, one can find its associated zero-mode as

n 1ð Þ
α ¼ 0μ qμ

1

2

� �
; ð25:58Þ

which is the generator of the following secondary constraint; with the help of

(25.6), we have

ϕ2 ¼ qμp
μ: ð25:59Þ

Updating our potential, the first iterative potential will be

V 1ð Þ ¼ 1

2
pμp

μ: ð25:60Þ

Now, the second iterative potential can be read off as

L 1ð Þ ¼ qμp
μ þ _λ 1ϕ

1 þ _λ 2ϕ
2 þ�1

2
pμp

μ: ð25:61Þ

Looking for symplectic variables and one-form, we will have

ξ 2ð Þ
α ¼ qμ; pμ; λ1; λ2

� �
:

A 2ð Þ
α ¼ pν; 0ν;ϕ1;ϕ2ð Þ: ð25:62Þ

The second-iterated symplectic two-form can be obtained as

f
2ð Þ
αβ ¼

0μν �δμν 2qμ1 pμ1
δμν 0μν 0iν qμ1

�2q1νuiν 0μj 0ij 0ij0�p1ν �q1ν 0i0 j 0i0 j0

0BB@
1CCA: ð25:63Þ

This tensor is non-singular. So, it does not have any null vector to generate new

constraint. Therefore, the constraint-making process truncates. As we mentioned

before, the inverse of (25.63) gives the usual Dirac brackets, using the relation

(25.42).
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Now, this is the time to start the embedding process. First, we should find the

Wess-Zumino Lagrangian as the relation (25.17) with the corresponding boundary

condition (25.18).

Introducing this Lagrangian into the first iterative Lagrangian (25.55), we will

obtain

eL 1ð Þ ¼ _qμp
μ þ _λ 1ϕ

1 � 1

2
pμp

μ þ G qμ; pμ; θ
� �

: ð25:64Þ

We can read off extended symplectic variable and one-form as follows:

eξ 1ð Þ
α ¼ qμ; pμ; λ1; θ

� �
:eA 1ð Þ

α ¼ pν; 0ν;ϕ1; 0ð Þ: ð25:65Þ

Computing the symplectic tensor, ef 1ð Þ
αβ , as

ef 1ð Þ
αβ ¼

0μν �δμν 2qμ1 0μ1
δμν 0μν 0μ1 0μ1

�2q1ν 01ν 01�1 01�1

01ν 01ν 01�1 01�1

0BB@
1CCA: ð25:66Þ

which is exactly in the form of (25.21). This tensor is apparently singular and has

the following zero-modes:

en1 1ð Þ
α ¼ �

0α 1
�
:

en2 1ð Þ
α ¼ �

n 1ð Þ
α 0

�
: ð25:67Þ

Similar to (25.23), we use the linear combination of these zero-modes to start

generating constraints.

Using (25.24) and (25.25), one can obtain the first iterative term, depending on θ
as

G 1ð Þ qμ; pμ; θ
� � ¼ qμp

μ
� �

θ: ð25:68Þ

Putting this term in the Lagrangian (25.64), we have

eL 1ð Þ ¼ _qμp
μ þ _λ 1ϕ

1 � 1

2
pμp

μ þ qμp
μ

� �
θ: ð25:69Þ

While the zero-mode (25.67) generated a new constraint, the Lagrangian is not

still a gauge-invariant one:

en 1ð Þ
α

∂V 1ð Þ

∂eξ 1ð Þ
α

¼ qμq
μθ: ð25:70Þ
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Thus,

G 2ð Þ ¼ �1

2
qμq

μθ2: ð25:71Þ

So, the first iterative Lagrangian will be

eL 1ð Þ ¼ _qμp
μ þ _λ 1ϕ

1 � 1

2
pμp

μ þ qμp
μ

� �
θ � 1

2
qμq

μθ2: ð25:72Þ

At this stage, the null vector (25.67) does not produce any new constraint. Thus,

correction terms Gn with n � 3 vanish. Hence, (25.72) is an invariant Lagrangian.

Also, the corresponding canonical Hamiltonian can be obtained as

eH 1ð Þ
c ¼ 1

2
pμp

μ � λ1ϕ
1 � qμp

μ
� �

θ þ 1

2
qμq

μθ2: ð25:73Þ

Now, according to gauge transformation-generating functions (25.46), we can

obtain the infinitesimal variations, under which both Hamiltonian (25.73) and

(25.72) are invariant:

δqμ ¼ 0:

δpμ ¼ ε1qμ:

δλ ¼ 1

2
ε2:

δθ ¼ ε1: ð25:74Þ
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