
Chapter 23

Cyclic Carbon Polyynes

Lorentz Jäntschi, Sorana D. Bolboacă, and Dusanka Janezic

Abstract Monocyclic rings with even carbon atoms, from 6 to 24, were studied

using five restricted Hartree–Fock computational refinements (STO-3G, 3-21G,

6-31G*, RI-MP2/6-31G*, and RI-MP2/6-311G*) in order to identify stable polyyne

rings. Polyyne rings with 24 carbon atoms were revealed to be stable, and a crossed

cyclic polyyne, with 4 such rings, was designed in order to evaluate its condensed

state stability. Density functional theory calculation was performed on this nano-

structure. The study predicted stable monocyclic polyyne for a number of C atoms

equal or higher than 16. The distance between carbon atoms followed an exponen-

tial decay to a limit value very near to the distance in C24 polyyne, sustaining its

stability. The condensed 4C24 polyyne seemed to be stable, with a sum of bond

order per atom of 3.78. The total energy value calculation leads to the conclusion

that condensation by crossing the rings failed to provide supplementary stabiliza-

tion, but also did not induce destabilization. The theoretical IR spectrum as well as
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the thermodynamic parameters of 4C24 polyyne was rationalized from a molecular

dynamics study.

23.1 Background Information on Polyyne

Polyynes are the oligomeric cousins of carbine, having linear chains of

sp-hybridized carbon atoms (Smith and Buseck 1982) that are of scientific interest

either as linear or cyclic complexes (McCarthy et al. 2000). Carbon, a chemical

element with three naturally occurring isotopes (12C and 13C, stable, and 14C,

radioactive), is part of several compounds, such as those summarized in Fig. 23.1.

Polyynes, organic compounds with alternating single and triple bonds (�C�C–)n
(where n> 1), have been reported in the scientific literature since 1951 (Bohlmann

1951a, b, c; 1955). Significant contributions to the chemistry of naturally occurring

acetylenes are attributed to Bohlmann (1951a, b, c, 1953, 1955; Bohlmann

et al. 1955, 1962) and Jones (2003). Synthetic routes to hydrogen terminated linear

polyynes have been reported since 1972 (Eastmond et al. 1972).

Polyynes have been the focus of much study because of their unique feature, the

carbon–carbon triple bonds (Cataldo 2006). A chain with over 300 carbons and

alternating triple and single bonds was reported in 1995 by Lagow et al. (1995).

Such linear alternating chain has been demonstrated to possess the properties of

both metals and semiconductors (Gorjizadeh et al. 2011) and behave like electronic

materials with very high mobility (Zhang et al. 2011).

Cyclopentadiene - C5

Fe(C5H5)2
(Kealy and Pauson 1951)

Benzene - C6
*

Graphene (C6)n
(Boehm et al.1962)

Fullerene -C5/C6

Buckminsterfullerene
(Kroto et al.1985)

Nanotubes - C6 Carbyne -H(CºC)nH Cyclic Polyyne -Cn

Carbon nanotube
(Dekker 1999)

Triacetylene
(McNaughton and Bruget

1992)

C30 carbyne trefoil knot
(Dobrowolski and 
Mazurek 2001)

Fig. 23.1 Carbon-based compounds
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Cyclic polyynes, in particular the acetylene-based polymers, have also been

investigated. Examples of these include the cyclic C10, C14, and C18 polyynes

(Anderson 2012) or the C6–C26 clusters (Li 2012), which are all-carbon structures.

Information regarding the stability of polyyne rings is essential in identification of

new materials with interesting properties.

The present study reports a computational chemistry study of cyclic polyynes at

the post-Hartree–Fock (HF) level of theory in order to rationalize the stabilization

of polyyne rings in a condensed arrangement.

23.2 Monocyclic Polyynes

The cyclic polyynes with an even number of carbon atoms, from 6 to 24, were

investigated. The following approach has been applied in characterization of

monocyclic ring polyynes:

• Geometry optimization: The structural optimization of the investigated struc-

tures was performed by Spartan (v. 10, http://www.wavefun.com) ab initio

package at the restricted (post)-HF (Hartree–Fock) (Hartree 1928a, b; Fock

1930a, b; Hartree and Hartree 1935) level of theory. Five computational refine-

ments were explored: STO-3G (slater-type orbitals – Gaussian approximated

with 5 � n basis functions (Hehre et al. 1969)), 3-21G (with 9 � n basis functions

(Moller and Plesset 1934)), 6-31G* (split-valence basis sets with 15 � n basis

functions (Ditchfield et al. 1971)), RI-MP2/6-31G* (with 15 � n basis functions,

MP¼Møller–Plesset perturbation method (Moller and Plesset 1934),

2¼ second order, RI¼ resolution of the identity), and RI-MP2/6-311G* (with

18 � n basis functions). In all cases, n is the number of carbon atoms.

• Rationalization: To characterize the monocyclic ring polyynes, the average

energy per atom and distances between C atoms have been calculated under

the investigated refinements of theory levels.

23.2.1 Energy Assessment

Stable monocyclic ring of polyynes was calculated beginning with six carbon atoms

– the first even number investigated. The energy values obtained for monocyclic

polyynes are listed in Table 23.1.

As can be observed from Table 23.1, the energy values decrease as the number

of C atoms in the monocyclic ring increases. This decrease is steep until n¼ 14, and
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then it becomes and remains very slight. The exponential fit reveals a decay that

supports the stabilization of the monocyclic rings at C23. For STO-3G level of

theory, the fit is

Ŷ ¼ �37:3664þ 0:2482 � exp �n=4:1462ð Þ
R2 ¼ 0:9977; R2

adj ¼ 0:9970; F ¼ 1494

where Ŷ¼ energy per atom estimated by the exponential function, n¼ number of C

atoms in the monocyclic ring, R2¼ determination coefficient, R2
adj¼ adjusted

determination coefficient, and F¼ Fisher’s statistics associated with the regression

model.

The minimum energy values were in every case related to the STO-3G basis set,

while the maximum values were provided by RI-MP2/6-311G* whenever it could

be calculated, depending upon the stability of the monocyclic ring polyynes (see

Table 23.1). The following interesting observation about the stability of monocyclic

ring polyynes could be made: stabilization of the polyynes occurs when the number

of carbon atoms is a multiple of 4 and no less than 16. As can be concluded from the

exponential decay of the average energy per C atom, starting with n¼ 16, the cyclic

polyynes quickly approach the minimum energy state. The difference due to

RI-MP2/6-311G* in the average energy values per atom for polyynes between

C20 and C24 is less than 1% � n.

Table 23.1 Average energy per atom (E(kcal/mol)) for a single monocyclic ring polyyne,

calculated at different theory levels

n STO-3G 3-21G 6-31G* RI-MP2/6-31G* RI-MP2/6-311G*

6 �37.308 � n �37.577 � n a

8 �37.329 � n �37.593 � n a

10 �37.346 � n �37.610 � n a

12 �37.352 � n �37.614 � n a

14 �37.358 � n �37.619 � n �37.829 � n b

16 �37.361 � n �37.621 � n �37.831 � n �37.958 � n �37.970 � n
18 �37.363 � n �37.624 � n �37.833 � n c

20 �37.364 � n �37.625 � n �37.835 � n �37.961 � n �37.973 � n
22 �37.365 � n �37.626 � n �37.836 � n c

24 �37.366 � n �37.627 � n �37.836 � n �37.962 � n �37.974 � n
n, number of carbon atoms (only the coefficients were included in the exponential fit)
asymmetry broken at 6-31G* level of theory
bplanarity broken at RI-MP2/6-31G* level of theory
coptimization oscillated between equilibrium states
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23.2.2 Bond Length

The stability of a monocyclic ring can be assessed by inspection of the C–C and

C�C interatomic separation, i.e., the bond lengths (Table 23.2). Analysis of the

results presented in Table 23.2 shows:

• In general, there is a decrease in C�C length, when n increases, for STO-G,

3-21G, and 6-31G* levels of theory; there are two exceptions (at C14 and C18) for

3-21G and one exception (at C18) for 6-31G*.

• The general trend is a smooth increase in the C�C bond length and a smooth

decrease of C–C length for the RI-MP2/6-31G* and RI-MP2/6-311G* levels of

theory; the C–C length increases systematically in the monocyclic rings, and

those differing by four C atoms are clustered with a smooth decrease at C22 and

C24 for STO-G level of theory; the C–C distance systematically increases in the

monocyclic rings, and those differing by four C atoms are clustered with a plateau

as the difference between C18 and C22 is concerned for 3-21G level of theory.

The plot of C�C bond lengths, provided by STO-3G (column 2, STO-3G/d1 in

Table 23.2), vs. the number of atoms (n) also shows an exponential decay which fits
well with the observed values while (C�C;C24) is near to the estimated optimal

value of 118.63 pm:

d̂ STO�3G C�C;Cnð Þ ¼ 118:63 �0:27ð Þ þ 152 �54ð Þ � e�n=2:3 �0:3ð Þ

The above equation estimates a value of 119.6 pm for n¼ 12 while the calcu-

lated value is of 119.0 pm, a value of 118.7 pm for n¼ 18 while the calculated value

is of 118.6 pm, and a value of 118.6 pm for n¼ 24 while the calculated value is of

118.6 pm.

Table 23.2 C�C and C–C bond length in monocyclic rings at different theory levels

n

STO-3G 3-21G 6-31G* RI-MP2/6-31G* RI-MP2/6-311G*

C�C C–C C�C C–C C�C C–C C�C C–C C�C C–C

6 129.8 129.8 129.5 129.6 a

8 123.7 142.1 123.3 139.5 a

10 120.4 138.9 122.1 133.8 a

12 119.0 141.4 119.7 138.3 a

14 119.2 139.9 120.3 135.9 121.7 136.0 b

16 118.8 140.3 119.7 137.0 119.7 138.5 125.2 135.7 125.0 135.4

18 118.8 139.9 119.9 136.2 119.8 138.0 c

20 118.7 139.9 119.7 136.5 119.6 138.1 125.5 134.6 125.3 134.3

22 118.7 139.8 119.7 136.2 119.6 137.9 c

24 118.6 139.8 119.6 136.2 119.6 138.0 125.7 133.9 125.6 133.6

n, number of C atoms in monocyclic polyyne ring, bond length in pm
asymmetry broken at 6-31G* level of theory
bplanarity broken at RI-MP2/6-31G* level of theory
coptimization oscillated between equilibrium states
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23.2.3 Stable Monocyclic Polyyne

The monocyclic ring with 24 atoms appeared to be a stable complex, and subse-

quent work was performed on the polycyclic C24 polyyne (Fig. 23.2).

The crossed arrangement of the polyynes was of interest in this study and was

driven at 6-31G* level of refinement for geometry optimization. A stable C24 cyclic

polyyne in a form of crossed cycles was searched.

23.2.4 Characteristic Polynomials of C24 Polyyne

The characteristic polynomial (noted here with Pφ), calculated by the determinant

of the matrix obtained as a difference between unity matrix I|V| multiplied with a

symbolic variable (X, for instance) and the adjacency matrix (Ad),

Pφ Xð Þ ¼ Pφ X;Gð Þ ¼ X � I Vj j � Ad Gð Þ�
�

�
�

has been evaluated for C24 polyyne.

Characteristic polynomial, as other polynomials, encodes the topological infor-

mation of a chemical structure and can be seen as a source of structural descriptors

used in structure–property/activity modeling (Ivanciuc et al. 1999;

Balasubramanian and Randi 1982; Jäntschi et al. 2009; Bolboacă and Jäntschi

2007).

The characteristic polynomial was computed in two different ways: the classical

characteristic polynomial (ChP) and a weighted polynomial. For this, the adjacency

matrix (“0/1,” Table 23.3) was replaced by the bond order matrix (“0/1/3”; see

Table 23.4).

The characteristic polynomial ChP of C24 polyyne is

C

C

C

C
C

C C C C
C

C

C

C

C

C

C
C

CCCC
C

C

C

Fig. 23.2 C24 standard

chemical structure
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Table 23.3 C24 polyyne: negative signed adjacency matrix

[Ch] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
5 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
6 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
7 0 0 0 0 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
9 0 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 -1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 
11 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0 0 
12 0 0 0 0 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 -1 0 0 -1 0 0 0 0 0 0 0 0 0 0 
14 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 -1 0 0 0 0 0 0 0 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 0 0 0 0 
16 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 0 0 0 0 0 0 0 0 
17 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 -1 0 0 0 0 0 0 
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 -1 0 0 0 
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 0 0 0 0 
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 -1 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1

Table 23.4 C24 polyyne: negative signed bond order matrix

[Ch] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 -3 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 -3 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 -3 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 -3 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 -1 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 -1 0 0 0 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 -3 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 -1 0 0 0 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 -1 0 0 0 0 0 0 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 -3 0 0 -1 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 -3 0 0 0 -1 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 -1 0 0 0 -3 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 -1 0 0 -3 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 -3 0 0 -1 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -3 0 0 0 -1 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -3 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 -3 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -3 0 0 -1 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -3 0 0 0 -1
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -3 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 -3 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -3 -1 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -3
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -3
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ChP C24polyyneð Þ ¼ þ1 � x24 � 24 � x22 þ 252 � x20
� 1520 � x18 þ 5814 � x16 � 14688 � x14 þ 24752 � x12
� 27456 � x10 þ 19305 � x8 � 8008 � x6 þ 1716 � x4
� 144x2

The roots of characteristic polynomial varied from �2 to 2, with an average of

0 and a standard deviation of 1.44. The value of Anderson–Darling statistics is

equal to 0.7456 ( p¼ 0.4795 (Jäntschi 2014)) saying that the values of roots are

normally distributed.

The orbital energies and the Hessian eigenvalues were furthermore calculated

for monocyclic C24 polyyne. The C24 polyyne has eighty-two orbitals, ten being

unoccupied molecular orbitals (the last ten in the right upper corner of the graph in

Fig. 23.3).

The pattern distribution of the characteristic polynomial roots is shown in

Fig. 23.4.
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Fig. 23.3 Pattern distribution for monocyclic C24 polyyne: (a) orbital energy, (b) Hessian energy
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The coefficient of similarity (Myers 1986) between the root values and values of

orbital energy is 43.19% when 24 roots are compared to 48 orbital energies (the

first 24 and the last 10 values not included) and increases to 47.78% when 24 roots

are linked with 24 values of orbital energies. A similar value is found when the

similarity of roots and Hessian energy is investigated (42.48%).

The bond order matrix for monocyclic C24 polyyne is presented in Table 23.4.

The pattern distribution of the values of roots of the characteristic polynomial on

bond order is presented in Fig. 23.4b.

The coefficient of similarity [29] between values of roots and values of orbital

energy is 39.41% when 24 roots are compared to 48 orbital energies (not included

the first 24 and the last 10 values) and increase to 43.59% when 24 roots are linked

with 24 values of orbital energies. A similar value is found when the similarity of

roots of the characteristic polynomial on bond order matrix and Hessian energy is

investigated (40.74%).

The characteristic polynomial on bond order (ChPbo) of C24 polyyne is

ChPbo C24polyyneð Þ ¼ þ1 � x24 � 120 � x22 þ 6492 � x20
� 209200 � x18 þ 4468374 � x16 � 66589920 � x14
þ709365552 � x12 � 5438445120 � x10 þ 29760016905 � x8
�113288996200 � x6 þ 284636017236 � x4
�423644304720 � x2 þ 282428473600 � x0

The value of characteristic polynomial on bond order matrix roots varied from

�4 to 4, with an average of 0 and a standard deviation of 3.23. The value of

Anderson–Darling statistics equal to 1.8896 ( p¼ 0.8936) sustains that the values of

roots of characteristic polynomial on bond order matrix are also normally

distributed.

23.3 Assembly of C24 Polyyne

Identification and characterization of condensed cyclic polyynes was done follow-

ing the next steps:

• Crossing the structures: A trial has been conducted to identify how many

monocyclic ring polyyne could be crossed to form a stable crossed structure.

• Geometry optimization: The geometry optimization was conducted on the

crossed cyclic polyynes identified at the previous step with the Spartan ab initio

package at the restricted (post)-HF level of theory, with 6-31G* computational

refinement. The reason of using 6-31G* level of refinement could be found in the

Supplementary Material which shows that for the elements of first period, it is

the best choice in estimating the geometry.
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• Molecular dynamics study: It has been performed by Spartan using DFT (density

functional theory (Pierre and Kohn 1964; Kohn and Sham 1965)) method using

M06 functionals (Zhao and Truhlar 2008) at the 6-31G* basis set.

Geometry optimization revealed that in both the isolated polyyne-24 and the

4-condensed-polyyne-24, the distance between carbon atoms (i.e., the bond length)

is optimal (Fig. 23.5):

d C�Cð Þ ¼ 120 pm, d C� Cð Þ ¼ 136 pm

The following values were calculated for the 4C24 complex (6-31G* level of

refinement): molecular weight¼ 1153.056 amu, energy¼ 11785.29 kJ/mol,

E-HOMO (energy of highest occupied molecular orbital)¼�9.36 eV, E-LUMO

(energy of lowest unoccupied molecular orbital)¼�2.03 eV, and dipole

moment¼ 0.07 debye.

The molecular dynamics study performed on 4C24 using DFT-M06 led to the

following reasonable values of thermodynamic parameters: ZPE (zero-point

energy)¼ 1383.93 kJ/mol, S (entropy)¼ 1377.75 J/mol, H (enthalpy)¼ 5.0861 au

(atomic units, 1 au¼ 2625 kJ/mol), G (free enthalpy)¼ 4.9296 au, and Cv (heat

capacity at constant volume)¼ 1325.31 J/mol.

The total energy of the four-cyclic ring structure (4C24) was calculated as

�3587.1360 kcal/mol, leading to an energy per atom of �37.3660 kcal/at �mol,

while the total energy for monocyclic ring C24 was of �896.783 kcal/mol with

energy per atom equal to �37.3662 kcal/at �mol. In consequence, condensation of

4C24 provided neither supplementary stabilization nor destabilization.

The bond lengths in 4C24 optimized structure and the estimated bond orders are

listed in Table 23.5.

18°

Fig. 23.5 4C24 optimized structure of even-C-atom polycyclic cluster at 6-31G*
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The sum of bond order per atom was of 3.78 (either Lowden or Mulliken) and is

near to the ideal value of 4. The average distance between carbon atoms in organic

compounds found in literature (Jäntschi 2013) is 154 pm for the C–C bond, 134 pm

for the C¼C bond, and 120 pm for the C�C bond, while in the proposed

polycyclic polyyne, the values were 139.91 pm on average for the C–C bond and

118.65 pm on average for the C�C bond. These results obtained on the 4C24

condensed cyclic polyyne suggest a high hardness in the solid state.

The electrostatic potential for the proposed polycyclic polyyne is illustrated in

Fig. 23.6 and was obtained from the model at DFT-M06 level of theory.

Similar IR spectra were obtained from the molecular dynamics study performed

at DFT-M06 theory level on both one monocyclic polyyne (Fig. 23.7) and

4C24polycyclic polyyne (Fig. 23.8). Several similarities could be observed in the

Table 23.5 Bond length in 4C24 polyyne complex

Ring Bond

Distance

k � distance (pm)

Averaged

distance (pm) Lowden Mulliken

Belt ring C�C 11 � 118.8, 1 � 118.7 �118.8 1.16 1.16

Exterior ring #1 C�C 11 � 118.6, 1 � 118.7 �118.6

Exterior rings #2 and

#3

C�C 12 � 118.6 118.6

Belt ring C–C 6 (140.2, 140.3) 140.25 2.69 2.70

Exterior rings #1, #2,

and #3

C–C 11 � 139.8, 1 � 139.9 �139.8

k number of bonds

Fig. 23.6 Electrostatic

potential of 4C24 polycyclic

polyyne
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obtained IR spectra: there is only one broad band corresponding to the energy

absorption/emission for the vibration/rotation/translation of one C atom from the

chain (Figs. 23.7 and 23.8). Furthermore, there are several signals of smaller

intensity (compared to the broad band) which correspond to the fine interactions

(resonance) between chains, the condensed structure of polyyne being not a rigid

one. The IR spectrum of 4C24 polycyclic polyyne shows the stability of the

condensed structure, the energy absorbed by atoms being higher than the energy

absorbed by the assemblies of atoms.

Searching for new improved materials with various applications among mole-

cules containing carbon atoms has been a subject of research in recent years (Wang

et al. 2004, 2014; Trogadas et al. 2014). Cyclic polyynes theoretically studied by

have previously predicted heaving optical and electronic properties that could be

useful in advanced materials (Ditchfield et al. 1971; Bunz et al. 1999).

23.4 Conclusions

In this chapter, we presented a computational chemistry study of cyclic polyynes

with an even number of carbon atoms. Our results show that Cn cyclic polyynes are

more likely to be stable when n� 16 since starting at this point of energy value, at

3000 2750 2500 2250 2000

IR Spectrum (1/cm)

calculated

1750 1500 1250 1000 750 500

Fig. 23.7 IR spectrum (1/cm) of C24 monocyclic polyyne (at DFT-M06/6-31G* level of theory)

IR Spectrum (1/cm)

calculated

3000 2750 2500 2250 2000 1750 1500 1250 1000 750 500

Fig. 23.8 IR spectrum (1/cm) of 4C24 polycyclic polyyne (at DFT-M06/6-31G* level of theory)
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STO-3G and 3-21G levels, reaches a plateau. Exponential decay of energy per atom

sustains the stability of monocyclic rings at C24, and a complex of four crossed C24

cycles was identified as a stable and reliable new entity. According to the calcula-

tions, it is expected for the identified 4C24 complex to have the best hardness among

its homologues, being thus a very good candidate for experimental synthesis.

Further research will be needed to characterize this new complex.
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