
Chapter 19

Nullity of Graphs

Modjtaba Ghorbani and Mahin Songhori

Abstract The nullity of a graph is defined as the multiplicity of the eigenvalue zero

of graph G which is named the nullity of G denoted by η(G). In this chapter we

investigate the nullity of some family of graphs.

19.1 Introduction

Let G¼ (V, E) be a graph and e2E Gð Þ. Then denoted by G\e is the subgraph of

G obtained by removing the edge e from G. Denoted by G\ {v1,. . ., vk} means a

graph obtained by removing the vertices v1,. . ., vk from G and all edges incident to

any of them.

The adjacency matrix A(G) of graph G with vertex set V (G)¼ {v1, v2,. . ., vn} is
the n� n symmetric matrix [aij] such that aij¼ 1 if vi and vj are adjacent and

0, otherwise. The characteristic polynomial of graph G is

χGðλÞ ¼ χλðGÞ ¼ detðAðGÞ � λIÞ,

The roots of the characteristic polynomial are the eigenvalues of graph G and

form the spectrum of this graph. The number of zero eigenvalues in the spectrum of

the graph G is called the nullity of G which is denoted by η(G). Suppose r(A(G)) is

the rank of A(G); it is a well-known fact that η(G)¼ n� r(A(G)).

A null graph is a graph in which all vertices are isolated. In other words, a graph

has no edges, only vertices called the null graph. It is clear that η(G)¼ n if and only
if G is a null graph; see Cvetković et al. (1980).
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19.2 Main Results

In this section, we study the properties of graph nullity with applications in

chemistry. Throughout this chapter, all notations are standard and mainly taken

from Biggs (1993) and Cvetković and Gutman (2009). Throughout this chapter, all

notations are standard and mainly taken from Cvetković et al. (1975), Godsil and

McKay (1978), Biggs (1993), Li and Shiu (2007) and Cvetković and Gutman

(2009).

Theorem 19.2.1 Suppose that G is a simple graph on n vertices and n � 2. Then

η Gð Þ ¼ n� 2 if and only if A Gð Þ is permutation similar to matrix

On1;n1

L
On2;n2

L
Ok;k, where n1 þ n2 þ k ¼ n, n1; n2 > 0, and k � 0.

Theorem 19.2.2 (Cheng and Liu 2007) Suppose that G is a simple graph on

n vertices. Then η Gð Þ ¼ n� 3 if and only if A Gð Þ is permutation similar to matrix

On1;n1

L
On2;n2

L
On3;n3

L
Ok;k, where n1 þ n2 þ n3 þ k ¼ n, n1; n2; n3 > 0 and

k � 0.

Lemma 19.2.3 (Cvetković et al. 1980)

(i) The adjacency matrix of the complete graph Kn, A(Kn) has 2 distinct eigen-

values n – 1, �1 with multiplicities 1, n – 1, respectively, where n> 1.

(ii) The eigenvalues of Cn are λr¼ 2 cos 2r
n , where r ¼ 0, . . . , n� 1.

(iii) The eigenvalues of Pn are λr¼ 2 cos 2r
nþ1

, where r ¼ 1, 2, . . . , n:

Lemma 19.2.4

(i) Let H be an induced subgraph of G. Then r Hð Þ � r Gð Þ.
(ii) Let G ¼ G1 þ G2, then r Gð Þ ¼ r G1ð Þ þ r

�
G2), i.e:, η Gð Þ ¼ η G1ð Þ þ η G2ð Þ:

Proposition 19.2.5 Let ¼ G1 [ G2 [ . . . [ Gt, where G1, G2, . . ., Gt are

connectedcomponents of G. Then

η Gð Þ ¼
Xt
i¼1

η Gið Þ:

Proposition 19.2.6 (Cheng and Liu 2007) Let G be a simple graph on n vertices

and Kp be a subgraphof G, where 2 � p � n. Then η Gð Þ � n� p.
A clique of a simple graph G is a subset S of V(G) such that G[S] is complete. A

clique S is maximum if G has no clique S0with
��S0�� > ��S��. The number of vertices in a

maximum clique of G is called the clique number of G and is denoted byω Gð Þ. The
following inequality is resulted from Proposition 19.2.6.
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Corollary 19.2.7 (Cheng and Liu 2007)

(i) Let G be a simple graph on n vertices and G is not isomorphic to nK1. Then

η Gð Þ þ ω Gð Þ � n.
(ii) Let G be a simple graph on n vertices and let Cp be an induced subgraph of G,

where 3 � p � n. Then

η Gð Þ � n� pþ 2; if p� 0 mod4ð Þ
n� p; otherwise

�
:

The length of the shortest cycle in a graph G is the girth of G. denoted by gir Gð Þ:A
relation between gir Gð Þ andη Gð Þis as follows:

If G is simple graph on n vertices and G has at least one cycle, then

η Gð Þ � n� gir Gð Þ þ 2; if p� 0 mod 4ð Þ
n� gir Gð Þ otherwise

�
:

Corollary 19.2.8 (Cheng and Liu 2007) Suppose x and y are two vertices in G and

there exists an x; yð Þ- path in G. Then

η Gð Þ � n� d x; yð Þ if d x; yð Þ is even;
n� d x; yð Þ � 1; otherwise:

�

Corollary 19.2.9 (Cheng and Liu 2007) Suppose G is simple connected graph on

n vertices. Then

η Gð Þ � n� diam Gð Þ if diam Gð Þ is even;
n� diam Gð Þ � 1; otherwise:

�

Proposition 19.2.10 Denote by χG λð Þ the characteristic polynomial of G. Let
χG λð Þ ¼ λI � Aj j ¼ λn þ a1λn�1 þ . . .þ an. Then

ai ¼
X
U

�1ð Þp Uð Þ
2c Uð Þ i ¼ 1, 2, : : :, nð Þ; ð19:1Þ

where the sum is over all subgraphs U of G consisting of disjoint edges and cycles

and having exactly i vertices (called “basic figures”). If U is such a subgraph, then p
(U) is the number of its components, of which c(U) components are cycles.

Example 19.2.11 In Fig. 19.1, the graph G and its basic figuresH1,H2, andH3 are

shown.
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For some special classes of bipartite graphs, it is possible to find easily the

relation between the structure of G and η Gð Þ:The problem is solved for trees by the

following theorem.

Theorem 19.2.12 (Cvetković and Gutman 1972; Li et al. 2007) Let T be a tree on

n � 1 vertices and let m be the size of its maximum matching. Then its nullity is

equal to η Tð Þ ¼ n� 2m:
This theorem is an immediate consequence of the statement concerning with the

coefficients of the characteristic polynomial of the adjacency matrix of a tree

(which can be easily deduced from Eq. (19.1)). Theorem 19.2.12 is a special case

of one more general theorem that will be formulated in the following.

Recall that a set M of edges of G is a matching if every vertex of G is incident

with at most one edge in M; it is a perfect matching if every vertex of G is incident

with exactly one edge in M. Maximum matching is a matching with the maximum

possible number of edges. The size of a maximum matching of G, i.e., the

maximum number of independent edges of G, is denoted by m ¼ m Gð Þ:

Theorem 19.2.13 (Cvetković et al. 1972) If a bipartite graph G with n � 1 vertices

does not contain any cycle of length 4s s ¼ 1, 2, : : :ð Þ, then η Gð Þ ¼ n� 2m, where
m is the size of its maximum matching.

Theorem 19.2.14 (Longuet�Higgins 1950) For the bipartite graph G with

n vertices and incidence matrix, η Gð Þ ¼ n� 2r Bð Þ; where r Bð Þ is the rank of B.

Since for G ¼ X, Y,Uð Þ; we have r Bð Þ � min X
��, ��Y�� ��� �

and Theorem 19.2.14

yields the following:

Corollary 19.2.15 (Cvetković andGutman 1972)η Gð Þ � max X
��, ��Y�� ��� �

�min X
��, ��Y�� ��� �

:

If the number of vertices is odd, then
��X�� 6¼ ��Y ��andη Gð Þ > 0. Thus a necessary

condition to have no zeros in the spectrum of a bipartite graph is that the number of

Fig. 19.1 Graph G and its basic figures H1, H2, and H3
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vertices is even. The following three theorems enable, in special cases, the reduc-

tion of the problem of determining η Gð Þ for some graphs to the same problem for

simpler graphs.

Theorem 19.2.16 (Cvetković and Gutman 1972) Let G1 ¼ X1, Y1, U1ð Þ and
G2 ¼ X2, Y2, U2ð Þ, where

��X1

�� ¼ n1, Y1j j ¼ n2, n1 � n2, and η G1ð Þ ¼ n2 � n1. If

the graph G is obtained fromG1 andG2 by joining (any) vertices from X1to vertices

in Y2 (or X2), then the relationη Gð Þ ¼ η G1ð Þ þ η G2ð Þ holds.

Corollary 19.2.17 (Cvetković et al. 1972) If the bipartite graph G contains a

pendent vertex, and if the induced subgraph H of G is obtained by deleting this

vertex together with the vertex adjacent to it, then

η Gð Þ ¼ η Hð Þ

Corollary 19.2.18 LetG1 andG2 be bipartite graphs. If η G1ð Þ ¼ 0, and if the graph

G is obtained by joining an arbitrary vertex ofG1 by an edge to an arbitrary vertexof

G2, then η Gð Þ ¼ η G2ð Þ:

Theorem 19.2.19 (Cvetković et al. 1972)

(i) A path with four vertices of degree 2 in a bipartite graph G can be replaced by

an edge without changing the value of η Gð Þ:
(ii) Two vertices and the four edges of a cycle of length 4, which are positioned in a

bipartite graph G, can be removed without changing the value of η Gð Þ:

Theorem 19.2.20 (Gutman and Sciriha 2001) If T is a tree, then L Tð Þ is either

nonsingular or has nullity one.

Proposition 19.2.21 Let H ¼ Kp,q be a complete bipartite graph on pþ q ¼ n
vertices. Then

χλðHÞ ¼ nλþ 2pq

λ2 � pq
:

Definition 19.2.22 Let H be a labeled graph on n vertices. Let G be a sequence of

n rooted graphs G, G1, : : :, Gn. Then by H(G) we denote the graph obtained by

identifying the root ofGiwith the i-th vertex of H. We call H(G) the rooted product
of H by G.

Figure 19.2 illustrates this construction with H the path on three vertices and

G consisting of three copies of the rooted path on two vertices.

Definition 19.2.23 Given a labeled graph H on n vertices and a sequence G of

n rooted graphs, we define the matrix Aλ H, Gð Þ as follows:
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Aλ H, Gð Þ ¼ aij
� �

Where

aij ¼
GiðλÞ , i ¼ j
�hijGi

0ðλÞ , i 6¼ j
:

�

andA H
�
¼
�
hij

� �
is the adjacency matrix of H.

If, for example,H andG are represented in Fig. 19.2, thenAλ H, Gð Þ ¼ aij
� �

is the

matrix

λ2 � 1 �λ 0

�λ λ2 � 1 �λ
0 �λ λ2 � 1

0
@

1
A:

Lemma 19.2.24 (Ghorbani 2014) Let K and L be rooted graphs, and let K • L
denote the graph obtained by identifying the roots of K and L. Then

χK�L λð Þ ¼ χK λð ÞχL0 λð Þ þ χK0 λð ÞχL λð Þ � λχK0 λð ÞχL0 λð Þ:

Proposition 19.2.25 (Guo et al. 2009) Let v be any vertex (which does not need to
be a cut point) of a graph G with order at least 2. Then

η Gð Þ � 1 � η G� vð Þ � η Gð Þ þ 1:

Theorem 19.2.26 (Guo et al. 2009) Let v be a cut point of a graph G of order n and
G1, G2, : : :, Gs be all components of G� v. If there exists a component, say G1,

among G1, G2, : : :, Gs such thatη G1ð Þ ¼ η G1 þ vð Þ þ 1, then

η Gð Þ ¼ η G� vð Þ � 1 ¼
Xs
i¼1

η Gið Þ � 1:

Fig. 19.2 Rooted product P3 with P2
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Theorem 19.2.27 (Guo et al. 2009) Let v be a cut�point of a graph G of order

n and G1 be a component of G� v:If η G1ð Þ ¼ η G1 þ vð Þ � 1, then

η Gð Þ ¼ η G1ð Þ þ η G� G1ð Þ:

Theorem 19.2.28 (Guo et al. 2009) Suppose G and H are two graphs with

eigenvalues λi 1 � i � nð Þ and μj 1 � j � mð Þ. Then the eigenvalues of Cartesian

product G� H are λi þ μj.
As a corollary of Theorem 19.2.28, we compute the nullity of the hypercube

Hn ¼ K2 � . . .|{z}
n times

�K2. It is a well-known fact that the spectrum ofKn is as follows:

Spec Knð Þ ¼ �1 n� 1

n� 1 1

� �
:

So, the eigenvalues ofH are�1with multiplicity 1. According to Theorem 19.2.28,

Spec K2 � K2ð Þ ¼ �2

1

0

2

2

1

� �
:

By continuing this method, one can see that the spectrum of K2 � 	 	 	 � K2 is:

Spec K2 � 	 	 	 � K2ð Þ

¼

�n 	 	 	 �2 0 2 	 	 	 n

1 	 	 	 n
n� 2ð Þ=2

� �
n

n=2

� �
n

nþ 2ð Þ=2

� �
	 	 	 1

 !
2
��n

�n 2� n 	 	 	 �1 1 	 	 	 n� 2 n

1
n
1

� �
	 	 	 n

n� 2ð Þ=2

� �
n

n=2

� �
	 	 	 n

n� 1

� �
1

 !
2
��n

8>>>>><
>>>>>:

:

This implies the nullity of Kn is as follows:

η Knð Þ ¼
n
n=2

� �
2
��n

0 2
��n

8<
: :

Example 19.2.29 Consider graph Gr, with r hexagons depicted in Fig. 19.3a. By

using Theorem 19.2.19, it is easy to see that η Grð Þ ¼ η Gr�1ð Þ r ¼ 1, 2, . . .ð Þ: By
induction on r, it is clear that η(Gr) ¼ 0. Now consider graphHr (Fig. 19.3b). Since

this graph has a pendent vertex, so by Corollary 19.2.15, η Hrð Þ ¼ η Tr�1ð Þ : Again
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use Theorem 19.2.27 and then we have η Tr�1ð Þ ¼ η Hr�1ð Þ : By continuing this

method we see that η Hrð Þ ¼ η H1ð Þ:H1, has a pendent vertex joined to a hexagon.

Theorem 19.2.28 implies that η H1ð Þ ¼ η P5ð Þ: Corollary 19.2.18 results that

η Hrð Þ ¼ η P5ð Þ ¼ 1:
Here, by using Theorem 19.2.13, we compute the nullity of triangular benzenoid

graph G[n], depicted in Fig. 19.4. The maximum matching of G[n] is depicted in

Fig. 19.5. In other words, to obtain the maximum matching at first we color the

boundary edges, they are exactly 3� n edges. The number of colored vertical edges

in the k�th row is k – 1. Hence, the number of colored vertical edges is 1 + 2 + . . . +
n – 2 ¼ (n � 1) (n – 2) / 2. By summation of these values, one can see that the

number of colored edges are 3n + (n� 1) (n – 2)/2 ¼ (n2 + 3n + 2)/2 which is equal

to the size of maximum matching. This graph has n2 + 4n + 1 vertex, 3 n2 þ 3nð Þ=2
edges and by using Theorem 19.2.13, η G n½ 
ð Þ ¼ n2 þ 4nþ 1� n2 þ 3nþ 2ð Þ
¼ n� 1; thus we proved the following Theorem.

Theorem 19.2.30 η G n½ 
ð Þ ¼ n� 1:

Definition 19.2.31 LetG1 be a graph containing a vertex u, and letG2 be a graph of

order n that is disjoint fromG1. For 1 � k � n, the k-joining graph ofG1 andG2 with

respect to u, denoted by G1 uð Þ
Nk G2, is obtained from G1 [ G2 by joining u and

arbitrary k vertices of G2. Note that in above definition, the graph G1 uð Þ
Nk G2 is

indefinite in some extent, and there are n
k

� �
such graphs. In addition, if G1 is a tree,

thenG1 is called a pendant tree of . . . G1 uð Þ
Nk G2 andG1 uð Þ

Nk G2 is said a graph

with pendant tree. Let ¼ G1

L
G2

L
. . .
L

Gt. Then η Gð Þ ¼
Pn
i¼1

η Gið Þ.

Lemma 19.2.32 (Guo et al. 2009) Let T be a tree containing a vertex v. The
following are equivalent:

1. v is mismatched in T.
2. μ T � vð Þ ¼ μ Tð Þ;.
3. η T � vð Þ ¼ η Tð Þ � 1:

Fig. 19.3 (a) Graph Gr, (b). Graph Hr, (c). Graph Tr�1
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Lemma 19.2.33 (Guo et al. 2009) If v is a quasi-pendant vertex of a tree T, then v is
matched in T.

Lemma 19.2.34 (Guo et al. 2009) If v is a mismatched vertex of a tree T, then for

any neighbor u of v, u is matched in T and is also matched in the component of

T � v that contains u.

.
.
.

.
.
.

1

2

3

n

Fig. 19.4 Graph of

triangular benzenoid G[n]

Fig. 19.5 Graph of

triangular benzenoid G[n]
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19.2.1 Nullity of Graphs with Pendant Trees

Theorem 19.2.1.1 (Guo et al. 2009) Let T be a tree with a matched vertex u and let
G be a graph of order n. Then for each integer k(1 � k � n),

η T uð Þ
O

G
� 	

¼ η Tð Þ þ η Gð Þ:

Corollary 19.2.1.2 (Guo et al. 2009) Let T be a PM-tree and G be a graph of order

n. Then for each integer k ( 1 � k � n ) and for every vertex u2T,

η T uð Þ
Nk G

� 	
¼ η Gð Þ:

Theorem 19.2.1.3 Let T be a tree with a mismatched vertex u and let G be a graph

of order n. Then for each integer k(1 � k � n),

η T uð Þ
Ok

G

 !
¼ η T � uð Þ þ η Gþ uð Þ ¼ η Tð Þ þ η Gþ uð Þ � 1:

In the following Theorem denoted by H means a reduced form of bicyclic

graphs. In other words, in H all paths of length 4 are replaced by an edge.

Theorem 19.2.1.4 Let G be a bicyclic graph as depicted in Fig. 19.6, then

η Gð Þ ¼ Tk k � 2μ Tð Þ þ αv ismatched

Tk k � 2μ Tð Þ � 1þ βv ismismatched

�
;,

where

α ¼
0 2

��n,m
1 2

��n, 2��m
2 2

��n, m
8<
: and β ¼

0H ffi G1, G8

3H ffi G2

1H ffi G3, G4, G5, G6,G7,G9

8<
: ;

and the number of vertices of graph G is denoted by ||G||.

Proof According to Lemma 19.2.32, we should to consider two cases:

• Case 1: v is matched and

α ¼
0 2

��n,m
1 2∤n, 2

��m
2 2

��n, 2∤m
8<
: :

In this case one can see that G ffi T vð Þ
J4Pn [ Pm and so,

η Gð Þ ¼ η Tð Þ þ η Pnð Þ þ η Pmð Þ ¼ Tk k � 2μ Tð Þ þ α:
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• Case 2: v is mismatched:

In this case one can see that

ηðTðvÞ
J4Pn [ PmÞ ¼ ηðT � vÞ þ ηðPn [ Pm þ vÞ

¼ jjTjj � 2μðTÞ þ ηðPn [ Pm þ vÞ � 1

¼ jjTjj � 2μðTÞ þ ηðHÞ � 1

¼ jjTjj � 2μðTÞ þ ηðHÞ � 1:

Let β ¼ η Hð Þ. By Corollary 19.2.17 we have to compute just the nullity of graphs

G1, . . ..,G6 reported in Table 19.1 and this completes the proof.

Suppose G is a unicyclic graph with n vertices and the length of this cycle be l. If
G is a cycle Cl or a cycle Cl with pendent edges at some or all vertices of Cl, we call

G a canonical unicyclic graph. If G is not canonical, G contains at least one pendent

star H1 such thatG
∗
1 ¼ G� H1 is also a unicyclic graph. We call the procedure of

obtaining G –H1 from G a “deleting operator.” With repeated applications of the

“deleting operators,” then a canonical unicyclic graph, denoted by G*, is obtained

from G.

Lemma 19.2.1.5 (Guo et al. 2009) Suppose G is a unicyclic graph with n vertices

and the length of the cycle in G is l. Let G∗ be the graph defined above. Then η
Gð Þ ¼ n� 2v Gð Þ � 1 ifG∗¼ Cl and l is odd,η Gð Þ ¼ n� 2v Gð Þ þ 2 ifG∗¼ Cl and

l ¼ 0 (mod 4), and η Gð Þ ¼ n� 2v Gð Þ otherwise.
Denoted by Cn,l,k means a cycle graph with n vertices, k pendent stars, and

l pendent vertices. We have the following Theorem.

Theorem 19.2.1.6

η Cn, l,kð Þ ¼ Cn, l,kk k � 2k � 2ωþ
�1 2

��n
2 4

��n
0 otherwise

8<
: ;

where ω ¼ max n=2½ 
; lf g.

Fig. 19.6 Two cycles

coincide in a vertex
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Proof By Corollary 19.2.17, one can remove the pendent vertices from G without

changing in nullity of G. In other words, η Gð Þ ¼ η Cl,n,kð Þ. According to Lemma

19.2.33, it is easy to see that

η Gð Þ ¼ n1 � 2ð Þ þ 	 	 	 þ nk � 2ð Þ þ η Cn, lð Þ.

Let ω ¼ max n
2


 �
; l

� 
, then η Cn, lð Þ ¼ nþ l� 2ωþ

�1 2
��n

2 4
��n

0 otherwise

8<
: .

This implies that

η Gð Þ ¼
X k

i¼1
ni � 2k þ nþ l� 2ωþ

�1 2
��n

2 4
��n

0 otherwise

8<
:

¼ Gk k � 2k � 2ωþ
�1 2

��n
2 4

��n
0 otherwise

8<
: :

Suppose Ci is a cycle and putC
*
i ¼ Ci þ ui (a vertex ui is added to cycle Ci). Now

join to k vertices of a star graph on n vertices the graph C�
i . We denote this graph by

Sn,k,l in which l ¼ n – k (as depicted in Fig. 19.7). We also recall a cycle whose

length is an odd number by odd cycle. In the following Theorem we can obtain a

bound for the nullity of Sn,k,l.

Table 19.1 The nullity of graphs G1, . . .,G9
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Theorem 19.2.1.7 Let r be the number of odd cycles in Sn,k,l. Then

1þ lþ 2r � η Sn,k, lð Þ � 1þ lþ 4r:

Proof Let ni be the number of vertices of C�
i . Remove the pendent vertices attached

to r odd cycles. By Corollary 19.2.17 the nullity of resulted graph is the same as G.
On the other hand, the resulted graph is bipartite and so by using Theorem 19.2.13,

it is enough to compute its maximum matching as follows:

μ Gð Þ ¼
X r

i¼1
ni=2½ 
 þ

X k

i¼rþ1

�
ni=2½ 
 � 1

�
:

Since for every integer number x, x� 1 � x½ 
 � x and
X k

i¼1
ni þ lþ 1 ¼ n; then

1

2

X k

i¼1
ni �

X r

i¼1
2 � μ Gð Þ � 1

2

X k

i¼1
ni �

X r

i¼1
1

) 1

2
n� l� 1ð Þ � r � μ Gð Þ � 1

2
n� l� 1ð Þ � r

) 1þ lþ 2r � η Gð Þ � 1þ lþ 4r:

Let Cn be a cycle on n vertices, we recall that η Cnð Þ ¼ 0 if n 6�0 (mod 4) and

η Cnð Þ ¼ 2otherwise. Consider the graphG depicted in Fig. 19.8. If the central cycle

has n vertices and the number of cycles of length 4 s (s¼ 1, 2, . . .) of G ism, then we
show this graph by Cn,m and the nullity of this graph is as follows.

m 1

m 2

m k

Fig. 19.7 The graph Sn,k,l
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Theorem 19.2.1.8 Let n is an even number, then

η Cm, n

� �
¼ nþ 2m� 1þ α;

where,

α ¼ 2 4
��n

0 otherwise

�
:

Proof By Theorem 19.2.13 one can remove all cycles of length s, s6�0 (mod 4) and

by Theorem 19.2.13, one can replace all 4 s (s¼ 1, 2, . . .) with C4. Thus the resulted

graph is composed of a central cycle with n vertices together m cycles C4 attached

to it. Again using Lemma 19.2.3 (vii) results a canonical cycle graph Cn,m together

with m isolated vertices. Since the final graph is bipartite, apply Lemma 19.2.4 and

the proof is completed.

19.2.2 Unicyclic Graphs with a Given Nullity

In this section, we deal with connected unicyclic graphs. Let G be a unicyclic graph

and let C be the unique cycle ofG. For each vertex v2C, denote byG vf g an induced

Fig. 19.8 The graph

G ¼Cn, k
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connected subgraph of G with maximum possible of vertices, which contains the

vertex v and contains no other vertices of C. One can find thatG{v} is a tree andG is

obtained by identifying the vertex v of G vf g with the vertex v on C for all vertices

v2C. The unicyclic graph G is said to be of Type I if there exists a vertex v on the

cycle such that v is matched in G vf g; otherwise, G is said to be of Type II.

Theorem 19.2.2.1 (Guo et al. 2009) Let G be a unicyclic graph and let C be the

cycle of G. If G is of Type I and let v2Cbe matched inG vf g, then η Gð Þ ¼ η G vf gð Þ
þη G� G vf gð Þ: If G is of Type II, then η Gð Þ ¼ η G� Cð Þ þ η Cð Þ:

Corollary 19.2.2.2 (Guo et al. 2009) Let G be a unicyclic graph with η Gð Þ ¼ k,
and letCl be the cycle of G. If G is of Type I and let v2Cl be matched inG vf g, then
η G vf gð Þ þ η G� G vf gð Þ ¼ k. If G is of Type II and l ¼ 0 mod4ð Þ, then η G� Clð Þ
¼ k � 2; otherwise, η G� Clð Þ ¼ k:

Lemma 19.2.2.3 (Guo et al. 2009) Suppose G is a unicyclic graph with n vertices

and the length l of the cycle Cl in G is odd. Then η Gð Þ ¼ n� 2μ Gð Þ � 1 if μ Gð Þ
¼ l�1

2
þ μ G� Clð Þand η Gð Þ ¼ n� 2μ Gð Þ otherwise.

Lemma 19.2.2.4 (Guo et al. 2009) Suppose G is a unicyclic graph with n vertices

and the length l of the cycle Cl in G is even. Ifμ Gð Þ 6¼ l
2
þ μ G� Clð Þor μ Gð Þ

¼ l
2
þ μ G� Clð Þ and l ¼ 2 mod4ð Þ, then η Gð Þ ¼ n� 2μ Gð Þ:

Lemma 19.2.2.5 (Guo et al. 2009) Suppose G is a unicyclic graph with n vertices

and cycle Cl of length l¼0 (mod 4), and μ Gð Þ ¼ l
2
þ μ G� Clð Þ. Let E1 be the set of

edges of G betweenCl andG� Cl and E2be a matching of G with μ Gð Þ edges. Then
η Gð Þ ¼ n� 2μ Gð Þ þ 2 if E1 \M ¼ ∅ for all M2E2, and η Gð Þ ¼ n� 2μ Gð Þ
otherwise.

Theorem 19.2.2.6 Suppose G is a unicyclic graph with n vertices and the cycle in

G is Cl. Let E1be the set of edges of G between Cl and G� Cl and E2 the set of

matchings of G with μ Gð Þ edges. Then

1. η Gð Þ ¼ n� 2 μ Gð Þ � 1if μ Gð Þ ¼ l�1
2
þ μ G� Clð Þ.

2. η Gð Þ ¼ n� 2μ Gð Þ þ 2 if G satisfies properties: μ Gð Þ ¼ l
2
þ μ G� Clð Þ 2,

l ¼ 0 mod4ð Þ, and E1 \M ¼ ∅for all M2E2.

3. η Gð Þ ¼ n� 2μ Gð Þotherwise.

Lemma 19.2.2.7 (Guo et al. 2009) Suppose H is a pendant star of a graph G. Then
μ Gð Þ ¼ μ G0ð Þ þ 1, where G0 ¼ G� H; see Fig. 19.9.

SupposeG is a unicyclic graph with n vertices. Let the length of the cycle inG be

l. If G is a cycle Clor a cycle Cl with pendant edges at some or all vertices of Cl, we

call G a canonical unicyclic graph. If G is not canonical, G contains at least one

pendant star H1 such that G*
1 ¼ G� H1 is also a unicyclic graph. We call the

procedure of obtaining G� H1 from G a “deleting operator.” With repeated
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applications of the “deleting operators,” then a canonical unicyclic graph, denoted

by G*, is obtained from G.

Theorem 19.2.2.8 Suppose G is a unicyclic graph with n vertices and G* is the

graph defined above. Then η Gð Þ ¼ n� 2μ Gð Þ � 1 if and only if η G*
� ��� �� ¼ V G*

� ��� ��
�2μ Gð Þ � 1; η Gð Þ ¼ n� 2μ Gð Þ if and only if η G*

� ��� �� ¼ V G*
� ��� ��� 2μ G*

� �
; and

η Gð Þ ¼ n� 2μ Gð Þ þ 2 if and only if η G*
� ��� �� ¼ V G*

� ��� ��� 2μ Gð Þ þ 2.

Corollary 19.2.2.9 (Guo et al. 2009) Suppose G is a unicyclic graph with

n vertices and the length of the cycle in G is l. Let G* be the graph defined

above. Then Gð Þ ¼ n� 2μ Gð Þ � 1 if G* ¼ Cl and l is odd, η Gð Þ ¼ n� 2μ Gð Þ
þ2if G* ¼ Cl, and l ¼ 0 (mod 4) and η Gð Þ ¼ n� 2μ Gð Þ otherwise.

19.2.3 The Unicyclic Graphs with Extremal Nullity

In this section, we use some results in the past section to characterize the unicyclic

graphs G with η Gð Þ ¼ 0 andn� 5, respectively.

Theorem 19.2.3.1 (Guo et al. 2009) Let G be a unicyclic graph with n vertices (

n � 5) and with η Gð Þ ¼ n� 5. Then G must have the form of U*
4 illustrated in

Fig. 19.7 or G ¼ C5, where r> 0.

Lemma 19.2.3.2 (Guo et al. 2009) Let G be a unicyclic graph with n vertices and

the length l of the cycleCl in G be odd. Then G is nonsingular if and only if G has a

perfect matching or G� Cl has a perfect matching (Fig. 19.10).

Lemma 19.2.3.3 (Guo et al. 2009) Let G be a unicyclic graph with n vertices and

the length l of the cycle Cl in G be even. Then G is nonsingular if and only if

G contains a unique perfect matching or l 6¼ 0 (mod 4) and G has two perfect

matching.

Fig. 19.9 A graph G and a pendant star H of G, where G0 ¼ G� H
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Theorem 19.2.3.4 (Guo et al. 2009) Suppose G is a unicyclic graph and the cycle

in G is denoted by Cl. Then G is nonsingular if and only if G satisfies one of the

following properties:

1. l is odd and G� Cl contains a perfect matching.

2. G contains a unique perfect matching.

3. l 6¼ 0 (mod 4) and G contains two perfect matching.

19.2.4 On the Nullity of Bicyclic Graphs

Call a graph θ p; l; qð Þ (or 1 p; l; qð Þ) the base of the corresponding bicyclic graph

B which contain it. Denote the base of B by ρB. Let P ¼ B� V ρBð Þ. P is said to be

the periphery of B (Fig. 19.11).

Lemma 19.2.4.1 (Cheng and Liu 2007) Let G be a connected graph of order n.
Then r (G) ¼ 2 if and only ifG ¼ Kr,n�r; r Gð Þ ¼ 3 if and only if G ¼ Ka,b,c where

aþ bþ c ¼ n.

Lemma 19.2.4.2 (Tan and Liu 2005) Let B be a bicyclic graph of order n. Then
r Bð Þ ¼ 2 if and only if B ¼ K2,3; r Bð Þ ¼ 3 if and only if B ¼ K4� e, e2E K4ð Þ.

Corollary 19.2.4.3 (Hu et al. 2008; Li 2008) Let B2Bn andB=2 K2,3,K4 � ef g.
Then η Bð Þ � n� 4.

Lemma 19.2.4.4 (Tan and Liu 2005) The bicyclic graphs with rank 4 are θ 1; 2; 3ð Þ
or1 4; 1; 4ð Þ:

Theorem 19.2.4.5 (Tan and Liu 2005) Let B2Bn.

1. η Bð Þ ¼ n� 2 if and only if B ¼ K2,3;

2. η(B) ¼ n� 3 if and only if B ¼ K4�e;

3. η(B) ¼ n� 4 if and only if B ¼ Bi (1 � i � 7) (Fig. 19.12).

Fig. 19.10 The graph U*
4 in Lemma 19.2.3.2
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Theorem 19.2.4.6 (Hu et al. 2008; Li 2008) The nullity set of Bn is [0, n� 2].

Theorem 19.2.4.7 (Hu et al. 2008; Li 2008) Let B be a bicyclic graph satisfying

the following conditions:

(i) η ρBð Þ ¼ 0;

(ii) P is the union of PM-trees.

Then B is a nonsingular bicyclic graph.

Theorem 19.2.4.8 (Tan and Liu 2005) Let G be a connected n-vertex graph with

pendent vertices. Then η Gð Þ¼ n� 4 if and only if G is isomorphic to the graphG*
1 or

G*
2, where G

*
1 is depicted in Fig. 19.13, G*

2 is a connected spanning subgraph of G2

(see, e.g., Fig. 19.13) and contains Kl,m as its subgraph.

Theorem 19.2.4.9 (Tan and Liu 2005) Let G be a connected graph on n vertices

andG has no isolated vertex. Then η Gð Þ¼ n� 5 if and only ifG is isomorphic to the

graph G*
3, or G

*
4, where G*

3 is depicted in Fig. 19.14; G*
4 is a connected spanning

subgraph of G4(see, e.g., Fig. 19.14) and contains Kl,m,p as its subgraph.

Theorem 19.2.4.10 (Tan and Liu 2005) Let T n denote the set of all n-vertex trees.

(i) Let T2T n, then η Tð Þ � n� 2; the equality holds if and only if T ffi Sn.
(ii) Let T2T n � Sn, then η Tð Þ � n� 4, the equality holds if and only if T ffi T1 or

T ffi T2,where T1 and T2 are depicted in Fig. 19.15.

(iii) Let T2T n � Sn, T1, T2f g, then η Tð Þ � n� 6; the equality holds if and only if

T ffi T3 or T ffi T4 or T ffi T5,where T3, T4, T5 are shown in Fig. 19.15.

Corollary 19.2.4.11 (Tan and Liu 2005) The nullity set of T n is {0, 2, 4, . . .,n�
4, n� 2} if n is even, otherwise is{1, 3, 5, . . . ,n� 4, n� 2}.

Let Un denote the set of all n-vertex unicyclic graphs.

Fig. 19.11 Two bicyclic graphs
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Fig. 19.12 Graphs B1–B7 in Theorem 19.2.4.5

Fig. 19.13 Graphs G*
1and G2

Fig. 19.14 Graphs G*
3 and G4
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Theorem 19.2.4.12 LetUn n� 5ð Þ be the set of unicyclic graphs on n vertices. Let
U2Un; then η Uð Þ � n� 4; the equality holds if and only if

G ffi U1 orG ffi U2 or G ffi U3 or G ffi U4 or G ffi U5,

where U1,U2,U3,U4, and U5 are depicted in Fig. 19.16.

Corollary 19.2.4.13 (Tan and Liu 2005) The nullity set ofUn n � 5ð Þ is {0, 1, 2, . . .
,n� 4}.

Here, we compute the eigenvalues of a bridge graph. To do this, let G and H be

two connected graphs, u2V Gð Þ and v2V Hð Þ, respectively. By connecting the

vertices u and v, we obtain a bridge graph denoted by GuvH

Theorem 19.2.4.14

η GuvHð Þ ¼ min η Gð Þ, η G� uð Þf g þmin η Hð Þ, η H � vð Þf g:

Proof It is easy to see that the characteristic polynomial of G can be written as

follows:

χxðGÞ ¼ xηðGÞf ðxÞ,

where f(x) is a polynomial of degree of rank(G). It follows that

χxðHÞ ¼ xηðHÞgðxÞ, χxðG� uÞ ¼ xηðG�uÞhðxÞ and χxðH � vÞ ¼ xηðH�vÞkðxÞ

for some polynomials g(x), h(x), and k(x), respectively. On the other hand, by

Lemma 19.2.3.4, we have

n1
n2 n3

m3m2m1

n4

t1 t2 t3

s1 s2 s3

T1

T4

T2

T5

T3

Fig. 19.15 Graphs T1, T2, T3, T4 and T5

n1

U1 U2 U3 U4 U5 U6

m1
n2

m2n-3
n-4 n-4n-5

Fig. 19.16 Graphs U1,U2,U3,U4,U5 and U6
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χxðGuvHÞ ¼ χxðGÞχxðHÞ � χxðG� uÞχxðH � vÞ:

This leads us to conclude that

χxðGuvHÞ ¼ xηðGÞþηðHÞf 1ðxÞ þ xηðG�uÞþηðH�vÞf 2ðxÞ

for some polynomials f1(x) and f2(x) and this completes the proof.

Corollary 19.2.4.15 In Theorem 19.2.4.13, suppose u and v are cut vertices, G1,

G2, . . ., Gk and H1, H2, . . ., Hk be respectively the components of G-u and H-v in

which

η G1ð Þ ¼ η G1 þ uð Þ þ 1 and η H2ð Þ ¼ η H2 þ vð Þ þ 1

Then

η GuvHð Þ ¼ η Gð Þ þ η Hð Þ:

Let G •H be a graph obtained by coinciding vertex u ofG by vertex v ofH. Then we
have:

Corollary 19.2.4.16
η G � Hð Þ ¼ η Gð Þ þ η Hð Þ þ 1:

Proof By Lemma 19.2.3.4, it is easy to see that

χxðG ∙HÞ ¼ χxðGÞχxðH � vÞ þ χxðG� uÞχxðHÞ
� xχxðG� uÞχxðH � vÞ ¼ xηðGÞþηðH�vÞp1ðxÞ
þ xηðG�uÞþηðHÞp2ðxÞ � xηðG�uÞþηðH�vÞþ1p3ðxÞ,

where p1(x), p2(x), and p3(x) are some polynomials. Clearly we have

ηðG ∙HÞ ¼ minfηðGÞ þ ηðH � vÞ, ηðG� uÞ þ ηðHÞ, ηðG� uÞ þ ηðH � vÞ þ 1g
¼ minfηðGÞ þ ηðHÞ þ 1, ηðGÞ þ ηðHÞ þ 3g
¼ ηðGÞ þ ηðHÞ þ 1:

19.2.5 Some Bounds of Nullity of Graphs

Suppose χ(G), α(G), and ω(G) are the chromatic number, independence number,

and clique number of graph G, respectively. Let Kp be an induced subgraph of G.
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Clearly, rank(G) � p, and so η Gð Þ � n� ω Gð Þ. In Theorem 19.2.5.1, we compute

an upper bound for the nullity of graph G with respect to its chromatic number.

Lemma 19.2.5.1 (Chartrand and Zhang 2008)

ω Gð Þ � 2χ Gð Þ þ α Gð Þ � n� 1:

Theorem 19.2.5.2
η Gð Þ � 2n� 2χ Gð Þ � α Gð Þ þ 1:

Proof Since η Gð Þ � n� ω Gð Þ, by using Lemma 19.2.5.1 the proof is completed.

It is easy to see that the edge set E(G) of G can be partitioned to disjoint

independent sets. Let E Gð Þ ¼ [ s
i¼1Ei be a partition of disjoint elements of E(G),

where ri is the number of parts of size ei ¼ |Ei|, i ¼ 1, 2, . . ., s.

Lemma 19.2.5.3 Let G be a bipartite graph with n � 1 vertices and m edges

without any cycle of length 4 s(s¼ 1, 2, . . .), then

n� 2
m� s� 1ð Þr1e1

rs
� η Gð Þ � n� 2

mþ s� 1ð Þr1
rs þ s� 1ð Þr :

Proof Since es is the size of maximum matching of G,es ¼ μ(G) and then

m ¼ jEðGÞj ¼ r1e1 þ r2e2 þ 	 	 	 þ rsμðGÞ

� rsμðGÞ þ
Xs�1

i¼1

riðμðGÞ � 1Þ �rsμðGÞ þ ðμðGÞ � 1Þðs� 1Þr1:

This implies that

μ Gð Þ � mþ s� 1ð Þr1
rs þ s� 1ð Þr :

For computing the lower bound, it follows that

m ¼
X s

i¼1
riei � s� 1ð Þr1e1 þ rsμ Gð Þ:

Hence,

μ Gð Þ � m� s� 1ð Þr1e1
rs

and the proof is completed.
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Recall that a vertex in graph G is well connected if it is adjacent with other

vertices of G.

Lemma 19.2.5.4 Let v be a well-connected vertex so that G – {v} is a connected

regular graph on n vertices. Then

η Gð Þ ¼ η G� vf gð Þ:

Proof It is easy to see that G ¼ G – {v} + K1. Since G–{v} is regular, so by

Cvetković et al. (1980), rank Gð Þ ¼ rank G� vf gð Þ þ rank K1ð Þ. This implies that

η Gð Þ ¼ nþ 1� rank Gð Þ ¼ nþ 1� rank G� vf gð Þ þ 1½ 
 ¼ η G� vf gð Þ.

Corollary 19.2.5.5 If G satisfies in conditions of Lemma 19.2.5.4, then

η G
� �

¼ 1þ η G� vf gð Þ:

Theorem 19.2.5.6 Let G be connected graph and w be a vertex of G in which N
wð Þ ¼ N uð Þ [ N vð Þ and N uð Þ \ N vð Þ ¼ ϕ for some vertices u and v. Then

η Gð Þ ¼ η G� wf gð Þ:

Proof Let G satisfy in the above conditions and A be adjacency matrix of G.
Clearly, the sum of u-th and v-th rows is equal with w-th row of A, and this

completes the proof.

Corollary 19.2.5.7 Let G be connected graph and w be a vertex of G in which N

wð Þ ¼ [ n
i¼1N uið Þ so that N uið Þ \ N uj

� �
¼ ϕ (1 � i, j � n). Then

η Gð Þ ¼ η G� wf gð Þ:

19.3 Some Classes of Dendrimers

The aim of this section is computing the nullity of some bipartite graphs.

Polymer chemistry and technology have traditionally focused on linear poly-

mers, which are widely in use. Linear macromolecules only occasionally
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contain some smaller or longer branches. In the recent past, it has been found

that the properties of highly branched macromolecules can be very different

from conventional polymers. The structure of these materials has also a great

impact on their applications. First discovered in the early 1980s by Donald

Tomalia and coworkers, these hyperbranched molecules were called

dendrimers. The term originates from “dendron,” meaning a tree in Greek. At

the same time, Newkome’s group independently reported synthesis of similar

macromolecules. They called them arborols from the Latin word “arbor” also

meaning a tree. The term cascade molecule is also used, but “dendrimer” is the

best established one.

Example 19.3.1 (Ghorbani and Songhori 2011) Consider the graph C depicted in

Fig. 19.17. By using Corollary 19.2.18, η Cð Þ ¼ η C1ð Þ , and by Corollary 19.2.17

η C1ð Þ ¼ η C2ð Þ. By continuing this method, one can see that η Cð Þ ¼ η C5ð Þ ¼ 1:
By using above method we can prove the following Theorem.

C C1 C2

C3 C4 C5

Fig. 19.17 2-D graph of dendrimer C
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Theorem 19.3.2 (Ghorbani and Songhori 2011) Consider dendrimer graph S[n]
depicted in Fig. 19.18. Then η S n½ 
ð Þ ¼ 1:

Theorem 19.3.3 (Ghorbani 2014) Consider nanostar dendrimer D[n], then

(Figs. 19.19 and 19.20) η D n½ 
ð Þ ¼ 2n�1, n ¼ 1, 2, . . .

Fig. 19.18 2�D Graph of S
[n]

Fig. 19.19 2�D Graph of

D[n], for n ¼ 3
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D D1 D2

D3 D4 D5

D6 D7 D8

D9 D10

Fig. 19.20 Computing nullity of D[n], for n ¼ 3
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