
Chapter 15

Study of the Bipartite Edge Frustration
of Graphs

Zahra Yarahmadi

Abstract The smallest number of edges that have to be deleted from a graph to

obtain a bipartite spanning subgraph is called the bipartite edge frustration of G and

denoted by φ(G). This topological index is related to the well-known Max� cut

problem, and has important applications in computing stability of fullerenes. In this

paper we determine the bipartite edge frustration of some classes of composite

graphs. Moreover, this quantity for four classes of graphs arising from a given graph

under different types of edge subdivisions is investigated.

15.1 Introduction

The problem of finding large bipartite spanning subgraphs of a given non-bipartite

graph has a long and rich history. The first results were obtained by Erd€os (Erd€os
1965) and Edwards (Edwards 1973), who showed that every graph G on |V(G)|

vertices and |E(G)| edges contains a bipartite subgraph with at least |E(G)|/2 + (|V
(G)|� 1)/4 edges. Those bounds were further improved for various classes of

graphs; for example, the lower bound of (4/5)|E(G)| was established for cubic

triangle-free graphs (Hopkins and Staton 1982) and also for sub-cubic triangle-

free graphs (Bondy and Locke 1986). The best currently known (Cui and Wang

2009) lower bound for cubic, planar, and triangle-free graphs is
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Instead of looking for large bipartite subgraphs of a given graph G, it is

sometimes more convenient to look at the equivalent problem of finding a smallest
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set of edges that must be deleted from G in order to make the remaining graph

bipartite. Borrowing from the terminology of the antiferromagnetic Ising model, the

cardinality of any such set is then called the bipartite edge frustration of a graph.

More formally, let G be a graph with the vertex and edge sets |V(G)| and |E(G)|,

respectively. The bipartite edge frustration of G is then defined as the minimum

number of edges that have to be deleted from G to obtain a bipartite spanning

subgraph. We denote it by φ (G). Clearly, ifG is bipartite, thenφ Gð Þ ¼ 0and φ (G)

is a topological index. It can be easily shown that φ Gð Þ � E Gð Þj j
2

and that the

complete graph on n vertices has the maximum possible bipartite edge frustration

among all graphs on n vertices. Hence, the bipartite edge frustration has properties

that make it useful as a measure of non-bipartivity of a given graph.

Schmalz et al. (1986) observed that the isolated pentagon fullerenes have the

best stability. Because of this success, it is natural to study its vertex version. The

bipartite vertex frustration of G, φ (G), is defined as the minimum number of

vertices that have to be deleted from G to obtain a bipartite subgraph H of

G (Yarahmadi and Ashrafi 2011a). Obviously, if G is not bipartite, then H is not

a spanning subgraph of G and so, H is not in general a large bipartite subgraph ofG.
The quantity φ (G) is, in general, difficult to compute; it is NP-hard for general

graphs. Hence, it makes sense to search for classes of graphs that allow its efficient

computation. Some results in this direction are reported in (Došlić and Vukičević

2007) for fullerenes and other polyhedral graphs and in (Ghojavand and

Ashrafi 2008) for some classes of nanotubes. For mathematical properties of this

new topological index, we refer to (Yarahmadi and Ashrafi 2011b, 2013;

Yarahmadi et al. 2010; Yarahmadi 2010; Ashrafi et al. 2013).

In this chapter, we will present explicit formulas for the bipartite edge frustration

for the Cartesian product, chain, bridge, extended bridge graphs, splice, link,

hierarchical product and its generalization. Also, some inequalities of the

Nordhaus-Gaddum type will be presented. Moreover, four types of graphs resulting

from edge subdivision will be introduced. Two of them, the subdivision graph and

the total graph, belong to the folklore, while the other two were introduced in

(Cvetković et al 1980) and further investigated in (Yan et al. 2007).

15.2 Definitions and Preliminaries

A graph is a pair G¼ (V,E) of points and lines. The points and lines of G are also

called vertices and edges of the graph, respectively. If e is an edge of G, connecting
the vertices u and v, then we write e¼ uv and say “u and v are adjacent.”

Suppose G is a connected graph and x, y 2V(G). The length of a minimal path

connecting x and y is denoted by dG(x, y). It is easy to see that (V(G), dG(x, y)) is a
metric space.

It is well known that the bipartite edge frustration is a measure of stability for the

fullerene molecules; see (Došlić 2005a, b; Fajtlowicz and Larson 2003). Here, a

fullerene is a planar, 3-regular, and 3-connected molecular graph, 12 of whose faces
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are pentagons, and any remaining faces are hexagons. Such molecules are entirely

constructed from carbon atoms. A fullerene is called an isolated pentagon (IP for

short) if its pentagons do not have a common edge.The citation Fajtlowicz (2003)

have been changed to Fajtlowicz and Larson (2003) as per the reference list. Please

check if okay.It is okay.

In this section we introduce the composite graphs that will be considered here

and recall their basic properties relevant for our goal. We start by composite graphs

that arise by splicing, i.e., by identifying certain vertices.

Following Imrich and Klavžar (2000), the Cartesian product G� H of two

graphs G and H is defined on the Cartesian product V Gð Þ � V Hð Þ of the vertex sets

of the factors. The edge set E G� Hð Þ is the set of all edges (u, v)(x, y) for which
either u ¼ x and vy2E Hð Þ or ux2E Gð Þ and v ¼ y. Thus, the vertex and edge sets of
G� H are the following sets: V G� Hð Þ ¼ V Gð Þ � V Hð Þ and E G� Hð Þ ¼
u; vð Þ x; yð Þ �� u ¼ x, vy 2 E Hð Þ, or, ux 2 E Gð Þ, v ¼ y

� �
:

For a sequence G1,G2, . . .,Gn of graphs, we denote G1 � � � � � Gn by
Yn
i¼1

Gi. In

the case that G1 ¼ G ¼ � � � ¼ Gn ¼ G, we denote
Yn
i¼1

Gi by Gn.

The join, Gþ H of graphs G and H with disjoint vertex sets V(G) and V(H ) and

edge sets E(G) and E(H ), is the graph union G [ H together with all the edges

joining V(G) and V(H ). If G ¼ H þ � � � þ H, then we denote G by nH. The graph
∇G is obtained fromG by adding a new vertex and making it adjacent to all vertices

of G. The graph∇G is called suspension of G. Obviously∇G ¼ Gþ K1. A join of

two graphs is bipartite if and only if both graphs are empty, i.e., without edges.

Hence, φ Gþ Hð Þ > 0 if at least one of components contains an edge.

Both Cartesian product and join are standard graph operations. We refer the

reader to monograph of Imrich (2000) for more information on those products.

The complement G of graph G has V(G) as its vertex set, and two vertices are

adjacent in G if and only if they are not adjacent in G.
Let Gif gn

i¼1 be a set of finite pair wise disjoint graphs with vi2V Gið Þ. The bridge
graph B ¼ B G1,G2, . . . ,Gn, v1, v2, . . . , vnð Þ is the graph obtained from the graphs

G1,G2, . . .,Gn by connecting the vertices vi and viþ1 by an edge, for all

i ¼ 1, 2, . . . , n, as shown in Fig. 15.1. We abbreviate the notation to B(G1,

G2, . . .,Gn) when the vertices vi are clear from context.

The extended bridge graph EB(G,H1,H2, . . .,Hn; v1, . . ., vn) of G and Hif gn
i¼1

with respect to vif gn
i¼1 is constructed by identifying the vertex vi in G and Hi, for all

i ¼ 1, 2, � � �, n. An example is shown in Fig. 15.2.

Let Gif gn
i¼1 be a set of finite pairwise disjoint graphs with vi, wi2V Gið Þ. The

chain graph C ¼ C G1,G2, . . . ,Gn, v1, w1, . . . , vn,wnð Þ of Gif gn
i¼1 with respect to

the vertices vi, wif gn
i¼1 is the graph obtained from graphs G1,G2, . . .,Gn by identi-

fying the vertex wi with viþ1, for all i ¼ 1, 2, . . . , n, as shown in Fig. 15.3.

Again, the dependence on v1, v2, . . ., vn and w1,w2, . . .,wn will be often omitted

in notation. The above classes of graphs were considered in Mansour and

Schork (2009).
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Let G and H be two simple and connected graphs with disjoint vertex sets. For

given vertices a2V Gð Þ and b2V Hð Þ, a splice of G and H is defined as the graph,

(G.H)(a, b) obtained by identifying the vertices a and b. Similarly, a link of G and

H is defined as the graph (G~H)(a, b) obtained by joining a and b by an edge. The

splices and links considered in (Došlić 2005a, b) could be viewed as their special

cases.

The following theorem immediately concludes.

Theorem 15.2.1 Let G and H be two simple and connected graphs with disjoint
vertex sets. For each a2V Gð Þ and b2V Hð Þ, the bipartite edge frustration of splice
and link of G and H are obtained as follows:

G

H1 H2 Hn

v1 v2 vn

Fig. 15.2 The extended bridge graph

G1 G2 Gnv1

v2 v3 vn

w1 w2 wn-1

wn

Fig. 15.3 The chain graph

G1 G2 Gn

v1
v2 vn

Fig. 15.1 The bridge graph
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1. φ G:Hð Þ a, bð Þð Þ ¼ φ Gð Þ þ φ Hð Þ;
2. φ G e Hð Þ a, bð Þð Þ ¼ φ Gð Þ þ φ Hð Þ:

Now we extend the above operations, for splice of G and H by identifying two
vertices and for link G and H by joining two vertices as the following definition.

Definition 15.2.2 Let G and H be two simple and connected graphs with disjoint

vertex sets. For given vertices a, b2V Gð Þ and c, d2V Hð Þ, a double splice of G and

H is defined as the graph (G :H )(a, b : c, d) obtained by identifying the vertices a

and c and vertices b and d. Similarly, a double link of G and H is defined as the

graph G � Hð Þ a, b : c, dð Þ obtained by joining a and c by an edge and b and d by

another edge. A double splice and double link of two graphs are shown schemat-

ically in Fig. 15.4.

A new operation on graphs is hierarchical product, because of the strong

(connectedness) hierarchy of the vertices in the resulting graphs, see Barriére

et al. (2009a). In fact, the obtained graphs turn out to be subgraphs of the Cartesian

product of the corresponding factors. Some well-known properties of the Cartesian

product, such as reduced mean distance and diameter, simple routing algorithms

and some optimal communication protocols are inherited by the hierarchical prod-

uct. Let Gi¼ (Vi,, Ei) be N graphs with each vertex set Vi, 1� i�N, having a

distinguished or root vertex, labeled 0. The hierarchical product H ¼ GNΠ . . .Π
G2ΠG1 is the graph with vertices the N� tuples xN . . . x2 x1, xi2Vi, and edges

defined by the adjacencies:

xN . . . x2x1 �

xN . . . x3x2y1 if y1 � x1 in G1

xN . . . x3y2x1 if y2 � x2 in G2 and x1 ¼ 0,

xN . . . y3x2x1 if y3 � x3 in G3 and x1 ¼ x2 ¼ 0,

⋮ ⋮
yN . . . x3x2x1 if yN � xN in GN and x1 ¼ x2 ¼ � � � ¼ xN�1 ¼ 0

8>>>><>>>>:
Notice that the structure of the obtained product graph H heavily depends on the

root vertices of the factors Gi for 1� i�N. Also, if |Vi|¼ ni and |Ei|¼mi, the

G H

a

b

c

d

G H

(i) (ii)

Fig. 15.4 The double splice and double link
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number of vertices of H is nN . . . n2 n1 and the number of edges is equal to

mN þ
XN�1

i¼1

YN

j¼iþ1
njmi.

Note also that the hierarchical H ¼ GNΠ . . .ΠG2ΠG1 is simply subgraph of

classical Cartesian productGN � � � � � G2 � G1. Although the Cartesian product is

both commutative and associative, the hierarchical product has only the second

property, provided that the root vertices are conveniently chosen (in the natural

way).

A natural generalization of the hierarchical product, proposed in Barriére

et al. (2009b), is as follows: Given N graphs Gi¼ (Vi,Ei) and (nonempty) vertex

subsets Ui � Vi, for 1� i�N� 1, the generalized hierarchical product Hg ¼ GN

Π . . .ΠG2 U2ð ÞΠG1 U1ð Þ is the graph with vertex set VN � � � � � V2 � V1 and

adjacencies:

xN . . . x2x1 �

xN . . . x3x2y1 if y1 � x1 in G1,

xN . . . x3y2x1 if y2 � x2 in G2 and x12U1,

xN . . . y3x2x1 if y3 � x3 in G3 and xi2Ui for i ¼ 1, 2,

⋮ ⋮
yN . . . x3x2x1 if yN � xN in GN and xi2Ui for i ¼ 1, 2, . . . ,N:

8>>>><>>>>:
Now, we define four related graphs, for a connected graph G, as follows:

1. S(G) is the graph obtained by inserting an additional vertex in each edge of G.
Equivalently, each edge of G is replaced by a path of length 2.

2. R(G) is obtained from G by adding a new vertex corresponding to each edge of

G and then joining each new vertex to the end vertices of the corresponding

edge. Another way to describe R(G) is to replace each edge of G by a triangle.

3. Q(G) is obtained from G by inserting a new vertex into each edge of G and then

joining with edges those pairs of new vertices on adjacent edges of G.
4. T(G) has as its vertices, the edges and vertices of G. Adjacency in T(G) is

defined as adjacency or incidence for the corresponding elements of G.

The graphs S(G) and T(G) are called the subdivision and total graphs of G,
respectively; see Fig. 15.5.

Let F be one of the symbols S, R, Q, or T. The F� sum G+F H is a graph with

the set of vertices V GþFHð Þ ¼ V Gð Þ [ E Hð Þð Þ � V Hð Þ, and two vertices (u1, u2)
and (v1, v2) of G+F H are adjacent if and only if [u1¼ v1 2 V(G) and (u2, v2) 2 E
(H )] or [u2¼ v2 and (u1, v1) 2 E(F (G))]. In an exact phrase,

E(G+F H )¼ {((u1, u2), (v1, v2))|[u1¼ v1 2 V(G) and (u2, v2) 2 E(H )] or [u2¼ v2
and (u1,v1) 2 E(F (G))]}.

Note that G+F H has |V(H )| copies of the graph F (G), and we may label these

copies by vertices of H. The vertices in each copy have two situations: the vertices

in V(H ) (we refer to these vertices as black vertices) and the vertices in E(G)

(we refer to these vertices as white vertices). Now we join only black vertices with

the same name in F(G) in which their corresponding labels are adjacent in H. We
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illustrate this definition in Fig. 15.6. For more details on these operations we refer

the reader to Eliasi and Taeri (2009).

It is obvious from the definition that the bipartite edge frustration of a discon-

nected graph is equal to the sum of bipartite edge frustration of its components.

Hence, it suffices to consider connected graphs. The following observation shows

that this type of additive behavior extends also to the graphs with cut-vertices. We

will find it useful when dealing with some classes of composite graph introduced

above.

Lemma 15.2.3 Let v2V Gð Þ be a cut-vertex of a graph G and Gi, i ¼ 1, . . . , s be

the components of G� vf g. Thenφ Gð Þ ¼
X s

i¼1
φ G Gi [ vf g½ �ð Þ. Here G Gi [ vf g½ �

denotes the graph induced in G by V Gið Þ [ vf g.
The notation we used for a graph induced by a certain set of vertices should not

be confused with a similar notation used for composition; here in the square

brackets is a set of vertices, while in the composition case there is a whole graph.

We close the section by formulas for the bipartite edge frustration of cycles and

complete graphs.

φ Cnð Þ ¼ 1� �1ð Þn
2

and φ Knð Þ ¼ n� 1

2

� �
n� 1

2

� �

A graph G The graph S(G)

The graph Q(G) The graph T(G)

The graph R(G)

Fig. 15.5 The graph G together with its subdivision S(G), total graph T(G) and the related graphs

R(G) and Q(G)
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15.3 The Bipartite Edge Frustration of Some Composite
Graphs

The three classes of graphs considered in this section share a certain number of

similarities that enable their synoptic treatment. In both chain and bridge graphs their

building blocks are so well isolated from each other that their bipartite edge frustrations

can be computed separately and then added in order to obtain the bipartite edge

frustration of the whole graph. All interaction between components of a bridge graph

is via its path backbone, which is itself bipartite. If the backbone is replaced by a

non� bipartite scaffold, as in the case of extended bridges, the only additional compli-

cation is to compute the bipartite edge frustration of the scaffold graph. This results in

(at most) one additional term in the formula for the total bipartite edge frustration.

Theorem 15.3.1

1. Let G ¼ C G1;G2; . . . ;Gnð Þ be a chain graph. Then φ Gð Þ ¼
Xn

i¼1
φ Gið Þ:

2. Let G ¼ B G1;G2; . . . ;Gnð Þ be a bridge graph. Then φ Gð Þ ¼
Xn

i¼1
φ Gið Þ

(s,v) (r,v)

(r,w)

(r,v)

(r,w)
(t,w)

(t,v)

(t,w)

(t,v)
(u,v)

(r,v) (t,v) (u,v) (r,v) (t,v) (u,v)

(u,w)

(u,v)

(u,w)

(r,w) (t,w) (4,6) (r,w) (t,w) (u,w)

(e,v)

s r t u v w
e f g

(e,w) (f,w)

G +S H

(g,w) (e,w) (f,w)
G +Q H

(g,w)

(e,w) (f,w)

G +R H

(g,w) (e,w) (f,w)

G +T H

(g,w)

(f,v) (g,v)
(e,v) (f,v) (g,v)

(e,v) (f,v) (g,v) (e,v) (f,v) (g,v)

The graph G The graph H

(s,w)

(s,v)

(s,w)

(s,v)

(s,w)

(s,v)

(s,w)

Fig. 15.6 The graphs G, H and G+F H
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3. Let K ¼ EB G, H1,H2, . . . , Hnð Þ be an extended bridge graph. Then

φ Kð Þ ¼ φ Gð Þ þ
Xn

i¼1
φ Hið Þ:

The results of this subsection can be specialized in a straightforward way to the

cases where all building blocks are identical, yielding the explicit formulas for the

bipartite edge frustrations of rooted products of two graphs. Similarly, the results for

chain graphs remain valid without any modifications also for splices of two or more

graphs and for generalized cactus graphs. The results and proofs follow directly from

Lemma 15.2.3, and we leave their formulation and proofs to the reader.

The Cartesian product gives rise to many interesting classes of graphs, such as

lattices, tubes, tori, Hamming graphs, and hypercubes, to mention just a few

examples.

Theorem 15.3.2. Let G1, G2, . . ., Gs be connected graphs and G ¼Q s
i¼1 Gi. Then

φ Gð Þ ¼
Y s

i¼1

��V Gið Þ��Xs
j¼1

φ Gj

	 

V Gj

	 
�� ��:
In special case, let B be a bipartite graph on n vertices. Then for any graph G, we
haveφ B� Gð Þ ¼ nφ Gð Þ.This case covers the linear polymersPn � G induced by an

arbitrary graph G. Also, for a non-bipartite graph G on n vertices,

ϕ Gsð Þ ¼ ns�1ϕ Gð Þ.
We present explicit formulas for the bipartite edge frustration of C4 nanotubes

and nanotori in the following example.

Example

(a) φ Pn � C2mþ1ð Þ ¼ n;
(b) φ C2n � C2mþ1ð Þ ¼ 2n;
(c) φ C2nþ1 � C2mþ1ð Þ ¼ 2 mþ nþ 1ð Þ:

We have already mentioned that G1 þ G2 is non-bipartite as soon as any of its

components contains an edge. It is intuitively clear that joins are “very much”

non-bipartite, and our findings confirm this feeling.

Theorem 15.3.3 Let G1 and G2 be two connected bipartite graphs with bipar-

titions (A1, B1) and (A2, B2), respectively. Let us denote ai ¼
��Ai

�� and bi ¼
��Bi

��,
i ¼ 1, 2 and let ai � bi for i ¼ 1, 2, Fig. 15.7. Then

φ G1 þ G2ð Þ � min
�
a1a2 þ b1b2, a1b2 þ b1a2, a1

��V G2ð Þ��þ ��E G2ð Þ��, a2��V G1ð Þ��þ ��E G1ð Þ��,��E G1ð Þ��þ ��E G2ð Þ���:
Now, the logical thing to do would be to proceed and show that the above upper

bound is always achieved. The next example shows that this cannot be done in all
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cases. Take K5, 50 and attach a path of length 4 to its smaller class by identifying one

of its end-vertices with any vertex of the smaller class. Denote the obtained bipartite

graph by G1, and its bipartition by (A1,B1). Obviously, a1 ¼ 7, b1 ¼ 52, and��E G1ð Þ�� ¼ 254. Call the vertices from the path exceptional. Take K8, 9 and call it

G2. Now consider G ¼ G1 þ G2 as shown in Fig. 15.8. By computing all terms of

the right-hand side of the inequality of Theorem 15.3.3 it follows that the minimum

is achieved

For a1
��V G2ð Þ��þ ��E G2ð Þ�� ¼ 191. Hence G can be made bipartite by deleting

119 edge between A1 and G2 and 72 edges of G2. Let us denote so obtained bipartite

graph by G0. Now take any two vertices of A2 and connect them to the two

exceptional vertices of A1 by all four possible edges. The new edges are shown

by dashed lines in Fig. 15.8. The resulting graph is not bipartite, but it can be made

bipartite by removing the three edges connecting the exceptional vertices of A1 with

the exceptional vertices in B1. The total result is a bipartite spanning subgraph of

G1 þ G2 obtained by deleting 190 edges, a strictly smaller number than the

minimum of the right-hand side of the inequality of Theorem 15.3.3. With some

care the number of vertices in the example could be made smaller, but this is not

essential for our conclusion. The inequality of Theorem 15.3.3 can be converted to

equality when the minimum of the right-hand side is equal to jEðG1Þj þ jEðG2Þj.

Theorem 15.3.4 Let G be a connected bipartite graph on n vertices. Then

φ ∇Snð Þ � φ ∇Gð Þ � φ ∇Pnð Þ:

a1 a2

b1 b2

G1
G2

Fig. 15.7 A join of two

bipartite graphs.
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The bipartite edge frustration of corona products can be neatly expressed when

the non� scaffold graph is bipartite. Again, the result crucially depends on the

formula for the bipartite edge frustration of a suspension.

Let us mention to the bipartite edge frustration of double splice and double link

of graphs. At first we define a concept that is used for proving the next theorems.

Definition 15.3.5 Let G be a graph. For a, b2V Gð Þ, φa,b(G) is the smallest

number of edges that have to be deleted from a graph G to obtain a bipartite

spanning subgraph such that a and b are occurred in the same partition. Similarly,

we define φ
0
a;b(G), for eacha, b2V Gð Þ, as the smallest number of edges that have to

be deleted from a graph G to obtain a bipartite spanning subgraph such that a and

b are occurred in the different partitions. It is easy to show that

φ Gð Þ ¼ min φa,b Gð Þ, φ0
a,b Gð Þ� �

:

Example

1. φa,b Pnð Þ ¼ 0

1

2
��d a; bð Þ
2
��d a; bð Þ

�
, φ

0
a,b Pnð Þ ¼ 1

0

2
��d a; bð Þ
2
��d a; bð Þ

�
;

2. φa,b C2nð Þ ¼ 0

1

2
��d a; bð Þ
2
��d a; bð Þ

�
, φ

0
a,b C2nð Þ ¼ 1

0

2
��d a; bð Þ
2
��d a; bð Þ

�
;

3. φa,b C2nþ1ð Þ ¼ φ
0
a,b C2nþ1ð Þ ¼ φ C2nþ1ð Þ; for each a, b2V C2nþ1ð Þ;

4. φa,b Knð Þ ¼ φ
0
a,b Knð Þ ¼ φ Knð Þ; for each a, b2V Knð Þ:

Remark Let G and H be two graphs. If ab2E Gð Þ and cd2E Hð Þ, then these edges

are identified in double splice graph (G :H )(a, b : c, d ). In this case, the number of

edges of (G :H )(a, b : c, d) is equal to E G : Hð Þ a, b : c, dð Þð Þj j ¼ E Gð Þj j þ E Hð Þj j � 1.

50
9

5
8

G1 G2

Fig. 15.8 A graph for which the inequality of Theorem 15.3.3 remains strict
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Otherwise, E G : Hð Þ a, b : c, dð Þð Þj j$$ ¼ E Gð Þj j þ E Hð Þj j. In double splice graph

when the vertices a and c are identified, we can certainly assume that u¼ a¼ b, by
similar argument we assume v¼ c¼ d. Indeed we can assume that,

u, v2V Gð Þ \ V Hð Þ. We abbreviate the notation to (G :H ) when the vertices u, v
2V Gð Þ \ V Hð Þ are clear from context.

In the following theorems formulas for the bipartite edge frustration of double

splice and double link of two graphs are computed.

Theorem 15.3.6 Let G and H be two graphs. For each u, v2V Gð Þ \ V Hð Þ such
that E G : Hð Þ a, b : c, dð Þð Þj j ¼ E Gð Þj j þ E Hð Þj j, we have

φ G : Hð Þð Þ ¼ min φu,v Gð Þ þ φu,v Hð Þ, φ0
u,v Gð Þ þ φ

0
u,v Hð Þ

n o
:

Theorem 15.3.7 Let G and H be two graphs. For each u, v2V Gð Þ \ V Hð Þ such
that E G : Hð Þ a, b : c, dð Þð Þj j ¼ E Gð Þj j þ E Hð Þj j � 1, we have

φ G : Hð Þð Þ ¼ min φu,v Gð Þ þ φu,v Hð Þ � 1, φ
0
u,v Gð Þ þ φ

0
u,v Hð Þ

n o
:

Lemma 15.3.8 Let G be a connected graph. If G0 be a bipartite subgraph of G
by deleting φ (G) edges, then G0 is connected.

In the following we obtain formulas for the bipartite edge frustration of double

link of graphs.

Theorem 15.3.9 Let G and H be two graphs. If a , b2V Gð Þ and c, d2V Hð Þ, then
1. If φa,b Gð Þ ¼ φ Gð Þ, φc,d Hð Þ ¼ φ Hð Þ	 


or φ
0
a,b Gð Þ ¼ φ Gð Þ, φ0

c,d Hð Þ ¼ φ Hð Þ	 

,

then φ G � Hð Þ a, b : c, dð Þð Þ ¼ φ Gð Þ þ φ Hð Þ:
2. If φa,b Gð Þ ¼ φ Gð Þ, φ0

c,d Hð Þ ¼ φ Hð Þ	 

or φ

0
a,b Gð Þ ¼ φ Gð Þ, φc,d Hð Þ ¼ φ Hð Þ	 


,

then φ G � Hð Þ a, b : c, dð Þð Þ ¼ φ Gð Þ þ φ Hð Þ þ 1:

For the sake of completeness, we mention here a theorem of Došlić and

Vukičević as follows:

Definition 15.3.10 Let G and H be two connected graphs on disjoint vertex sets,

and let a2V Gð Þ and b2V Hð Þ An n-link of G and H is a graph obtained by

connecting the vertices a and b by a path of length n so that each of these vertices

is identified with one of the terminal vertices of Pn. We denote n-link of G and H by

GenHð Þ a, bð Þ.

Theorem 15.3.11 Let G and H be two connected graphs with disjoint vertex sets.
For each a2V Gð Þ and b2V Hð Þ, the bipartite edge frustration of n-link of G and H
is obtained as follows:
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φ GenHð Þ a, bð Þð Þ ¼ φ Gð Þ þ φ Hð Þ:

Definition 15.3.12 Let G and H be two simple and connected graphs with disjoint

vertex sets. For given vertices a , b2V Gð Þ and c, d2V Hð Þ, a m, nð Þ� link of G and

H is defined as the graph G�m,nHð Þ a, b : c, dð Þobtained by joining a and c by a path
of length m and b and d by another path of length n; see Fig. 15.9.

The following theorem can be proved in much the same way as Theorem 15.3.9.

Theorem 15.3.13 Let G and H be two graphs and a , b2V Gð Þ and c, d2V Hð Þ .
Then

1. If φa,b Gð Þ ¼ φ Gð Þ, φc,d Hð Þ ¼ φ Hð Þ	 

or φ

0
a,b Gð Þ ¼ φ Gð Þ, φ0

c,d Hð Þ ¼ φ Hð Þ	 

and m + n be an even number, then φ G�m,nHð Þ a, b : c, dð Þð Þ ¼ φ Gð Þ þ φ Hð Þ:

2. If φa,b Gð Þ ¼ φ Gð Þ, φc,d Hð Þ ¼ φ Hð Þ	 

or φ

0
a,b Gð Þ ¼ φ Gð Þ, φ0

c,d Hð Þ ¼ φ Hð Þ	 

and m+ n be an odd number, then

φ G�m,nHð Þ a, b : c, dð Þð Þ ¼ φ Gð Þ þ φ Hð Þ þ 1:

3. If φa,b Gð Þ ¼ φ Gð Þ, φ0
c,d Hð Þ ¼ φ Hð Þ	 


or φ
0
a,b Gð Þ ¼ φ Gð Þ, φc,d Hð Þ ¼ φ Hð Þ	 


and m+ n be an even number, then

φ G�m,nHð Þ a, b : c, dð Þð Þ ¼ φ Gð Þ þ φ Hð Þ þ 1:

4. If φa,b Gð Þ ¼ φ Gð Þ, φ0
c,d Hð Þ ¼ φ Hð Þ	 


or φ
0
a,b Gð Þ ¼ φ Gð Þ, φc,d Hð Þ ¼ φ Hð Þ	 


and m+ n be an odd number, then φ G�m,nHð Þ a, b : c, dð Þð Þ ¼ φ Gð Þ þ φ Hð Þ:
Finally, we address the study bipartite edge frustration of the hierarchical product of

two or more graphs. Some natural generalizations of the hierarchic product are

proposed and we consider the bipartite edge frustration of this generalization.

Theorem 15.3.14 Let Gi¼ (Vi,Ei) be N graphs with each vertex set Vi, i ¼1,
2,. . ., N, and H ¼ GNΠ� � �ΠG2ΠG1. Then the bipartite edge frustration of H is
obtained as follows:

φ Hð Þ ¼ φ GNð Þ þ
XN�1

i¼1

YN
j¼iþ1

Vj

�� �� !
φ Gið Þ:

G

a

b

c

d

H

Pm

Pn

Fig. 15.9 The m, nð Þ�link
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Theorem 15.3.15 Let f"or i¼ 1, 2,. . ., N, Gi be a graph and for i¼ 1, 2, . . ., N – 1,
Ui � Vi and Hg ¼ GNΠ . . .ΠG2 U2ð ÞΠG1 U1ð Þ. The bipartite edge frustration of

Hg is computed as follows:

φ Hg

	 
 ¼XN�1

i¼2

φ Gið Þ
Yi�1

k¼1

��Uk

�� YN
j¼iþ1

Vj

�� �� !
þ
YN
s¼2

��Vs

��φ G1ð Þ þ
YN�1

s¼1

Usj jφ GNð Þ:

Corollary 15.3.16 Let Gi¼ (Vi, Ei) be N graphs and (nonempty) vertex subsets

Ui � Vi, for 1� i�N– 1. Then the following statements are equivalent:

1. For each i¼ 1, 2, . . .,N, Gi is bipartite.

2. The graph H ¼ GNΠ . . .ΠG2ΠG1 is bipartite.

3. The graph Hg ¼ GNΠ . . .ΠG2 U2ð ÞΠG1 U1ð Þ is bipartite.

15.4 The Bipartite Edge Frustration of Graphs Under
Subdivided Edges and Their Related Sums

In this section, the bipartite edge frustration of two related graphs S(G) and R(G)

are computed generally. We also investigate the φ(Q(G)) in the case that G is a tree

or graph with disjoint cycles. A lot of sharp inequalitiesfor φ(Q(G)) together with a

simple inequality for φ(T(G)) are also proved.

Lemma 15.4.1 Let G be a graph, then

1. φ(S(G))¼ 0,
2. φ(R(G))¼ |E(G)|.

Corollary 15.4.2 Let G be a connected graphs on n vertices, then

φ R Tnð Þð Þ � φ R Gð Þð Þ � φ R Knð Þð Þ;

where Tn is an arbitrary n-vertex tree.

Lemma 15.4.3 Let G be a graph, then φ Q Gð Þð Þ 	
X
v2V Gð Þ

φ Kδ vð Þþ1

	 

:

One can show that if G be a tree or a graph with disjoint cycles, then

φ Q Gð Þð Þ ¼
X
v2V Gð Þ

φ Kδ vð Þþ1

	 

:.

A transformation of type A for a tree is defined as follows. Let T be a tree with

n vertices. Choose a maximum path Pm+1 in T of length, say m. Remove an end

vertex of T (which is not in Pm+1) and connect a new vertex to one of the end

vertices of Pm+1 to obtain Pm+2. This new tree is denoted by T1. In Fig. 15.10, this
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process is applied on T (three times) to obtain T1, T2 and T3. Clearly, if T is a path

then T1 is equal to T. Notice that Ti’s are not uniquely constructed.

We now define a transformation of type B for trees. To do this, we assume that

T is a tree with n vertices. Suppose v is a vertex of maximum degree and δT (v)¼Δ
(T). Omit an end vertex of T which is not adjacent to v and add a new vertex

adjacent to this vertex. This new tree is denoted by T1. It is obvious that δT
1 (v)¼Δ

(T) +1. Clearly, if T is a star then T1 is isomorphic to T. In Fig. 15.11, this process is
applied on T (three times) to obtain T1, T2 and T3. Notice that Ti’s are not uniquely
constructed, but after finishing the process we will find a star of size |V(T )|.

By using these transformations, it is easy to show that, for a tree T,

φ Q T1ð Þð Þ � φ Q Tð Þð Þ � φ Q T1
	 
	 


;

where T1 is a tree constructed from T transformation of type A and T1 is a tree

constructed from T transformation of type B. By using this result, one can see that

� � � � φ Q Tið Þð Þ � � � � � φ Q T2ð Þð Þ � φ Q T1ð Þð Þ � φ Q Tð Þð Þ
and

φ Q Tð Þð Þ � φ Q T1
	 
	 
 � φ Q T2

	 
	 
 � � � � � φ Q Ti
	 
	 
 � � � �

By an inductive argument, one can see that there exists a positive integer m such

that Tm¼Pn and there exists a positive integer k such that Tk¼ Sn. Therefore, this
argument proved the following theorem.

T T1

T3 T2

Fig. 15.10 Three transformations of type A for tree T
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Theorem 15.4.4 Let T be a tree on n vertices, then

φ Q Pnð Þð Þ � φ Q Tð Þð Þ � φ Q Snð Þð Þ:

Hence it is clear thatφ Q Pnð Þð Þ � φ Q Tð Þð Þ � φ Q Knð Þð Þ, and it is straightforward to
prove that φ Q Gð Þð Þ � φ Q Tð Þð Þ � φ Q Gð Þð Þ þ ��E Gð Þ��.
Theorem 15.4.5 Let G and H be two graphs then

φ G þ FHð Þ ¼ V Gð Þj jφ Hð Þ þ V Hð Þj jφ F Gð Þð Þ:

15.5 Results of the Nordhaus-Gaddum Type

A Nordhaus-Gaddum-type result is a lower or upper bound on the sum or product of

an invariant of a graph and its complement. It is named after a paper (Nordhaus and

Gaddum 1956) in which Nordhaus and Gaddum gave sharp bounds on the sum and

product of the chromatic numbers of a graph and its complement. Since then such

results were obtained for many other invariants. A trivial lower bound φ Gð Þ þ φ

G
	 
 	 1 is valid for all graphs on more than five vertices. It follows from Ramsey’s

theorem, since at least one of G and G contains a triangle if G has at least six

vertices.

T T 1

T 2T 3

Fig. 15.11 Three transformations of type B for tree T
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We start with the following simple observation: Let G be a graph and e an edge

not in E (G). Thenφ Gþ eð Þ � φ Gð Þ þ 1. In other words, adding an edge to a graph

cannot increase its bipartite edge frustration by more than one. By the same

reasoning, one can establish that φ Gþ e1 þ � � � þ ekð Þ � φ Gð Þ þ k for any choice

e1, . . ., ek of edges not in E (G).

Now we tackle the reverse problem: what happens to φ (G) if we delete edges

from G? It is intuitively clear that the answer depends on the density of edges in G;
for graphs rich in edges, each edge removal will affect the value of φ (G), while for

graphs with few edges, the removal is less likely to have an effect.

Theorem 15.5.1 Let G ¼ Kn � e1; . . . ; elf g:
1. If l � nþ1

4

� 
; then φ Gð Þ ¼ φ Knð Þ � l:

2. If l > nþ1
4

� 
; then φ Knð Þ � l � φ Gð Þ � φ Knð Þ � nþ1

4

� 
:

Let us now consider G ¼ Kn � e1; . . . ; elf g: Then

G ¼ Kn � elþ1; . . . ; e n
2

� �
8>><>>:

9>>=>>;: We can relabel the edges of G by subtracting

l from their labels, so that G can be written as G ¼ Kn � e1; . . . ; esf g:, where
s ¼ n

2

� �
� l. It is easy to see that at least one of the numbers l and s must exceed

the critical value nþ1
4

� 
. Depending on whether the other one also exceeds it or not,

we have three different situations. Two of them are symmetric, hence it suffices to

consider only one of them. We look at the case l � nþ1
4

� 
and s > nþ1

4

� 
first. By

Theorem 10 it immediately follows that

φ Gð Þ þ φ G
	 
 � 2φ Knð Þ � nþ 1

4

� �
� ��E G

	 
��:
Finally, when both l, s > nþ1

4

� 
, we obtain

φ Gð Þ þ φ G
	 
 � 2φ Knð Þ � 2

nþ 1

4

� �
:

In general case, when nothing is known on the value of E (G), we have an upper

bound equal to the worst case, i.e., to the maximum of the above three expressions.

By plugging in the formula for φ (Kn) and rearranging the terms, we obtain an upper

bound valid for all graphs.

Theorem 15.5.2

φ Gð Þ þ φ G
	 
 � 2

n� 1

2

� �
n� 1

2

� �
� nþ 1

4

� �
�min

��E Gð Þ��, ��E G
	 
��, nþ 1

4

� �� �
:
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For a bipartite graphφ Gð Þ þ φ G
	 
 ¼ φ G

	 

. By combining this fact with the above

results, we can determine the bipartite edge frustration of complements of some

graphs with (relatively) few edges.

Example

1. Let Tn be a tree n 	 7 vertices. Then φ Tn

	 
 ¼ n�1
2

� 
n�1
2

� �� n� 1ð Þ:
2. Let Cn be a tree n 	 10 vertices. Then φ Cn

	 
 ¼ n�1
2

� 
n�1
2

� �� n:

It is tempting to think of φ G
	 


as of a measure of bipartivity of a given bipartite

graph G: the more frustration a bipartite graph leaves to its complement, the more

bipartite it is. Based on this idea, we could say that the trees are the “most bipartite”

among all connected graphs on the same number of vertices.
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Cvetković DM, Doob M, Sachs H (1980) Spectra of graphs– theory and application. Academic,

New York
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