
Chapter 14

Edge-Wiener Indices of Composite Graphs

Mahdieh Azari and Ali Iranmanesh

Abstract The distance d(u, v|G) between the vertices u and v of a simple connected

graph G is the length of any shortest path in G connecting u and v. The Wiener

index W(G) of G is defined as the sum of distances between all pairs of vertices of

G. The edge-Wiener index of G is conceived in an analogous manner as the sum of

distances between all pairs of edges of G. Two possible distances d0(e, f|G) and

d4(e, f|G) between the edges e and f of G can be considered and according to them,

the corresponding edge-Wiener indices We0 Gð Þ and We4 Gð Þ are defined. In this

chapter, we report our recent results on computing the first and second edge-Wiener

indices of some composite graphs. Results are illustrated by some interesting

examples.

14.1 Introduction

In this chapter, we consider connected finite graphs without any loops or multiple

edges. In theoretical chemistry, the physicochemical properties of chemical com-

pounds are often modeled by means of molecular-graph-based structure descrip-

tors, which are also referred to as topological indices (Gutman and Polansky 1986;

Trinajstić 1992; Todeschini and Consonni 2000; Diudea 2001). In the other words,

a topological index Top(G) of a graph G is a real number with the property that for

every graph H isomorphic to G, Top Hð Þ ¼ Top Gð Þ. Among the variety of topo-

logical indices which are designed to capture the different aspects of molecular

structure, the Wiener index is the best known one. Vertex version of the Wiener

index is the first reported distance-based topological index which was introduced by

Wiener (1947a, b). Wiener used his index, for the calculation of the boiling points
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of alkanes. Using the language which in theoretical chemistry emerged several

decades after Wiener, we may say that the Wiener index was conceived as the sum

of distances between all pairs of vertices in the molecular graph of an alkane, with

the evident aim to provide a measure of the compactness of the respective hydro-

carbon molecule. From graph-theoretical point of view, Wiener index of a graph

G is defined as:

W Gð Þ ¼
X

u;vf g�V Gð Þ
d u, v Gjð Þ;

where d(u, v|G) denotes the distance between the vertices u and v of G which is

defined as the length of any shortest path in G connecting them. Wiener index

happens to be one of the most frequently and most successfully employed structural

descriptors that can be deduced from the molecular graph. Since 1976, the Wiener

number has found a remarkable variety of chemical applications. Physical and

chemical properties of organic substances, which can be expected to depend on

the area of the molecular surface and/or on the branching of the molecular

carbonatom skeleton, are usually well correlated with the Wiener index. Among

them are the heats of formation, vaporization and atomization, density, boiling

point, critical pressure, refractive index, surface tension and viscosity of various

acyclic and cyclic, saturated and unsaturated as well as aromatic hydrocarbon

species, velocity of ultrasound in alkanes and alcohols, rate of electro reduction

of chlorobenzenes etc. (Gutman et al. 1993). We refer the reader to Buckley and

Harary (1990); Graovac and Pisanski (1991); Gutman (1994); Diudea (1995);

Dobrynin et al. (2001); John and Diudea (2004); Ashrafi and Yousefi (2007); and

Putz et al. (2013), for more information about the Wiener index.

The Wiener polynomial of a graph G is defined in terms of a parameter q as

follows:

W G; qð Þ ¼
X

u;vf g�V Gð Þ
qd u,v Gjð Þ:

This coincides with the definition of Hosoya (1988) and Sagan et al. (1996). It is

clear that, the first derivative of the Wiener polynomial of G at q ¼ 1 is equal to the

Wiener index of G, i.e., W
0
G; 1ð Þ ¼ W Gð Þ.

Edge versions of the Wiener index based on distance between all pairs of edges

in a graphGwere introduced independently by (Dankelman et al. 2009; Iranmanesh

et al. 2009; and Khalifeh et al. 2009b). Two possible distances between the edges

e ¼ uv and f ¼ zt of a graph G can be considered (Iranmanesh et al. 2009). The

first distance is denoted by d0(e, f|G) and defined as follows:

d0ðe, f jGÞ ¼ d1ðe, f jGÞ þ 1 if e 6¼ f ,
0 if e ¼ f ,

�

where d1 e, f Gjð Þ ¼ min d u, z Gjð Þ, d u, t Gjð Þ, d v, z Gjð Þ, d v, t Gjð Þf g. It is easy to see

that d0 e, f Gjð Þ ¼ d e, f L Gð Þjð Þ, where L(G) is the line graph of G.
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The second distance is denoted by d4(e, f|G) and defined as follows:

d4ðe, f jGÞ ¼ d2ðe, f jGÞ if e 6¼ f ,
0 if e ¼ f ,

�

where d2 e, f Gjð Þ ¼ max d u, z Gjð Þ, d u, t Gjð Þ, d v, z Gjð Þ, d v, t Gjð Þf g.
Corresponding to the above distances, two edge versions of the Wiener index

can be defined. The first and second edge-Wiener indices of G are denoted by We0

Gð Þ and We4 Gð Þ, respectively and defined as follows (Iranmanesh et al. 2009):

Wei Gð Þ ¼
X

e;ff g�E Gð Þ
di e, f Gjð Þ, i 2 0; 4f g:

Obviously,We0 Gð Þ ¼ W L Gð Þð Þ. Details on the edge�Wiener indices can be found

in (Gutman 2010; Yousefi�Azari et al. 2011; Nadjafi�Arani et al. 2012;

Iranmanesh 2013; Azari and Iranmanesh 2014a, b; Iranmanesh and Azari 2015b)

and the references quoted therein.

The edge-Wiener polynomials of a graph G are introduced in terms of a

parameter q as follows:

Wei G; qð Þ ¼
X

e; ff g�E Gð Þ
qdi e, f Gjð Þ, i 2 0; 4f g:

It is clear that, the first derivative of the edge-Wiener polynomials at q ¼ 1 is equal

to their corresponding edge-Wiener indices, i.e., W
0
ei
G; 1ð Þ ¼ Wei Gð Þ, where

i 2 0; 4f g.
Vertex-edge versions of theWiener index based on the distance between vertices

and edges in a graph G were introduced in Khalifeh et al. (2009b); Azari and

Iranmanesh (2011b); and Azari et al. (2013b). The distance between the vertex

u and the edge e ¼ ab of a graph G can be defined in two ways. The first distance is

denoted by D1(u, e|G) and defined as follows:

D1 u, e Gjð Þ ¼ min d u, a Gjð Þ, d u, b Gjð Þf g:

The second distance is denoted by D2(u, e|G) and defined as follows:

D2 u, e Gjð Þ ¼ max d u, a Gjð Þ, d u, b Gjð Þf g:

Corresponding to these two distances, two vertex-edge versions of the Wiener

index can be defined. The first and second vertex-edge Wiener indices of G are

denoted by Wve1 Gð Þ and Wve2 Gð Þ, respectively and defined as follows (Azari

et al. 2013b):

Wvei Gð Þ ¼
X

u2V Gð Þ

X
e2E Gð Þ

Di u, e Gjð Þ, i 2 1; 2f g:
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One can easily see that, for arbitrary edges e ¼ uv and f ¼ zt of G, the quantities di
and Di, i 2 1; 2f g, satisfy in the following relations:

d1 e, f Gjð Þ ¼ min D1 u, f Gjð Þ,D1 v, f Gjð Þf g ¼ min D1 z, e Gjð Þ,D1 t, e Gjð Þf g;
d2 e, f Gjð Þ ¼ max D2 u, f Gjð Þ,D2 v, f Gjð Þf g ¼ max D2 z, e Gjð Þ,D2 t, e Gjð Þf g:

The above relations explain the relationship between the edge versions and vertex-

edge versions of the Wiener index.

The vertex-edge Wiener polynomials of a graph G are introduced in terms of a

parameter q as follows (Azari and Iranmanesh 2011b; Azari et al. 2011):

Wvei G; qð Þ ¼
X

u2V Gð Þ

X
e2E Gð Þ

qDi u,e Gjð Þ, i 2 1; 2f g:

It is easy to see that the first derivative of the vertex-edge Wiener polynomials at

q ¼ 1 are equal to their corresponding vertex- edge Wiener indices, i.e.,

W
0
vei

G; 1ð Þ ¼ Wvei Gð Þ, where i 2 1; 2f g. The first and the second vertex-edge

Wiener indices and polynomials are also called the minimum and maximum indices

and polynomials, respectively.

The Zagreb indices are among the oldest topological indices and were intro-

duced by Gutman and Trinajstić (1972). The first and second Zagreb indices of

G are denoted by M1(G) and M2(G), respectively, and defined as:

M1 Gð Þ ¼
X

u2V Gð Þ
degG uð Þ2 and M2 Gð Þ ¼

X
uv2E Gð Þ

degG uð ÞdegG vð Þ;

where degG(u) denotes the degree of the vertex u in G which is the number of

vertices incident to u.
The first Zagreb index can also be expressed as a sum over edges of G:

M1 Gð Þ ¼
X

uv2E Gð Þ
degG uð Þ þ degG vð Þ½ �:

For details on the theory and applications of Zagreb indices see Gutman

et al. (1975); Gutman and Das (2004); Zhou (2004); Zhou and Gutman (2005);

Khalifeh et al. (2009a); Azari and Iranmanesh (2011a, 2013); Réti (2012); Azari

et al. (2013a); Falahati-Nezhad (2014); and Iranmanesh and Azari (2015a).

Let NG(u) denote the set of all first neighbors of u inG. Clearly, the cardinality of
NG(u) is equal to degG(u). We define three quantities related to the graph G as

follows:

N1 Gð Þ ¼
X

uv2E Gð Þ
NG uð Þ \ NG vð Þj j;

N2 Gð Þ ¼
X

uv2E Gð Þ

X
z2NG uð Þ\NG vð Þ

NG uð Þ \ NG vð Þ \ NG zð Þj j;
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N3 Gð Þ ¼
X

uv2E Gð Þ

X
z2V Gð Þ\ NG uð Þ[NG vð Þð Þ

NG zð Þ\ NG uð Þ [ NG vð Þð Þj j:

It is easy to see that the quantity N1(G) is equal to three times the number of all

triangles in G. Also, by inclusion–exclusion principle, we obtain:

jNGðzÞ∖ðNGðuÞ [ NGðvÞÞj ¼ degGðzÞ � jNGðuÞ \ NGðzÞj � jNGðvÞ \ NGðzÞj
þ jNGðuÞ \ NGðvÞ \ NGðzÞj:

The fact that many interesting graphs are composed of simpler graphs that serve

as their basic building blocks prompted interest in the type of relationship between

the Wiener index and polynomial of composite graphs and their building blocks

(Yeh and Gutman 1994; Sagan et al. 1996; Stevanović 2001; Eliasi et al. 2012;

Eliasi and Iranmanesh 2013). This development was followed by some articles

(Azari et al. 2010, 2012; Azari and Iranmanesh 2011b, 2014a, b; Alizadeh

et al. 2014) that established corresponding relationships for the edge-Wiener

indices.

In this chapter, we review our recent results on computing the first and second

edge-Wiener indices of some composite graphs. All considered operations are

binary. Hence, we will usually deal with two simple connected graphs G1 and G2.

For a given graph Gi, its vertex and edge sets will be denoted by V(Gi) and E(Gi),

respectively, and their cardinalities by ni and ei, respectively, where i 2 1; 2f g. The
chapter is organized as follows. In Sect. 14.2, the first and second edge-Wiener

polynomials and their related indices are computed for the Cartesian product of

graphs. In Sects. 14.3 and 14.4, we compute the first edge-Wiener index of the join

and corona product of graphs, respectively. Finally, in Sect. 14.5, an exact formula

is obtained for the second edge-Wiener index of the composition of graphs.

14.2 Cartesian Product

In this section, we compute the first and second edge-Wiener polynomials and their

related indices for the Cartesian product of graphs. We start this section by

definition of the Cartesian product of graphs.

The Cartesian productG1 � G2 of the graphsG1 andG2 is a graph with the vertex

set V G1ð Þ � V G2ð Þ and two vertices u ¼ u1; u2ð Þ and v ¼ v1; v2ð Þ of G1 � G2 are

adjacent if and only if u1 ¼ v1 and u2v2 2 E G2ð Þ½ � or u2 ¼ v2 and u1v1 2 E G1ð Þ½ �.
Hence, we can consider the edge set ofG1 � G2 as E G1 � G2ð Þ ¼ E1 [ 2, where E1

and E2 are the following disjoint sets:

E1 ¼ u1; u2ð Þ u1; v2ð Þ : u1 2 V G1ð Þ, u2v2 2 E G2ð Þf g;
E2 ¼ u1; u2ð Þ v1; u2ð Þ : u1v1 2 E G1ð Þ, u2 2 V G2ð Þf g:

The number of vertices and edges in G1 � G2 are given by:
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V G1 � G2ð Þj j ¼ n1n2 and E G1 � G2ð Þj j ¼ n1e2 þ n2e1:

The Cartesian product of two graphs is associative and commutative and it is

connected if and only if both components are connected. According to the proof

of Theorem 1 in Stevanović (2001), the distance between the vertices u ¼ u1; u2ð Þ
and v ¼ v1; v2ð Þ of G1 � G2 is given by:

d u, v G1 � G2jð Þ ¼ d u1, v1 G1jð Þ þ d u2, v2 G2jð Þ:

Lemma 14.2.1X
e;ff g�E1

qdi e, f G1�G2jð Þ ¼ e2qW G1; qð Þ þWei G2; qð Þ 2W G1; qð Þ þ n1½ �, i 2 0; 4f g:

Proof By definition of the set E1, for i 2 0; 4f g, we have:X
e;ff g�E1

qdi e, f G1�G2jð Þ ¼
X

u1;a1f g�V G1ð Þ

X
u2v22E G2ð Þ

qdi u1;u2ð Þ u1;v2ð Þ, a1;u2ð Þ a1;v2ð Þ G1�G2jð Þ

þ
X

u12VðG1Þ

X
a12VðG1Þ

X
fu2v2, a2b2g�EðG2Þ

qdiððu1,u2Þðu1,v2Þ, ða1,a2Þða1,b2ÞjG1�G2Þ

¼
X

fu1, a1g�VðG1Þ

X
u2v22EðG2Þ

qdðu1,a1jG1Þþ1

þ
X

u12VðG1Þ

X
a12VðG1Þ

X
fu2v2, a2b2g�EðG2Þ

qdðu1,a1jG1Þþdiðu2v2,a2b2jG2Þ

¼ e2qWðG1; qÞ þWeiðG2; qÞ½2WðG1; qÞ þ n1�:

Lemma 14.2.2X
e;ff g�E2

qdi e, f G1�G2jð Þ ¼ e1qW G2; qð Þ þWei G1; qð Þ 2W G2; qð Þ þ n2½ �, i 2 0; 4f g:

Proof Similar to the proof of Lemma 14.2.1, we can obtain the desired result.

Lemma 14.2.3

1.
X

e2E1, f2E2

qd0 e, f G1�G2jð Þ ¼ qWve1 G1; qð ÞWve1 G2; qð Þ;

2.
X

e2E1, f2E2

qd4 e, f G1�G2jð Þ ¼ Wve2 G1; qð ÞWve2 G2; qð Þ:
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Proof We compute:

1.
X

e2E1, f2E2

qd0 e, f G1�G2jð Þ ¼
X

u12V G1ð Þ

X
u2v22E G2ð Þ

X
a1b12E G1ð Þ

X
a22V G2ð Þ

qd0 u1;u2ð Þ u1;v2ð Þ, a1;a2ð Þ b1;a2ð Þ G1�G2jð Þ

¼
X

u12V G1ð Þ

X
u2v22E G2ð Þ

X
a1b12E G1ð Þ

X
a22V G2ð Þ

q1þD1 u1,a1b1 G1jð ÞþD1 a2,u2v2 G2jð Þ

¼ q
X

u12V G1ð Þ

X
a1b12E G1ð Þ

qD1 u1,a1b1 G1jð Þ X
a22V G2ð Þ

X
u2v22E G2ð Þ

qD1 a2,u2v2 G2jð Þ

¼ qWve1 G1; qð ÞWve1 G2; qð Þ:
2.

X
e2E1, f2E2

qd4 e, f G1�G2jð Þ ¼
X

u12V G1ð Þ

X
u2v22E G2ð Þ

X
a1b12E G1ð Þ

X
a22V G2ð Þ

qd4 u1;u2ð Þ u1;v2ð Þ, a1;a2ð Þ b1;a2ð Þ G1�G2jð Þ

¼
X

u12V G1ð Þ

X
u2v22E G2ð Þ

X
a1b12E G1ð Þ

X
a22V G2ð Þ

qD2 u1,a1b1 G1jð ÞþD2 a2,u2v2 G2jð Þ

¼
X

u12V G1ð Þ

X
a1b12E G1ð Þ

qD2 u1,a1b1 G1jð Þ X
a22V G2ð Þ

X
u2v22E G2ð Þ

qD2 a2,u2v2 G2jð Þ

¼ Wve2 G1; qð ÞWve2 G2; qð Þ:
Now, we use the previous lemmas to prove the main theorem of this section.

Theorem 14.2.4 The first and second edge-Wiener polynomials of G1 � G2 are
given by:

1. We0 G1 � G2; qð Þ ¼ e2qW G1; qð Þ þ e1qW G2; qð Þ þ n2We0 G1; qð Þ þ n1We0 G2; qð Þ
þ2W G1; qð ÞWe0 G2; qð Þ þ 2W G2; qð ÞWe0 G1; qð Þ þ qWve1 G1; qð ÞWve1 G2; qð Þ;

2. We4 G1 � G2; qð Þ ¼ e2qW G1; qð Þ þ e1qW G2; qð Þ þ n2We4 G1; qð Þ þ n1We4 G2; qð Þ
þ2W G1; qð ÞWe4 G2; qð Þ þ 2W G2; qð ÞWe4 G1; qð Þ þWve2 G1; qð ÞWve2 G2; qð Þ:

Proof Since E G1 � G2ð Þ ¼ E1 [ E2 and E1 \ E2 ¼ ϕ, so for i 2 0; 4f g, we have:

Wei G1 � G2; qð Þ ¼
X

e;ff g�E G1�G2ð Þ
qdi e, f G1j �G2ð Þ

¼
X
e;ff g�E1

qdi e, f G1j �G2ð Þ þ
X
e;ff g�E2

qdi e, f G1j �G2ð Þ

þ
X

e2E1, f2E2

qdi e, f G1j �G2ð Þ:

Using the previous lemmas, the proof is obvious.

As a direct consequence of the previous theorem, we can compute the first and

second edge-Wiener indices of the Cartesian product as given in Azari and

Iranmanesh (2011b).

Corollary 14.2.5 The first and second edge-Wiener indices of G1 � G2 are given
by:

1. We0 G1 � G2ð Þ ¼ e2
2W G1ð Þ þ e1

2W G2ð Þ þ n2
2We0 G1ð Þ

þn1
2We0 G2ð Þ þ n1

2

� �
e2 þ n2

2

� �
e1 þ n1n2e1e2

þn2e2Wve1 G1ð Þ þ n1e1Wve1 G2ð Þ;

14 Edge-Wiener Indices of Composite Graphs 223



2. We4 G1 � G2ð Þ ¼ e2
2W G1ð Þ þ e1

2W G2ð Þ þ n2
2We4 G1ð Þ

þn1
2We4 G2ð Þ þ n1

2

� �
e2 þ n2

2

� �
e1 þ n2e2Wve2 G1ð Þ

þn1e1Wve2 G2ð Þ:
Now, we use Corollary 14.2.5 to find the first and second edge-Wiener indices of

the rectangular grids, C4� nanotubes and C4� nanotori. The Wiener, edge-Wiener

and vertex-edge Wiener indices of the n-vertex path Pn and n-vertex cycle Cn were

computed in Sagan et al. (1996); Iranmanesh et al. (2009); and Azari and

Iranmanesh (2011b), respectively. We list these results in Table 14.1.

Consider the rectangular grid Pn � Pm shown in Fig. 14.1. Using Corollary

14.2.5 and Table 14.1, we can get the formula for the edge-Wiener indices of

Pn � Pm as given in Azari and Iranmanesh (2011b).

Table 14.1 The wiener, edge�wiener and vertex� edge wiener indices of paths and cycles

Graph (G) Pn Cn, n is odd Cn, n is even

W(G) nþ 1

3

� � n

8
n2 � 1
� �

n3

8

We0 Gð Þ n
3

� � n

8
n2 � 1
� �

n3

8

We4 Gð Þ n� 1

2

� �
nþ 3

3

n

8
n2 þ 4n� 13
� � n

8
n2 þ 4n� 8
� �

Wve1 Gð Þ
2

n
3

� � n

4
n� 1ð Þ2 n2

4
n� 2ð Þ

Wve2 Gð Þ
2

nþ 1

3

� � n

4
n� 1ð Þ nþ 3ð Þ n2

4
nþ 2ð Þ

1 2

2

3 m-1

n-1

Fig. 14.1 The rectangular grid Pn � Pm
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Corollary 14.2.6 The first and second edge-Wiener indices of G ¼ Pn � Pm are
given by:

1. We0 Gð Þ ¼ m3

6
2n� 1ð Þ2 þ m2

6
4n3 � 12n2 þ 8n� 3
� �

� m

3
2n3 � 4n2 þ 2n� 1
� �þ n

6
n2 � 3nþ 2
� �

;

2. We4 Gð Þ ¼ m3

6
2n� 1ð Þ2 þ m2

6
4n3 � 7nþ 3
� �

� m

6
4n3 þ 7n2 � 2n� 2
� �þ n

6
n2 þ 3nþ 2
� �

:

Let G ¼ Pn � Cm, then G ¼ TUC4 m; nð Þ is a C4 �nanotube (see Fig. 14.2).

Using Corollary 14.2.5 and Table 14.1, we can compute the edge-Wiener indices of

C4� nanotubes as given in Azari and Iranmanesh (2011b).

Corollary 14.2.7 The first and second edge-Wiener indices ofG ¼ TUC4 m; nð Þare
given by:

1. We0 Gð Þ ¼
m3

8
2n� 1ð Þ2 þ m2

6
4n3 � 6n2 þ 5n� 3
� �þ m

8
4n2 � 8nþ 3
� �

if m is odd,

m3

8
2n� 1ð Þ2 þ m2

6
4n3 � 6n2 þ 5n� 3
� �þ m

2
n� 1ð Þ2 if m is even,

8><
>:

2. We4 Gð Þ ¼
m3

8
2n� 1ð Þ2 þ m2

6
4n3 þ 6n2 � 10nþ 3
� �� m

8
16n2 � 3
� �

if m is odd,

m3

8
2n� 1ð Þ2 þ m2

6
4n3 þ 6n2 � 10nþ 3
� �� m

2
n2 þ 2n� 1
� �

if m is even:

8><
>:

Fig. 14.2 A C4� Nanotube
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LetG ¼ Cn � Cm, thenG ¼ TC4 m; nð Þ is aC4� nanotorus (see Fig. 14.3). Using

Corollary 14.2.5 and Table 14.1, we can compute the edge-Wiener indices of C4�
nanotori as given in Azari and Iranmanesh (2011b).

Corollary 14.2.8 The first and second edge-Wiener indices of G ¼ TC4 n;mð Þ are
given by:

1. We0 Gð Þ ¼ m3

2
n2 þ m2

2
n n2 þ 1ð Þ þ m

2
n n� 2ð Þ;

2. We4 Gð Þ ¼

m3

2
n2 þ m2

2
n n2 þ 4n� 4
� �� mn 2nþ 1ð Þ if m, n are odd,

m3

2
n2 þ m2

2
n n2 þ 4n� 1
� �� m

2
n nþ 2ð Þ if m, n are even,

m3

2
n2 þ m2

2
n n2 þ 4n� 4
� �� m

2
n nþ 2ð Þ if n is odd, m is even:

8>>>>><
>>>>>:

14.3 Join

In this section, we find the first edge-Wiener index of the join of graphs. The results

of this section have been reported in Alizadeh et al. (2014). We start this section by

definition of the join of graphs.

The join G1∇G2 of the graphs G1 and G2 with disjoint vertex sets V(G1) and V
(G2) is the graph with the vertex set V G1ð Þ [ V G2ð Þ and the edge set

E G1∇G2ð Þ ¼ E G1ð Þ [ E G2ð Þ [ S, where S ¼ u1u2 : u1 2 V G1ð Þ, u2 2 V G2ð Þf g.
Hence, the join of two graphs is obtained by connecting each vertex of one graph

to each vertex of the other graph while keeping all edges of both graphs. The join of

two graphs is sometimes also called a sum and is denoted byG1 þ G2. Its definition

can be extended inductively to more than two graphs in a straightforward manner. It

is a commutative operation and hence both its components will appear

Fig. 14.3 AC4�Nanotorus
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symmetrically in any formula including distance-based invariants. The number of

vertices and edges in G1∇G2 are given by:

V G1∇G2ð Þj j ¼ n1 þ n2 and E G1∇G2ð Þj j ¼ e1 þ e2 þ n1n2:

In the following theorem, the first edge-Wiener index of the join of G1 and G2 is

computed.

Theorem 14.3.1 The first edge-Wiener index of G1∇G2 is given by:

We0 G1∇G2ð Þ ¼ e1 þ e2 þ n1n2

2

� �
� 2n2 � 1ð Þe1 � 2n1 � 1ð Þe2

� 1

2
n1n2 n1 þ n2 � 2ð Þ � 1

2
M1 G1ð Þ þM1 G2ð Þð Þ

þ 1

4
N3 G1ð Þ þ N3 G2ð Þð Þ:

Proof Let Q be the set of all pairs of edges of G1∇G2. We partition Q into six

disjoint sets as follows:

Q1 ¼ e; ff g : e, f 2 E G1ð Þf g;
Q2 ¼ e; ff g : e, f 2 E G2ð Þf g;

Q3 ¼ e; ff g : e 2 E G1ð Þ, f 2 E G2ð Þf g;
Q4 ¼ e; ff g : e 2 E G1ð Þ, f 2 Sf g;
Q5 ¼ e; ff g : e 2 E G2ð Þ, f 2 Sf g;

Q6 ¼ e; ff g : e, f 2 Sf g:

The first edge-Wiener index ofG1∇G2 is obtained by summing the contributions

of all pairs of edges over those six sets. We proceed to evaluate their contributions

in order of decreasing complexity.

The case of Q3 is the simplest. There are e1e2 such pairs and each of them

contributes 2 to the first edge-Wiener index. Hence, the total contribution of pairs

from Q3 is equal to 2e1e2.
The setQ6 contains pairs of edges from S. The total number of such pairs is equal

to
n1n2
2

� �
. Among them there are n1

n2
2

� �
þ n2

n1
2

� �
pairs sharing a vertex.

Such pairs contribute 1, and all other pairs contribute 2. Hence the total contribution

of pairs from Q6 is equal to
n1n2
2

� �
� n1

n2
2

� �
� n2

n1
2

� �
:

The total number of pairs from Q4 is equal to e1n1n2. All of them are either at

distance 1 or at distance 2. The adjacent pairs share a vertex in G1; hence there are

2e1n2 such pairs, and their contribution is given by 2e1n2. All other pairs from Q4

contribute 2, and the total contribution of Q4 is equal to 2e1n2 n1 � 1ð Þ.
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By symmetry, the total contribution of pairs from Q5 is equal to 2e2n1 n2 � 1ð Þ.
It remains to compute the contributions of Q1 and Q2. The total number of pairs

in Q1 is equal to
e1
2

� �
. Clearly, no pair of edges from Q1 is at a distance greater

than 3. Hence, we partition Q1 into three sets Q
0
1, Q

00
1, and Q

000
1 , made of the pairs of

edges at distance 1, 2, and 3, respectively. Then the total contribution of pairs from

Q1 to the first edge-Wiener index ofG1∇G2 is given by Q
0
1

�� ��þ 2 Q
00
1

�� ��þ 3 Q
000
1

�� ��. We

have already mentioned that Q
000
1

�� �� ¼ 1
4
N3 G1ð Þ. Further,

Q
0
1

�� �� ¼ X
u2V G1ð Þ

degG1
uð Þ

2

� �
¼ 1

2
M1 G1ð Þ � e1:

From here it immediately follows that the total contribution of Q1 is given by:

e1
2 � 1

2
M1 G1ð Þ þ 1

4
N3 G1ð Þ:

Again, the total contribution of Q2 follows by the symmetry, and the formula from

the theorem follows by adding the contributions of Q1, . . .,Q6 and simplifying the

resulting expression.

As expected, G1 and G2 appear symmetrically in the formula of the first edge-

Wiener index. It is interesting to note that the formula does not depend on the

connectivity ofG1 andG2. That allows us to compute the first edge-Wiener index of

joins of graphs that are not themselves connected.

Now, we can obtain explicit formulae for the first edge-Wiener index of some

classes of graphs by specializing components in joins. We start by computing the

first edge-Wiener index of a suspension of a graph G.
For a given graph G, we call the graph K1∇G the suspension of G, where K1

denotes the single vertex graph.

Corollary 14.3.2 Let G be a graph with n vertices and e edges. Then

We0 K1∇Gð Þ ¼ 2
nþ e
2

� �
� n

2

� �
� 1

2
M1 Gð Þ þ 1

4
N3 Gð Þ � e:

The star graph Snþ1 on nþ 1 vertices is the suspension of the empty graph on

n vertices which is commonly denoted by Kn. The fan graph Fnþ1 and wheel graph

Wnþ1 on nþ 1 vertices are also suspensions of n-vertex path Pn and n-vertex cycle

Cn, respectively (see Fig. 14.4).

The windmill graph D
ðmÞ
n is the graph obtained by taking m copies of the

complete graph Kn with a vertex in common. The case n ¼ 3 therefore corresponds

to the Dutch windmill graph (see Fig. 14.5). One can easily see that the windmill

graph D
ðmÞ
n is the suspension of m copies of Kn�1.
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It can be verified by direct calculation that N3 Pnð Þ ¼ N3 Cnð Þ ¼ 0 for n < 5,

N3 Pnð Þ ¼ 4
n� 3

2

� �
, N3 Cnð Þ ¼ 2n n� 5ð Þ for n � 5, and N3 Knð Þ ¼ 0 for n � 3.

Also, it is easy to see that, M1 Pnð Þ ¼ 4n� 6, M1 Cnð Þ ¼ 4n, and

M1 Knð Þ ¼ n n� 1ð Þ2. So, by Corollary 14.3.2, the first edge-Wiener index of

these graphs is obtained, at once.

Corollary 14.3.3 The first edge-Wiener index of the star, fan, wheel and windmill
graphs is given by:

1. We0 Snþ1ð Þ ¼ n
2

� �
;

1

1

1
n

n

n
n-1

n-1

n-1

n+1

n+1

n+1

Sn+1 Fn+1 Wn+1

n-2
n-2

n-22

2

2

3

3

3

Fig. 14.4 Star, Fan and wheel graphs on nþ 1 vertices

Fig. 14.5 Dutch windmill

graph D
ðmÞ
3
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2. We0ðFnþ1Þ ¼
3 if n ¼ 2,
1

2
ð7n2 � 17nþ 12Þ if n ¼ 3, 4,

4ðn2 � 3nþ 3Þ if n � 5,

8><
>:

3. We0ðWnþ1Þ ¼
1

2
ð7n2 � 9nÞ if 3 � n � 5,

4n2 � 7n if n � 6,

(

4. We0 D mð Þ
n

� � ¼ 1

4
m n� 1ð Þ2 m n2 � 2

� �� 2 n� 1ð Þ� 	
:

Now, consider the complete bipartite graph on m1 þ m2 vertices, Km1,m2
. This

graph can be represented as the join of the empty graphs Km1
and Km2

. So,

application of Theorem 14.3.1 yields:

Corollary 14.3.4 The first edge-Wiener index of the complete bipartite graph on
m1 þ m2 vertices is given by:

We0 Km1,m2
ð Þ ¼ 1

2
m1m2 2m1m2 � m1 � m2ð Þ:

14.4 Corona Product

In this section, we find the first edge-Wiener index of the corona product of graphs.

The results of this section have been reported in Alizadeh et al. (2014). We start this

section by definition of the corona product of graphs.

The corona product G1∘G2 of the graphs G1 and G2 is the graph obtained by

taking one copy of G1 and V G1ð Þj j ¼ n1 copies of G2 and joining all vertices of the

i-th copy of G2 to the i-th vertex of G1 for i ¼ 1, 2, . . . , n1. Obviously, V G1∘G2ð Þj j
¼ n1 n2 þ 1ð Þ and E G1∘G2ð Þj j ¼ e1 þ n1 n2 þ e2ð Þ. Unlike join and Cartesian prod-

uct, corona is a noncommutative operation, and its component graphs appear in

markedly asymmetric roles.

In the following theorem, the first edge-Wiener index of the corona product of

G1 and G2 is computed.

Theorem 14.4.1 The first edge-Wiener index of G1∘G2 is given by:

We0 G1∘G2ð Þ ¼ We0 G1ð Þ þ n2 þ e2ð Þ2W G1ð Þ þ n2 þ e2ð ÞWve1 G1ð Þ
� n1

2
M1 G2ð Þ þ n1

4
N3 G2ð Þ þ e2

2 3
n1
2

� �
þ n1


 �
þ n1

n2
2

� �

þ n2
2 n1

2

� �
þ n1e1 n2 þ 2e2ð Þ þ 2n1e2 n2 � 1ð Þ

þ 2n1n2e2 n1 � 1ð Þ:

Proof We partition the edge set of G1∘G2 into three sets. The first one is the edge

set of G1, S1 ¼ E G1ð Þ, the second one contains all edges in all copies of G2, and the

third one contains all edges with one end in G1 and the other end in some copies of

G2. We denote the copy of G2 related to the vertex x 2 V G1ð Þ by G2,x and the edge
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set of G2,x by S2,x. Now set S2 ¼ [
x2V G1ð Þ

S2,x. Similarly, for a vertex x 2 V G1ð Þ, we
set S3,x ¼ e : e ¼ ux, u 2 V G2,xð Þf g and then S3 ¼ [

x2V G1ð Þ
S3,x.

Now, we start to compute the distances between the edges of these three sets.

There are six cases:

Case 1 g; ff g � S1.

It is obvious that, d0 g, f
��G1∘G2

� � ¼ d0 g, f
��G1

� �
. So,

W1 ¼
X

fg, fg�S1

d0ðg, f jG1∘G2Þ ¼ We0ðG1Þ:

Case 2 g; ff g � S2, g 2 S2,x and f 2 S2,y.

If x ¼ y then d0 g, f
��G1∘G2

� � ¼ 1, 2 or 3. By the same reasoning as in the

proof of Theorem 14.3.1, we obtain:

X
g;ff g�S2,x

d0 g, f
��G1∘G2

� � ¼ 2
e2
2

� �
� 1

2
M1 G2ð Þ � e2ð Þ ¼ e2

2 � 1

2
M1 G2ð Þ þ 1

4
N3 G2ð Þ:

If x 6¼ y then d0 g, f
��G1∘G2

� � ¼ 3þ d x, y
��G1

� �
. Now,

W2 ¼
X
g;ff g�S2

d0 g, f
��G1∘G2

� �
¼

X
x2V G1ð Þ

X
g;ff g�S2,x

d0 g, f
��G1∘G2

� �þ X
x;yf g�V G1ð Þ

X
g2S2,x

X
f2S2,y

d0 g, f
��G1∘G2

� �

¼ n1 e2
2 � 1

2
M1 G2ð Þ þ 1

4
N3 G2ð Þ


 �
þ

X
x;yf g�V G1ð Þ

3þ d x, y
��G1

� �� �
e2

2

¼ n1 e2
2 � 1

2
M1 G2ð Þ þ 1

4
N3 G2ð Þ


 �
þ e2

2 3
n1
2

� �
þW G1ð Þ


 �

Case 3 g; ff g � S3.

In this case, we have:

W3 ¼
X
g;ff g�S3

d0 g, f
��G1∘G2

� �
¼

X
x2V G1ð Þ

X
g;ff g�S3,x

d0 g, f
��G1∘G2

� �þ X
x;yf g�V G1ð Þ

X
g2S3,x

X
f2S3,y

d0 g, f
��G1∘G2

� �
¼

X
x2V G1ð Þ

X
g;ff g�S3,x

1þ
X

x;yf g�V G1ð Þ

X
g2S3,x

X
f2S3,y

d x, y
��G1

� �þ 1
� �

¼
X

x2V G1ð Þ

1

2
n2 n2 � 1ð Þ þ

X
x;yf g�V G1ð Þ

X
g2S3,x

n2 d x, y
��G1

� �þ 1
� �

¼ 1

2
n1n2 n2 � 1ð Þ þ n2

2W G1ð Þ þ 1

2
n2

2n1 n1 � 1ð Þ
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Case 4 g 2 S1, f 2 S2.

In this case, g 2 S1, f 2 S2,x, d0 g, f
��G1∘G2

� � ¼ 2þ D1 x, g
��G1

� �
. Now,

W4 ¼
X

x2V G1ð Þ

X
g2S1

X
f2S2,x

d0 g, f
��G1∘G2

� � ¼ X
x2V G1ð Þ

X
f2S2,x

X
g2S1

�
2þ D1 x, g

��G1

� ��
¼

X
x2V G1ð Þ

2e1e2þe2
X

x2V G1ð Þ

X
g2S1

D1 x, g
��G1

� � ¼ e2 2n1e1 þWve1 G1ð Þð Þ:

Case 5 g 2 S1, f 2 S3.

Similarly to the above case,g 2 S1, f 2 S3,x,d0 g, f
��G1∘G2

� � ¼ 1þ D1 x, g
��G1

� �
.

Now,

W5 ¼
X

x2V G1ð Þ

X
g2S1

X
f2S3,x

d0 g, f
��G1∘G2

� � ¼ X
x2V G1ð Þ

X
g2S1

X
f2S3,x

�
1þ D1 x, g

��G1

� ��
¼

X
x2V G1ð Þ

e1n2 þ n2
X

x2V G1ð Þ

X
g2S1

D1 x, g
��G1

� � ¼ n2 n1e1 þWve1 G1ð Þð Þ:

Case 6 g 2 S2, f 2 S3.

If g 2 S2,x, f 2 S3,x, then d0ðg, f
��G1∘G2Þ ¼ 1 or 2. The edge g is adjacent to two

edges of S3,x and its distance to other edges is 2. So,X
x2V G1ð Þ

X
g2S2,x

X
f2S3,x

d0 g, f
��G1∘G2

� � ¼ X
x2V G1ð Þ

X
g2S2,x

�
2þ 2 n2 � 2ð Þ� ¼ 2 n2 � 1ð Þe2n1:

If g 2 S2,x, f 2 S3,y, x 6¼ y then d0ðg, f
��G1∘G2Þ ¼ 2þ dðx, y��G1Þ. Now,

W6 ¼
X

x, y2V G1ð Þ

X
g2S2,x

X
f2S3,y

d0 g, f
��G1∘G2

� �
¼

X
x2V G1ð Þ

X
g2S2,x

X
f2S3,x

d0 g, f
��G1∘G2

� �þ X
x 6¼y2V G1ð Þ

X
g2S2,x

X
f2S3,x

d0 g, f
��G1∘G2

� �
¼ 2n2 � 2ð Þn1e2 þ

X
x 6¼y2V G1ð Þ

2þ d x, y
��G1

� �� �
n2e2

¼ 2 n2 � 1ð Þn1e2 þ
�
2n1 n1 � 1ð Þ þ

X
x 6¼y2V G1ð Þ

d x, y
��G1

� �	
n2e2

¼ 2 n2 � 1ð Þn1e2 þ 2 n1 n1 � 1ð Þ þW G1ð Þ½ �n2e2:

Now, the formula for the first edge-Wiener index ofG1∘G2 follows by adding all six

contributions and simplifying the resulting expression.

It is interesting to note that the formula of Theorem 14.4.1 does not include any

invariants of G2 that depend on its connectivity. It is, hence, possible to apply

Theorem 14.4.1 to the cases of G1∘G2 with disconnected G2. Such cases arise in

transitions from kenographs to plerographs, where G2 is given as an empty graph,

i.e., as Kn for some positive integer n.
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For a given graph G, its t-fold bristled graph Brst(G) is obtained by attaching

t vertices of degree one to each vertex of G. This graph can be represented as the

corona product of G and the empty graph on t vertices Kt. The t-fold bristled graph

of a given graph is also known as its t-thorny graph. The t-fold bristled graphs of Pn

and Cn are shown in Fig. 14.6.

Using Theorem 14.4.1, the first edge-Wiener index of the t-fold bristled graph of

a given graph G is obtained at once.

Corollary 14.4.2 Let G be a graph with n vertices and e edges. Then

We0ðBrstðGÞÞ ¼ We0ðGÞ þ tWve1ðGÞ þ t2WðGÞ þ n
t
2

� �
þ t2

n
2

� �
þ net:

Using Corollary 14.4.2 and Table 14.1, the first edge-Wiener index of Brst(Pn)

and Brst(Cn) can easily be computed.

Corollary 14.4.3 The first edge-Wiener index of the t-fold bristled graphs of Pn
and Cn are given by:

1. We0 Brst Pnð Þð Þ ¼ n
6
n2 tþ 1ð Þ2 þ 3n t2 � 1ð Þ � t tþ 5ð Þ þ 2
h i

;

2. We0

�
BrstðCnÞ


¼

nðtþ 1Þ
8

½n2 þ ntðnþ 4Þ � ðtþ 1Þ� if n is odd,

n

8
½n2ðtþ 1Þ2 þ 4ntðtþ 1Þ � 4t� if n is even:

8><
>:

1

1

1

1

1 1

1

1

1

1
1

1 1 1

Brst(Pn)

Brst(Cn)

2

2

2

2 2

2

3

2

n-1
n1

2

2

2

2 2

2 2 2
t

t

t

t

t

t

t

t

t t

t t t

3 n

Fig. 14.6 The t� fold bristled graphs of Pn and Cn
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Interesting classes of graphs can also be obtained by specializing the first

component in the corona product. For example, for a graph G, the graph K2∘G is

called its bottleneck graph. So, using Theorem 14.4.1, we easily arrive at:

Corollary 14.4.4 Let G be a graph with n vertices and e edges. Then

We0 K2∘Gð Þ ¼ 6e2 þ 10neþ 3n2 þ n�M1 Gð Þ þ 1

2
N3 Gð Þ:

Remark 14.4.5 Note that for a given graph G,K1∇G ¼ K1∘G. So, the formulae of

the first edge-Wiener index of the suspension of G and its t-fold bristled graph

computed in Corollaries 14.3.2 and 14.3.3 can also be obtained from Theorem

14.4.1.

14.5 Composition

In this section, we find the second edge-Wiener index of the composition of graphs.

The results of this section have been published in Azari et al. (2012). We start this

section by definition of the composition of graphs.

The composition G1[G2] of graphs G1 and G2 with disjoint vertex sets and edge

sets is a graph on vertex set V G1ð Þ � V G2ð Þ in which u ¼ u1; u2ð Þ is adjacent with
v ¼ v1; v2ð Þ whenever u1v1 2 E G1ð Þ or [u1 ¼ v1 and u2v2 2 EðG2Þ]. The composi-

tion is not commutative. The easiest way to visualize the composition G1[G2] is to

expand each vertex ofG1 into a copy ofG2, with each edge ofG1 replaced by the set

of all possible edges between the corresponding copies of G2. Hence, we can define

the edge set of G1[G2] as E G1 G2½ �ð Þ ¼ E1 [ E2, where E1 and E2 are the following

disjoint sets:

E1 ¼ u1; u2ð Þ u1; v2ð Þ : u1 2 V G1ð Þ, u2v2 2 E G2ð Þf g;
E2 ¼ u1; u2ð Þ v1; v2ð Þ : u1v1 2 E G1ð Þ, u2, v2 2 V G2ð Þf g:

The number of vertices and edges in G1[G2] are given by:

V G1 G2½ �ð Þj j ¼ n1n2 and E G1 G2½ �ð Þj j ¼ n1e2 þ e1n2
2:

By definition of the composition, the distance between two distinct vertices u ¼
u1; u2ð Þ and v ¼ v1; v2ð Þ of G1[G2] is given by:

dðu, vjG1½G2�Þ ¼
dðu1, v1jG1Þ if u1 6¼ v1,
1 if u1 ¼ v1, u2v2 2 EðG2Þ,
2 if u1 ¼ v1, v2 =2 NG2

ðu2Þ:

8<
:

In Fig. 14.7, you can see the composition of a 3-vertex path P3 and 2-vertex path P2.
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Here and in the rest of this section, let G ¼ G1 G2½ �. Suppose K is the set of all

two element subsets of E(G). We partition the set K into the following disjoint sets:

A ¼ e; ff g 2 K : e, f 2 E1f g;
B ¼ e; ff g 2 K : e, f 2 E2f g;
C ¼ ffe, fg 2 K : e 2 E1, f 2 E2g:

It is easy to see that Aj j ¼ n1e2
2

� �
, Bj j ¼ n2

2e1
2

� �
and Cj j ¼ n1n2

2e1e2. We start

to find We4 Gð Þ, by introducing several subsets of the set A as follows:

A1
* ¼ �

e; ff g 2 A : e ¼ u1; u2ð Þ u1; v2ð Þ, f ¼ u1; u2ð Þ u1; z2ð Þ, u1 2 V G1ð Þ,
u2 2 V G2ð Þ, v2z2 2 E

�
G2

��
;

A2
* ¼ e; ff g 2 A : e ¼ u1; u2ð Þ u1; v2ð Þ, f ¼ u1; u2ð Þ u1; z2ð Þ, u1 2 V G1ð Þ,f

u2, v2, z2 2 V G2ð Þ, z2=2NG2
v2ð Þg;

A3
* ¼ e; ff g 2 A : e ¼ u1; u2ð Þ u1; v2ð Þ, f ¼ u1; z2ð Þ u1; t2ð Þ, u1 2 V G1ð Þ,f

u2z2, u2t2, v2z2, v2t2 2 E G2ð Þg;
A4

* ¼ e; ff g 2 A : e ¼ u1; u2ð Þ u1; v2ð Þ, f ¼ u1; z2ð Þ u1; t2ð Þ, u1 2 V G1ð Þ,f
u2, v2, z2, t2 2 V G2ð Þ, z2, t2=2 u2; v2f gg\A3

*;

Fig. 14.7 The composition of P3 and P2
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A5
* ¼ e; ff g 2 A : e ¼ u1; u2ð Þ u1; v2ð Þ, f ¼ v1; z2ð Þ v1; t2ð Þ, u1, v1 2 V G1ð Þ,f

v1 6¼ u1, u2, v2, z2, t2 2 V G2ð Þg:

Clearly, every pair of the above sets is disjoint and A ¼ [5
i¼1

Ai
*. In the following

lemma, we characterize d4(e, f jG) for all e; ff g 2 A.

Lemma 14.5.1 Let e; ff g 2 A.

1. If e; ff g 2 A1
* [ A*

3, then d4 e, f Gjð Þ ¼ 1.

2. If e; ff g 2 A2
* [ A*

4, then d4 e, f Gjð Þ ¼ 2.

3. If e; ff g 2 A5
*, then d4 e, f Gjð Þ ¼ d u1, v1 G1jð Þ, where e ¼ u1; u2ð Þ u1; v2ð Þ and

f ¼ v1; z2ð Þ v1; t2ð Þ.

Proof Let e; ff g 2 A*
1 [ A*

2 and e ¼ u1; u2ð Þ u1; v2ð Þ, f ¼ u1; u2ð Þ u1; z2ð Þ. Since
e 6¼ f , d

�
u1; v2ð Þ, u1; z2ð Þ G��� � 1. Hence,

d4 e, f Gjð Þ ¼ max
�
d u1; u2ð Þ, u1; u2ð Þ Gjð Þ, d u1; u2ð Þ, u1; z2ð Þ Gjð Þ, d� u1; v2ð Þ,

u1; u2ð Þ G�,�� d u1; v2ð Þ, u1; z2ð Þ Gjð Þ�
¼ max

�
0, 1, 1, d

�
u1; v2ð Þ, u1; z2ð Þ G�� ¼�� d

�
u1; v2ð Þ, u1; z2ð Þ G��� :

If e; ff g 2 A1
*, then v2z2 2 E

�
G2

�
2
. So, d4 e, f Gjð Þ ¼ 1 and if e; ff g 2 A2

*, then

z2 is not adjacent to v2 in G2. So, d4 e, f Gjð Þ ¼ 2. Now, let e; ff g 2 A*
3 [ A*

4 and

e ¼ u1; u2ð Þ u1; v2ð Þ, f ¼ u1; z2ð Þ u1; t2ð Þ. Then

d4 e, f Gjð Þ ¼ max d u1; u2ð Þ, u1; z2ð Þ Gjð Þ, d u1; u2ð Þ, u1; t2ð Þ Gjð Þ, d u1; v2ð Þ,ðf
u1; z2ð Þ Gj Þ, d u1; v2ð Þ, u1; t2ð Þ Gjð Þg, d u1; v2ð Þ, u1; t2ð Þ Gjð Þ�:

If e; ff g 2 A3
*, then d4 e, f Gjð Þ ¼ max 1; 1; 1; 1f g ¼ 1 and if e; ff g 2 A4

*, then at

least one of the d((u1, u2), (u1, z2) jG), d((u1, u2), (u1, t2) jG), d((u1, v2), (u1, z2) jG)

and d((u1, v2), (u1, t2) jG) is equal to 2. Therefore, d4 e, f Gjð Þ ¼ 2. So, (1) and

(2) hold.

In order to prove (3), let e; ff g 2 A5
* and e ¼ u1; u2ð Þ u1; v2ð Þ, f ¼ v1; z2ð Þ v1; t2ð Þ.

Then v1 6¼ u1 and

d4 e, f Gjð Þ ¼ max
�
d u1; u2ð Þ, v1; z2ð Þ Gjð Þ, d u1; u2ð Þ, v1; t2ð Þ Gjð Þ, d� u1; v2ð Þ,

v1; z2ð Þ G�,�� d u1; v2ð Þ, v1; t2ð Þ Gjð Þ� ¼ max d u1, v1 G1jð Þ,f
d u1, v1 G1jð Þ, d u1, v1 G1jð Þ, d u1, v1 G1jð Þg ¼ d u1, v1 G1jð Þ:

So, (3) holds.

Now, we define several subsets of the set B as follows:
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B1
* ¼ e; ff g 2 B : e ¼ u1; u2ð Þ v1; v2ð Þ, f ¼ u1; u2ð Þ v1; z2ð Þ, u1, v1 2 V G1ð Þ,f

u2 2 V G2ð Þ, v2z2 2 E G2ð Þg;
B2

* ¼ �
e; ff g 2 B : e ¼ u1; u2ð Þ v1; v2ð Þ, f ¼ u1; u2ð Þ v1; z2ð Þ, u1, v1 2 V G1ð Þ,

u2, v2, z2 2 V G2ð Þ, z2=2NG2
v2ð Þ�;

B3
* ¼ e; ff g 2 B : e ¼ u1; u2ð Þ v1; v2ð Þ, f ¼ u1; z2ð Þ v1; t2ð Þ, u1, v1 2 V G1ð Þ,f

u2z2, v2t2 2 E G2ð Þg;
B4

* ¼ �
e; ff g 2 B : e ¼ u1; u2ð Þ v1; v2ð Þ, f ¼ u1; z2ð Þ v1; t2ð Þ, u1, v1 2 V G1ð Þ,

u2, v2, z2, t2 2 V G2ð Þ, z2 6¼ u2, t2 6¼ v2
�
\B3

*;

B5
* ¼ e; ff g 2 B : e ¼ u1; u2ð Þ v1; v2ð Þ, f ¼ u1; u2ð Þ z1; z2ð Þ, u1, v1, z1 2 V G1ð Þ,f

z1 6¼ v1, u2, v2, z2 2 V G2ð Þg;
B6

* ¼ �
e; ff g 2 B : e ¼ u1; u2ð Þ v1; v2ð Þ, f ¼ u1; t2ð Þ z1; z2ð Þ, u1, v1, z1 2 V G1ð Þ,

z1 6¼ v1, u2t2 2 E G2ð Þ, v2, z2 2 V G2ð Þ�;
B7

* ¼ �
e; ff g 2 B : e ¼ u1; u2ð Þ v1; v2ð Þ, f ¼ u1; t2ð Þ z1; z2ð Þ, u1, v1, z1 2 V G1ð Þ,

z1 6¼ v1, u2, v2, t2, z2 2 V G2ð Þ, t2 6¼ u2, t2=2NG2
u2ð Þ�;

B8
* ¼ �

e; ff g 2 B : e ¼ u1; u2ð Þ v1; v2ð Þ, f ¼ z1; z2ð Þ t1; t2ð Þ, u1, v1, z1, t1 2 V G1ð Þ,
z1, t1=2 u1; v1f g, u2, v2, z2, t2 2 V G2ð Þ�:

It is clear that, each pair of the above sets is disjoint and B ¼ [8
i¼1

Bi
*. In the next

lemma, we characterize d4(e, f|G) for all e; ff g 2 B.

Lemma 14.5.2 Let e; ff g 2 B.

1. If e; ff g 2 B1
* [ B*

3, then d4 e, f Gjð Þ ¼ 1.

2. If e; ff g 2 B2
* [ B*

4 [ B*
7, then d4 e, f Gjð Þ ¼ 2.

3. If e; ff g 2 B5
*, then d4 e, f Gjð Þ ¼ d4 u1v1, u1z1 G1jð Þ, where e ¼ u1; u2ð Þ v1; v2ð Þ,

f ¼ u1; u2ð Þ z1; z2ð Þ.
4. If e; ff g 2 B6

*, then d4 e, f Gjð Þ ¼ d4 u1v1, u1z1 G1jð Þ, where e ¼ u1; u2ð Þ v1; v2ð Þ,
f ¼ u1; t2ð Þ z1; z2ð Þ.

5. If e; ff g 2 B8
*, then d4 e, f Gjð Þ ¼ d4 u1v1, z1t1 G1jð Þ, where e ¼ u1; u2ð Þ v1; v2ð Þ,

f ¼ z1; z2ð Þ t1; t2ð Þ.

Proof The proof is similar to the proof of Lemma 14.5.1.

Consider four subsets of the set C as follows:
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C1
* ¼ e; ff g 2 C : e ¼ u1; u2ð Þ u1; v2ð Þ, f ¼ u1; u2ð Þ z1; z2ð Þ, u1, z1 2 V G1ð Þ,f

u2, v2, z2 2 V G2ð Þg;
C2

* ¼ �
e; ff g 2 C : e ¼ u1; u2ð Þ u1; v2ð Þ, f ¼ u1; t2ð Þ z1; z2ð Þ, u1, z1 2 V G1ð Þ,

z2 2 V G2ð Þ, u2t2, v2t2 2 E G2ð Þ�
C3

* ¼ �
e; ff g 2 C : e ¼ u1; u2ð Þ u1; v2ð Þ, f ¼ u1; t2ð Þ z1; z2ð Þ, u1, z1 2 V G1ð Þ,

u2, v2, t2, z2 2 V G2ð Þ, t2 6¼ u2, t2 6¼ v2
�
\C2

*;

C4
* ¼ �

e; ff g 2 C : e ¼ u1; u2ð Þ u1; t2ð Þ, f ¼ v1; v2ð Þ z1; z2ð Þ, u1, v1, z1 2 V G1ð Þ,
v1 6¼ u1, z1 6¼ u1, u2, t2, v2, z2 2 V G2ð Þ�:

Clearly, each pair of the above sets is disjoint and C ¼ [4
i¼1

Ci
*. In the following

lemma, we find d4(e, f|G) for all e; ff g 2 C.

Lemma 14.5.3 Let e; ff g 2 C.

1. If e; ff g 2 C1
* [ C2

∗, then d4 e, f Gjð Þ ¼ 1.

2. If e; ff g 2 C3
*, then d4 e, f Gjð Þ ¼ 2.

3. If e; ff g 2 C4
*, then d4 e, f Gjð Þ ¼ D2

�
u1, v1z1 G1

��� , where e ¼ u1; u2ð Þ u1; t2ð Þ,
f ¼ v1; v2ð Þ z1; z2ð Þ.

Proof The proof is straightforward.

In order to clarify the definition of the sets A1*,A2*, . . .,A5*, B1*,B2*, . . .,B8*,

C1*, . . .,C4*, we give an example.

Example 14.5.4 Let G ¼ P3 P2½ � be the graph of Fig. 14.7. Then

Ai
* ¼ Bj

* ¼ Ck
* ¼ ϕ and

A5
* ¼ A ¼ e1; e2f g; e1; e3f g; e2; e3f gf g;

B1
* ¼ f 1; f 5f g; f 1; f 6f g; f 2; f 7f g; f 2; f 8f g; f 3; f 5f g; f 3; f 6f g; f 4; f 7f g; f 4; f 8f gf g;

B3
* ¼ f 1; f 3f g; f 2; f 4f g; f 5; f 6f g; f 7; f 8f gf g;

B5
* ¼ f 1; f 2f g; f 1; f 7f g; f 2; f 6f g; f 3; f 4f g; f 3; f 8f g; f 4; f 5f g; f 5; f 8f g; f 6; f 7f gf g;

B6
* ¼ f 1; f 4f g; f 1; f 8f g; f 2; f 3f g; f 2; f 5f g; f 3; f 7f g; f 4; f 6f g; f 5; f 7f g; f 6; f 8f gf g;
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C1
* ¼ �

e1; f 1f g, e1; f 3f g, e1; f 5f g, e1; f 6f g, e2; f 1f g, e2; f 2f g, e2; f 3f g, e2; f 4f g,
e2; f 5f g, e2; f 6f g, e2; f 7f g, e2; f 8f g, e3; f 2f g, e3; f 4f g, e3; f 7f g, e3; f 8f g�;

C4
* ¼ e1; f 2f g; e1; f 4f g; e1; f 7f g; e1; f 8f g; e3; f 1f g; e3; f 3f g; e3; f 5f g; e3; f 6f gf g:

Lemma 14.5.5

X
e;ff g2A

d4 e, f Gjð Þ ¼ n1 2
e2
2

� �
� N1 G2ð Þ � 1

4
N2 G2ð Þ

� �
þ e2

2W G1ð Þ:

Proof One can easily see that A1
*

�� �� ¼ n1N1 G2ð Þ, A3
*

�� �� ¼ 1
4
n1N2 G2ð Þ and

A5
*

�� �� ¼ n1
2

� �
e2

2. Now, by Lemma 14.5.1, we obtain:

X
e;ff g2A

d4 e, f Gjð Þ¼
X5
i¼1

X
e;ff g2Ai

*

d4 e, f Gjð Þ ¼ A1
*

�� ��þ 2 A2
*

�� ��þ A3
*

�� ��þ 2 A4
*

�� ��
þ
X�

d u1, v1 G1jð Þ : e; ff g 2 A5
*, e ¼ u1; u2ð Þ u1; v2ð Þ,

f ¼ v1; z2ð Þ v1; t2ð Þ� ¼ 2
X5
i¼1

Ai
*

�� ��� A1
*

�� ��� A3
*

�� ��� 2 A5
*

�� ��
þ e2

2
X

u1;v1f g�V G1ð Þ
d u1, v1 G1jð Þ ¼ 2 Aj j � A1

*
�� ��� A3

*
�� ��

� 2 A5
*

�� ��þ e2
2W G1ð Þ ¼ 2 n1e2

2

� �
� n1N1 G2ð Þ � 1

4
n1N2 G2ð Þ

� 2 n1
2

� �
e2

2 þ e2
2W G1ð Þ ¼ n1 2 e2

2

� �
� N1 G2ð Þ

�

� 1

4
N2 G2ð ÞÞ þ e2

2W G1ð Þ: ■

Lemma 14.5.6 Let H be a graph with the vertex set V(H ) and edge set E(H ) and
let E Hð Þj j ¼ e. ThenX

u2V Hð Þ

X
uv;uzf g�E Hð Þ

d4 uv, uz Hjð Þ ¼ M1 Hð Þ � N1 Hð Þ � 2e:
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Proof Consider the sets F1 and F2 as follows:

F1 ¼ uv; uzf g � E Hð Þ : u, v, z 2 V Hð Þ, vz 2 E Hð Þf g;
F2 ¼ uv; uzf g � E Hð Þ : u, v, z 2 V Hð Þ, v 6¼ z, z=2NH vð Þf g:

Clearly, F1 \ F2 ¼ ϕ, F1 [ F2 ¼ e; ff g � E Hð Þ : e, f share a vertexf g, F1j j ¼
N1 Hð Þ and F2j j ¼ 1

2
M1 Hð Þ � 2e� 2N1 Hð Þ½ �. Let uv; uzf g 2 F1 [ F2. If

uv; uzf g 2 F1, then vz 2 E Hð Þ. So,

d4 uv, uz Hjð Þ ¼ max
�
d
�
u, u H

��� , d u, z Hjð Þ, d v, u Hjð Þ, d v, z Hjð Þ� ¼ max 0; 1; 1; 1f g
¼ 1.

Now, if uv; uzf g 2 F2, then v 6¼ z and z is not adjacent with v in H. So, d v, z Hjð Þ
¼ 2 and

d4 uv, uz Hjð Þ ¼ max 0; 1; 1; 2f g ¼ 2:

Consequently,

X
u2V Hð Þ

X
uv;uzf g�E Hð Þ

d4 uv, uz Hjð Þ ¼
X

u2V Hð Þ

X
uv;uzf g2F1[F2

d4 uv, uz Hjð Þ

¼
X

u2V Hð Þ

X
uv;uzf g2F1

1þ
X

u2V Hð Þ

X
uv;uzf g2F2

2 ¼ F1j j þ 2 F2j jð Þ

¼ M1 Hð Þ � N1 Hð Þ � 2e: ■

Lemma 14.5.7X
e;ff g2B

d4 e, f Gjð Þ ¼2e1
n2

2

2

� �
� 2e1e2 n2 þ e2ð Þ þ n2

4We4 G1ð Þ

þ 2n2
2 n2

2 � n2 � 2e2
� �

N1 G1ð Þ:

Proof It is easy to see that B1
*

�� �� ¼ 2e1e2n2, B3
*

�� �� ¼ 2e1e2
2;

B5
∗j j ¼ 1

2
n2

3 M1 G1ð Þ � 2e1ð Þ, B6
∗j j ¼ n2

2e2 M1 G1ð Þ � 2e1ð Þ and B8
∗j j ¼ 1

2
n2

4

e1
2 þ e1 �M1 G1ð Þð Þ. Now, we find

X
e;ff g2B5

*[B6
*[B8

*

d4 e, f Gjð Þ.

By Lemma 14.5.2, we have:X
e;ff g2B*

5

d4 e, f Gjð Þ ¼
X�

d4 u1v1, u1z1 G1jð Þ : e; ff g 2 B5
*, e ¼ u1; u2ð Þ v1; v2ð Þ,

f ¼ u1; u2ð Þ � z1; z2ð Þ�
¼ n2

3
X

u12V G1ð Þ

X
u1v1, u1z1f g�E G1ð Þ

d4
�
u1v1, u1z1 G1j �

:
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Similarly,X
e;ff g2B*

6

d4 e, f Gjð Þ ¼
X�

d4 u1v1, u1z1 G1jð Þ : e; ff g 2 B6
*, e ¼ u1; u2ð Þ v1; v2ð Þ,

f ¼ u1; t2ð Þ z1; z2ð Þ�
¼ 2n2

2e2
X

u12V G1ð Þ

X
u1v1, u1z1f g�E G1ð Þ

d4
�
u1v1, u1z1 G1j �

;

and X
e;ff g2B*

8

d4 e, f Gjð Þ ¼
X�

d4 u1v1, z1t1 G1jð Þ : e; ff g 2 B8
*, e ¼ u1; u2ð Þ v1; v2ð Þ,

f ¼ z1; z2ð Þ t1; t2ð Þ�
¼ 1

2
n2

4
X

u1v12E G1ð Þ

X
z1t12E G1ð Þ, z1, t1=2 u1;v1f g

d4
�
u1v1, z1t1 G1j �

:

Consequently,X
e;ff g2B5

*[B6
*[B8

*

d4 e, f Gjð Þ ¼ 2n2
2e2

X
u12V G1ð Þ

X
u1v1, u1z1f g�E G1ð Þ

d4
�
u1v1, u1z1 G1j �

þ 1

2
n2

4
X

u1v12E G1ð Þ

X
z1t12E G1ð Þ, z1, t1=2 u1;v1f g

d4 u1v1, z1t1 G1jð Þ

¼ n2
3 þ 2n2

2e2
� � X

u12V G1ð Þ

X
u1v1, u1z1f g�E G1ð Þ

� d4
�
u1v1, u1z1 G1j �þ 1

2
n2

4 2We4 G1ð Þð

� 2
X

u12V G1ð Þ

X
u1v1, u1z1f g�E G1ð Þ

d4 u1v1, u1z1 G1jð ÞÞ

¼ n2
4We4 G1ð Þ þ n2

2 n2 þ 2e2 � n2
2

� �
�

X
u12V G1ð Þ

X
u1v1, u1z1f g�E G1ð Þ

d4
�
u1v1, z1t1 G1j �

:
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Now, using Lemma 14.5.6, we obtain:X
e;ff g2B5

*[B6
*[B8

*

d4 e, f Gjð Þ ¼ n2
4We4 G1ð Þ þ n2

2 n2 þ 2e2 � n2
2

� �
� M1 G1ð Þ � 2N1 G1ð Þ � 2e1ð Þ:

Therefore,

X
e;ff g2B

d4 e, f Gjð Þ ¼
X4
i¼1

X
e;ff g2Bi

*

d4 e, f Gjð Þ þ
X

e;ff g2B7
*

d4 e, f Gjð Þ

þ
X

e;ff g2B5
∗[B6

∗[B8
∗

d4 e, f Gjð Þ

¼ B1
*

�� ��þ 2 B2
*

�� ��þ B3
*

�� ��þ 2 B4
*

�� ��þ 2 B7
*

�� ��
þ

X
e;ff g2B5

∗[B6
∗[B8

∗

d4 e, f Gjð Þ

¼ 2 Bj j � B1
*

�� ��� B3
*

�� ��� 2 B5
*

�� ��� 2 B6
*

�� ��� 2 B8
*

�� ��
þ

X
e;ff g2B5

*[B6
*[B8

*

d4
�
e, f G

���

¼ 2e1 n2
2

2

� �
� 2e1e2 n2 þ e2ð Þ þ n2

4We4 G1ð Þ

þ 2n2
2 n2

2 � n2 � 2e2
� �

N1 G1ð Þ: ■

Lemma 14.5.8X
e;ff g2C

d4 e, f Gjð Þ ¼ 2e1e2n2 n2 � 2ð Þ � 2e1n2N1 G2ð Þ þ n2
2e2Wve2 G1ð Þ:

Proof One can easily see that, C1
*

�� �� ¼ 4e1e2n2, C2
*

�� �� ¼ 2e1n2N1(G2) and

C2
* [ C3

*
�� �� ¼ 2e1e2n2 n2 � 2ð Þ. By Lemma 14.5.3, we obtain:
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X
e;ff g2C*

4

d4 e, f Gjð Þ ¼
X�

D2

�
u1, v1z1 G1

��� : e; ff g 2 C4
*, e ¼ u1; u2ð Þ, u1; t2ð Þ,

f ¼ v1; v2ð Þ, z1; z2ð Þ�
¼ n2

2e2
X

u12V G1ð Þ

X
v1z12E G1ð Þ, v1 6¼u1, z1 6¼u1

D2 u1, v1z1 G1jð Þ

¼ n2
2e2

X
u12V G1ð Þ

X
v1z12E G1ð Þ

D2 u1, v1z1 G1jð Þ

�n2
2e2

X
u12V G1ð Þ

X
u1v12E G1ð Þ

D2 u1, u1v1 G1jð Þ

¼ n2
2e2 Wve2 G1ð Þ �

X
u12V G1ð Þ

X
u1v12E G1ð Þ

1

0
@

1
A

¼ n2
2e2 Wve2 G1ð Þ �

X
u12V G1ð Þ

degG1
uð Þ

0
@

1
A

¼ n2
2e2 Wve2 G1ð Þ � 2e1ð Þ:

Hence,

X
e;ff g2C

d4 e, f Gjð Þ ¼
X4
i¼1

X
e;ff g2Ci

*

d4 e, f Gjð Þ ¼ C1
*

�� ��þ C2
*

�� ��þ 2 C3
*

�� ��
þ

X
e;ff g2C4

*

d4 e, f Gjð Þ ¼ C1
*

�� ��þ 2 C2
* [ C3

*
�� ��� C2

*
�� ��

þ
X

e;ff g2C4
∗

d4 e, f Gjð Þ ¼ 2e1e2n2 n2 � 2ð Þ

� 2e1n2N1 G2ð Þ þ n2
2e2Wve2 G1ð Þ:

Now, we express the main theorem of this section.

Theorem 14.5.9 The second edge-Wiener index of G1[G2] is given by:

We4 G1 G2½ �ð Þ ¼ 2n1 e2
2

� �
þ 2e1 n2

2

2

� �
þ 2e1e2 n2

2 � 3n2 � e2ð Þ
þ e2

2W G1ð Þ þ n2
4We4 G1ð Þ

þ n2
2e2Wve2 G1ð Þ þ 2n2

2 n2
2 � n2 � 2e2

� �
N1 G1ð Þ � n1 þ 2e1n2ð Þ

� N1 G2ð Þ � 1

4
n1N2 G2ð Þ:
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Proof Since {A,B,C} is a partition of the set K, so by definition of We4 Gð Þ, we
have:

We4 Gð Þ ¼
X
e;ff g2K

d4 e, f Gjð Þ

¼
X
e;ff g2A

d4 e, f Gjð Þ þ
X
e;ff g2B

d4 e, f Gjð Þ þ
X
e;ff g2C

d4 e, f Gjð Þ:

Now, using Lemmas 14.5.5, 14.5.7 and 14.5.8, the proof is obvious.

Now, we can use Theorem 14.5.9 to obtain explicit formulae for the second

edge-Wiener index of some classes of graphs by specializing components in

compositions. Because Pn and Cm, m � 4 are triangle–free graphs, so by definition

of the quantity N1, N1 Pnð Þ ¼ N1 Cmð Þ ¼ 0 and N1 C3ð Þ ¼ 3. Also, by definition of

the quantity N2, it is easy to see that for n � 2 and m � 3, N2 Pnð Þ ¼ N2 Cmð Þ ¼ 0.

Now, using Theorem 14.5.9 and Table 14.1, we can easily get the formulae for the

second edge-Wiener index of fence graph Pn[P2] and closed fence graph Cn[P2];

see Fig. 14.8.

Corollary 14.5.10 The second edge-Wiener index of the fence graph and closed
fence graph are given by:

1. We4 Pn P2½ �ð Þ ¼ 25

6
n3 � 85

6
nþ 10;

2. We4ðCn½P2�Þ ¼
25

8
n3 þ 10n2 � 185

8
n, if n is odd,

25

8
n3 þ 10n2 � 10n, if n is even:

8>><
>>:

Our next example is about the composition of arbitrary paths and cycles.
Application of Theorem 14.5.9 and Table 14.1 yields:

Corollary 14.5.11 For n � 2 and m � 3,

1 2

Ca[P2]

Pa[P2]

3 4 n-1
n-1 n 1 2

3

4

n-2

n-3

n

Fig. 14.8 Fence and closed� fence graphs on 2n vertices
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1. We4 Pn Cm½ �ð Þ ¼
24n3 � 66nþ 45 if m ¼ 3

m4

6
n n2 � 1ð Þ þ m3

3
n3 þ 5n� 6ð Þ þ m2

6
n3 � 49nþ 54ð Þ � mn if m � 4

;

8<
:

2. We4 Cm Pn½ �ð Þ ¼

15n4 � 3n3 � 24n2 þ 15nþ 3, if m ¼ 3

m3

8
n4 þ 2n3 � n2 � 2nþ 1ð Þ þ m2

2
n2 n2 þ n� 1ð Þ if m is odd,m 6¼ 3

�m

8
5n4 � 10n3 þ 75n2 � 58nþ 1
� �

,

m3

8
n4 þ 2n3 � n2 � 2nþ 1ð Þ þ m2

2
n2 n2 þ n� 1ð Þ if m is even

þmn 2n2 � 10nþ 7ð Þ

8>>>>>>>>>><
>>>>>>>>>>:
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Trinajstić N (1992) Chemical graph theory. CRC Press, Boca Raton

Wiener H (1947a) Structural determination of paraffin boiling points. J Am Chem Soc 69(1):17–20

246 M. Azari and A. Iranmanesh



Wiener H (1947b) Correlation of heats of isomerization and differences in heats of vaporization of

isomers among the paraffin hydrocarbons. J Am Chem Soc 69:2636–2638

Yeh YN, Gutman I (1994) On the sum of all distances in composite graphs. Discrete Math

135:359–365

Yousefi-Azari H, Khalifeh MH, Ashrafi AR (2011) Calculating the edge Wiener and edge Szeged

indices of graphs. J Comput Appl Math 235(16):4866–4870

Zhou B (2004) Zagreb indices. MATCH Commun Math Comput Chem 52:113–118

Zhou B, Gutman I (2005) Further properties of Zagreb indices. MATCH Commun Math Comput

Chem 54:233–239

14 Edge-Wiener Indices of Composite Graphs 247


	Chapter 14: Edge-Wiener Indices of Composite Graphs
	14.1 Introduction
	14.2 Cartesian Product
	14.3 Join
	14.4 Corona Product
	14.5 Composition
	References


