Chapter 14
Edge-Wiener Indices of Composite Graphs

Mahdieh Azari and Ali Iranmanesh

Abstract The distance d(u, vIG) between the vertices u and v of a simple connected
graph G is the length of any shortest path in G connecting # and v. The Wiener
index W(G) of G is defined as the sum of distances between all pairs of vertices of
G. The edge-Wiener index of G is conceived in an analogous manner as the sum of
distances between all pairs of edges of G. Two possible distances dy(e,fIG) and
ds(e, fiG) between the edges e and f of G can be considered and according to them,
the corresponding edge-Wiener indices W, (G) and W,,(G) are defined. In this
chapter, we report our recent results on computing the first and second edge-Wiener
indices of some composite graphs. Results are illustrated by some interesting
examples.

14.1 Introduction

In this chapter, we consider connected finite graphs without any loops or multiple
edges. In theoretical chemistry, the physicochemical properties of chemical com-
pounds are often modeled by means of molecular-graph-based structure descrip-
tors, which are also referred to as topological indices (Gutman and Polansky 1986;
Trinajsti¢ 1992; Todeschini and Consonni 2000; Diudea 2001). In the other words,
a topological index Top(G) of a graph G is a real number with the property that for
every graph H isomorphic to G, Top(H) = Top(G). Among the variety of topo-
logical indices which are designed to capture the different aspects of molecular
structure, the Wiener index is the best known one. Vertex version of the Wiener
index is the first reported distance-based topological index which was introduced by
Wiener (1947a, b). Wiener used his index, for the calculation of the boiling points
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of alkanes. Using the language which in theoretical chemistry emerged several
decades after Wiener, we may say that the Wiener index was conceived as the sum
of distances between all pairs of vertices in the molecular graph of an alkane, with
the evident aim to provide a measure of the compactness of the respective hydro-
carbon molecule. From graph-theoretical point of view, Wiener index of a graph
G 1is defined as:

WG) = Y duvG),

{u}TV(G)

where d(u,vIG) denotes the distance between the vertices u and v of G which is
defined as the length of any shortest path in G connecting them. Wiener index
happens to be one of the most frequently and most successfully employed structural
descriptors that can be deduced from the molecular graph. Since 1976, the Wiener
number has found a remarkable variety of chemical applications. Physical and
chemical properties of organic substances, which can be expected to depend on
the area of the molecular surface and/or on the branching of the molecular
carbonatom skeleton, are usually well correlated with the Wiener index. Among
them are the heats of formation, vaporization and atomization, density, boiling
point, critical pressure, refractive index, surface tension and viscosity of various
acyclic and cyclic, saturated and unsaturated as well as aromatic hydrocarbon
species, velocity of ultrasound in alkanes and alcohols, rate of electro reduction
of chlorobenzenes etc. (Gutman et al. 1993). We refer the reader to Buckley and
Harary (1990); Graovac and Pisanski (1991); Gutman (1994); Diudea (1995);
Dobrynin et al. (2001); John and Diudea (2004); Ashrafi and Yousefi (2007); and
Putz et al. (2013), for more information about the Wiener index.

The Wiener polynomial of a graph G is defined in terms of a parameter g as
follows:

WG = Y ¢
eV (G)

This coincides with the definition of Hosoya (1988) and Sagan et al. (1996). It is
clear that, the first derivative of the Wiener polynomial of G atg = 1 is equal to the
Wiener index of G, i.e., W (G; 1) = W(G).

Edge versions of the Wiener index based on distance between all pairs of edges
in a graph G were introduced independently by (Dankelman et al. 2009; Iranmanesh
et al. 2009; and Khalifeh et al. 2009b). Two possible distances between the edges
e =uv and f = zt of a graph G can be considered (Iranmanesh et al. 2009). The
first distance is denoted by dy(e, fIG) and defined as follows:

afesic) ={ g SO e A

where di(e,f|G) = min{d(u,z|G),d(u,1|G),d(v,z|G),d(v,1|G)}. Tt is easy to see
that do(e,f|G) = d(e,f|L(G)), where L(G) is the line graph of G.
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The second distance is denoted by d4(e, IG) and defined as follows:

aesio) = {1 L7

where dy(e,f|G) = max{d(u,z|G),d(u,1|G),d(v, z|G),d(v,1|G)}.

Corresponding to the above distances, two edge versions of the Wiener index
can be defined. The first and second edge-Wiener indices of G are denoted by W,
(G) and W, (G), respectively and defined as follows (Iranmanesh et al. 2009):

W (G)= > di(e.f|G). i€{0,4}.
{efICE(G)

Obviously, W,,(G) = W(L(G)). Details on the edge — Wiener indices can be found
in (Gutman 2010; Yousefi—Azari et al. 2011; Nadjafi—Arani et al. 2012;
Iranmanesh 2013; Azari and Iranmanesh 2014a, b; Iranmanesh and Azari 2015b)
and the references quoted therein.

The edge-Wiener polynomials of a graph G are introduced in terms of a
parameter ¢ as follows:

We(Gig)= > ¢"N19, ie{0,4}.
{e, f}CE(G)

It is clear that, the first derivative of the edge-Wiener polynomials at ¢ = 1 is equal
to their corresponding edge-Wiener indices, i.e., W;, (G;1) =W,,(G), where
i €{0,4}.

Vertex-edge versions of the Wiener index based on the distance between vertices
and edges in a graph G were introduced in Khalifeh et al. (2009b); Azari and
Iranmanesh (2011b); and Azari et al. (2013b). The distance between the vertex
u and the edge e = ab of a graph G can be defined in two ways. The first distance is
denoted by D{(u, elG) and defined as follows:

D (u,e|G) = min{d(u,a|G),d(u,b|G)}.
The second distance is denoted by D,(u, elG) and defined as follows:
D (u, e|G) = max{d(u,a|G),d(u,b|G)}.

Corresponding to these two distances, two vertex-edge versions of the Wiener
index can be defined. The first and second vertex-edge Wiener indices of G are
denoted by W, (G) and W,,,(G), respectively and defined as follows (Azari
et al. 2013b):

Wi (G)= > Y Di(uelG). i€ {1,2}.

ueV(G) ecE(G)
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One can easily see that, for arbitrary edges e = uv and f = zf of G, the quantities d;
and D;, i € {1,2}, satisfy in the following relations:

di(e.f|G) = min{D (u,f|G), D1 (v,f|G)} = min{D(z,e|G),D: (¢, ¢|G)},
da(e,f|G) = max{Dy(u,f|G),D2(v,f|G)} = max{D2(z,e|G),D:(t,e|G)}.

The above relations explain the relationship between the edge versions and vertex-
edge versions of the Wiener index.

The vertex-edge Wiener polynomials of a graph G are introduced in terms of a
parameter ¢ as follows (Azari and Iranmanesh 2011b; Azari et al. 2011):

Wi (Giq) = ) Zq a9, ie {1,2).

ucV(G) ecE(G

It is easy to see that the first derivative of the vertex-edge Wiener polynomials at
qg=1 are equal to their corresponding vertex-edge Wiener indices, i.e.,
W/VFI,(G; 1) = W,,,(G), where i€ {1,2}. The first and the second vertex-edge
Wiener indices and polynomials are also called the minimum and maximum indices
and polynomials, respectively.

The Zagreb indices are among the oldest topological indices and were intro-
duced by Gutman and Trinajstic (1972). The first and second Zagreb indices of
G are denoted by M{(G) and M,(G), respectively, and defined as:

Z degi(1)* and M,(G) = Z deg(u)degs(v),

ueV(G uveE(G)

where degs(u) denotes the degree of the vertex u in G which is the number of
vertices incident to u.
The first Zagreb index can also be expressed as a sum over edges of G:

Mi(G)= ) [degg(u) + degg(v)].
uveE(G)

For details on the theory and applications of Zagreb indices see Gutman
et al. (1975); Gutman and Das (2004); Zhou (2004); Zhou and Gutman (2005);
Khalifeh et al. (2009a); Azari and Iranmanesh (2011a, 2013); Réti (2012); Azari
et al. (2013a); Falahati-Nezhad (2014); and Iranmanesh and Azari (2015a).

Let Ng(u) denote the set of all first neighbors of u in G. Clearly, the cardinality of
Ng(u) is equal to degs(1). We define three quantities related to the graph G as
follows:

MG = 3 INo(w) NNG(v)|,

uveE(G)

= > Y INe¢w)nNe(v)NNg(z),

uveE(G) zeNg(u)NNg (v)
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N3(G) = ) > ING(2)\ (NG (1) UNG(v))].

uveE(G) zeV(G)\ (NG (u)UNg(v))

It is easy to see that the quantity N,(G) is equal to three times the number of all
triangles in G. Also, by inclusion—exclusion principle, we obtain:

ING(2)\(NG () UNG(v))| = degg(2) — [N(u) NNG(2)| = [NG(v) N Ng(2)]
+ |NG(M) mNg(V) ﬁNG(Z)‘

The fact that many interesting graphs are composed of simpler graphs that serve
as their basic building blocks prompted interest in the type of relationship between
the Wiener index and polynomial of composite graphs and their building blocks
(Yeh and Gutman 1994; Sagan et al. 1996; Stevanovi¢ 2001; Eliasi et al. 2012;
Eliasi and Iranmanesh 2013). This development was followed by some articles
(Azari et al. 2010, 2012; Azari and Iranmanesh 2011b, 2014a, b; Alizadeh
et al. 2014) that established corresponding relationships for the edge-Wiener
indices.

In this chapter, we review our recent results on computing the first and second
edge-Wiener indices of some composite graphs. All considered operations are
binary. Hence, we will usually deal with two simple connected graphs G, and G,.
For a given graph G, its vertex and edge sets will be denoted by V(G,) and E(G)),
respectively, and their cardinalities by n; and e;, respectively, where i € {1,2}. The
chapter is organized as follows. In Sect. 14.2, the first and second edge-Wiener
polynomials and their related indices are computed for the Cartesian product of
graphs. In Sects. 14.3 and 14.4, we compute the first edge-Wiener index of the join
and corona product of graphs, respectively. Finally, in Sect. 14.5, an exact formula
is obtained for the second edge-Wiener index of the composition of graphs.

14.2 Cartesian Product

In this section, we compute the first and second edge-Wiener polynomials and their
related indices for the Cartesian product of graphs. We start this section by
definition of the Cartesian product of graphs.

The Cartesian product G; x G, of the graphs G, and G, is a graph with the vertex
set V(Gy) x V(G,) and two vertices u = (uy,up) and v = (v1,v;) of G| x G, are
adjacent if and only if [u; = v; and upv, € E(G;)] or [u; = v, and uyv; € E(Gy)].
Hence, we can consider the edge set of G| x Gy as E(G| X G,) = E; U », where E;
and E, are the following disjoint sets:

Ey = {(u1,u2)(u1,v2) 1 uy € V(Gy),uav2 € E(G,)},
Ey = {(u1,u2)(v1,u2) : vy € E(G1),up € V(Ga)}.

The number of vertices and edges in G| x G, are given by:
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|V(Gl X Gy)| = mny and |E(G; X G2)| = niey + nmey.

The Cartesian product of two graphs is associative and commutative and it is
connected if and only if both components are connected. According to the proof
of Theorem 1 in Stevanovi¢ (2001), the distance between the vertices u = (uy, us)
and v = (v1,1,) of G| X G, is given by:

d(u,v|G1 X Gz) = d(ul,v1|G1) + d(uz,V2|G2>.

Lemma 14.2.1

D MG = qW(Griq) + W, (Ga3 ) 2W(Gri g) + m, i € {0,4}.
{ef}CE;

Proof By definition of the set Ey, for i € {0,4}, we have:

Z qdi(é’»f|Gl><Gz) _ Z Zqdi((ul,uz)(Ltl,vz),(al.uz)(al,vg)\G,><G2)
{ef}CE; {u1,a1}CV(G1) urv2€E(G>)

+ Z Z Z qdi((ul»MZ)(“la"Z)»(alva2)<alab2>‘GlXGZ)
u eV Gl) (11€V G1 {lleZ,azbz}CE G?

_ Z Z g+
{uy,a1}CV(G\) ua2€E(G,)
i Z a6 a2,z G2)
w1 €V(Gy) a1€V(Gy) {uava, a2b2 } CE(G3)
= exqW(G1;q) + W.,(G2: q)2W(G15.9) + my).

Lemma 14.2.2

D gt = 01qW(Gaiq) + W, (Gi3 ) 2W(Gai q) + ma]. i € {0,4}.
{ef}CE,

Proof Similar to the proof of Lemma 14.2.1, we can obtain the desired result.

Lemma 14.2.3

L. quo(&f\Gl xG2) = quel (Gl 3 CI)er, (GZ; 61)7
ecE,fekE,

2' Z qd4<e‘ fIGl xG2) = erz (Gl 3 Q)erz (GZ; q) .
ecE,fekE,
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Proof We compute:

1. Z go@fl6xG) - Z Z

do((uy,u2) (ur,v2), (a1,a2) (b1,a2)|G1 xG2)

MM

ecE,feE, u1€V(Gy) uav2€E(Gy) aby €E(Gy) ar€
— 2 H—D] uy,a1by|G)+Di(az,urv2|G2)
u1€V(Gy) usv2€E(G2) a1by €E(Gy) a2€V(Ga)
— E 1(41 arbi|Gr) E E D1 (az,u2v2|Gs)
u|€V(G1)a|b1€E(G|) a€V(G2) uav2€E(G, )

2. Z qel1GixG) - — Z Z Z Z g ) v2), (@1,02)(b1,02)|G1 < G2)

ecE\,f€E, 1) U2 €E(G>) a1b €E(G) a,€V (G

0 eV(G )
— Z Z Z Z qu(lllytllbl\G1)+Dz(d2,uz\’2|Gz)

V(G1) uav2€E(Gy) a1b1 €E(G1) az

Z Z qu(ul sarby \G )Z Z qu(az,uzvz\Gz)

u1€V(Gy) a1b1€E(Gy) a€V(G2) uv2€E(G>)

=Wy, (G1§ Q)erz (G2§ q)-
Now, we use the previous lemmas to prove the main theorem of this section.

Theorem 14.2.4 The first and second edge-Wiener polynomials of G| x G, are

given by:

L. W (G X Gaiq) = e2qW(G13q) + e1gW(Ga; q) + mWe (Gi; q) + mWe (G q)
F2W(G1;9)We, (G2: ) +2W(G23 ) We (G13q) + qWie, (G13:9)Woe, (G239,

2. We,(Gi X Ga;q) = e2qW(G1;q) + e1gW(Ga; q) + mW,,(Gi; q) + mW,,(G2; q)

F2W(G1;9)We,(G2; q) + 2W(G2; @)We, (G13q) + Wi, (G153 0)Woe, (G235 q)-
Proof Since E(Gy X G3) = E{ UE, and E; NE; = ¢, so for i € {0,4}, we have:

Wo(Grx Grg)= 3 glesionG
{ef}CE(G1xGa)

Z qdi(e,f'\Glez)+ Z qd;(e,f\Glez)

{ef}CE {e,f}CE;,
+ Z qd,(f»ﬂGl xGa)
eEEl,fEEz

Using the previous lemmas, the proof is obvious.

As a direct consequence of the previous theorem, we can compute the first and
second edge-Wiener indices of the Cartesian product as given in Azari and
Iranmanesh (2011b).

Corollary 14.2.5 The first and second edge-Wiener indices of Gy X G, are given
by:
1. Weo (G] X Gz) = 822W(G1) + €|2W(G2) + nzngo(Gl)

+I’112W€0(G2) + (;1)62 + (’212)61 + ninaeie;
+n2€2erl (Gl) + nleIerl (G2)7
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2. Wg4 (G1 X Gz) = €22W(G1) -+ €12W(Gz) -+ nzsz(Gl)
+I’112We4 (Gg) —+ (31)62 + (32)61 + n2€2W‘,~gz (Gl)
—&—nlelW‘,ez (Gg)

Now, we use Corollary 14.2.5 to find the first and second edge-Wiener indices of
the rectangular grids, C4— nanotubes and C4— nanotori. The Wiener, edge-Wiener
and vertex-edge Wiener indices of the n-vertex path P, and n-vertex cycle C,, were
computed in Sagan et al. (1996); Iranmanesh et al. (2009); and Azari and
Iranmanesh (2011b), respectively. We list these results in Table 14.1.

Consider the rectangular grid P, x P, shown in Fig. 14.1. Using Corollary
14.2.5 and Table 14.1, we can get the formula for the edge-Wiener indices of
P, x P,, as given in Azari and Iranmanesh (2011b).

Table 14.1 The wiener, edge — wiener and vertex — edge wiener indices of paths and cycles

Graph (G) C,, nis odd C,, nis even
W(G) +1 mo2_ 3
(n ! ) g (n 1) %
W, (G) neo 3
( ) 2 (= 1) %
W,,(G) —1\n+3 n _ . _
(,,2 ) < (n +4n—13) o (" +4n—38)
n 2
Wre, (G) 2(3) =1y " (n-2)
Woei(©) ("31) -1 +3) w2
[ O O L J o9
1 2 3 T m-1
® @ L2 P o—
2 'Y}
@ @ @ @ o—e
° ° ° °
. . H .
n-1 oo

Fig. 14.1 The rectangular grid P, x P,,
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Fig. 14.2 A C,— Nanotube

\

Corollary 14.2.6 The first and second edge-Wiener indices of G = P, X Py, are
given by:

Wl3 2 m2 3 2
1. WEO(G):Z(Zn—l) +?(4n —12n° +8n - 3)

SR’ — 4 20— 1) 4 7 (2 = 30+ 2),
3 2
2. Wei(G) = = (20— 17 + 7 (4n* = T+ 3)
—Z (40’ 4702 20— 2) + 2 (0 + 30 +2).

Let G =P, X Cy, then G = TUC4(m,n) is a C4 —nanotube (see Fig. 14.2).
Using Corollary 14.2.5 and Table 14.1, we can compute the edge-Wiener indices of
C4— nanotubes as given in Azari and Iranmanesh (2011b).

Corollary 14.2.7 The first and second edge-Wiener indices of G = TUC4(m, n) are
given by:

3
®en—1)y m—(4n376n2+5n73)+T(4n278n+3) if m is odd,
1. Wt’o(G) = ’,33 ,,2 8
—(@2n—1) ?(4n3 6n* +5n—3)—|—2(n—1) if m is even,
" n— 1) m—(4n3+6n2710n+3) ~2(6n —3)  ifmisodd,
2. We,(6) =4 8 ,S 8
g(nfl €(4n3+6n2710n+3)fz(ananfl) if m is even.
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Fig. 14.3 A C4— Nanotorus

LetG = C, X Cpy, then G = TC4(m, n) is a C4— nanotorus (see Fig. 14.3). Using
Corollary 14.2.5 and Table 14.1, we can compute the edge-Wiener indices of Cy—
nanotori as given in Azari and Iranmanesh (2011b).

Corollary 14.2.8 The first and second edge-Wiener indices of G = TC4(n, m) are
given by:

1. W, (G) =12 + % n(n + 1) +Zn(n — 2),

m’ m?
7n2+7n(n2+4n—4) —mn(2n+ 1) if m, n are odd,
3 2
2. W, (G) = m7n2 +m7n(n2 +4n — 1) —%n(n+2) if m, n are even,
3
m

7n2+m7n(n2+4n—4)—%n(n+2) if nis odd, m is even.

14.3 Join

In this section, we find the first edge-Wiener index of the join of graphs. The results
of this section have been reported in Alizadeh et al. (2014). We start this section by
definition of the join of graphs.

The join G; VG, of the graphs G| and G, with disjoint vertex sets V(G;) and V
(G,) is the graph with the vertex set V(G;)UV(G,) and the edge set
E(G]VGz) = E(G]) UE(Gz) US, where S = {M1M2 TUp € V(G]),Mz S V(Gz)}
Hence, the join of two graphs is obtained by connecting each vertex of one graph
to each vertex of the other graph while keeping all edges of both graphs. The join of
two graphs is sometimes also called a sum and is denoted by G| + G». Its definition
can be extended inductively to more than two graphs in a straightforward manner. It
is a commutative operation and hence both its components will appear
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symmetrically in any formula including distance-based invariants. The number of
vertices and edges in G; VG, are given by:

[V(G1VGy)| =n1 +ny and |[E(G1VGy)| = e + ex + niny.

In the following theorem, the first edge-Wiener index of the join of G| and G, is
computed.

Theorem 14.3.1 The first edge-Wiener index of G1N G, is given by:

el +e+niny

We(GIVG,) = ( 5

> — (2]’[2 — 1)61 - (21’[1 — 1)62

_%’7]”2(”1] +np—2) — %(Ml(Gl) +Mi(G2))

+2(N3(G1) + N3(G2)).

Proof Let Q be the set of all pairs of edges of G| VG,. We partition Q into six
disjoint sets as follows:

0, = {{e.f}: e.f € E(G1)},
0, = {{e.f} ef € E(Ga)},

05 = {{e.f} 1 e € E(G1).f € E(G2)},
Qs ={{e.f} : e € E(G1).f € S},
0s = {{e.f} : e € E(Ga).f € S},

Os = {{e.f} s e.f €S}

The first edge-Wiener index of G; V G is obtained by summing the contributions
of all pairs of edges over those six sets. We proceed to evaluate their contributions
in order of decreasing complexity.

The case of Qs is the simplest. There are eje, such pairs and each of them
contributes 2 to the first edge-Wiener index. Hence, the total contribution of pairs
from Q3 is equal to 2e;e;.

The set Q¢ contains pairs of edges from S. The total number of such pairs is equal

nn n n . .
to < 122 ) Among them there are n; ( 22) + nz( 21 ) pairs sharing a vertex.
Such pairs contribute 1, and all other pairs contribute 2. Hence the total contribution

of pairs from Qg is equal to <n12]12> —m(nzz) —nz(nzl)

The total number of pairs from Q, is equal to e;nyn,. All of them are either at
distance 1 or at distance 2. The adjacent pairs share a vertex in G; hence there are
2en, such pairs, and their contribution is given by 2en,. All other pairs from Q4
contribute 2, and the total contribution of Q, is equal to 2e1ny(n; — 1).
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By symmetry, the total contribution of pairs from Qs is equal to 2e;n; (ny — 1).
It remains to compute the contributions of Q; and Q,. The total number of pairs

in Qg is equal to <621 > Clearly, no pair of edges from Q; is at a distance greater

than 3. Hence, we partition Q, into three sets Q/l, Q/{, and Q’f, made of the pairs of
edges at distance 1, 2, and 3, respectively. Then the total contribution of pairs from

0, to the first edge-Wiener index of G| VG, is given by ’Q” + 2|Q/1’ | +3 |Q/1” . We
have already mentioned that |Q/l”| = 1N3(G)). Further,

=S (deggl(”))_%m(cl)—el.

ueV(Gy)

fo}

From here it immediately follows that the total contribution of Q, is given by:
, 1 1
€] —EMI(G1)+ZN3(G]).

Again, the total contribution of Q, follows by the symmetry, and the formula from
the theorem follows by adding the contributions of Oy, .. ., Qg and simplifying the
resulting expression.

As expected, G and G, appear symmetrically in the formula of the first edge-
Wiener index. It is interesting to note that the formula does not depend on the
connectivity of G; and G,. That allows us to compute the first edge-Wiener index of
joins of graphs that are not themselves connected.

Now, we can obtain explicit formulae for the first edge-Wiener index of some
classes of graphs by specializing components in joins. We start by computing the
first edge-Wiener index of a suspension of a graph G.

For a given graph G, we call the graph K,V G the suspension of G, where K,
denotes the single vertex graph.

Corollary 14.3.2 Let G be a graph with n vertices and e edges. Then

W, (K1VG) :2(”?) - (’;) —%MI(G)—F%M(G) e

The star graph S, on n + 1 vertices is the suspension of the empty graph on
n vertices which is commonly denoted by K,,. The fan graph F, | and wheel graph
W,+1 on n + 1 vertices are also suspensions of n-vertex path P, and n-vertex cycle
C,. respectively (see Fig. 14.4).

The windmill graph D,(,m) is the graph obtained by taking m copies of the
complete graph K,, with a vertex in common. The case n = 3 therefore corresponds

to the Dutch windmill graph (see Fig. 14.5). One can easily see that the windmill

graph D,(f") is the suspension of m copies of K,,_;.
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* n+1

S F

n+1 n+1

Fig. 14.4 Star, Fan and wheel graphs on n + 1 vertices

QYA
TN\ -

It can be verified by direct calculation that N3(P,) = N3(C,) =0 for n <5,

-3
Na(P) =4( "
Also, it is easy to see that, M(P,)=4n—6, M;(C,)=4n, and
M\(K,) =n(n—1)>. So, by Corollary 14.3.2, the first edge-Wiener index of
these graphs is obtained, at once.

Fig. 14.5 Dutch windmill

graph ng>

>, N3(C,) =2n(n —5) for n > 5, and N3(K,) = 0 for n > 3.

Corollary 14.3.3 The first edge-Wiener index of the star, fan, wheel and windmill
graphs is given by:

L Wey(Snat) = (;)
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3 ifn=2,
1

2. W(:’[)(FnJrl) = 5(7]/12 —17n+ 12) l‘f}’l = 3’ 4,
4> =3n+3)  ifn>5,

1,5, .
3. WFU(Wn+1) = {2(7}1 - 9”) lf 3<n<5,
4n* —Tn lf n>6,

1
4. W, (D™) = Zm(n - 1)2[m(n2 -2)-2(n-1)].

Now, consider the complete bipartite graph on m; 4+ my vertices, K, n,. This
graph can be represented as the join of the empty graphs K, and K,,. So,
application of Theorem 14.3.1 yields:

Corollary 14.3.4 The first edge-Wiener index of the complete bipartite graph on
my + my vertices is given by:

We, (Kmlsm2) = _m1m2(2m1m2 —m — m2)-

2

14.4 Corona Product

In this section, we find the first edge-Wiener index of the corona product of graphs.
The results of this section have been reported in Alizadeh et al. (2014). We start this
section by definition of the corona product of graphs.

The corona product G;oG, of the graphs G; and G, is the graph obtained by
taking one copy of G, and |V(G)| = n copies of G, and joining all vertices of the
i-th copy of G, to the i-th vertex of G, fori = 1,2, ..., n;. Obviously, |V (G1°G,)|
=ny(ny + 1) and |[E(G1°G3)| = e; + ni(na + e3). Unlike join and Cartesian prod-
uct, corona is a noncommutative operation, and its component graphs appear in
markedly asymmetric roles.

In the following theorem, the first edge-Wiener index of the corona product of
G, and G, is computed.

Theorem 14.4.1 The first edge-Wiener index of G10G, is given by:

We,(G10G2) = We,(Gr) + (n2 + €2)’W(G1) + (2 + e2)Woe, (G1)

+1Mabﬂﬁfk(€>+m}+m<?)

+ np ( ) + nje; Ilz + 262) + 2]’!162(712 — 1)

+ 2ninyex(ny —
Proof We patrtition the edge set of G| oG, into three sets. The first one is the edge
set of G, S1 = E(G), the second one contains all edges in all copies of G,, and the

third one contains all edges with one end in G, and the other end in some copies of
G,. We denote the copy of G, related to the vertex x € V(G ) by G»_, and the edge
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set of G, by S,... Now set S, = Lg )Sz,x. Similarly, for a vertex x € V(G), we
xeV(G,y

setS3,={e:e=ux,uc V(Gy,)} andthen S3 = U S3,.
XGV(G])

Now, we start to compute the distances between the edges of these three sets.
There are six cases:

Case 1 {g,f} CS;.

It is obvious that, do (g,

°G,) = do/(g.

Gl). SO,

Wi= Y do(8.f1Gi°G2) = W, (Gh).
{gaf}gsl

Case2 {g,f} CS2,8€ Sy candf €85,,,.

If x=y then dy (g,f OGz) = 1, 2 or 3. By the same reasoning as in the
proof of Theorem 14.3.1, we obtain:

> dols

OGZ) = 2(32) 7%(M1(G2) — 62) = 622 *%M}(Gz) +%N3(G2)

{8/}C82,x
Ifx#ythendo( , OGZ):3+d( , ).Now,
0G2)
{8f1C$>
= Z Z do(8.f|G1°G2) + Z Z Z do(8.f|G1°G)
xeV(Gy) {gf}<CSa,« {xy}CV(G,) §€S2,x fES,y
1 1
=m {ezz—iMl(Gz)ﬂLZNﬂGz)] + > (B+d(xy[G))e
{xy}Cv(G)

—n [ef - %Ml (Ga) + %M(Gz)] + &? [3 (”21 ) + W(Gl)}

Case 3 {g,f} C Ss.

In this case, we have:

oGz)
{g/1CSs
= > Y do(&f|GieGa) + DY > > do(s.f|GioG)
x€V(Gy) {gf}CSs,x {x,y}CV(G1) 8€S3,+fE€S3,y
= 2 ZHZZZ(GI(, )+ 1)
x€V(Gy) {gf}CS3,« {x,y}CV(Gy) 8€S83,: f€S3,y
1
= Z Enz(nz — 1) + Z Z I’l2 )
xeV(Gy) {xy}CV(G1) 8€S3,x

1 1
= Enlnz(nz -1+ n22W(G1) +§n22n1(n1 -1
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Cased ge€S,,fes.

In this case, g € Sy, f € Sa,x. do (8, °G,y) =2+ Dy (x, ). Now,
W, = °G,) = Z ZZ 2—|—D1xg|G1))
xeV(G1) 8ES1 fE€S2,« xeV(G1) f€82,x §ESI
= Z 2eiex+e; Z ZD1 X, g|G =e 2’116’1 +le( 1)
xeV(G xeV(Gy) 881
Case5 ge€ S, f €8s
Similarly to the above case, g € S1.f € S3.,do(8.f|G1°G2) = 1 + Dy (x,g|G).
Now,
=2 > = > > ))
XEV G1 EGS]]ESz x XGV G1 gGSU‘eS; x
Z eny +np Z ZDI x,g|G1) = l’l2(l’11€1 + Wie, (Gl))
xeV(Gy) xeV(Gy) g€S1

Case 6 g€ S, f€Ss.

Ifg € Sa.x.f € S3,4, then do(g,f’GIOGz) = 1 or 2. The edge g is adjacent to two
edges of S5, and its distance to other edges is 2. So,

>y °Gy) = > Y (2+42(m—2)) =2(m — ean;.

xX€V(Gy) 8€82,x fE€S3,« x€V(G) €S2,

Ifg S SQ’X,f € S3’y, X 75 y then do( s

°G,) =2 +d(x,y|Gy). Now,

- Y % oG
%,yEV(G1) §ES2.. fES3.,
=2 X °Go)+ D Y °G2)
xeV(Gy) 2652 fES3,x x#yeV(Gy) 8E€S2,x fE€S3,x
= (2]’[2 1’1162 + Z ))}126’2
x#yeV(Gy)
=2(m — )nies + [2ny(ny — 1) + Z d(x,y|G1)]mes
x#yeV(Gr)

=2(ny — Dnyes + 2[ny(ny — 1) + W(Gy)]naes.

Now, the formula for the first edge-Wiener index of G oG, follows by adding all six
contributions and simplifying the resulting expression.

It is interesting to note that the formula of Theorem 14.4.1 does not include any
invariants of G, that depend on its connectivity. It is, hence, possible to apply
Theorem 14.4.1 to the cases of G10G, with disconnected G,. Such cases arise in
transitions from kenographs to plerographs, where G, is given as an empty graph,
i.e., as K, for some positive integer n.
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Brsy(P,,)

Brs(C,)

Fig. 14.6 The t — fold bristled graphs of P, and C,

For a given graph G, its t-fold bristled graph Brs/ (G) is obtained by attaching
t vertices of degree one to each vertex of G. This graph can be represented as the
corona product of G and the empty graph on ¢ vertices K,. The ¢-fold bristled graph
of a given graph is also known as its #-thorny graph. The #-fold bristled graphs of P,
and C,, are shown in Fig. 14.6.

Using Theorem 14.4.1, the first edge-Wiener index of the t-fold bristled graph of
a given graph G is obtained at once.

Corollary 14.4.2 Let G be a graph with n vertices and e edges. Then
We,(Brsi(G)) = Wy (G) + tW,,, (G) + PW(G) + n (;) +7 (g) + net.

Using Corollary 14.4.2 and Table 14.1, the first edge-Wiener index of Brs,(P,,)
and Brs/(C,) can easily be computed.

Corollary 14.4.3 The first edge-Wiener index of the t-fold bristled graphs of P,
and C,, are given by:
L Wey(Brsi(Pa)) = 2 [r2( 417 4 3n(2 = 1) = t(0+ 5) 2],

n(t+1)

[n* 4 nt(n +4) — (14 1)] if 7 is odd,
2. W, (Brs,(C,,)) =3, 8 X o
g[n (t+ 1) +4nt(t + 1) — 44] if n is even.
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Interesting classes of graphs can also be obtained by specializing the first
component in the corona product. For example, for a graph G, the graph K,0G is
called its bottleneck graph. So, using Theorem 14.4.1, we easily arrive at:

Corollary 14.4.4 Let G be a graph with n vertices and e edges. Then

1
We,(K20G) = 6¢* + 10ne + 3n* +n — M,(G) + 7N (G).

Remark 14.4.5 Note that for a given graph G, K| VG = K oG. So, the formulae of
the first edge-Wiener index of the suspension of G and its #-fold bristled graph
computed in Corollaries 14.3.2 and 14.3.3 can also be obtained from Theorem
14.4.1.

14.5 Composition

In this section, we find the second edge-Wiener index of the composition of graphs.
The results of this section have been published in Azari et al. (2012). We start this
section by definition of the composition of graphs.

The composition G[G>] of graphs G| and G, with disjoint vertex sets and edge
sets is a graph on vertex set V(G1) x V(G,) in which u = (u1,u;) is adjacent with
v = (v, v2) whenever u;vy € E(Gy) or [u; = v and upv, € E(G,)]. The composi-
tion is not commutative. The easiest way to visualize the composition G[G>] is to
expand each vertex of G, into a copy of G,, with each edge of G, replaced by the set
of all possible edges between the corresponding copies of G,. Hence, we can define
the edge set of G1[G>] as E(G1[G,]) = E| U E,, where E, and E, are the following
disjoint sets:

Er = {(u1,u2)(ur,v2) : uy € V(G1),u2v2 € E(G2)},
Ey = {(u1,u2)(v1,v2) : uiv1 € E(Gy),u2,v2 € V(Gy)}.

The number of vertices and edges in G[G,] are given by:
|V(G1[G2])‘ = ninp and |E(G1[G2])| =nye; + eli’lzz.

By definition of the composition, the distance between two distinct vertices u =
(u1,uz) and v = (v1,v;) of G{[G>] is given by:

d(ui,v|Gy) if uy # vy,

du,v|G1[Ga]) =< 1 if uy =vi,uav; € E(Gy),
2 lf up :Vl,V2¢NG2(M2).

In Fig. 14.7, you can see the composition of a 3-vertex path P; and 2-vertex path P,.
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L3 Vi Wi
@ @ .
P;
u? \%)
o—
P,

Fig. 14.7 The composition of P53 and P,

Here and in the rest of this section, let G = G[G,]. Suppose K is the set of all
two element subsets of E(G). We partition the set K into the following disjoint sets:

A={{e,f} €eK:e,f €E},
B={{e,f} €K :e,f € Es},
C={{e.f} €K:e€E|f€E}.

2
It is easy to see that |A| = (n12e2 ) ,|B| = <n22e1 ) and |C| = niny%ejey. We start

to find W,, (G), by introducing several subsets of the set A as follows:

A= {{e.f} €A e = (ur,u2)(ur,v2).f = (ur,u2)(u1,22),u1 € V(Gy),
uy € V(Ga),v2z2 € E(Ga) },

Ay ={{efy €Az e= () (ur,v2).f = (ui,u2)(wr, 22), 1 € V(Gy),
uz,v2,22 € V(Gz), 22¢Ng, (v2) },

A ={{e.f} €A:e= (uj,un)(ur,v2).f = (u1,2)(u1, 1), u; € V(Gy),
Upzy, Uty V222, oty € E(Gr)},

Ay ={{ef} €A:e= (uj,up)(ur,v2).f = (u1,22)(u1, 1), u; € V(Gy),

Up,v2, 22,1y € V(Gy), 22, tat {2, v2 P\ A3,
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AS* = {{evf} €EA:e= (Hl,MQ)(M],VQ),f = (V1722)(v17t2)’u1’vl € V(Gl)’

Vi # Ui, u2,v2,22, € V(Ga)}.

500 .
Clearly, every pair of the above sets is disjoint and A = U A; . In the following
i=1

lemma, we characterize dy(e,f| G) for all {e,f} € A.

Lemma 14.5.1 Let {e,f} € A.

1. If {e,f} € A;" UA;, then dy(e,f|G) = 1.

2. If {e,f} € Ay" UA,, then dy(e,f|G) = 2.

3. If {e,f} € As”, then dy(e,f|G) = d(u1,v1|G1), where e = (uy,up)(ur,v,) and
f= (Vlsz)(vlth)'

Proof Let {e,f} € A{UA; and e = (uj,up)(uy,v2), f = (ur,u2)(us,z2). Since
e #f,d((u1,v2), (u1,22)|G) > 1. Hence,
d4(€,f|G) = max{d((ul, Mz), (ul,u2)|G),d((u1 > uz), (M],Zz)|G),d((u1 > Vz),
(u1,u2)|G), d((u1,v2), (u1,22)|G) }
= max{0, 1, 1,d((u1,v2), (u1,2)|G) } =d((u1,v2), (u1,22)|G).

If {e,f} € A", then vz, € E(Gz)z. So, dy(e,f|G) = 1 and if {e,f} € A,", then
7, is not adjacent to v, in Gy. So, d4(e,f|G) = 2. Now, let {e,f} € A; UAZ: and
e = (uy,uz)(ur,v2),f = (ur,22)(u1,22). Then

da(e.f|G) = max{d((ur, u2), (u1,22)|G), d((u1, u2), (w1, 12)|G), d((ur, v2),
(u1,22)|G).d((ur,v2). (w1, 22)|G) }.d((u1, v2). (1, 12) |G) .

If {e,f} € A;", then dy(e,f|G) = max{1,1,1,1} = 1 and if {e,f} € A;", then at
least one of the d((uy, us), (uy,22) | G), d((uy, uz), (U1, 1) | G), d((uy, v2), (u1,22) | G)
and d((uy,vy), (u1,1) | G) is equal to 2. Therefore, dy(e,f|G) =2. So, (1) and
(2) hold.

In order to prove (3), let {e,f} € As"and e = (uy,uy)(uy, v2),f = (vi,22)(v1,12).
Then v; # u; and

dy(e.f|G) = max{d((ul,uz), (v1,22)|G), d((u1, uz), (vl,t2)|G),d((u1,v2),
(V1,22)|G),d((u1,\/2), (V],l2)|G)} = max{d(ul,v1|G1),
d(ul,vl|G1),d(u1,v1|G1),d(u1,v1|G1)} :d(ul,v1|G1).

So, (3) holds.
Now, we define several subsets of the set B as follows:
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B = {{e.f} € B:e= (ur,u2)(vi,m2).f = (wr,u2)(v1,22),m1,v1 € V(G1),
uy € V(Ga),v2z2 € E(G2)},
By = {{e.f} € B:e= (u1,u2)(vi,v2).f = (w1,u2)(v1,22),11,v1 € V(G)),

Uy, vp,2p € V(Gz),zzgéNGz(vz)},

By = {{e,f} €B:e = (uj,u)(vi,m).f = (u1,22)(vi,t2),u1,vi € V(G),
upz2, vty € E(Ga)},

By = {{e,f} €B:e= (u,uz)(vi,v2),f = (u1,22)(v1,12), u1,v1 € V(Gy),
Uz, v2,22,tp € V(G2),22 # ua, 1 # \)2}\33*7

Bs' ={{e,f} € B:e = (ur,u)(vi,v2).f = (u1,u2)(z1,22),u1,v1,21 € V(Gy),
71 £V, U, V2,22 € V(Gy)},

Be = {{e.f} € B:e = (u1,u2)(vi,v2).f = (u1,2)(z1,22), u1,v1,21 € V(Gy),
71 £ vi,atr € E(G2),v2,20 € V(Gz)},

B, = {{e,f} €B:e= (ur,u2) (vi,v2),f = (u1,t2)(z1,22),u1,v1,21 € V(Gy),

21 # ViU, va, 12,22 € V(G2), 1o # uz, 2¢Ng, (12) },
Bg* = {{e,f} €EB:e= (ul,uz)(vl,\/g),f = (21722)([1,[2),1,{1,\/1,21,[1 S V(Gl),

21, 1¢{ur, vi } o ua, vo, 20,1 € V(Gz)}~

8 *
It is clear that, each pair of the above sets is disjoint and B = U B; . In the next

i=1

lemma, we characterize dy(e, fiIG) for all {e,f} € B.
Lemma 14.5.2 Let {e,f} € B.

1. If {e,f} € B," UB;, then dy(e,f|G) = 1.

2. If {e,f} € B," UB, UB;, then dy(e,f|G) = 2.

3. If {e,f} € Bs", then dy(e,f
f = (u1,u2)(z1,22).

4. If {e,f} € Bs', then dy(e,f|G) = dy(u1vi,u1z1|Gy), where e = (uy, up)(vi,v2),
f = (Lt],lz)(zl,Zz).

5. If {e,f} € By", then dy(e,f|G) = dy(urvy,z111|G1), where e = (uy,uz)(vi,v2),
f = (21,22)(11,t2).

G) = ds(uyvi,u121|Gy), where e = (uy,u2)(vi,v2),

Proof The proof is similar to the proof of Lemma 14.5.1.
Consider four subsets of the set C as follows:
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Ci"={{e.f} €C:e = (uy,ur)(ur,v2).f = (ur, ) (z1,22),u1,21 € V(Gy),
u,v2,722 € V(Ga)},

G = {{e.f} €C:e= (u1,m)(ur,v2).f = (u1,0)(z1,22),u1,21 € V(G),
2 € V(Ga), uatr, vty € E(G>)}

C; = {{e7f} €C:e= (ur,up)(ur,v2),f = (u1,0)(z21,22), 1,21 € V(Gy),
Uz, va,t2,23 € V(Ga),tr # up, 1 # V2}\C2*,

Cs = {{e.f} €C:e= (u,w)(u,0).f = (vi,v2)(z1,22), u1,v1,21 € V(Gy),

Vi # U,z # Uy, b, 2,22 € V(G2) )

4 * .

Clearly, each pair of the above sets is disjoint and C = ‘Ul C; . In the following
lemma, we find dy(e, iG) for all {e,f} € C.
Lemma 14.5.3 Let {e,f} € C.
1. If {e,f} € C," U C,*, then dy(e.f|G) = 1.
2. If {e,f} € C5”, then dy(e,f|G) = 2.
3. If {e,f} € C4*, then d4(€,f|G) = Dz(ul,V121|G1), where e = (Ml,uz)(uhlz),

f=1,v)(z1,22).

Proof The proof is straightforward.
In order to clarify the definition of the sets A *, Ay*,...,As*, B*, By*, ..., Bg™,
Ci*, ..., C4*, we give an example.

Example 14.5.4 Let G = P3[P,] be the graph of Fig. 14.7. Then

A" =B =C =¢ and
As" =A = {{e1,e2},{e1,e3}, {e2,e3}},
B\" = {f1.fsh Af1.feds fafrd Afauf st Afasfsh Afsifeds Afafa} Afarfsd ),
By = Hrnfsh Ao fad Afsifed Af7: /81
Bs = {{fu.fo} (1o f7} Afasfebs A5 fads Afanfsd Afasf sk Af s f s} ferf 73 )
Bs = {{fi.fud frfsh Ao fsh Afasfsh Afsuf b Afasfod Afsifa Af o fsd b
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Cl* = {{el,fl}, {61,f3}, {elafS}’ {elvf6}’ {627f1}’ {eZafZ}’ {62,f3}, {627f4}’

{e27f5}’ {e2af6}’ {627f7}’ {627f8}’ {€3?f2}7 {e3af4}’ {e3vf7}’ {e37f8}}7
C4>k = {{elvfz}a {elvf4}7 {elvf7}v {elva}v {83,f1}, {637f3}, {63,f5}, {e3vf6}}‘

Lemma 14.5.5

S di(e.fIG) = (z(";) NI(Ga) —%NQ(G2)> + e W(GY),

{ef}eA

Proof One can easily see that ‘Al ’—nlNl Gs), ’Ag |——n1N2(G2) and

w <”121 )62 . Now, by Lemma 14.5.1, we obtain:

= A" +2JA27 | + |A57] + 2]A47]

> des6=)

{ef}eA =1 {erjen)
+3 {dwi |G : {e.f} € As" e = (w1, 1) (w1, v2),

5
f = (VlaZZ)(VlytZ)} - 22 |A1*’ — ’A1*| — |A3*| — 2|A5*|

i=1

+ e)? Z d(ul’vl‘Gl):2|A|—|A1*‘_‘A3*‘
{mv1}CV(G1)

* 1
— 2|A5 | + eZZW(Gl) = 2<”126'2) — mN; (Gz) - anNz(Gz)

2{s)er ewin - m(2(s) - mic

- %Nz(Gz)) +e*W(Gy). m

Lemma 14.5.6 Let H be a graph with the vertex set V(H) and edge set E(H) and
let |[E(H)| = e. Then

Z Z d4(uv, uz|lH) =M, (H) — N, (H) — 2e.

ueV(H) {uv,uz}CE(H
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Proof Consider the sets F; and F, as follows:

Fi={{uv,uz} CEH) :u,v,z € V(H),vz € E(H)},
Fy = {{uv,uz} CEH) :u,v,z € V(H),v # z,2¢Nu(v) }.

Clearly, F1NFy = ¢, FITUF, = {{e,f} CE(H) : e, f share a vertex}, |F,| =
Ni(H) and |Fp|=3[M(H)—2e—2N(H)]. Let {uv,uz}€F UF,. If
{uv,uz} € Fy, then vz € E(H). So,

dy(uv,uz|H) = max{d(u,
=1.

Now, if {uv,uz} € F,, then v # z and z is not adjacent with v in H. So, d(v, z|H)
=2 and

).d(u,z|H),d(v,ulH),d(v,z|H)} = max{0,1,1,1}

dy(uv,uz|H) = max{0,1,1,2} = 2.

Consequently,
Z dy(uv,uz|[H) = Z ds(uv,uz|H)
ueV(H) {uv,uz}CE(H) ueV(H) {uv,uz}eF,UF,
=2 D 1) ) 2=(R+2R)
ucV(H) {uv,uz}€F, ueV(H) {uv,uz}€F,
:MI(H)—NI(H)—Ze |

Lemma 14.5.7
> di(e.fIG) 2e1( ) —2e1e2(my + €2) + m*W,,(Gy)
{ef}eB

+2n2 ( ny~ —np — 262)N1(G1).

Proof It is easy to see that ’Bl*’ = 2e1ern2, ‘33*‘ = 261622,
|B5*| = %ng?’(M] (G]) — 261), |B6*‘ = I’lzzez(M] (G]) — 26]) and |Bg*| = %1’124
(e2 4 e; — M,(Gy)). Now, we find > dy(e.f|G).
{ef}eBs"UBs"UBg"
By Lemma 14.5.2, we have:

Z d4(€,f‘G) :Z {d4(M]V1,M]Z]|G1) : {e,f} S B5*,e = (ul,uz)(vl,vz),

{ef}<B;
f‘ = (M],I/lz) X (21722)}

Z Z d4(M1V1,M121|G1).

u €V(Gy) {urvi,u1z1 }CE(Gy)
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Similarly,

Z d4 ef|G Z {d4 M1V1,M121|G1) : {e,f} S B()*,e = (M],Mz)(V],Vz),

{ef}eBg
f=(u1,0)(z1,2)}
= 2,2, Z Z dy (ulvl, 1z \G1)7
u €V(Gy) {uyvi,u1z1 }CE(Gy)
and

> da(e.f|G) =>_ {da(uvi,210|Gy) : {e.f} € Bs', e = (ur,u)(v1,2),

{es}eBy
/= (21722)(11,&)}
1 4
:Enz Z Z d4(u1v1,21t1|G1).
wvi€E(Gy) 2111 €E(Gy) 215 1#{ur ,v1 }
Consequently,
Z d4(€,f‘G> = 2]’12262 Z Z d4(M1V1,M121 ‘Gl)
{ef}€Bs"UBs UBg" w €V(Gy) {uyvy,u121 }CE(Gy)
Ly
+§n2 d4(M1V1,2111|G1)

v €E(G1)z21t1 €E(G1),y 215 i {ur v1 }

= (m’ +2nr%ey) Z Z

w1 €V(Gy) {uyvi, 121 }CE(Gy)
1y
X d4(M1V1,M121|G1> +§I’12 (2Wg4(G1)

_2 Z Z da(uvi,mz1|Gr))

i €V(G1){uvi,u1z1 }CE(Gy)

= I124‘/Ve4 (Gl) =+ 1’122 (nz + 2ey — I’lzz)

X Z Z d4(M1V],Z]I]|G]).

u €V(Gy) {uyvi,u121 }CE(Gy)
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Now, using Lemma 14.5.6, we obtain:

Z da(e.f|G) = m*We,(G1) + m* (ny + 2e, — ny?)

{e,f}eBs"UBs"UBg"
X (Ml(Gl) — 2N1(G1) — 261).
Therefore,
4
> di(e.fIG) =D di(e.fIG)+ D dale.f|G)
{ef}eB i=1 {ef}eB” {ef}eB;"
+ Z d4(€,f‘G)
{e,f}EBj*UBG*UBg*

= [B"| +2|B"| + |Bs"| +2|Bs"| +2|B7|

+ > dy(e.f|G)
{&f}EBs*UB(J*UBg*
=2|B| - ‘| —2[Bs"

FY e

{ef}eBs"UBs UBg"

=2¢ (”;2) — 26162(1’!2 + 62) + I’l24We4 (Gl)

—|—2n2 ( n° —ny — 282)N1(G1). | |

Lemma 14.5.8

G) = 26162}12(1’!2 — 2) — 2€1n2N1(G2) + HQZEQWWZ (Gl).
{ef}eC

Proof One can easily see that, |C1*| = 4eyemn,, |C2*| = 2e1nN1(G,) and
‘Cz* U C3*| = 2eyeanp(n; — 2). By Lemma 14.5.3, we obtain:
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Z d4(€,f|G) = Z {Dz(M],V]Z] |G]) : {e,f} (S C4*,€ = (M],uz), (ul,lz),
{ef}eC,
f= (V1>V2),(21722)}

_ 2
= e, E E D (uy,v121|Gy)
u €V(G1) viz1 €E(G1 ), viFur, 217U

= n’e; Z Z Dy (u1,v121|G1)

u1€V(Gy) viz1 €E(Gy)

—ny2e, Z Z Dy (uy, uivi|Gy)

u1 €V(Gy) uyv1€E(Gy)

2
=m’es | Wye,(G1) — E E

M]EV(G]) M1l1€E(G1)

2 E
= ny-ep ng 61 degG1
u €V(Gy)

= nzzez(erz (Gl) — 261).

Hence,
4 * * *
3 difef1G) =3 S dilefG) =|Ci| +|C| +2]cy ]
{efteC i=1 {efreC”
+ Y da(efIG) = |G| +2|C UG - |G
{efeCy”
+ Z d4(e,f|G) = 261821’12(1’[2 — 2)
{ef}eCs*

— 2€1n2N1 (Gz) + }’lzzezwvez (Gl)

Now, we express the main theorem of this section.

Theorem 14.5.9 The second edge-Wiener index of G;[G,] is given by:

W.,(G1[G2]) = 2my ( ) + 2e ( 2 > +2e1ex(n? — 3ny — e3)
+ e W(G]) + ny We4(G1)
+n2esWye, (G1) + 2m* (m* — ny — 2e2)N1(G1) — (1 + 2e1m2)

1
X N1 (Gz) — anNZ(G2)-
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1 2 3 4

Pa[P2]

Fig. 14.8 Fence and closed — fence graphs on 2n vertices

Proof Since {A,B,C} is a partition of the set K, so by definition of W,,(G), we
have:

We(G) = ) di(ef|G)

{efek
= Y du(e.fIG)+ Y da(e.fIG)+ D dale.fIG).
{ef}eA {ef}eB {efteC

Now, using Lemmas 14.5.5, 14.5.7 and 14.5.8, the proof is obvious.

Now, we can use Theorem 14.5.9 to obtain explicit formulae for the second
edge-Wiener index of some classes of graphs by specializing components in
compositions. Because P, and C,,, m > 4 are triangle—free graphs, so by definition
of the quantity Ny, N;(P,) = N;(C,,) = 0 and N,(C3) = 3. Also, by definition of
the quantity N,, it is easy to see that for n > 2 and m > 3, N»(P,) = N»(C,,) = 0.
Now, using Theorem 14.5.9 and Table 14.1, we can easily get the formulae for the
second edge-Wiener index of fence graph P,[P,] and closed fence graph C,[P,];
see Fig. 14.8.

Corollary 14.5.10 The second edge-Wiener index of the fence graph and closed
fence graph are given by:

25 5 85

1. We4(Pn[P2]) = Zn —Fl’l—f— 10,

25 185

§n3 + 10n% — ?n, if nisodd,
2. W, (CulP2]) = 95

§n3 +107* — 10n, if niseven.

Our next example is about the composition of arbitrary paths and cycles.
Application of Theorem 14.5.9 and Table 14.1 yields:

Corollary 14.5.11 Forn > 2 and m > 3,
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24n3 — 66n + 45 iftm=3

1. w,, (P,[C,]) = 4 3 2 7
(PalCal) %n(nz—l)+m?(n3+5n—6)+%(n3—49n+54)—mn if m>4

15n% = 3n® — 24n* + 15n + 3, ifm=3

m? m?

?(n4+2n3 —n?—2n+ 1)+7n2(n2+n7 1) ifmisodd,m+#3
m

2. We  (CulPy]) = —§(5n4 — 107 + 750> — 581 + 1),

m? m?

?(n4 +2n3 —n* —2n+1) +7n2(n2 +n—1) if miseven

+mn(2n? — 10n + 7)
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