
Chapter 12

Geometrical and Topological Dimensions
of the Diamond

G.V. Zhizhin, Z. Khalaj, and M.V. Diudea

Abstract The question of possible existence of molecules in spaces of higher

dimensions, as a consequence of special distribution of matter, is addressed. The

geometrical features of the adamantane molecule are examined in detail. It is shown

that the adamantane molecule has the dimension 4. The connection ways of the

adamantane molecules are investigated on the basis of their geometric properties.

Topological properties of the diamond, a 3-periodic net of adamantane, and of a

hyperdiamond, called diamond D5, are given in terms of Omega and Cluj

polynomials.

12.1 Introduction

Carbon is one of the most important natural elements in the periodic table, in a

variety of millions of compounds and forms. There are four valance electrons in the

carbon atom, two in the 2s orbital and two in the 2p orbitals. When combine, these

orbitals lead to three types of hybrid orbitals: sp, sp2, and sp3 ones. The electronic

and atomic arrangements enable carbon to exist in different allotropes such as

diamond, diamond-like carbon, graphite, fullerenes, nanotubes, nanowalls, etc.

Some of these allotropes are shown in Fig. 12.1 (Khalaj et al. 2012; Khalaj and

Ghoranneviss 2012).

Diamond D6, the classical diamond, is an all-hexagonal ring network, of sp3

hybridized carbon atoms with adamantane and diamantane the repeating units, as
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shown in Fig. 12.2; it is crystallized in a face-centered cubic fcc network (space

group Fd3m).
Diamond has kept its highest importance among the carbon allotropes, in spite of

many “nano” varieties appeared in the last years (Decarli and Jamieson 1961;

Osawa 2007, 2008; Williams et al. 2007; Dubrovinskaia et al. 2006). Its physical

characteristics: high thermal conductivity, large band gap, excellent hardness, high

electrical resistivity, and low friction coefficient (Takano et al. 2005; Yamazaki

et al. 2008), led to outstanding applications in electronics, optics, mechanics, etc.

(Sharda et al. 2001). Composites including diamonds may overpass the resistance

of steel or metal alloys. Synthetic diamonds can be produced by a variety of

methods, including high pressure-high temperature HPHT, static or detonating

procedures, chemical vapor deposition CVD (Lorentz 1995), ultrasound cavitation

(Khachatryan et al. 2008), or mechanosynthesis (Merkle and Freitas 2003; Sourina

and Korolev 2005; Tarasov et al. 2011).

Hyperdiamonds are covalently bonded carbon phases, more or less related to the

diamond network, having a significant amount of sp3 carbon atoms. Their physical

properties are close to that of the classical diamond, sometimes with exceeding

Fig. 12.1 Some of the carbon allotropes synthesized using different CVD systems: (a) self-

assembled cone-like carbon, (b) cauliflower diamond-like carbon, (c) carbon nanowalls, (d)
carbon microspheres
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hardness and/or endurance. In this respect, the hyperdiamond D5 will be presented

in Sect. 12.5.

The chapter is structured as follows. After the introductory part, the main

hypotheses of the space and matter will be introduced in Sect. 12.2. Next, the

dimension of adamantane molecule is investigated in detail in Sect. 12.3, while its

connecting ways evaluated in Sect. 12.4. Section 12.5 introduces the hyperdiamond

D5, while Sects. 12.6 and 12.7deal with the topology of diamonds D6 and D5 in

terms of Omega and Cluj polynomials, respectively. Conclusions and references

will close the chapter.

12.2 Space and Matter

The space in mathematics is a logically conceivable form (or structure) that serves

as a medium in which there are other forms or structures (Mathematical encyclo-

pedia 1984). In this definition, it is essential that the space is a logically conceivable

form. Visual image of any object on the retina of the human eye is two dimensional.

By this reason, any object is perceived initially as a two-dimensional one. Similarly,

we only touch the surface of objects, that is, again the palpable image of objects has

the dimensionality two. The representation as three-dimensional forms only comes

out as a result of the comparison of the mismatched images in the right and left eye,

this difference being stronger observed in motion; the comparison is a result of

thinking, of the rational. Although many people traditionally consider the world

around us as three dimensional, it is only an abstract submission. It should be kept

in mind that the geometrical axioms are neither synthetic a priori judgments nor

experimental facts.

There are only contingent provisions: when choosing among all possible pro-

visions, we are guided by experimental facts, but the choice is free and limited only

by the need to avoid any controversy (Poincare’ 1902).
Historically, there were two main concepts of space. In their frames, there are a

set of modifications and corresponding geometries. The first idea, associated with

the names of Aristotle and Leibniz, is that the real space is a property of the material

provision of the objects. As a result, it is linked inextricably with the matter. The

development of this idea led to the known position of the philosophy that there is no
space without matter just as there is no matter without space. The space is a form of

Fig. 12.2 Diamond D6 (left), adamantane D6_10 (left), diamantane D6_14 (middle), and diamond

D6_52 (a 222 Net� right)
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existence of the matter. The second of these ideas, associated with the names of

Democritus and Newton, is that the space is the repository of all material objects,

which do not have any influence on the space (Einstein 1930). It was the defining

idea for many centuries and the philosophical basis of Euclidean geometry (Euclid

2012). In accordance with it, the geometric space is continuous, endless, three

dimensional, homogeneous (all points in space are identical to each other), and

isotropic (all lines passing through one point are identical to each other). N. I.

Lobachevsky (and independently, Bolyai) suggested a non-Euclidean geometry

(Lobachevsky 1835). In accordance with this, there can be more than one parallel

line through a point outside the line in the plane. This new geometry connected with

physics, space, and matter. B. Riemann (1868) extended the geometry of Loba-

chevsky. He developed the idea of nonhomogeneous spaces, while their connection

with the matter follows to the formation of space structure. Here Riemann idea

merges with the concept of Leibniz, according to which the space is a property of

the position of material objects. Riemannian nonhomogeneous spaces were realized

in Einstein’s physical theory of general relativity, which provided scientific proof of
natural relationship of space and matter. It is believed that the issues of space

heterogeneity and the emergence of high-dimensional spaces are important only for

large-scale objects such as our universe and larger. The modern theory on the

universal nature of the world (superstring theory) easily uses the concept of the

nine-dimensional space (Atwood et al. 2008; Burgess and Quevedo 2008; Green

2011; Zwiebach 2011). However, in the near-to-us space, as the biosphere, we can

find higher-dimension space objects with a specific distribution of atoms.

Modern researches show that the three-dimensional model of our world often

leads to contradictions. For example, the three-dimensional space model could not

certainly describe the experimental electron diffraction patterns of quasi crystals

(intermetallic compounds) (Janssen et al. 2007). Only four-dimensional space

model explains it (Shevchenko et al. 2013a, b; Zhizhin 2014a, b). Experimental

studies of phase transitions of the second kind can be explained only by assuming

the four-dimensional space (Landau 1937; Kadanoff 1966; Wilson 1971a, b;

Fischer and Pfeuty 1972). Such phase transitions in solids occur not only in labs

but also in the nature, for example, in the formation of rocks.

Clathrate compounds (i.e., inclusion compounds) are widely occurring in the

nature. They are formed by inclusion of some molecules in the cavities of crystal

lattices of molecules of another type (lattice clathrates), or in the cavities of another

type of molecules (molecular clathrates). An important example of the lattice

clathrate is the methane hydrate. In it, the methane molecules are enclosed in

thevoids of the crystal lattice of ice. Reserves of methane on the ocean floor in

this form are probably much higher than the gas reserves in a free state. Studies on

clathrates with silicon and germanium atoms indicate a possible four-dimensional

of these compounds (Adams et al. 1994; Nagy and Diudea 2013; Ashrafi

et al. 2013). Many natural minerals exist in the nature in the form of fused different

geometric shapes passing through each other. It also could be the formation of

higher-dimensional geometric shapes. As it is known, the diamond unit cell could

be identified through various polyhedra, such as tetrahedron, octahedron, and others

(Shafranovsky 1964).
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12.3 Dimension of Adamantane Molecule

In this section, the question of the dimensionality of a molecule is considered in

detail in the case of adamantane. As a chemical compound, adamantane was

discovered in 1933 (Landa and Machacek 1933). Adamantane molecule consists

of 10 carbon atoms, a repeating unit of carbon atoms in the crystal lattice of

diamond, and 16 hydrogen atoms. The hydrogen atoms are connected to carbon

atoms on the unsaturated valences of the carbon atoms. Derivatives of adamantane

(e.g., amantadine, memantine, rimantadine, tromantadine) have found practical

applications in medicine (as antiviral, antispasmodics, anti-Parkinson drugs, etc.).

Among the inorganic and organometallic compounds, there is a number of struc-

tural analogs of adamantane, such as phosphorus oxide, urotropine, and others. In

2005, a silicon analogue of adamantane has been synthesized (Fischer et al. 2005).

The adamantane structure is a common one in the literature (Bauschlicher

et al. 2007; Dahl et al. 2003 – see Fig. 12.2, middle).

Spicing about the adamantane molecule, we often keep in mind exactly ten

carbon atoms of the molecule adamantane, although, strictly speaking, it is only a

part of the adamantane molecule. However, this figure is a little informative and

does not reflect the main features of the spatial arrangement of atoms.

Theorem (Zhizhin 2014c) The adamantane molecule is a convex polytope in the

4D space.

Proof We shall build an adamantane cell in the 3D Euclidean space by imposing

the condition: six atoms from ten carbon atoms of adamantane be located in the

center of planar faces of the cube.

Each of the remaining four carbon atoms inside the cube is equidistant to the

three centers of the nearest flat faces of the cube (Fig. 12.3). In Fig. 12.3 one can see

thin solid lines delineating the regular tetrahedron inscribed in the cube. Its edges

are the diagonals of the cube faces. The solid thick lines correspond to the covalent

bonds between carbon atoms. We suppose that the carbon atoms, in the vertices of

the cube, are arranged as in the diamond structure. Other substance possible

arrangement of carbon atoms in the vertices of a cube will not influence the analysis

on the geometry of adamantane. The dotted line passing through the points α2, α6,
α3, α4, α8, and α9 delineate a regular octahedron with its vertices located in the

center of the cube faces and sharing some vertices with the adamantane. Barcode

dotted lines delineate the regular tetrahedron whose vertices coincide with the

carbon atoms of adamantane, located inside the cube α1, α5, α7, and α10. By
construction, the formed segments connecting the vertices of adamantane split

into ten families of parallel lines, each family of three parallel segments:

(1) α1α2, α7 α6, α10α9; (2) α3α1 , α8 α10, α5α6 ; (3) α3α2 , α7 α5, α8α9; (4) α1α4 , α7
α8, α5α9; (5) α4α2 , α8 α6, α10α5; (6) α9α2 , α3 α8, α10α1; (7) α4α3 , α7 α10, α6α9;
(8) α5α2 , α7 α3, α10α4; (9) α1α5 , α3 α6, α4α9; and (10) α6α2 , α7 α1, α4α8. Con-
sequently, the total number of segments, each of which is an edge of a polyhedron,

is equal to 30. The length of the segments is determined by the length of the cube
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edges. Put the length of cube edge equal to 1 (to go to the specific dimensions of the

bond length must enter a scale factor). Then a regular tetrahedron with the bases on

the faces of the octahedron and the vertices in the vertices of the cube (e.g., a

tetrahedron β1α2α3α4) will have the length a¼ 1/√2 and the radius of the circle

around the tetrahedron b¼ √3 / 4 (the points α2; α6, α3; and α4 ,α8 , α9 are in the

centers of the cube faces). Therefore, segments 2, 5, 6, 7, 9, and 10 have the length

a, while the segments 1, 3, 4, and 8 have the length b. Thus, the two-dimensional

geometric elements involved in adamantane are the lengths of sides a and b.
One can define (Fig. 12.3) a set of two-dimensional faces belonging to the

adamantane, forming a regular triangle with sides a, an isosceles triangle with the

base a and two sides b, squares with sides a, and a rectangle with sides a and b.
Among the regular triangles, there are 4 triangles located at the outer edge of

adamantane (α2α3α6, α2α4α9,α4α3α8, α9α8α6) and 8 triangles located in the inner

part of adamantane (α1α5α10, α1α7α10, α1α7α5, α2α9α6, α2α3α4,α8α3α6, α4α9α8,
α5α10α7). Among the irregular triangles, there are 12 triangles located at the outer

edge of adamantane (α2α3α1, α2α1α4 , α1α3α4, α2α5α9 , α2α5α6,
α3α7α8 , α3α7α6, α4α10α9, α4α10α8, α5α9α6 ,α7α8α6, α8α9α10) and 6 triangles located

in the inner part of adamantane (α1α4α10 , α2α5α1 , α5α6α7, α1α7α3 , α10α5α9 , α7α8α10).
Thus, there is a total of 30 triangles in adamantane. In the inner part of adamantane,

there are three squares of side a, as the three sections of the octahedron

Fig. 12.3 Structure of adamantane
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(α2α6α8α4,α2α3α8α9, α3α6α9α4), and 12 parallelograms (Fig. 12.3) with sides a and

b (α1α3α8α10, α1α2α9α10, α1α5α9α4, α1α7α8α4,α1α3α5α6,α1α7α6α2,α2α4α5α10,
α7α3α2α5,α7α3α4α10,α5α6α8α10, α5α7α8α9 , α6α7α9α10).

These parallelograms are rectangles, as one can prove that wrong plane triangles,

based on the specified side of the squares, are perpendicular to the plane of these

squares. Indeed, one may cut up the adamantane by a plane passing, for example

(see Fig. 12.3), through the top α2and the edges α1α2, and α2 α5 (due to the

symmetry of the octahedron and tetrahedron built on its edges, these edges lie in

the same plane). This plane cuts up irregular triangles α1α3α4 , α5α9α6 and regular

triangles α2α3α4 , α6α8α9on their height, passing through the middle of the edges

α3α4 and α6α9 (respectively, the points A1, A2 in Fig. 12.3) and vertex α8. Intersec-
tion plane is presented in Fig. 12.4. We prove that the segments α1A1and α3A2 are

perpendicular on the line A1A2. This will prove the wrong triangle perpendicular to

the plane of the square plane α6α3α9α4. Let us consider the triangle α2α3 A2; in it

A1A2 ¼ a and α2A2 ¼ b ¼
ffiffi
6

p
4
a, A2α3 ¼ a

2
ffiffi
2

p .

Therefore, cos∠α2A2α3 ¼
ffiffi
2
3

q
and sin∠α2A2α3 ¼ 1ffiffi

3
p . From the triangle

A1A2α2, one can see that cos∠α2A2A1 ¼ 1ffiffi
3

p , sin∠α2A2A1

¼
ffiffi
2
3

q
: Consequently, cos ∠α2A2α3 þ∠α2A2A1ð Þ ¼ 0. Then, α3A2⊥ A1A2. This

also implies that α1α3⊥α3α6 and α5α6⊥α3α6 ; in other words the parallelogram

α3α6α1α5 is a rectangle. One can prove that the remaining parallelograms are also

rectangles. Thus, the number of squares and rectangles is 15, and the total number

of geometric elements of dimension 2 consisting of adamantane is 45.

These 2D geometric elements form in adamantane 25 of 3D polyhedron

(Fig. 12.3):

Five tetrahedron (α4α3α1α2, α10α7α1α5, α4α10α9α8, α3α6α7α8, α2α6α9α5)
Six prisms (α3α2α1α8 α9α10, α6α2α1α7 α9α10, α3α2α5α8 α9α7,

α3α5α1α8 α6α10, α5α2α6α8 α4α10, α5α4α1α8 α9α7)
Fourteen pyramids (α4α2α1α9α11, α5α2α1α9α10, α4α3α1α8α10, α7α3α1α8α10,

α4α2α3α9α8, α3α2α6α9α8, α3α2α1α5α6, α5α3α1α6α7, α4α3α6α9α8, α4α2α3α9α6,
α4α3α1α7α10, α4α3α7α8α10 , α4α5α1α9α10,α4α2α1α9α5)

Calculation of 3D octahedron, as consisting from two pyramids, was not con-

sidered, because the square section of the octahedron is involved in the formation of

other 3D shapes. We now calculate Euler’s formula for the polytope P of dimension

n (Poincare 1895; Grunbaum 1967) by substituting the number of figures/shapes of

various dimensions included in adamantane:
Xn�1

j¼0
�1ð Þjf j Pð Þ ¼ 1þ �1ð Þn�1

,

fj(P) being the number of figures of dimension j in the polytope P.

As shown above, in this case we have

f 0 Pð Þ ¼ 10, f 1 Pð Þ ¼ 30, f 2 Pð Þ ¼ 45, f 3 Pð Þ ¼ 25. All the elements of dimension

3 are convex (including 3D boundary of the points set), and no elements of

dimension greater than 3 exists within the adamantane. Substituting the values

obtained for the number of figures of different dimension in Euler’s formula, for

n¼ 4, we have 10–30 + 45–25¼ 0. This proves the theorem.
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Thus, adamantane is a convex polytope of dimension 4. From each vertex this

polytope outlets 6 rays as in the 16-cell convex regular 4D polytope (Grunbaum

1967; Zhizhin 2014a). All two-dimensional faces of adamantane are simulta-

neously faces of two 3D shapes, indicating the isolation of adamantane as a

polytope. The outer boundary of adamantane consisting of two-dimensional faces

of the polytope is the projection of the polytope on the 3D space, just as the outer

boundary of any closed polytope on 2D plane is a closed circuit composed of

one-dimensional segments.

12.4 Connection Ways of Adamantane Molecules

In view of the established geometric properties of adamantane molecules, they can

join to each other by three ways: (1) at the vertices located at the centers of cube

faces; (2) at the wrong parallel triangle; and (3) at the broken hexagonal contours

formed by the right triangle and its surrounding irregular triangle constituting the

dihedral angles with the right triangle.

Fig. 12.4 Section of

adamantane
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12.4.1 The First Way of Joining Adamantane Molecules

It leads to the standard model of translational diamond with the fcc unit cell. The

coordinates of the adamantane vertices are calculated as integers. Indeed, if we

shall take the unit cell edge length equal to 4, the coordinates x, y, and z of vertices
in the initial position (denoted by the subscript 0, αi, 0(xi, 0, yi, 0, zi, 0)) in Fig. 12.3

are α1,0(1, 1, 3), α2,0(2, 2, 4), α3,0(2, 0, 2), α4,0(0, 2, 2), α5, 0(3, 3, 3), α6, 0(4, 2, 2),
α7, 0(3, 1, 1), α8, 0(2, 2, 0), α9, 0(2, 4, 2), α10, 0(1, 3, 1). Then, to translate the cube on
k(kx, ky, kz) steps toward x, y, and z coordinates, formula for computing these new

vertex positions is

αi, k xi, k, yi, k, zi, k
� � ¼ αi,k xi, 0 þ 4kx, yi, 0 þ 4ky, zi, 0 þ 4kz

� �
; i ¼ 1, 2, . . . , 10;

kx, ky, kz being integers (positive and negative). As it was shown above, for

determining the coordinates of adamantane in integers, it is not necessary to use

the theory of numbers, as was done in the work of (Balaban 2013).

On the set of cubic cells of adamantane molecules, one can establish the

existence of a scaling process, diamond scaling, i.e., formation of large-scale

geometric shapes of the same figures as in the smaller scale. For the first time, the

process of scaling was detected at the phase transitions of the second kind

(Kadanoff 1966). Also it was detected on the grid of hyperrombohedron vertices

in quasicrystals (Zhizhin 2014a, b).

Figure 12.5 shows the scaling with an octahedron based on eight cubes, each

containing 8 times smaller octahedron. This explains the existence of diamond

crystals of macroscopic dimensions with the same form as the microscopic unit cell

of diamond. The increase in scale occurs in a discrete manner. Scale crystal

diamond increases atn3 n ¼ 1, 2, . . . :ð Þ strokes.

12.5 The Second Way of Joining Adamantane Molecules

As shown in Sect. 12.3, the planes of irregular triangles are perpendicular to the

plane of the square section of octahedron. Therefore, adamantane molecules can

attach to each other, within an irregular triangle, in two mutually perpendicular

directions. Thus, they form a layer of infinite adamantane polyhedra contacting by

the free vertices of the octahedron. In such a case, two adamantane molecules adopt

a dihedral angle, equal to the dihedral angle between irregular triangles in the

adamantane polyhedron. Therefore, in the space of three adamantane polyhedra,

contacting the wrong triangles, another adamantane polyhedron can be tightly

nested. These form an infinite layer filled by adamantane polyhedra and regular

tetrahedra, with a fundamental domain consisting of an adamantane polyhedron and

a regular tetrahedron.
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These layers, contacted to each other, completely fill the space. At top view such

a layer is shown in Fig. 12.6 (thick lines designate valence bonds). One can see that

the condition of four valence carbon atoms in all the vertices was fulfilled, as in the

four valence bond carbon atoms, directed from layer to layer (vertically). The

distribution of carbon atoms, as shown in Fig. 12.6, describes the oblique coordi-

nate system. The density of this carbon atom arrangement must be higher than the

density of the fcc diamond fundamental domain.

12.5.1 The Third Way of Connecting Adamantane Molecules

The adamantane polyhedra can communicate with each other besides the tops and

irregular triangles also by the broken hexagonal spatial contours whose edges

correspond to the valence bonds. The boundary of each adamantane consists of

four of these circuits. Combining the two adamantane on such a contour, we obtain

the diamantane. A next connection leads to triamantane and so on. Based on this

mechanism, a general formula for diamondoids is available (Bauschlicher

et al. 2007; Dahl et al. 2003): CnHnþ6, n ¼ 4iþ 6, i ¼ 1, 2, . . . :.

Fig. 12.5 Scaling in

diamond
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These diamondoids are shells of the hexagonal loops. Significantly, these coat-

ings may be connected to the carbon structures derived by the second method. This

may provide even more complex and diverse compounds.

12.6 Structures of Diamond D5

A diamondoid crystal structure, with pentagon/hexagon rings, of which 90%

pentagons, was called (Diudea and Nagy 2013) diamond D5; it is also known as

the clathrate II, or mtn, and is a 3-periodic, 3-nodal net, of point symbol {5^5.6}12

{5^6}5 and 2[512]; [512.64], a tiling that belongs to the space group Fd-3m. The
clathrate II structure exists in the synthetic zeolite ZSM-39 (Meyer and Olson

1992), in silica (B€ohme et al. 2007; Adams et al. 1994) and in germanium allotrope

Ge(cF136) (Guloy et al. 2006; Schwarz et al. 2008) as real substances.

Substructures of D5 are related to the classical D6 diamond (Diudea et al. 2012;

B€ohme et al. 2007). An adamantane-like structure D5_ada can form two

diamantane-like D5_dia forms: anti and syn (Fig. 12.1). Next, D5_dia_anti sub-

structure will form a 3-periodic fcc-crystal network (Benedek and Colombo 1996)

(Fig. 12.1, bottom, right), while D5_dia_syn will self-arrange into a starlike quasi-

crystal (Diudea 2013) (Fig. 12.1, bottom, left).

Topology of D5_anti in a triclinical domain (k,k,k) (see Fig. 12.7) is presented in
Table 12.1: formulas to calculate the number of atoms and number of rings R and

the limits (at infinity) for the ratio R5/all rings are given function of k (i.e., the

number of repeating units in the domain) (Diudea et al. 2012).

The hyperdiamond D5 mainly consists of sp3 carbon atoms building ada-like

repeating units (C20 cages including C28 as hollows). The ratio C� sp3/C-total
trends to 1 in a large-enough network. The content of pentagons R[5] per total rings
trends to 90% (see Table 12.1) and, by this reason, this allotrope was called the

diamond D5. For comparison, in this table, topology of diamond D6 net is included.

Considering the hexagons as “window faces” to the C28 hollows, one can

evaluate the genus of D5 net according to the following.

Fig. 12.6 Adamantane

compound in an oblique

lattice
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Theorem (Diudea and Szefler 2012): In spongy structures built up from u tube

junction units, of genus gu, the genus is calculated as g¼ u(gu–1) + 1, irrespective of
the unit tessellation.

Data are given in Table 12.2.

Design of the crystal networks herein discussed was performed by using our

software programs CVNET (Stefu and Diudea 2005) and NANO-STUDIO (Nagy

and Diudea 2009). Topological data were provided by NANO-STUDIO.

Fig. 12.7 Structures of diamond D5
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12.7 Omega Polynomial of Diamonds D5 and D6

Let G(V,E) be a connected bipartite graph, with the vertex set V(G) and edge set E
(G). Two edges e¼ (x,y) and f¼ (u,v) of G are called codistant (briefly: e co f) if
d x; vð Þ ¼ d x; uð Þ þ 1 ¼ d y; vð Þ þ 1 ¼ d y; uð Þ.

For some edges of a connected graph G, the following relations are satisfied

(John et al. 2007):

e co e

e co f , f co e

e co f & f co h ) e co h

though the last relation is not always valid.

Let C eð Þ :¼ f 2E Gð Þ; f co ef g denote the set of edges in G, codistant to the

edge e2E Gð Þ. If relation co is an equivalence relation, then G is called a co-graph.
Consequently, C(e) is called an orthogonal cut qoc of G, and E(G) is the union of

disjoint orthogonal cuts C1 [ C2 [ . . . [ Ck and Ci \ Cj ¼ Ø for

i 6¼ j, i, j ¼ 1, 2, ::, k.
A quasi-orthogonal cut qoc with respect to a given edge is the smallest subset of

edges closed undertaking opposite edges on faces. Since the transitivity of the co
relation is not necessarily obeyed, qoc represents a less constrained condition: any

Table 12.1 Topology of

diamonds D5_anti, and D6, as

a function of the number of

repeating units k (k¼ 1, 2,...)

on the edge of a (k, k, k)
triclinical domain

Formulas

v D5 antið Þ ¼ �22� 12k þ 34k3

sp3atoms ¼ �10� 36k2 þ 34k3

Ring 5½ � ¼ �18� 6k � 18k2 þ 36k3

Ring 6½ � ¼ �1þ 6k � 9k2 þ 4k3

R 5½ � þ R 6½ � ¼ �19� 27k2 þ 40k3

limk!1
R 5½ �

R 5½ �þR 6½ � ¼ 9=10

v D6ð Þ ¼ 6k þ 6k2 þ 2k3

sp3atoms ¼ �2þ 6k þ 2k3

Ring 6½ � ¼ 3k2 þ 4k3

limk!1
Atoms sp3ð Þ

v Gð Þ ¼ �2þ6kþ2k3

6kþ6k2þ2k3

� �
¼ 1

Table 12.2 Genus calculation in diamond D5 substructures

D5 v e g¼ 1 + u(gu�1) gu u

(C20)12C28_Ada_158 158 274 3 1.5 4

(C20)18(C28)2_Dia_syn_226 226 398 5 2;1.5 3 + 2

(C20)18(C28)2_Dia_anti_226 226 398 5 1.5 8
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oc strip is a qoc strip but the reverse is not always true. More about Omega

polynomial, the reader can find in Chap. 2 of this book.

Let m(G,c) denote the number of qoc strips of length c (i.e., the number of cutoff

edges); for the sake of simplicity, m(G,c) can be written as m. The Omega

polynomial is defined on the ground of qoc strips (Diudea 2006):

Ω G; xð Þ ¼
X

c
m G; cð Þ � xc

Its first derivative (in x¼ 1) equals the number of edges in the graph:

Ω
0
G; 1ð Þ ¼

X
c
m � c ¼ e ¼ E Gð Þj j

On Omega polynomial, the Cluj-Ilmenau index (John et al. 2007), CI¼CI(G), was

defined (Diudea 2006):

CI Gð Þ ¼ Ω
0
G; 1ð Þ

h i2
� Ω

0
G; 1ð Þ þ Ω

00
G; 1ð Þ

h i� �

Topology of diamond D5, in a cubic (k,k,k) domain, is presented in Table 12.2

(Diudea et al. 2011): formulas to calculate the number of atoms, number of rings,

and the limits (to infinity) for the ratio of sp3C atoms over total number of atoms and

also the ratio R[5] over the total number of rings are given. Tables 12.3 to 12.5 give

formulas for calculating Omega polynomial in diamonds D5 and D6 and some

numerical examples.

12.8 Cluj Polynomial in Diamond D6

A counting polynomial can be written as

P G; xð Þ ¼
X

k
m G; kð Þ � xk

where the exponents of indeterminate x show the extent of partition p(G),

[p Gð Þ ¼ P Gð Þ, of a graph property P(G), while the coefficients m(G, k)are related
to the occurrence of partitions of extent k. Quantum chemistry first used the

polynomial description of molecular graphs, namely, the characteristic polynomial
(Diudea et al. 2002; Aihara 1976; Gutman et al. 1977); its roots represent the

energies of the Hűckelpi-molecular graphs. Counting polynomials have been intro-

duced in the Mathematical Chemistry literature by Hosoya (1988, 1990; Hosoya

and Yamaguchi 1975).

The Cluj polynomials (Diudea 2009; Diudea et al. 2007, 2010a, b, c; Dorosti

et al. 2009; Saheli and Diudea 2013) are defined on the basis of Cluj matrices; they

count the vertex proximity of a vertex i with respect to any vertex j in G, joined to
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i by an edge (the Cluj-edge polynomials CJDIe(x)) or by a path (the Cluj-path

polynomials CJDIp(x)). The coefficients m(k)can be calculated from the entries of

the corresponding UCJDI matrices by the TOPOCLUJ software program (Ursu and

Diudea 2005). The summation runs over all k ¼ pf gj jin G.
In bipartite graphs, the coefficients of CJ polynomial can be calculated by an

orthogonal edge-cut procedure (Diudea et al. 2010a, b; Gutman and Klavžar 1995;
Klavžar 2008).

To perform an orthogonal cut, take a straight line segment, orthogonal to the

edge e, and intersect e and all its parallel edges in the graph. The set of these

intersections is called an orthogonal cutck(e), k¼ 1,2,..,kmax. An example is given in

Fig. 12.8. To any orthogonal cut ck, two numbers can be associated: (i) number of
edges ek intersected (i.e., cutting cardinality |ck|) and (ii) vk or the number of points

lying to the left hand with respect to ck (in round brackets, in Fig. 12.8).

Let us define the partial cube as a graph embeddable in the hypercube n-cubeQn,

which is a regular graph whose vertices are binary strings of length n, two strings

being adjacent if they differ in exactly one position (Harary 1969). The distance

function in the n-cube is the Hamming distance. A hypercube can be expressed as

the Cartesian product: Qn ¼ □n
i¼1K2 where K2 is the complete graph on two

vertices.

For any edge e¼ (u,v) ofG, let nuv denote the set of vertices lying closer to u than

to v: nuv ¼ w2V Gð Þ		d w; uð Þ < d w; vð Þ
 �
. Then we can write

nuv ¼ w2V Gð Þ		d w; vð Þ ¼ d w; uð Þ þ 1

 �

. The sets (and subgraphs) induced by

these vertices, namely, nuv and nvu, are called semicubes of G; they are disjoint

opposite semicubes (Diudea and Klavžar 2010; Diudea et al. 2008).
A graph G is bipartite if and only if, for any edge of G, the opposite semicubes

define a partition of G: nuv þ nvu ¼ v ¼ V Gð Þj j. These semicubes represent the

Table 12.4 Examples, omega polynomial in diamond D5

K Omega(D5); R[6] Atoms sp3Atoms (%) Bonds CI R[5] R[6]

2 356 x1 + 21 x2 226 118 (52.21) 398 157,964 186 7

3 1318 x1 + 132 x2 860 584 (67.91) 1582 2,500,878 774 44

4 3144 x1 + 405 x2 2106 1590 (75.50) 3954 15,629,352 1974 135

5 6098 x1 + 912 x2 4168 3340 (80.13) 7922 62,748,338 4002 304

Table 12.5 Examples, omega polynomial in diamond D6

k Omega(D6); R[6] Atoms

sp3Atoms

(%) Bonds CI(G)

R

[6]

2 2x3 + 2x6 + 1x7 + 6x9 52 26 (50.00) 79 5616 44

3 2x3 + 2x6 + 2x10 + 2x12 + 9x16 126 70 (55.56) 206 39,554 135

4 2x3 + 2x6 + 2x10 + 2x15 + 2x18 + 1x19 + 12x
25

248 150 (60.48) 423 169,680 304

5 2x3 + 2x6 + 2x10 + 2x15 + 2x21 + 2x25 + 2x27

+ 15x36
430 278 (64.65) 754 544,746 575
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vertex proximities of the endpoints of edge e¼ (u,v), on which CJ polynomials are

defined. In partial cubes, the semicubes can be estimated by an orthogonal cutting-

edge procedure. The orthogonal cuts form a partition of the graph edges

E Gð Þ ¼ c1 [ c2 [ . . . [ ck, ci \ cj ¼ ∅, i 6¼ j

Letv ¼ v Gð Þ ¼ V Gð Þj j and e ¼ e Gð Þ ¼ E Gð Þj j be the cardinality of the vertex

and edge sets, respectively. The Cluj polynomials are calculated by recomposing

the local contributions (as provided by the cutting procedure) to the global graph

property, differing only by the arithmetic operation used (Diudea 2010a, b):

(i) Cluj-Sum polynomial, CJS(x), is counted by summation of local contributions

(Diudea 2009; Diudea et al. 2007, 2010a):

CJS xð Þ ¼
X

e
xvk þ xv�vkð Þ

(ii) Cluj-Product polynomial, CJP(x), is counted by the pair-wise product of the

cutting contributions (Diudea 1997a, b). It is identical to the Szeged polyno-

mial, SZv(x) (Gutman 1994; Ashrafi et al. 2008; Khalifeh et al. 2008; Mansour

and Schork 2009):

CJP xð Þ ¼ SZv xð Þ ¼
X

e
xvk v�vkð Þ

The first derivatives (in x¼ 1) provide single numbers, often called topological

indices, characterizing the encoded topological property (e.g., the vertex proxim-

ities in the graph); thus, CJS0(1)¼ Sum(UCJDIe)i,j and CJP0(1)¼ (1/2)Sum

(SCJDIe)i,j, respectively.

Fig. 12.8 Cutting procedure in Cluj polynomials

CJS xð Þ ¼ 4� 2 x3 þ x 14�3ð Þ� �þ 4 x7 þ x 14�7ð Þ� �þ 2� 2 x7 þ x 14�7ð Þ� � ¼ 8x11 þ 16x7 þ 8x3

CJS0 1ð Þ ¼ 224 ¼ v� e ¼ Sum UCJDIeð Þi, j
CJP xð Þ ¼ 4� 2 x3 14�3ð Þ� �þ 4 x7 14�7ð Þ� �þ 2� 2 x7 14�7ð Þ� � ¼ 8x49 þ 8x33CJP0 1ð Þ ¼ 656 ¼ 1312=

2 ¼ 1=2ð ÞSum SCJDIeð Þi, j
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In case of CJS(x), the following theorem (Diudea 2009; Diudea et al. 2007) is

involved:

Theorem The sum of all edge-counted vertex proximities, pe, in a bipartite graph,

is pe¼ v� e, i.e., the product of the number of vertices and edges in G.

Demonstration In a bipartite planar graph, which allows orthogonal edge-cuts, for

every edge e i; jð Þ2E Gð Þ, the vertex proximities {pe,i} and {pe,j} of its endpoints are
clearly separation. Denote the cardinalities of the above sets by pe,i and pe,j, then

pe, i þ pe, j ¼ v

and next, by summing the contributions of all the edges inG, one obtains the total of
vertex proximities, pe¼ v� e.

pe ¼
X

c
m G; cð Þ � c � pe, i þ pe, j

� � ¼X
c
m G; cð Þ � c � v ¼ e� v

¼
X

i, j

�
UCJDIe Gð Þ
i, j ¼ CJS0 G; 1ð Þ

thus demonstrating the theorem.

Corollary In a bipartite graph, there are no equidistant vertices with respect to the

two endpoints of any edge.

This is the main result provided by the Cluj matrix/polynomial (Diudea

et al. 2007). It was independently discovered in (Došlić and Vukičević 2007) and

proposed as the “bipartite edge-frustration” index, a criterion for checking the

bipartivity of a graph.

Formulas for calculating Cluj CJS polynomial in diamond D6 are presented in

Table 12.6, while Table 12.7 gives some numerical examples (Saheli and Diudea

2013).

Table 12.6 Cluj CJS polynomial in diamond D6

Cluj polynomial

1
CJS xð Þ ¼

Xk
i¼1

i2 þ 3iþ 2
� �

x
1
6
i 2i2 þ 9iþ 13
� �

þ x2k k2þ3kþ3ð Þ
�

�1
6
i 2i2 þ 9iþ 13
� � �

þ
Xk

2b c

i¼1

k þ 1ð Þ½ k þ 2ð Þ þ 2i k � ið Þ� x
1
6
k 2k2 þ 9k þ 13
� �þ ik 3þ iþ kð Þ þ i

3
5� 2i2
� �� �

þ
Xk2b c�1

i¼1

k þ 1ð Þ k þ 2ð Þ þ 2i k � ið Þ½ � x
1
6
k 10k2 þ 27k þ 23
� �� ik 3þ iþ kð Þ � i

3
5� 2i2
� �� �

þ 1� �1ð Þk
4

" #
3k2 þ 6k þ 3
� �

x k3þ15
4
k2þ9

2
kþ3

4ð Þþ 6 k þ 1ð Þ2
Xk
i¼1

x2k k2þ3kþ3ð Þ �2i k þ 1ð Þ2 þ 1

2 CJS
0
1ð Þ ¼ 8k6 þ 42k5 þ 90k4 þ 88k3 þ 30k2 � 6k
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12.9 Conclusions

In this chapter, the possible existence of local spaces of higher dimension (more

than 3), of the indissoluble connection of space and matter, of the space as a form of

the existence of matter, and of the heterogeneity of this space, was demonstrated. In

a previous paper (Zhizhin 2014a, b), it was shown that the experimental electron

diffraction patterns of intermetallic compounds (quasi crystals) can be uniquely

described by assuming higher dimensions of space for such materials. It was proved

here that the dimension of the adamantane molecule (and its derivatives), due to the

special distribution of matter (atoms), is equal to 4. From the proven geometric

properties of the adamantane, three major ways for the connection of adamantane

molecules were proposed. It was shown that the higher-dimension regions can

combine with each other to form nanoscale layers. Nevertheless, they are separated

in the 3D space. The same mathematical treatment can be applied to diamond D5,

which is basically a type II clathrate.

Design of diamond D6 and hyperdiamond D5 crystal networks was performed by

using original software programs CVNET and NANO-STUDIO, developed at

TOPO GROUP CLUJ. The topology of the networks was described in terms of

Omega and Cluj CJS polynomials, respectively, as functions of the net parameter

k representing the number of repeating units in a (k,k,k) cuboid.
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