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Abstract. We describe a queueing network model for mobile servers
on a network’s graph. The principle behind resembles the procedure to
consider a “referenced node” in a static network or a network of mobile
nodes. We investigate an integrated model where a “referenced mobile
node” is described jointly with all other mobile nodes. The distinguished
feature is that we operate on distinct levels of detail, microlevel for the
“referenced mobile node”, macrolevel for all other moving nodes. The
main achievement is the explicit stationary distribution which is of prod-
uct form and indicates separability of the system in equilibrium.

Keywords: Jackson networks · Mobile nodes · Sensor nodes · Random
waypoint models · Product form equilibrium · Separability

1 Introduction

Analytically solvable models of sensor networks often exploit Jackson networks
and their generalizations, e.g. BCMP and Kelly networks. This seems to be nat-
ural whenever the sensor nodes are deployed in a predefined area and remain on
their position as static sensors. For an in-depth study of an advanced setting see
[MAG06], a more recent study is [WYH12] which elaborates on a simpler net-
work but incorporates refined details. In these settings each node of the Jackson
network represents a sensor: Its message queue is modeled by an exponential
queueing system which constitutes the internal structure of the node.

It seems to be less obvious that Jackson networks can serve as models for
networks of mobile sensor nodes but there is now a bulk of studies available
where this methodology was successfully applied, a survey is [WDW07]. In gen-
eral the authors proceed as follows: In a first step a single “referenced node” is
investigated in detail collecting the other nodes and more (external) informa-
tion into the node’s environment. Thereafter, the nodes are combined by some
approximating procedure to enforce closed form steady state solutions of the
steady state equations, typical examples are [Li11,LTL05,ZL11,QFX+11].

Although in all these papers the authors propose that their two-step modeling
procedure yields results which are in good agreement with simulation results,
there still remains the weak point that formally the models do not fall into
the class of product form networks of the Jacksonian type, where the exact
solution of the global balance equations is at hand and yields a simple equilibrium
distribution.
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It is the aim of the present paper to go one first step on the path to such
a theory: To start with a network model for a high dimensional system, to
construct a Markov process for the evolution of the system over time, to write
down the global balance equations, and to solve this equations explicitly without
any intermediate decomposition-aggregation steps, and eventually to come up
with a product form solution. In the language of product form calculus we end
up with a proof that the system’s coordinate processes are separable.

These coordinates are not only queue length processes, similarly e.g. to net-
works in a random environment, where some of the coordinates represent the
external environment of a standard Jackson network. Examples for such mixed
coordinate processes are described in the survey [Dad15]. Our model similarly
will not fit into the class of Jackson or BCMP networks.

We emphasize that our model is a very stylized picture of the motivating real
world systems, and we make simplifying assumptions as it is well established in
the Jackson or BCMP setting. We will discuss this in detail below.

A special feature of our work is a two-scale modeling: We start with a network
of moving servers (mobile nodes) and describe one distinguished server in full
detail (on the microlevel), while the other servers are described on a macrolevel
providing only rough information, which in our case is the overall number of
“other” servers present at each vertex of the network.

A natural continuation of the project is to consider more moving servers on
the microlevel. This is part of ongoing research.

Related Work: Besides the work mentioned in the second paragraph of this
introduction it will come out that our model has close connections to sensor
networks with static nodes where to enhance connectivity additional mobil nodes
are moving in the network’s area, for an investigation concentrating on end-to-
end delay see [AK08] and the references there.

We owe a special feature of our model to Gannon, Pechersky, Suhov, and
Yambartsev [GPE+14] who investigated models from statistical physics in an
environment which has the structure of a Jackson network. Of special interest to
our setting is their simplest model: A random walker on the nodes of a standard
Jackson network. The interaction of the Jacksonian queues and the random
walker is of the form that the random walker acts as an attractor or a repeller
for standard customers to the node where the random walker resides.

The random walker model of Gannon, Pechersky, Suhov, and Yambartsev is
not covered by the BCMP or Kelly networks framework [BCMP75,Kel79] but
closely related.

The Paper’s Structure: In Sect. 2 we describe typical scenarios of mobile sen-
sor networks and extract general principles. We emphasize underlying mobility
schemes, e.g. random waypoint regimes. In Sect. 3 we shortly present standard
Jackson networks, and in Sect. 4 we describe how the distinguished moving server
is added to the Jackson network and prove our main result on separability of
this network under stationarity conditions. In Sect. 5 we summarize our findings
and indicate directions of further research.
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Notation and Conventions:

• R
+
0 = [0,∞), N = 1, 2, 3, . . ., N0 = {0} ∪ N.

• Node set of our graphs (networks) is J := {1, . . . , J}. The “extended node set”
is J0 := {0, 1, . . . , J}, where “0” refers to the source and sink of the network.

• ej is the standard j-th base vector in N
J
0 if 1 ≤ j ≤ J .

• n = (nj : j ∈ J) is the joint queue length vector of the Jackson network.
• Indicator function 1A = 1 if A is true, 1A = 0 otherwise.
• Kronecker-Delta δxy := 1[x=y].
• Distances are denoted by d; if necessary, details will be given in the text.

2 Network Scenarios

The scenarios we have in mind encompass moving interdependent entities which
are distributed in space. These entities usually carry a complex internal struc-
ture. Because we will end with a generalized queueing network model we will
refer to the various entities, unless otherwise specified, as moving “customers”
in a network, details will be introduced below.

Example 2.1. [WWDL07] Given an area which is cell-partitioned into disjoint
(non-overlapping) cells (subareas), collected in the cell set J = {1, . . . , J}, the
customers are “delay/fault-tolerant mobile sensors”, initially distributed ran-
domly over the cells, and each sensor is associated with a home cell. The proba-
bility r(m; i, j) that a sensor with home cell m, staying in cell i moves to cell j is
inverse-proportional to the distance between cells m and j, r(m; i, j) � d(m, j)−1.
Each sensor has a data queue (that contains maximum K messages) which
receives and sends messages. Therefore the sensor’s internal structure is that of
a single server queue. A sensor with home cell m generates data and inserts data
messages into its queue with rate λm. Moreover, it obtains data messages from
other sensors to forward these in direction to a sink of the network. The message
queue decreases with a rate which depends on the queue length and in general on
the status of the nodes in the neighbourhood. In [WDW07][Sect. 3.4] this model
of a cell-partitioned area is used to analyse movements in the ZebraNet.

Example 2.2. In [BH06][Sect. 5.1] a mobility model with geographic constraints
is described: Customers’ movements are restricted “to the pathways in the map”.
Customers in this example are non-stationary sensor nodes. The resulting model
for the structure of the feasible movements is a random graph. The vertices of
the graph usually represent buildings and/or street intersections of a city and
the edges model streets and freeways of the city between these buildings, resp.
intersections. Initially the customers are distributed randomly over the edges of
the graph. Thereafter for each customer a destination vertex is chosen randomly
and the customers move on a shortest path on the edges to their destination,
staying there for a random time, and selects a new destination vertex for the
next movement, and so on.
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Example 2.3. Another mobility model in [BH06][Sect. 5.2] with geographic con-
straints is an “obstacle mobility model”. The obstacles are buildings in the area
under consideration and the pathways are found by construction of the Voronoi
diagram with edges between the vertices defined by the buildings. The mobile
nodes (customers) are allowed to move between the buildings on the Voronoi
pathways only: Whenever a node leaves a vertex (after staying a random time
there) it selects its next building randomly and moves towards this vertex on a
shortest path over the edges.

Summarizing the scenarios: In any case a finite set of vertices is connected by
a structured set of edges. While in the second and third scenario the buildings
and street intersections naturally can be modeled as vertices (points), in the first
scenario we generate a vertex by contracting the cell to a point, which is in line
with the analytical investigation in [WWDL07]. On this graph the customers
(nodes) move according to some randomized regime. The number of customers
may be fixed or varying, possibly without bound.

We will concentrate on the case of an unlimited number of customers which
arrive from the exterior of the graph and depart eventually. The set of vertices is
J = {1, . . . , J}, the edges will be determined by the transition graph of the mobil-
ity regime. We will assume that the routing decisions according to the mobility
scheme of the customers are determined as follows: Whenever a customer leaves
vertex i he selects his subsequent vertex j with probability r(i, j) ≥ 0, given i
independent of anything else. This procedure transforms Examples 2.2 and 2.3
into a (generalized) Jackson network, to be defined in Sect. 3.

This simple Jackson network like outcome for Examples 2.2 and 2.3 is possible
because the themes in the survey [BH06] are mobility regimes, e.g. random
waypoint models and their generalizations. The center of the present paper is to
extend the Jackson network model to incorporate Example 2.1.

At present, analytical results for this extension seem to be out of reach. We
therefore present a simplified network model which distinguishes different levels
of detail. Our procedure is guided by the standard approach to investigate a “ref-
erenced node” in a network of mobile nodes: In a complex network of customers,
pathways, and vertices only one customer is modeled in detail (=“referenced
node”), the influence of the rest of the network is incorporated into a simpli-
fied environment of this customer (=“Jackson network”). The referenced node is
not a node of this underlying Jackson network, but will be a moving M/M/1/∞
queue itself, for more details, see e.g. [WDW07][Sect. 3.5], or [KD14].

To be more specific: We take one customer (traveling sensor node = Mov-
ing Queue = MQ) with explicit internal message queue. MQ cycles as a test
customer forever in the network, while all the other customers around him on
the graph’s vertices are only counted as pure Jackson-type customers without
internal structure. The challenging part of the model is the interaction of the
test customer MQ and the other parts of the system.

From an abstract point of view this approach is a two-scale model where the
test customer is investigated on the microlevel very detailed, while all the other
parts of the system are described only on a macrolevel, determined similar to a
mean-field approximation.
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Remark: Neglecting the internal queue of the test customer and some further
features (which will be introduced later on), this model resembles the structure
of so-called mixed BCMP networks [BCMP75]: The mean-field customers are
“external”, coming from and going to an exterior world, while the test customer
is “internal” for the network, cycling inside the network forever.

3 Standard Jackson Networks

We consider a Jackson network [Jac57] with node set J := {1, . . . , J}. Cus-
tomers arrive in independent external Poisson streams, at node j with intensity
λj ≥ 0, we set λ = λ1 + . . . + λJ > 0. Customers are indistinguishable, follow
the same rules, and request for exponentially(1)-distributed service at all nodes.
All these requests constitute an independent family of variables which are inde-
pendent of the arrival streams. Nodes are exponential single servers with state
dependent service rates and infinite waiting room under first-come-first-served
(FCFS) regime. If at node i are ni > 0 customers, either in service or wait-
ing, service is provided there with intensity μi(ni) > 0. Routing is Markovian,
a customer departing from node i immediately proceeds to node j with prob-
ability r(i, j) ≥ 0, and departs from the network with probability r(j, 0). Tak-
ing r(0, j) = λj/λ, r(0, 0) = 0, we assume that the extended routing matrix
r = (r(i, j) : i, j ∈ J0) is irreducible. Then the traffic equations

ηj = λj +
J∑

i=1

ηir(i, j), j ∈ J, (3.1)

have a unique solution which we denote by η = (ηj : j ∈ J). We extend the
traffic Eq. (3.1) to a steady state equation for a routing Markov chain by

ηj =
J∑

i=0

ηir(i, j), j = 0, 1, . . . , J, (3.2)

which is solved by η = (ηj : j = 0, 1, . . . , J), where η0 := λ, the other ηj are
from (3.1). We use η in both meanings and emphasize the later one by extended
traffic solution η. η is in both cases usually not a stochastic vector.

Let X = (X(t) : t ≥ 0) denote the vector process recording the queue
lengths in the network. X(t) = (X1(t), . . . , XJ (t)) reads: at time t there are
Xj(t) customers present at node j, either in service or waiting. The assumptions
put on the system imply that X is a Markov process on state space N

J
0 . For

an ergodic network process X Jackson’s theorem [Jac57] states that the unique
steady state and limiting distribution ξ on N

J
0 is with normalization constants

C(j) for the marginal (over nodes) distributions

ξ(n) = ξ(n1, . . . , nJ ) =
J∏

j=1

nj∏

m=1

ηj

μj(m)
C(j)−1 , n ∈ N

J
0 . (3.3)
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Assumption 3.1. Throughout we set the following assumption in force:
The extended routing matrix r = (r(i, j) : i, j ∈ J0) is reversible with respect

to the measure η = (ηj : j ∈ J0), i.e. it holds

ηjr(j, i) = ηir(i, j), ∀i, j = 0, 1, . . . , J. (3.4)

4 Injecting a Moving Queue into the Jackson Network

We take the Jackson network from Sect. 3 and enlarge this network by adding a
“distinguished customer” called MQ (= Moving Queue = mobile sensor node)
who cycles on the nodes of the network forever, governed by an irreducible
stochastic matrix p = (p(i, j) : i, j ∈ J). In the language of BCMP models MQ
is an “internal customer” while the other customers are “external” which arrive
from the source and eventually depart to the sink. MQ is characterized by its
position k ∈ J on the network and its queue length � ∈ N0. The internal service
rates (death rates) δ(�) > 0 and arrival rates (birth rates) β(�) > 0 for MQ’s
internal queue are strictly positive and in general queue length dependent.

It will come out that a Markov process description of the system is possible
with state space E := N

J
0 × J × N0. The process of interest is denoted by

Z = (X,V,Y) = ((X(t), V (t), Y (t)) : t ≥ 0)
= ((X1(t), . . . , XJ (t), V (t), Y (t)) : t ≥ 0),

where ((X1(t), . . . , XJ (t), V (t), Y (t)) indicates that at time t there are Xj(t)
external customers at node j ∈ J , and that MQ is located at node V (t) ∈ J and
has a queue length of Y (t) ∈ N0. A typical state of the system will be denoted
by (n1, . . . , nJ , k, �).

The dynamics of the MQ is influenced by the joint queue length process X
only locally. If MQ resides at time t at node V (t) = k, additional capacity is
provided there to “serve” MQ in parallel to the nk other customers present which
are served in a FCFS regime. The additional capacity to serve MQ results in a
departure intensity

ν(k)(nk, �) = e−ϕnk (4.1)

for MQ with a fixed constant ϕ ∈ (−∞, 0]. Being served at k, MQ immediately
jumps to node k′ ∈ J with probability p(k, k′). p is not required to be reversible.

We further define for any k ∈ J an influence vector

γ(k) = (γj(k) : j ∈ J0) ∈ (0, 1]J0 , with γ0(k) := 1, (4.2)

which is in force whenever MQ resides in node k. These influence vectors describe
in a compact way the consequences for the other Jackson customers, originating
from MQ’s actual position in the network.

Assume that at time t MQ stays at node V (t) = k ∈ J and the queue
length at j is Xj(t) = nj ≥ 1, j ∈ J . Then the customer at the head of the
line of node j (if any) is served with intensity μj(nj , k) := μj(nj) · γj(k). When
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this customer’s service expires, he departs immediately directed by the adjusted
routing probability vector r(k) = (r(k)(j, i) : j, i ∈ J0), which is defined for the
non-diagonal transition probabilities (i 	= j)

r(k)(j, i) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for j = 0 :
r(0, i) · γi(k), if i 	= k,
r(0, k) · γk(k) · eϕ, if i = k,
for j 	= 0, j 	= k :
r(j, i) · γi(k), if i ∈ J0 \ {j, k},
r(j, k) · γk(k) · eϕ, if i = k,
for j = k :
r(k, i) · γi(k), if i ∈ J0 \ {k}.

The diagonal transition probabilities (j = i) are

r(k)(j, j) :=

⎧
⎪⎪⎨

⎪⎪⎩

for j ∈ J0 \ {k} :
r(j, j) +

∑
h�=j,k r(j, h) · (1 − γh(k)) + r(j, k) · (1 − γk(k) · eϕ),

for j = k :
r(k, k) +

∑
h�=k r(k, h) · (1 − γh(k)).

This definition implies for the effective external arrival rates λi(k) = λ · r(k)(0, i)

=

⎧
⎪⎨

⎪⎩

λr(0, i) · γi(k), if i 	= k;
λr(0, k) · γk(k) · eϕ, if i = k;
λ

(∑
h�=k r(0, h) · (1 − γh(k)) + r(0, k) · (1 − γk(k) · eϕ)

)
, if i = 0.

(4.3)

If MQ resides at k, then for i = 0 in (4.3) λ − λ0(k) is the effective arrival rate
at the network, due to MQ’s influence on the network when staying in k.

Remarks: (i) Consider the case ϕ = 0. If MQ stays at vertex k, setting the influ-
ence vector γ(k) in force, the rerouting probabilities for the other customers
can be considered as randomized reflection, defined in [KDO14][Sect. 2.2]: A
customer departing from i who selects (with probability r(i, j)) to enter j is
allowed to settle down at j with probability γj(k); with probability 1 − γj(k)
he is reflected at j and stays on at i to obtain another service. (ii) This is a
random generalization of the well-known blocking resolution scheme blocking-
after-service (BAS) in connection with repeated service and random destination
(rs-rd) which is applied in transmission networks with finite buffers to protect
against buffer overflow, see [Onv90][p. 502]. (iii) Randomized reflection has been
used successfully to redirect routing of customers in Jackson networks in a ran-
dom environment. Rerouting is interpreted there as a reaction of a network’s
(local) controllers when environment condition changes and therefore capacities
in the network are changed, see [KDO16]. (iv) The factor eϕ can be replaced here
and in (4.11) below by any number in a ∈ (0, 1]. Setting a to eϕ gives notational
credit to the paper [GPE+14], where it seemingly occurred first in this form.

Because of ϕ ≤ 0, MQ acts as a repeller for the other Jackson customers
who want to enter the vertex where MQ resides. On the other side, the form of
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ν(k)(nk, �) enforces MQ to leave a cell or building where already many customers
are present. The more involved case of MQ as an attractor, i.e. ϕ ≥ 0 is part of
our ongoing research.

Example 4.1. For simplicity of presentation we have fixed FCFS regime for
the Jackson network customers with state dependent service rates. This frame-
work covers the seemingly most important special service rates to enclose the
Example 2.1 in our setting. Recall that in this scenario the vertex j ∈ J is a
representative for a cell where nj mobile sensors are present. It is tempting to
assume that the sensors move (almost) independently of one another. This can
be modeled by taking μj(nj) = μj · nj for some (regional) cell specific constant
μj, i.e. the vertex j acts as an M/M/∞ node as long as j 	= k.

If j = k, i.e. MQ resides in cell j, a similar conclusion via classical BCMP
or Kelly framework of queueing networks seems to be not possible, but neverthe-
less it is tempting again to visualize the cell as an infinite server with the special
property that the internal customer MQ is served with an additional locally state
dependent capacity which is controlled by the function e−ϕnk , similar to Kelly’s
φk(nk + 1) [Kel79][p. 58].

Example 4.2. For the Examples 2.2 and 2.3 a reference to infinite server sys-
tems is even more natural if we recall that in both scenarios the vertices are build-
ings or lane intersections, where customers stay for a random amount of time,
while the edges are lanes between these vertices. The joint movement of entities
on a lane is naturally modeled in transportation networks by being served at an
infinite server. The “service” at the vertices might be modeled by more specific
service disciplines, e.g. FCFS at a road intersection.

Example 4.3. The influence vectors γ(k) = (γj(k) : j ∈ J0) are versatile
devices to determine the influence of MQ. Denote by d : J ×J → N0 the distance
between vertices of the network, i.e. d(i, j) is the minimal number of hops to reach
vertex j from i, where d(i, i) = 0. If γ(k) fulfils γj(k) = 1 unless d(k, j) ≤ 1 the
influence of MQ on the network is restricted to the 1-hop neighbourhood. If γ(k)
fulfils γj(k) = 1 unless d(k, j) ≤ 2 its influence is restricted to the 2-hop range.

The strictly positive transition rates of Z are

q(n, k, �;n + ei, k, �) = λi(k), (4.4)

q(n, k, �;n − ej , k, �) = 1(nj>0)μj(nj .k)r(k)(j, 0), (4.5)

q(n, k, �;n − ej + ei, k, �) = 1(nj>0)μj(nj .k)r(k)(j, i), (4.6)

q(n, k, �;n, k′, �) = ν(k)(nk, �)p(k, k′), (4.7)

q(n, k, �;n, k, � + 1) = β(�), (4.8)

q(n, k, �;n, k, � − 1) = 1(�>0)δ(�). (4.9)

The proof of the next theorem is omitted. It is along the same lines as that of
the following one.
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Theorem 4.4. Assume Z to be ergodic. Then its unique stationary and limiting
distribution is with normalization constant C

π(n, k, �) = C−1
J∏

g=1

ng∏

m=1

ηg

μg(m)
eϕnkψk

�−1∏

s=0

β(s)
δ(s + 1)

, (n, k, �) ∈ E. (4.10)

Here (ηg : g ∈ J) is taken from (3.1) and (ψk : k ∈ J) is the unique stationary
distribution of MQ’s routing matrix p = (p(k, k′) : k, k′ ∈ J).

We now allow that the internal birth and death rates of MQ are not only
queue length dependent, but also location dependent. So, if MQ resides at k,
service rates are δ(k)(�) > 0 and arrival rates are β(k)(�) > 0. Furthermore MQ’s
travel transition rates are now

ν(k)(nk, �) = e−ϕnk ·
�−1∏

s=0

δ(k)(s + 1)
β(k)(s)

. (4.11)

The strictly positive transition rates of the system are again (4.4)–(4.6) (invari-
ant) and with adapted rates

q(n, k, �;n, k′, �) = ν(k)(nk, �)p(k, k′), (4.12)

q(n, k, �;n, k, � + 1) = β(k)(�), (4.13)

q(n, k, �;n, k, � − 1) = 1(�>0)δ
(k)(�). (4.14)

The global balance equations for Z are for (n, k, �) ∈ E

x(n, k, �)
[ ∑

i∈J

λi(k) +
∑

i∈J

1(ni>0)μi(ni, k)(1 − r(k)(i, i))

+β(k)(�) + 1(�>0)δ
(k)(�) + ν(k)(nk, �)(1 − p(k, k))

]

=
∑

i∈J

1(ni>0)x(n − ei, k, �)λi(k) +
∑

j∈J

x(n + ej , k, �)μj(nj + 1, k)r(k)(j, 0)

+
∑

i∈J

1(ni>0)

∑

j∈J\{i}
x(n − ei + ej , k, �)μj(nj + 1, k)r(k)(j, i)

+ 1(�>0)x(n, k, � − 1)β(k)(� − 1) + x(n, k, � + 1)δ(k)(� + 1)

+
∑

k′∈J\{k}
x(n, k′, �)ν(k′)(n′

k, �)p(k′, k).

Theorem 4.5. Assume Z to be ergodic. Then its unique stationary and limiting
distribution is with normalization constant C

π(n, k, �) = C−1
J∏

g=1

ng∏

m=1

ηg

μg(m)
eϕnkψk

�−1∏

s=0

β(k)(s)
δ(k)(s + 1)

, (n, k, �) ∈ E. (4.15)

(ηg : g ∈ J) is from (3.1) and (ψk : k ∈ J) is the unique stationary distribution
of MQ’s stochastic routing matrix p = (p(k, k′) : k, k′ ∈ J).



Moving Queue on a Network 49

Proof. We exploit some detailed balance equations which underly the structure
of the global balance equation. We first consider the terms concerning the queue
length process Y of MQ and equate

x(n, k, �)
[
β(k)(�) + 1(�>0)δ

(k)(�)
]

= 1(�>0)x(n, k, � − 1)β(k)(� − 1) + x(n, k, � + 1)δ(k)(� + 1),

which after inserting π and canceling C−1
∏J

g=1

∏ng

m=1
ηg

μg(m)e
ϕnkψk yields global

balance equations for an ergodic birth-death process with parameters β(k)(�) and
δ(k)(�), respectively, which are parametrized by (n, k). Next, we equate

x(n, k, �)
[
ν(k)(nk, �)(1 − p(k, k))

]
=

∑

k′∈J\{k}
x(n, k′, �)ν(k′)(n′

k, �)p(k′, k),

which after inserting π and canceling C−1
∏J

g=1

∏ng

m=1
ηg

μg(m) yields

eϕnkψk

�−1∏

s=0

β(k)(s)
δ(k)(s + 1)

[ �−1∏

s=0

δ(k)(s + 1)
β(k)(s)

e−ϕnk(1 − p(k, k))
]

=
∑

k′∈J\{k}
eϕn′

kψk′

�−1∏

s=0

β(k′)(s)
δ(k′)(s + 1)

[ �−1∏

s=0

δ(k
′)(s + 1)

β(k′)(s)
e−ϕn′

kp(k′, k)
]
.

This boils down to the balance equation of MQ’s routing matrix p = (p(k, k′) :
k, k′ ∈ J) which by definition is solved by (ψk : k ∈ J). The remaining terms are

x(n, k, �)
[ ∑

i∈J

λi(k) +
∑

i∈J

1(ni>0)μi(ni, k)(1 − r(k)(i, i))
]

=
∑

i∈J

1(ni>0)x(n − ei, k, �)λi(k) +
∑

j∈J

x(n + ej , k, �)μj(nj + 1, k)r(k)(j, 0)

+
∑

i∈J

1(ni>0)

∑

j∈J\{i}
x(n − ei + ej , k, �)μj(nj + 1, k)r(k)(j, i).

Note that constantly occurs (k, �). Canceling C−1ψk

∏�−1
s=0

β(k)(s)
δ(k)(s+1)

and multi-

plying with
(∏J

g=1

∏ng

m=1
ηg

μg(m)

)−1

we obtain the equation
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eϕnk

[ ∑

i∈J\{k}
λr(0, i) · γi(k) + λr(0, k) · γk(k) · eϕ

+
∑

i∈J\{k}
1(ni>0)μi(ni)γi(k)

(
1 − r(i, i)

−
∑

h∈J\{i,k}
r(i, h)(1 − γh(k)) − r(i, k)(1 − γk(k) · eϕ)

)

+1(nk>0)μk(nk) · γk(k)
(
1 − r(k, k) −

∑

h∈J\{k}
r(k, h)(1 − γh(k))

)]

= eϕnk

∑

i∈J\{k}
1(ni>0)

μi(ni)
ηi

λr(0, i) · γi(k)

+ eϕ(nk−1)1(nk>0)
μk(nk)

ηk
λr(0, k) · γk(k)eϕ

+ eϕnk

∑

j∈J\{k}

ηj

μj(nj + 1)
μj(nj + 1)γj(k)r(j, 0)

+ eϕ(nk+1) ηk

μk(nk + 1)
μk(nk + 1)γk(k)r(k, 0)

+ eϕnk

∑

i∈J\{k}
1(ni>0)

∑

j∈J\{k,i}

μi(ni)
ηi

ηj

μj(nj + 1)
μj(nj + 1)γj(k)r(j, i)γi(k)

+ eϕ(nk−1)1(nk>0)

∑

j∈J\{k}

μk(nk)
ηk

ηj

μj(nj + 1)
μj(nj + 1)γj(k)eϕr(j, k)γk(k)

+ eϕ(nk+1)
∑

i∈J\{k}
1(ni>0)

μi(ni)
ηi

ηk

μk(nk + 1)
μk(nk + 1)γk(k)r(k, i)γi(k).

By canceling eϕnk we obtain after some algebraic manipulations

[ ∑

i∈J\{k}

(2)︷ ︸︸ ︷
λr(0, i) · γi(k) +

(1)︷ ︸︸ ︷
λr(0, k) · γk(k) · eϕ

+
∑

i∈J\{k}
1(ni>0)μi(ni)γi(k)

( ∑

h∈J\{i,k}

(6)︷ ︸︸ ︷
r(i, h)γh(k) +

(5)︷ ︸︸ ︷
r(i, k)γk(k) · eϕ +

(3)︷ ︸︸ ︷
r(i, 0))

)

+ 1(nk>0)μk(nk) · γk(k)
( ∑

h∈J\{k}

(7)︷ ︸︸ ︷
r(k, h)γh(k) +

(4)︷ ︸︸ ︷
r(k, 0)

) ]

=
∑

i∈J\{k}

(3)︷ ︸︸ ︷
1(ni>0)

μi(ni)

ηi
λr(0, i) · γi(k)) +

(4)︷ ︸︸ ︷
1(nk>0)

μk(nk)

ηk
λr(0, k) · γk(k))



Moving Queue on a Network 51

+
∑

j∈J\{k}

(2)︷ ︸︸ ︷
ηjγj(k)r(j, 0)) +

(1)︷ ︸︸ ︷
eϕηkγk(k)r(k, 0))

+
∑

i∈J\{k}
1(ni>0)

∑

j∈J\{k,i}

(6)︷ ︸︸ ︷
μi(ni)

ηi
ηjγj(k)r(j, i)γi(k))

+1(nk>0)

∑

j∈J\{k}

(7)︷ ︸︸ ︷
μk(nk)

ηk
ηjγj(k)r(j, k)γk(k)

+
∑

i∈J\{k}

(5)︷ ︸︸ ︷
eϕ1(ni>0)

μi(ni)

ηi
ηkγk(k)r(k, i)γi(k) .

We are now enforced to recur to Assumption 3.1 and equate pairwise terms with the
help of reversibility of r. We equate the indicated partial sums and obtain after premul-
tiplication with associated factors from outside of brackets the following valid expres-
sions.

Because of λ = η0 the next four lines follow:

λr(0, k) · γk(k) · eϕ (1)
= eϕηkγk(k)r(k, 0),

∀i ∈ J \ {k} : λr(0, i) · γi(k)
(2)
= ηiγi(k)r(i, 0),

∀i ∈ J \ {k} : ηi1(ni>0)μi(ni) · γi(k)r(i, 0)
(3)
= 1(ni>0)μi(ni)λr(0, i) · γi(k),

ηk1(nk>0)μk(nk) · γk(k)r(k, 0)
(4)
= 1(nk>0)μk(nk)λr(0, k) · γk(k),

and the next lines are obvious from reversibility:

∀i ∈ J \ {k} : ηi1(ni>0)μi(ni)γi(k)r(i, k)γk(k)eϕ

(5)
= eϕ1(ni>0)μi(ni)ηkγk(k)r(k, i)γi(k),

∀i, j ∈ J \ {k} : ηi1(ni>0)μi(ni)γi(k)r(i, j)γj(k)

(6)
= 1(ni>0)μi(ni)ηjγj(k)r(j, i)γi(k),

∀j ∈ J \ {k} : ηk1(nk>0)μk(nk)γk(k)r(k, j)γj(k)

(7)
= 1(nk>0)μk(nk)ηjγj(k)r(j, k)γk(k).

This validates π as the global balance equations of Z.

Example 4.6 We proved the theorems with service rates μj(nj , k) =
μj(nj)γj(k) when nj Jackson network customers stay at vertex j and MQ resides
at k. In Examples 4.1 and 4.2 we demonstrated that this covers especially the nat-
ural infinite server setting for the Jackson customers. This leads to the observa-
tion that by γj(k) the service intensity of the individual customers is reduced:
μj(nj , k) = (μjγj(k))nj .
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Discussion of the Modeling Assumptions: (i) The process Z is not
reversible although the pure Jackson network process without the MQ is
reversible with respect to the stationary distribution ξ(n) from (3.3) by Assump-
tion 3.1. Reversibility of the underlying pure Jackson network process seems at
the present stage of development indispensable. This clearly restricts applicabil-
ity of the result of Theorem4.5. For example it excludes one-way lanes for the
traveling nodes. On the other side, starting with this case is worth for laying the
ground for eventually more general settings. (ii) Introducing influence vectors
γ(k) = (γj(k) : j ∈ J0) ∈ (0, 1]J0 which are in force whenever MQ resides in
node k, and MQ’s repeller function, goes back to ideas in [GPE+14,KDO14].
There this controls interactions between different components of a multidimen-
sional system. Application of this scheme in the context of this paper is still
restricted due to 0 < γj(k) ≤ 1, which means that for the influenced service
rates holds μ(nj , k) ≤ μ(nj) for all nj . The power of this scheme will come out
when 0 ≤ γj(k) < ∞ is included as is demonstrated in [KDO16]. With ϕ > 0,
in context of the models considered here (e.g. in Example 2.1) this means that
whenever MQ is present at k, the rate of incoming other customers into cell k is
increased. In the framework of [AK08] this would increase the connectivity of the
network. This is part of our future research. (iii) The most critical point is in our
opinion the choice of the portion of the vertices’ capacity dedicated to MQ. For
the situation of Theorem4.4 we have taken ν(k)(nk, �) =: ν̃(k)(nk) = e−ϕnk from
[GPE+14]. Studying the balance equations there (and in our more complicated
framework as well) reveals that this choice is essential to obtain the product form
steady state via reversibility. We mention that in [GPE+14] there is no “mov-
ing queue” but only a “random walker” with reversible routing, but without
any internal structure. MQ’s routing matrix p is not required to be reversible.
Moreover, in the framework of Theorem4.4 we do not need additional special
assumptions. These come into the play if the development of MQ’s internal mes-
sage queue is location dependent (i.e. β(k)(·), δ(k)(·)) which is desirable in our
opinion. We pay with requiring the complicated service rates ν(k)(nk, �) in (4.11).

Example 4.7. Consider the scenario from [WWDL07] in Example 2.1 and take
a distinguished moving node in the cell-partitioned area. If we want to reduce the
other nodes to customers in a network, we are faced with the problem, that the
routing of these customers is dependent on the position of their home-cell, i.e.
we need customer types which carry this information.

Our present oversimplified model does not offer this feature.
With our formalism it is possible to take the distinguished node’s routing as

the matrix p and then construct an averaged routing matrix r for the other cus-
tomers, where averaging is done according to weights representing the population
sizes of the home-cells. A similar averaging is necessary for the mean sojourn
times for these other customers in the different cells they visit. To obtain these
averaged values needs iterative procedures because we admit arrivals from and
departures to the exterior for the other customers.
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5 Conclusion and Further Research

We have developed a two-scale model for a network of mobile nodes, guided
by scenarios from the literature on mobile sensor networks. The main outcome
is the stationary distribution of the system which exhibits its separability in
equilibrium.

Further research will be on including into the theory the case of the mobile
customer being an attractor for the other customers, the possibility to have
different classes of external customers with individual class dependent service
time distributions, and to investigate on the microlevel two or more internal
moving queues injected into the Jackson network and their interaction.

A seemingly hard problem will be to remove the assumption of reversibility
of the underlying Jackson network.

Acknowledgement. I thank Sonja Otten and Ruslan Krenzler for helpful discussions
on the subject of the paper. I am thankful for three reviewers’ helpful comments on
the first version of this paper.

References

[AK08] Almasaeid, H.M., Kamal, A.E.: Modeling mobility-assisted data collection
in wireless sensor networks. In: Global Telecommunications Conference,
IEEE GLOBECOM 2008, pp. 1–5 (2008)

[BCMP75] Baskett, F., Chandy, M., Muntz, R., Palacios, F.G.: Open, closed and
mixed networks of queues with different classes of customers. J. Assoc.
Comput. Mach. 22, 248–260 (1975)

[BH06] Bai, F., Helmy, A.: A survey of mobility models in wireless adhoc networks.
In: Wireless Ad-Hoc Networks, Chap. 1, pp. 1–30. Kluwer Academic Pub-
lisher, Dordrecht (2006)

[Dad15] Daduna, H.: Networks of queues in a random environment: survey of
product form results. In: Proceedings MMBnet, Berichte des Fachbere-
ichs Informatik der Universität Hamburg 302, pp. 7–23 (2015)

[GPE+14] Gannon, M., Pechersky, E., Suhov, Y., Yambartsev, V.: Random walks in a
queueing network environment. Technical report arXiv: 1410.1460 (2014).
Version 3: arxiv:1410.1460v3 (2015). To appear: J. Appl. Probab

[Jac57] Jackson, J.R.: Networks of waiting lines. Oper. Res. 5, 518–521 (1957)
[KD14] Krenzler, R., Daduna, H.: Modeling and performance analysis of a node

in fault tolerant wireless sensor networks. In: Fischbach, K., Krieger, U.R.
(eds.) Measurement, Modelling, and Evaluation of Computing Systems
and Dependability and Fault-Tolerance, pp. 73–78. Springer, Heidelberg
(2014). GI/ITG

[KDO14] Krenzler, R., Daduna, H., Otten, S.: Randomization for Markov chains
with applications to networks in a random environment. Preprint, Center
of Mathematical Statistics und Stochastic Processes, University of Ham-
burg, No. 2014–02 (2014)

[KDO16] Krenzler, R., Daduna, H., Otten, S.: Jackson networks in non-autonomous
random environments. Advances in Applied Probability (2016)

http://arxiv.org/abs/1410.1460
http://arxiv.org/abs/1410.1460v3


54 H. Daduna

[Kel79] Kelly, F.P.: Reversibility and Stochastic Networks. Wiley, Chichester
(1979)

[Li11] Li, W.W.: Several characteristics of active/sleep model in wireless sensor
networks. In: New Technologies, Mobility and Security (NTMS), pp. 1–5
(2011)

[LTL05] Liu, J., Tong Lee, T.: A framework for performance modeling of wireless
sensor networks. In: 2005 IEEE International Conference on Communica-
tions, ICC 2005, vol. 2, pp. 1075–1081 (2005)

[MAG06] Mehmet Ali, M.K., Gu, H.: Performance analysis of a wireless sensor net-
work. In: Wireless Communications and Networking Conference, IEEE,
vol. 2, pp. 1166–1171 (2006)

[Onv90] Onvural, R.O.: Closed queueing networks with blocking. In: Takagi, H.
(ed.) Stochastic Analysis of Computer and Communication Systems, pp.
499–528. Amsterdam, North-Holland (1990)

[QFX+11] Qiu, T., Feng, L., Xia, F., Wu, G., Zhou, Y.: A packet buffer evaluation
method exploiting queueing theory for wireless sensor networks. Comput.
Sci. Inf. Syst. 8(4), 1027–1049 (2011)

[WDW07] Wang, Y., Dang, H., Wu, H.H.: A survey on analytic studies of delay-
tolerant mobile sensor networks. Wirel. Commun. Mob. Comput. 7, 1197–
1208 (2007)

[WWDL07] Wu, H., Wang, Y., Dang, H., Lin, F.: Analytic, simulation, and empirical
evaluation of delay/fault-tolerant mobile sensor networks. IEEE Trans.
Wireless Commun. 6(9), 3287–3296 (2007)

[WYH12] Wang, Z., Yang, K., Hunter, D.K.: Modelling and analysis of multi-sink
wireless sensor networks using queuing theory. In: Proceedings of the 4th
Computer Science and Electronic Engineering Conference (CEEC), Uni-
versity of Essex, pp. 169–174. IEEE, UK (2012)

[ZL11] Zhang, Y., Li, W.: An energy-based stochastic model for wireless sensor
networks. Wirel. Sens. Netw. 3(9), 322–328 (2011)


	Moving Queue on a Network
	1 Introduction
	2 Network Scenarios
	3 Standard Jackson Networks
	4 Injecting a Moving Queue into the Jackson Network
	5 Conclusion and Further Research
	References


