
Anne Remke
Boudewijn R. Haverkort (Eds.)

 123

LN
CS

 9
62

9

18th International GI/ITG Conference, MMB & DFT 2016
Münster, Germany, April 4–6, 2016
Proceedings

Measurement, Modelling
and Evaluation
of Dependable Computer
and Communication Systems

Lecture Notes in Computer Science 9629

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Anne Remke • Boudewijn R. Haverkort (Eds.)

Measurement, Modelling
and Evaluation
of Dependable Computer
and Communication Systems
18th International GI/ITG Conference, MMB & DFT 2016
Münster, Germany, April 4–6, 2016
Proceedings

123

Editors
Anne Remke
Universität Münster
Münster
Germany

Boudewijn R. Haverkort
University of Twente
Enschede
The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-31558-4 ISBN 978-3-319-31559-1 (eBook)
DOI 10.1007/978-3-319-31559-1

Library of Congress Control Number: 2016933469

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

Welcome to the proceedings of MMB and DFT 2016! We are very pleased to present
this LNCS volume with its contributions on performance and dependability evaluation
techniques for distributed and embedded systems, computer and software architectures,
and communication networks.

This volume contains the papers that were presented at the 18th International
GI/ITG Conference on Measurement, Modelling and Evaluation of Computing Sys-
tems and Dependability and Fault Tolerance (MMB and DFT 2016) held during April
4–6, 2016, in Münster, Germany.

Following a thorough review procedure with at least three reviews per submission
and a careful selection process, the Program Committee of MMB and DFT 2016
compiled an interesting scientific program comprising 12 regular papers and three tool
presentations.

Since the start of the biennial MMB conference series in the early 1980’s, we have
seen substantial changes in the field of performance evaluation, dependability, and
fault-tolerance of computer and communication systems. This is, for example, reflected
in the relatively large number of submissions that deal with a very interesting and
highly relevant field of research, namely, smart grids. We believe that for this com-
munity, it is very important to address new and exciting applications and investigate
how the knowledge that is available in our community can be applied to these.

Besides the main program, the conference hosted three satellite workshops covering
related research topics:

– The 8th International Workshop on Practical Applications of Stochastic Modelling
(PASM)

– The Third Workshop on Network Calculus (WoNeCa)
– The Workshop on E-mobility and Smart Grids: Challenges and Opportunities

(E-mobility)

By hosting these workshop, we hope to foster interaction between strongly related
communities.

We were very fortunate to include two very interesting and relevant keynote pre-
sentation in the conference program:

– “DDoS 3.0: How Terrorists Bring Down the Internet” by Prof. Dr. Ir. Aiko Pras,
University of Twente, The Netherlands

– “From Transient Analysis to Probabilistic Model Checking of Markov Regenerative
Processes” by Prof. Dr. Enrico Vicario, University of Florence, Italy

To enable cross-fertilization between the conference and the satellite workshops, we
included two additional invited talks that covered the research areas of the satellite
workshops and that fit, from our perspective, very well in the scope of the main
conference:

– “Critical Machine-to-Machine Communications: Performance Models vs. Reality in
the 10−10 Regime,” by Prof. Dr. James Gross, Royal Institute of Technology,
Stockholm, Sweden

– “Open Analysis of Crowdsourced Car Sensor Data: The enviroCar Project,” by Dr.
Christoph Stasch, 52 North, Münster, Germany

As conference chairs, we express our gratitude to all members of the Program
Committee and all external reviewers for their dedicated service, maintaining the
quality objectives of the conference, and for the timely provision of their valuable
reviews.

We thank all the authors for their submissions, all the speakers for their lively
presentations, and all the participants for their contributions to interesting discussions.
We acknowledge the support of the EasyChair conference system and express our
gratitude to its management team for their commitment to serve the scientific com-
munity. Further, we thank Springer for unceasing support and excellent management
of the LNCS publishing process.

Finally, it is our hope that readers will find these MMB and DFT 2016 proceedings
informative and useful for their future research on measurement, modelling, analysis,
and performance evaluation of advanced computer and communication systems.

February 2016 Anne Remke
Boudewijn R. Haverkort

VI Preface

Organization

Program Committee

Lothar Breuer University of Kent, UK
Peter Buchholz TU Dortmund, Germany
Hans Daduna University of Hamburg, Germany
Hermann De Meer University of Passau, Germany
Johannes Dr. Riedl ITG MMB
Klaus Echtle University of Duisburg-Essen, Germany
Markus Fidler Leibniz Universität Hannover, Germany
Reinhard German University of Erlangen, Germany
Gerhard Hasslinger T-Systems ENPS Darmstadt, Germany
Boudewijn Haverkort University of Twente, The Netherlands
Holger Hermanns Saarland University, Germany
Joost-Pieter Katoen RWTH Aachen University, Germany
Peter Kemper College of William and Mary, USA
Udo Krieger Otto Friedrich University, Germany
Kai Lampka Uppsala University, Sweden
Wolfram

Lautenschlaeger
Alcatel-Lucent Deutschland AG, Germany

Axel Lehmann Universität der Bundeswehr München, Germany
Ralf Lehnert Technical University of Dresden, Germany
Michael Menth University of Tübingen, Germany
Peter Reichl University of Vienna, Austria
Anne Remke University of Twente, The Netherlands
Ramin Sadre Université catholique de Louvain, Belgium
Francesca Saglietti University of Erlangen-Nuremberg, Germany
Jens Schmitt TU Kaiserslautern, Germany
Markus Siegle Bundeswehr University Munich, Germany
Dietmar Tutsch University of Wuppertal, Germany
Kurt Tutschku Blekinge Institute of Technology (BTH), Sweden
Oliver Waldhorst Daimler AG, Germany
Verena Wolf Saarland University, Germany
Bernd Wolfinger Universität Hamburg, Germany
Katinka Wolter Freie Universität zu Berlin, Germany
Armin Zimmermann Technische Universität Ilmenau, Germany

Additional Reviewers

Beck, Michael
Berger, Daniel
Heidtmann, Klaus
Heimgaertner, Florian
Jongerden, Marijn

Junges, Sebastian
Krcal, Jan
Krüger, Thilo
Lück, Alexander
Mandarawi, Waseem

VIII Organization

Abstracts of Invited Talks

DDoS 3.0 - How Terrorists Bring Down
the Internet

Aiko Pras, José Jair Santanna, Jessica Steinberger,
and Anna Sperotto

University of Twente
Enschede, The Netherlands

{a.pras,j.j.santanna,a.sperotto}@utwente.nl,

jessica.steinberger@h-da.de

Abstract. Dependable operation of the Internet is of crucial importance for our
society. In recent years Distributed Denial of Service (DDoS) attacks have
quickly become a major problem for the Internet. Most of these attacks are
initiated by kids that target schools, ISPs, banks and web-shops; the
Dutch NREN (SURFNet), for example, sees around 10 of such attacks per day.
Performing attacks is extremely simple, since many websites offer “DDoS as a
Service”; in fact it is easier to order a DDoS attack than to book a hotel! The
websites that offer such DDoS attacks are called “Booters” or “Stressers”, and
are able to perform attacks with a strength of many Gbps. Although current
attempts to mitigate attacks seem promising, analysis of recent attacks learns
that it is quite easy to build next generation attack tools that are able to generate
DDoS attacks with a strength thousand to one million times higher than the ones
we see today. If such tools are used by nation-states or, more likely, terrorists, it
should be possible to completely stop the Internet. This paper argues that we
should prepare for such novel attacks.

Open Analysis of Crowdsourced Car Sensor
Data - The enviroCar Project

Christoph Stasch, Albert Remke, Arne de Wall, and Matthes Rieke

52°North Open Source Software GmbH, Münster, Germany
{c.stasch,a.remke,a.dewall,m.rieke}@52north.org

Cars are equipped with various sensors used to monitor the engine and its environment.
By using the so-called On-Board-Diagnostics II (OBD-II) interface, these sensors can
be assessed by external devices. The enviroCar project1 consists of an open infras-
tructure that utilizes this technology in order to enable drivers to collect, analyze, share
and discuss car sensor data [1]. As shown in Fig. 1, the enviroCar infrastructure
consists of an app, a server component, various analysis tools, and a community portal.
The enviroCar app allows car drivers to connect their Android mobile phones to car
sensors using an OBD bluetooth adapter. The app provides feedback while driving and
allows uploading recorded tracks to the enviroCar server, where the data is publicly and
anonymized accessible as open data. Thereby, the user still has full control on all of his
tracks and can view them or delete them, in case he does not want a specific track to be
shared. The enviroCar server is implemented as a RESTful Web Service with a
MongoDB at the backend. It receives new tracks as JSON and provides several
additional formats like CSV for download.

Fig. 1. Overview on the enviroCar infrastructure

The enviroCar community portal serves as the main entry point for enviroCar
members. Members can explore and analyze their own tracks, compare their driving
statistics to other members, and share tracks via social media platforms like Facebook

1 General information about the project can be found at http://www.envirocar.org.

http://www.envirocar.org

or Twitter. Several additional analysis tools using the open enviroCar data set
(or subsets of it) are currently developed. These include, for instance, an R package2

allowing to load enviroCar tracks into R and to apply further statistical analysis or
interpolations. Based upon this, a fuzzy-based map matching algorithm following
Quddus [2] has been implemented in R to match the track measurements to street
segments in OSM3. In addition, several online maps that aggregate the tracks are
available, e.g. for showing emission hotspots or aggregated speed measurements4.

Current research of the enviroCar project focuses on improving and automating the
map matching of tracks, on developing common interfaces and tools to collaborate on
and exchange analysis functionality and discuss analysis results. Other topics include
statistical analysis of trajectories. As fuel consumption and emissions are not directly
measured, they need to be estimated from other parameters like mass air flow and
lambda voltage sensors which measure the proportion of oxygen exhaust. Improving
this estimation and accessing the uncertainty in the estimates is a further topic of
current research.

Future potential applications of the enviroCar infrastructure are manifold: Urban
and traffic planners can use the platform for discussing traffic measures and monitoring
the measures’ effects with the public. Scientists may utilize the data for developing and
evaluating novel analysis methods and algorithms. As an example, first attempts for
using the data for consumption-based routing have resulted in promising results.
However, for this purpose the data base still needs to be enlarged and problems like, for
example, selection bias need to be considered.

While the current data is gathered from fuel-powered cars, we also consider the
enviroCar infrastructure as a basis for monitoring the future deployment of e-cars. The
approach for consumption-based routing may also be applied to e-cars. Furthermore,
information about power consumption of individual drivers may be used to derive
individual ranges that drivers may reach without re-charging the battery.

References

1. Bröring, A., Remke, A., Stasch, C., Autermann, C., Rieke, M., Möllers, J.: enviroCar: a
citizen science platform for analyzing and mapping crowd-sourced car sensor data. Trans. GIS
19(3), 362–376 (2015)

2. Quddus, M.A.: High integrity map matching algorithms for advanced transport telematics
applications. PhD thesis, Imperial College London, UK (2006)

2 More information about the enviroCaR package can be found at https://github.com/enviroCar/
enviroCaR.

3 The package can be downloaded from https://cran.r-project.org/src/contrib/Archive/fuzzyMM/.
4 See the Maps & Statistics section on http://envirocar.org for more information.

Open Analysis of Crowdsourced Car Sensor Data - The enviroCar Project XIII

https://github.com/enviroCar/enviroCaR
https://github.com/enviroCar/enviroCaR
https://cran.r-project.org/src/contrib/Archive/fuzzyMM/
http://envirocar.org

From Transient Analysis to Probabilistic
Model Checking of Markov

Regenerative Processes

Enrico Vicario

Department of Information Engineering, University of Florence, Florence, Italy
enrico.vicario@unifi.it

Keywords: non-Markovian models • Stochastic Petri nets • Numerical solution •
Markov regenerative processes • Markov renewal theory • Probabilistic model
checking

1 Talk Outline

In the engineering of systems exposed to the intertwined effects of concurrency and
uncertainty, verification of quantitative properties of stochastic models enables early
assessment of design choices and provides model driven guidance for implementation
and integration stages. To this end, probabilistic model checking enables a systematic
practice through which the same model can be verified against multiple probabilistic
properties specified in some well defined language, able to analyze the impact on
quality of different patterns of behavior, and open to automated regression verification
when the model evolves.

Empirical evidence [3] shows that most quantitative requirements encountered in
the construction of software intensive systems can be effectively expressed through a
set of probabilistic specification patterns, where the most prominent role is played by
the probabilistic until operator P≥p{ϕ1 Unt

[α,β]ϕ2} which specifies that: with probability
not lower than p, some property ϕ2 will be eventually satisfied within the time bound
[α, β] and property ϕ1 is satisfied in all the states visited until that time.

A number of techniques and tools have been proposed, relying on statistical dis-
crete event simulation or numerical solution. In particular, numerical solution
approaches aim at computing results with high accuracy and confidence through
exhaustive state-space analysis, often relying on some restriction on the class of models
amenable to verification. In the most notable case, if all model durations are expo-
nentially distributed (EXP), the model always satisfies the Markov condition, and an
efficient numerical solution can be attained by composition of behaviors according to a
renewal argument referred to the time point α [1, 2].

However, the construction of a valid model may require that some durations break
the EXP memoryless property and be generally distributed (GEN), as occurring for
instance in aging processes accumulating memory over time, or in real-time systems or
network protocols where correctness depends on firm time bounds. In a more

philosophical perspective, since the properties that are being verified capture a firm
requirement on the time interval [α, β] in which ϕ2 must be satisfied, it is much likely
that the system under verification will rely on structural mechanisms enforcing firmly
bounded response times.

Unfortunately, when the model includes GEN durations, the state of the system will
depend on time elapsed between past events, and the Markov condition can be satisfied
only at some special regeneration points. In this case, probabilistic model checking
becomes much harder, combining together the complexities of non-Markovian analysis
with the additional constraints posed by the model checking formulation. In a structural
perspective, much of this depends on the overlapping memories contributed by dura-
tions in the model and by the time constraints in the property specification.

In this talk, we recall the salient traits of the method of stochastic state classes [4]
implemented in the Oris tool (www.oris-tool.org) for transient analysis of models with
multiple concurrent GEN durations. We specifically focus on the class of models that
always encounter a regeneration within a bounded number of steps, and we report on
recent results [5] that exploit stochastic state classes as a measure of probability over
sets of runs and apply the principles of Markov regenerative analysis to enable efficient
evaluation of a probabilistic until operator. The outlined solution, also provides the
basis for a reflection about hurdles and structural limits that arise when Markov
regenerative analysis is cast in the shape of probabilistic model checking.

References

1. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-checking algorithms for
continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)

2. Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic properties with
CSLTA. IEEE Trans. Softw. Eng. 35(2), 224–240, (2009)

3. Grunske, L.: Specification patterns for probabilistic quality properties. In: ICSE 2008,
pp. 31–40. ACM, May 2008

4. Horváth, A., Paolieri, M., Ridi, M., Vicario, E.: Transient analysis of non-Markovian models
using stochastic state classes. Perform. Eval. 69(7–8), 315–335 (2012)

5. Paolieri, M., Horváth, A., Vicario, E.: Probabilistic model checking of regenerative concurrent
systems. IEEE Trans. Softw. Eng. Accepted August 2015 (to appear)

From Transient Analysis to Probabilistic Model Checking XV

http://www.oris-tool.org

Critical Machine-to-Machine
Communications: Performance Models vs.

Reality in the 10210 Regime

James Gross

KTH, Stockholm, Sweden
james.gross@ee.kth.se, www.jamesgross.org

Abstract. Over the last few years, so called critical machine-to-machine
communications has received more and more research attention. Spurred by
flexibility and cost constraints in various industries, this area refers to wireless
communication systems that can guarantee extremely high reliabilities at rather
low latencies. Envisioned requirements reach down to maximum application
layer packet error rates of 10−10 over latencies of a few milliseconds. While such
systems potentially have a big relevance for safety-critical applications in
industry, it is open how such systems should be designed.

In this talk, we will address selected design issues of such systems from a practical and
theoretical perspective by employing communication-theoretic arguments, stochastic
network calculus and probabilistic model checking. We will show that the area consists
of a rich set of mostly open performance evaluation questions: Under which conditions
is such communication possible at all? Which system components play a key role for
the performance? Do model-based findings carry over to practical settings? Which
methods can be employed to develop such systems in practise?

Contents

DDoS 3.0 - How Terrorists Bring Down the Internet 1
Aiko Pras, José Jair Santanna, Jessica Steinberger, and Anna Sperotto

SGsim: Co-simulation Framework for ICT-Enabled Power Distribution
Grids . 5

Abdalkarim Awad, Peter Bazan, and Reinhard German

Improving Cross-Traffic Bounds in Feed-Forward Networks – There is a
Job for Everyone . 9

Steffen Bondorf and Jens Schmitt

Stochastic Analysis of Energy Consumption in Pool Depletion Systems. 25
Davide Cerotti, Marco Gribaudo, Riccardo Pinciroli,
and Giuseppe Serazzi

Moving Queue on a Network . 40
Hans Daduna

A Multi-commodity Simulation Tool Based on TRIANA 55
Maryam Hajighasemi, Gerard J.M. Smit, and Johann L. Hurink

Performance and Precision of Web Caching Simulations Including
a Random Generator for Zipf Request Pattern. 60

Gerhard Hasslinger, Konstantinos Ntougias, and Frank Hasslinger

PSTeC: A Location-Time Driven Modelling Formalism for Probabilistic
Real-Time Systems . 77

Kangli He, Yixiang Chen, Min Zhang, and Yuanrui Zhang

Analysis of Hierarchical Semi-Markov Processes with Parallel Regions 92
Daniel Homm and Reinhard German

Combining Mobility Models with Arrival Processes 107
Jan Kriege

Product Line Fault Tree Analysis by Means of Multi-valued Decision
Diagrams . 122

Michael Käßmeyer, Rüdiger Berndt, Peter Bazan, and Reinhard German

Resolving Contention for Networks-on-Chips: Combining Time-Triggered
Application Scheduling with Dynamic Budgeting of Memory Bus Use 137

Kai Lampka and Adam Lackorzynski

http://dx.doi.org/10.1007/978-3-319-31559-1_1
http://dx.doi.org/10.1007/978-3-319-31559-1_2
http://dx.doi.org/10.1007/978-3-319-31559-1_2
http://dx.doi.org/10.1007/978-3-319-31559-1_3
http://dx.doi.org/10.1007/978-3-319-31559-1_3
http://dx.doi.org/10.1007/978-3-319-31559-1_4
http://dx.doi.org/10.1007/978-3-319-31559-1_5
http://dx.doi.org/10.1007/978-3-319-31559-1_6
http://dx.doi.org/10.1007/978-3-319-31559-1_7
http://dx.doi.org/10.1007/978-3-319-31559-1_7
http://dx.doi.org/10.1007/978-3-319-31559-1_8
http://dx.doi.org/10.1007/978-3-319-31559-1_8
http://dx.doi.org/10.1007/978-3-319-31559-1_9
http://dx.doi.org/10.1007/978-3-319-31559-1_10
http://dx.doi.org/10.1007/978-3-319-31559-1_11
http://dx.doi.org/10.1007/978-3-319-31559-1_11
http://dx.doi.org/10.1007/978-3-319-31559-1_12
http://dx.doi.org/10.1007/978-3-319-31559-1_12

The Weak Convergence of TCP Bandwidth Sharing 153
Wolfram Lautenschlaeger

Analysis of Mitigation Measures for Timing Attacks in Mobile-Cloud
Offloading Systems . 168

Tianhui Meng and Katinka Wolter

Capabilities of Raspberry Pi 2 for Big Data and Video Streaming
Applications in Data Centres . 183

Nick J. Schot, Paul J.E. Velthuis, and Björn F. Postema

Ensemble-Based Uncertainty Quantification for Smart Grid Co-simulation . . . 199
Cornelius Steinbrink, Sebastian Lehnhoff, and Thole Klingenberg

Author Index . 203

XVIII Contents

http://dx.doi.org/10.1007/978-3-319-31559-1_13
http://dx.doi.org/10.1007/978-3-319-31559-1_14
http://dx.doi.org/10.1007/978-3-319-31559-1_14
http://dx.doi.org/10.1007/978-3-319-31559-1_15
http://dx.doi.org/10.1007/978-3-319-31559-1_15
http://dx.doi.org/10.1007/978-3-319-31559-1_16

DDoS 3.0 - How Terrorists Bring Down
the Internet

Aiko Pras(B), José Jair Santanna, Jessica Steinberger, and Anna Sperotto

University of Twente, Enschede, The Netherlands
{a.pras,j.j.santanna,a.sperotto}@utwente.nl, jessica.steinberger@h-da.de

Abstract. Dependable operation of the Internet is of crucial importance
for our society. In recent years Distributed Denial of Service (DDoS)
attacks have quickly become a major problem for the Internet. Most of
these attacks are initiated by kids that target schools, ISPs, banks and
web-shops; the Dutch NREN (SURFNet), for example, sees around 10 of
such attacks per day. Performing attacks is extremely simple, since many
websites offer “DDoS as a Service”; in fact it is easier to order a DDoS
attack than to book a hotel! The websites that offer such DDoS attacks
are called “Booters” or “Stressers”, and are able to perform attacks with
a strength of many Gbps. Although current attempts to mitigate attacks
seem promising, analysis of recent attacks learns that it is quite easy to
build next generation attack tools that are able to generate DDoS attacks
with a strength thousand to one million times higher than the ones we see
today. If such tools are used by nation-states or, more likely, terrorists,
it should be possible to completely stop the Internet. This paper argues
that we should prepare for such novel attacks.

1 Current DDoS Attacks

Current DDoS attacks are often performed by youngsters via websites that offer
“DDoS as a Service”. Such websites, which are called “Booters” or Stressers”,
are able to generate attacks with strengths of many Gbps. A simple Google
search shows that hundreds of such Booters are currently active; the costs to
perform a series of attacks is typically a few dollars [1,2]. In general Booters
do not attack their targets directly, but use one or two levels of intermediate
systems to strengthen and anonymise the attacks. The first level is formed by
botnets that start the attack once they receive specific commands from the
Booter. The second level is used to amplify the attack and can, for example,
involve a set of DNS or NTP servers that react upon the reception of relatively
small requests by sending large response packets. The ratio between response
and request message size is the amplification factor; in practice we find factors
between ten and hundred. Particularly popular for amplification attacks are so-
called open DNS resolvers, which are basically misconfigured DNS servers that
answer DNS queries irrespective of their origin. To target a specific victim, the
attacker does not put its own IP-address in the request, but the address of
the target. Response packets will therefore be routed towards the victim, and
the identity of the attacker remains unknown (IP spoofing).
c© Springer International Publishing Switzerland 2016
A. Remke and B.R. Haverkort (Eds.): MMB & DFT 2016, LNCS 9629, pp. 1–4, 2016.
DOI: 10.1007/978-3-319-31559-1 1

2 A. Pras et al.

2 Analysis of Current DDoS Attacks

To understand how Booters operate, we will discuss a series of attacks which
we performed on our own infrastructure [2]. Nine Booters were used; two of
which generated so-called CharGen attacks whereas the other seven performed
DNS amplification attacks. An interesting observation was that only two of these
Booters shared their attack infrastructure. In other words, if an attacker would
not use a single Booter but instead all available Booters, the strength of the
combined attack would be nearly the sum of all individual attacks.

The strongest CharGen attack we performed had a strength of 7.5 Gbps,
whereas the DNS amplification attacks varied in strength between 0.4 and
1.6 Gbps (Fig. 1). Since CharGen attacks can easily be mitigated by filtering
UDP port 19, in the remainder we will focus on DNS attacks, which are much
harder to mitigate. Figure 2 shows the average DNS response message size for
each Booter attack; for three of them the size remains below thousand bytes,
whereas the three top Booters showed average sizes between 3000–4000 bytes.
These differences can be explained from the fact that the various Booters queried
different DNS host names. If the Booters that performed the weakest attacks
would just change these host names, their attacks would become a factor three
to four more powerful. Such changes can be implemented within a few seconds
by just modifying a single line in the attack source code.

Finally we observed that each booter used between 3000 to 8000 DNS
resolvers for amplifying the DNS attack. It should be clear that the strength
of the attacks can easily be increased by using far more DNS resolvers.

 0

 0.4

 0.8

 1.2

 1.6

 2

 0 20 40 60 80 100

T
ra

ff
ic

 r
at

e
[G

bp
s]

Time [s]

Fig. 1. DNS traffic rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1500 3000 4500 6000

C
D

F

Packet size [bytes]

B1
B2
B3
B4
B5
B6
B7

Fig. 2. DNS packet size distribution

We may conclude that DDoS attacks can easily be made stronger if (1) young-
sters combine the forces of different Booters, (2) if Booter operators optimise
their DNS queries and (3) more DNS resolvers are used.

3 How to Make DDoS Attacks More Powerful

The interesting question is how a group of skilled “professionals” would proceed
to generate attacks far beyond anything we’ve seen yet. Such “professionals”

DDoS 3.0 - How Terrorists Bring Down the Internet 3

could be nation states or, more likely, a group of terrorists that aim at disrupting
our current society. Instead of relying on standard Booters that operate under
the control of some unknown entity, such “professionals” would likely build their
own attack tools and infrastructure.

As opposed to Booters that use a limited set of 3000 to 8000 open DNS
resolvers, “professionals” might use the potential of all existing open DNS
resolvers to amplify attacks. According to the Open Resolver Project, around 20
million of such systems exist [3]. Alternatively, amplification can also be achieved
by using standard authoritative DNS servers; there are hundreds of millions of
such servers that allow amplification with a factors between 6 and 12. Partic-
ularly interesting may be the 3.5 million DNSSEC servers, which include digi-
tal signatures in their responses and therefore allow much higher amplification
factors; factors between 40 and 55 should be realistic [4]. In addition to DNS
systems, attackers can also use open NTP (4 million), open SNMP (8 million)
or other servers to amplify attacks [5,6].

An important component is the botnet that coordinates and distributes the
attack; the bigger the botnet, the more powerful the attack. An interesting ques-
tion therefore is “how easy would it be to create a botnet with thousands of sys-
tems”. One answer to this question can be found by examining the Carna Botnet
that was created as part of the “Internet Census 2012” [7]. The creators of that
botnet targeted access routers and other embedded devices running OpenWRT.
They found 1.2 Million unprotected devices, of which 420 thousand were used for
their Carna botnet. It took the developer(s) six months to develop the software
and setup the infrastructure; once deployment started it took only a single day
to infect the first 100 thousand systems.

Instead of hacking OpenWRT routers, “professionals” could also exploit the
emerging Internet of Things (IoT) for their attacks. Recent reports by Garner
and HP predicted that by 2020 there will be 26 billion active IoT devices, of
which 60 % will be insecure [8]. Even if only a fraction of them could be misused
for DDoS attacks, it should be easy to generate attacks of hundreds of Tbps.
If such attacks would target crucial systems, it is clear that the entire Internet
would collapse with devastating consequences for our society.

4 Conclusions

In the previous section we argued that it is relatively easy to perform DDoS
attacks with a strength thousand to one million times higher than the ones we see
today. Such attacks can be launched by nation states or, more likely, terrorists.
The question is not if massive DDoS attacks with a strength of hundreds of Tbps
will take place, but when.

We should therefore prepare for such attacks, and create plans on how to
react once such attacks take place. Like traditional terrorist attacks, governments
need to play a crucial role in the coordination of mitigation strategies; it is not
acceptable to leave such role at Internet Service Providers (ISPs) or security
companies. Governments should force ISPs to develop tools and techniques to

4 A. Pras et al.

automatically quarantaine customers with hacked devices that participate in
massive DDoS attacks. ISPs should join forces and create “Trusted Networks”
to ensure that some limited form of communication remains possible once such
attacks take place.

Acknowledgments. This research is funded by FLAMINGO, a Network of Excellence
project (318488) supported by the European Commission under its Seventh Framework
Programme.

References

1. Chromik, J.J., Santanna, J.J., Sperotto, A., Pras, A.: Booter websites characteriza-
tion: towards a list of threats. In: Brazilian Symposium on Computer Networks and
Distributed Systems (SBRC) (2015)

2. Santanna, J.J., van Rijswijk-Deij, R., Sperotto, A., Hofstede, R., Wierbosch, M.,
Granville, L.Z., Pras, A.: Booters - an analysis of DDoS-as-a-service attacks. In:
IFIP/IEEE International Symposium on Integrated Network Management (IM)
(2015)

3. Website: Open Resolver Project (2016). http://openresolverproject.org
4. van Rijswijk-Deij, R., Sperotto, A., Pras, A.: DNSSsec and its potential for DDoS

attacks. In: Proceedings of the Fourteenth ACM Internet Measurement Conference,
pp. 449–460 (2014)

5. Website: Open NTP Project (2016). http://openntpproject.org
6. Website: Open SNMP Project (2016). http://opensnmpproject.org
7. Website: Internet Census 2012 - the Carna Botnet (2012). http://internetcensus

2012.bitbucket.org
8. HP: Internet of things research study. Technical report, HP (2015)

http://openresolverproject.org
http://openntpproject.org
http://opensnmpproject.org
http://internetcensus2012.bitbucket.org
http://internetcensus2012.bitbucket.org

SGsim: Co-simulation Framework
for ICT-Enabled Power Distribution Grids

Abdalkarim Awad(B), Peter Bazan, and Reinhard German

Computer Networks and Communication Systems, Department of Computer Science,
University of Erlangen, Erlangen, Germany

abdalkarim.awad@cs.fau.de

Abstract. Empowering power grids with ICT is fundamental for the
future power grid. Simulation plays an essential role for evaluating emerg-
ing smart grid applications. The presented co-simulation framework
SGsim is based on two main simulators, OMNeT++ and OpenDSS. With
newly added components, smart grid applications in the electricity dis-
tribution network can now be investigated and evaluated. Conservation
Voltage Reduction (CVR) is a mechanism to reduce the power demand
which eventually will reduce the energy consumption. In a case study, the
co-simulation framework is used to explore the potential energy saving
by applying a closed-loop CVR inside a residential power grid.

Keywords: Smart grid · Co-simulation · Electricity distribution
network · Communication system · Conservation voltage reduction

1 Introduction

Smart grid presents a set of practices and technologies to run the power grid
in an efficient, secure, reliable, sustainable and economic way. Information and
Communication Technology (ICT) can contribute most to optimizing the opera-
tion of the future power grid. Applications such as CVR or Volt/VAR optimiza-
tion have the potential to reduce the power consumption especially during the
peak hours. The rapidly increasing penetration of fluctuating renewable energy
sources brings new challenges to the power grid, especially inside the distribu-
tion network. In addition to the loads and supplies, a distribution grid contains
also components such as transformers, capacitor banks and energy storage ele-
ments. Connecting these components together through a data communication
network is very crucial. It will make it possible to operate the power grid in
an optimal way. Moreover, it will be possible to react very fast to emergency
conditions. SGsim [1] is a co-simulation framework for the design and analysis
of such systems. We are planning to provide the framework as open source for
the education and research community.

2 Description of SGsim

The co-simulation framework SGsim is based on two main simulators: OpenDSS
[3] and OMNeT++ [5]. In addition to a stand-alone executable program,
c© Springer International Publishing Switzerland 2016
A. Remke and B.R. Haverkort (Eds.): MMB & DFT 2016, LNCS 9629, pp. 5–8, 2016.
DOI: 10.1007/978-3-319-31559-1 2

6 A. Awad et al.

Fig. 1. Structure of the co-simulation framework with the connections between the
different components

OpenDSS provides an in-process Component Object Model (COM) server DLL
designed to be driven from an external program. OMNeT++ is mainly a data
communication simulator. Additionally several frameworks, such as the INET
framework, have been developed with well-tuned data communication compo-
nents such as TCP/IP, 802.11 and Ethernet. In order to enable the use of the
framework in the field of smart grid applications, we have integrated new compo-
nents for the electricity distribution network. Figure 1 shows the different compo-
nents of the simulator. Through the COM interface, it is possible to control the
execution of the circuit and to change/add/remove different components. This is
very helpful when simulating time-dependent scenarios. The main components
of the simulator are:

– Power Grid Model: The OpenDSS is fed with the a script that describes the
different components of the power grid and the interconnections. Furthermore,
time-dependent loads and supplies can be provided as text files. For household
demand and photovoltaic supply real data from Pecan Street [4] will be used.
This database provides an 1-min resolution aggregated power usage signal as
well as power consumption of individual devices. This can be very suitable in
exploring applications such as Demand Response (DR).

– Solver: It controls the OpenDSS execution through the COM interface. It
ensures time synchronization between the OpenDSS and OMNeT++.

– Load: It is the OMNeT++ component of the load in the power grid, e.g.,
a house. It can measure power grid parameters such as voltage, current and
power at a specific time through the COM interface. It is also possible to
change load parameters, e.g., running time for DR applications.

SGsim: Co-simulation Framework for ICT-Enabled Power Distribution Grids 7

– Supply: It represents a power generation unit in OMNeT++, e.g., Distributed
Energy Resources (DER). It is also possible to change supply parameters, e.g.,
regulate the output power (active and reactive power).

– Device: It represents power grid devices (e.g., Battery, Switch, Capacitor
bank, ...). Through the COM interface, it is possible to change the parameters,
e.g., power factor.

– Sensor: It can only read data on a specific component (e.g., Bus, Load, DER)
and send it to other components. For instance Phasor Measurement Unit
(PMU) is considered as a sensor and it sends data to Phasor Data Concentra-
tor (PDC) interface using simulated TCP/IP packets. The data is formatted
using a standard (IEEE c37.118) so that the real PDC can interpret the
packets.

– Controller: It represents an intelligent unit within the system. It receives data
from other components and then, based on specific algorithms, it can adapt
system parameters. For instance a CVR controller can change the voltage
settings of Load Tap Changer (LTC) in order to change the voltage of the
transformer.

– PDC interface: It receives simulated packets inside the simulator. It converts
it to real TCP/IP packets and forwards them to real software components
such as OpenPDC. In this case, the simulation should be run in real-time
mode.

3 Case Study: Conservation Voltage Reduction (CVR)

CVR is a method used by utilities to reduce the power demand by decreasing
voltage levels. The main idea is that some devices will consume less power when
the actual voltage is lower than the designed voltage. An important aspect here
is to insure that the voltage at the costumer side is within the standardized limits
(e.g., in Germany 230 ± 10%). In this case study we apply a closed-loop CVR
inside neighborhood with 10 houses connected to a transformer. The closed-
loop CVR uses feedback information, i.e. voltage at houses, to adapt the output
voltage at the transformer. A CVR controller is installed near the transformer.
The loads at the houses are modeled as ZIP loads with the parameters (ZP =
0.85, IP = −1.12, PP = 1.27) [2]. Equation 1 gives the current power as a function
of current voltage (V). The constants P0 and V0 are the design power and voltage
respectively.

P = P0

[
Zp

(
V

V0

)2

+ Ip

(
V

V0

)
+ Pp

]
(1)

The controller can change the voltage output of the transformer by send-
ing an edit command through the COM interface. Edit commands are used to
change the parameters of a specific component. Each house sends periodically
data messages to the CVR controller. The messages contain the measured volt-
age at the load. Additionally, if the voltage exceeds specific limits, a warning

8 A. Awad et al.

Fig. 2. Power consumed by the neighborhood with (green) and without (red) CVR
and the difference (blue) (Color figure online).

message is sent to the controller which in turns reacts by changing the voltage
at the transformer. Figure 2 shows the power flow through the transformer with
and without applying CVR. The green and red curves show the power consump-
tion with and without applying CVR, respectively. The blue curve, depicts the
difference between the two curves. As it can be seen, the power reduction is higher
when the load is high. The energy consumption without CVR is 145.7 kWh com-
pared to 131.6 kWh when applying CVR. This represents a daily saving of about
14 kWh for the 10 houses. An important aim of CVR in addition to save energy
is reducing the power demand, especially during the peak periods. In fact, CVR
can provide Ancillary Services to the grid, i.e., provide regulation power to main-
tain balance of supply and demand and alleviate grid stress. This saves utility
companies building addition power plants (i.e., additional spinning reserve). As
can be seen in Fig. 2, at 6 PM, the power difference is about 2 kW. If we scale
this value up to a city with thousands of houses, this would mean we can save
building new several mega watts power plant.

References

1. Awad, A., Bazan, P., German, R.: SGsim: a simulation framework for smart grid
applications. In: IEEE (ed.) Proceedings of the IEEE International Energy Confer-
ence, pp. 730–736 (2014)

2. Diaz-Aguilo, M., Sandraz, J., Macwan, R., de Leon, F., Czarkowski, D., Comack,
C., Wang, D.: Field-validated load model for the analysis of CVR in distribution
secondary networks: energy conservation. IEEE Trans. Power Deliv. 28(4), 2428–
2436 (2013)

3. EPRI Electrical Power Research Institute: Home page. http://sourceforge.net/
projects/electricdss/

4. Pecan street database. http://www.pecanstreet.org
5. Varga, A.: The OMNeT++ discrete event simulation system. In: European Simula-

tion Multiconference (ESM 2001), Prague, Czech Republic, June 2001

http://sourceforge.net/projects/electricdss/
http://sourceforge.net/projects/electricdss/
http://www.pecanstreet.org

Improving Cross-Traffic Bounds in Feed-Forward
Networks – There is a Job for Everyone

Steffen Bondorf(B) and Jens Schmitt

Distributed Computer Systems (DISCO) Lab, University of Kaiserslautern,
Kaiserslautern, Germany
bondorf@cs.uni-kl.de

Abstract. Network calculus provides a mathematical framework for
deterministically bounding backlog and delay in packet-switched net-
works. The analysis is compositional and proceeds in several steps. In
the first step, a general feed-forward network is reduced to a tandem of
servers lying on the path of the flow of interest. This requires to derive
bounds on the cross-traffic for that flow. Tight bounds on cross-traffic
are crucial for the overall analysis to obtain tight performance bounds.
In this paper, we contribute an improvement on this first bounding step
in a network calculus analysis. This improvement is based on the so-
called total flow analysis (TFA), which so far saw little usage as it is
known to be inferior to other methods for the overall delay analysis. Yet,
in this work we show that TFA actually can bring significant benefits
in bounding the burstiness of cross-traffic. We investigate analytically
and numerically when these benefits actually occur and show that they
can be considerable with several flows’ delays being improved by more
than 40 % compared to existing methods – thus giving TFA’s existence
a purpose finally.

1 Introduction

Network Calculus (NC) is a versatile methodology for queueing analysis of
resource sharing systems. The high modeling power of NC has been transposed
into several important applications for network engineering problems, tradition-
ally in the Internet’ s Quality of Service proposals IntServ and DiffServ, and more
recently in diverse environments such as wireless sensor networks [18], switched
Ethernets [12], data centers [20], or System-on-Chip [15].

A network calculus analysis requires a feed-forward network in order to avoid
cyclic dependencies between flows and thus be able to compute flow characteris-
tics inside the network. In fact, the typical first step in a NC analysis, given a flow
of interest (foi), is to reduce the feed-forward network to a tandem consisting of
the servers on the foi’s path. To that end, arrival constraints of the foi’s cross-
traffic burstiness and rate have to be computed. Accurate burstiness constraints
are indeed crucial for the subsequent tandem analysis to achieve accurate end-
to-end performance bounds. As we discuss in Sect. 2, much research has been
invested in tightening the tandem analysis, silently assuming that the reduction
c© Springer International Publishing Switzerland 2016
A. Remke and B.R. Haverkort (Eds.): MMB & DFT 2016, LNCS 9629, pp. 9–24, 2016.
DOI: 10.1007/978-3-319-31559-1 3

10 S. Bondorf and J. Schmitt

step from the feed-forward network to the tandem had already been performed.
However, this step becomes very important for the quality of the bounds in
larger feed-forward networks. Consequently, we deal with this reduction step in
our work and present a method to tighten the bounds on the burstiness of cross-
traffic. Somewhat surprisingly, we achieve this by applying the so-called total
flow analysis (TFA) to compute bounds on the server backlog just before the
analyzed flow’s path. This is surprising because the TFA has a “bad reputation”
as an overall analysis method. This is due to its inferior results when bounding
a foi’s end-to-end performance metrics since it cannot exploit the pay burst only
once phenomenon (PBOO, see Sect. 3).

The beneficial effect of our burstiness bounding step is based on the following
basic, intuitive insight: At the output of a server, any combination of flows can
be at most as bursty as the maximum data backlog at this server. Based on this
insight we formally prove how to characterize the output of a flow by its input
arrival curve and the server backlog bound. The new burstiness bound can be
exploited to potentially reduce cross-traffic arrival bounds that were computed
conventionally with the (min,+)-deconvolution.

In fact, as we discuss below, this does not always lead to improved bounds, yet
it works from certain utilizations onwards and can be considerable. The reasons
why TFA can help here become clear in our detailed treatment below, but here
is an intuition: TFA’s aggregate (total) perspective avoids making too many
assumptions on the relative priorities between flows. In contrast, the conventional
method does so by separating cross-traffic flows from each other.

In short, we contribute a new method to compute arrival bounds for cross-
traffic on a foi’s path. It is based on backlog bounds from TFA. The rest of this
paper is structured as follows: In Sect. 2 we discuss related work. Section 3 pro-
vides the necessary background and notation on feed-forward analysis with NC.
The alternative way to calculate the output bound of a traffic flow is presented
and proved in Sect. 4. Next, the rationale behind the new burstiness bounding
procedure in feed-forward networks as well as a detailed discussion on the con-
ditions when it can improve the existing methods is presented in Sect. 5. Results
from numerical evaluation concerning larger feed-forward networks are reported
in Sect. 6, before the paper is concluded in Sect. 7.

2 Related Work

As mentioned above, most work in network calculus focused on the second step
in a feed-forward network analysis, where the problem has already been reduced
to a tandem. There is a whole evolution from simple, but conservative methods
to sophisticated, tight analyses which can be very involved computationally (see
[6,11] for recent overviews).

However, the first step of the feed-forward network analysis, bounding the
cross-traffic burstiness, has so far been largely neglected. Most work starts
directly with the tandem analysis or suggests to use straightforward techniques
from basic NC results (more details are given in Sect. 3). An exception can be

Improving Cross-Traffic Bounds in Feed-Forward Networks 11

found in [10], where, for a single node under arbitrary multiplexing of several
flows, tight output descriptions are derived for a single flow. However, when
targeting a feed-forward network, we need to bound cross-flows that may have
traversed several servers with potentially many other flows joining and leaving
it. Hence, much more work is needed here.

In previous work of ours, we already addressed the cross-traffic arrival bound-
ing. In [4], we focused on algorithmic efficiency and targeted a distributed execu-
tion of the analysis. In [5], we achieved more accurate bounds by improving the
overall cross-traffic arrival bounding procedure. The results of this paper allow
to further improve these bounds.

3 Network Calculus Background

Data Arrivals and Forwarding Service. Flows are characterized by functions
cumulatively counting their data. They belong to the set F0 of non-negative,
wide-sense increasing functions:

F0 =
{
f : R → R

+
∞ | f (0) = 0, ∀s ≤ t : f (s)≤f (t)

}
, R+

∞ := [0,+∞) ∪ {+∞}.

We are particularly interested in the functions A(t) and A′(t) cumulatively
counting a flow’s data put into a server s and put out from s, both until time t.
These functions allow for simple definitions of performance measures.

Definition 1 (Backlog and Delay). Assume a flow with input function A tra-
verses a system S and results in the output function A′. The backlog of the flow
at time t is defined as

B(t) = A(t) − A′(t).

The (virtual) delay for a data unit arriving at S at time t is defined as

D(t) = inf {τ ≥ 0 | A(t) ≤ A′(t + τ)}.

Note, that the order of data within the flow needs to be retained for the
(virtual) delay calculation [17].

NC operates in the interval time domain, i.e., its functions of F0 bound the
maximum data arrivals of a flow during any duration of length d.

Definition 2 (Arrival Curve). Given a flow with input A, a function α ∈ F0 is
an arrival curve for A iff

∀t ∀d, 0 ≤ d ≤ t : A(t) − A(t − d) ≤ α(d).

For example, sensors reporting measurement values may generate packets of
size b that are periodically sent with a minimum inter-arrival time tδ. Then, the
data flow they generate has a maximum data arrival rate of r = b

tδ
in the fluid

model of F0. The resulting shape of the arrival curve is commonly referred to as
token bucket and belongs to the class FTB ⊂ F0:

FTB = {γr,b | γr,b (0)= 0,∀d > 0 : γr,b(d)= b + r · d}.

Scheduling and buffering leading to the output function A′(t) depend on a
server’s forwarding. It is lower bounded in interval time as well.

12 S. Bondorf and J. Schmitt

Definition 3 (Service Curve). If the service provided by a server s for a given
input A results in an output A′, then s offers a service curve β ∈ F0 iff

∀t : A′(t) ≥ inf
0≤d≤t

{A(t − d) + β(d)}.

For example, TDMA channel access [13], duty cycling sensor nodes [2], as
well as the service offered by Ethernet connections [12] can be modeled with
so-called rate-latency service curves FRL ⊂ F0:

FRL = {βR,T |βR,T (d) = max{0, R · (d − T)}.

A number of servers fulfill a stricter definition of service curves that guar-
antees a higher output during periods of queued data, the so-called backlogged
periods of a server.

Definition 4 (Strict Service Curve). Let β ∈ F0. Server s offers a strict service
curve β to a flow iff, during any backlogged period of duration d, the output of
the flow is at least equal to β(d).

The Network. In general, networks are modeled as graphs where a node rep-
resents a network device like a router or a switch. Devices can have multiple
inputs and multiple outputs to connect to other devices. This network model
does not fit well with NC’ server model for queueing analysis. NC therefore ana-
lyzes so-called server graphs. Assuming that a network device’s input buffer is
served at line speed, queueing effects manifest at the output buffers. These are
modeled by the graph’s servers. For instance, in wireless sensor networks, nodes
usually possess a single transmitter. Thus, one sensor node corresponds to one
server and the transmission range defines the server graph’s links [2,4].

(min,+)-Operations. Network calculus [8,9] was cast in a (min,+)-algebraic
framework in [7,14]. The following operations allow to manipulate arrival and
service curves while retaining their worst-case semantic.

Definition 5 ((min,+)-Operations). The (min,+) aggregation, convolution and
deconvolution of two functions f, g ∈ F0 are defined as

aggregation : (f + g)(t) = f(t) + g(t),

convolution : (f ⊗ g)(t) = inf
0≤s≤t

{f(t − s) + g(s)},

deconvolution : (f � g) (t) = sup
u≥0

{f(t + u) − g(u)}.

The service curve definition then translates to A′ ≥ A ⊗ β, the arrival curve
definition to A ⊗ α ≥ A, and performance characteristics can be bounded with
the deconvolution α � β:

Improving Cross-Traffic Bounds in Feed-Forward Networks 13

Theorem 1 (Performance Bounds). Consider a server s that offers a service
curve β. Assume a flow (aggregate) with arrival curve α traverses the server.
Then we obtain the following performance bounds for the flow:

delay: ∀t ∈ R
+ : D (t) ≤ inf{d ≥ 0 |(α � β) (−d) ≤ 0} =: h(α, β),

backlog: ∀t ∈ R
+ : B (t) ≤ (α � β) (0) =: v(α, β),

output: ∀d ∈ R
+ : α′(d)= (α � β) (d),

where the delay and backlog bounds are abbreviated by D and B, respectively, as
they hold independent of parameter t and α′ is an arrival curve for A′.

The delay bound equals the horizontal deviation between α and β, h (α, β).
In case the arrival curve belongs to a single flow, the order of data within this
flow must be retained (FIFO per µFlow property [17]). In case α belongs to a
flow aggregate, FIFO multiplexing between the aggregated flows is additionally
required (cf. Definition 1). In contrast, for the backlog bound, i.e., the vertical
deviation v(α, β), no FIFO assumptions are required.

Analyzing a flow in an end-to-end fashion while considering cross-traffic on
its path is enabled by the following theorems. Table 1 provides the notation
required to analyze such a path tandem of servers.

Table 1. Network calculus notation for flows, arrivals and service.

Quantifier Definition

F Generic notation for a flow aggregate

{fn, ..., fm} Flow aggregate containing flows fn, ..., fm

〈sx, . . . , sy〉 Tandem of consecutive servers sx to sy

αf , αF Arrival curve of flow f , set of flows F

αf
s , αF

s Arrival bound at server s

βs Service curve of server s

βl.o.f , βl.o.F Left-over service curve

Theorem 2 (Concatenation of Servers). Consider a flow (aggregate) F crossing
a tandem of servers 〈s1, . . . , sn〉 and assume that each si, i ∈ {1, . . . , n}, offers
a service curve βsi

. The overall service curve offered to F is their concatenation

βs1 ⊗ . . . ⊗ βsn
=

⊗n

i=1
βsi

.

Theorem 3 (Left-Over Service Curve). Consider a server s that offers a strict
service curve βs. Let s be crossed by two flow aggregates F0 and F1 with aggre-
gate arrival curves αF0 and αF1 , respectively. Then F1’s worst-case residual

14 S. Bondorf and J. Schmitt

resource share under arbitrary multiplexing at s, i.e., its left-over service curve
at s, is

βl.o.F1
s = βs � αF0

with (β � α) (d) := sup {0 ≤ u ≤ d | (β − α) (u)} denoting the non-decreasing
upper closure of (β − α) (d).

Network Analysis. A network calculus analysis computes the end-to-end delay
bound for a specific flow (flow of interest, foi). Conceptually, algebraic NC is
compositional and its feed-forward analyses proceed in two steps [3,4]:

1. First, the analysis abstracts from the feed-forward network to the flow of
interest’s path (a tandem of servers). This step is enabled by recursively
decomposing the server graph into tandems [5] and bounding the output
arrivals of cross-traffic with Theorem 1, the output bound. After this step,
a bound on the worst-case shape of cross-flows is known at the location of
interference with the foi. Then, the following step need not consider the part of
the network traversed by cross-flows nor the potentially complex interference
patterns they are subject to.

2. The foi’s end-to-end delay bound in the feed-forward network can now be
calculated with a less complex tandem analysis. The foi’s end-to-end left-over
service curve is derived and the delay bound computed.

The second step of the feed-forward analysis (FFA) procedure has seen much
treatment in the literature. Effort constantly focused on improving the ability
to capture flow scheduling and cross-traffic multiplexing effects and thus provide
more accurate delay bounds. One of the earliest improvements was made with
the step from the total flow analysis to the separate flow analysis.

Total Flow Analysis (TFA) [9]: The Total Flow Analysis directly applies
the basic results from Theorem 1. Given the arrival curve for the totality of
flows (a flow aggregate) present at a server and the server’s service curve, TFA
allows to derive deterministic worst-case bounds on the delay a flow (aggre-
gate) experiences when crossing the analyzed server as well as the server’s buffer
requirement for handling all traffic without suffering from overflows. The back-
log bound coincides with the total buffer demand of a server. The TFA is a
server-local analysis, i.e., all bounds it derives hold for a specific server and the
totality of traffic crossing it, not for a single flow of interest because flows are
not analyzed individually. When TFA is used as a tandem analysis in FFA-step
2 of the above scheme, the flow of interest’s end-to-end delay bound is computed
by summing up the server-local delay bounds on its path.

The Separate Flow Analysis (SFA) and the PBOO-Effect [14]: The TFA
delay bound can be improved by separating the analysis’ flow of interest from
its cross-traffic. In this preparatory step, the so-called left-over service curve
calculation, cross-traffic arrivals are subtracted from the service curves in the
foi’s path. The SFA is a straight-forward, hop-by-hop application of Theorems 2
and 3: First subtract cross-traffic arrivals such that βs become βl.o.fois and then

Improving Cross-Traffic Bounds in Feed-Forward Networks 15

concatenate the left-over service curves. Deriving the delay bound with a single,
end-to-end left-over service curve considers the flow of interest’s burst term only
once. This effect is therefore called Pay Bursts Only Once (PBOO).

Note, that TFA and SFA both define the procedure for FFA-step 2 only. In
the first step of the feed-forward analysis procedure, only flows that eventually
interfere with the flow of interest are considered – cross-traffic arrival bounding is
therefore limited to these flows. They are separated from their own cross-traffic
and bounded in an aggregate fashion. The former defines the difference to the
TFA backlog bounding where all flows at a server are considered, regardless their
subsequent hop [14]. The latter defines the aggregate PBOO Arrival Bounding
(PBOO-AB) [5]. Thus, both approaches incorporate different degrees of flow
aggregation. We exploit a combination of both, yet without explicitly tracing
them throughout the entire arrival bounding [16] but with the TFA’s additional
benefits for bounding a server’s output burstiness.

4 An Alternative Output Bound

In this section, we derive an alternative output bound. As presented in Sect. 5
and numerically evaluated in Sect. 6, this alternative output bound enables an
improved arrival bounding step (FFA-step 1).

Let A,A′ be input and output to/from a system. We assume to have an
arrival curve α for the arrivals A and a service curve β offered by the system.
Let us further assume that the arrival curve α is such that for d > 0 it can be
written as

α(d) = α̃(d) + α(0+),

with α̃ being a concave function (defined for d > 0 by the above equation and
with α̃(0) = 0), and α(0+) = limd→0+ α(d). Clearly, this means that α is also a
concave function. Further note that, for instance, any concave piecewise-linear
arrival curve meets this condition, hence it is not restrictive in practice (e.g.,
the Disco Deterministic Network Calculator, DiscoDNC, uses such functions as
arrival curves [3]). As α̃ ∈ F0 and is concave, it is also sub-additive, which is
crucial as we see below.

Noting that we can bound the backlog for any given arrival process A by

B(t) = A(t) − A′(t) ≤ A(t) − (A ⊗ β)(t) = sup
0≤u≤t

{A(t) − A(u) − β(t − u)},

we provide the alternative output bound in the following theorem.

Theorem 4. Under the above assumptions and notations, an output bound on
the departure flow (aggregate) A′ can be calculated as

α′(d) = α(d) + (v(α, β) − α(0+)) · 1{d>0}.

Proof. Let s < t:

A′(t) − A′(s) = A(t) − A(s) + B(s) − B(t)

16 S. Bondorf and J. Schmitt

≤ A(t) − A(s) + B(s)
≤ A(t) − A(s) + sup

0≤u≤s
{A(s) − A(u) − β(s − u)}

= sup
0≤u≤s

{A(t) − A(u) − β(s − u)}

≤ sup
0≤u≤s

{α(t − u) − β(s − u)}

= sup
0≤u≤s

{α̃(t − u) + α(0+) − β(s − u)}

≤ sup
0≤u≤s

{α̃(t − s) + α̃(s − u) + α(0+) − β(s − u)}

= α̃(t − s) + sup
0≤u≤s

{α(s − u) − β(s − u)}

≤ α̃(t − s) + v(α, β)
= α(t − s) + v(α, β) − α(0+) = α′(t − s).

For s = t : A′(t) − A′(s) = 0 = α′(t − s). ��
Note that this result resembles a known basic result that can be found in

Chang’s textbook in Lemma 1.4.2 [7]. This lemma states that for a server with
a bound on the queue q̄ and a γr,b-constrained input, an output bound can be
given as γr,b+q̄. Besides generalizing this lemma, we point out that we actually
improve it, as we basically get rid of the burst term and would obtain γr,q̄ as an
output bound under Chang’s assumptions.

5 TFA-Assisted PBOO Arrival Bounding

In this section, we demonstrate how to exploit the basic insight about the alter-
native output characterization from the previous section. It gives us the choice
between the existing PBOO arrival bounding (PBOO-AB), which applies the
conventional output bound, and an approach where we use a backlog bound
for the cross-traffic and apply Theorem 4. This backlog bound is obtained from
TFA, i.e., it actually considers flows that demultiplex from cross-traffic and do
not interfere with the foi. In the following we discuss why and when this can
actually lead to an improvement.

Consider the network configuration of Fig. 1 where f is the flow of interest,
xf is its cross-flow and xxf is the cross-traffic of xf . Although the network is

f

xf

xxf

s0 s1 s2

Fig. 1. Sample network.

Improving Cross-Traffic Bounds in Feed-Forward Networks 17

0 20 40 60 80 100

0
20

0
40

0
60

0
80

0
10

00

Utilization [%]

S
iz

e

Fig. 2. Different scaling behaviors of BTFA
s1 and bxfs2 with respect to the network

utilization.

depicted as a tandem, we cannot apply a simple tandem analysis because the
flow of interest f does not cross all servers, i.e., cross-traffic arrival bounding
is necessary in this network: Deriving f ’s performance bounds with the SFA
requires bounding xf ’s arrival at s2, αxf

s2
, (FFA-step 1) with PBOO-AB first.

It’s result is used to separate f by computing f ’s left-over service curve at s2
that is then used to derive f ’s delay bound (FFA-step 2).

PBOO-AB retains the worst-case when arbitrarily multiplexing of flows,
i.e., in contrast to FIFO multiplexing, data of xf may always be served after
xxf ’s data – independent of their relative arrival times. Thus, burstiness of αxf

s2
,

denoted by bxf
s2

:= αxf
s2

(0+), increases when more data of xxf arrives in shorter
intervals, i.e., its arrival curve αxxf increases. In our illustrative numerical eval-
uation of this section, service curves are chosen to be rate latency functions
βR,T = β20,20 and arrival curves to be token buckets α = γr,10 where the rate r
is variable. In this parameterized homogeneous setting, αxxf increases with para-
meter r that we use to show xf ’s worst-case burstiness increase with a growing
network utilization.

Figure 2 shows the utilization’s impact on the PBOO-AB burstiness of f ’s
cross-traffic, bxf

s2
, and on the TFA backlog bound at server s1, BTFA

s1
. TFA consid-

ers all flows at s1 and derives the backlog bound based on their aggregate arrival
curve. Being the backlog of all incoming traffic at the server, i.e., a superset of f ’s
cross-traffic xf , BTFA

s1
is also a backlog bound for xf . In Fig. 2, BTFA

s1
scales lin-

early whereas bxf
s2

scales super-linearly with the utilization. Consequently, both
curves intersect and bxf

s2
exceeds BTFA

s1
, such that using the TFA backlog bound

and Theorem 4 indeed achieves an improvement over PBOO-AB.

18 S. Bondorf and J. Schmitt

This can be explained by the derivation of the two values, BTFA
s1

and bxf
s2

.
For detailed information on how to compute the result of (min,+)-operations
for token-bucket arrival curves and rate-latency service curves, please refer to
the DiscoDNC documentation [1].

bxf
s2

=
(
αxf � βl.o.xf

〈s0,s1〉
)

(0)

=
(
αxf � (

βl.o.xf
s0

⊗ βl.o.xf
s1

))
(0)

=
(
αxf � ((

βs0 � αxxf
s0

) ⊗ (
βs1 � αxxf

s1

)))
(0)

=
(
αxf � ((

βs0 � αxxf
) ⊗ (

βs1 � (
αxxf

s0
� βl.o.xxf

s0

))))
(0)

=
(
αxf � ((

βs0 � αxxf
) ⊗ (

βs1 � (
αxxf � (

βs0 � αxf
s0

)))))
(0)

= (γr,10 � ((β20,20 � γr,10) ⊗ (β20,20 � (γr,10 � (β20,20 � γr,10))))) (0)
(1)
=

(
γr,10 �

(
β20−r, 410

20−r
⊗

(
β20,20 �

(
γr,10 � β20−r, 410

20−r

))))
(0)

(2)
=

(
γr,10 �

(
β20−r, 410

20−r
⊗

(
β20,20 � γr, 410r

20−r +10

)))
(0)

(3)
=

(
γr,10 �

(
β20−r, 410

20−r
⊗

(
β20,20 � γr, 400r+200

20−r

)))
(0)

(4)
=

(
γr,10 �

(
β20−r, 410

20−r
⊗ β20−r, 8200

(20−r)2

))
(0)

=
(
γr,10 � β20−r, 410

20−r +
8200

(20−r)2

)
(0)

(5)
=

(
γr,10 � β20−r, 16400−410r

(20−r)2

)
(0)

(6)
=

4000 + 16000r − 400r2

400 − 40r + r2

We can see that bxf
s2

monotonically increases because the numerator is larger as
well as faster growing than the denominator and the stability condition r ≤ 10
leads to an always positive denominator.

Next, let us see how the polynomial expression’s degree builds up during the
above derivation. Multiplication by the arrival rate is required to compute the
burstiness of an output arrival curve, i.e., every time we deconvolve – see steps
from (1) to (2) and from (5) to (6). Subsequent left-over service curve operations,
e.g., from (3) to (4), retain the rate in the latency term’s denominator, as does
the convolution of service curves in the step from (4) to (5). Deconvolution is
required for output bounding and thus occurs at every level of the recursive
arrival bounding procedure. In this example, xf is bounded in the first recursion
level and it requires bounding xxf in a second level; hence, we obtain a rational
function of degree 2 (with a pole at r = 20).

The TFA backlog bound derivation for server s1 proceeds as follows:

BTFA
s1

(1)
= v

({
αxf

s1
, αxxf

s1

}
, βs1

)
= v

({
αxf

s0
, αxxf

s0

} � β
l.o.{αxf

s1
,αxxf

s1 }
s0 , βs1

)

Improving Cross-Traffic Bounds in Feed-Forward Networks 19

(2)
= v

({
αxf

s0
, αxxf

s0

} � βs0 , βs1

)
(3)
= v ((γr,10 + γr,10) � β20,20, β20,20)
(4)
= v (γ2r,20 � β20,20, β20,20)
(5)
= v (γ2r,20+2r·20, β20,20)
= 80r + 20

The derivation takes advantage of aggregation in (1) and (3), which prevents
recursive cross-traffic arrival bounding in our example. xxf is not considered
cross-traffic of xf as both belong to the same flow aggregate and therefore no
action has to be taken to derive the left-over service curve at s0 in (2). The only
relevant deconvolution in BTFA

s1
’s derivation is found in the computation of the

aggregate’s output bound after crossing s0. The deconvolution in the backlog
bounding operation v

({
αxf

s1
, αxxf

s1

}
, βs1

)
executed in the step from (4) to (5) is,

in contrast to the bxf
s2

-derivation not affecting the polynomial expression’s degree
because its latency is not depending on r. Thus, the entire term grows linearly
with the flow arrival rate.

Remark 1. It is not possible to improve xf ’s output bound by using the backlog
bound for flow xf at server s1, i.e., Bxf

s1
, because Bxf

s1
and bxf

s2
are equal due to

[14], Theorem 3.1.12, Rule 12:

Bxf
s1

=
((

αxf � βl.o.xf
s0

) � βl.o.xf
s1

)
(0)

=
(
αxf � (

βl.o.xf
s0

⊗ βl.o.xf
s1

))
(0) = bxf

s2

From this reformulated derivation of bxf
s2

we obtain another explanation for its
function being of degree 1 in the above example: There is only one deconvolution.

Remark 2. Theorem 1.4.5 in Le Boudec and Thiran’s text book [14] presents
conditions for tight output arrival bounds. These are satisfied in both our deriva-
tions above, yet, we improve xf ’s output bound by incorporating BTFA

s1
. At first

glance, this may seem like a contradiction, however, we gain tightness from addi-
tional considerations of a feed-forward analysis that are not addressed in [14],
Theorem 1.4.5. It remains valid, yet only with respect to the given service curves
that, in turn, might be tightness-compromising left-overs like in Remark 1.

In a more complex feed-forward network, we often have multi-level recursions
for cross-traffic of cross-traffic in the arrival bounding phase of the derivations
[5] – also for the backlog bound at a server – and therefore polynomial expressions
of higher degrees occur in both alternative bounds on the output burstiness. For
the ease of presentation, we continue to illustrate the impact of the differing
scaling behaviors as well as the service curve latency and the initial burstiness
of flows in the simple network from Fig. 1. In Sect. 6, we extend our evaluation
to more involved feed-forward networks.

Above, we discussed that left-over service curve computations retain the
arrival rate in their results’ latency term. For instance, the left-over latency

20 S. Bondorf and J. Schmitt

0 20 40 60 80 100

0
50

10
0

15
0

20
0

Utilization [%]

, T=0

, T=106

%
 o

f

Fig. 3. Relative difference: Influence of β’s latency T .

at server s0 is Ts0 ·Rs0+bxxf

Rs0−rxxf = Ts0 + rxxf ·Ts0+bxxf

Rs0−rxxf , i.e., it consists of a fixed and
a variable part. The fixed part is defined by the service curves’ initial latency
Ts0 = Ts1 = Ts2 =: T (equal for all servers in out homogeneous sample network)
whose influence on the total burstiness we evaluate – increasing T naturally
decreases the impact of the variable part containing the crucial factor r. We
check T = 0, i.e., the natural lower limit of the latency, and T = 106, a value
several orders of magnitude larger than the service rate R = 20 and thus safe to
be assumed as a realistic upper bound on T . The resulting range of T ’s impact is
depicted by the relative difference between BTFA

s1
and bxf

s2
in Fig. 3. Most notably,

the network utilization required for the TFA backlog bound to outperform the
separated flow’s output burstiness is between 59 % to 72 % – that is, it always
exists and resides at utilizations considerably lower than the network’s capacity
limit. Moreover, bxf

s2
’s relative benefit of 50 % over BTFA

s1
for low utilizations is

in fact small in absolute values (cf. Fig. 2) whereas its disadvantage (right of the
intersection) grows fast to become large in absolute numbers.

Last, we evaluate the impact of the remaining variable parameter besides
utilization and the service curve latency: The initial burstiness of flows b in
the homogeneous network. We reduced the service curve latency’s influence by
assigning β = β20,0.1. Arrival curves are α = γr,b where r is defined by the
network utilization (i.e., relative to the service rate R) and b is slowly increased
from 0 to the previously used value of 10. Figure 4 depicts the relative difference
between BTFA

s1
and bxf

s2
for three levels of network utilization: 59 % and 72 % (the

intersections of both values in the latency evaluation of Fig. 3) as well as 100 %.
We can see that the TFA backlog bound at server s1 is in fact always within the
output burstiness of the same utilizations found for the latency – for 59 %, BTFA

s1

Improving Cross-Traffic Bounds in Feed-Forward Networks 21

0 2 4 6 8 10

0
50

10
0

15
0

20
0

ssenitsrub evruc lavirrA

, Util 100%

, Util 72%

, Util 59%

%
 o

f

Fig. 4. Relative difference: Influence of the arrival burstiness on the backlog bound at
s1 and xf ’s worst-case burstiness assumed at s2.

is an asymptote when increasing b, and for 72 % the bxf
s2

-value starts at the server
backlog bound. The impact of initial burstiness of flows is similar to the latency’s
impact. For the maximum network utilization, bxf

s2
always exceeds BTFA

s1
by at

least 50 % in our sample network, i.e., utilization remains most impactful.
Based on these observations, we propose to improve the arrival bound of a

flow (aggregate) with the TFA backlog bound and Theorem 4 applied at the last
hop of this flow (aggregate) – of course, only if it actually improves the bound.
We call this new method: TFA-assisted PBOO Arrival Bound.

6 Feed-Forward Network Evaluation

The potential improvement of cross-traffic bounds can be quite considerable in
the small scenario of Sect. 5. Now we turn to the investigation of the impact
on the end-to-end delay bound of flows traversing larger feed-forward networks.
That is, we evaluate the improvements gained by reduced cross-traffic inter-
ference that ultimately tightens delay bounds. We have extended the Disco
Deterministic Network Calculator (DiscoDNC) [3] with the TFA-assisted PBOO
Arrival Bounding in order to benchmark the resulting new variant against the
existing one without this improvement (plain PBOO-AB).

The exemplary network we generated for evaluation consists of 150 homoge-
neous servers with service curves βR,T = β200,0.1. 600 flows with random paths
and arrival curve α = γ2,0.1 were added to the network. They are supposed
to randomly generate hotspots of considerable, yet, uncontrolled utilization for
the evaluation. These hotspots see the highest numbers of flows such that the

22 S. Bondorf and J. Schmitt

0
2

4
6

8

Im
pr

ov
ed

 a
rri

va
l b

ou
nd

s
du

rin
g

an
al

ys
is

 [%
]

0 100 200 300 400 500 600

0
20

40
60

80

D
el

ay
 b

ou
nd

SFA with PBOO−AB
SFA with TFA−assisted PBOO−AB
Improved arrival bounds

0 100 200 300 400 500 600
Flow ID,

ordered by the delay bound of SFA with PBOO−AB

Fig. 5. Delay analysis of a feed-forward network.

impact of separation vs. aggregation can be observed – similar to heterogeneous
networks where some flows outweigh others. We chose a small initial burstiness
to additionally check the above claim that unavoidable burstiness increases are
sufficient to cause impact of the TFA’s assistance to the delay analysis.

The TFA-assisted PBOO-AB improved 369 out of 600 flow delay bounds over
those derived with plain PBOO-AB (see Fig. 5). In total, 61.5 % of flows cross
a hotspot that: (1) enables the TFA to aggregate flows such that its backlog
bounding requires less recursion levels, making it grow slower with the utiliza-
tion, and (2) has a utilization large enough to allow for its backlog bound to
fall below the output bound burstiness. For the 33 % of flows with largest delay
bound (using plain PBOO-AB), we achieved an average improvement of 17.93 %,
with a maximum improvement of 44.41 %.

The distribution of brown dots for these rightmost 200 flows in Fig. 5 shows
that this improvement was achieved without ever capping more than 2 % of
the arrival bounds derived during the entire feed-forward analysis (right y-axis).
Moreover, it is clearly visible that an increased share of burstiness improvements
causes a larger delay bound reduction. For the rightmost 200 flows in Fig. 5, the
dots form a pattern of three “peaks” whose beginning and end both demarcate
a step in the improved delay bounds depicted above them.

Another interesting observation is that these distinguishable peaks in
improved worst-case burstiness cause a non-uniform decrease of delay bounds.
The global network delay bound – the maximum delay bound of all flows in the

Improving Cross-Traffic Bounds in Feed-Forward Networks 23

network – is not defined by the same flow anymore. Applying our new analysis,
11 flows that had a smaller delay bound than this flow now have a larger one.
This reordering indicates that even when delay bounds are just used as a relative
figure of merit, such as in design space explorations [19], an accurate network
delay analysis is important and the first step of the FFA procedure is crucial.

7 Conclusion

In network calculus, the Total Flow Analysis (TFA) had been abandoned since it
is inferior to other methods for overall network delay analysis. In this paper, we
demonstrate that the TFA can actually be very useful to improve the bounding
of cross-traffic arrivals in a feed-forward network. The trick is to use TFA’s
backlog bound as an upper bound on the burstiness at the servers where cross-
traffic joins the analyzed flow of interest. We showed that the improvement can
be quite significant, with some delay bounds reduced by more than 40 %. So, we
see: There is a job for everyone!

References

1. The Disco Deterministic Network Calculator. http://disco.cs.uni-kl.de/index.php/
projects/disco-dnc

2. Bondorf, S., Schmitt, J.: Statistical response time bounds in randomly deployed
wireless sensor networks. In: Proceedings of IEEE LCN (2010)

3. Bondorf, S., Schmitt, J.: The DiscoDNC v2 - A comprehensive tool for deterministic
network calculus. In: Proceedings of ValueTools (2014)

4. Bondorf, S., Schmitt, J.: Boosting sensor network calculus by thoroughly bounding
cross-traffic. In: Proceedings of IEEE INFOCOM (2015)

5. Bondorf, S., Schmitt, J.: Calculating accurate end-to-end delay bounds - you better
know your cross-traffic. In: Proceedings of ValueTools (2015)

6. Bouillard, A.: Algorithms and efficiency of Network calculus. Habilitation thesis,
École Normale Supérieure (2014)

7. Chang, C.-S.: Performance Guarantees in Communication Networks. Springer,
London (2000)

8. Cruz, R.L.: A calculus for network delay, Part I: network elements in isolation.
IEEE Trans. Inf. Theor. 37, 114–131 (1991)

9. Cruz, R.L.: A calculus for network delay, Part II: network analysis. IEEE Trans.
Inf. Theor. 37, 132–141 (1991)

10. Echagüe, J., Cholvi, V.: Tight arrival curve at the output of a work-conserving
blind multiplexing server. Informatica 21, 31–40 (2010)

11. Fidler, M.: Survey of deterministic and stochastic service curve models in the
network calculus. Commun. Surv. Tutorials 12, 59–86 (2010)

12. Frances, F., Fraboul, C., Grieu, J.: Using network calculus to optimize AFDX
network. In: Proceedings of ERTS (2006)

13. Gollan, N., Schmitt, J.: Energy-efficient TDMA design under real-time constraints
in wireless sensor networks. In: Proceedings of IEEE/ACM MASCOTS (2007)

14. Le Boudec, J.-Y., Thiran, P.: Network Calculus: A Theory of Deterministic Queu-
ing Systems for the Internet. Springer, Heidelberg (2001)

http://disco.cs.uni-kl.de/index.php/projects/disco-dnc
http://disco.cs.uni-kl.de/index.php/projects/disco-dnc

24 S. Bondorf and J. Schmitt

15. Maxiaguine, A., Kunzli, S., Chakraborty, S., Thiele, L.: Rate analysis for streaming
applications with on-chip buffer constraints. In: Proceedings of ASP-DAC (2004)

16. Perathoner, S., Rein, T., Thiele, L., Lampka, K., Rox, J.: Modeling structured event
streams in system level performance analysis. In: Proceedings of ACM LCTES
(2010)

17. Schmitt, J., Gollan, N., Bondorf, S., Martinovic, I.: Pay bursts only once holds for
(some) non-FIFO systems. In Proceedings of IEEE INFOCOM, April 2011

18. Schmitt, J., Zdarsky, F., Thiele, L.: A comprehensive worst-case calculus for wire-
less sensor networks with in-network processing. In: Proceedings of IEEE RTSS
(2007)

19. Thiele, L., Chakraborty, S., Gries, M., Künzli, S.: Design space exploration of net-
work processor architectures. In: Network Processor Design: Issues and Practices.
Morgan Kaufmann Publishers (2002)

20. Zhu, T., Tumanov, A., Kozuch, M., Harchol-Balter, M., Ganger, G.: PriorityMeis-
ter: tail latency QoS for shared networked storage. In: Proceedings of ACM SOCC
(2014)

Stochastic Analysis of Energy Consumption
in Pool Depletion Systems

Davide Cerotti(B), Marco Gribaudo, Riccardo Pinciroli,
and Giuseppe Serazzi

Dip. di Elettronica, Informazione e Bioingengeria, Politecnico di Milano,
via Ponzio 34/5, 20133 Milano, Italy

{davide.cerotti,marco.gribaudo,riccardo.pinciroli,
giuseppe.serazzi}@polimi.it

Abstract. The evolutions of digital technologies and software applica-
tions have introduced a new computational paradigm that involves ini-
tially the creation of a large pool of jobs followed by a phase in which
all the jobs are executed in systems with limited capacity. For example,
a number of libraries have started digitizing their old books, or video
content providers, such as YouTube or Netflix, need to transcode their
contents to improve playback performances. Such applications are char-
acterized by a huge number of jobs with different requests of computa-
tional resources, like CPU and GPU. Due to the very long computation
time required by the execution of all the jobs, strategies to reduce the
total energy consumption are very important.

In this work we present an analytical study of such systems, referred
to as pool depletion systems, aimed at showing that very simple config-
uration parameters may have a non-trivial impact on the performance
and especially on the energy consumption. We apply results from queue-
ing theory coupled with the absorption time analysis for the depletion
phase. We show that different optimal settings can be found depending
on the considered metric.

Keywords: Stochastic models · Energy efficiency · Performance
evaluation

1 Introduction

In this paper we focus on systems in which there is a fixed and huge number of
jobs, referred to as a pool, waiting to be admitted for execution in a set of service
centers with limited capacity. Many current real life problems require models
with this structure. For example, video content providers, such as YouTube or
NetFlix, often need to transcode a huge pool of videos [6] to multiple formats
suitable to be sent and playback by several different devices (e.g. smart-phone,
smart-TV, tablet, . . .). Similarly, several big data applications generate during
the map phase a huge pool of data that can subsequently be split and executed
in parallel on different systems with limited capacity for performance reasons.
c© Springer International Publishing Switzerland 2016
A. Remke and B.R. Haverkort (Eds.): MMB & DFT 2016, LNCS 9629, pp. 25–39, 2016.
DOI: 10.1007/978-3-319-31559-1 4

26 D. Cerotti et al.

The behavior of this system can be regarded as divided into two phases.
An initial phase, in which the system is loaded with the maximum number of
jobs allowed, and every job completed is immediately replaced by another one
admitted from the pool. Then, when the pool empties a new phase starts, referred
to as depletion phase, and the number of jobs in execution continues to decrease
until all jobs are completed.

Since the jobs may have very different resource demands, in our analysis we
consider multi-class workloads. To study the behavior of this type of systems,
that are not at the equilibrium, we applied the stochastic analysis implementing
the CTMC of the different cases.

The problem approached is: given a workload, i.e., pool size and character-
istics of the classes of jobs (service demands and fractions in execution), and
a system with finite capacity study a scheduling admission policy so that the
global amount of time to execute the complete pool of jobs, i.e., the duration of
the full capacity phase plus the depletion phase, is minimized.

To reach this objective, the load admission policy that schedule the sequence
of executions must be able to fully exploit the capacity of all the resources of
the system. In other words, the saturation of the resources must be reduced
as much as possible controlling the bottlenecks. Let us remark that minimizing
the time required from the execution of the complete workload is equivalent to
minimize the energy required for this task. Thus, we may say that our ultimate
objective is to minimize the energy needed to execute a workload through a
suitable admission policy based on the bottleneck control.

We adopt known results of queuing networks for the full capacity phase, and
the absorption time analysis for the depletion phase. By queuing theory, it is
known that the performance of systems with multi-class workloads depends on
the fraction of the classes of jobs in execution (referred to as population mix).
More precisely, given the service demands of the classes, it is possible to identify a
set of population mixes that saturate more than one resource concurrently. More-
over, one of these population mixes allow resources to be equiutilized regardless
the population sizes. This operational condition is optimal since it maximizes
the utilization of all the resources and thus the system throughput [16].

The main objectives are to study the impact of both the size of the job
pool and the maximum processing capacity, in term of maximum number of
jobs in execution, to the depletion time. Moreover, in multi-class workload, we
want to examine the effect of the population mix to optimize depletion time,
energy consumption, and response time in order to identify an optimal trade-off
between them.

The remainder of the paper is structured as follows. In Sect. 2 we review some
metrics used for energy consumption measurement. Section 3 presents in detail
the pool depletion models both with single and multi-class workload and the
Markov Chains utilized. In Sect. 4 we investigate the behavior of the model and
show that the energy consumption is minimized when the system works with an
optimal population mix. Section 5 concludes the paper and presents some future
directions of work.

Stochastic Analysis of Energy Consumption in Pool Depletion Systems 27

2 Energy Consumption

Several works, e.g. [7,15], show the existence of a linear relationship between the
power consumption of a server and the utilization of its CPU. For such reason,
a widespread used approximation of the power consumption P (U) of a server is
given by:

P (U) = Pidle + U (Pmax − Pidle) (1)

where Pidle is the power consumed when no user applications are running, Pmax

is the power drawn by the fully utilized server and U is the CPU utilization.
Many improvements of this model have been proposed to take into account
other devices likes memory [12] or disks [5], and consider non-linearity measured
in some real applications.

Since the global energy consumed by a task of duration T can be computed as
E = P · T , there is a trade-off between two factors. On one hand, Eq. 1 suggests
to reduce the utilization to decrease the power consumption; on the other, a low
utilization yields a low server productivity, increasing the time T required to
complete the given task and thus also the energy consumed. In addition, there is
a related trade-off between the energy consumed and the performance provided
by the system. Energy-Response time Product (ERP), also known as Energy-
Delay Product (EDP), and Energy-Response time Weighted Sum (ERWS) are
two metrics widely used to evaluate the performance-energy trade-off of a system.
Both of depend on the total energy consumption (E) and the response time (R).
The index ERP [8,9,11,13] is defined as their product:

ERP = E R, (2)

whereas ERWS [1–3,10] is defined as their weighted sum:

ERWS = w1 R + w2 E, w1, w2 ≥ 0. (3)

The average energy consumed per job EJ is a further metric to compute such
trade-off [4]. It is defined as:

EJ =
E

C
=

P · T

C
=

P

X
, (4)

where C is number of jobs completed during a time interval of length T and
X is the system throughput. Equation 4 holds for a resource processing a single-
class workload, but it is not fair with a workload composed by jobs of different
classes, especially when the time required to complete a job varies significantly
according to its class. To overcome such problem, exploiting the utilization law
a multi-class extension of Eq. 4 has been proposed as:

EJ = D
P

U
, (5)

where D is the aggregate demand (i.e. the total service demand of all the classes)
and U is the resource utilization. The details of the Eq. 5 derivation and its
extension to take into account systems composed of several resources can be
found in [4].

28 D. Cerotti et al.

3 Model Description

Let us consider the depletion model of a system composed by two resources
r1 and r2 as shown in Fig. 1. Resources can represent important parts of a
computing architecture: in the following we will use one resource to model a
single-core CPU, and the other to model a GPU. The system executes two classes
of jobs A and B. Each class requires an exponentially random distributed amount
of execution time at each resource, and it is characterized by its average Drc,
with r ∈ {1, 2} and c ∈ {A,B}. The two resources satisfy the classical BCMP
assumptions: they either work in processor sharing, or in first-come-first-served
with all the requests of identical size, but possibly with different visit ratio. The
total number of jobs that must be executed in the two classes are respectively
NA and NB . However, only K = kA + kB jobs are executed in parallel, with kA

jobs of class A and kB jobs of class B. We call this constraint as Finite Capacity
Region (FCR). Whenever a class A job completes and leaves the system, another
class A jobs is started. If all the class A jobs are finished, but there are still class
B jobs to be executed, class B jobs enter the system in place of class A jobs, to
maintain its workload to K jobs. If there are no more jobs waiting to be executed,
as soon as a job finishes, it is not replaced by other activity until all the NA+NB

jobs have been completed. Class B jobs behaves in the symmetrical way.

Job pool

Χ
Scheduler

Finite capacity region

NA

K = kA + kB

D1B D2B

NB

D1A D2A

Fig. 1. A pool depletion model with two class and two resources.

Figure 2 shows the temporal evolution of the system. First jobs are loaded
from the pool into the first resource, until the size of the FCR is reached
(Phase 0). To simplify the presentation, we will consider the duration of this
phase to be negligible, and we consider the system starting from a state in
which there are kA class A jobs and kB class B jobs in execution in the first
resource r1. During normal execution, as soon as one job finishes, another one
of the same class immediately starts (Phase I): this is the time in which the
system works at regime, and it is also the moment in which optimization can
take place. As soon as the jobs of one class in the pool finishes, the system moves
to Phase II, where the scheduler cannot really perform a decision since it can
only start jobs of the remaining class to fill the number of tasks in concurrent
execution. Finally, when there are no more new jobs that can be started, the
depletion phase begins (Phase III). In this case the number of jobs in execution

Stochastic Analysis of Energy Consumption in Pool Depletion Systems 29

Time

Jo
bs

 in
 e

xe
cu

tio
n

O

I II

III

Fig. 2. Temporal evolution of the system.

reduces progressively until all the tasks have been completed. Note that both
in Phase II and Phase III, one class of jobs might finish much earlier than the
other, reducing the system to a single class behavior.

For each model we construct the corresponding underlying CTMC. Even if
the proposed model seems to be very simple, the underlying Markov process is
characterized by lot of asymmetries that makes its description a bit involved. To
simplify the presentation, we start by presenting a simple single-class example
with fixed parameters, and then we extend it to the two-classes general case.

3.1 Single-Class Model

Let us consider a single-class model with NA = 5 jobs to be completed, in
which K = kA = 2 jobs at a time are executed in parallel by the system. The
corresponding CTMC is shown in Fig. 3, and its state is identified by a tuple:
(nOA, n1A, n2A), where nOA is the number of jobs that are still waiting to be
started, n1A is the number of jobs in resource r1 and n2A is the number of jobs
in resource r2.

Since we ignore the loading phase, all jobs that can be immediately exe-
cuted starts in resource r1. For this reason the initial state of the CTMC is
(nOA − n1A, n1A, 0) = (3, 2, 0). Let us call μ1 = 1/D1A the rate at which jobs
leaves resource r1, and μ2 = 1/D2A the rates at which jobs complete their exe-
cution. Jobs always leave from r1 to r2 at rate μ1, producing a transition from
state (nOA, n1A, n2A) to state (nOA, n1A − 1, n2A + 1). The effect of the end of
service at resource r2 is different depending on whether there are jobs waiting
to start (nOA > 0 - Phase II in Fig. 2). If this is the case, the system performs
a transition from state (nOA, n1A, n2A) to state (nOA − 1, n1A + 1, n2A − 1) at
rate μ2 corresponding to the fact that whenever a job exits the system from
resource r2, one of the waiting job is immediately started at r1. If instead the
jobs waiting to be started are finished (nOA = 0 - Phase III in Fig. 2), the system
starts working on one less job performing a transition from state (0, n1A, n2A)
to state (0, n1A, n2A − 1), always at rate μ2. When the last job ends, the system
jumps in the absorbing state (0, 0, 0).

30 D. Cerotti et al.

(3,2,0)

(3,1,1)

(3,0,2)

(2,2,0)

(2,1,1)

(2,0,2)

(1,2,0)

(1,1,1)

(1,0,2)

(0,2,0)

(0,1,1)

(0,0,2)

(0,1,0)

(0,0,1)

(0,0,0)

μ1

μ1

μ1

μ1

μ1

μ1

μ1

μ1 μ1

μ2

μ2

μ2

μ2

μ2

μ2

μ2

μ2

μ2

Phase II Phase III

Fig. 3. The CTMC corresponding to a single class system with NA = 5 and kA = 2.

3.2 Multi-class Model

Figure 4 shows the basic transition structure of the CTMC underlying a two-
class model. To simplify the presentation, only outgoing arcs are shown. In the
two class case, the state is characterized by a six components tuple:

(nOA, nOB , n1A, n1B , n2A, n2B)

which contains the count of jobs waiting outside, being executed at r1 or at r2 for
both classes. If n1A +n1B > 0, jobs can complete their service at resource r1. In
this case we can have a transition either to state (nOA, nOB , n1A − 1, n1B , n2A +
1, n2B) or to state (nOA, nOB , n1A, n1B − 1, n2A, n2B + 1) at rate μ1c (with c ∈
{A,B}):

μ1c =
n1c

n1A + n1B

1
D1c

. (6)

The first part of the equation represents the processor sharing policy used by
the resource. The end of service of a job at resource r2 can instead trigger four
different types of behaviors, each leading to a different pattern for the next state.
Let us focus on a class A job: the case for class B will be symmetrical.

If the there are still class A jobs waiting to be started (nOA > 0 - Phase I
in Fig. 2), the system will allow a new class A job to start its execution. This
leads the system to state (nOA − 1, nOB , n1A + 1, n1B , n2A − 1, n2B) and it is
represented in the figure by arrows drawn with a continuous line.

If there are no more class A jobs waiting to be started (nOA = 0) but still
class B jobs (nOB > 0 - Phase II in Fig. 2), then the end of a class A job triggers
the start of a class B job to exploit the maximum parallel running capacity K of
the system. This is represented in Fig. 4 as a dashed arrow, and leads the system
to state (0, nOB − 1, n1A, n1B + 1, n2A − 1, n2B).

If there are no more jobs to be started of either classes (nOA = 0 and nOB =
0 - Phase III in Fig. 2), then the system starts working with less than K jobs in
parallel, by jumping to state (0, 0, n1A, n1B , n2A − 1, n2B). This is the depletion
phase, which is represented in the figure by a dotted line.

Stochastic Analysis of Energy Consumption in Pool Depletion Systems 31

(nOA-1,nOB,n1A+1,n1B,n2A-1,n2B)

(nOA,nOB,n1A,n1B,n2A,n2B)

(nOA,nOB-1,n1A,n1B+1,n2A,n2B-1)

(nOA,nOB,n1A,n1B-1,n2A,n2B+1)(nOA,nOB,n1A-1,n1B,n2A+1,n2B)

(0,nOB-1,n1A,n1B+1,n2A-1,n2B)

(nOA-1,0,n1A+1,n1B,n2A,n2B-1)

(0,0,0,0,0,0)

μ1A μ1B

μ2A

μ2B

μ2A

μ2B

(0,0,n1A,n1B,n2A-1,n2B)

μ2A

(0,0,n1A,n1B,n2A-1,n2B)

μ2B

μ2A or μ2B

Normal transitions

When outside jobs of one class are finished

When outside jobs of both classes are finished

Transitions to the absorbing state

 Key

Phase I

Phases IIPhase III

All Phases All Phases

Phase I
Phases IIPhase III

Fig. 4. Portion of the CTMC corresponding to a two class system.

Finally, when the last job ends the system jumps to the absorbing state
(0, 0, 0, 0, 0, 0). This is represented with a dash-dotted line in the figure. Again,
due to the processor sharing nature of the system, ending of jobs at resource r2
occurs at rate μ2c (with c ∈ {A,B}):

μ2c =
n2c

n2A + n2B

1
D2c

. (7)

3.3 Model Analysis

In order to compute the depletion time, we apply the well-known technique
for the evaluation of the upto-absorption time. Let us consider the CTMC of
the general model with absorbing state (0,0,0,0,0,0) and infinitesimal generator
matrix Q = [qij] and let us call B the set of non-absorbing states. We define the
mean time spent by the CTMC in state i until absorption as zi =

∫ ∞
0

πi(τ)dτ ,
where πi(τ) is the unconditional probability of the CTMC being in state i at
time τ . The row vector z = [zi] satisfies the following equation:

z QB = −πB(0), (8)

where πB and QB are the transient probability vector and the infinitesimal
generator matrix restricted to the non-absorbing states only. Following [14], the
mean time to absorption T of the CTMC can be computed from the solution of
Eq. 8:

T =
∑
i∈B

zi .

32 D. Cerotti et al.

If we call Pi the average power consumed in state i, then the average total energy
consumed by the system is:

E =
∑
i∈B

zi · Pi .

In a similar way, if we call uri an indicator function that tells us if a resource r
is used in state i, φi(X) an indicator function that tells us if state i belongs to
phase X ∈ {I, II, III}, and mi the number of jobs in the FCR in state i, then
we can compute the average utilization Ur of resource r, the average time Φ(X)
spent in phase X, and the average number of jobs in the FCR as:

Ur =
1
T

∑
i∈B

zi · uri Φ(X) =
∑
i∈B

zi · φi(X) M =
1
T

∑
i∈B

zi · mi . (9)

4 Results

We have implemented the model described in Sect. 3 and run several analytical
experiments both with single-class and multi-class workloads. Models are ana-
lyzed by generating their underlying CTMC and solving it according to Sect. 3.3
using a linear algebra library implemented in C language. Performance indices
can be computed in few minutes on a standard Linux laptop even for the cases
with the largest state space. In particular, the size of the state space can vary
from 201 states when we work with a single-class model and K = 1, to 470 771
states when we are considering the multi-class model with K = 40.

4.1 Single-Class Model

In the first set of experiments, we analyze the pool depletion system working
with single-class workloads. In particular, we want to characterize the behavior
of the model as a function of the number of jobs simultaneously admitted into
the FCR.

The total number of jobs in the system is NA + NB = 100, and the service
demands Dr used in the experiments for the two resources are given in Table 1.
The number of jobs that can enter the FCR at the same time varies from K = 1
to K = 100. In case of K = 1, only one job can be processed at once. When
K = 100, all the jobs that are in the system can enter the FCR and they are
concurrently serviced with a processor sharing policy.

Table 1. Service demands used for the single-class model.

Conf. 1 Conf. 2 Conf. 3 Conf. 4

D1 0.75 0.64 1.95 1.2

D2 0.48 1.25 0.6 1.6

Stochastic Analysis of Energy Consumption in Pool Depletion Systems 33

Figure 5 shows the performance indexes of the pool depletion systems with
single-class workloads as a function of the FCR size K. In order to emphasize
the results for small values of K, a base-10 log scale is used on the x-axis.

The energy consumption is computed setting the idle power consumption of
system Pidle = 70W, the maximum power of the system when only resource
r1 is used Pbusy1 = 160W, the maximum power when only resource r2 is used
Pbusy2 = 130W and the maximum power of the system when both resources are
used Pbusy = 210W. As shown in Fig. 5a, larger values of K reduce the energy
consumption, since they reduce the total completion time.

Figure 5b shows the average response time to complete a job: the average
time a job is running. This index does not account for the time spent outside
the FCR, and it is computed using Little’s law as:

R =
M

X
=

M

(NA + NB)/T

where M is the average number of jobs in the FCR defined in Eq. 9. As it can
be seen, R increases with K since resources are shared by a larger number of
jobs. ERP and ERWS are plotted in Fig. 5c and d, respectively. For ERWS, we
define w1 and w2 in order to normalize the values of response time and energy
consumption. Thus, for each configuration, w1 is set to 1/max(Rk) ∀k and w2

is set to 1/max(Ek) ∀k, where k is the number of considered jobs into the FCR.
ERP identifies Conf. 1 as the best configuration and the optimal point is

when only a job is in the FCR. Instead, for ERWS the best configuration is
Conf. 4 and the minimum coincides with four jobs concurrently executed by the
system1.

4.2 Multi-class Model

Next, we consider a multi-class model where the total number of jobs in the
system is NA + NB = 80 and the number of jobs admitted in the FCR K = 20.
We consider the following service demands:

D1A = 0.26 D1B = 0.01
D2A = 0.08 D2B = 0.19.

In Fig. 6, we plot the main performance indexes as a function of the inner
population mix kA and kB . Each curve corresponds to a different outer popu-
lation mix NA and NB . The dashed line is the outer population mix for which
the system can provide the best result. Note that, the optimal outer popula-
tion mix can slightly change based on the considered index. We now consider
two more indexes (i.e. depletion time T and the energy per job EJ) since, with
multi-class workloads, they behave differently from the energy consumption E.
In particular, we evaluate EJ using Eq. 5:

1 Providing evidence about which is the best metric between ERP and ERWS is out
of the purposes of this paper.

34 D. Cerotti et al.

(a) Energy consumption (b) Response time

(c) ERP (d) ERWS

Fig. 5. Performance indexes for the single-class system.

EJ = D
P

U
=

(∑
r,c

Drc

)
E
T

U1 + U2
,

where Ur is computed according to Eq. 9 and the average power consumption P
is computed dividing the average energy E by the average total time T .

We plot energy consumption in Fig. 6a. We used the same values of power
as for the single-class case. With multi-class workloads, it is possible to identify
a set of inner population mixes kA and kB where the energy consumption is
lower. Moreover, the lower is the number of class A jobs, the lower is the energy
consumption of the system. This is due to the power consumption values that
we used and to the time the jobs of class A spend into the system.

Depletion time can reach the minimum value when NA = 37 and NB = 43
(i.e. the dashed line). Nonetheless, configuration with NA = 30 and NB = 50
can provide better results when the inner population mix is highly unbalanced.

The main difference between depletion time in Fig. 6b and average response
time in Fig. 6c is between configurations 20–60 and 50–30. In particular, the

Stochastic Analysis of Energy Consumption in Pool Depletion Systems 35

system has always a lower depletion time with NA = 20 and NB = 60. Instead,
the average response time of that configuration is slightly greater than the one
computed with NA = 50 and NB = 30.

ERP, ERWS and EJ are plotted in Figs. 6d, e and f respectively. All the three
metrics indicate a different configuration as the best one. More generally, ERWS
and EJ agree on the good performance of the 40-40 configuration, whereas ERP
shows an improvement with NA = 30 and NB = 50.

Focusing in the 40-40 configuration (that seems to provide good results for
most of the considered cases) we also analyze how a different size of the FCR K
can affect the performance indexes. Results for ERP, ERWS and EJ are shown in
Fig. 7. Each curve corresponds to a different value of K (i.e. K = {10, 20, 30, 40})
and they are plotted as a function of the inner population mix.

The ERP metric shown in Fig. 7a indicates that the smaller is the FCR
size, the better will be the energy-response time trade-off of the system. In
Fig. 7b, ERWS seems to depends on both the FCR size and the considered inner
population mix. For example, when the workload is composed for the 60% by
class A jobs, it is better to work with K = 10. Instead, when there are only jobs
of class B the system should run with K = 30. EJ is shown in Fig. 7c. As opposed
to the ERP metric, the larger is the FCR size, the better are the performance
of the system. It is true especially when the system is strongly unbalanced.

Figure 7d compares the minimum value that the previous analyzed metrics
(i.e. ERP, ERWS and EJ) can achieve for different FCR sizes K. In order to
provide a fair comparison of the considered metrics, all values are normalized in
the [0, 1] range according to the following rules. First we compute:

τ(K) = minβ(Vβ(K)), (10)

where β represents the inner population mix (i.e. kA = β ·K and kB = K −kA),
and Vβ(K) is the value of the metric computed for specific β and K. From Eq. 10,
we compute the normalized value of each metric with the following formula:

α(K) =
τ(K) − minK(τ(K))

maxK(τ(K)) − minK(τ(K))
. (11)

To that purpose, ERP has been defined as a function of both R (i.e.
ERP (R) = E[R] · E[E]) and T (i.e. ERP (T) = E[T] · E[E]). It is interesting
to see that the four metrics have different trends. Since ERP(R) is defined on R
and ERP(T) on T , the two metrics have different behaviors with respect to the
number of jobs in the FCR: the former is increasing and the latter is decreasing.
Also EJ depends on T (see Eq. 4), thus it is decreasing too. Instead, ERWS has
a parabolic shape.

Finally, in Fig. 8, we plot the length of the phases Φ(I), Φ(II), Φ(III)
described in Eq. 9. The considered configuration is the 40-40, with 20 jobs admit-
ted at the same time in the FCR. We divide Phase II and Phase III in three
sub-phases in order to distinguish among all the available possibilities (i.e. both
class A and class B jobs, only class A jobs or only class B jobs are in execution).
Note that, the sum of the duration of all the phases is equal to the depletion

36 D. Cerotti et al.

(a) Energy consumption (b) Depletion time

(c) Response time (d) ERP

(e) ERWS (f) EJ

Fig. 6. Performance indexes for the multi-class system with different outer population
mixes. X-Y means NA = X and NB = Y .

time for that specific configuration. In general, it would be arguable that the
longer is the Phase I, the shorter is the depletion time of the system, since the
scheduler can only work in that phase. In Fig. 8, this can be seen when there are
12 jobs of class A and 8 jobs of class B in the FCR. Unfortunately, this is not

Stochastic Analysis of Energy Consumption in Pool Depletion Systems 37

(a) ERP (b) ERWS

(c) EJ (d) Normalized metrics

Fig. 7. Performance indexes for the multi-class system with different size of the FCR.

Fig. 8. Length of each phase for the execution of a two-class workload with nA = 40,
nA = 40 and with K = 20 jobs in the FCR.

38 D. Cerotti et al.

true for all the configurations; for example, when there are 50 jobs of class A
and 30 jobs of class B in the whole system, the longest Phase I and the shortest
depletion time do not meet the same inner population mix. In that case, the
system has the longest Phase I when 95% of jobs in the FCR belong to class A,
whereas the shortest depletion time is reached when only the 70% of jobs in the
FCR are of class A.

5 Conclusion

In this paper we investigated the performance of models of a computational par-
adigm consisting of a given pool of jobs of known size that must be executed
by a system having a limited capacity. The objective is to optimize the perfor-
mance so that the energy consumption required to execute a complete workload
is minimized. To this aim, with a multi-class workload we have considered a
scheduling policy that try to optimize the mix of jobs of the different classes
in concurrent execution. Future works will investigate different policies and will
focus on the analytical computation of the optimal point for a given metric. We
are also implementing specific benchmarks to validate our theoretical approach
against measurements.

Acknowledgment. This work was partially funded by the European Commission
under the grant ANTAREX H2020 FET-HPC-671623.

References

1. Albers, S., Fujiwara, H.: Energy-efficient algorithms for flow time minimization.
ACM Trans. Algorithms (TALG) 3(4), 49 (2007)

2. Andrew, L.L., Lin, M., Wierman, A.: Optimality, fairness, and robustness in speed
scaling designs. In: ACM SIGMETRICS Performance Evaluation Review, vol. 38,
pp. 37–48. ACM (2010)

3. Bansal, N., Chan, H.L., Pruhs, K.: Speed scaling with an arbitrary power func-
tion. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 693–701. Society for Industrial and Applied Mathematics (2009)

4. Cerotti, D., Gribaudo, M., Piazzolla, P., Pinciroli, R., Serazzi, G.: Multi-class queu-
ing networks models for energy optimization. In: Proceedings of the 8th Inter-
national Conference on Performance Evaluation Methodologies and Tools, VAL-
UETOOLS 2014, ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), ICST, Brussels, Belgium, pp. 98–105 (2014).
http://dx.org/10.4108/icst.Valuetools.2014.258214

5. Chen, D., Goldberg, G., Kahn, R., Kat, R., Meth, K.: Leveraging disk drive acoustic
modes for power management. In: 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), pp. 1–9, May 2010

6. Diaz-Sanchez, D., Marin-Lopez, A., Almenarez, F., Sanchez-Guerrero, R., Arias, P.:
A distributed transcoding system for mobile video delivery. In: Wireless and Mobile
Networking Conference (WMNC), 2012 5th Joint IFIP, pp. 10–16, September 2012

http://dx.org/10.4108/icst.Valuetools.2014.258214

Stochastic Analysis of Energy Consumption in Pool Depletion Systems 39

7. Fan, X., Weber, W.D., Barroso, L.A.: Power provisioning for a warehouse-sized
computer. In: Proceedings of the 34th Annual International Symposium on Com-
puter Architecture, ISCA 2007, pp. 13–23. ACM, New York (2007). http://doi.
acm.org/10.1145/1250662.1250665

8. Gandhi, A., Gupta, V., Harchol-Balter, M., Kozuch, M.A.: Optimality analysis of
energy-performance trade-off for server farm management. Perform. Eval. 67(11),
1155–1171 (2010)

9. Gonzalez, R., Horowitz, M.: Energy dissipation in general purpose microprocessors.
IEEE J. Solid-State Circuits 31(9), 1277–1284 (1996)

10. Hyytiä, E., Righter, R., Aalto, S.: Task assignment in a heterogeneous server farm
with switching delays and general energy-aware cost structure. Perform. Eval. 75,
17–35 (2014)

11. Kang, C.W., Abbaspour, S., Pedram, M.: Buffer sizing for minimum energy-delay
product by using an approximating polynomial. In: Proceedings of the 13th ACM
Great Lakes Symposium on VLSI, pp. 112–115. ACM (2003)

12. Kant, K.: A control scheme for batching dram requests to improve power efficiency.
In: Proceedings of the ACM SIGMETRICS Joint International Conference on Mea-
surement and Modeling of Computer Systems, SIGMETRICS 2011, pp. 139–140.
ACM (2011)

13. Kaxiras, S., Martonosi, M.: Computer architecture techniques for power-efficiency.
Synth. Lect. Comput. Archit. 3(1), 1–207 (2008)

14. Muppala, J., Malhotra, M., Trivedi, K.: Markov dependability models of com-
plex systems: analysis techniques. In: Ozekici, S. (ed.) Reliability and Mainte-
nance of Complex Systems, vol. 154, pp. 442–486. Springer, Heidelberg (1996).
http://dx.doi.org/10.1007/978-3-662-03274-9 24

15. Rivoire, S., Ranganathan, P., Kozyrakis, C.: A comparison of high-level full-system
power models. HotPower 8, 3 (2008)

16. Rosti, E., Schiavoni, F., Serazzi, G.: Queueing network models with two classes
of customers. In: Proceedings of the Fifth International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems, MAS-
COTS 1997, pp. 229–234. IEEE (1997)

http://doi.acm.org/10.1145/1250662.1250665
http://doi.acm.org/10.1145/1250662.1250665
http://dx.doi.org/10.1007/978-3-662-03274-9_24

Moving Queue on a Network

Hans Daduna(B)

Department of Mathematics, Hamburg University, 20146 Hamburg, Germany
daduna@math.uni-hamburg.de

Abstract. We describe a queueing network model for mobile servers
on a network’s graph. The principle behind resembles the procedure to
consider a “referenced node” in a static network or a network of mobile
nodes. We investigate an integrated model where a “referenced mobile
node” is described jointly with all other mobile nodes. The distinguished
feature is that we operate on distinct levels of detail, microlevel for the
“referenced mobile node”, macrolevel for all other moving nodes. The
main achievement is the explicit stationary distribution which is of prod-
uct form and indicates separability of the system in equilibrium.

Keywords: Jackson networks · Mobile nodes · Sensor nodes · Random
waypoint models · Product form equilibrium · Separability

1 Introduction

Analytically solvable models of sensor networks often exploit Jackson networks
and their generalizations, e.g. BCMP and Kelly networks. This seems to be nat-
ural whenever the sensor nodes are deployed in a predefined area and remain on
their position as static sensors. For an in-depth study of an advanced setting see
[MAG06], a more recent study is [WYH12] which elaborates on a simpler net-
work but incorporates refined details. In these settings each node of the Jackson
network represents a sensor: Its message queue is modeled by an exponential
queueing system which constitutes the internal structure of the node.

It seems to be less obvious that Jackson networks can serve as models for
networks of mobile sensor nodes but there is now a bulk of studies available
where this methodology was successfully applied, a survey is [WDW07]. In gen-
eral the authors proceed as follows: In a first step a single “referenced node” is
investigated in detail collecting the other nodes and more (external) informa-
tion into the node’s environment. Thereafter, the nodes are combined by some
approximating procedure to enforce closed form steady state solutions of the
steady state equations, typical examples are [Li11,LTL05,ZL11,QFX+11].

Although in all these papers the authors propose that their two-step modeling
procedure yields results which are in good agreement with simulation results,
there still remains the weak point that formally the models do not fall into
the class of product form networks of the Jacksonian type, where the exact
solution of the global balance equations is at hand and yields a simple equilibrium
distribution.
c© Springer International Publishing Switzerland 2016
A. Remke and B.R. Haverkort (Eds.): MMB & DFT 2016, LNCS 9629, pp. 40–54, 2016.
DOI: 10.1007/978-3-319-31559-1 5

Moving Queue on a Network 41

It is the aim of the present paper to go one first step on the path to such
a theory: To start with a network model for a high dimensional system, to
construct a Markov process for the evolution of the system over time, to write
down the global balance equations, and to solve this equations explicitly without
any intermediate decomposition-aggregation steps, and eventually to come up
with a product form solution. In the language of product form calculus we end
up with a proof that the system’s coordinate processes are separable.

These coordinates are not only queue length processes, similarly e.g. to net-
works in a random environment, where some of the coordinates represent the
external environment of a standard Jackson network. Examples for such mixed
coordinate processes are described in the survey [Dad15]. Our model similarly
will not fit into the class of Jackson or BCMP networks.

We emphasize that our model is a very stylized picture of the motivating real
world systems, and we make simplifying assumptions as it is well established in
the Jackson or BCMP setting. We will discuss this in detail below.

A special feature of our work is a two-scale modeling: We start with a network
of moving servers (mobile nodes) and describe one distinguished server in full
detail (on the microlevel), while the other servers are described on a macrolevel
providing only rough information, which in our case is the overall number of
“other” servers present at each vertex of the network.

A natural continuation of the project is to consider more moving servers on
the microlevel. This is part of ongoing research.

Related Work: Besides the work mentioned in the second paragraph of this
introduction it will come out that our model has close connections to sensor
networks with static nodes where to enhance connectivity additional mobil nodes
are moving in the network’s area, for an investigation concentrating on end-to-
end delay see [AK08] and the references there.

We owe a special feature of our model to Gannon, Pechersky, Suhov, and
Yambartsev [GPE+14] who investigated models from statistical physics in an
environment which has the structure of a Jackson network. Of special interest to
our setting is their simplest model: A random walker on the nodes of a standard
Jackson network. The interaction of the Jacksonian queues and the random
walker is of the form that the random walker acts as an attractor or a repeller
for standard customers to the node where the random walker resides.

The random walker model of Gannon, Pechersky, Suhov, and Yambartsev is
not covered by the BCMP or Kelly networks framework [BCMP75,Kel79] but
closely related.

The Paper’s Structure: In Sect. 2 we describe typical scenarios of mobile sen-
sor networks and extract general principles. We emphasize underlying mobility
schemes, e.g. random waypoint regimes. In Sect. 3 we shortly present standard
Jackson networks, and in Sect. 4 we describe how the distinguished moving server
is added to the Jackson network and prove our main result on separability of
this network under stationarity conditions. In Sect. 5 we summarize our findings
and indicate directions of further research.

42 H. Daduna

Notation and Conventions:

• R
+
0 = [0,∞), N = 1, 2, 3, . . ., N0 = {0} ∪ N.

• Node set of our graphs (networks) is J := {1, . . . , J}. The “extended node set”
is J0 := {0, 1, . . . , J}, where “0” refers to the source and sink of the network.

• ej is the standard j-th base vector in N
J
0 if 1 ≤ j ≤ J .

• n = (nj : j ∈ J) is the joint queue length vector of the Jackson network.
• Indicator function 1A = 1 if A is true, 1A = 0 otherwise.
• Kronecker-Delta δxy := 1[x=y].
• Distances are denoted by d; if necessary, details will be given in the text.

2 Network Scenarios

The scenarios we have in mind encompass moving interdependent entities which
are distributed in space. These entities usually carry a complex internal struc-
ture. Because we will end with a generalized queueing network model we will
refer to the various entities, unless otherwise specified, as moving “customers”
in a network, details will be introduced below.

Example 2.1. [WWDL07] Given an area which is cell-partitioned into disjoint
(non-overlapping) cells (subareas), collected in the cell set J = {1, . . . , J}, the
customers are “delay/fault-tolerant mobile sensors”, initially distributed ran-
domly over the cells, and each sensor is associated with a home cell. The proba-
bility r(m; i, j) that a sensor with home cell m, staying in cell i moves to cell j is
inverse-proportional to the distance between cells m and j, r(m; i, j) � d(m, j)−1.
Each sensor has a data queue (that contains maximum K messages) which
receives and sends messages. Therefore the sensor’s internal structure is that of
a single server queue. A sensor with home cell m generates data and inserts data
messages into its queue with rate λm. Moreover, it obtains data messages from
other sensors to forward these in direction to a sink of the network. The message
queue decreases with a rate which depends on the queue length and in general on
the status of the nodes in the neighbourhood. In [WDW07][Sect. 3.4] this model
of a cell-partitioned area is used to analyse movements in the ZebraNet.

Example 2.2. In [BH06][Sect. 5.1] a mobility model with geographic constraints
is described: Customers’ movements are restricted “to the pathways in the map”.
Customers in this example are non-stationary sensor nodes. The resulting model
for the structure of the feasible movements is a random graph. The vertices of
the graph usually represent buildings and/or street intersections of a city and
the edges model streets and freeways of the city between these buildings, resp.
intersections. Initially the customers are distributed randomly over the edges of
the graph. Thereafter for each customer a destination vertex is chosen randomly
and the customers move on a shortest path on the edges to their destination,
staying there for a random time, and selects a new destination vertex for the
next movement, and so on.

Moving Queue on a Network 43

Example 2.3. Another mobility model in [BH06][Sect. 5.2] with geographic con-
straints is an “obstacle mobility model”. The obstacles are buildings in the area
under consideration and the pathways are found by construction of the Voronoi
diagram with edges between the vertices defined by the buildings. The mobile
nodes (customers) are allowed to move between the buildings on the Voronoi
pathways only: Whenever a node leaves a vertex (after staying a random time
there) it selects its next building randomly and moves towards this vertex on a
shortest path over the edges.

Summarizing the scenarios: In any case a finite set of vertices is connected by
a structured set of edges. While in the second and third scenario the buildings
and street intersections naturally can be modeled as vertices (points), in the first
scenario we generate a vertex by contracting the cell to a point, which is in line
with the analytical investigation in [WWDL07]. On this graph the customers
(nodes) move according to some randomized regime. The number of customers
may be fixed or varying, possibly without bound.

We will concentrate on the case of an unlimited number of customers which
arrive from the exterior of the graph and depart eventually. The set of vertices is
J = {1, . . . , J}, the edges will be determined by the transition graph of the mobil-
ity regime. We will assume that the routing decisions according to the mobility
scheme of the customers are determined as follows: Whenever a customer leaves
vertex i he selects his subsequent vertex j with probability r(i, j) ≥ 0, given i
independent of anything else. This procedure transforms Examples 2.2 and 2.3
into a (generalized) Jackson network, to be defined in Sect. 3.

This simple Jackson network like outcome for Examples 2.2 and 2.3 is possible
because the themes in the survey [BH06] are mobility regimes, e.g. random
waypoint models and their generalizations. The center of the present paper is to
extend the Jackson network model to incorporate Example 2.1.

At present, analytical results for this extension seem to be out of reach. We
therefore present a simplified network model which distinguishes different levels
of detail. Our procedure is guided by the standard approach to investigate a “ref-
erenced node” in a network of mobile nodes: In a complex network of customers,
pathways, and vertices only one customer is modeled in detail (=“referenced
node”), the influence of the rest of the network is incorporated into a simpli-
fied environment of this customer (=“Jackson network”). The referenced node is
not a node of this underlying Jackson network, but will be a moving M/M/1/∞
queue itself, for more details, see e.g. [WDW07][Sect. 3.5], or [KD14].

To be more specific: We take one customer (traveling sensor node = Mov-
ing Queue = MQ) with explicit internal message queue. MQ cycles as a test
customer forever in the network, while all the other customers around him on
the graph’s vertices are only counted as pure Jackson-type customers without
internal structure. The challenging part of the model is the interaction of the
test customer MQ and the other parts of the system.

From an abstract point of view this approach is a two-scale model where the
test customer is investigated on the microlevel very detailed, while all the other
parts of the system are described only on a macrolevel, determined similar to a
mean-field approximation.

44 H. Daduna

Remark: Neglecting the internal queue of the test customer and some further
features (which will be introduced later on), this model resembles the structure
of so-called mixed BCMP networks [BCMP75]: The mean-field customers are
“external”, coming from and going to an exterior world, while the test customer
is “internal” for the network, cycling inside the network forever.

3 Standard Jackson Networks

We consider a Jackson network [Jac57] with node set J := {1, . . . , J}. Cus-
tomers arrive in independent external Poisson streams, at node j with intensity
λj ≥ 0, we set λ = λ1 + . . . + λJ > 0. Customers are indistinguishable, follow
the same rules, and request for exponentially(1)-distributed service at all nodes.
All these requests constitute an independent family of variables which are inde-
pendent of the arrival streams. Nodes are exponential single servers with state
dependent service rates and infinite waiting room under first-come-first-served
(FCFS) regime. If at node i are ni > 0 customers, either in service or wait-
ing, service is provided there with intensity μi(ni) > 0. Routing is Markovian,
a customer departing from node i immediately proceeds to node j with prob-
ability r(i, j) ≥ 0, and departs from the network with probability r(j, 0). Tak-
ing r(0, j) = λj/λ, r(0, 0) = 0, we assume that the extended routing matrix
r = (r(i, j) : i, j ∈ J0) is irreducible. Then the traffic equations

ηj = λj +
J∑

i=1

ηir(i, j), j ∈ J, (3.1)

have a unique solution which we denote by η = (ηj : j ∈ J). We extend the
traffic Eq. (3.1) to a steady state equation for a routing Markov chain by

ηj =
J∑

i=0

ηir(i, j), j = 0, 1, . . . , J, (3.2)

which is solved by η = (ηj : j = 0, 1, . . . , J), where η0 := λ, the other ηj are
from (3.1). We use η in both meanings and emphasize the later one by extended
traffic solution η. η is in both cases usually not a stochastic vector.

Let X = (X(t) : t ≥ 0) denote the vector process recording the queue
lengths in the network. X(t) = (X1(t), . . . , XJ (t)) reads: at time t there are
Xj(t) customers present at node j, either in service or waiting. The assumptions
put on the system imply that X is a Markov process on state space N

J
0 . For

an ergodic network process X Jackson’s theorem [Jac57] states that the unique
steady state and limiting distribution ξ on N

J
0 is with normalization constants

C(j) for the marginal (over nodes) distributions

ξ(n) = ξ(n1, . . . , nJ) =
J∏

j=1

nj∏
m=1

ηj

μj(m)
C(j)−1 , n ∈ N

J
0 . (3.3)

Moving Queue on a Network 45

Assumption 3.1. Throughout we set the following assumption in force:
The extended routing matrix r = (r(i, j) : i, j ∈ J0) is reversible with respect

to the measure η = (ηj : j ∈ J0), i.e. it holds

ηjr(j, i) = ηir(i, j), ∀i, j = 0, 1, . . . , J. (3.4)

4 Injecting a Moving Queue into the Jackson Network

We take the Jackson network from Sect. 3 and enlarge this network by adding a
“distinguished customer” called MQ (= Moving Queue = mobile sensor node)
who cycles on the nodes of the network forever, governed by an irreducible
stochastic matrix p = (p(i, j) : i, j ∈ J). In the language of BCMP models MQ
is an “internal customer” while the other customers are “external” which arrive
from the source and eventually depart to the sink. MQ is characterized by its
position k ∈ J on the network and its queue length � ∈ N0. The internal service
rates (death rates) δ(�) > 0 and arrival rates (birth rates) β(�) > 0 for MQ’s
internal queue are strictly positive and in general queue length dependent.

It will come out that a Markov process description of the system is possible
with state space E := N

J
0 × J × N0. The process of interest is denoted by

Z = (X,V,Y) = ((X(t), V (t), Y (t)) : t ≥ 0)
= ((X1(t), . . . , XJ (t), V (t), Y (t)) : t ≥ 0),

where ((X1(t), . . . , XJ (t), V (t), Y (t)) indicates that at time t there are Xj(t)
external customers at node j ∈ J , and that MQ is located at node V (t) ∈ J and
has a queue length of Y (t) ∈ N0. A typical state of the system will be denoted
by (n1, . . . , nJ , k, �).

The dynamics of the MQ is influenced by the joint queue length process X
only locally. If MQ resides at time t at node V (t) = k, additional capacity is
provided there to “serve” MQ in parallel to the nk other customers present which
are served in a FCFS regime. The additional capacity to serve MQ results in a
departure intensity

ν(k)(nk, �) = e−ϕnk (4.1)

for MQ with a fixed constant ϕ ∈ (−∞, 0]. Being served at k, MQ immediately
jumps to node k′ ∈ J with probability p(k, k′). p is not required to be reversible.

We further define for any k ∈ J an influence vector

γ(k) = (γj(k) : j ∈ J0) ∈ (0, 1]J0 , with γ0(k) := 1, (4.2)

which is in force whenever MQ resides in node k. These influence vectors describe
in a compact way the consequences for the other Jackson customers, originating
from MQ’s actual position in the network.

Assume that at time t MQ stays at node V (t) = k ∈ J and the queue
length at j is Xj(t) = nj ≥ 1, j ∈ J . Then the customer at the head of the
line of node j (if any) is served with intensity μj(nj , k) := μj(nj) · γj(k). When

46 H. Daduna

this customer’s service expires, he departs immediately directed by the adjusted
routing probability vector r(k) = (r(k)(j, i) : j, i ∈ J0), which is defined for the
non-diagonal transition probabilities (i 	= j)

r(k)(j, i) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for j = 0 :
r(0, i) · γi(k), if i 	= k,
r(0, k) · γk(k) · eϕ, if i = k,
for j 	= 0, j 	= k :
r(j, i) · γi(k), if i ∈ J0 \ {j, k},
r(j, k) · γk(k) · eϕ, if i = k,
for j = k :
r(k, i) · γi(k), if i ∈ J0 \ {k}.

The diagonal transition probabilities (j = i) are

r(k)(j, j) :=

⎧⎪⎪⎨
⎪⎪⎩

for j ∈ J0 \ {k} :
r(j, j) +

∑
h�=j,k r(j, h) · (1 − γh(k)) + r(j, k) · (1 − γk(k) · eϕ),

for j = k :
r(k, k) +

∑
h�=k r(k, h) · (1 − γh(k)).

This definition implies for the effective external arrival rates λi(k) = λ · r(k)(0, i)

=

⎧⎪⎨
⎪⎩

λr(0, i) · γi(k), if i 	= k;
λr(0, k) · γk(k) · eϕ, if i = k;
λ

(∑
h�=k r(0, h) · (1 − γh(k)) + r(0, k) · (1 − γk(k) · eϕ)

)
, if i = 0.

(4.3)

If MQ resides at k, then for i = 0 in (4.3) λ − λ0(k) is the effective arrival rate
at the network, due to MQ’s influence on the network when staying in k.

Remarks: (i) Consider the case ϕ = 0. If MQ stays at vertex k, setting the influ-
ence vector γ(k) in force, the rerouting probabilities for the other customers
can be considered as randomized reflection, defined in [KDO14][Sect. 2.2]: A
customer departing from i who selects (with probability r(i, j)) to enter j is
allowed to settle down at j with probability γj(k); with probability 1 − γj(k)
he is reflected at j and stays on at i to obtain another service. (ii) This is a
random generalization of the well-known blocking resolution scheme blocking-
after-service (BAS) in connection with repeated service and random destination
(rs-rd) which is applied in transmission networks with finite buffers to protect
against buffer overflow, see [Onv90][p. 502]. (iii) Randomized reflection has been
used successfully to redirect routing of customers in Jackson networks in a ran-
dom environment. Rerouting is interpreted there as a reaction of a network’s
(local) controllers when environment condition changes and therefore capacities
in the network are changed, see [KDO16]. (iv) The factor eϕ can be replaced here
and in (4.11) below by any number in a ∈ (0, 1]. Setting a to eϕ gives notational
credit to the paper [GPE+14], where it seemingly occurred first in this form.

Because of ϕ ≤ 0, MQ acts as a repeller for the other Jackson customers
who want to enter the vertex where MQ resides. On the other side, the form of

Moving Queue on a Network 47

ν(k)(nk, �) enforces MQ to leave a cell or building where already many customers
are present. The more involved case of MQ as an attractor, i.e. ϕ ≥ 0 is part of
our ongoing research.

Example 4.1. For simplicity of presentation we have fixed FCFS regime for
the Jackson network customers with state dependent service rates. This frame-
work covers the seemingly most important special service rates to enclose the
Example 2.1 in our setting. Recall that in this scenario the vertex j ∈ J is a
representative for a cell where nj mobile sensors are present. It is tempting to
assume that the sensors move (almost) independently of one another. This can
be modeled by taking μj(nj) = μj · nj for some (regional) cell specific constant
μj, i.e. the vertex j acts as an M/M/∞ node as long as j 	= k.

If j = k, i.e. MQ resides in cell j, a similar conclusion via classical BCMP
or Kelly framework of queueing networks seems to be not possible, but neverthe-
less it is tempting again to visualize the cell as an infinite server with the special
property that the internal customer MQ is served with an additional locally state
dependent capacity which is controlled by the function e−ϕnk , similar to Kelly’s
φk(nk + 1) [Kel79][p. 58].

Example 4.2. For the Examples 2.2 and 2.3 a reference to infinite server sys-
tems is even more natural if we recall that in both scenarios the vertices are build-
ings or lane intersections, where customers stay for a random amount of time,
while the edges are lanes between these vertices. The joint movement of entities
on a lane is naturally modeled in transportation networks by being served at an
infinite server. The “service” at the vertices might be modeled by more specific
service disciplines, e.g. FCFS at a road intersection.

Example 4.3. The influence vectors γ(k) = (γj(k) : j ∈ J0) are versatile
devices to determine the influence of MQ. Denote by d : J ×J → N0 the distance
between vertices of the network, i.e. d(i, j) is the minimal number of hops to reach
vertex j from i, where d(i, i) = 0. If γ(k) fulfils γj(k) = 1 unless d(k, j) ≤ 1 the
influence of MQ on the network is restricted to the 1-hop neighbourhood. If γ(k)
fulfils γj(k) = 1 unless d(k, j) ≤ 2 its influence is restricted to the 2-hop range.

The strictly positive transition rates of Z are

q(n, k, �;n + ei, k, �) = λi(k), (4.4)

q(n, k, �;n − ej , k, �) = 1(nj>0)μj(nj .k)r(k)(j, 0), (4.5)

q(n, k, �;n − ej + ei, k, �) = 1(nj>0)μj(nj .k)r(k)(j, i), (4.6)

q(n, k, �;n, k′, �) = ν(k)(nk, �)p(k, k′), (4.7)

q(n, k, �;n, k, � + 1) = β(�), (4.8)

q(n, k, �;n, k, � − 1) = 1(�>0)δ(�). (4.9)

The proof of the next theorem is omitted. It is along the same lines as that of
the following one.

48 H. Daduna

Theorem 4.4. Assume Z to be ergodic. Then its unique stationary and limiting
distribution is with normalization constant C

π(n, k, �) = C−1
J∏

g=1

ng∏
m=1

ηg

μg(m)
eϕnkψk

�−1∏
s=0

β(s)
δ(s + 1)

, (n, k, �) ∈ E. (4.10)

Here (ηg : g ∈ J) is taken from (3.1) and (ψk : k ∈ J) is the unique stationary
distribution of MQ’s routing matrix p = (p(k, k′) : k, k′ ∈ J).

We now allow that the internal birth and death rates of MQ are not only
queue length dependent, but also location dependent. So, if MQ resides at k,
service rates are δ(k)(�) > 0 and arrival rates are β(k)(�) > 0. Furthermore MQ’s
travel transition rates are now

ν(k)(nk, �) = e−ϕnk ·
�−1∏
s=0

δ(k)(s + 1)
β(k)(s)

. (4.11)

The strictly positive transition rates of the system are again (4.4)–(4.6) (invari-
ant) and with adapted rates

q(n, k, �;n, k′, �) = ν(k)(nk, �)p(k, k′), (4.12)

q(n, k, �;n, k, � + 1) = β(k)(�), (4.13)

q(n, k, �;n, k, � − 1) = 1(�>0)δ
(k)(�). (4.14)

The global balance equations for Z are for (n, k, �) ∈ E

x(n, k, �)
[∑

i∈J

λi(k) +
∑
i∈J

1(ni>0)μi(ni, k)(1 − r(k)(i, i))

+β(k)(�) + 1(�>0)δ
(k)(�) + ν(k)(nk, �)(1 − p(k, k))

]
=

∑
i∈J

1(ni>0)x(n − ei, k, �)λi(k) +
∑
j∈J

x(n + ej , k, �)μj(nj + 1, k)r(k)(j, 0)

+
∑
i∈J

1(ni>0)

∑
j∈J\{i}

x(n − ei + ej , k, �)μj(nj + 1, k)r(k)(j, i)

+ 1(�>0)x(n, k, � − 1)β(k)(� − 1) + x(n, k, � + 1)δ(k)(� + 1)

+
∑

k′∈J\{k}
x(n, k′, �)ν(k′)(n′

k, �)p(k′, k).

Theorem 4.5. Assume Z to be ergodic. Then its unique stationary and limiting
distribution is with normalization constant C

π(n, k, �) = C−1
J∏

g=1

ng∏
m=1

ηg

μg(m)
eϕnkψk

�−1∏
s=0

β(k)(s)
δ(k)(s + 1)

, (n, k, �) ∈ E. (4.15)

(ηg : g ∈ J) is from (3.1) and (ψk : k ∈ J) is the unique stationary distribution
of MQ’s stochastic routing matrix p = (p(k, k′) : k, k′ ∈ J).

Moving Queue on a Network 49

Proof. We exploit some detailed balance equations which underly the structure
of the global balance equation. We first consider the terms concerning the queue
length process Y of MQ and equate

x(n, k, �)
[
β(k)(�) + 1(�>0)δ

(k)(�)
]

= 1(�>0)x(n, k, � − 1)β(k)(� − 1) + x(n, k, � + 1)δ(k)(� + 1),

which after inserting π and canceling C−1
∏J

g=1

∏ng

m=1
ηg

μg(m)e
ϕnkψk yields global

balance equations for an ergodic birth-death process with parameters β(k)(�) and
δ(k)(�), respectively, which are parametrized by (n, k). Next, we equate

x(n, k, �)
[
ν(k)(nk, �)(1 − p(k, k))

]
=

∑
k′∈J\{k}

x(n, k′, �)ν(k′)(n′
k, �)p(k′, k),

which after inserting π and canceling C−1
∏J

g=1

∏ng

m=1
ηg

μg(m) yields

eϕnkψk

�−1∏
s=0

β(k)(s)
δ(k)(s + 1)

[�−1∏
s=0

δ(k)(s + 1)
β(k)(s)

e−ϕnk(1 − p(k, k))
]

=
∑

k′∈J\{k}
eϕn′

kψk′

�−1∏
s=0

β(k′)(s)
δ(k′)(s + 1)

[�−1∏
s=0

δ(k
′)(s + 1)

β(k′)(s)
e−ϕn′

kp(k′, k)
]
.

This boils down to the balance equation of MQ’s routing matrix p = (p(k, k′) :
k, k′ ∈ J) which by definition is solved by (ψk : k ∈ J). The remaining terms are

x(n, k, �)
[∑

i∈J

λi(k) +
∑
i∈J

1(ni>0)μi(ni, k)(1 − r(k)(i, i))
]

=
∑
i∈J

1(ni>0)x(n − ei, k, �)λi(k) +
∑
j∈J

x(n + ej , k, �)μj(nj + 1, k)r(k)(j, 0)

+
∑
i∈J

1(ni>0)

∑
j∈J\{i}

x(n − ei + ej , k, �)μj(nj + 1, k)r(k)(j, i).

Note that constantly occurs (k, �). Canceling C−1ψk

∏�−1
s=0

β(k)(s)
δ(k)(s+1)

and multi-

plying with
(∏J

g=1

∏ng

m=1
ηg

μg(m)

)−1

we obtain the equation

50 H. Daduna

eϕnk

[∑
i∈J\{k}

λr(0, i) · γi(k) + λr(0, k) · γk(k) · eϕ

+
∑

i∈J\{k}
1(ni>0)μi(ni)γi(k)

(
1 − r(i, i)

−
∑

h∈J\{i,k}
r(i, h)(1 − γh(k)) − r(i, k)(1 − γk(k) · eϕ)

)

+1(nk>0)μk(nk) · γk(k)
(
1 − r(k, k) −

∑
h∈J\{k}

r(k, h)(1 − γh(k))
)]

= eϕnk

∑
i∈J\{k}

1(ni>0)
μi(ni)

ηi
λr(0, i) · γi(k)

+ eϕ(nk−1)1(nk>0)
μk(nk)

ηk
λr(0, k) · γk(k)eϕ

+ eϕnk

∑
j∈J\{k}

ηj

μj(nj + 1)
μj(nj + 1)γj(k)r(j, 0)

+ eϕ(nk+1) ηk

μk(nk + 1)
μk(nk + 1)γk(k)r(k, 0)

+ eϕnk

∑
i∈J\{k}

1(ni>0)

∑
j∈J\{k,i}

μi(ni)
ηi

ηj

μj(nj + 1)
μj(nj + 1)γj(k)r(j, i)γi(k)

+ eϕ(nk−1)1(nk>0)

∑
j∈J\{k}

μk(nk)
ηk

ηj

μj(nj + 1)
μj(nj + 1)γj(k)eϕr(j, k)γk(k)

+ eϕ(nk+1)
∑

i∈J\{k}
1(ni>0)

μi(ni)
ηi

ηk

μk(nk + 1)
μk(nk + 1)γk(k)r(k, i)γi(k).

By canceling eϕnk we obtain after some algebraic manipulations

[∑

i∈J\{k}

(2)︷ ︸︸ ︷
λr(0, i) · γi(k) +

(1)︷ ︸︸ ︷
λr(0, k) · γk(k) · eϕ

+
∑

i∈J\{k}
1(ni>0)μi(ni)γi(k)

(∑

h∈J\{i,k}

(6)︷ ︸︸ ︷
r(i, h)γh(k) +

(5)︷ ︸︸ ︷
r(i, k)γk(k) · eϕ +

(3)︷ ︸︸ ︷
r(i, 0))

)

+ 1(nk>0)μk(nk) · γk(k)
(∑

h∈J\{k}

(7)︷ ︸︸ ︷
r(k, h)γh(k) +

(4)︷ ︸︸ ︷
r(k, 0)

)]

=
∑

i∈J\{k}

(3)︷ ︸︸ ︷
1(ni>0)

μi(ni)

ηi
λr(0, i) · γi(k)) +

(4)︷ ︸︸ ︷
1(nk>0)

μk(nk)

ηk
λr(0, k) · γk(k))

Moving Queue on a Network 51

+
∑

j∈J\{k}

(2)︷ ︸︸ ︷
ηjγj(k)r(j, 0)) +

(1)︷ ︸︸ ︷
eϕηkγk(k)r(k, 0))

+
∑

i∈J\{k}
1(ni>0)

∑

j∈J\{k,i}

(6)︷ ︸︸ ︷
μi(ni)

ηi
ηjγj(k)r(j, i)γi(k))

+1(nk>0)

∑

j∈J\{k}

(7)︷ ︸︸ ︷
μk(nk)

ηk
ηjγj(k)r(j, k)γk(k)

+
∑

i∈J\{k}

(5)︷ ︸︸ ︷
eϕ1(ni>0)

μi(ni)

ηi
ηkγk(k)r(k, i)γi(k) .

We are now enforced to recur to Assumption 3.1 and equate pairwise terms with the
help of reversibility of r. We equate the indicated partial sums and obtain after premul-
tiplication with associated factors from outside of brackets the following valid expres-
sions.

Because of λ = η0 the next four lines follow:

λr(0, k) · γk(k) · eϕ (1)
= eϕηkγk(k)r(k, 0),

∀i ∈ J \ {k} : λr(0, i) · γi(k)
(2)
= ηiγi(k)r(i, 0),

∀i ∈ J \ {k} : ηi1(ni>0)μi(ni) · γi(k)r(i, 0)
(3)
= 1(ni>0)μi(ni)λr(0, i) · γi(k),

ηk1(nk>0)μk(nk) · γk(k)r(k, 0)
(4)
= 1(nk>0)μk(nk)λr(0, k) · γk(k),

and the next lines are obvious from reversibility:

∀i ∈ J \ {k} : ηi1(ni>0)μi(ni)γi(k)r(i, k)γk(k)eϕ

(5)
= eϕ1(ni>0)μi(ni)ηkγk(k)r(k, i)γi(k),

∀i, j ∈ J \ {k} : ηi1(ni>0)μi(ni)γi(k)r(i, j)γj(k)

(6)
= 1(ni>0)μi(ni)ηjγj(k)r(j, i)γi(k),

∀j ∈ J \ {k} : ηk1(nk>0)μk(nk)γk(k)r(k, j)γj(k)

(7)
= 1(nk>0)μk(nk)ηjγj(k)r(j, k)γk(k).

This validates π as the global balance equations of Z.

Example 4.6 We proved the theorems with service rates μj(nj , k) =
μj(nj)γj(k) when nj Jackson network customers stay at vertex j and MQ resides
at k. In Examples 4.1 and 4.2 we demonstrated that this covers especially the nat-
ural infinite server setting for the Jackson customers. This leads to the observa-
tion that by γj(k) the service intensity of the individual customers is reduced:
μj(nj , k) = (μjγj(k))nj .

52 H. Daduna

Discussion of the Modeling Assumptions: (i) The process Z is not
reversible although the pure Jackson network process without the MQ is
reversible with respect to the stationary distribution ξ(n) from (3.3) by Assump-
tion 3.1. Reversibility of the underlying pure Jackson network process seems at
the present stage of development indispensable. This clearly restricts applicabil-
ity of the result of Theorem4.5. For example it excludes one-way lanes for the
traveling nodes. On the other side, starting with this case is worth for laying the
ground for eventually more general settings. (ii) Introducing influence vectors
γ(k) = (γj(k) : j ∈ J0) ∈ (0, 1]J0 which are in force whenever MQ resides in
node k, and MQ’s repeller function, goes back to ideas in [GPE+14,KDO14].
There this controls interactions between different components of a multidimen-
sional system. Application of this scheme in the context of this paper is still
restricted due to 0 < γj(k) ≤ 1, which means that for the influenced service
rates holds μ(nj , k) ≤ μ(nj) for all nj . The power of this scheme will come out
when 0 ≤ γj(k) < ∞ is included as is demonstrated in [KDO16]. With ϕ > 0,
in context of the models considered here (e.g. in Example 2.1) this means that
whenever MQ is present at k, the rate of incoming other customers into cell k is
increased. In the framework of [AK08] this would increase the connectivity of the
network. This is part of our future research. (iii) The most critical point is in our
opinion the choice of the portion of the vertices’ capacity dedicated to MQ. For
the situation of Theorem4.4 we have taken ν(k)(nk, �) =: ν̃(k)(nk) = e−ϕnk from
[GPE+14]. Studying the balance equations there (and in our more complicated
framework as well) reveals that this choice is essential to obtain the product form
steady state via reversibility. We mention that in [GPE+14] there is no “mov-
ing queue” but only a “random walker” with reversible routing, but without
any internal structure. MQ’s routing matrix p is not required to be reversible.
Moreover, in the framework of Theorem4.4 we do not need additional special
assumptions. These come into the play if the development of MQ’s internal mes-
sage queue is location dependent (i.e. β(k)(·), δ(k)(·)) which is desirable in our
opinion. We pay with requiring the complicated service rates ν(k)(nk, �) in (4.11).

Example 4.7. Consider the scenario from [WWDL07] in Example 2.1 and take
a distinguished moving node in the cell-partitioned area. If we want to reduce the
other nodes to customers in a network, we are faced with the problem, that the
routing of these customers is dependent on the position of their home-cell, i.e.
we need customer types which carry this information.

Our present oversimplified model does not offer this feature.
With our formalism it is possible to take the distinguished node’s routing as

the matrix p and then construct an averaged routing matrix r for the other cus-
tomers, where averaging is done according to weights representing the population
sizes of the home-cells. A similar averaging is necessary for the mean sojourn
times for these other customers in the different cells they visit. To obtain these
averaged values needs iterative procedures because we admit arrivals from and
departures to the exterior for the other customers.

Moving Queue on a Network 53

5 Conclusion and Further Research

We have developed a two-scale model for a network of mobile nodes, guided
by scenarios from the literature on mobile sensor networks. The main outcome
is the stationary distribution of the system which exhibits its separability in
equilibrium.

Further research will be on including into the theory the case of the mobile
customer being an attractor for the other customers, the possibility to have
different classes of external customers with individual class dependent service
time distributions, and to investigate on the microlevel two or more internal
moving queues injected into the Jackson network and their interaction.

A seemingly hard problem will be to remove the assumption of reversibility
of the underlying Jackson network.

Acknowledgement. I thank Sonja Otten and Ruslan Krenzler for helpful discussions
on the subject of the paper. I am thankful for three reviewers’ helpful comments on
the first version of this paper.

References

[AK08] Almasaeid, H.M., Kamal, A.E.: Modeling mobility-assisted data collection
in wireless sensor networks. In: Global Telecommunications Conference,
IEEE GLOBECOM 2008, pp. 1–5 (2008)

[BCMP75] Baskett, F., Chandy, M., Muntz, R., Palacios, F.G.: Open, closed and
mixed networks of queues with different classes of customers. J. Assoc.
Comput. Mach. 22, 248–260 (1975)

[BH06] Bai, F., Helmy, A.: A survey of mobility models in wireless adhoc networks.
In: Wireless Ad-Hoc Networks, Chap. 1, pp. 1–30. Kluwer Academic Pub-
lisher, Dordrecht (2006)

[Dad15] Daduna, H.: Networks of queues in a random environment: survey of
product form results. In: Proceedings MMBnet, Berichte des Fachbere-
ichs Informatik der Universität Hamburg 302, pp. 7–23 (2015)

[GPE+14] Gannon, M., Pechersky, E., Suhov, Y., Yambartsev, V.: Random walks in a
queueing network environment. Technical report arXiv: 1410.1460 (2014).
Version 3: arxiv:1410.1460v3 (2015). To appear: J. Appl. Probab

[Jac57] Jackson, J.R.: Networks of waiting lines. Oper. Res. 5, 518–521 (1957)
[KD14] Krenzler, R., Daduna, H.: Modeling and performance analysis of a node

in fault tolerant wireless sensor networks. In: Fischbach, K., Krieger, U.R.
(eds.) Measurement, Modelling, and Evaluation of Computing Systems
and Dependability and Fault-Tolerance, pp. 73–78. Springer, Heidelberg
(2014). GI/ITG

[KDO14] Krenzler, R., Daduna, H., Otten, S.: Randomization for Markov chains
with applications to networks in a random environment. Preprint, Center
of Mathematical Statistics und Stochastic Processes, University of Ham-
burg, No. 2014–02 (2014)

[KDO16] Krenzler, R., Daduna, H., Otten, S.: Jackson networks in non-autonomous
random environments. Advances in Applied Probability (2016)

http://arxiv.org/abs/1410.1460
http://arxiv.org/abs/1410.1460v3

54 H. Daduna

[Kel79] Kelly, F.P.: Reversibility and Stochastic Networks. Wiley, Chichester
(1979)

[Li11] Li, W.W.: Several characteristics of active/sleep model in wireless sensor
networks. In: New Technologies, Mobility and Security (NTMS), pp. 1–5
(2011)

[LTL05] Liu, J., Tong Lee, T.: A framework for performance modeling of wireless
sensor networks. In: 2005 IEEE International Conference on Communica-
tions, ICC 2005, vol. 2, pp. 1075–1081 (2005)

[MAG06] Mehmet Ali, M.K., Gu, H.: Performance analysis of a wireless sensor net-
work. In: Wireless Communications and Networking Conference, IEEE,
vol. 2, pp. 1166–1171 (2006)

[Onv90] Onvural, R.O.: Closed queueing networks with blocking. In: Takagi, H.
(ed.) Stochastic Analysis of Computer and Communication Systems, pp.
499–528. Amsterdam, North-Holland (1990)

[QFX+11] Qiu, T., Feng, L., Xia, F., Wu, G., Zhou, Y.: A packet buffer evaluation
method exploiting queueing theory for wireless sensor networks. Comput.
Sci. Inf. Syst. 8(4), 1027–1049 (2011)

[WDW07] Wang, Y., Dang, H., Wu, H.H.: A survey on analytic studies of delay-
tolerant mobile sensor networks. Wirel. Commun. Mob. Comput. 7, 1197–
1208 (2007)

[WWDL07] Wu, H., Wang, Y., Dang, H., Lin, F.: Analytic, simulation, and empirical
evaluation of delay/fault-tolerant mobile sensor networks. IEEE Trans.
Wireless Commun. 6(9), 3287–3296 (2007)

[WYH12] Wang, Z., Yang, K., Hunter, D.K.: Modelling and analysis of multi-sink
wireless sensor networks using queuing theory. In: Proceedings of the 4th
Computer Science and Electronic Engineering Conference (CEEC), Uni-
versity of Essex, pp. 169–174. IEEE, UK (2012)

[ZL11] Zhang, Y., Li, W.: An energy-based stochastic model for wireless sensor
networks. Wirel. Sens. Netw. 3(9), 322–328 (2011)

A Multi-commodity Simulation Tool Based
on TRIANA

Maryam Hajighasemi(B), Gerard J.M. Smit, and Johann L. Hurink

Faculty EEMCS, University of Twente, Enschede, The Netherlands
{m.hajighasemi,g.j.m.smit,j.l.hurink}@utwente.nl

Abstract. In this paper we extended the simulator based on the TRI-
ANA concept, with a model for the heat demand of households. The heat
demand is determined based on factors such as building properties, user
setpoints and weather conditions. The simulator exploits the flexibility
of both the electricity and heat components to optimize the stream of
both commodities, heat and electricity.

Keywords: TRIANA · Demand side management · Heating system

1 Introduction

Over the previous decade, there has been an increase in the amount of locally
generated energy, e.g. by installing PV panels. As a result, a considerable part
of the electricity needed in the local grids can be supported by these renewable
energy production. However, the demand hours do not always match the pro-
duction hours of renewable energies. Technologies such as electrical and thermal
storage, and smart gird concepts steering controllable devices can help to balance
the locally generated energy and the total demand.

This paper presents a multi-commodity simulation tool of a smart controlled
micro-grid using the TRIANA simulator. As an example we show a simulation
that aims to balance the supply and demand of heat and electricity for a group
of houses in such a micro-grid. In the current tool, PV panels and a central
combined heat and power system (CHP) are the local energy producers. Addi-
tionally, each house is equipped with time-shiftable devices, an electric battery
and a floor heating system.The desired tool can be used to answer questions like
e.g. under which conditions such a micro-grid with local production, storage and
demand has the ability to operate independent of the grid.

2 The TRIANA Simulator

TRIANA is a three-step control methodology for energy management and has
been developed at the University of Twente [2,3]. The three steps are: prediction,
planning and real-time control. Prediction of the demand and production is
done on device level. To match the demand and production locally as good
c© Springer International Publishing Switzerland 2016
A. Remke and B.R. Haverkort (Eds.): MMB & DFT 2016, LNCS 9629, pp. 55–59, 2016.
DOI: 10.1007/978-3-319-31559-1 6

56 M. Hajighasemi et al.

as possible, a planning is determined for a certain time horizon based on the
achieved predictions. Finally, real-time control steers the system in the direction
of the planning.

TRIANA optimizes the planning toward an objective using a central con-
troller. In this work, we use the profile steering method introduced in [4] to
control the devices. This methodology attempts to steer the realized profile of
the system toward a desired profile. In other words, it minimizes the deviation
between the realized energy usage and a desired profile.

Modeling an energy system in TRIANA is done by using suitable component
models termed devices. The following three types of device are examples of device
classes supported by TRIANA:

– Uncontrollable devices: Uncontrollable devices can be divided into consumers
and producers. Devices such as lighting and ventilation consume electricity
and have a static consumption profile. The producers, such as PV panels,
have a static production profile, which is achieved by predictions based on
weather data, the size, efficiency and orientation of PV panel, etc.

– Time-shiftable devices: These kinds of device, like washing machines, offer
flexibility of their starting time and they have the constraint to be finished
before a specific time. Based on this time specification it can be decided what
the best time is to turn a device on.

– Buffer devices: Buffer devices have more flexibility, since they can be charged
and discharged. Hereby, constraints such as a certain state of charge up to a
specific time may have to be taken into account. Various type of devices can be
categorized as a buffer with specific characteristics. Examples of buffer-typed
devices include normal buffer such as a battery, buffer-converter devices such
as a thermal buffer and buffer-time-shiftable devices such as electrical vehicle.

Although TRIANA is a general concept, the developed simulation tool up to
now was mainly electricity oriented and did not have any components to model
the heat demand of a house. E.g. in [5] just a static input is used for describing
the heating demand of houses. However, a smart grid oriented control will be
more effective if a sophisticated house model is used that also describes the
flexibility of the heating system of a house in relation to building properties,
user setpoints and weather conditions. This leads to a dynamic heat model that
reveals the flexibility of the heating system.

The main contribution of this paper is to add such a heating system com-
ponent to TRIANA (see Sect. 3). In this way the heat demand is no longer just
static, but can be incorporated in the control of the house to match demand and
supply on grid level.

3 Extending TRIANA with Heat Components

The heating system added to the TRIANA simulation tool is a floor heating
system for a single house as is described in [1]. In this heating system, thermal
nodes with a thermal capacitance are defined for the floor and for a zone which is

A Multi-commodity Simulation Tool Based on TRIANA 57

affected by separation walls, inner and outer envelope walls and the ceiling. The
zone node is affected by ventilation, infiltration, appliances and the presence of
people. Furthermore, the solar gain through the window area is also considered.

The controller of the floor heating system is also dependent on some other
variables, i.e. max floor temperature, user setpoints (Ts), acceptable deviation
from setpoint (d). The heating system is modeled such that it turns on when the
zone temperature (Tz) is low and deviates more than d from Ts (Tz < Ts−d). It
stays on until either the zone temperature passes the highest acceptable deviation
(Tz > Ts + d) or the maximum floor temperature is reached.

Fig. 1. The neighborhood energy system
schematic [5]

Within the implemented use
case, the heat demand of the houses
in a neighborhood is aggregated to
a heat pool which is connected to
a heat buffer and a CHP plant.
Figure 1 represents the neighbor-
hood energy system using the model
described in [3].

For scheduling all flexible appli-
ances in the house, as well as the
CHP plant and the heat buffer, we
use the profile steering method intro-
duced in [4]. Hereby, the heat buffer
gives the CHP plant flexibility to
carry out some pre-heating by fill-
ing the buffer already before the time the heat is required, when electricity is
needed. The only constraints now is that the state of charge of the buffer always
must be enough to provide the predicted heat consumption for the next periods.

4 Results

In this section, a case study that consists of both heat and electricity demand is
presented as an example of a multi-commodity simulation in TRIANA.This case
study has already been described in [5]. The model includes 16 well-insulated
terraced houses, with controllable devices, namely a washing and dish washing
machine, and an electric battery. The houses heated with floor heating, are
equipped with solar-PV panels, and located in a typical Dutch area. Moreover,
there is a central CHP plant in the neighborhood, incorporating a heat buffer
(see Fig. 1). Furthermore, inflexible loads are given for each house. The aim of
this case is to investigate to what extent the CHP plant can meet the electricity
demand of the houses.

Two cases are compared. The first case uses the static heat demand as a
direct input for the CHP (Base), and the CHP has to meet the heat demand
directly. In the second case, the heating model is used, and all flexible devices
in the house are controlled to adopt their energy profile to the generation of the
CHP (Control). Hereby, the CHP is also controlled and uses the thermal storage
to supply the heat demand.

58 M. Hajighasemi et al.

(a) Total grid power demand (kw)
per Time interval (for 1 week)

(b) Generating heat demand using
the CHP and heat buffer

Fig. 2. − Base − Control − State of Charge (Color figure online)

For the evaluation, a week with high heat demand and low PV generation is
chosen, in which the total amount of generated electricity by the CHP is always
higher than the total electricity consumption of all houses. Thus, in principle the
CHP could meet all electricity demand. Such a week is ideal to investigate the
effectiveness of using a control methodology for flexible devices such as CHP.

In Fig. 2a, the resulting total power profiles of the complete neighborhood
are given for both cases. In the Base case, electricity generated by the CHP is
often not enough to meet all the electricity demand. However, in the Control
case, the profile of the CHP can meet the demand using only a minimal amount
of energy from the grid. In contrast to the Base case with a large swing, the
Control case has a flat profile due to the balancing.

Figure 2b shows the CHP heat production for both cases and the state of
charge for the heat buffer in the Control case for 2 days. The generated heat in
Control case is less spiky than the Base case, since it is using the heat buffer to
meet the heat demand.

5 Conclusion and Future Work

In this paper, a first approach to extend the TRIANA simulator to networks
which include both heat and electricity is presented. The resulting tool is evalu-
ated on data obtained from a model described in [5], where the heating system is
based on floor heating system of a Dutch low energy house. The control method
aims to flatten the electricity profile and to minimize the import of electricity
from the grid. Hereby, the flexibility of the devices is used.

Future work will aim to investigate different control methods to control
the heating system. This is expected to give more flexibility to the CHP heat
generation.

A Multi-commodity Simulation Tool Based on TRIANA 59

References

1. van Leeuwen, R.P., de Wit, J.B., Fink, J., Smit, G.J.M.: House thermal model
parameter estimation method for model predictive control applications. In: IEEE
PowerTech, pp. 1–6. IEEE Power and Energy Society, Eindhoven (2015)

2. Bakker, V.: TRIANA: a control strategy for smart grids - forecasting, planning and
real-time control. Ph.D. dissertation, University of Twente (2012)

3. Molderink, A.: On the three-step methodology for smart grids. Ph.D. dissertation,
University of Twente (2011)

4. Gerards, M.E.T., Toersche, H.A., Hoogsteen, G., van der Klauw, T., Hurink, J.L.,
Smit, G.J.M.: Demand side management using profile steering. In: IEEE PowerTech,
pp. 1–6. IEEE Power and Energy Society, Eindhoven (2015)

5. Perez, K.X., Baldea, M., Edgar, T.F., Hoogsteen, G., van Leeuwen, R.P., van der
Klauw, T., Homan, B., Fink, J., Smit, G.J.M.: Soft-islanding a group of houses
through scheduling of CHP, PV and storage (2016, accepted at IEEE Energycon)

Performance and Precision of Web Caching
Simulations Including a Random Generator

for Zipf Request Pattern

Gerhard Hasslinger1(&), Konstantinos Ntougias2,
and Frank Hasslinger3

1 Deutsche Telekom Technik, Darmstadt, Germany
gerhard.hasslinger@telekom.de

2 Athens Information Technology, Athens, Greece
kontou@ait.gr

3 Darmstadt University of Technology, Darmstadt, Germany
frank.hasslinger@stud.tu-darmstadt.de

Abstract. The steadily growing Internet traffic volume for video, IP-TV and
other content needs support by caching systems and architectures which are
provided in global content delivery networks as well as in local networks, on
home gateways or user terminals. The efficiency of caching is important in order
to save transport capacity and to improve throughput and delays.
However, since analytic solutions for the hit rate as the main caching per-

formance measure are not available even under the baseline scenario of an
independent request model (IRM) with usual Zipf request pattern and caching
strategies, simulation methods are used to evaluate caching efficiency. Based on
promising experience with simulation approaches of caching methods in pre-
vious work, we study and verify two main prerequisites: First, a fast random
Zipf rank generator is derived, which allows to extend simulations to billions of
requests. Moreover, the accuracy of alternatives of the hit rate evaluation is
compared based on the 2nd order statistics. The results indicate that the sum of
request probabilities of objects in the cache provides a more precise estimator of
the hit rate as a simple hit count.

Keywords: Simulation of caching strategies � Least Recently Used (LRU) �
Score gated LRU � Least Frequently Used (LFU) � Zipf request pattern �
Random zipf rank generator � 2nd order statistics � Hit rate estimators

1 Introduction: Caching Strategies and Evaluation
by Simulations

Goals and Applications of Web Caching. Caching is widely used for support of IP
services from global scale content delivery networks (CDNs) to local caches [2, 8–10].
Main goals and benefits are

• to shorten the transport paths and corresponding delays associated with the delivery
of data from an original server to the requesting users,

© Springer International Publishing Switzerland 2016
A. Remke and B.R. Haverkort (Eds.): MMB & DFT 2016, LNCS 9629, pp. 60–76, 2016.
DOI: 10.1007/978-3-319-31559-1_7

• to reduce the traffic load, which is most valuable for ISPs on expensive links, e.g.,
on international transatlantic routes or on paid peering connections,

• to shift traffic load from the busy hour to low load phases by prefetching and
overnight cache updates,

• to increase the throughput due to shorter round trip times in TCP connections for
connections from a cache, improving the performance on links and network
domains with high failure rate such as air interfaces in mobile networking,

• and to replicate data in distributed caching infrastructures for enhanced availability
and for enabling higher throughput from multiple caching servers in case of flash
crowds.

The cache replacement strategy is important for the efficiency of caching, measured by
the cache hit rate as the fraction of requests that can be served from cached content.
Least recently used (LRU) and least frequently used (LFU) are main caching principles
[16]. LRU is a widely used caching strategy that simply puts each requested object on
top of a cache being implemented as a double linked list, while evicting the bottom
element if the storage is exhausted. Advantages of LRU are a simple update mechanism
with low constant effort per request and high flexibility to adapt to changing popularity
of objects. The least frequently used (LFU) principle keeps a count statistics for the
number of past requests to each object and fills the cache storage with the most popular
ones. LFU achieves optimum hit rates for independent requests (IRM) and reduces
fluctuation of objects entering and leaving the cache, if their popularity has a mono-
tonous trend over time. However, an unlimited count statistics can’t adapt to changing
popularity rendering pure LFU inapplicable in practice.

Therefore alternatives with limited statistics have been proposed and evaluated
[4, 8, 10, 15]. A wide class of such strategies is attributed as LRFU spectrum by Lee
et al. [14]. These caching schemes include LRU and LFU as extreme cases. Two basic
variants of this family of LRFU caching policies are

• sliding window, where the LFU request count is restricted the window of the
W most recent requests, and

• geometrical fading, introducing a fading or aging factor ρ < 1 such that the kth recent
request is weighted by ρk and objects are ranked due to the sum of weights.

Both schemes prefer objects for caching based on an especially defined score
function [10]. They include LFU as an unlimited equally weighted count of previous
requests as one extreme for W → ∞, ρ → 1. On the other extreme, geometric fading is
equivalent to LRU for ρ ≤ 0.5, since then the most recent request dominates the
weights. For sliding window implementations with W = 1, LRU is again resembled, if
the required tie breaker for ranking the objects of the same weight is using the LRU
principle.

Finally, we use and recommend score-gated (SG-)LRU [10] as an approach to
implement LRFU methods combining the advantages of both, LRU and LFU. In
extension of pure LRU, SG-LRU assigns a score to each object and admits an external
object to enter the cache only if its score is higher than the score of the bottom object of
the cache. Otherwise, the bottom object is put on top. In this way, SG-LRU preserves

Performance and Precision of Web Caching Simulations 61

the low LRU update effort, avoiding more complex updates for sorted lists according to
scores [14]. Nonetheless, SG-LRU collects and keeps the highest scored objects in the
cache, provided that the score ranking of objects is stable over longer time. When we
compare pure LRU and SG-LRU in the evaluation part of this work, we use scores
based on geometric fading. In general, sliding window or any arbitrary score function
with low update effort can be combined with SG-LRU, which opens a flexible class of
caching strategies for object specific preferences still based on fast LRU updates.

Simulation of Caching Strategies. Efficient simulation of caching methods directly
reflects in the update effort per request except for the uploading of data for objects
entering the cache. LRU and SG-LRU caching strategies have low constant update
effort per request. Then the random generator for choosing the next object to be
requested becomes another main factor of the simulation effort. For the usual Zipf
distributed request pattern we didn’t find an efficient random generator in the literature
or in simulation tool sets covering the relevant parameter range [5, 20].

Therefore we derived an inversion formula for a Zipf random number generator as a
first part of this work which is applied in the following evaluation of SG-LRU schemes
with a fixed set of objects and fixed popularity according to the independent request
model (IRM). In final examples, we extend the evaluation of caching schemes for a
model including varying popularity of objects with new objects appearing at a maxi-
mum and afterwards decreasing popularity level.

We focus on simulating the hit rate as basic performance measure of caching. One
of the rare exact analytical results on cache hit rates is an upper bound for a cache for
M objects given by the sum of M request probabilities of the most popular objects
under IRM conditions. Moreover, the performance of caching strategies is investigated
based on measurement traces which show hit rate deficits of LRU [15]. In previous
work [10], the simulation test series for hit rate estimations showed low variability.
A main goal of the current work is to control and optimize the precision of simulation
results by investigating the 2nd order statistics over multiple time scales.

In the next section we proceed with a brief overview on the relevance of Zipf’s law
in request statistics on popular Internet platforms. A random Zipf rank generator is
developed and verified in Sect. 3. Section 4 presents examples of simulation results
with different run lengths showing decreasing variance and convergence to a mean
estimated hit rate. Sections 5 and 6 compare two hit rate estimators by the count of hits
per request and by the sum of request probabilities of objects in the cache, based on 2nd

order statistic. Section 7 extends this comparison to the score gated LRU strategy and
Sect. 8 shows results for another extension of the request model from IRM to
dynamically changing object popularity. Finally, main conclusions from the considered
case studies are summarized in Sect. 9.

2 Zipf’S Law for Access to Content on the Internet

Many studies have confirmed Zipf’s law for request pattern on Internet platforms as a
favourable property for caching efficiency such that a small set of popular web objects
attracts most user requests. When a finite set of N objects is considered for web

62 G. Hasslinger et al.

caching, Zipf’s law assigns decreasing request probabilities z(r) to each of them cor-
responding to their popularity rank r 2 {1, 2, …, N}:

zðrÞ ¼ ar�b for a; b[0; a ¼ zð1Þ ¼ 1=
XN

r¼1
zðrÞ ð1Þ

where β > 0 is an adaptive shape parameter and α is a normalization constant. The
characteristics of Zipf’s law is a focus of the requests on a small fraction of most
popular objects, known as 90:10- (or 80:20-)rules such that the top 10 % of the objects
attract 90 % of the user requests. The shape parameter β determines the skewness of the
distribution, where an 80:20-rule roughly corresponds to β ≈ 0.85 [18]. Access
probabilities are becoming more unbalanced for β → 1 or β > 1. Cases for β > 1 are
modeled in [7] but we only found estimations of β ≤ 1 in measurement studies of web
content requests. In particular,

• Breslau et al. [2] obtained 0.64 ≤ β ≤ 0.83 in six web proxy and HTTP request
traces over up to three months duration,

• Che et al. [4] obtained 0.64 ≤ β ≤ 0.75 for eight single day traces,
• Fricker et al. [7] obtained β ≈ 0.75 and β ≈ 0.82 from two Torrent web sites and

0.56 ≤ β ≤ 0.88 referring to a collection of other papers including Cha et al. [3], and
• Hefeeda and Saleh [13] obtained 0.6 ≤ β ≤ 0.78 for request traces in P2P systems.

Therefore, caching simulations for Zipf distributed requests seem relevant in the
range 0.5 ≤ β ≤ 1. Moreover, infinite object sets can be considered for β > 1, whereas
the sum of probabilities z(r) in Eq. (1) does not converge for β ≤ 1, which imposes a
restriction to a finite set of N objects in the relevant range β < 1.

3 An Inversion Method for a Random Zipf Rank Generator

Owing to the relevance of Zipf request pattern, an efficient random generator for Zipf
distributed ranks is essential for web cache simulations. The random selection of an
object to be addressed next is a time-critical simulation step which must be performed
as part of an (SG-)LRU update step at low constant effort per request.

As a basis, the cumulative distribution function (CDF)

ZCDFðnÞ ¼
Xn

r¼1
zðrÞ ¼

Xn

r¼1
r�b=

XN

r¼1
r�b ð2Þ

is calculated and stored at the start of the simulation. Then for each request we have to
compute a Zipf distributed rank r 2 {1,…, N} from a uniform random number R 2 [0, 1],
such that

ZCDFðr � 1Þ\R� ZCDFðrÞ assuming ZCDF 0ð Þ ¼ 0: ð3Þ

To the authors’ knowledge, there is no useful recommendation for an efficient Zipf
random generator for web caching purposes available in literature. The Mathematica
tool set documentation [20] refers to an acceptance-rejection method proposed by

Performance and Precision of Web Caching Simulations 63

Devroye [5], which is restricted to infinite object sets and excludes the most relevant
range β ≤ 1 for web caching. Instead, we derive a direct inversion formula covering
Zipf distributions of finite support over the entire range β ≥ 0.

Explicit upper and lower bounds of ZCDF(n) are obtained from a comparison of the
sum of Zipf probabilities as a step function with the integral over the corresponding
continuous function, which is strictly monotonous:

Znþ 1

x¼1

x�bdx ¼ x1�b

1� b

����
nþ 1

1

¼ ðnþ 1Þ1�b � 1
1� b

�
Xn

r¼1
r�b\

ðnþ 1Þ1�b � b
1� b

for b[0; b 6¼ 1: ð4Þ

When we try an approximate Zipf rank generator based on the arithmetic mean of
the upper and lower bound, we experience only partially sufficient precision. The right
hand curves of Fig. 3 show results for an example for N = 105 objects and for different
values of the Zipf shape parameter β. The deviations in the rank r are checked by the
condition (3). Small rank deviations ≤ ±1 are confirmed only for β ≤ 0.2 and when β is
close to 1. Rank deviations > 50 are visible for β = 0.9 and even much larger ones for
β > 1, although this range is not observed for Zipf like web request pattern.

The deviation between the step function for ZCDF(n) and the integral in Eq. (4) is
large for the top ranks r but on the other hand it is diminishing with smaller steps for
large r. Therefore, we expect the integral to provide a good approximation especially
for the second half N/2 ≤ r ≤ N, which leads to an almost perfect rank generator:

ZCDFðrÞ � ZCDFðN2Þþ ð1� ZCDFðN2ÞÞ
Z r

N=2
x�b=

Z N

N=2
x�b

forN=2� r�N:

¼ ZCDFðN2Þþ ð1� ZCDFðN2ÞÞ
r1�b � ðN2Þ1�b

N1�b � ðN2Þ1�b

We obtain the random Zipf rank generator by replacing ZCDF(r) with a random value
R (ZCDF(N/2) ≤ R ≤ 1) and then invert the formula to obtain the rank r from given R:

) R� ZCDFðN2Þ
1� ZCDFðN2Þ

¼ r1�b � ðN2Þ1�b

N1�b � ðN2Þ1�b

) r ¼ ½ ðN
2
Þ1�b þ ½N1�b � ðN

2
Þ1�b� R� ZCDFðN2Þ

1� ZCDFðN2Þ
� 1
1�b

¼ N½ ð1
2
Þ1�b þ ½1� ð1

2
Þ1�b� R� ZCDFðN2Þ

1� ZCDFðN2Þ
� 1
1�b ¼ N½ 1� ð1� RÞð1� ð12Þ1�bÞ

1� ZCDFðN2Þ
� 1
1�b:

ð5Þ

64 G. Hasslinger et al.

When we check ZCDF(r) ≤ R ≤ ZCDF(r + 1) to confirm the correctness of the rank
computed by Eq. (5) we observe an almost perfect match, such that r deviates from the
correct rank by less than ±1.

Moreover, although formula (5) is justified only for ranks r ≥ N/2 and thus for
random values R in the range ZCDF(N/2) ≤ R ≤ 1, we applied the Zipf generator over
the total range 0 ≤ R ≤ 1 for all ranks 1 ≤ r ≤ N. As a result, which is surprising on first
glance, the accuracy of Eq. (5) holds over the entire range 0 ≤ R ≤ 1 with deviations
less than ±1 in all examples and test series we investigated. The precision of the Zipf
rank generator is shown in Fig. 1 for an example of the following Zipf distribution:

z rð Þ ¼ 0:2503133r�0:999999 � 1
4r

forN ¼ 30:

Therefore we check the deviations

DðrÞ ¼ N½ 1� ð1� ZCDFðrÞÞ
1� ð12Þ1�b

1� ZCDFðN2Þ
� 1
1�b � r ð6Þ

of ranks computed by Eq. (5) for R = ZCDF(r) over the distribution range r = 0,…, N.
Figure 2 shows the deviations in a wider range of case studies for 0 ≤ β ≤ 3 and

larger object sets N = 100 and N = 106. The graphs confirm very similar and limited
deviations below a maximum deviation Δ(r) < 0.6 at the top rank r = 1. In the first half of
the distribution range r ≤ N/2, deviations are monotonously decreasing to 0 at r = N/2. In
the second half N/2 ≤ r ≤ N, deviations Δ(r) are negative but do not fall below –0.1.

-0,1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 5 10 15 20 25 30

Rank r

Cumulated Zipf Distribution Function
Z_CDF(r)

Rank Deviation r(R) - r of the Zipf
Generator for R = Z_CDF(r)

Fig. 1. Deviations Δ(r) of the Zipf rank generator of formula (5)

Performance and Precision of Web Caching Simulations 65

Finally, we extended our checks of Δ(r) to a set of Zipf distribution functions for all
values of β = 0, 0.1, 0.2, …, 3 combined with all N = 1, 2, 3, …, 105 as well as
N = 105 + 100, 105 + 200, …, 106. In each case 8r 2 [1, …, N]: –1 < Δ(r) < 1 is
confirmed. Since formula (5) is monotonously increasing in the random number R, a
check for all discrete ranks r = 1,…, N corresponding to random numbers R = ZCDF(r) is
sufficient to confirm the precision also for any random number R 2 [0, 1].

Concluding, we recommend formula (5) as a fast direct inversion method for
random Zipf ranks, which hits the correct or a neighbor rank. When a caching simu-
lation with Zipf distributed request pattern has parameters outside the previously
evaluated range, we can still validate the rank generator (5) by applying the same
checks according to Eqs. (3) and (6) in the start phase of the simulation. Since the sign
of the deviation is positive on the first half for R < ZCDF(N/2) and negative on the
second, a single comparison of R and ZCDF(r) is sufficient to finally obtain the correct
rank.

The precision of the random Zipf rank generator even seems to pertain for β > 3 and
for N > 106, but we only sparsely covered the range β > 3 in our checks because it is not
relevant for web caching. For N > 106 numerical problems are indispensible when
standard double real number representation is employed for computations, because a
uniform distribution over N = 106 objects already leads to small request probabilities of
10−6, which are becoming much smaller for skewed Zipf distributions for β > 0.5 in the
ranks r > N/2. As a consequence, the smallest resolution unit between real numbers in
double precision already maps into rank differences > 1. An extended real number
representation or a refined random rank generator has to be established for objects with
request probabilities < 10−10, which we haven’t implemented yet. However, we can
ignore objects that are seldom requested over long time and exclude them. In this way,
the size of relevant object sets for web caching can be kept below N = 106.

The rank generator could be modified or generalized regarding our initially con-
sidered range N/2 ≤ r ≤ N. Instead of N/2 we can take any value between 1 and N for
the lower bound of the range and we may optimize this value with regard to the
precision. Figure 3 shows an example with range N/10 ≤ r ≤ N, whose deviations are
more than 10-fold larger on the negative part than for N/2 ≤ r ≤ N. In fact, we
experienced close to optimum precision for N/2 ≤ r ≤ N.

-0,1

0,0

0,1

0,2

0,3

0,4

0,5

D
ev

ia
ti

on
s

of
 Z

ip
f

R
an

k
G

en
er

at
or

20 40 60 80 100

ß = 3.0

ß = 2.0

ß = 1.5

ß = 0.9999

ß = 0.6

ß = 0.3

ß = 0.0

-0,1

0,0

0,1

0,2

0,3

0,4

0,5

D
ev

ia
ti

on
s

of
 Z

ip
f

R
an

k
G

en
er

at
or

0.2N 0.4N 0.6N 0.8N N =106

ß = 3.0
ß = 2.0
ß = 1.5
ß = 0.9999
ß = 0.6
ß = 0.3
ß = 0.0

Fig. 2. Deviations Δ(r) of the Zipf rank generator of formula (5) in the range [1, N] for N = 100
(left figure) and N = 106 (right figure)

66 G. Hasslinger et al.

However, beyond a dense computational check over the most relevant range, we
lack a mathematical confirmation of the favourable properties except for Δ(N/2) =
Δ(N) = 0.

For simulations with a specific Zipf distribution, the random rank generator of
Eq. (5) is used in the format (a + bR)c with pre-computed constants a, b, c depending
on N, ZCDF(N/2) and β. Alternatively, a binary search can be implemented to find
r such that ZCDF(r) ≤ R ≤ ZCDF(r + 1) as a standard random generator for a discrete
distribution. Search methods require a number of steps which is increasing in the order
of ln(N) and thus are less efficient than the inversion formula especially for large object
sets.

4 Simulation of Caching Strategies: Run Time Versus
Precision

An efficient Zipf rank generator is helpful to order to investigate how the precision of
the hit rate is developing with the run time in terms of the number of simulated
requests. In simulation studies comparing different caching strategies in the LRU/LFU
spectrum, i.e. caching schemes combining LRU with LFU, we experienced low vari-
ability in the simulation results indicating high precision and finally noticed large
differences in the achievable hit rate of different caching schemes [10]. Therefore we
would like to get better insight into the simulation statistics in order to verify the
precision. We start with simulations comparing pure LRU and SG-LRU caching
methods based on Zipf distributed independent requests (IRM).

We evaluate the hit rate as the fraction of requests to objects in the cache. The
simulations start with an empty cache. While the cache is filling, the score-gated and
pure LRU caching strategies behave identical. As soon as the cache is full, pure LRU
already has entered steady state regarding the statistics of objects in the cache. Con-
sequently, the mean hit rate per simulated request with a full cache equals the long term
LRU hit rate. Thus, it is sufficient to exclude the cache filling phase as a
non-representative start phase for pure LRU simulations.

-1,00

-0,75

-0,50

-0,25

0,00

0,25

0,50

D
ev

ia
ti

on
s

of
 Z

ip
f

R
an

k
G

en
er

at
or

0.2N 0.4N 0.6N 0.8N N =105

ß = 2.0 ß = 1.5 ß = 0.9999

ß = 0.6 ß = 0.3 ß = 0.0

0

10

20

30

40

50

60

70

80

90

D
ev

ia
ti

on
s

of
 Z

ip
f

R
an

k
G

en
er

at
or

0.2N 0.4N 0.6N 0.8N N =105

ß = 0.9
ß = 0.8
ß = 0.6
ß = 0.3
ß = 0.9999
ß = 0.0

Fig. 3. Deviations of the Zipf rank generator over the range [1, 105] for alternatives using Eq. (5)
with N/10 replacing N/2 (left fig.) and based on Eq. (4) (right fig.)

Performance and Precision of Web Caching Simulations 67

Figure 4 demonstrates how the variability in simulation results is reducing with
longer run time. An example of Zipf distributed requests to N = 106 objects is con-
sidered with β = 0.9999 and a small cache size of M = 200 which already achieves
more than 27 % LRU hit rate.

Each dot in the figure refers to a simulated hit rate result. The number K of simulated
requests is varying over the range [106, 1.6·1010]. If each request would represent an
independent experiment for a hit, then a binomial distribution would be observed for the
number of hits per simulation run with mean lh ¼ hK and standard deviation
rh ¼

ffi
h ð1� hÞKp

. Figure 4 includes dotted curves for ðlh � rhÞ=K, where the
estimate lh for the hit rate is obtained from the longest simulation run over K = 1.6·1010

requests.
The simulation results include up to eight runs for each K. The results of the simu-

lation series confirm that the long term mean hit rate is close to a 68-95-99.7 rule known
for independent experiments, i.e. about 68 % of the results are within ðlh � rhÞ=K, the
95 % confidence interval is around ðlh � 2rhÞ=K and about 99.7 % are within
ðlh � 3rhÞ=K. However, hit rates are not independent for successive requests because
the LRU cache content is changing in no more than one object per simulated request.

Corresponding results of a case study for SG-LRU are shown in Fig. 5. The
convergence to a steady state now depends on stabilizing scores for the objects, which
takes much longer than the cache filling phase. In order to reach steady state conditions,
we exclude the first quarter of each simulation run from the evaluations, which covers
the phase for stabilizing scores, provided that the run time pertains sufficiently long.

Figure 5 presents SG-LRU results for the same Zipf distributed IRM case as in
Fig. 4. A geometrical fading score function is applied with ρ = 0.9999. Again, up to
eight simulation results are shown with 106 ≤ K ≤ 1.6·1010 requests in the evaluation
phase and the deviations are in the range ðlh � rhÞ=K of independent requests.

27,74%

27,76%

27,78%

27,80%

27,82%

27,84%

1.0 E+6 4.0 E+6 1.6 E+7 1.28E+8 1.0 E+9 4.0 E+9 1.6 E+10

H
it

 R
at

es
 in

 S
im

ul
at

io
ns

 &
 C

he
-A

pp
ro

x.

Number of Simulated Requests (ß = 1 10 4; M = 200; N = 106)

Mean + Standard Deviation
Simulations
Che-Approximation
Mean - Standard Deviation

Fig. 4. Simulated LRU hit rates for different run times

68 G. Hasslinger et al.

The LRU simulation results in Fig. 4 are close to the Che approximation for the
LRU hit rate hChe ≈ 27.787 % [4]. The SG-LRU simulations yield hSG-LRU ≈ 39.728 %,
which exploits most of the optimum LFU hit rate hLFU = z(1) + … + z(M) ≈ 40.667 %
as the maximum achievable hit rate under IRM conditions.

5 Hit Count Versus Sum of Cached Objects’ Request
Probabilities

For studying the variability of the hit rate during an LRU caching simulation, the sum
of the request probabilities of all objects in the cache after the kth simulated request is
essential, which equals the cache hit probability π(k) of the next request:

pðkÞ ¼
X

j:Object j is in the cache
zðjÞ:

Figure 6 shows excerpts π(K +1), …, π(K +1000) of the stochastic process π(k) for
an LRU caching simulation with Zipf distributed requests (β = 0.8; N = 1000 objects) in
steady state IRM conditions with a full cache. Four cases of different cache sizes are
considered, which are sufficient to achieve 10 %, 25 %, 50 % and 75 % cache hit rate.
The curves show that the variability of π(k) is decreasing with the cache size. The
fluctuations in π(k) are caused by objects dropping off and re-entering the cache.
A larger cache can hold the top popular objects for longer time such that the objects
dropping off the cache have smaller request probabilities and therefore have smaller
impact on π(k). Moreover, the cache content remains unchanged after a cache hit, i.e.
π(k) remains constant for a fraction of requests equal to the hit rate.

39,70%

39,71%

39,72%

39,73%

39,74%

39,75%

1.0 E+6 4.0 E+6 1.6 E+7 1.28E+8 1.0 E+9 4.0 E+9 1.6 E+10

Si
m

ul
at

ed
 S

G
-L

R
U

 H
it

 R
at

e

Number of Simulated Requests (ß = 1 10 4; M = 200; N = 106; = 1 10 4)

Mean + Standard Deviation
SG-LRU Simulations
Mean - Standard Deviation

Fig. 5. Simulated SG-LRU hit rates for different run times

Performance and Precision of Web Caching Simulations 69

6 2nd Order Statistics for the Precision in Multiple Time
Scales

In order to characterize the variability in hit rate simulations, we evaluate the second
order statistics σ(π(K)) that indicates the standard deviation of a stochastic process over
sequences of requests of different length K. σ(π(K)) is defined and computed from the
mean values over K successive requests of the process π(k) [11, 12]:

pðKÞðjÞ ¼ 1
K

Xj K

k¼ðj�1ÞK þ 1
pðkÞ; rðpðKÞÞÞ ¼

ffi
Eðp2ðKÞðjÞÞ � l2ðpÞ

q
; lðpÞ ¼ EðpðKÞÞðjÞÞ ¼ EðpðkÞÞ:

Note, that the expectation lðpðKÞÞ ¼ lðpÞ is constant over all time scales K for a
process in steady state, whereas σ(π(K)) is expected to decrease with K, e.g. for a process
of independent and identically distributed random values we have rðpðKÞÞ¼rðpÞ= ffiffiffiffi

K
p

.
In order to evaluate σ(π(K)) during the caching simulation, we consider successive

request sequences of length K = 10, 102, …, 10R of a simulation run over 10R+1

requests and compute the usual estimate of the standard deviation:

rðpðKÞÞ ¼
ffiX10Rþ 1=K

j¼1
p2ðKÞðjÞ � l2ðpÞ

r
= ð 10

Rþ 1

K
� 1Þ; lðpÞ ¼ 1

10Rþ 1

X10Rþ 1

j¼1
pðjÞ:

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

Cache hit probabilities (K+1), ..., (K+1000) over 1000 requests

Cache size M = 469; hit rate h = 75,1%
Cache size M = 182; hit rate h = 50.4%
Cache size M = 47; hit rate h = 25.4%
Cache size M = 13; hit rate h = 10.1%

Fig. 6. Variability of the sum of the request probabilities of objects in an LRU cache

70 G. Hasslinger et al.

For hit rates estimated via cache probabilities π(k), Fig. 7 shows the second order
statistics for the same example as in Fig. 6 in time scales up to 10R = 107. On the time
scale K = 1, i.e. for single requests, the variability corresponding to the curves shown in
Fig. 6 is reflected. In the time scales for K > 103 the second order statistics develops
very similar in all four cases such that lðpðKÞÞ � lðpð103ÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
103=K

p
.

Next, we compare the previous 2nd order statistics of the sum of request proba-
bilities of the objects in the cache σ(π(K)) with the 2nd order statistics rðhðkÞÞ of the hit
rate h, when h is basically computed via the number of hits over the same sequence of
requests. On the single request time scale (K = 1) we obtain rðhð1ÞÞ as the standard
deviation of a Bernoulli variable

rðhð1ÞÞ ¼
ffiX

p
Pr obfpðjÞ ¼ pg � p � ð1� pÞ:

q

In the four cases we obtain rðhð1ÞÞ ≈ 0.3006, 0.4335, 0.4998, 0.433 for h ≈ 0.1,
0.25, 0.5 and 0.75, respectively. These are the starting points of the set of almost linear
curves rðhðkÞÞ � rðhð1ÞÞ=

ffiffiffiffi
K

p
in Fig. 7 for 2nd order statistics rðhðkÞÞ of the hit count.

We observe that the 2nd order statistic curves rðhðkÞÞ stay above the 2nd order
statistics of σ(π(K)) on all time scales, although the differences decrease from factors in
the range 10-75 on the smallest time scale down to factors 1.5-4 on the largest.
Concluding, π(K) provides a more precise estimate of the hit rate than the fraction hðkÞ of
hits counted over K requests. This is not surprising because the sum of probabilities of
cached objects is a measure based on more detailed information than the hit count.

0,00001

0,0001

0,001

0,01

0,1

1

1 10 102 103 104 105 106 107

Standard deviations (K)) and h(K)) in time scales over 10K requests

Hit Count M = 13
Hit Count M = 47
Hit Count M = 182
Hit Count M = 469
Cache Prob. M = 13
Cache Prob. M = 47
Cache Prob. M = 182
Cache Prob. M = 469

Fig. 7. Second order statistics for LRU caching simulations (N = 1000)

Performance and Precision of Web Caching Simulations 71

7 Evaluation Comparing Pure LRU and SG-LRU

Next, we again compare both alternative estimators, the sum of cache probabilities
versus the fraction of hits, now for the score-gated SG-LRU caching strategy using the
same example (β = 0.8; N = 1000 objects) with independent requests (IRM). The
required SG-LRU cache sizes to obtain 10 %, 25 %, 50 % and 75 % hit rate are 2, 13, 87
and 342, respectively. Thus more than half of the LRU cache size is saved by SG-LRU
for hit rates ≤ 50 %. In the 10 % examples, SG-LRU is able to hold the two most popular
objects almost constantly in a cache, which attract already > 10 % of the requests.
Pure LRU puts newly requested objects always on top, causing steadily ongoing fluc-
tuation of cached objects, which is far from optimum especially for small caches.

For SG-LRU, the parameter ρ of the geometrically fading score function has main
impact on the 2nd order statistics. For each new request, all scores are reduced by the
factor ρ and only the score of the requested object is incremented afterwards. In steady
state, the sum of scores of all objects is given by 1/(1 – ρ). The expected score of an
object with request probability z(r) is z(r) /(1 – ρ). In the example for M = 2 with 10 %
cache hit rate we choose ρ = 0.999 yielding expected scores of 64.6, 37.1 and 26.8 for
the three top ranked objects (r = 1,2,3). In order to suppress one of the two most
popular objects from the cache, another object must get a higher score when requested,
which rarely happens. For ρ → 1, SG-LRU converges to the LFU principle such that
the most popular objects are kept almost constantly in the cache.

Therefore, the variance in the sum of cache probabilities is diminishing σ(π(K))→ 0
for ρ → 1, whereas the 2nd order statistics of the hit count for pure LRU is almost
unchanged in Fig. 8. Consequently, the difference in the 2nd order statistics between
both alternative estimators is much larger, starting from factors in the range 100-1000
on the single request time scale and still having factors 4-10 on the longest time scale.
The simulations would need 16-100-fold longer run time in order to compensate for
factors 4-10. In general, simulation runs over 107 requests turn out to be sufficient to
reduce the standard deviation of the hit rate estimator below 0.01 %.

0,00001

0,0001

0,001

0,01

0,1

1

1 10 102 103 104 105 106 107

Standard deviations (K)) and (h(K)) in time scales over 10K requests

Hit Count M = 2
Hit Count M = 13
Hit Count M = 87
Hit Count M = 342
Cache Prob. M = 2
Cache Prob. M = 13
Cache Prob. M = 87
Cache Prob. M = 342

Fig. 8. Second order statistics for SG-LRU caching simulations (N = 1000)

72 G. Hasslinger et al.

We consider another example for comparing the hit count and cache probability
estimators of the cache hit rate for one million objects (β = 0.9; N = 106), which demands
for larger caches. Popular web platforms often offer an even larger set of videos, pic-
tures, files or other objects.

The required cache sizes for 10 %, 25 %, 50 % and 75 % hit rate areM ≈ 106, 1500,
30300 and 228000 with pure LRU and M ≈ 10, 225, 8500 and 125000 for score-gated
LRU, respectively. The ratios 10/106; 225/1500 etc. indicate that the saving potential of
SG-LRU cache size is even increasing with the object set. While the hit count estimator
again resembles the 2nd order statistics of Figs. 7 and 8, the sum of the cache proba-
bilities often starts already at very low variance. Figure 9 shows that this effect is valid
on the single request time scale for both, pure and score gated LRU. For pure LRU,
larger cache size has the effect that a set of most popular objects is staying longer in the
cache and objects that frequently leave and re-enter the cache have smaller request
probabilities. For SG-LRU, we have to choose fading factors 1–10−4 ≤ ρ ≤ 1–10−8 in
order to get close to the optimum LFU hit rate. As a consequence, the cache content is
stabilizing with most top popular objects included when the scores are approaching
steady state, thus making the variability of σ(π(K)) very low.

8 Simulations Including Profiles of Varying Popularity
of Objects

The independent request model (IRM) ignores changes in the popularity of objects and
the emergence of new objects over time. A popularity profile of an object usually starts
with a fast growth phase until a maximum request frequency is reached, followed by a
longer phase of slow decrease [1, 5, 17, 19]. Therefore we extend the IRM by intro-
ducing new objects at a fixed rate, such that a new object is introduced and addressed
with probability pnew per request. Otherwise, with probability 1 – pnew, the next request
is addressing an “old” object of the current object set according to a Zipf distribution.
The new object is assigned a popularity rank rnew which is uniformly chosen between
1 and N with initial Zipf request probability z(rnew). In order to preserve unique ranks,
all objects in the ranks rnew, rnew + 1, …, N – 1 are shifted to the next rank r → r + 1
and finally the object in rank N is removed.

0,00001

0,0001

0,001

0,01

0,1

1

1 10 102 103 104 105 106 107

Standard deviations (K)) and h(K)) in time scales over 10K requests

Hit Count M = 106
Hit Count M = 1500
Hit Count M = 30300
Hit Count M = 228000
Cache Prob. M = 106
Cache Prob. M = 1500
Cache Prob. M = 30300
Cache Prob. M = 228000

0,00001

0,0001

0,001

0,01

0,1

1

1 10 102 103 104 105 106 107

Standard deviations (K)) and h(K)) in time scales over 10K requests

Hit Count M = 10
Hit Count M = 225
Hit Count M = 8500
Hit Count M = 125000
Cache Prob. M = 10
Cache Prob. M = 225
Cache Prob. M = 8500
Cache Prob. M = 125000

Fig. 9. Second order statistics for LRU and SG-LRU caching simulations (N = 106)

Performance and Precision of Web Caching Simulations 73

In this way, the Zipf distribution is preserved over the whole range 1, …, N for all
requests to “old” objects, such that the model approaches the IRM case for pnew → 0.
In this model, new objects start at maximum popularity on their smallest rank, which is
then steadily incremented for each new object starting from a lower rank. Higher
dynamics in popularity, i.e. higher pnew, is expected to reduce the cache efficiency,
because requests to new objects do not result in cache hits and it can last a while, until
the score of a new object reflects its popularity. The investigated model overestimates
the impact of new objects on the hit rate in a worst case scenario due to the fact that the
phase of growing popularity is skipped and new objects immediately appear on their
top rank. On the other hand, the typically observed long phase of slowly decreasing
popularity is reflected while the rank of an object is incremented from rnew to N. As
another realistic effect, highly popular objects starting on a top rank stay essentially
longer in the set of relevant objects for caching due to long sojourn times N/(r·pnew) in
top ranks r.

Figure 10 shows the 2nd order statistics of the extended model with new objects
emerging with probability pnew = 0.05 per request for an example with the same Zipf
request pattern (β = 0.8; N = 1000 objects) for old objects as in Figs. 7 and 8 (pure
LRU, left part of Fig. 10, SG-LRU, right part of Fig. 10). The rate pnew = 0.05 of
requests to new objects for a set of N = 1000 objects implicates that each object rank
r is renewed after a geometrically distributed period with a mean of N /pnew = 20 000
requests. In practice, object dynamics and the corresponding rate pnew depend on the
object type as well as the user population. Caches for a large population attract
thousands or even millions of user requests per day, whereas the dynamics in top-10 or
top-100 objects per day is estimated to be low in the range of a few percent [1, 6]. Thus
the renewal rate of 1/20 000 requests in the example is higher than experienced for
large caches.

On the whole, the curves for the 2nd order statistics for the hit rate (almost linear
curves) and for the estimator based on the sum of request probabilities of caches objects
show similar behaviour as in case of independent requests (IRM) and the required sizes
of the cache corresponding to 10 %, 25 %, 50 % and 75 % hit rate only differ for 50 %
and 75 % hit rate from the IRM case of Figs. 7 and 8.

0,00001

0,0001

0,001

0,01

0,1

1

1 10 102 103 104 105 106 107

Standard deviations (K)) and h(K)) in time scales over 10K requests

Hit Count M = 13
Hit Count M = 47
Hit Count M = 187
Hit Count M = 500
Cache Prob. M = 13
Cache Prob. M = 47
Cache Prob. M = 187
Cache Prob. M = 500

0,00001

0,0001

0,001

0,01

0,1

1

1 10 102 103 104 105 106 107

Standard deviations (K)) and h(K)) in time scales over 10K requests

Hit Count M = 2
Hit Count M = 13
Hit Count M = 108
Hit Count M = 475
Cache Prob. M = 2
Cache Prob. M = 13
Cache Prob. M = 108
Cache Prob. M = 475

Fig. 10. 2nd order statistics for LRU and SG-LRU for requests with dynamic popularity

74 G. Hasslinger et al.

9 Conclusions and Outlook

This study on performance and precision of web caching simulations basically confirms
the efficiency of simulative caching evaluations. We derived a fast inversion method for
a random Zipf rank generator addressing the usual Zipf request pattern for web objects,
which seems missing in literature and in tool sets like Mathematica. The 2nd order
statistics of variability over multiple time scales is evaluated to control the accuracy of
simulation results. In this way, the sum of request probabilities of objects in the cache is
confirmed to provide a more precise estimator of the cache hit rate than counting the
hits.

The reduction of the standard deviation is often extreme on short time scales and
less significant but still present on long time scales. For both estimators, the 2nd order
statistics shows a decrease of the standard deviation and corresponding confidence
intervals comparable to a set of independent events. Therefore, long simulation runs
can efficiently improve the precision of the hit rate estimation in all considered sce-
narios for different caching strategies in the LRFU spectrum.

Acknowledgements. This work has received funding from the European Union’s Horizon
2020 research and innovation programme 2014-2018 under grant agreement No. 644866. This
work reflects only the authors’ views and the European Commission is not responsible for any
use that may be made of the information it contains.

References

1. Borghol, Y., et al.: Characterizing and modeling popularity of user-generated videos.
Perform. Eval. 68, 1037–1055 (2011)

2. Breslau, L., et al.: Web caching and Zipf-like distributions: Evidence and implications. In:
Proceedings of the IEEE INFOCOM, New York, USA (1999)

3. Cha, M., et al.: I tube, you tube, everybody tubes: Analyzing the world’s largest user
generated content video system, Internet measurement conference IMC 2007. San Diego,
USA (2007)

4. Che, H., Tung, Y., Wang, Z.: Hierarchic web caching systems: modeling, design and
experimental results. IEEE JSAC 20(7), 1305–1314 (2002)

5. Devroye, L.: Non-uniform random variate generation. Springer, Heidelberg (1986)
6. Figueiredo, F., et al.: TrendLearner: Early prediction of popularity trends of user generated

content (2014). http://arxiv.org/abs/1402.2351
7. Fricker, C., Robert, P., Roberts, J., Sbihi, N.: Impact of traffic mix on caching performance

in a content-centric network. In: IEEE INFOCOM Workshops, pp. 310–315 (2012). http://
arxiv.org/abs/1202.0108

8. Hasslinger, G.: Efficiency of caching and content delivery in broadband access networks. In:
Mukkadim, P. et al. (ed.) Chapter 4 in Advanced Content Delivery, Streaming & Cloud
Services, pp. 71–90. Wiley (2014)

9. Hasslinger, G., Hartleb, F.: Content delivery and caching from a network provider’s
perspective. Spec. Issue Int. Content Delivery, Comput. Netw. 55, 3991–4006 (2011)

Performance and Precision of Web Caching Simulations 75

http://arxiv.org/abs/1402.2351
http://arxiv.org/abs/1202.0108
http://arxiv.org/abs/1202.0108

10. Hasslinger, G., Ntougias, K., Hasslinger, F.: A new class of web caching strategies for
content delivery. In: Proceedings of the Networks Symposium, Funchal, Madeira, Portugal,
pp. 1–7 (2014)

11. Haßlinger, G.,Mende, J., Geib, R., Beckhaus, T., Hartleb, F.: Measurement and characteristics
of aggregated traffic in broadband access networks. In:Mason, L.G., Drwiega, T., Yan, J. (eds.)
ITC 2007. LNCS, vol. 4516, pp. 998–1010. Springer, Heidelberg (2007)

12. Hasslinger, G., Schwahn, A., Hartleb, F.: 2-state (semi-)Markov processes beyond
Gilbert-Elliot: Traffic models based on 2nd order statistics. In: Proceedings of the
IEEE INFOCOM, Turin, Italy, pp. 1438–1446 (2013)

13. Hefeeda, M., Saleh, O.: Traffic modeling and proportional partial caching for peer-to-peer
systems. IEEE/ACM Trans. Netw. 16(6), 1447–1460 (2008)

14. Lee, D., et al.: LRFU: A spectrum of policies that subsumes the least recently used and least
frequently used policies. IEEE Trans. Comput. 50(12), 1352–1361 (2001)

15. Megiddo, N., Modha, S.: Outperforming LRU with an adaptive replacement cache
algorithm. IEEE Comput. 5, 4–11 (2004)

16. Podlipnik, S., Böszörmenyi, L.: A survey of web cache replacement strategies. ACM
Comput. Surv. 35, 374–398 (2003)

17. Qiu, T., et al.: Modeling channel popularity dynamics in a large IPTV system. In:
Proceedings of the 11th ACM SIGMETRICS, Seattle, WA, USA (2009)

18. Shi, et al.: An applicative study of Zipf’s law on web caches. Int. J. Inf. Technol. 12(4),
49–58 (2006)

19. Szabo, G., Huberman, B.A.: Predicting the popularity of online content. ACM Commun.
53(8), 80–88 (2010)

20. Wolfram Research, Wolfram Language Tutorial (2015). https://reference.wolfram.com/
language/tutorial/RandomNumberGeneration.html

76 G. Hasslinger et al.

https://reference.wolfram.com/language/tutorial/RandomNumberGeneration.html
https://reference.wolfram.com/language/tutorial/RandomNumberGeneration.html

PSTeC: A Location-Time Driven Modelling
Formalism for Probabilistic Real-Time Systems

Kangli He1, Yixiang Chen1(B), Min Zhang2, and Yuanrui Zhang1

1 MoE Engineering Research Center for Software/Hardware Co-design Technology
and Application, East China Normal University, Shanghai, China

kenhkl11@hotmail.com, yxchen@sei.ecnu.edu.cn
2 Shanghai Key Laboratory of Trustworthy Computing,

East China Normal University, Shanghai, China
mzhang@sei.ecnu.edu.cn

Abstract. Internet of Things (IoT) and Cyber-Physical Systems (CPS)
have become important topics in both theory and industry. In some
application domains, such as when specifying the behaviour of preci-
sion mechanics, we need to include features of spatial-temporal consis-
tency. How to model probabilistic real-time systems in such domains is
a challenge. This paper presents a modelling formalism, called PSTeC,
for describing the behaviour of probabilistic real-time systems focusing
on spatial-temporal consistency with nondeterministic, probabilistic and
real-time aspects. The consistency restricts a process to start and finish
at the required location and time. Communications between agents is
specified by interactive actions. The language we propose is an extension
of STeC, which is a specification language for location-aware real-time
systems, adding probabilistic operations so as to support the incorpo-
ration of probabilistic aspects. We first give a formal definition of the
syntax for PSTeC, then focus on the details of its operational semantics,
which maps a PSTeC term onto a Probabilistic Spatial-Temporal Tran-
sition System (PSTTS) following the structured operational semantics
style. A simple example demonstrates the expressiveness of PSTeC.

1 Introduction

Real-time systems are everywhere, spreading from tiny micro chips to continent-
spanning power grids. Internet of Things and Cyber-Physical Systems are en
vogue incarnations of real-time systems featuring nondeterministic, probabilistic
and real-time aspects. Often, we need to consider not only the time aspect but
also the location of one agent, i.e., we want the behaviour of an agent to start
and finish at the required location and time. During the system design phase, we
usually use formal methods to model the system and then check whether require-
ments on correctness do hold. If that is not the case, one tries to fix the model so
as to eventually guarantee the absence of errors before beginning implementa-
tion. Chen [2] proposes a location-triggered specification language for real-time
systems, called STeC, which emphasizes location, time, and especially on the

c© Springer International Publishing Switzerland 2016
A. Remke and B.R. Haverkort (Eds.): MMB & DFT 2016, LNCS 9629, pp. 77–91, 2016.
DOI: 10.1007/978-3-319-31559-1 8

78 K. He et al.

consistency between them. The location describes the physical location (e.g., a
particular bus station in Münster, Germany) or a state (e.g., “closed”) of agents,
the time focuses on exact physical time (e.g., 5:22pm) at which the behaviour
starts or finishes, together with the duration expressing how long the behaviour
executes or persists. Intuitively, we aim at allowing such a process to take place
and finish at the required location and time, and with the specified execution
time, so as to guarantee the spatial-temporal consistency. This is very important
to ensure the success of tasks in real-time systems concerning precision, such as
railway crossing systems or robot hands. The syntax of STeC [2] resembles some
classical process algebras, such as CSP and CCS, it uses processes to describe
the behaviours of agents and systems, but STeC restricts each atomic or com-
positional process by a pair of (starting) location and time, and also a duration,
i.e., all the processes are triggered by location and time.

STeC has been extended with a hybrid clock to specify both logical and
chronometric time aspects of real-time system [4], and is powerful enough for
real-time systems, yet it does not support the description or specification of
probabilistic aspect as they prevail in probabilistic real-time systems. In this
paper, we address this challenge. Formalization of probabilistic systems has
become an important topic of investigations in theoretical computer science.
Segala [16] defines several probabilistic models and simulation relations for prob-
abilistic processes, and He [10] has extended the Dijkstra’s guarded command
languages [5] with a probabilistic choice operator to express randomized algo-
rithms. Ying [19] develops formal methods and mathematical tools for modeling
and reasoning about programs containing probability information, and Chen [3]
has extended probabilistic choice in probabilistic programs to sub-probabilistic
choice. In recent decades, model checking methods for probabilistic and prob-
abilistic timed automata have been developed, and implemented among others
by Kwiatkowska et al. [13,14]. Hermanns et al. [7,9,11] have developed various
model checkers for probabilistic systems, and He [8] uses the probabilistic model
checker PRISM [12] to verify a communication protocol under a specific Internet
of Things (called WInternet).

As mentioned above, the modelling mechanisms for probabilistic systems are
not new, but lack of a formalism for precision real-time systems, in which loca-
tion and time are the two most important keys to success for tasks. Modern lan-
guages, such as Modest [1] and the PRISM language (i.e., guarded commands),
are easy for users to learn and are capable to express a probabilistic real-time
system model focusing on time, not on locality. This means that the model is
driven by (discrete or continuous) time without considering the physical location
of each agent. Location and the spatial-temporal consistency are not considered
of interest. In contrast, PSTeC not only deals with the basic modelling of prob-
abilistic, nondeterministic and real-time characteristics, but also takes location
and spatial-temporal consistency aspects into account. PSTeC is also an easy-to-
learn language for non-scientist users such as engineers. Inspired by the general
approach to reason about probabilistic systems, we extend the syntax of STeC
with additional probabilistic operators equipped with an operational semantics.

PSTeC 79

This has already proved successful for non-probabilistic real-time system, with
the inclusion of probabilistic distributions. Notably, adding a probabilistic fea-
ture to the STeC syntax will change the original semantics in its entirety (i.e., not
just simply appending additional semantics for the probabilistic features), and
also we need to find a suitable way to integrate the features semantically. To do
so, we take inspiration from the way the operational semantics of Modest [1,6]
lifts structural operational semantics to work with probabilistic distributions
over complex structures.

Organisation of the Paper. Section 2 first defines the syntax of PSTeC formally
with some useful shorthands to help modelling, and then develops the operational
semantics of PSTeC in full detail. A model of a smart spray painting factory is
presented as a case in Sect. 3 to show how to use PSTeC to specify location-aware
probabilistic real-time systems. Finally, Sect. 4 concludes the paper.

2 Formal Definition of PSTeC

In this section, we present the formalism of PSTeC, as an extension of STeC [2].
To be clear with respect to the description of behaviours of individual Agent,
respectively the concurrent System, we give the definition of PSTeC syntax for
agents and systems separately. Processes P for Agent and S for System are
constructed according to the grammar given in Eqs. 1 and 2 respectively.

2.1 Syntax

(1) For each Agent:

A ::= Send⇀G′
(l,t) (m, δ) |Get↼G′

(l,t) (m, δ)

B ::= Act(l,t)(l′, δ) |Stat(l,t)(δ)
C ::= A |B
P ::= Stop(l,t)(∞) |Skip(l,t)(0) |C |

P ;P |P ‖ P |P [] P | B → P |
P �δ P |P � []i∈IGet↼G′

(l,t) (mi, δ) → Pi |
C → +i∈I pi : {asi}Pi

(1)

In order to track and record the messages concerned in the system, we define
a storage for each agent, denoted by σ ⊆ 2M (if necessary, we use σG′ to denote
the storage for agent G′), where M is the set of messages with the form mG�G′

or m, and
∑

as the set of storages (i.e., σ ∈ ∑
). Note that, mG�G′ represents

the message from G to G′, and we use ⊥ to describe unknown agent, i.e., m⊥�G

stands for the message from some unknown agent to agent G. The duration δ
takes the non-negative real numbers as well as the infinite ∞. If δ takes the ∞
value then it means the process will continue to execute and will not stop, and
if δ is 0 then it means that the execution of the process takes no time.

80 K. He et al.

Atomic Processes. We assume that the set of atomic processes AP are par-
titioned into a set of interactions A, a set of guards B, Stop and Skip.

Two interaction processes Send and Get are involved in our language, they
are used to describe the communication between two agents through messages
without changing locations. Informally, the atomic process Send⇀G′

(l,t) (m, δ) shows
that agent G sends message m (i.e., mG�G′) to the destination agent G′ at
location l and at time t, taking time δ. Similarly, agent G executes Get↼G′

(l,t) (m, δ)
to get message m (i.e., mG′�G) from agent G′ by δ duration.

Two most common atomic processes are action Act and state Stat, which
are also called guards of the Dijkstra’s guarded type denoted by B. Act(l,t)(l′, δ)
represents that the action Act is executed at location l and at time t, taking δ
duration, when the action finishes, the agent arrives at location l′. Stat(l,t)(δ)
represents that at location l and at time t, the agent keeps state Stat for δ unit
times. Note that, l and l′ in B can either represent the location (e.g., Lapp) or
state (e.g., Open) according to different real situations. The guard B takes the
Boolean/truth values: True T and False F . We use B to denote the set of guards,
i.e., B ∈ B, then a truth assignment for guard B is a function ν : B → {T, F}, if
action Act(l,t)(l′, δ) finishes within the δ time units and moves to location l′, then
ν(Act(l,t)(l′, δ)) = T (i.e., True), else ν(Act(l,t)(l′, δ)) = F (i.e., False). Similarly,
if state Stat(l,t)(δ) keeps δ time units, then ν(β(l,t)(δ)) = T , else ν(Stat(l,t)(δ)) =
F . Typically, the valuation False formally specify such situation: (1) Action
Act(l,t)(l′, δ) finishes less than or more than δ duration. (2) State Stat(l,t)(δ)
lasts less than or more than δ time units. 3) When action Act(l,t)(l′, δ) or state
Stat(l,t)(δ) finishes, the agent is not at location l′.

Process Stop(l,t)(∞) will never finish unless it is interrupted. Skip(l,t)(0) will
finish immediately without taking any time.

Compositional Processes. P ;P is the sequential composition. P1 ‖ P2 repre-
sents the parallel, since we only consider the handshake above Send-Get interac-
tions and there is no possible that same message m is sent and got by agent G at
the same time, P1 and P2 just behave independently. Note that because we have
to restrict each atomic process with the triggered location and time as well as
the execution duration, so P1 and P2 will behave following their own procedure
instead of interleaving. P [] P represents nondeterministic choice and executes if
one of the sub processes executes. B → P stands for the If-Then statement that
if guard B is True (i.e., ν(B) = T) then agent behaves like process P .

Timeout process P1 �δ P2 behaves as P1 for δ time units and then
behaves as P2, in another word, process P1 is interrupted by duration δ.
P � []i∈IGet↼G′

(l,t) (mi, δ) → Pi is another type of interruption that P executes
until agent G finishes Get, which starts at location l and at time t, and gets
message mi, then agent behaves like process Pi.

C → +i∈I pi : {asi} Pi, which makes the main difference from STeC to
PSTeC, represents a probabilistic choice that after C is executed the process
behaves as Pi with probability pi, where C can be arbitrary atomic process except
Stop and Skip. pi denotes the probability measure for process Pi and

∑
i∈I pi = 1.

PSTeC 81

asi represents a set of assignments with the form: x1 = e1, . . . , xn = en, where
xi ∈ V ar(0 < i ≤ n) are different variables and ei can be constants (e.g.,
5, closed), variables (e.g., x1), or arithmetic expressions (e.g., x1 − 5). The set
of asi is denoted by A. Similarly, we use C to denote the set of C, and have
the truth assignment for probabilistic guard C, i.e., a function ρ : C → {T, F}.
The truth assignment for the subset B ⊆ C is the same as that described in
Sect. 2.1. Now we only consider the part composed by A: If action Get↼G′

(l,t) (m, δ)
finishes successfully within δ time units and there exists m (specifically mG′�G)
in the storage of G′ (i.e., mG′�G ∈ σG′), ρ(Get↼G′

(l,t) (m, δ)) = T (i.e., True). If

action Send⇀G′
(l,t) (m, δ) finishes successfully within δ time units and m (specifically

mG�G′) exists in the storage of G (i.e., mG�G′ ∈ σG), ρ(Send⇀G′
(l,t) (m, δ)) = T (i.e.,

True). Considering probabilistic choice process:

Closing(L,t)(L, θ1) →⎛
⎝0.8 : {st = closed}(Send⇀T

(L,t+θ1)(CR, 2) ‖ Closed(L,t+θ1)(θ2))
+
0.2 : {st = nclosed}(Send⇀T

(L,t+θ1)(NC, 2) ‖ Closing(L,t+θ1)(L, θ3))

⎞
⎠

where the variable st stands for the state of Gate with initial value open. Gate
takes action Closing to try to close itself, and when this action is done after
θ1 time units: (1) The state of Gate is closed with probability 0.8, then Gate
sends message CROSS to Train and meanwhile it stays Closed. Or (2) the state
is non-closed with 0.2, then Gate sends message NONCROSS to Train and
meanwhile it continues to close.

(2) For the System:
S ::= PG | S �	 S (2)

The system process consists of n(≥ 1) agent processes behaving concurrently
(i.e., PG1 �	 PG2 �	 . . . �	 PGn

). If there are two different agents G1 and G2 in the
system, then they handshake on interactions (i.e., if Send⇀G2

(lG1 ,tG1)
(mG1�G2 , δG1)

and Get↼G1
(lG2 ,tG2)

(mG1�G2 , δG2) are ingredients of PG1 and PG2 respectively, and
tG1 = tG1 , δG1 = δG2 , then PG1 and PG2 should execute the above interactions
at the same time), otherwise they behave independently. Similarly, for n agents,
if Send⇀Gi and Get↼Gj with the same message (note that we use mk

Gi�Gj
to

represent mGi�Gj
from Gi to Gj at kth time, where k ≥ 1, which means different

time-stamped messages from the same sender and receiver Gi to Gj) exist in
sub processes PGj

and PGi
respectively, then the above restrictions should be

guaranteed, otherwise they behave independently.
We use P to denote the set of agent processes (i.e., P ∈ P) and S as the

set of system processes (i.e., S ∈ S). Notation E is used to describe a successful
termination, and considering P we always rewrite processes of form E;P , P ;E,
E ‖ P , P ‖ E as P . The extended set of processes are denoted by PE = P ∪ E.
Note that the structure (PE ,E,;,‖) is a bimonoid, and (PE ,E,‖) is a commutative
monoid.

82 K. He et al.

Reed and Roscoe [17] defined a process WAIT t to specify the waiting state
lasting for t time units. Same as in [2], we define agent process Wait as:

Wait(l,t)(δ)
def
= Stop(l,t)(∞) �δ Skipl,t+δ(0) (3)

to describe agent G waits for δ time units and does nothing, and

Wait↼G′
(l,t) (m)

def
= Stop(l,t)(∞) � Get↼G′

(l,t′)(m, δ) → Skip (4)

to describe agent G waits for the message m coming from G′ without changing
the location, where t < t′.

2.2 Some Constraints

Since giving the syntax of PSTeC, we need to clarify some constraints that ensure
the statements are meaningful and practical.

1. For P1;P2, P1 ‖ P2 and P1 [] P2, the starting location and time of P2 should
be the same as those of P1 respectively.

2. For P = P1 [] P2, If P has successive processes, the finishing location and
time of P1 and P2 are the same respectively.

2.3 Operational Semantics

An environment e for each Agent is a triple (a, u, σ), where (a, u) is a spatial-
temporal point, in which a stands for the location or state, and u is a global clock
in the system. We use E : L×T ×∑

to denote the set of environments, where L
represents the set of location variables and T represents the set of time variables.
We define functions t(P) : P → T to extract the triggered time ingredient of
process P and l(P) : P → L to extract the triggered location ingredient of
process P . Based on the environment (a, u, σ), we give the truth assignment for
the probabilistic guards C as a function T : C × E → {T, F}. T(C)(a, u, σ) = T
if and only if (l(C), t(C)) = (a, u) and ρ(C) = T .

We define the set of configurations Stconf as PE × E . A configuration is
of the form 〈P, (a, u, σ)〉 denoted by π, where P is a agent process or E. The
operational semantics for agent process P is given in terms of the probabilistic
spatial-temporal transition system following the structured operational semantics
style (SOS) [15], in which the operational semantic is described as the individual
step of its operands. To handle the probabilistic aspects (induced by the prob-
abilistic choice operator, but affecting the entirety of the semantics) we take
inspirations from the Modest operational semantics [1,6].

We define spatial-temporal probability measure (st-probability measure for
short) as a function P : A × Stconf → [0, 1] to map an assignment and a
configuration onto a probability.

Definition 1. A probabilistic spatial-temporal transition system (PSTTS) is
defined as a subset →⊆ Stconf × P(A × Stconf).

PSTeC 83

where P is a kind of “symbolic” probabilistic distribution over pairs of assign-
ments and target configurations. Intuitively speaking, for 〈π,P(asi, πi)〉 ∈→, we
write π → P(asi, πi), and once π → P(asi, πi) is executed, the configuration
is changed to πi assigning variables values according to asi with probability
P(asi, πi), satisfying for all target pairs of (asi, πi) that

∑
i∈I P(asi, πi) = 1.

Let D(as, π) denote the deterministic (often called Dirac) probability mea-
sure that is defined by D(as, π)(as, π) = 1 and D(as, π)(as′, π′) = 0 for all
(as′, π′) = (as, π). Intuitively, the assignment as and configuration π are chosen
with probability 1.

Before presenting the operational semantics, we first define some functions.
ι(P), τ(P), κ(P) are extended from [18]: ι(P) denotes the location where P is
finished, τ(P) denotes the duration that P is executed successfully, and κ(P)
records the store of messages after process P finished. We use �(P)(a, u, σ) :
P ×L×T ×M → M to record the set of messages that are going to be removed
from σ after the execution of process P under the environment (a, u, σ). Function
Last is defined to find the max location (which can only be comparable with the
same agent). ι(P)t+δ and κ(P)t+δ record the location and storage of process
P at time (t + δ) respectively. �(P)t+δ records the set of messages that are
produced at time (t + δ) in �(P). These functions will be used in the following
subsections.

Time Function. The execution time τ(P) of a process P is defined in Table 1,
where 1: if the process has no successive process we simply omit the time of
this process since we really don not care under this condition, else we restrict
τ(P1) = τ(P2), so 1 = τ(P1), 2: similarly if there is no successors we omit it
else we restrict τ(Pi) = τ(Pi+1), so 2 = t − t(P) + δ + τ(Pi).

Location Function. We define the location function ι(P) under the environ-
ment (l, t, σ) as in Table 2, where 3: if the process has no successor we omit it
else we restrict ι(P1) = ι(P2), so 3 = ι(P1), 4: if no successor we omit it else
we restrict ι(P1) = ι(P2), so 4 = ι(Pi)(ι(P)t′+δ(l, t, σ), t′ + δ, κ(P)t′+δ(l, t, σ) ∪
{mG′�G}), 5: = Last{ι(Pi)(ι(C)(l, t, σ), t + τ(C), κ(C)(l, t, σ))} | i ∈ I.

Message Function. The message function κ(P) under the environment (l, t, σ)
is defined in the Table 3, where 6: notice that, we allow message redundancy,
i.e., if the parallel process is chosen to behave as P1, then κ(P1) ⊆ κ(P1[]P2),
or if P2 is chosen, then κ(P2) ⊆ κ(P1[]P2), 7:= ∪i∈Iκ(Pi)(ι(P)t′+δ(l, t, σ), t′ +
δ, κ(P)t′+δ(l, t, σ) ∪ {mG′�G}).

Now we first present the operational semantics of agent process and then the
operational semantics for a more complex system process.

Basic Processes. Behaviour Stop(l,t+1)(∞) will not terminate before it is inter-
rupted and Skip(l,t)(0) terminates immediately, both of them will neither change
the value of any variable nor the storage of the agent. When the spatial-temporal

84 K. He et al.

Table 1. Time function τ(P).

τ(Stop(l,t)(∞)) = ∞ τ(Skip(l,t)(0)) = 0

τ(Send⇀G′
(l,t) (m, δ)) = δ τ(Get↼G′

(l,t) (m, δ)) = δ

τ(Act(l,t)(l
′, δ)) = δ τ(Stat(l,t)(δ)) = δ

τ(P1;P2) = τ(P1) + τ(P2) τ(P1 ‖ P2) = max{τ(P1), τ(P2)}
τ(P1 [] P2)1 τ(B → P) = τ(B) + τ(P)

τ(P1 �δ P2) = δ + τ(P2) τ(P � []i∈IGet↼G′
(l,t) (mi, δ) → Pi)

2

τ(C → +i∈I pi : {asi} Pi) = τ(C) + max{τ(Pi)} | i ∈ I

Table 2. Location function ι(P).

ι(Stop(l,t)(∞))(l, t, σ) = l ι(Skip(l,t)(0))(l, t, σ) = l

ι(Send⇀G′
(l,t) (m, δ))(l, t, σ) = l ι(Get↼G′

(l,t) (m, δ))(l, t, σ) = l

ι(Act(l,t)(l
′, δ))(l, t, σ) = l′ ι(Stat(l,t)(δ))(l, t, σ) = l

ι(P1; P2)(l, t, σ) = ι(P2)(ι(P1)(l, t, σ), t + τ(P1), κ(P1)(l, t, σ))

ι(P1 ‖ P2)(l, t, σ) = Last{ι(P1)(l, t, σ), ι(P2)(l, t, σ)}
ι(P1 [] P2)(l, t, σ)3 ι(B → P) = ι(P)(ι(B)(l, t, σ), t + τ(B), σ)

ι(P1 �δ P2)(l, t, σ) = ι(P2)(ι(P1)
t+δ(l, t, σ), t + δ, κ(P1)

t+δ(l, t, σ))

ι(P � []i∈IGet↼G′
(l′,t′)(mi, δ) → Pi)(l, t, σ)4 ι(C → +i∈I pi : {asi} Pi)(l, t, σ)5

Table 3. Message function κ(P).

κ(Stop(l,t)(∞))(l, t, σ) = σ κ(Skip(l,t)(0))(l, t, σ) = σ

κ(Send⇀G′
(l,t) (m, δ))(l, t, σ) = σ \ {mG�G′} κ(Get↼G′

(l,t) (m, δ))(l, t, σ) = σ ∪ {mG′�G}
κ(Act(l,t)(l

′, δ))(l, t, σ) = σ κ(Stat(l,t)(δ))(l, t, σ) = σ

κ(P1; P2)(l, t, σ) = κ(P2)(ι(P1)(l, t, σ), t + τ(P1), κ(P1)(l, t, σ))

κ(P1 ‖ P2)(l, t, σ) = κ(P1)(l, t, σ) ∪ κ(P2)(l, t, σ) \ (�(P1)(l, t, σ) ∪ �(P2)(l, t, σ))

κ(P1 [] P2)(l, t, σ) = κ(P1)(l, t, σ) ∪ κ(P2)(l, t, σ)6

κ(B → P) = κ(P)(ι(B)(l, t, σ), t + τ(B), σ)

κ(P1 �δ P2)(l, t, σ) = κ(P2)(ι(P1)
t+δ(l, t, σ), t + δ, κ(P1)

t+δ(l, t, σ))

κ(P � []i∈IGet↼G′
(l′,t′)(mi, δ) → Pi)(l, t, σ)7

κ(C → +i∈I pi : {asi} Pi)(l, t, σ) = ∪i∈Iκ(Pi)(ι(C)(l, t, σ), t + τ(C), κ(C)(l, t, σ))

PSTeC 85

point coincides the triggered location and time of the processes, the operational
semantics read:

(a, u) = (l, t)
〈Stop(l,t)(∞), (a, u, σ)〉 → D(∅, π)

where π = 〈Stop(l,t)(∞), (l, t, σ)〉, and

(a, u) = (l, t)
〈Skip(l,t)(0), (a, u, σ)〉 → D(∅, π)

where π = 〈E, (l, t, σ)〉.
Since the assignments are partial functions, ∅ stands for the empty assign-

ment that no variable changes its value.
Interactions Send and Get specify the interaction or handshaking between

two agents by messages. Send sends a message m (specifically mG�G′) from
storage G to the storage of G′. Note that the procedure that m is added into
σG′ is not presented here but in the operational semantics of Get process in
agent G′. Whilst, Get gets a message m (specifically mG′�G) from σG′ . Similarly,
the procedure of judgement for mG′�G ∈ σG′ is presented in the operational
semantics of Send in G. In fact the above two procedures will be presented in
the operational semantics of system process in later subsection. No assignments
are executed:

(a, u) = (l, t) ∧ mG�G′ ∈ σ

〈Send⇀G′
(l,t) (m, δ), (a, u, σ)〉 → D(∅, π)

where π = 〈E, (l, t + δ, σ \ {mG�G′})〉, and

(a, u) = (l, t)
〈Get↼G′

(l,t) (m, δ), (a, u, σ)〉 → D(∅, π)

where π = 〈E, (l, t + δ, σ ∪ {mG′�G})〉.
We require that action Act takes δ time units to execute successfully moving

to location l′ and Stat keeps δ without changing the location. No message are
involved and both processes execute no assignments:

(a, u) = (l, t)
〈Act(l,t)(l′, δ), (a, u, σ)〉 → D(∅, π)

where π = 〈E, (l′, t + δ, σ)〉, and

(a, u) = (l, t)
〈Stat(l,t)(δ), (a, u, σ)〉 → D(∅, π)

where π = 〈E, (l, t + δ, σ)〉.

86 K. He et al.

Sequential Composition. P1;P2 executes P1 until it successfully terminates,
then it continues with the execution of P2. When sequential process executes
δ0 ≤ τ(P1;P2) time units, like in [1], we define the operational semantics as:

〈P1, (a, u, σ)〉 → P
〈P1;P2, (a, u, σ)〉 → P ◦ M−1

;

where

M;(as, 〈P ′
1, e〉) def

=

{
〈as, 〈P ′

1;P2, e〉〉 if P ′
1 = E

〈as, 〈P2, e〉〉 if P ′
1 = E

and e = (ι(P1)u+δ0(a, u, σ), u+ δ0, κ(P1)u+δ0(a, u, σ)). The inverse of M; is used
in P ◦ M−1

; to retrieve the st-probability measure for the sequential composi-
tion from the st-probability measure assigned by P to the first component of a
sequential composition.

Parallel Composition. As mentioned in Sect. 2.1, parallel composition P1 ‖ P2

in agent process simply behaves independently:

〈P1, (a, u, σ)〉 → P1 ∧ 〈P2, (a, u, σ)〉 → P2

〈P1 ‖ P2, (a, u, σ)〉 → (P1 × P2) ◦ M−1
‖

where (P1 × P2)(Ω1,Ω2)
def
= P1(Ω1) · P2(Ω2) for all Ω1 and Ω2, corresponding

to the product of two probability spaces, and

M‖(〈as1,〈P ′
1, e1〉〉, 〈as2, 〈P ′

2, e2〉〉)
def
=

{
〈as1 ∪ as2, 〈P ′

1 ‖ P ′
2, e〉〉 if P ′

1 = E or P ′
2 = E

〈as1 ∪ as2, 〈E, e〉〉 if P ′
1 = E and P ′

2 = E

where e1 = (l1, u + δ0, σ1), e2 = (l2, u + δ0, σ2), e = (Last{l1, l2}, u +
δ0, σ‖), in which l1 = ι(P1)u+δ0(a, u, σ), σ1 = κ(P1)u+δ0(a, u, σ), l2 =
ι(P2)u+δ0(a, u, σ), σ2 = κ(P2)u+δ0(a, u, σ)), σ‖ = σ1 ∪ σ2 \ (�(P1)u+δ0(a, u, σ) ∪
�(P2)u+δ0(a, u, σ)).

Nondeterministic Choice. P1[]P2 is the usual alternative composition, only
one alternative is chosen nondeterministically, the operational semantics is:

〈Pi, (a, u, σ)〉 → Pi (i ∈ {1, 2})
〈P1[]P2, (a, u, σ)〉 → Pi

.

If-Then. When the guard B is true under environment (a, u, σ), agent behaves
as process P :

〈B, (a, u, σ)〉 → P ∧ T(B)(a, u, σ) = T

〈B → P, (a, u, σ)〉 → P ◦ M−1→

where M→(〈as, 〈E, e〉〉) def
= 〈as, 〈P, e〉〉, and e = (ι(B)(a, u, σ), t(B) + τ(B), σ).

PSTeC 87

Interruption. Timeout interruption P1 �δ P2 will behave like P1 before δ time
units and then as P2. When the process executes δ0 ≤ δ time units:

〈P1, (a, u, σ)〉 → P
〈P1 �δ P2, (a, u, σ)〉 → P ◦ M−1

�δ

where

M�δ
(〈as, 〈P ′

1, e〉〉) def
=

{
〈as, 〈P ′

1 �δ−δ0 P2, e〉〉 if δ0 < δ

〈as, 〈P2, e〉〉 if δ0 = δ

where e = (ι(P1)u+δ0(a, u, σ), u + δ0, κ(P1)u+δ0(a, u, σ)).
Let

Qi ≡ Get↼G′
(l,t) (mi, δ)

Get interruption P � []i∈IGet↼G′
(l,t) (mi, δ) → Pi behaves like P1 until the agent

receives one message mi successfully, then it behaves as Pi. When get interrup-
tion process executes δ0 time units:

〈P, (a, u, σ)〉 → P1 ∧ 〈Qi, (l, t, σ′)〉 → P2 ∧ miG′�G ∈ σG′

〈P � []i∈IQi → Pi, (a, u, σ)〉 → (P1 × P2) ◦ M−1
�Get

where σ′ = κ(P)t(a, u, σ) and

M�Get
(〈as1, 〈P ′, e1〉〉, 〈as2, 〈Q′

i, e2〉〉)

def
=

⎧⎪⎨
⎪⎩

〈as1 ∪ as2, 〈P ′ � Qi → Pi, e〉〉 if u + δ0 < t

〈as1 ∪ as2, 〈P ′ � Q′
i → Pi, e〉〉 if u + δ0 ≥ t and Q′

i = E

〈as1 ∪ as2, 〈Pi, e〉〉 if u + δ0 ≥ t and Q′
i = E

where e1 = (l1, u+δ0, σ1), e2 = (l2, u+δ0, σ2), e = (Last{l1, l2}, u+δ0, σ�Get
), in

which l1 = ι(P)u+δ0(a, u, σ), σ1 = κ(P)u+δ0(a, u, σ), l2 = ι(Qi)u+δ(l, t, σ′), σ2 =
κ(Qi)u+δ0(l, t, σ′), σ�Get

= σ1 ∪ σ2 \ (�(P)u+δ0(a, u, σ) ∪ �(Qi)u+δ0(l, t, σ′)).

Probabilistic Choice. Process C → +i∈I pi : {asi} Pi first behaves as C and
when C terminates successfully it randomly selects an alternative i ∈ I according
to the probability pi, performs an assignment according to asi, and continues
executing Pi:

(a, u) = (l(C), t(C)) ∧ T(C)(a, u, σ) = T

〈C → +i∈I pi : {asi} Pi, (a, u, σ)〉 → P

where P(〈asi, πi〉) = pi, in which πi stands for the ith configuration with ith
process Pi and ith environment ei (i.e., πi = 〈Pi, ei〉), note that

∑
i∈I pi = 1.

88 K. He et al.

Operational Semantics for System Process. When different agents behave
concurrently in the system, they have their own traces of location and stor-
ages but the same global time. The concurrent operation between two processes
will be like handshaking over the interactions (i.e., Send and Get) or behave
independently otherwise. Similarly, unlike interleaving, since each process has to
follow the specification, the operational semantics for the system process is actu-
ally combined by the operational semantics of sub agent processes with check-
ing whether the handshaking is legal (i.e., Send⇀G1

(l,t) (m, δ) and Get↼G2
(l,t) (m, δ)

in PG2 and PG1 respectively with the same triggered time, duration and mes-
sage) if there exists one. We define a configuration StconfS for a system
process as S × En, where n stands for the number of sub agent processes
in S, a system configuration of the form 〈S,ENn〉 is denoted by πS , where
S = PG1 �	 PG2 �	 . . . �	 PGn

and ENn = (e1, e2, . . . , en). We use πSi
= 〈PGi

, ei〉
to denote the configuration for ith sub agent process, where ei = (ai, u, σi) (they
have the same u since it stands for the global time).

Definition 2. The operational semantics for system process S with n sub agent
processes is defined as a subset →S⊆ StconfS × PS(An × StconfS).

where PS : An × StconfS → [0, 1] is a function to map n-element set of assign-
ments and n-element configurations onto a probability.

For 〈πS ,PS(ASn, π′
S)〉 ∈→S , where ASn = (as1, as2, . . . , asn), we write

πS →S PS(ASn, π′
S), where πSi

→ P(asi, π
′
Si

). Once πS →S PS(ASn, π′
S) is

executed, the system configuration is changed to π′
S with sub agent process PGi

assigning its variables values according to asi with probability PS(〈ASn, π′
S〉) =∏

i∈n P(〈asi, π
′
Si

〉). Particularly, the operational semantics of system process
with one agent process is same as that of the latter, i.e., we simply rewrite
→S as →. The operational semantics for system process S with n(≥ 2) sub
agent processes PG1 , . . . , PGn

is presented as follows:

〈PG1 , e1〉 → PG1 ∧ . . . ∧ 〈PGn
, en〉 → PGn

∧ CheckLegal
〈PG1 �	 . . . �	 PGn

, ENn〉 →S (PG1 × . . . × PGn
) ◦ M−1

��

where

M��(〈as1, 〈P ′
G1

, e′
1〉〉, . . . , 〈asn, 〈P ′

Gn
, e′

n〉〉) def
= 〈ASn, 〈P ′

G1
�	 . . . �	 P ′

Gn
, ENn′〉〉

and CheckLegal is a function to check whether the interactions are legal in
S, i.e., for each pair Send⇀Gj

(li,ti)
(mi, δi) and Get↼Gi

(lj ,tj)
(mj , δj) in PGi

and PGj

respectively with ti = tj , if mi = mj and δi = δj , then it returns True, else
returns False. If no such pair exists, CheckLegal returns True.

3 Automatic Spray Painting of a Custom Car

Here we consider one smart spray painting factory for custom cars using
Internet of Things techniques. The whole factory is ‘alive’ that every part

PSTeC 89

(i.e., physical thing) of the system is able to sense the environment, commu-
nicate with each other and react in real time. Once a car is placed at the door
of factory, it has been loaded with all its booking information, including the
car number, the customer name, the timestamp of each event, the map and the
detailed spray painting requirements (e.g., patterns, colors and paint material).
The car moves automatically following the map. When starting approach the
robots at location Lappr, it sends all necessary information (AP) to the robots.
After receiving the information, the robots check the store of all paint mate-
rial. They would find lack of some material with probability pfail. Then the
robots send message NE (which is ‘do Not Enter’) to forbid the car to enter
the workstation. When the car receives the message at location Lpass, it stops
progressively to location Lstop. Meanwhile the robots automatically refill the
material, then send message ET (which is ‘EnT er’) to allow the car to enter.
After receiving the message, the car continues to move towards the robots. When
the automatic spray painting finishes, the robots send message OK to the car.
Then the car moves to location Lleav to end its procedure. We first estab-
lish two agent processes Car and Robot, with messages {AP,NE,ET,OK},
actions {Send,Get,Run,Stopping,Appr,Refill,Check}, states {Idle,Painting},
and locations {Lappr, Lpass, Lstop, Lleav}. We assume the message transmit-
ting time is 2 unit time.

The agent process Car is defined as:

(Send⇀R
(Lappr,t)(AP, 2) ‖ Appr(Lappr,t)(Lpass, δ1))�⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Get↼R
(Lpass,t+δ1−2)(ET, 2) → Appr(Lpass,t+δ1)(L, δ2);

Wait↼R
(L,t+δ1+δ2)(OK, δ3); Run(L,t+δ1+δ2+δ3)(Lleave, δ4) → Stop

[]
Get↼R

(Lpass,t+δ1−2)(NE, 2) → Stopping(Lpass,t+δ1)(Lstop, δ5);
Wait↼R

(Lstop,t+δ1+δ5)(ET, δ6); Appr(Lstop,t+δ1+δ5+δ6)(L, δ7);
Wait↼R

(L,t+t1)(OK, δ8); Run(L,t+t1+δ8)(Lleave, δ9) → Stop

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where t1 = δ1 + δ5 + δ6 + δ7.
The agent process Robot is defined as:

Idle(L,t0)(∞)�
Get↼C

(L,t)(AP, 2) → Check(L,t+2)(L, θ1) →⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.8 : {st = satisfied}
(Send⇀C

(L,t+2+θ1)(ET, 2) ‖ Wait(L,t+2+θ1)(θ2))�θ2

Painting(L,t+2+θ1+θ2)(θ3); Send⇀C
(L,t+t2)(OK, 2);

Idle(L,t+t2+2)(∞)
+
0.2 : {st = lack}

(Send⇀C
(L,t+2+θ1)(NE, 2) ‖ Refill(L,t+2+θ1)(L, θ4));

(Send⇀C
(L,t+2+θ1+θ4)(ET, 2) ‖ Wait(L,t+2+θ1+θ4)(θ5))�θ5

Painting(L,t+t3)(θ6); Send⇀C
(L,t+t3+θ6)(OK, 2);

Idle(L,t+t3+θ6+2)(∞)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

90 K. He et al.

where variable st stands for the status of required material with initial value
satisfied, and t2 = 2 + θ1 + θ2 + θ3, t3 = 2 + θ1 + θ4 + θ5.

The PSTeC model for the smart spray painting factory is specified as the
system process: Car �	 Robot, and we restrict that t + δ1 − 2 = t + 2 + θ1, t +
δ1+δ2+δ3 = t+t2+2, t+δ1+δ5+δ6 = t+2+θ1+θ4+2, t+t1+δ8 = t+t3+θ6+2
for each pair of handshaking interactions.

4 Conclusion

In this paper, we have developed a modelling formalism, PSTeC, for specifica-
tion of probabilistic real-time systems triggered by location and time. For this,
we have extended the spatial-temporal consistency language STeC by adding
probabilistic operations so that PSTeC, apart from location specifics, supports
the specifation of nondeterministic, real-time and probabilistic aspects of behav-
iours. Considering concurrency between agents is far different from behaviours
of one agent since sub agent processes in one system process have different traces
of location and different message storages. We defined the syntax of PSTeC for
system and agent separately, with some useful shorthands. Then we provided full
details of the operational semantics, using the structured operational semantics
style. After establishing the formalism of PSTeC, we refined the STeC model of
a smart spray painting factory with additional probabilistic operations reflecting
the existing probabilistic behaviours.

Recently, we have been working on a denotational semantics for PSTeC aim-
ing at soundness as well as completeness. A tool to support building PSTeC
models and doing verification is under development.

Acknowledgments. This work is supported by the National Basic Research Program
of China (Grant No. 2011CB302802), the Innovation Group Project of the National
Natural Science Foundation (Grant No. 61321064), the National Natural Science Foun-
dation of China (Grant No. 61370100), the NSFC projects (Grant No. 61361136002 and
No. 61202105) and Shanghai Knowledge Service Platform for Trustworthy Internet of
Things (Grant No. ZF1213). Part of this work was done while the first author was
visiting Saarland University, Germany. The authors thank Holger Hermanns (Saarland
University, Germany) for his valuable contributions and discussions and helpful com-
ments on the structure and contents of this paper. The authors would also like to thank
the anonymous referees for their invaluable comments and suggestions.

References

1. Bohnenkamp, H., DArgenio, P.R., Hermanns, H., Katoen, J.: Modest: a composi-
tional modeling formalism for hard and softly timed systems. IEEE Trans. Softw.
Eng. 32(10), 812–830 (2006)

2. Chen, Y.: STeC: a location-triggered specification language for real-timesystems.
In: 2012 15th IEEE International Symposium on Object/Component/Service-
Oriented Real-Time DistributedComputing Workshops (ISORCW), pp.1–6. IEEE
(2012)

PSTeC 91

3. Chen, Y., Wu, H.: Semantics of sub-probabilistic programs. Front. Comput. Sci.
China 2(1), 29–38 (2008)

4. Chen, Y., Zhang, Y.: A hybrid clock system related to STeC language. In:
2014 IEEE EighthInternational Conference on Software Security and Reliability-
Companion (SERE-C), pp. 199–203. IEEE (2014)

5. Dijkstra, E.W.: A Discipline of Programming, vol. 1. Prentice-Hall, Englewood
Cliffs (1976)

6. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.: A compositional modelling
and analysis framework for stochastic hybrid systems. Formal Methods Syst. Des.
43(2), 191–232 (2013)

7. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: INFAMY: an infinite-state
markov model checker. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 641–647. Springer, Heidelberg (2009)

8. He, K., Zhang, M., He, J., Chen, Y.: Probabilistic model checking of pipe protocol.
In: 2015 International Symposium on Theoretical Aspects of Software Engineering
(TASE), pp. 135–138. IEEE (2015)

9. Hermanns, H., Katoen, J.P., Meyer-Kayser, J., Siegle, M.: ETMCC: model checking
performability properties of markov chains. In: Null, p. 673. IEEE (2003)

10. Jifeng, H., Seidel, K., McIver, A.: Probabilistic models for the guarded command
language. Sci. Comput. Program. 28(2), 171–192 (1997)

11. Katoen, J., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and
outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104
(2011)

12. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

13. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification
of real-time systems with discrete probability distributions. Theor. Comput. Sci.
282(1), 101–150 (2002)

14. Kwiatkowska, M., Norman, G., Sproston, J., Wang, F.: Symbolic model checking
for probabilistic timed automata. Inf. Comput. 205(7), 1027–1077 (2007)

15. Plotkin, G.D.: A structural approach to operational semantics (1981)
16. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. In: Jon-

sson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer,
Heidelberg (1994)

17. Shiryaev, A.N.: Probability. Graduate Texts in Mathematics, vol. 95 (1996)
18. Wu, H., Chen, Y., Zhang, M.: On denotational semantics of spatial-temporal con-

sistency language-stec. In: 2013 International Symposium on Theoretical Aspects
of Software Engineering (TASE), pp. 113–120. IEEE (2013)

19. Ying, M.: Reasoning about probabilistic sequential programs in a probabilistic
logic. Acta Informatica 39(5), 315–389 (2003)

Analysis of Hierarchical Semi-Markov Processes
with Parallel Regions

Daniel Homm(B) and Reinhard German

Department of Computer Science 7, University Erlangen-Nuremberg,
Martensstr. 3, 91058 Erlangen, Germany
{daniel.homm,reinhard.german}@fau.de

Abstract. We consider state charts with generally distributed state
sojourn times and with parallel regions in composite states. This cor-
responds to semi-Markov processes (SMPs) with parallel regions consist-
ing again of SMPs. The concept of parallel regions significantly extends
the modeling power: it allows for the specification of non-memoryless
activities that take place in parallel on many nested hierarchy levels.
Parallel regions can be left either by final states or by exit states, cor-
responding to the maximum and the minimum of the sojourn times in
the regions, respectively. Therefore, concurrent activities with synchro-
nization and competition can easily be modeled. An SMP with parallel
regions cannot simply be analyzed by flattening the state space. We pro-
pose an analysis based on a steady-state analysis of an embedded Markov
chain (EMC) at the top level and by a transient analysis at the compos-
ite state level with a limited computational effort. An expression for the
asymptotic complexity of the analysis is also provided. An example SMP
containing all modeling features with parallel regions is illustrated. We
carry out experiments on basis of this model and confirm the results by
simulations.

Keywords: Markov regenerative process · Semi-Markov Process ·
concurrency

1 Introduction

A semi-Markov process (SMP) is a well-known stochastic process defined over
a discrete state space: each state is associated with an independent and iden-
tically distributed (i.i.d.) random variable quantifying the sojourn time in the
state and the possible transitions to other states are quantified by branching
probabilities. A well-known analysis approach consists in defining an embedded
Markov chain (EMC) at the instants of time when a state is left, solving this
EMC and weighting this solution by the mean sojourn times in the states of the
SMP. An SMP generalizes the model of Markov chains such that it allows for
non-memoryless activities with arbitrary distributions instead of just the expo-
nential or geometric distribution. However, as a structural restriction, concurrent
activities cannot easily be modeled in an SMP. Nevertheless, SMPs can be used
c© Springer International Publishing Switzerland 2016
A. Remke and B.R. Haverkort (Eds.): MMB & DFT 2016, LNCS 9629, pp. 92–106, 2016.
DOI: 10.1007/978-3-319-31559-1 9

Analysis of Hierarchical Semi-Markov Processes with Parallel Regions 93

in many contexts, e.g., [6] proposed this for stochastic Petri nets in computer
performance modeling and [17,18] applied SMPs in statistical testing.

Several possibilities have been considered to relax this structural restriction.
First, phase type distributions can be used, but they lead to a state space explo-
sion and are not really feasible in case of several concurrent non-memoryless
activities. A second approach is to extend the embedding and to allow a more
complex behavior in between, leading to Markov regenerative processes, as
applied in the analysis of the M/G/1 queue or in non-Markovian stochastic
Petri nets [7]. In this approach the structural restriction can relatively easily
be relaxed in such a way, that concurrently to non-memoryless activities other
memoryless ones are allowed, leading however to higher analysis complexity.
Going beyond and allowing concurrent non-memoryless activities is possible in
principle by using the method of supplementary variables [7] or by using the
theory of Generalized Semi-Markov-Processes [11], but this leads to much more
involved partial differential or Volterra integral state equations.

In another work [15] the SMP model has been extended in the context of
stochastic Petri nets by allowing simultaneous starting of non-memoryless activ-
ities. The analysis of this model is possible based on the minimum of the length
of these activities. The approach presented here can be considered as a gener-
alization of this. Bradley et al. have also worked on stochastic Petri nets with
underlying SMPs, [2] presents a combination with stochastic model checking and
[1] distributed algorithms for quantiles and distributions. However, the work has
not extended the structural restriction. The concept of phase type distributions
has also been extended by Buchholz and Telek to more general matrix exponen-
tial distributions and rational arrival processes with an analysis still based on
Markov chains [4]. Carnevali, Vicario and coworkers have developped a further
approach to analyze non-Markovian stochastic Petri nets by extending theory for
the verification of reactive systems, allowing for a combined real-time and quan-
titative analysis [3,19]. In their approach a stochastic-class-graph is constructed
with discrete states, clock regions and probability distributions. For the analysis
it is necessary that all possible cycles in the model go through a regeneration
such that Markov renewal theory can be applied. The approach allows well for
concurrent non-memoryless activities but the structural restriction is not easy to
understand and many known modeling examples do not fall into this class [19].

In this work we suggest hierarchical SMPs with parallel regions. They
allow for a significantly extended modeling power not feasible with the other
approaches: non-memoryless activities can take place in parallel on many nested
hierarchy levels. States can be refined such that they are composed of nested
sub-states, possibly leading to several hierarchy levels. They may contain a sin-
gle or multiple parallel regions which are left either by final or by exit states. A
composite state is left, if the regions either all have reached their final states or
if at least one of the regions has reached its exit state. Final and exit states must
not be mixed on the same hierarchy level inside a state, but they can be nested
arbitrarily on different hierarchy levels. The steady-state analysis can be based
on embedding by using the time instants when states at the top level are left to

94 D. Homm and R. German

define an EMC. To obtain the solution of the actual process, the mean sojourn
times in all states are required. For composite states with a single region, this
is possible by solving a linear system (in case of acyclic structures even simpler
calculations can be possible). For composite states with multiple parallel regions
it is first necessary to perform a transient analysis of the regions to compute
the distribution of their sojourn times. Based on that, the distribution of the
sojourn time in the composite state can be obtained by the maximum in case of
final states and by the minimum in case of exit states. This can be performed
recursively over all hierarchy levels and allows for computing the steady-state
probabilities on all levels.

The computations of the distributions can be done numerically by using a
discretization scheme, in case of acyclic structures and small state spaces also
symbolic solutions are possible which we will use for illustration purposes. Note
that the discretization leads just to a linear increase of the computational costs.
The proposed analysis method can be automated, takes full advantage of the
hierarchical structure of the model and reduces the effort since a generation of a
flattened state space is not necessary. We derive an expression for the asymptotic
complexity of the analysis and show that the computational costs are much less
compared with any method which would be based on the construction of a
flattened state space.

The approach is based on previous work of the authors: in [10] the model
and analysis were suggested for discrete-time Markov chain (DTMCs) with two
hierarchy levels and final states, in [9] they have been extended to SMPs with
two hierarchy levels and final states. Both papers concentrate on the applica-
tion to usage models in statistical testing of complex embedded systems. The
contribution of this paper is a generalization of the model and its analysis to arbi-
trarily many hierarchical levels both with final and exit states, we also provide
a consolidated version of the theory.

The model structure of an SMP with parallel regions and the respective nota-
tion are elaborated in Sect. 2. The analysis is explained in detail in Sect. 3. It is
followed by an example that makes use of all model features, analysis results are
also provided in Sect. 4. Finally, the asymptotic computational effort is investi-
gated in Sect. 5.

2 Definition of the Model and Introduction of Notation

The definition of an SMP with parallel regions is split into multiple parts for
a better understanding. The first relates to the model structure, the second to
the notation that is used to refer to elements within the model, and the latter
is concerned with quantities that are of interest for the analysis.

2.1 Semi-Markov Processes with Parallel Regions

An SMP with parallel regions is comparable to a state machine with simple and
composite states [8]:

Analysis of Hierarchical Semi-Markov Processes with Parallel Regions 95

– On the top level the model consists of a state machine with simple and com-
posite states. Additionally, there is one initial pseudostate. Each simple state
is associated with i.i.d. sojourn times. Transitions connect states and are asso-
ciated with probabilities. The probabilities at outgoing transitions of a state
sum up to 1.

– Composite states either have one single region or multiple parallel regions
which all contain a state machine as defined above, giving rise to a recursive
definition starting at the top level, with substates at the intermediate levels
and only simple states at the bottom level.

– A region has an end pseudostate (also called absorbing state) which is either a
final or an exit pseudostate. All regions on the level directly below a composite
state must have the same type of end pseudostate.

– In case the regions on the level directly below a composite state have final
states, it is left, when all these regions have reached their final state.

– In case the regions on the level directly below a composite state have exit
states, it is left, when at least one of these regions has reached its exit state.

– There are no further synchronizations between regions.

2.2 Notation to Refer to States, Regions, and Substates

The possibility of nesting composite states demands for a notation that is able
to consider the hierarchy induced by them and that provides an unambiguous
identification of states, regions, and substates.

– Let c denote the context of a state. It is a list of pairs (i, j), where i relates
to a composite state and j to a region in that state.

– All states with context c constitute the set Sc, a state with context c is written
as sc,i ∈ Sc.

– The j-th region within a composite state sc,i is referred to as sc,i,j = sc′ with
c′ = (c, (i, j)). For simplicity we omit nested brackets, i.e., (c, (i, j)) denotes a
list c where (i, j) is appended. The amount of regions within composite state
sc,i is denoted by rc,i ≥ 1.

– The absorbing state of a region sc takes the index sc,e with e = |Sc|.
– The length of the context is given by l = |c|, it denotes the hierarchy level.
– The context can be omitted, if c = ∅. This is in general the case for states at

top level. The length of an empty context is 0.

This notation can be applied recursively on nested composite states. Context
information can thus be hidden by the context c. This preserves readability: For
example, lets consider the substate named state8 depicted in Fig. 1. Without
context, it is referred to as s2,1,1,1,1,1,2. This notation is almost unreadable.
With context set to c = ((2, 1), (1, 1), (1, 1)), we can simply refer to it by sc,2.
This notation also allows to refer to states on higher hierarchy levels.

2.3 Notation for Further Quantities

The analysis of an SMP with parallel regions requires the specification of further
quantities that are related to composite states, their regions, and their substates.

96 D. Homm and R. German

They are defined based on the structural definitions from Sect. 2.1 and the nota-
tion introduced in Sect. 2.2. For all these quantities, it is assumed that |c| > 0.

– Let the random variable Xc,i be the mean sojourn time in state sc,i without
taking any state transitions according to exit states besides a possible exit
in sc,i itself into account and let Fc,i(t) be its distribution and Fc(t) the
corresponding vector valid for region sc.

– Let the random variable Xc be the mean sojourn time in region sc without
taking any state transitions according to exit states besides a possible exit in
sc itself into account and let Fc(t) be its distribution.

– Let δc,i,j be the branching probability of going to state sc,j after leaving state
sc,i, Δc is the corresponding matrix, valid for region sc.

– Let vc,i(t) be the transient probability in state sc,i after entering region sc at
t = 0 without taking possible exits besides a possible exit in sc,i itself into
account, vc(t) is the corresponding vector, valid for region sc.

– Let Vc,i,j(t) be the conditional transient probability in state sc,j after entering
region sc in state sc,i at t = 0 without taking possible exits besides a possible
exit in sc,j itself into account, Vc(t) is the corresponding matrix, valid for
region sc.

– Let πc,i be the steady-state probability in state sc,i, πc is the corresponding
vector, valid for region sc.

– Let σc,i be the mean sojourn time in state sc,i after entering region sc, σc is
the corresponding vector, valid for region sc.

Furthermore, the following notation will be used: A bar above a vector or
matrix denotes a restriction to the non-absorbing states, i.e., in a vector the last
element is removed and in a matrix the last column and last row are removed.
F (t) = 1 − F (t) denotes the complement of the distribution. Applied to the
vector Fc(t) it means both element-wise complement of the distribution and
restriction to non-absorbing states. f c(t) is the vector of corresponding densi-
ties, also restricted to non-absorbing states. Finally, diag(f c)(t) and diag(Fc)(t)
denote diagonal matrices in which the vector is put on the diagonal and all other
elements are set to zero. I denotes the identity matrix of suitable dimension (all
elements on the diagonal equal to one, all others equal to zero) and e is a vector
of ones of suitable dimension.

3 Analysis

The analysis is based on the construction of an EMC. The EMC is embedded
at time points when a state on the top level is left. The required mean sojourn
times in the simple states can be obtained easily, however, the mean sojourn
times of the composite states are more challenging and must be computed based
on transient analysis. The analysis can thus be organized in the following steps:

1. For all composite states at top level the sojourn time distributions must
be computed. To do this, one must go recursively from bottom to top and

Analysis of Hierarchical Semi-Markov Processes with Parallel Regions 97

must do a transient analysis and then compute the maximum in case of final
states and the minimum in case of exit states. Exits that may occur in parallel
regions on the same and on higher hierarchy levels are not taken into account.

2. Based on the computed sojourn time distributions one must go again from
bottom to top in each composite state and compute the mean sojourn times
in each state. Now the exits in parallel regions on the same and on higher
levels are taken into account. To do this, integrations must be performed.
The mean sojourn times in final states can then also be computed easily by
subtraction.

3. Now the EMC on top level can be solved.
4. The steady state probabilities of substates can then be computed easily by

multiplying the steady-state probability of the higher level with the fraction
of mean sojourn time spent in the substate.

In the following we will explain the single steps in more detail.

3.1 Analysis if All Sojourn Time Distributions Are Known

We consider a region sc with states sc,i for which all sojourn time distributions
Fc,i(t) are known. We differentiate between three important cases:

1. All sojourn times are exponentially distributed. In this case the stochastic
process is a continuous-time Markov chain (CTMC) and can be described by
a generator matrix Qc(t) and the transient solution is given by

vc(t) = vc(0)eQc(t) (1)

2. All sojourn times are geometrically distributed. In this case the stochastic
process is a DTMC and can be described by a stochastic matrix Pc(t) and
the transient solution is given by

vc(t) = vc(0)Δc(t)�t/τ� (2)

3. In other cases the stochastic process is an SMP. Its dynamics are described
by the following two equations coming from Markov renewal theory. The
conditional transient probabilities are given by:

Vc(t) = Ec(t) + K′
c(t) ∗ Vc(t) (3)

with local kernel Ec(t) = diag(Fc(t)) and global kernel K(t) defined by
K

′
c(t) = diag(f c(t))Δc, ∗ stands for the convolution which has to be applied

on the elements of this vector-matrix product. The unconditional transient
probabilities are then obtained by:

vc(t) = vc(0)Vc(t) (4)

98 D. Homm and R. German

Note that in all cases it is possible to derive a closed form solution if the topology
is acyclic and the state space is small enough. It is, however, numerically not
feasible in case of larger state spaces because of cancellation errors [12].

From the transient solution the distribution of the sojourn time in the region
is given by summing up the probabilities on non-absorbing states:

Fc(t) = 1 − vc(t)e (5)

Remark: If the composite state is at top level and contains just a single region,
then the transient computations can be avoided and instead just linear systems
have to be solved to compute the mean sojourn times directly. This special case
is treated in the beginning of Sect. 3.3.

3.2 Computation of Sojourn Time Distributions for Composite
States

If the composite state sc,i contains multiple regions sc,i,j which have

1. final states, then its sojourn time is given by the maximum over the sojourn
times of its regions. The distribution Fc,i(t) is hence given by

Fc,i(t) =
rc,i∏
j=1

Fc,i,j(t) (6)

2. exit states, then its sojourn time is given by the minimum over the sojourn
times of its regions. The distribution Fc,i(t) is hence given by

Fc,i(t) = 1 −
rc,i∏
j=1

F c,i,j(t) (7)

3.3 Computation of Mean Sojourn Times in Composite States

If the composite state is at top level and contains just a single region, the mean
sojourn times can be computed by a system of linear equations. In case of CTMCs
and DTMCs this can be derived from integrating the transient state equations
for vc(t) from 0 to infinity [5].

1. The linear system in case of a CTMC is given by

−vc (0) = σcQc (8)

2. The linear system in case of a DTMC is given by

− vc(0) = σc(Δc − I) (9)

.

Analysis of Hierarchical Semi-Markov Processes with Parallel Regions 99

3. In case of an SMP the integration of the given transient state equations
would lead to a linear system with a matrix of unknowns, the method of
supplementary variables as described in Chap. 11 of [7] allows to derive a
linear system with just a vector of unknowns first for a so-called embedded
CTMC:

vc(0) = σ∗
c(Δc − I). (10)

This can be converted easily to the mean sojourn times of the SMP by mul-
tiplying each sojourn time in the embedded CTMC with the mean sojourn
time in each state in isolation:

σc = σ∗
cdiag

⎛
⎝ ∞∫

0

Fc(t)dt

⎞
⎠ (11)

Remark: In case of acyclic structures it is possible to compute the mean sojourn
times even without solving a linear system, this simple case is not elaborated
here and at least for small state spaces it will not lead to significant savings of
the computational costs.

In all other cases, the transient analysis of the regions as specified in Sect. 3.2
has to be used. Afterwards, the exits have to be taken into account. The mean
sojourn time σc,i for a substate sc,i is given by the integral over its transient
probability vc,i(t) taking exits in parallel regions on the same and on higher
hierarchy levels into account.

σc,i =

∞∫
0

vc,i(t) · F
exit

c (t)dt (12)

The quantity F
exit

c (t) represents the product of complementary distributions
from regions on this and on higher hierarchy levels that are executed in parallel
and have an exit pseudostate. It is defined recursively by utilizing the context:
if the regions in a surrounding composite state have exit pseudostates, their
complementary distributions are taken into account. However, region sc itself
needs not to be taken into account, since its exits are already represented by the
transient probabilities. This leads to a recursive definition, starting at a given
context and going upwards:

F
exit

(c,(i,j))(t) =

{∏rc,i

l=1,l �=j F (c,(i,l))(t)F
exit

c (t), if sc,i has exit pseudostates

F
exit

c (t), if sc,i has final pseudostates
(13)

The recursion ends at the top level: F exit
c (t) = 1 if c = ∅. The mean sojourn time

σi in a composite state at top level is computed as integral from 0 to infinity
over the complement of its sojourn time distribution.

σi =
∫ ∞

0

F i(t)dt (14)

100 D. Homm and R. German

In case of regions, the same mean sojourn time is spent in them as in the directly
surrounding composite state. Thus, we can set σ(c,(i,j)) = σc,i. In case of final
states, the mean sojourn time σ(c,(i,j)),e in the final state of each region can be
computed by subtracting the mean sojourn time spent in non-absorbing states
from the mean sojourn time σc,i of the surrounding composite state sc,i.

σ(c,(i,j)),e = σc,i − σ(c,(i,j))e (15)

In case of exit states no time is left in them and we can simply set σc,e = 0.

3.4 Solution of the EMC

Let P be the stochastic matrix of the SMP with the branching probabilities of
going from top level state to top level state. Let u denote the vector of steady-
state probabilities of the EMC, it is given by the system of linear equations
u = uP subject to ue = 1. The solution has to be weighted by the mean sojourn
times in the top level states. The mean sojourn times are given by matrix C,
with ci,j = E[Xi] = σi, if i = j, and otherwise ci,j = 0.

The mean sojourn time for simple states is derived easily by E[Xi] =
∞∫
0

F i(t)dt. For composite states, the mean sojourn time is derived according

to the analysis stated in Sect. 3.3. Once matrix C is complete, the final solution
of the steady-state probabilities of the EMC is obtained by calculating

π =
uC
uCe

. (16)

3.5 Computation of Substate Probabilities

The steady-state probability of a substate in a region can be obtained by multi-
plying the steady-state probability of the surrounding composite state with the
fraction of mean sojourn times in the substate and the surrounding composite
state.

π(c,(i,j)),k = πc,i

σ(c,(i,j)),k

σc,i
(17)

From the known solution at the top level, this calculation can be performed
recursively on all hierarchy levels down to the bottom level.

4 An Illustrative Example

An exemplary SMP with parallel regions is shown in Fig. 1. States are numbered
consecutively, starting at 1 at the top level and within each region. We also
provide short names in italics for a simple reference. It contains all features:
simple states, composite states with exit and final pseudostates, and nested
composite states. Transitions are labeled with their branching probabilities which
have all been set to one. We used the following sojourn time distributions for
simple states, corresponding to the numbering in the short names:

Analysis of Hierarchical Semi-Markov Processes with Parallel Regions 101

s1
state1s2

state2

s3
state10

F1(t)

F10(t)

1.0

1.0

1.0

s1
state3

1

1.0

s1
state5

1

1.0

1

s1
state7

s2
state8

F7(t)

F8(t)

1.0

1.0

2

s1
state9

F9(t)

1.0

s1
state6

F6(t)

2

1.0

s1
state4

2

F4(t)

1.0

Fig. 1. Exemplary SMP with parallel regions.

– F1(t) = H(t − φ), a unit step function with offset φ.
– F4(t) = H(t − ρ), a unit step function with offset ρ.
– F6(t) = 1 − e−μt, an exponential distribution with rate μ.
– F7(t) = 1 − e−λt, an exponential distribution with rate λ.
– F8(t) = 1 − e−ωt, an exponential distribution with rate ω.
– F9(t) = H(t − τ), a unit step function with offset τ .
– F10(t) = H(t − ε), a unit step function with offset ε.

We applied the analysis of this paper to the SMP from Fig. 1. Solving the
EMC, i.e., solving the respective system of linear equations u = uP subject
to ue = 1 yields u = (1/3, 1/3, 1/3). The solution has to be weighted by the
mean sojourn times in the top level states. The mean sojourn time tor state1 is
σ1 =

∫ ∞
0

F 1(t)dt = φ and for state10 it is σ10 =
∫ ∞
0

F 10(t)dt = ε. Calculating
the mean sojourn time for composite state state2 is challenging: it starts at the
lowest hierarchy level by calculating the sojourn time distribution for composite
state sc,1 with name state5 and context c = ((2, 1), (1, 1)). First, the transient
probabilities are calculated for each substate. Afterwards, the minimum is cal-
culated over the sojourn time distributions of the regions according to Eq. (7)
since sc,1 contains exit pseudostates. The functions are given by Eq. (18).

102 D. Homm and R. German

vc,1,1,1(t) = e−λ·t

vc,1,1,2(t) =
{

λ · t · e−λ·t , if ω = λ
λ

λ−ω · (e−ω·t − e−λ·t) , if ω �= λ

Fc,1,1(t) = 1 − vc,1,1,1(t) − vc,1,1,2(t) = 1 − e−λ·t − vc,1,1,2(t)
vc,1,2,1(t) = 1 − H(t − τ)
Fc,1,2(t) = 1 − vc,1,2,1(t) = H(t − τ)
Fc,1(t) = 1 − F c,1,1(t) · F c,1,2(t) = 1 − (e−λ·t + vc,1,1,2(t)) · (1 − H(t − τ))

(18)

Subsequently, the next hierarchy level is considered. Therefore, the context
changes to c′ = ((2, 1)) and the state of interest is composite state sc′,1 with
name state3 and new context. The previous calculation results given by Eq. (18)
are directly used in this hierarchy level. The distributions for sc′,1 are given by
Eq. (19). The sojourn time distribution for sc′,1 is obtained as maximum over
the sojourn time distributions for its regions, due to the final pseudostates.

vc′,1,1,1(t) = F c,1(t) = (e−λ·t + vc,1,1,2(t)) · (1 − H(t − τ))
Fc′,1,1(t) = 1 − vc′,1,1,1(t) = 1 − (e−λ·t + vc,1,1,2(t)) · (1 − H(t − τ))
vc′,1,2,1(t) = e−μ·t

Fc′,1,2(t) = 1 − vc′,1,2,1(t) = 1 − e−μ·t

Fc′,1(t) = Fc′,1,1(t) · Fc′,1,2(t) = (1 − (e−λ·t + vc,1,1,2(t)) · (1 − H(t − τ)))
· (1 − e−μ·t)

(19)

Again, the context is updated and the next hierarchy level is considered. Since
this is the top level, the context is empty. Therefore, we omit it in the following.
The state of interest is composite state s2. The calculation of its sojourn time
distribution is comparable to that for composite state sc,1, since it also utilizes
exit pseudostates. The respective functions are given by Eq. (20).

v2,1,1(t) = F c′,1(t) = 1 − ((1 − (e−λ·t + vc,1,1,2(t)) · (1 − H(t − τ)))
· (1 − e−μ·t))

F2,1(t) = 1 − v2,1,1(t) = (1 − (e−λ·t + vc,1,1,2(t)) · (1 − H(t − τ)))
· (1 − e−μ·t)

v2,2,1(t) = 1 − H(t − ρ)
F2,2(t) = 1 − v2,2,1(t) = H(t − ρ)
F2(t) = 1 − F 2,1(t) · F 2,2(t) = 1 − (1 − (1 − (e−λ·t + vc,1,1,2(t))

· (1 − H(t − τ))) · (1 − e−μ·t)) · (1 − H(t − ρ))

(20)

Once all sojourn time distributions are known, the mean sojourn times can
be calculated for each state at each hierarchy level. The mean sojourn times
for each composite and substate are given in Eq. (21). The contexts are defined
as above as c = ((2, 1), (1, 1)) and c′ = ((2, 1)). Exits are considered according
to Sect. 3.3. Simple states from the top level are not listed, their mean sojourn
time can directly be derived from the corresponding annotated sojourn time
distribution. The mean sojourn time for all exit pseudostates is equal to 0. In
contrast to exit pseudostates, the process spends time in final pseudostates. The

Analysis of Hierarchical Semi-Markov Processes with Parallel Regions 103

mean sojourn times σfinal1 and σfinal2 relate to the final pseudostates in the first
and the second region of composite state s2,1,1. They are calculated according
to Eq. (15). Finally, the steady-state probabilities are calculated for each state
according to Eqs. (16) and (17).

σc,1,1,1 = σstate7 =
∫ ∞
0

vc,1,1,1(t) · F c,1,2(t) · F 2,2(t)dt
σc,1,1,2 = σstate8 =

∫ ∞
0

vc,1,1,2(t) · F c,1,2(t) · F 2,2(t)dt
σc,1,2,1 = σstate9 =

∫ ∞
0

vc,1,2,1(t) · F c,1,1(t) · F 2,2(t)dt
σc′,1,1,1 = σstate5 =

∫ ∞
0

vc′,1,1,1 · F 2,2(t)dt
σc′,1,2,1 = σstate6 =

∫ ∞
0

vc′,1,2,1(t) · F 2,2(t)dt
σ2,1,1 = σstate3 =

∫ ∞
0

v2,1,1(t) · F 2,2(t)dt
σc′,1,1,2 = σfinal1 = σ2,1,1 − σc′,1,1,1

σc′,1,2,2 = σfinal2 = σ2,1,1 − σc′,1,2,1

σ2,2,1 = σstate4 =
∫ ∞
0

v2,2,1(t) · F 2,1(t)dt
σ2 = σstate2 =

∫ ∞
0

F 2(t)dt

(21)

For the given SMP we carried out 11 experiments with varying parame-
ters for the distributions: ρ ∈ {1.0, 2.0, 3.0, 4.0, 5.0}, τ ∈ {1.0, 2.0, 3.0, 4.0}, and
μ, λ, ω ∈ {0.5, 1.0}. For the sojourn time distributions F1(t) and F10(t) at top
level, the parameters have been set to φ = ε = 1.0. In each experiment, we calcu-
lated the steady-state probabilities. We also measured the steady-state probabil-
ities by means of a simulation. Therefore, we specified a simulation model for the
SMP with parallel regions from Fig. 1 and set the parameters of the distributions
accordingly. The simulation model was specified with Papyrus [14] and SimTAny
[16] (formerly known as Syntony) was used to automatically transform it into
a simulation for OMNeT++ [13]. About 100,000 independent repetitions were
carried out for each experiment. The measured results validate our calculation
results. The difference between the measured and calculated steady-state prob-
abilities is given in % in Fig. 2. The steady-state probabilities are named by the
corresponding state in Fig. 1. πfinal1 and πfinal2 relate to the final state in the
first and the second region of composite state state3. The difference between
the measured and calculated values is below 1 % on average, which is quite low.
The biggest difference between calculated and measured steady-state probabili-
ties applies to states that are subject to the synchronization in the simulation.
These are the states state8 and the two final states. The effect of the synchro-
nization will be amplified, if the steady-state probability of the concerned state
is very small. In case of state9, it has only a minor impact due to its high
steady-state probability in almost all experiments.

We also executed experiments with other types of distributions: We used the
uniform distribution for F4(t) with a = 1.0 and b ∈ {1.0, 2.0, 3.0, 4.0, 5.0}, and
the Weibull distribution for F7(t) with λ = 1.0 and k ∈ {1.0, 2.0, 3.0}. In this
case, the impact of the synchronization mainly affects the difference for the first
final state, which is at most 2.5 %. For all other states, the difference is quite
stable and below 1.5 %.

104 D. Homm and R. German

πstate1

πstate2
πstate3

πstate4
πstate5

πstate6
πstate7

πstate8
πstate9

πfinal1
πfinal2

πstate10

0
.0

0
.5

1
.0

1
.5

Steady-state probabilities

D
iff

er
en

ce
in

%

Fig. 2. Difference in % between the calculated and measured steady-state probabilities
for all states in the example SMP with parallel regions.

5 Computational Effort

We consider the worst case in which the state space is as “nested” as possible and
there are fully connected SMPs in each region. The (bottom) composite states
at the deepest hierarchy level contain only simple states. Let n be the number
of top-level states, r the number of regions in each (nested) composite state, l
the number of hierarchy levels, and m the number of states in each region.

We want to estimate the order of continuous functions. They constitute a
measure of both space and time complexity, since we have to discretize them in
order to perform numerical operations.

Starting at a bottom composite state, the assumptions lead to r · m2 con-
ditional transient probabilities for that state. Considering the next higher level,
there is a composite state with r regions, each containing m bottom composite
states. Taking the conditional transient probabilities of that state into account,
the amount of functions rises to r · m(r · m2) + r · m2. The procedure con-
tinues until the composite state at the top level is reached, leading to the
sum n · ∑l

k=1 rk · mk+1 of continuous functions and the corresponding order
O(n · rl · ml+1). The sojourn time distributions do not add to the asymptotic
order. The required discretization of the continuous functions leads to a further
linear increase in terms of the number of used discretization steps.

In case of the example we have n = 3, l = 3, r = 2, m = 2, leading to
n · rl × ml+1 = 384. Actually there are 9 transient probabilities and 9 sojourn
time distributions to consider, significantly less than the worst case since the
structure is not fully “nested”.

If there would be an analysis that could be applied on the flattened state
space, its computational effort would depend on the size of this space (if mul-
tidimensional supplementary variable spaces or phase type distributions would
be used, the complexity would be even increased by the possible concurrent
non-memoryless activities). A composite state with r regions each with m states
has mr states. This is continued on each hierarchy level, leading to an order of

Analysis of Hierarchical Semi-Markov Processes with Parallel Regions 105

O(n · mrl

) states in its flattened state space. It is obvious that the suggested
hierarchical approach of this paper leads to a significant reduction.

We have also implemented a prototype based on equidistant discretization
and Romberg integration, it required about 500 ms to calculate the steady-state
probabilities for the example. Further results for larger state spaces will be inves-
tigated in future work.

6 Conclusion

In this paper, we introduced SMPs with parallel regions. They boost the mod-
eling power significantly and are easy to understand, since they are similar to
state machines with simple and composite states. Parallel and non-memoryless
activities are modeled within separate regions of a composite state. The model
allows to nest composite states, which leads to multiple different hierarchy lev-
els. A hierarchy level either is left once all parallel activities on the same level
are finished, or as soon as the first concurrent activity on the same or higher
level exits. We also introduced an analysis that takes advantage of the model
structure. Since flattening the state space is not possible here, we apply Markov
renewal theory: First a steady-state analysis is performed on an EMC at the
top level. Second, a transient analysis is recursively carried out at the composite
state level. Finally, exit points are taken into account and mean sojourn times
and steady-state probabilities are calculated for each simple state, composite
state, and substate.

The concepts outlined in this paper have been applied to an exemplary SMP
with parallel regions that makes use of all features. Multiple experiments have
been carried out on that model by applying the analysis, each time with different
parameters for the sojourn time distributions. We focused on the calculation of
steady-state probabilities for each state in that model. We also implemented a
simulation for each experiment and used it to measure the steady-state proba-
bilities. The measured values confirm our calculation results.

Finally, we considered the computational effort of the analysis, showing a
clear benefit of the suggested solution method based on computing minimum
and maximum on the model structure. It is lower than the effort that would be
required by any method which would be based on the construction of a flattened
state space.

References

1. Bradley, J.T., Dingle, N.J., Harrison, P.G., Knottenbelt, W.J.: Distributed com-
putation of transient state distributions and passage time quantiles in large semi-
Markov models. Future Gener. Comput. Syst. 22(7), 828–837 (2006)

2. Bradley, J., Dingle, N., Harrison, P., Knottenbelt, W.: Performance queries on
semi-Markov stochastic Petri nets with an extended continuous stochastic logic.
In: Proceedings of the 10th International Workshop on Petri Nets and Performance
Models (PNPM 2003), Urbana, IL, USA, pp. 62–71 (2003)

106 D. Homm and R. German

3. Bucci, G., Carnevali, L., Ridi, L., Vicario, E.: Oris: a tool for modeling, verification
and evaluation of real-time systems. Int. J. Softw. Tools Technol. Transf. 12(5),
391–403 (2010)

4. Buchholz, P., Telek, M.: Rational automata networks: a non-Markovian modeling
approach. INFORMS J. Comput. 25(1), 87–101 (2013)

5. Ciardo, G., Blakemore, A., Chimento, P.F., Muppala, J.K., Trivedi, K.S.: Auto-
mated generation and analysis of Markov reward models using stochastic reward
nets. In: Linear Algebra, Markov Chains, and Queueing Models. The IMA
Volumes in Mathematics and its Applications, vol. 48, pp. 145–191. Springer,
New York (1993)

6. Dugan, B.J., Trivedi, S.K., Geist, R., Nicola, V.: Extended stochastic petri nets:
Applications and analysis. Technical report, Durham, NC, USA (1984)

7. German, R.: Performance Analysis of Communication Systems. Wiley, United
Kingdom (2000)

8. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Prog.
8(3), 231–274 (1987)

9. Homm, D., Eckert, J., German, R.: Combining time and concurrency in model-
based statistical testing of embedded real-time systems. In: Bianculli, D.,
Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9509, pp. 22–31. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-49224-6 3

10. Homm, D., Eckert, J., German, R.: Concurrent streams in Markov chain usage
models for statistical testing of complex systems. In: Proceedings of the 30th ACM
Symposium on Applied Computing (SAC 2015), Salamanca, Spain (2015)

11. Lindemann, C.: Performance Modelling with Deterministic and Stochastic Petri
Nets. Wiley, New York (1998)

12. Marie, R.A., Reibman, A.L., Trivedi, K.S.: Transient analysis of acyclic Markov
chains. Perform. Eval. 7(3), 175–194 (1987)

13. OMNeT++: An object-oriented modular discrete event network simulation frame-
work. http://www.omnetpp.org. Accessed 26 October 2015

14. Papyrus: Graphical editing tool for UML 2. http://www.eclipse.org/papyrus.
Accessed 26 October 2015

15. Puliafito, A., Scarpa, M., Trivedi, K.: Petri nets with k simultaneously enabled
generally distributed timed transitions. Perform. Eval. 32(1), 1–34 (1998)

16. Schneider, V., German, R.: Integration of test-driven agile simulation approach in
service-oriented tool environment. In: Proceedings of the 46th Annual Simulation
Symposium (ANSS 2013), San Diego, CA, USA, pp. 11: 1–11: 7 (2013)

17. Siegl, S., Dulz, W., German, R., Kiffe, G.: Model-driven testing based on Markov
chain usage models in the automotive domain. In: Proceedings of the 12th Euro-
pean Workshop on Dependable Computing (EWDC 2009), Toulouse, France (2009)

18. Siegl, S., German, R.: Model-driven testing with timed usage models in the auto-
motive domain. In: Proceedings of the 20th International Symposium on Software
Reliability Engineering (ISSRE 2009), Mysuru, India (2009)

19. Vicario, E., Sassoli, L., Carnevali, L.: Using stochastic state classes in quantitative
evaluation of dense-time reactive systems. IEEE Trans. Softw. Eng. 35(5), 703–719
(2009)

http://dx.doi.org/10.1007/978-3-662-49224-6_3
http://www.omnetpp.org
http://www.eclipse.org/papyrus

Combining Mobility Models
with Arrival Processes

Jan Kriege(B)

TU Dortmund, Dortmund, Germany
jan.kriege@tu-dortmund.de

Abstract. The realistic modeling of mobile networks makes it necessary
to find adequate models to mimic the movement of mobile nodes. In the
past various such mobility models have been proposed, that either create
synthetic movement patterns or are based on real-world observations.
These models usually assume a constant number of mobility nodes for
the simulation. Although in real-world scenarios new nodes will arrive
and other nodes will leave the simulation area, only little attention has
been paid to modeling these arrivals and departures of nodes.

In this paper we present an approach to easily extend mobility models
to support the generation of arrivals and departures. For three standard
mobility models the effect of this extension on the performance measures
of a simple mobile network is shown.

Keywords: Mobility models · Scenario generation · Arrival processes ·
ARTA processes

1 Introduction

The adequate and realistic modeling of the traffic load is a crucial step when
building stochastic models of computer and communication networks. For wired
networks it is well known that packet interarrival times are correlated and that
neglecting this correlation might have significant impact on performance mea-
sures [16]. With the increased availability of mobile devices performance eval-
uation of wireless networks has become more important. For a realistic load
modeling the user mobility has to be considered additionally in wireless net-
works. To mimic movement patterns of users (or mobile nodes) in a wireless
scenario mobility models are used. Mobility models basically consist of some
rules that define how the nodes of a wireless network move. On an abstract level
the mobility of a node consists of a spatial component, that defines to what
destination a node is moving, and a temporal component, that defines when and
at what speed the node is moving. It is well known, that unrealistic mobility
models may lead to wrong assumptions on the performance of the system that
is analyzed [21].

In the past various mobility models have been proposed and the overview
we can give here is by far not complete. These models can be divided according
c© Springer International Publishing Switzerland 2016
A. Remke and B.R. Haverkort (Eds.): MMB & DFT 2016, LNCS 9629, pp. 107–121, 2016.
DOI: 10.1007/978-3-319-31559-1 10

108 J. Kriege

to different criteria [3]. The most distinctive criteria are probably whether the
mobile model synthetically creates movements or is based on real-world obser-
vations and whether it treats movements of single nodes or groups of nodes.

An overview of models creating synthetic movements can be found in [10].
Those models are easy to implement, can be easily integrated into simulation
models and do not need additional information and are therefore widely used.
Classical examples are the Random Waypoint, Random Direction and Ran-
dom Walk models, where a direction or destination and the speed of a node
is randomly determined. While these models are memoryless, i.e. they do not
use information from the past to determine the next destination or speed, the
Gauss-Markov model [17] chooses these values depending on previous values.
The QoS-RWP model [19] is based on the Random Waypoint model, but divides
the nodes into two classes. One class moves according to the Random Waypoint
model, while the second class is stationary unless their quality of service drops
beyond a given threshold. Aside from these very general models, approaches like
the City Section model [10], that aims at representing the topology of streets,
exist for special applications.

More recent approaches use real world-observations as basis for the mobility
models, because the synthetically generated movements might differ from real
patterns and require an idealized, free simulation area [22], which could lead to
wrong assumptions for performance measures [18].

For example the model from [14] considers buildings and obstacles by using
Voronoi-diagrams. [22] constructs a list of trips from real data that consist of
visited access points and in combination with a map realistic routes can be
obtained for the mobile nodes. In [15] a matrix of transition probabilities for
different locations and the distributions for pause times and speed values are
estimated from real-world observations.

A different approach was chosen in [12] where a network of queues corre-
sponding to the different access points was used to model the wireless network
on a more abstract level.

In contrast, little attention has been paid at modeling of arrivals and depar-
tures of users in wireless scenarios. Usually the number of mobile nodes is set
to a fixed value at the beginning of a simulation and does not change during
simulation, because no nodes leave or enter the area. For short simulations these
assumptions might be justified, though as pointed out in [21] the common short
simulation times are not sufficient for modeling the mobility in WiFi networks.
However, for longer simulation runs it is very likely that the number of nodes
varies. Typical scenarios are an airport terminal or a shopping mall where there
should be a large throughput of mobile nodes. These considerations clearly moti-
vate that mobility models should also be able to account for a varying number
of nodes. However, this has hardly been treated in the literature, yet. [4] used
queueing networks to model a wireless network and considered external arrival
rates. In [2] the arrivals of participants of a conference were analyzed and mod-
eled as a Markov-Modulated-Poisson Process (MMPP) but not combined with
a mobility model. As the authors state, a MMPP is sufficient for modeling the

Combining Mobility Models with Arrival Processes 109

arrivals at a conference with phases of many arrivals (start of a session) and few
arrivals (during a session), but is probably not adequate for other scenarios with
more complicated arrival patterns.

In this paper we propose a general approach to enhance mobility models to
account for arrivals and departures of nodes resulting in a varying number of
nodes during the simulation of the model. Since the arrivals and departures are
likely to exhibit correlation we propose a combination of mobility models with
stochastic processes. The effect of incorporating these arrival patterns into the
mobility models is systematically assessed by measuring the traffic load gener-
ated by the models in a wireless network scenario.

The paper is structured as follows. In Sect. 2 we briefly introduce the mobility
models and stochastic processes used in our experimental analysis. Section 3
describes our approach to combine mobility models with arrivals and departures.
In Sect. 4 we experimentally evaluate the effect of the added arrival patterns. The
paper ends with the conclusions in Sect. 5.

2 Background and Notations

As already mentioned in Sect. 1 there exist various mobility models for different
applications and requirements, though they usually assume a fixed number of
nodes. In the following we will introduce three basic mobility models in more
detail that are later used for our experiments. Additionally we present the theo-
retical background on ARTA processes that we will use to generate arrivals and
departures.

2.1 Random Walk Mobility Model

In the Random Walk mobility model nodes change their location by randomly
choosing the direction and the speed to travel. The model is parametrized by
the bounds for the speed [vmin, vmax] and either a time interval t or a distance
d. Each movement then either takes t time units or covers the distance d. The
direction is chosen from [0, 2π]. At the end of a movement a new speed and direc-
tion are randomly determined. Nodes that reach the border of the simulation
area are reflected.

The Random Walk model is memoryless, since no information about past
locations or speeds is used when determining the next speed and direction values.
This might lead to unrealistic movements. Nevertheless the Random Walk is a
widely used mobility model [10].

2.2 Random Waypoint Mobility Model

Nodes following the Random Waypoint model switch between pause periods and
movements, i.e. they stay at a location for a randomly determined time and then
randomly choose a speed between [vmin, vmax] and a random destination in the
simulation area. Having reached the destination the node pauses again and so
on [10].

110 J. Kriege

2.3 Random Direction Mobility Model

The Random Direction model [10] is similar to the Random Walk as the node
also randomly chooses a speed from [vmin, vmax] and a direction between 0 and
180 degrees. But in contrast to the Random Walk the node always moves to the
border of the simulation area. Here the node pauses for a randomly determined
time and after that chooses a new direction and a new speed.

The Random Direction model has the advantage to overcome so called density
waves, i.e. a clustering of nodes in one part of the simulation area, that for
example the Random Waypoint model suffers from [20].

2.4 Scenario Generation

As mentioned above a mobility model describes the behavior of a single node or
a group of nodes by some formal definition. One common way to use mobility
models in a simulation is to generate a mobility scenario. A mobility scenario
contains the movement patterns of nodes that follow the definition from a mobil-
ity model, i.e. the scenario contains realizations of the mobility model. Scenario
generators like BonnMotion [1] can create scenarios from a large list of mobility
models that can then be loaded by simulation tools like OMNeT++ [13] to be
used in a larger simulation model.

Without loss of generality we identify nodes by a number i ∈ N>0. We assume
in the following that a scenario consists of waypoints that define at what time
t a node i is at location (x, y), i.e. a waypoint is a tuple (i, t, x, y). The possible
values for a location (x, y) are restricted by the size of the simulation area C, i.e.
we require (x, y) ∈ C.

Then S(i) = ((i, ti,1, xi,1, yi,1), (i, ti,2, xi,2, yi,2), · · · , (i, ti,l, xi,l, yi,l)) contains
all waypoints of a single node until the end of the simulation. The first waypoint,
i.e. the initial location is usually chosen randomly. Further waypoints are always
necessary when a node changes direction or speed, either explicitly by selecting
a new destination, direction or speed randomly or implicitly when bouncing off
the boundaries of the simulation area as for the Random Walk model. This
implies for two consecutive waypoints (i, ti,1, xi,1, yi,1) and (i, ti,2, xi,2, yi,2) that
in the time interval [ti,1, ti,2] node i moves with constant speed from (xi,1, yi,1)
to (xi,2, yi,2). For pause times the locations of two consecutive waypoints are
identical.

The complete scenario for n nodes is then given by S =
(S(1),S(2), · · · ,S(n)

)
.

2.5 Autoregressive-To-Anything Processes

Autoregressive-To-Anything (ARTA) Processes [11] combine an autoregressive
process of order p, denoted AR(p), with an arbitrary marginal distribution FY .
The AR(p) is given by [7]

Zt = α1Zt−1 + α2Zt−2 + . . . + αpZt−p + εt

Combining Mobility Models with Arrival Processes 111

where the αi are autoregressive coefficients and the values εt, denoted as inno-
vations, are normally distributed with zero mean and variance σ2

ε . The ARTA
process is then defined as a sequence

Yt = F−1
Y [Φ(Zt)], t = 1, 2, . . .

where FY is the marginal distribution, Φ is the standard normal cumulative dis-
tribution function and {Zt; t = 1, 2, . . .} is a stationary Gaussian AR(p) process
as described above.

ARTA processes can model correlated input processes with a wide variety
of shapes for the distribution. The approach works for any distribution FY for
which F−1

Y can be computed, either by a closed-form expression or by numerical
methods. Since the autocorrelations of the background AR(p) process and the
ARTA process are directly related and autoregressive processes are very flexible
in modeling autocorrelation, the ARTA process inherits this property from the
AR(p) process. In addition, there are approaches available to construct ARTA
processes from measured observations from a real system [5,11].

3 Mobility Models with Arrivals and Departures

There are basically two possible approaches that can be used to extend mobility
models such that they account for arrivals and departures. Of course, one can
modify the definition of the mobility model itself to include the generation of new
nodes and the deletion of departing nodes at runtime. Though, depending on the
complexity of the mobility model this can be complicated and it has to be done
for every mobility model that should be supported. Alternatively, one can leave
the mobility model untouched and add arrivals and departures to the generated
scenarios. Since for arrival and departure generation only the scenario is used,
no knowledge on the mobility model that generated this scenario is required. We
will follow this idea that is sketched in Fig. 1. Our model consists of three parts:

Mobility Model Arrival Generator Departure Generator
S SA SAD

Fig. 1. Scenario generation with arrivals and departures

The (unmodified) mobility model generates a scenario S as described in
Sect. 2. The Arrival Generator then adds additional nodes to the scenario result-
ing in a new scenario SA and the Departure Generator modifies the scenario such
that nodes leave the simulation area. The approach in Fig. 1 is very modular, as
we have no real restrictions on the choice of the mobility model or the generators
for arrivals and departures. We have already introduced three mobility models in
Sect. 2 that we used later in our experiments. But of course the approach works
for the other models mentioned in Sect. 1 as well.

In the following we describe the two generators from Fig. 1 in more detail
and present an algorithm for scenario generation with arrivals and departures of
nodes.

112 J. Kriege

3.1 Arrival and Departure Generators

The Arrival and the Departure Generator work in a similar way, i.e. they have to
(randomly) determine the time of an arrival or departure, the location where the
node enters or leaves the simulation area and in case of departures also which
node should leave. Therefore, the generators basically consist of probability dis-
tributions and stochastic processes to draw those random numbers.

In addition they have to utilize a set of entry coordinates Centry and exit
coordinates Cexit, respectively. Of course, we have that Centry ⊂ C and Cexit ⊂ C
and additionally Centry and Cexit should only consist of points at the boundary
of C. Centry and Cexit can either be a discrete number of coordinates (xi, yi), i =
1, · · · , k or a continuous region {(x, y)|(x, y) ∈ C}. Of course, also combinations
of these two definitions are possible.

We define two sets here, because the entry and exit coordinates are not
necessarily identical. If we model a part of an airport terminal, e.g. the route to
the gates is only an exit point but not an entry point. In other scenarios like an
university campus we might of course have that Centry = Cexit, though.

The choice of the probability distributions or stochastic processes for random
number generation of course depends on the system we want to model. In the
simplest form one could just use standard distributions, e.g. an exponential dis-
tribution for interarrival and interdeparture times and an uniform distribution
for the selection of entry and exit coordinates.

If the arrivals or departures should exhibit autocorrelation a stochastic
process is required. We already introduced ARTA processes in Sect. 2 that are
suitable for this task and that we used for our experiments. An alternative to
this are Markovian Arrival Processes [9] that are more prominent for models
that should be analyzed numerically, but can also be used in simulation.

It is of course also possible to use more elaborate stochastic processes like
Marked MAPs [8] or Vector ARTA processes [6] that can generate interevent time
and entry/exit coordinates in one step and can additionally express correlation
between those two values.

For the Departure Generator a further distribution for the selection of the
nodes has to be specified. Possible candidates are a discrete uniform distribution
or a geometric distribution, that could be used to make the selection of a node
with a small number (i.e. a node that is in the system for a long time) more
likely.

Assume, that we have n initial nodes in the scenario without arrivals and
departures. Then, more formally, the arrival generator creates a sequence(

(n + 1, t
(entry)
n+1 , x

(entry)
n+1 , y

(entry)
n+1), (n + 2, t

(entry)
n+2 , x

(entry)
n+2 , y

(entry)
n+2), · · ·

)

where (x(entry)
n+i , y

(entry)
n+i) ∈ Centry. The i-th tuple is the first waypoint of node

n + i. The remaining waypoints are then determined by the mobility model M,
i.e. we obtain

S(n+i) =
(
(n + i, t

(entry)
n+i , x

(entry)
n+i , y

(entry)
n+i), (n + i, tn+i,2, xn+i,2, yn+i,2), · · ·

)
.

Combining Mobility Models with Arrival Processes 113

In a similar way, the departure generator creates a sequence(
(i1, t

(exit)
i1

, x
(exit)
i1

, y
(exit)
i1

), (i2, t
(exit)
i2

, x
(exit)
i2

, y
(exit)
i2

), · · ·
)

of nodes ij that should leave the simulation area at location (x(exit)
ij

, y
(exit)
ij

) ∈
Cexit at time t

(exit)
ij

. Assume that there are n initial nodes in the scenario and the
arrival generator created l additional nodes. Let N ⊆ {1, 2, · · · , n+ l} denote all
the nodes that exist in the scenario at a departure time t(exit). Then of course,
the node ij that should leave the area may only be drawn from N .

In the final step the departure generator has to modify S(ij), i.e. a new
waypoint (ij , t(reroute), x(reroute), y(reroute)) has to be determined. All waypoints
(ij , t, x, y) ∈ S(ij) with t > t(reroute) are discarded and (ij , t(reroute), x(reroute),
y(reroute)) and (ij , t(exit), x(exit), y(exit)) are added as new waypoints. We will
explain in the next section, where the scenario generation is described, how this
new waypoint can be determined.

3.2 Scenario Generation

The algorithm for a scenario generation that includes arrivals and departures is
sketched in Fig. 2. As already mentioned, we are using a modular approach and
consequently the algorithm consists of three parts: The creation of the scenario
from the mobility model without arrivals and departures (line 1), extending the
scenario with arrivals (lines 2–10) and the addition of departures (lines 11–12).
As inputs the algorithm takes the mobility model M, the size or coordinates
of the simulation area C, the simulation time and the number of nodes n that
populate the area in the beginning. Further inputs are related to the arrivals and
departures, i.e. we need a list of entry and exit coordinates, an arrival generator
A and a departure generator D, that are basically probability distributions or
stochastic processes we can sample from. The offset indicates when arrival and
departure generation should start, i.e. we simulate the initial n mobile nodes
only for offset time units before arrivals and departures start.

First, the algorithm generates a scenario S that contains the movement pat-
terns for the n initial nodes according to the mobility model M in line 1, i.e.
it calls a subroutine for an existing mobility model like Random Waypoint or
Random Direction.

In the second step arrivals are added. We sample the next arrival time
tc(arrival) from the arrival generator (line 5) and determine the entry coor-
dinates from Centry (line 6). In the algorithm the arrival time and the entry
coordinates are determined independent of each other. Once the entry point
and the arrival time are known we use the mobility model M to generate the
movement patterns for the new node (line 7). Thus, the movements of the ini-
tial nodes and the generated nodes basically differ in the generation of the first
waypoint. While the initial nodes start at t = 0 at some random point of the
simulation area, nodes created by the arrival generator start at an entry point
at some time during the simulation. After that they behave similar according to

114 J. Kriege

Fig. 2. Algorithm for scenario generation

mobility model M. Finally, the movement patterns of the newly generated node
is added to the scenario and the time is increased.

The last part of the scenario generation consists of the computation of depar-
tures. The first steps are similar to the arrival generation, i.e. we draw the depar-
ture time t(exit) and the exit coordinates (lines 13 and 14). In addition to this
information we also have to determine which node should leave the simulation
area (lines 15 and 16). Note, that our scenario S contains the movement of all
nodes and some of them did probably not exist at time t(exit). Hence, we collect
in N all nodes that inhabit the simulation area at t(exit). Recall, that we used an
offset for the beginning of the arrival and departure generation. It is advisable
to use an offset here as well, i.e. only nodes that have existed for at least offset
time units in the model at time t(exit) are collected in N . The reasons for this
offset will become obvious later when we describe how the node is routed to the
exit point.

Combining Mobility Models with Arrival Processes 115

From N we randomly determine one node for departure. In lines 17 and 18
new waypoints for this node are computed, i.e. we identify a time t(reroute) and
a corresponding location (x(reroute), y(reroute)) where the existing movements of
the node are interrupted and from where it is rerouted to the exit point. We
will explain below how this is done exactly. Finally, the old waypoints for the
departing node are deleted from the scenario and replaced by new waypoints
including the departure.

In accordance with Fig. 1 line 1 of the algorithm describes the scenario gen-
eration by the mobility model, lines 2–10 constitute the arrival generator and
lines 11–21 describe the departure generator.

(e)

(a)

(b)

(c)

(d)

Fig. 3. Rerouting for departure (Color figure online)

Figure 3 depicts how the rerouting of mobile nodes for departure works. The
blue lines starting at (a) and ending at (b) are the original movement patterns
as generated from the mobility model. (e) is the exit point where the node is
supposed to depart at time t(exit). First we compute the location of the node at
time t(exit) according to the original movement pattern. This location is labeled
with (c) in Fig. 3. The remaining part of the original movement pattern, i.e. the
dashed line between (c) and (b) is discarded. Starting from (c) we process the
node’s movement backwards until we have found a location (x(reroute), y(reroute))
and the corresponding time t(reroute), such that the node can cover the distance
between (x(reroute), y(reroute)) and the exit point in time t(exit) − t(reroute) with
an appropriate speed, i.e. a speed that is for example drawn from the speed range
for that mobility model or corresponds to the node’s mean speed. This location
is labeled (d) in Fig. 3. The movements between the locations (d) and (c) are
also discarded and the node gets new waypoints for the locations (d) and (e).

From Fig. 3 it becomes obvious why the offset introduced in the algorithm
in Fig. 2 is helpful. If a departure is due at the very beginning of the lifetime of
a node it might not be possible to find a suitable location to reroute the node,

116 J. Kriege

since it has hardly moved yet. The offset ensures that all nodes applicable for
departure have existing movement patterns at the time of the departure.

Of course, the rerouting introduces some overhead when generating the sce-
nario, because parts of the already generated movement patterns are discarded
again. However, it has the important advantage that it can be used for any
mobility model, since it works only on the generated movement patterns and
no knowledge about the mobility model or changes to the mobility model are
required.

4 Experimental Evaluation

To systematically assess the effect of arrivals and departures on the performance
of a wireless network we combined mobility models with different arrival and
departure generators with varying rates and correlation for the creation and
deletion of nodes.

Although the approach presented in Sect. 3 is very general and not specific to
certain mobility models, we conducted our experiments with three basic random
mobility models that are well known and understood, in particular the Random
Walk, Random Direction and Random Waypoint models.

4.1 Experiment Setup

Our experiments were performed using OMNeT++ [13] and the INET frame-
work, that supports mobility scenarios in the form described in Sect. 2. The
extension with arrivals and departures required slight modifications of the stan-
dard modules from OMNeT++ to allow for nodes to become active (i.e. arrive)
or inactive (i.e. leave) during the simulation run.

For the experiments we used a simple quadratic simulation area of 100 ×
100 m2. There are four access points that cover the area as shown in Fig. 4.
We added nine entry and exit points (Centry = Cexit) evenly to the border of the
area and generated various mobility scenarios using the algorithm from Fig. 2 for
Random Walk, Random Direction and Random Waypoint models that differed in
the number of initial nodes, the rate of arrivals and departures or the correlation
of arrivals and departures. In all models we assumed that the mean arrival rate
and the mean departure rate are equal to keep the mean number of nodes equal
to the initial number of nodes. The speed of the mobile nodes lies within the
interval vmin = 3 km/h and vmax = 8 km/h. If the model supports pause times
they are between 0 and 30 s. As offset we used 100 s, i.e. the model is simulated
for 100 s before arrival and departure generation starts. In addition we required
that a node has to exist for at least 100 s before it may be selected for departure.
Each scenario was simulated for 180 min.

At randomly chosen times the mobile nodes generate traffic. To keep the
model simple and allow for a better control of the generated data volume, we
modeled traffic generation at an abstract level without including all the network
layers. The access points are basically servers with a buffer size of 50 that handle

Combining Mobility Models with Arrival Processes 117

Fig. 4. Simulation area with access points

the traffic randomly generated by the nodes that are close to them, i.e. each
node generates load for the access point that is closest to its current location.
When a node is moving the nearest access point might of course change during
the simulation. To be able to assess whether the different scenarios have an
effect on the performance we measured the queue length distribution in the four
access points.

4.2 Experimental Results

Before we present the results of the queue length distribution we visualize the
effect of arrivals and departures using the spatial node distribution. The spatial
node distribution shows the probability that nodes are at the different locations
of the simulation area. Figure 5 shows the spatial node distribution for a Random
Waypoint model with an initial number of n = 30 nodes with and without
arrivals and departures. As we can see in Fig. 5(b) the probability that nodes are
at the border of the simulation area where the entry and exit points are increases,
while the distribution remains similar in other parts of the area. Figure 6 shows
the number of nodes and the average number of nodes that are present in the
simulation area for a Random Waypoint model with n = 30 and arrivals and
departures for the first 6000 s. As we can see the number of nodes varies around
n = 30 (while the average number of nodes remains almost constant), implying
that there are periods with a higher load for the access points and periods with
a lower load. The effect of these periods on the access points is evaluated in the
following.

 0 20 40 60 80 100 0
 20

 40
 60

 80
 100

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006

x
y

 0
 0.001
 0.002
 0.003
 0.004
 0.005

(a) no arrivals/departures

 0 20 40 60 80 100 0
 20

 40
 60

 80
 100

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006

x
y

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006

(b) arrivals and departures

Fig. 5. Spatial node distribution of random waypoint model

118 J. Kriege

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1000 2000 3000 4000 5000 6000
y

x

population
average population

Fig. 6. Number of nodes present in the simulation area

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60

pr
ob

ab
ili

ty

queue length

n=10, default
n=10, mean=50

(a) n=10

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 10 20 30 40 50 60

pr
ob

ab
ili

ty

queue length

n=20, default
n=20, mean=50

(b) n=20

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60

pr
ob

ab
ili

ty

queue length

n=40, default
n=40, mean=50

(c) n=40

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60

pr
ob

ab
ili

ty

queue length

n=50, default
n=50, mean=50

(d) n=50

Fig. 7. Queue length distribution for different numbers of initial nodes and the Random
Direction model (thin dashed lines denote the 90 % confidence intervals)

The following simulation results are all obtained from 30 replications of the
simulation model. If applicable we also present 90% confidence intervals for the
results, though for plots with a larger number of curves we omitted them to keep
the plots accessible. In a first series of experiments we compared the effect of
arrival and departures for different numbers of initial nodes n. As a reference
value we simulated the original default scenarios with a constant number of nodes
and compared it with scenarios where arrivals and departures occur according to
an exponential distribution with mean 50. The entry and exit nodes are drawn
independently from an uniform distribution. Figure 7 shows the queue length

Combining Mobility Models with Arrival Processes 119

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60
pr

ob
ab

ili
ty

queue length

default
mean=10
mean=50

Fig. 8. Queue length distribution for different arrival rates for the Random Waypoint
model and n = 30

distribution at the first access point for the Random Direction model for an
increasing number of initial nodes. The results for the other access points and
mobility models are similar. As we can see arrivals and departures have a large
effect for the smaller node numbers but the effect diminishes if we increase the
number of nodes (i.e. the difference in the mean values becomes smaller and the
confidence intervals start to overlap). Obviously, this is because fluctuations in
the node number caused by arrivals and departures have a larger influence if the
initial number of nodes is relatively small compared to the size of the fluctuation,
i.e. three additional nodes are easily noticeable if there are 10 nodes present but
the effect disappears if there are 50 nodes.

For the next experiments we kept the initial number of nodes fixed and varied
the arrival rate. Results for the Random Waypoint model are shown in Fig. 8. The
plot shows the curves for the default model without arrivals and departures and
for models where the arrivals and departures follow an exponential distribution
with mean 10 and 50, respectively. As we can see, the queue length increases
slightly with smaller mean values (i.e. larger rates).

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60

pr
ob

ab
ili

ty

queue length

default
corr=0.2
corr=0.5

(a) Random Walk model, correlated ar-
rivals

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60

pr
ob

ab
ili

ty

queue length

default
corr=0.1
corr=0.2
corr=0.4

(b) Random Waypoint model, correlated
arrivals and departures

Fig. 9. Queue length distribution for different levels of lag-1 autocorrelation for n = 20

120 J. Kriege

As mentioned before, it is likely that arrivals and/or departures are correlated
in some real world scenarios. We already introduced ARTA processes in Sect. 2
that can serve to model autocorrelated interarrival or interdeparture times. In
the last experiments we evaluated the effect of autocorrelation on the mobile net-
work. Figure 9(a) shows the results for a Random Walk model where the arrivals
are generated according to an ARTA process with exponential distribution and
different levels of autocorrelation, while the departures follow an exponential
distribution and are uncorrelated. As we can see, an increased autocorrelation
also results in a larger queue length. Similar results can be observed in Fig. 9(b)
where both, arrivals and departures, are generated by identical ARTA processes
and thus, are correlated.

The experimental results clearly indicate, that arrivals and departures can
have a significant effect on the performance of a wireless network. We have also
seen that this effect becomes larger if the variation in the number of nodes is
relatively large compared to the mean number of nodes, which can be caused by
a higher arrival rate or correlated arrivals.

5 Conclusions

We have presented an approach to combine mobility models with stochastic
processes to account for the arrival and departure of nodes during simulation.
The approach works on the generated scenarios and thus, can easily be combined
with any mobility model. Arrivals and departures of mobility nodes occur in
many real world scenarios (like airports, shopping centers, parts of an university
campus) and our experimental study suggests, that modeling of arrivals and
departures can have a significant effect on the performance results.

Of course, the results presented here can only serve as a first step towards
more realistic mobility models. We only used completely synthetically generated
mobility scenarios in our study. Mobility models based on real-world observations
naturally qualify for an extension with arrival and departure generators since the
observations already contain information about nodes that newly arrive or leave
the area, but are subject to further research.

References

1. Aschenbruck, N., Ernst, R., Gerhards-Padilla, E., Schwamborn, M.: BonnMotion -
a mobility scenario generation and analysis tool. In: Proceedings of the SIMUTools
(2010)

2. Balachandran, A., Voelker, G., Bahl, P., Rangan, P.: Characterizing user behavior
and network performance in a public wireless LAN. In: SIGMETRICS (2002)

3. Bettstetter, C.: Smooth is better than sharp: a random mobility model for simu-
lation of wireless networks. In: Proceedings of the MSWIM (2002)

4. Bhatia, H., Lenin, R.B., Munjal, A., Ramaswamy, S., Srivastava, S.: A queuing-
theoretic framework for modeling and analysis of mobility in WSNs. In: Proceed-
ings of the PerMIS (2008)

Combining Mobility Models with Arrival Processes 121

5. Biller, B., Nelson, B.: Fitting time-series input processes for simulation. Oper. Res.
53(3), 549–559 (2005)

6. Biller, B., Nelson, B.L.: Modeling and generating multivariate time-series input
processes using a vector autoregressive technique. ACM Trans. Model. Comput.
Simul. 13(3), 211–237 (2003)

7. Box, G., Jenkins, G.: Time Series Analysis - Forecasting and Control. Holden-Day,
San Francisco (1970)

8. Buchholz, P., Kemper, P., Kriege, J.: Multi-class markovian arrival processes and
their parameter fitting. Perform. Eval. 67(11), 1092–1106 (2010)

9. Buchholz, P., Kriege, J., Felko, I.: Input Modeling with Phase-Type Distributions
and Markov Models - Theory and Applications. Springer, Heidelberg (2014)

10. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network
research. Wirel. Commun. Mob. Comput. 2(5), 483–502 (2002)

11. Cario, M., Nelson, B.: Autoregressive to anything: time-series input processes for
simulation. Oper. Res. Lett. 19(2), 51–58 (1996)

12. Chen, Y., Kurose, J., Towsley, D.: A mixed queueing network model of mobility in
a campus wireless network. In: Proceedings of the INFOCOM (2012)

13. Hornig, R., Varga, A.: An overview of the OMNeT++ simulation environment. In:
Proceedings of the SIMUTools (2008)

14. Jardosh, A., Belding-Royer, E., Almeroth, K., Suri, S.: Towards realistic mobility
models for mobile ad hoc networks. In: Proceedings of the MobiCom (2003)

15. Kim, M., Kotz, D., Kim, S.: Extracting a mobility model from real user traces. In:
Proceedings of the INFOCOM (2006)

16. Leland, W.E., Taqqu, M.S., Willinger, W., Wilson, D.V.: On the self-similar nature
of ethernet traffic (extended version). IEEE/ACM Trans. Netw. 2(1), 1–15 (1994)

17. Liang, B., Haas, Z.: Predictive distance-based mobility management for PCS net-
works. In: Proceedings of the INFOCOM (1999)

18. Navidi, W., Camp, T.: Stationary distributions for random waypoint models. IEEE
Trans. Mobile Comput. 3(1), 99–108 (2004)

19. Resta, G., Santi, P.: The QoS-RWP mobility and user behavior model for public
area wireless networks. In: Proceedings of the MSWiM (2006)

20. Royer, E., Melliar-Smith, P., Moser, L.: An analysis of the optimum node density
for ad hoc mobile networks. In: Proceedings of the IEEE ICC (2001)

21. Tuduce, C., Gross, T.: A mobility model based on WLAN traces and its validation.
In: Proceedings of the INFOCOM (2005)

22. Yoon, J., Noble, B., Liu, M., Kim, M.: Building realistic mobility models from
coarse-grained traces. In: Proceedings of the MobiSys (2006)

Product Line Fault Tree Analysis by Means
of Multi-valued Decision Diagrams

Michael Käßmeyer1(B), Rüdiger Berndt2, Peter Bazan2,
and Reinhard German2

1 Audi Electronics Venture GmbH, Gaimersheim, Germany
michael.kaessmeyer@audi.de

2 Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
{ruediger.berndt,peter.bazan,reinhard.german}@fau.de

Abstract. The development of cyber-physical systems such as highly
integrated, safety-relevant automotive functions is challenged by an
increasing complexity resulting from both customizable products and
numerous soft- and hardware variants. In order to reduce the time to
market for scenarios like these, a systematic analysis of the dependen-
cies between functions, as well as the functional and technical variance,
is required (cf. ISO 26262). In this paper we introduce a new approach
which allows for a compact representation and analysis of failure mecha-
nisms of systems marked by numerous variants, also: Product Line Fault
Tree (PLFTs), in a unified data structure based on Multi-valued Decision
Diagram (MDDs). Therefore, instead of analyzing the Fault Tree (FT)
of each variant separately, the proposed method enables one to analyze
the FT in a single step. Summing up, this article introduces a systematic
modeling concept to analyze fault propagation in variant-rich systems.

Keywords: Fault tree · Multi-valued decision diagrams · Safety
engineering · Reliability · Dependability analysis · Variant management ·
Product line engineering · Minimal cut set

1 Introduction

Automotive functions of this day and age interact with most diverse digital
networks, for example to realize new in-vehicle services, to increase road safety,
to encourage an efficient control of the growing traffic volume, or to enable
autonomous driving. Such Cyber-Physical System (CPSs) usually operate with
respect to different and only partially predictable contexts and comprise a high
number of embedded systems. This is why automotive functions are marked
by variance and high complexity, in turn functional safety is of considerable
importance.

In the last decade, model-based development has been established in the
automotive sector to manage the increasing complexity which is mainly induced
by highly-integrated Electronic Control Unit (ECUs) and the growing number
of variant-rich functions [1]. In this context, an automotive safety standard is
c© Springer International Publishing Switzerland 2016
A. Remke and B.R. Haverkort (Eds.): MMB & DFT 2016, LNCS 9629, pp. 122–136, 2016.
DOI: 10.1007/978-3-319-31559-1 11

Product Line Fault Tree Analysis 123

given by the ISO 26262 [2] postulating normative requirements to ensure func-
tional safety within electrical and electronic vehicle systems. These include a
hazard and risk analysis, a safety analysis, as well as verification and validation
of the resulting safety mechanisms, just to name a few. Consequently, the overall
safety assessment is labor-intensive and time-consuming, also because available
software tools that ought to support traceability or semi-automated consistency
and completeness checks often do not meet specific user expectations.

All things considered, the development of a completely secure system incor-
porating all required safety mechanisms is hardly possible with state-of-the-art
safety assessment methods such as Fault Tree Analysis (FTA). This is because
on the one hand, systems are marked by different versions as well as numerous
variants, and on the other hand, due to the lack of appropriate methods and
tools to compactly represent and efficiently analyze such systems.

Therefore, in this article a new method is established to compactly represent
the FT of variant-rich systems, i.e. PLFT, within a single data structure: MDDs,
also referred to as 150 % model. Based on such compact MDD-based FT repre-
sentations, the proposed method allows us to generate an MDD representation
of the Minimal Cut Set (MCSs) of the system including all variants. This data
structure, accordingly, enables one to extract the MCS of specific variants. More-
over, for a given MCS, the variants where the corresponding MCS will cause the
system to fail can be identified.

The remainder of this article is structured as follows: Sect. 2 will give an
overview of automotive safety engineering and MDDs. Then, in Sect. 3, the mod-
eling approach of variants in FTs is presented. Section 4 demonstrates how FTs
with variants can be superposed and represented as MDD. In Sect. 5, it is shown
how the MCSs of the PLFT can be compactly encoded by an MDD. Finally, in
Sect. 6, we summarize this article and suggest future research.

2 Related Work

2.1 Fault Tree Analysis

FTA is a method to identify potential hazards causing the violation of a system’s
safety goals (e.g., unintended acceleration of the car). It is used in the field
of safety and reliability engineering to identify the causes which let a system
fail [3,4]. Usually, this technique is applied considering different architectures,
designs and abstraction levels (cf., function, component, system) to derive safety
mechanisms (e.g., fault detection and reaction, redundancy, etc.) and thus to
alleviate the identified problem spots.

The starting point for an FTA is the definition of an undesired event, also:
Top Level Event (TLE). In the next step, this event is resolved into Basic Event
(BEs), like failure of a certain hardware device, whose combined occurrence will
trigger the TLE. By doing so, relations among basic events—which are, among
others, induced by the system’s architecture—are reflected by logical gates (AND
or OR) [3,5]—see Fig. 1. In other words, the FT represents a Boolean Function
encoding the fault propagation which will lead to the (undesired) TLE.

124 M. Käßmeyer et al.

The benefits of constructing a FT within a defined boundary of the system,
is given by the identification of all different mechanisms that will trigger the
TLE. Moreover, during the development of the FT, an overall understanding
of the system’s basic errors and their interrelations is obtained. The main pur-
poses of FTA are: (1) identify critical events, (2) identify critical paths of events
that propagate to the top event, (3) identify potential system weaknesses, and
(4) identify safety mechanisms to be integrated in the system. relationships
between the top event and the primary events are described (Cut Set (CSs)).

The qualitative analysis of FTs is based on the CS and the MCS. The CS is
a set of basic events whose occurrence will cause the system to fail. The MCS is
a CS where no proper subset is a CS. The TLE will therefore only occur, if all
basic events in a MCS happen at the same time [5,6].

BE1 BE2 BE3 BE4

IE1

IE2

TLE

AND Gate

OR Gate

Intermediate
Event

Basic
Event

Top Level
Event

Fig. 1. Basic FT structure

Next, the related work on the overlapping areas of FTA and Product Line
Engineering (PLE) are introduced. The Software Fault Tree Analysis (SFTA)
is an extension of the FTA for safety-critical systems, it has proved to be an
essential method for software/safety engineers during the design phase of safety-
critical software products [7,8].

Dehlinger proposed how to attach commonality and variability attributes to
the PLFT and managed it as a core asset [9]. Lu’s work [10] extends Dehlinger’s

Product Line Fault Tree Analysis 125

work and is another way to obtain the same result for product lines. The so-
called Fault Contribution Tree (FCT) is a variability tree for the product line
where nodes are features instead of events (or conditions) [11]. Feng’s work [12]
is another extension of Dehlinger’s contribution constructing a software fault
tree in a different manner: the method begins considering commonality and
variability analysis as well as the product line architecture to obtain the so-
called Extended Commonality and Variability Analysis (XCA). After that, the
SFTA is carried out based on the XCA and the Software Failure Modes and
Effects Analysis (SFMEA). Noda [13] proposes a method assuming the fault
of features from the feature diagram. A feature is selected and turned into the
root node of the FT, then this structure is analyzed to identify all paths to the
root node. Based on that, countermeasures are identified—like adding optional
features to the diagram.

In [14], the authors carry over product lines to the Component Fault Tree
(CFT) approach. By doing so, the product line is steadily maintained over time
and information on variability is considered w.r.t. FTAs. This method, for exam-
ple, considers a component (“Ventilation System”) to be reused from a previous
Gas Turbine PL (SGT 500) within another Gas Turbine PL (SGT 400), the
component is analyzed whether it is marked by the same software behavior,
functions and structure. In the end, if the component is fully compatible with
required characteristics, it is suited for the new product line [15,16].

In contrast to these articles and the corresponding modeling approaches, this
paper will rather focus on algorithms and data structures to efficiently analyze
fault propagation of variant-rich automotive functions using MDDs.

2.2 Multi-valued Decision Diagrams

In [17], the authors introduce a graph-based structure (similar to Binary Decision
Diagram (BDDs) [18,19]) to represent and manipulate discrete functions which
they refer to as MDD (also: function graph). The advantages of BDDs are the
simple structure and the possibility of variable bit-wise interleaving. Compared
to BDDs—specifically tailored with respect to Boolean functions—MDD are
used to represent multi-valued functions and getting along with fewer variables.
Therefore, the determination of a favorable variable order can be more efficient.

Definition: Multi-valued Function. A function

f : X1 × · · · × Xk → Y (1)

is called multi-valued if the domains of all variables X1, . . . Xk and the image of
the function I ⊆ Y are finite sets.

Example: Least Common Multiple. In number theory, the least common
multiple (LCM) of two integers is the smallest natural number that is divisible
by both numbers without remainder. Let the function

LCM : Z × Z → N (2)

and two variables X1 := {1, 2, 3, 4} and X2 := {1, 2, 3} be given.

126 M. Käßmeyer et al.

Fig. 2. MDD representation of the LCM of two integers (Color figure online)

Figure 2 shows an MDD encoding this example. MDDs are Directed Acyclic
Graph (DAGs). The nodes of the first level represent X1, the nodes of the second
level X2, and the nodes of the bottom level I. Since all branches always direct
from a top to a lower node, they are depicted as non-oriented lines. The maximum
number of outgoing branches and thus the maximum number of child nodes
are determined by the cardinality of the corresponding domain. Each branch
represents the allocation of a value. The red nodes and branches in Fig. 2, for
example, represent X1 = 2 , X2 = 3, and Y = 6.

An MDD is called ordered, if the variables occur in each path in the same
order. It is called reduced, if no equivalent sub-graphs are contained. If an MDD
fulfills both criteria it is called Reduced Ordered Multi-valued Decision Diagram
(ROMDD)1.

Most generally, decision diagrams are considered data structures to efficiently
encode large sets. Therefore, they are supported by a rich body of research and
used in many applications: among others for dependency and reliability analyses
in safety critical systems, e.g., to encode the state space of the system or to
include fault probabilities using edge-values [20,21].

3 Modeling Systems with Variants

Inspired by the related work, this section will describe two approaches on how
to model variant-rich systems: while the first approach distinguishes variants
by the absence of the system’s components, the second approach suggests a
concept where variants of the system are distinguished by different modules.
Both approaches are illustrated by examples.

3.1 Structure-Preserving Fault Trees

In the following, the term variance refers to the components of the system and
their presence or absence, respectively. Therefore, the structure of the fault
1 For reasons of simplicity we henceforth write MDD instead of ROMDD.

Product Line Fault Tree Analysis 127

C1 C2 C3 C4

(a) 150% FT

C1 C3 C4

(b) FT1

C1 C3

(c) FT2

Fig. 3. 150 % FT and the two available variants

propagation, i.e. the arrangement of the logical gates, remains untouched. Only
components that are not part of a specific variant are removed from the struc-
ture (cf. [9]). Of course, unconnected gates need to be recursively removed from
the FT. Let a system consisting of four components {C1, C2, C3, C4} be given
(Fig. 3a). Based on that, for example two variants can be derived:

– the first variant comprises {C1, C3, C4} (Fig. 3b),
– the second variant comprises {C1, C3} (Fig. 3c).

Each of both FTs can be converted into the corresponding BDD represen-
tation as shown by Fig. 4a and b. In this notation solid lines correspond to the
binary value 1 and dotted lines to the value 0—this value is omitted in most
branches for simplicity. Constructing the BDDs representation of a FT is well
known but will be shortly recapitulated at the beginning of Sect. 4.

0 1

C1

C3

C4

0

1

(a) BDD1

0 1

C1

C3

0

1

(b) BDD2

Fig. 4. BDD-based representations of FT1 and FT2

3.2 Modular Systems with Variants

This section describes another approach to model variant-rich FTs based on
features and modules. Figure 5 depicts a feature model of a system consisting of

128 M. Käßmeyer et al.

System

Processor Bus Memory

PA:
„2 out of 2"

PB:
„2 out of 3"

MA:
„1 memory“

MB:
„2 redundant memories“

B:
„1 Bus“

Fig. 5. Feature model

three modules: Processor (P), Bus (B), and Memory (M). There are two different
variants of the processor module: PA and PB, and there are two variants of the
memory module: MA and MB . In addition, the following constraint is used to
restrict the configuration space:“if PB is selected, then MB must be selected”.
Next, for each available variation of the system’s components a Sub Fault Tree
(SFT) can be stated as illustrated by Fig. 6b to d.

P MB

(a) FTSystem

P1 P2

(b) SFTPA

P1 P2 P3

(c) SFTPB (d) SFTMB

Fig. 6. Fault trees of the system, and of the modules’ variations PA, PB , and MB

Note that there is no variation of the bus module since it is considered manda-
tory in each configuration. The model of MA, furthermore, is trivial because it
only consists of one memory. The overall failure behavior of the system is shown
in Fig. 6a, obviously the system will fail as soon as one of its modules will fail.
The fault propagation within the modules themselves is reflected by the BDDs
shown in Fig. 7a to c.

4 MDD-Based Representation of Variant-Rich FTs

The starting point to construct a BDD representation of a single FT is the TLE.
Given that, a depth-first-search is carried out. By doing so, all gates and events
are encoded by BDD nodes. Finally, each component of the FT is represented
by variables (also: levels) of the BDD.

Product Line Fault Tree Analysis 129

0

P1

1

P2

0
1

(a) BDDPA

0

P2

1

P3

P1

P2

0 1

(b) BDDPB (c) BDDMB

Fig. 7. BDD representations reflecting the fault propagation within the available vari-
ants of the modules

0 1

1

C1

C3

C4

0

(1,0)

C3

(2,0) (1,1)(2,1)

(a) 150% MDD of the 150%
FT of Figure 3a

0

P1

1

P2

P3

B

(PB,1)

M1

P2

M2

(PB,0)

(PA,1)

(MB,1)(MA,1)(MA,0)(MB,0)

P2

(PA,0)

0 1

(b) Fault propagation including all vari-
ations of the system’s modules

Fig. 8. MDD representations of fault trees with variants (Sects. 3.1 and 3.2)

130 M. Käßmeyer et al.

However, instead of BDDs it is also possible to use MDDs for analyzing
FTs. For example, in order to compactly represent Dynamic Fault Tree (DFTs)
both BDDs [22] and MDDs [23] might be deployed. Furthermore, in [24] an
MDD-based analysis of FTs whose components have three states is described.
This approach is extended to any number of states in [25]. This idea can also be
carried over to systems that might be distinguished by several phases or different
fault conditions [20,26].

Following these ideas we introduce MDDs to incorporate information on both:
the components behavior (i.e., operating or failure) and the corresponding vari-
ants. For example in Fig. 8 the BDD representations of Fig. 4a and b are merged
into a single MDD. How this works is explained in more detail in Sect. 5.2.
Branches with just 0 or 1 or without label means that just binary values are
used. Now, the MDD’s branches are annotated with tuples (i, {0, 1}) where i
denotes the according variant.

Given modular systems with variants (see Sect. 3.2), the overall failure of the
system, including all variations of the modules, can be represented as an MDD
by joining the corresponding BDDs (see Fig. 8b). Here, the branches’ annota-
tions (v, {0, 1}) represent the variation v of the module and whether or not the
according component has failed. Note, that this structure also reflects the trivial
behavior of the variants MA and B.

5 MDD-Based Representation of Minimal Cut Sets

The MDD representation of a FT with variants is the basis to construct an MDD
encoding the MCSs. The formal presentation of the MCS are introduced for the
derivation of algorithms. This approach is an extension of the identification of
significant MCSs, which can be directly analyzed from a FT [27,28]. A significant
MCS can be defined so that the probability of a failure does not fall below a
specified minimum value.

5.1 Minimal Cut Sets

First, this section will briefly introduce basic terms and definitions. The BDD
representation of a Boolean function is based on Boole’s expansion theorem (also:
Shannon decomposition):

F (v1, ..., vn) = vi.Fvi=1 + vi.Fvi=0 (3)

Here Fvi=1 and Fvi=0 denote the function F with argument vi set to 1 or 0,
respectively. This theorem can be carried over to the multi-valued case:

F : {1, 2, . . . , s}n → {0, 1} (4)
F (v1, . . . , vn) = (vi = 1).Fvi=1 + (vi = 2).Fvi=2 + . . . + (vi = s).Fvi=s (5)

Product Line Fault Tree Analysis 131

The assignment of values to F ’s variables can be written as minterm2. In
the Boolean case, the literal vi denotes the assignment vi = 1 and the literal vi
denotes the assignment vi = 0. Considering multi-valued functions, the literal vi,j
corresponds to the variable assignment vi = j. Obviously, minterms only contain
one literal of each variable. A conjunction term is a set of literals which are
exclusively connected by logical ‘and’ (also: conjunction). Accordingly minterms
are special conjunction terms. Conjunction terms yielding F = 1 are called
implicants of the function. Implicants that cannot be further reduced are called
prime terms. According to [29] and based on a given set of literals L (also:
‘literals of interest’), the set of MCSs of a function F is defined as the set of all
prime terms given that all literals l /∈ L are removed. Let a static FT and the
corresponding Boolean function F be given. According to [30] and based on the
decomposition F = v.F1 + v.F0, the MCSs can be derived as follows:

MCS[F] = MCS1 ∪ MCS0 (6)
MCS0 = MCS[F0] (7)
MCS1 = {v.π|π ∈ MCS[F1 + F0] \ MCS0} . (8)

5.2 Constructing the MDD Representation of the MCSs

This section introduces our approach to derive an MDD-based representation of
the MCSs from the MDD-based representation of a PLFT.

Consider the example system of Sect. 3.1. By adding information on the vari-
ants at the branches, the corresponding BDD representations of Fig. 4a and b are
transformed into equivalent MDDs, first (see Fig. 9a and b). Then the unifica-
tion of those MDDs yields the 150 % MDD in Fig. 9c. However, when going from
the top to the bottom, the variant is already determined by the branches of the
root node (reflecting C1). The construction process of the MDD-representation
of the PLFT ensures that information on the variant is not further restricted
while descending a path in the diagram. This is why information on variants can
be removed on successive branches (see Fig. 9d).

Based on this structure and Shannon’s decomposition, the MDD-
representation of the MCSs can be recursively computed. The decomposition
of C1 yields three subtrees that are labeled by the bold numbers 1, 2, and 3
in Fig. 9d. While F0 is represented by the union of the subtrees 1 and 2, F1 is
represented by the subtree 3. Furthermore, let us assume that the MCSs repre-
sentations of F0 and F1 + F0 have already been generated by recursive descent
(see Fig. 10a and b).

Next, according to (7), MCS0 is computed by adding the two 0-branches of
C1, reflecting that literal C1 is not added to MCSF0 (see Fig. 10c). According
to (8), MCS1 is computed by adding the two 1-branches of C1. By doing so, literal

2 A minterm is a product term in which each variable appears once. Boolean functions
can be expressed as sum of minterms where each minterm corresponds to a row of
the function’s truth table. This final value of the function’s output is 1.

132 M. Käßmeyer et al.

0 1

(1,1)

C1

C3

C4

(1,0)

(1,0)

(1,1)

(1,0)

(1,1)

(a) MDD1

0 1

(2,1)

C1

C3

(2,0)

(2,0)

(2,1)

(b) MDD2

0 1

(1,1)

C1

C3

C4

(1,0)

(1,0)

(1,0)

C3

(2,0) (1,1)(2,1)

(1,1)

(2,0)

(2,1)

(c) 150% MDD

(d) optimized 150%
MDD

Fig. 9. First, two BDDs are transformed to MDDs and merged to a 150 % MDD in
(a)–(c). Afterwards the redundant information has been removed from certain branches
in (d).

C1 is added to the set MCS[F1+F0]\MCS0 (see Fig. 10d). Finally, following (6),
the MCSs of the PLFT is computed by unifying MCS1 and MCS0 (cf. Fig. 10e).
Note, that the MDDs in Fig. 10 omit the terminal node 0. This reduces both
memory consumption and computational effort.

With the helo of MDD-based MCS representations several scenarios can be
investigated in an efficient manner: for example the identification of the MCSs

Product Line Fault Tree Analysis 133

1

C2

C3

(1,0)

C3

(2,0)

C4 C4

(a) MCSF0

1

C2

C3

(1,0)(2,0)

C4

(b)
MCSF1+F0

1

C2

C3C3

(2,0)

C4 C4

C1

C2

(1,0)

(c) MCS0

1

C2

C3

(1,1)(2,1)

C4

C1

(d)
MCS1

1

C2

C3C3

(2,0)

C4 C4

C1

C2

(1,0)

C2

C3

(1,1)(2,1)

(e) MCS = MCS1 ∪
MCS0

Fig. 10. Constructing the MDD-based representation of MCSs of PLFTs

w.r.t. specific variants; or vice versa, for given MCSs one might be interested in
the affected variants. Such queries are based on intersect operations and MDD-
based structures encoding the query (for example: a specific variant).

In order to determine the MCSs of the first variant (cf. Fig. 3b), the inter-
section operation will yield all paths (1, ∗) of Fig. 10e which, in turn, represent
the following set of minimal cut sets: {{C3, C4} , {C1}} .

6 Conclusion and Future Work

The approach described in this article allows to efficiently analyze and compare
the fault propagation of systems marked by variants, such as highly integrated,
variant-rich and safety-relevant automotive functions. The underlying data struc-
ture is given by MDDs which are not only used to encode the fault propagation
of all of the systems variants but also to represent the corresponding MCSs.

In the near future, we will evaluate the presented approach with real-world
automotive systems. In more detail, we plan to derive an MDD representation
from variant-rich fault trees, followed by the MCS analysis of a proper con-
structed MDD. Moreover, following basic analyze options will be evaluated:

– Searching of MCSs for each valid variant.
– Identification of all affected variants with a given MCS.
– Comparison of the MCSs of evolutions and variants of a safety-critical func-

tion, and analysis which cardinal number is equal or not.

134 M. Käßmeyer et al.

– Identification of similar or differing safety mechanism in evolutions and vari-
ants of a function.

On this basis, we want to identify metrics to improve our approach, and to
measure the impact of change requests affecting the product line of a given
system. However, we plan to integrate the MDD analysis approach into a model-
based safety and variant management framework (cf. [31,32]). Finally, in order
to keep the approach practicable, we want to investigate the impact of diverse
variable ordering methods (cf. [33–35]) upon the MDD-based representations of
both, the PLFT and the MCSs.

Acknowledgment. Partially funded by the project SPES XT of the German Federal
Ministry of Education and Research (grant no. 01IS12005C).

References

1. Ebert, C., Jones, C.: Embedded software: facts, figures and future. IEEE Comput.
42(4), 42–52 (2009)

2. International Organization for Standardization: ISO/ IS 26262. - road vehicles -
functional Safety (2011)

3. Vesely, W., Goldberg, F.F., Roberts, N., Haasl, D.F.: Fault tree handbook. In: No.
NUREG-0492, Nuclear Regulatory Commission, Washington, DC (1981)

4. International Electrotechnical Commission: IEC 61025 fault tree analysis (1990)
5. Vesely, B.: Fault Tree Anaylsis (FTA): concepts and applications. In: NASA HQ

(2002). http://www.hq.nasa.gov/office/codeq/risk/docs/ftacourse.pdf
6. Leveson, N.G., Diaz-Herrera, J.: Safeware: System Safety and Computer. Addison-

Wesley (1995)
7. Hansen, K.M., Ravn, A.P., Stavridou, V.: From safety analysis to software require-

ments. IEEE Trans. Softw. Eng. 24(7), 573–584 (1998)
8. Lutz, R., Woodhouse, R.M.: Requirements analsis using forward and backward

search. Ann. Softw. Eng. 3(1), 459–475 (1997)
9. Dehlinger, J., Lutz, R.: Software fault tree analysis for product lines. In: Pro-

ceedings of the 8th IEEE International Symposium on High Assurance Systems
Engineering, pp. 12–21 (2004)

10. Lu, D., Lutz, R.: Fault contribution trees for product families. In: Proceedings of
the 13th International Symposium in Software Reliability Engineering, pp. 231–242
(2002)

11. Lam, W.: A case study of requirements reuse through product families. Ann. Softw.
Eng. 5(1), 253–277 (1998)

12. Feng, Q., Lutz, R.: Bi-directional safety analysis of product lines. J. Syst. Softw.
78(2), 111–127 (2005)

13. Noda, A., Nakanishi, T., Kitasuka, T., Fukuda, A.: Introducing fault tree analysis
into product line software engineering for exception handling feature exploitation.
In: Proceedings of the 25th Conference on IASTED International Multi-conference:
Software Engineering, pp. 229–234 (2007)

14. Gómez, C., Liggesmeyer, P., Sutor, A.: Variability management of safety and reli-
ability models: an intermediate model towards systematic reuse of component
fault trees. In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS, vol. 6351, pp. 28–
40. Springer, Heidelberg (2010)

http://www.hq.nasa.gov/office/codeq/risk/docs/ftacourse.pdf

Product Line Fault Tree Analysis 135

15. Kaiser, B., Liggesmeyer, P., Mäckel, O.: A new component concept for fault trees.
In: Proceedings of the 8th Workshop on Safety Critical Systems and Software, pp.
37–46 (2003)

16. Atkinson, C., Bayer, J., Muthig, D.: Component-based product line development:
the KobrA approach. In: Software Product Lines, pp. 289–309 (2000)

17. Srinivasan, A., Ham, T., Malik, S., Brayton, R.: Algorithms for discrete func-
tion manipulation. In: ICCAD-90, International Conference on Computer-Aided
Design, pp. 92–95, IEEE, November 1990

18. Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell
Syst. Tech. J. 38(4), 985–999 (1959)

19. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput. 35, 677–691 (1986)

20. Mo, Y., Xing, L., Dugan, J.: MDD-based method for efficient analysis on phased-
mission systems with multimode failures. IEEE Trans. Syst. Man Cybern.: Syst.
44(6), 757–769 (2014)

21. Manikas, T., Thornton, M., Feinstein, D.: Using multiple-valued logic decision
diagrams to model system threat probabilities. In: 41st IEEE International Sym-
posium on Multiple-valued Logic, pp. 263–267, May 2011

22. Gulati, R., Bechta Dugan, J.:A modular approach for analyzing static and dynamic
fault trees. In: 1997 Proceedings of the Annual Reliability and Maintainability
Symposium, pp. 57–63, January 1997

23. Mo, Y.: A multiple-valued decision-diagram-based approach to solve dynamic fault
trees. IEEE Trans. Reliab. 63(1), 81–93 (2014)

24. Xing, L., Dugan, J.B.: Dependability analysis using multiple-valued decision dia-
grams. In: Proceedings of the 6th International Conference on Probabilistic Safety
Assessment and Management (2002)

25. Xing, L., Dai, Y.: A new decision-diagram-based method for efficient analysis on
multistate systems. IEEE Trans. Dependable Secure Comput. 6(3), 161–174 (2009)

26. Mo, Y., Xing, L., Amari, S.: A multiple-valued decision diagram based method for
efficient reliability analysis of non-repairable phased-mission systems. IEEE Trans.
Reliab. 63(1), 320–330 (2014)

27. Jung, W.S., Han, S.H., Ha, J.: A fast BDD algorithm for large coherent fault trees
analysis. Reliab. Eng. Syst. Saf. 83(3), 369–374 (2004)

28. Contini, S., Matuzas, V.: Analysis of large fault trees based on functional decom-
position. Reliab. Eng. Syst. Saf. 96(3), 383–390 (2011)

29. Rauzy, A.: Mathematical foundations of minimal cutsets. IEEE Trans. Reliab.
50(4), 389–396 (2001)

30. Rauzy, A.: Binary decision diagrams for reliability studies. In: Misra, K. (ed.)
Handbook of Performability Engineering, pp. 381–396. Springer, London (2008)

31. Schulze, M., Mauersberger, J., Beuche, D.: Functional safety and variability: can it
be brought together?. In: Proceedings of the 17th International Software Product
Line Conference, pp. 236–243. ACM (2013)

32. Käßmeyer, M., Velasco Moncaday, D., Schurius, M.: Evaluation of a systematic
approach in variant management for safety-critical systems development. In: Pro-
ceedings of the 12th International Conference on Embedded and Ubiquitous Com-
puting. IEEE (2015)

33. Berndt, R., Bazan, P., Hielscher, K.S.: On the ordering of variables of multi-
valued decision diagrams. In: MMB (ed.): Leistungs-, Zuverlässigkeits- und
Verlässlichkeitsbewertung von Kommunikationsnetzen und Verteilten Systemen,
Hamburg, pp. 89–98 (2011)

136 M. Käßmeyer et al.

34. Berndt, R., Bazan, P., Hielscher, K.-S., German, R.: Construction methods for
MDD-based state space representations of unstructured systems. In: Fischbach, K.,
Krieger, U.R. (eds.) Proceedings of the 17th International GI/ITG Conference on
Measurement, Modelling and Evaluation of Computing Systems and Dependability
and Fault-Tolerance. LNCS, vol. 8376, pp. 43–56. Springer, Switzerland (2014)

35. Schmiedle, F., Gunther, W., Drechsler, R.: Selection of efficient re-ordering heuris-
tics for MDD construction. In: Proceedings of the 31st International Symposium
on Multiple-valued Logic, pp. 299–304. IEEE (2001)

Resolving Contention for Networks-on-Chips:
Combining Time-Triggered Application
Scheduling with Dynamic Budgeting

of Memory Bus Use

Kai Lampka1(B) and Adam Lackorzynski2

1 Department of Information Technology, Uppsala University, Uppsala, Sweden
kai.lampka@it.uu.se

2 Department of Computer Science, Technische Universität Dresden,
Dresden, Germany

adam@os.inf.tu-dresden.de

Abstract. One of the challenges for the design of integrated real-time
systems deployed on modern multicore architectures is the finding of
system configurations where all applications are guaranteed to complete
their computations prior to their individual deadlines. Traditionally, tim-
ing feasability analysis, i.e., sche-dulability tests, take activation patterns
and worst-case execution times (WCET) of applications as input. In the
setting of mutlicore architectures with shared infrastructure, WCET are
drastically overestimated as the number of accesses to a shared resource
and their service times not only depend on the application itself, the
service times experienced at the shared resource are significantly influ-
enced by its use by applications executing on other cores. There are
several ways to deal with the above phenomenon and give guarantees
for the timing behaviour of a real-time system deployed on concurrent
hardware. One either devise analysis techniques and accept the potential
under-utilization of the hardware or one may employ specific protocols
for coordinating the resource sharing. In this paper, we do both: (a) we
combine time triggered, core-local scheduling of real-time applications
with a dynamic budgeting scheme for controlling the access to the main
memory bus. (b) We show how the obtained access budgets can be used
at design time to ensure timing correctness at design-time. The scheme
is implemented in a microkernel based operating system and we present
experiments to investigate its performance.

1 Introduction

1.1 Motivation

Modern multicore processors work for the parallel execution of applications.
This features integration of previously isolated systems on a single platform and
thereby promises significant cost reductions. For example, a high-end car might
have more than 100 Electronic Control Units (ECU), each contributing to a
c© Springer International Publishing Switzerland 2016
A. Remke and B.R. Haverkort (Eds.): MMB & DFT 2016, LNCS 9629, pp. 137–152, 2016.
DOI: 10.1007/978-3-319-31559-1 12

138 K. Lampka and A. Lackorzynski

dedicated function e.g., breaking system. With multicore technology, different
functions could be integrated into a single processor-architecture and thereby
significantly reducing the number of ECUs. As this lowers the costs of hardware,
packaging, maintenance, as well as weight and fuel consumption in the context
of transportation systems, multicore technology is highly attractive to industry.
For putting this vision into practice, it is required that the cost/benefit ratio of
the built systems outperforms the existing single-core solutions.

In electronics, costs can be significantly reduced, if existing software arte-
facts can be re-used (legacy code) and non-customized hardware, i.e., so called
commercial-off-the-shelf (COTS) technology, can be exploited.

COTS multicores are characterized by a high degree of sharing of the com-
mon infrastructure among the different cores. This includes the sharing of parts
of the memory hierarchy, e.g., main memory and communication links. As the
accesses to these resources are serialized, an individual resource access may only
be served after a significant time of waiting. As the waiting time adds to the
execution time of an application, resource sharing significantly influences the
timing behaviour of applications. Tightly bounding the individual waiting times
and thereby guaranteeing timing correctness of applications is, however, difficult
to achieve. Not only is the number of competing access requests stemming from
the co-runners1 unknown at design time. In addition, the arrival times of access
requests cannot be predicted with a great precision.

For illustrating the timing effect stemming from the sharing of the main mem-
ory bus we run an experiment on a Intel Xeon X5650 2.67 GHz 6-core CPU. On
one core we run a single real-time application and on 4 cores we run applica-
tions which we consider as best-effort applications, where we use applications
from the industrial EEMBC benchmark suite [3]. The measured run-time data
is shown in Table 1 which can be explained as follows: at first we run all appli-
cations by themselves and measure their execution time. Then we measure the
execution time of all benchmarks running on one core, and all other benchmarks
co-running on another core. We then measure the cache miss rate which is an
indicator for the number of memory accesses of the respective application. The
rates are normed to the lowest bus access rate which is produced by application
canrdr. Thereafter we measured the slowdown for all pairings. The worst case
occurs for the pairing pntrch and bitmnp: the slowdown was measured to be
47.6% here. Many of the benchmarks are represented in the worst co-runner
column. Thus, not only the bus access rate determines the delays, they are also
affected by the concrete address space in the main memory the application are
mapped to. This is because, accesses to different memory banks are emitted to
different bus lines and therefore are executed almost in parallel.

There are several ways to deal with the above phenomenon and give
guarantees for the timing behaviour of a real-time system deployed on COTS
multicore. One either devise conservative analysis techniques and accept the
potential under-utilization of the hardware or one may employ specific protocols

1 With co-runners we refer to the applications which are located at other cores and
executing in parallel to the application under consideration.

Resolving Contention for Networks-on-Chips 139

Table 1. Normalized memory bus access numbers. Worst case slowdown is in percent
of execution time when applications run alone. Worst case co-runner is the application
running on the other 3 cores when the worst slowdown was measured

for coordinating the resource sharing. In the latter case, the proposed schemes
need to enforce assumptions made at design time and thereby guarantee the tim-
ing correctness of the system. However, resource arbitration needs to be done
adaptively to improve response times of applications and avoid any drastic under-
utilization of hardware.

1.2 Own Contribution

Most of the traffic experienced in a Network-on-Chip (NoC) is directed to the
main memory controller. The resulting contention about the use of the NoC
can be handled in several ways. Approaches range from sophisticated analysis
techniques [10], through augmented feasibility tests [1] up to the use of dedicated
protocols for organizing the use of the NoC [6]. In this paper, we apply a more
comprehensive strategy:

1. we introduce a dynamic budgeting scheme for coordinating access to a shared
resource, e.g., the NoC and

2. we show how the scheme can be used for deciding timing correctness of a
given system layout at design time.

In contrast to existing techniques, the paper specifically intends to improvement
the response time of best-effort applications which use the NoC in parallel to
the real-time applications. As the later are treated as first class citizens of a
system, best effort applications commonly have to accept significant performance
degradation. This is not acceptable, specifically when it comes to user-centric
services.

140 K. Lampka and A. Lackorzynski

1.3 Organization

Section 2 presents the relevant scientific work. Section 3 introduces the assumed
system model and Sect. 4 presents the budgeting scheme for throttling memory
accesses in the presence of time-triggered scheduling of core-local workloads. The
implementation and empirical evaluation is presented in Sects. 5 and 6 concludes
the paper.

2 Related Work

Time-triggered scheduling as advocated by Koepitz is the predominant scheme in
industry for coordinating the execution of real-time applications on a processor.
For conciseness, we do not give a survey on timed triggered scheduling, e.g., see
[5] as a prominent example.

Resource servers are a well known technique for organizing access to a shared
resource in a budgeted and thereby time-safe manner. The basic functionality is
as follows: an access to the shared resource decreases the budget. The budget is
replenished at fixed points in time, commonly periodically. Whenever the budget
is depleted, the server is not eligible to access the memory, i.e., the execution
of applications is suspended. This way, the interference time of applications
is limited to the size of the budget and real-time guarantees can be derived
accordingly. In the past, several variants of this basic scheme have been proposed,
an overview on resource servers can be found in the textbook [2].

For controlling the access to the NoC and in particular to the main memory
bus, has already been proposed in the literature.

[12] guarantees memory bus bandwidth for one hard real-time core. The
applications which are running on the other cores are considered to be best-effort
applications and their accesses to the memory bus are throttled. The budgets
of these so called soft cores are replenished periodically, and is measured by
cache misses in the last level cache (LLC). The number of cache misses is either
measured every 1ms or every context switch, whichever comes first. Once the
budget of cache misses at a core is depleted, all ready applications on that core
are moved away from the ready-queue, until the next replenishment point.

[13] presents a budgeting scheme which utilizes a predicted budget for each
period. The difference between predicted budget and the actually consumed one
is handed over to a global budget. From this global budget, best-effort appli-
cations may reclaim additional memory accesses, namely if their own budget is
prematurely depleted.

The above works are based on static analysis for determining the budgets
of applications. The worst case path w.r.t. memory accesses of applications may
be traversed rarely in practice. As a consequence, the budgets assigned to the
best-effort applications, respectively the cores they are mapped to, are unneces-
sarily low. This, together with the lack of balancing accesses between real-time
and best-effort applications, yields large response times for the best-effort appli-
cations. E.g., budget shifting among best-effort applications as proposed in [13]
lowers the average response time of a specific best-effort application. But, it does

Resolving Contention for Networks-on-Chips 141

not solve performance degradation of all best-effort applications as the overall
budget of the best-effort budget is constant and may be arbitrarily pessimistic.

In this work we exploit the adaptive budgeting scheme of [4] for overcoming
these shortcomings, and propose its combination with a time-triggered applica-
tion scheduling at core-level.

3 Abstract System Model

3.1 Basic Definitions

We consider a typical multicore architecture and abstractly characterize its work-
load as follows:

Hard Real-Time Cores. There are M CPU-cores, G of which are exclusively
executing hard real-time applications. These cores are denoted as hard real-time
cores.

Soft Real-Time Cores. There are M − G soft real-time cores which exclusively
execute best-effort applications. In the following we denote these best-effort
applications as soft real-time tasks.2

Hard Real-Time Applications. There are N sporadic real-time applications,
denoted as hard real-time tasks and defined by the set {τ1, τ2, ..., τN}. τk is
a quadruple (Cnm

k , Pk, Dk, Memon
k , Memoff

k), where

– Cnm
k is the worst-case execution time (WCET) for the task, assuming that no

cache miss, i.e., no memory access, occurred.
– Pk is the minimum inter-arrival time or period of the task.
– Dk ≤ Pk is the task’s relative deadline.
– Memon

k is the maximum number of memory accesses issued by any execution
of the task.

– Memoff
k is the maximum number of memory accesses issued by all co-runners

during the execution of τk.

Static Task to Core Mapping. Each task τk is mapped to a specific core out of
the G hard real-time cores.

Time-Triggered Scheduling of Applications at Core-Level. The execution of tasks
at the hard real-time cores follows a periodically repeating time-triggered sched-
ule which we describe below, Sect. 4.1.

Scheduling at Soft Real-Time Cores. For the scheduling of the best-effort appli-
cations on the soft real-time cores, we do not make any assumption.
2 The partitioning into hard and soft real-time cores simplifies the signalling overhead

and simplifies the description of the scheme. If necessary, it could be dropped, but
this would require maintenance of a budget also on the side of hard real-time cores.

142 K. Lampka and A. Lackorzynski

3.2 Worst Case Execution Time When Sharing the Main
Memory Bus

Hard and soft cores share the main memory, where the memory controller decides
on the service order of incoming memory access requests. The worst case execu-
tion time (WCET) of a hard real-time task τk can be bounded as follows:

WCET (τk) ≤ Cnm
k + (Memon

k + Memoff
k) × TMEMnrh

where TMEMnrh refers to the maximum access time for serving an iso-
lated memory access provided that the item is not cached at its bank. Note,
TMEMnrh needs to include also the time for looking up entries along the cache
hierarchy. For data-centric tasks, i.e., for tasks which excessively access the main
memory, Memon

k << Memoff
k hold and the above bounding of the WCET

appears to be not too pessimistic.
In case of computation-centric tasks, i.e., tasks with sparse main mem-

ory access patterns the above bound may become extremely pessimistic as
TMEMnrh is a very coarse over-estimation for a single cache access. In the
following we assume that the WCET of any task is set to the above bound.

3.3 Worst Case Response Time When Sharing the Main Memory

The worst case response time (WCRT) Rk is the time between activation and
completion of a task. It bounds the lifetime of all possible task invocations and
can be computed from the following recurrence relation:

WCRT (τk) =
∑

τk∈Preempt(τk)

�WCRT (τk))
Pl

� × WCET (τk)

where Preempt(τk) refers to the set of tasks which may potentially preempt task
τk which depends on the assumed scheduling scheme.

A system is denoted feasible if ∀τk : WCRT (τk) ≤ Dk holds.

4 Adaptively Budgeting Memory Accesses Under
Time-Triggered Execution of Real-Time Tasks

4.1 Time-Triggered Execution of Tasks

Scheduling of hard real-time tasks is organized according to a standard time-
triggered scheme, e.g., as defined in [5].

A time-triggered schedule at core i is a sequence of Ki time slots si,j , where
sΔ

i,j refers to the time length of each slot.
Let Si be the sequence of slots of core i, each time-triggered core-local sched-

ule is repeatedly executed with period Πi =
∑

∀si,j∈Si

sΔ
i,j . The hyperperiod of

the time-triggered schedules executing on the hard real-time cores of G is the

Resolving Contention for Networks-on-Chips 143

least common multiple of all periods (Π = lcm(Π1, . . . Π|G|). In the following,
we denote the hyperperiod of all hard real-time core schedules as system cycle
time and the time t ∈ [iΠ, (i + 1)Π] for any i ∈ N0 the j’th cycle γj with
j = i + 1, i.e., we start indexing at one.

Let Ωi be now the sequence of slots extended to the complete system cycle γj .
This allows one to re-enumerate the slots executing on a core w.r.t. the system
cycle, instead doing so for each core-local cycle. Let Ω be now the set of all
extended sequences, Ω = {Ωi|i ∈ G}. The re-enumeration of slots yields that
si,j refers from now on to a unique slot appearing on Ω.

Let τ(si,j) be the tasks which are statically mapped to slot si,j for execution.
If a task is mapped to different slots or in case a task need to be partitioned over
several slot to meet its timing requirements, we assume allocation of a sufficient
number of new tasks, each added to the task set of the system. In this setting,
we consider the overall system feasible if the following two condition hold

∀si,j ∈ Ω :
(A) ∀τk ∈ τ(si,j) : sΔ

i,j ≤ Di

(B)
∑

τk∈τ(si,j)
WCET (τk) ≤ sΔ

i,j

(1)

Condition (A) states that each task of a slot must not be completed before the
end of the slot. This is usefull as it follows to freely shift memory bus accesses
among the tasks mapped to the same slot.

Condition (B) requires that the slot is large enough to accommodate all task
executions under the worst case assumption, which is the maximum number of
assumed interference from the task’s off-core co-runners and the maximum num-
ber of preemptions suffering from the local co-runners. The off-core co-runners
are the hard real-time task which execute in parallel on other cores, the local
co-runners are the tasks which are assigned to the same slot (τ(si,j) \ τk).

For the execution order of hard real-time tasks within a slot, we do not make
any assumption, solely that the scheduling scheme produces a feasible schedule
such that condition (A) and (B) of Eq. (1) hold.

4.2 Feasibility Checks with Budgets

For each slot si,j we define a local and an external budget

Blocal
i,j =

∑
∀τk∈τ(si,j)

Memon
k and Bext

i,j =
∑

∀τk∈τ(si,j)

Memoff
k (2)

with the following meaning: the local budget Blocal
i,j is an upper bound on the

memory bus accesses of all tasks executing in slot si,j . The external budget Bext
i,j

is the upper bound of all memory access requests which we can be tolerate by
the tasks executing in si,j .

Theorem 1. A system maintains its feasibility if the off-core interference for
all tasks τ(slotsi,j) is bounded by Bext

i,j and the local memory bus accesses of all
tasks of τ(slotsi,j) is bounded by Blocal

i,j .

144 K. Lampka and A. Lackorzynski

The validity of the above theorem needs to be shown w.r.t. the individual
tasks mapped to slot si,j and feasibility needs to be maintained, even if a single
task τk is exposed to the complete interference and would issue even more than
M local

k memory bus accesses. What matters is the sum of memory bus accesses,
local and external.

Proof. We re-write Eq. (1).B as follows:

sΔ
i,j ≥ ∑

τk∈τ(si,j)
WCET (τk)

=
∑

∀τk∈τ(si,j)

Cnm
k + TMEMnrh × (Bext

i,j + Blocal
i,j) (3)

The number of local memory bus accesses and external memory interferences is
constant for the slot. Therefore, a shifting of individual accesses cannot increase
the execution times of all tasks together. The delay is bounded for the slot by
TMEMnrh × (Bext

i,j + Blocal
i,j) no matter where it is placed. System feasibility

is ensured as all slot-related tasks complete within the slot and all slot-related
tasks meet their deadlines due to the pre-assumed validity of condition (A) of
Eq. (1).

In case a task’s relative deadline is not larger than the slot execution time,
i.e., Condition (A) of Eq. (1) is violated, it is required that

∀si,j ∈ Ω : ∀τk ∈ si,j :∑
τx∈Preempt(τk)

�WCRT (τk))
Px

�
× (Cnm

k + TMEMnrh × (Memon
k + Bext

i,j)) ≤ Dk

(4)

holds. This way, we guarantee that the budgets of memory bus accesses can be
freely shifted among the tasks mapped to a single slot.

Let CoR(si,j) be the set of slots which are co-active w.r.t. slot si,j . CoR(si,j)
is a sequence of slots of the kind CoR(si,j) = (s1,·, . . . si−1,· . . . si+1,·, . . . s|τ |,·),
ß where sk,· refers to some co-running slot from core k.

Please note, there is a single set of co-active slots per slot si,j only. This
results from the fact that we introduced a global numbering for the slots.

For each core x �= i we have at least one slot sx,y and at most Kx slots. With
respect to core i, there are no slots of the kind si,· contained in CoR(si,j).

From the set CoR(si,j) we compute a bound on the budget of memory bus
accesses stemming from off-core co-runners of si,j as follows:

Bcor(si,j) =
∑

∀sk,x∈CoR(si,j)

Blocal
k,x (5)

with Blocal
k,x as the maximum on memory bus accesses of all tasks of τ(sk,x).

Theorem 2. The core-local time-triggered schedules maintain their feasibility
under main memory contention if the following condition holds:

∀si,j ∈ Ω : Bcor(si,j) ≤ Bext
i,j . (6)

Resolving Contention for Networks-on-Chips 145

where Bext
i,j is the assumed bound on the number of interfering main memory bus

accesses which can be tolerated by the tasks executing in slot si,j (cf. Eq. (2)).

Proof. This directly arises by replacing Bext
i,j in Eq. (3) with Bcor(si,j).

The above equation immediately gives one the number of memory bus
accesses which can be tolerated from the cores executing the best-effort applica-
tions in addition to the memory bus accesses from the hard real-time cores.

∀si,j ∈ Ω : Beff (si,j) ≤ Bext
i,j − Bcor(si,j) (7)

such that the system maintains feasibility.
One may note that the above definitions and requirements introduce some

pessimism: the budgets are based on the sum of cache misses. Upon execution,
the assumed worst case might actually not appear or at least not for all tasks
executing while slot si,j is active. This is even more true, as slots may only overlap
in parts, yielding that only some of their tasks actually execute in parallel. Thus,
the definition of Bcor

i,j in Eq. (5) might be too pessimistic, but it provides a safe
upper bound to be checked against the allowable off-core memory bus accesses.

4.3 Enforcing Budgets at Run-Time

Main Idea. While executing a slot si,j , we need to guard that all the cores
running best-effort applications do not issue more than Beff (si,j) accesses to
the main memory in total. As there is one slot active per hard real-time core, we
need to ensure the bounding not only for one slot, but for all active ones. This
boils down to only distribute the minimum budget of the currently active slots
over the best effort cores.

In case the budget enforcing slot terminates, i.e., the one with the smallest
number of memory bus accesses, we need to decrease the remaining active bud-
gets accordingly. This, one has to do, as a budget must be guarded for its whole
lifetime, not only during the time it is the decisive one, i.e., the one bounding
the number of memory accesses.

Below we detail on the algorithms to implement this basic functionality, as
well as the mechanism to donate budgets in a timely safe manner. For simplicity,
we ignore the distribution of budgets and donations over multiple cores executing
a best-effort workload. For the presented algorithms, the distribution could be
arranged transparently, through a dedicated administering core.

Scheduling of the Hard-Real-Time Workloads. On a hard real-time core
we execute exclusively hard real-time tasks in a time triggered fashion, where
a set of tasks is put together to execute within a slot si,j . With respect to the
scheduling of tasks within the respective slot, we do not make any assumption,
except that feasibility of the scheme has been shown on beforehand, e.g., by
verifying Eq. (1) A and B.

146 K. Lampka and A. Lackorzynski

Algorithm 1. Budget handling: hard real-time core
1: Input: task set of si,j

2: procedure StartSlot(τ i
j)

3: setT imer(X, sΔ
i,j))

4: signalActivate(type(si,j))
5: resetPMC()
6: Schedule(getTaskSet(si,j), s

Δ
i,j)

7: if readTimer(X) > δ then
8: if readPMC() > ε then
9: signalDonate(type(si,j), B

eff
i,j − PMC())

10: end if
11: signalDeactivate(type(si,j))
12: end if
13: end procedure

Main Idea to Algorithm 1. Before executing the slot-specific tasks, we signal
activation of a budget to the cores executing the best effort workload. In case
the tasks are completed early enough, we signal a deactivation of the budget or
even execute a donation of memory bus accesses.

Implementation Details to Algorithm 1. For putting the requested functionality
in operation the algortihm proceeds as follows: in line 3, we set a timer X to
track the consumed computation time. The timer is set to the maximum value
and gives a signal once it as been decremented to 0. Time tracking is done to
ensure, that explicit invalidation of budgets only occur, if a threshold value δ is
exceeded (line 7 and 11). We do not need to signal the ending of a slot in general,
as each slot is of a predefined, fixed length. Hence, budget invalidation on the
side of the best -effort cores upon slot termination is done implicitly, namely,
once a new budget is activated from the same core or the budget exceeded its
lifetime.

For simplification, Algorithm 1 uses typed signals, such that for each slot
si,j a respective signal type is used. Consequently, when sending the signal for
activating the budget referring to the newly activated slot si,j (line 4), the best-
effort cores can retrieve the respective budget Beff (si,j) from a predefined list
of Budgets.

In line 6 we call the core-local scheduler to execute all tasks associated with
the active slot si,j during the time window sΔ

i,j . Upon return from the scheduling
and execution of tasks, Algorithm 1 tests if the residual slot time, i.e., remaining
clock ticks, shown by X justify an explicit cancellation of the budget or a dona-
tion of memory bus access from the hard real-time core under consideration
to the cores executing the best-effort workload. Both activities are guarded
by a threshold value to justify the additional overhead (line 7 and 8). Func-
tion readPMC(LLC − register) reports the number of cache misses which have
occurred since the last reset of the respective register which happens just before
the slot-local task set is executed (line 5). The register for monitoring the mem-
ory fetches is commonly denoted as last-level cache counter (LLC). It belongs

Resolving Contention for Networks-on-Chips 147

Algorithm 2. Enforcing budgets for best-effort workloads
1: Requires: timer X, budget B, set of budgets Budget
2: Input: signal e mapping to a slot and action
3: procedure BScheduler(signal e)
4: PREEMPTION = OFF
5: if action(e) ∈ {depleted, expired} then
6: delay(X)
7: end if
8: update(Budgets, B.beff − readPMC(), B.t − T)
9: if action(e) == activate then

10: insert(Budgets, slot(e))
11: else if action(e) == deactivate then
12: remove(Budgets, slot(e)))
13: else if action(e) == donated then
14: C = peek(Budgets, slot(e))
15: updateDonation(Budgets, B.d, C.t)
16: end if
17: while B = peek(Budgets)) �= ∅ ∧ B.t ≤ 0 do
18: remove(Budgets, B)
19: end while
20: if B == ∅ then
21: stopTimer(T)
22: else
23: setPMC(B.beff)
24: setTimer(B.t)
25: end if
26: PREEMPTION = ON
27: end procedure

to the class of core-local performance monitor counters (PMC). Like timers, a
PMC can be set to a value, decrements upon the associated event, here last-level
cache miss and issues a respective signal once the register hits the 0.

Budget donation takes place in line 9, it is directed towards the cores exe-
cuting the best-effort workload. Budget donation between hard real-time tasks
is pointless, as we assume that their parameters are conservative estimates.

Budget Enforcement for Best-Effort Workloads. With any best-effort
core, we do not execute any hard real-time task. Consequently, execution of
applications can be suspended there without corrupting a system’s feasibility.
The required functionality for guarding the number of memory bus accesses
such that timing correctness of the hard real-time tasks is ensured, is provided
by Algorithm 2.

Main Idea to Algorithm 2. Input signals are typed such that they refer to an
action and a specific budget. A budget is a tuple (beff , t, d), where beff refers to
the size of the budget, i.e., allowable cache misses, t refers to its lifetime and d

148 K. Lampka and A. Lackorzynski

is used for making donations from the owner of the budget, which is a slot on a
specific core. At runtime, the minimum budgets from the set of active budgets
bounds the number of allowable cache misses and does so until it has reached
its lifetime, or a smaller budget becomes active. In the following we denote this
budget as decisive budget. Once a decisive budget is replaced, the active budgets
in the queue needed to be updated, i.e., their lifetimes and budget sizes need
to be decremented by the number of clock ticks and cache misses which have
occurred during the presence of the decisive budget. An active budget might be
the decisive one for several periods.

Details to Algorithm 2. We assume that there is a queue Budgets of active
budgets, with at most one active budget per hard real-time core.

Within the queue, the active budgets are ordered by increasing budget sizes.
The following functions are used to access items of the queue: function replace
and remove, which work as expected. Function update(Budgets, a, b) decreases
all budgets of the queue by value a and decreases their lifetimes by value b.
This is needed once the decisive budget has reached its lifetime or is replaced by
a newly activated budget. Function peek gives the head of the queue, i.e., the
active budget with the smallest number of cache misses. The functions does not
remove the item from the queue.

The algorithm itself works as follows: upon depletion of the decisive budget
or at the end of its lifetime the core suspend execution for the remaining lifetime,
which in case of the “end of lifetime” situation is 0 (line 5).

In case the decisive budget has reached the end of its life time or a new budget
to be activated has arrived, we update all active budgets w.r.t. the number of
cache misses and the expired time occurred during the current budget has been
made the decisive one.

In case of a premature deactivation, the decisive budget is removed from
the budget queue and the next active budget is fetched. This can either be the
same, but updated budget, a new one, where budgets with invalid lifetime are
discarded, or it is an empty budget (line 17–19).

In case of an empty budget all active budget have been prematurely invali-
dated and the core has a non-restricted allowance to the main memory.

In case a valid budget is fetched from the queue, the LLC-register and the
lifetime clock counter are set accordingly (line 23 and 24).

Budget donation is considered before actually fetching a budget from the
queue. Function updateDonation(Budgets, a, b) adds value a to each budget,
here parameter B.beff and does so for those budgets which have a residual
lifetime below b.

5 Implementation and Evaluation

5.1 Virtual Machine Monitor: Coordinating the Acces
to a Shared Resource

Operating systems (OS) provide services to run applications concurrently on a
system and make hardware devices available to them. Deploying applications

Resolving Contention for Networks-on-Chips 149

which need to fulfill very different constraints in a single system requires an OS
that provides real-time and virtualization capabilities. In this paper we added
our budgeting techniques into the L4Re system [8]. This is a 3rd-generation,
open source and capability-based operating system which provides virtualization
features to host other legacy systems, for example, applications that come from
a deeply embedded setup [7,11].

5.2 Hardware Performance Counters

Modern processors have a performance monitor counter (PMC) unit that allows
to count hardware-related events in the CPU core, such as memory bus accesses
and instruction counts. Upon an overflow of an event register, the core can
generate an interrupt.

Using the performance counters it is possible to count the number of memory
bus accesses. If the number of memory bus accesses reaches a certain threshold,
the hypervisor may suspend the execution of soft real-time applications.

5.3 Flexible OS Support for Resource Budgets

A central task of an operating system is to multiplex between different resources.
The most prominent resource is time, however, other resources can be considered
as well, for example, the aforementioned performance counter events.

To enhance our operating system with performance counter support we built
upon the scheduling context (SC) mechanism introduced in [9]. SCs are an oper-
ating system mechanism that are the base for scheduling in the system. An SC
contains scheduling parameters required for the OS to schedule OS threads. Each
OS thread has at least one SC (SC-0), however, it can have multiple SC. This
allows, for example, to give an OS thread an additional small budget with a
higher priority to perform low-latency work. This is especially useful for virtual
machines that handle guest threads internally and are only visible to the hyper-
visor as a single thread: a virtual CPU (vCPU). SCs can be arbitrarily selected
by the guest, as long as budget is available in the selected SC. When an SC
runs out of budget, the host system will select SC-0 of the thread. If SC-0 is
also out of budget, the thread is suspended and scheduling is performed. The
host system also requires that SCs are created and configured with scheduling
parameters. Especially configuration is supervised by separate policy compo-
nents that restrict client’s settings. This prevents that a client, such as virtual
machines, can monopolize the CPU.

For this work, we extended the SC mechanism to also consider performance
counters. Besides a time budget, a SC also has a budget of performance counter
events. Whenever this budget is used up, the SC is dropped and the thread-
/vCPU continues running on its SC-0. If SC-0 is out of budget, the thread is
suspended. This allows us to give individual OS threads separate budgets for
accessing the main memory bus.

150 K. Lampka and A. Lackorzynski

5.4 Using Performance Counters

Initially, we were using an Intel Core-i7-4770 CPU to perform experiments, how-
ever, it turned out that this type of CPU is not suitable for memory bus access
accounting. Using the last-level-cache miss performance counter and reading the
counter while using the full memory bus bandwidth delivered usable counter val-
ues. But when inserting delays, with the goal to not fully use up all memory bus
bandwidth, the respective last-level-cache-miss counter shows significantly less
events although the same amount of memory is accessed. This is likely because
of the hardware memory prefetcher where memory accesses are not counted, as
they are no cache misses. Disabling the prefetcher via the Model Specific Regis-
ter (MSR) IA32 MISC ENABLE yields a general protection fault. Using non-cached
memory is no choice either because these accesses do not cause cache-relevant
events, such as misses. Other counters available either showed the same behavior
(significantly different values for with and without delay loops), or did not count
at all.

For that reason we switched architectures to a TI OMAP5 platform. The
OMAP5432-EVM has two ARM Cortex-A15 cores, clocked at 800 MHz. The
A15’s performance counter offers a BUS ACCESS counter which is a perfect fit for
our needs.

5.5 Memory Bus Usage

First, we confirm our assumption that the memory bus bandwidth impairs per-
formance in applications when running in parallel on multiple cores. For that,
we’re using a self-made memory-intensive benchmark that we execute on one core
alone and twice on each core. We based our evaluation on an arbitrarily crafted
piece of memory-intensive code for the following: today’s real-time applications,
e.g., as collected in the EEMBC [3] benchmark suite, have considerably small
memory footprints which allows one to completely load them into the core-local
cache and thereby nullifying most of the traffic to the main memory.

The results produced by our synthetic data-intensive application are pre-
sented in Table 2. They indicate that our benchmark does a good job using
up the available memory bandwidth on the used platform. With a non-greedy
memory-access pattern, i.e. a delay loop between the memory accesses, the par-
allel run shows that the memory bus is not fully used for a single benchmark
run but still the two cores influence each other.

Considering real-time tasks, this means that a real-time task running alone
on a core is influenced in its execution behavior by other tasks running on other
cores.

5.6 Limiting Memory Access

To restrict best-effort tasks in their memory bus use, we use our newly developed
budgeting mechanism. We continue to use the benchmark used in the previous
section. An undisturbed run of the greedy benchmark runs for 8.7 s as shown

Resolving Contention for Networks-on-Chips 151

Table 2. Results for an artificial data-centric benchmark running on one and on two
cores.

in Table 2-A. Let us now assume the real-time task represented by the benchmark
shall have a randomly chosen WCET of 10 s. As seen in Table 2 a task running
on a different core can influence the benchmark to run for more than 10 s. Our
goal is now to restrict the best-effort task in its execution so that the real-time
task has sufficient memory bus bandwidth available to finish within its WCET
budget of 10 s.

Experimentation shows that we need to configure the best-effort task with
a budget of 27300 performance counter ticks per 10ms period to allow the real-
time task to always finish within its WCET (a largest measured run-time is
9.993 s in this configuration). In this case the best-effort task runs for 45.4 s
which is significantly longer than when running standalone (8.7 s). When we lift
the budget of the best-effort task after the real-time task has finished its work,
the runtime of the best-effort task reduces to 17.1 s.

The same principle can be applied for the non-greedy run (Table 2-B) where
the real-time task adds delays in the memory bus access, unlike the best-effort
task. Assuming a WCET of 16 s for the real-time task, we need set the allowed
budget for the best-effort task to 33000 ticks per 10 ms. The budget is higher
as in the greedy run as the real-time task uses the memory bus less. With
this configuration, the best-effort task runs for 43.6 s, and with lifting the best-
effort tasks budget after the real-time task has finished, for 21.8 s. Concluding,
the experiments show that our budgeting approach using performance counter
events is effective and allows to limit the execution of disturbing tasks.

6 Conclusions

Parallel execution of real-time workloads on non-customized multicore platforms
is hampered by mutual interferences of applications which result from the shar-
ing of general resources like communication buses and memory. The sharing of
resources can inject unexpected delays into the worst-case response time of appli-
cations and thereby corrupt the timing correctness of a system. The challenge
inherent to such integrated systems is to build them in a way that compute-
capacity is not wasted, strict and non-strict timing constraints are met. This
paper combines a time-triggered execution policy for processing real-time work-
loads with dynamic budgeting of resource accesses. With this, we aim at ruling
out unexpected execution delays occurring with the joint access of parallel appli-
cations to the shared main memory. Contrary to existing work, the presented

152 K. Lampka and A. Lackorzynski

scheme not only takes advantage of the core-local execution policy. We also pro-
pose mechanisms which make the scheme more reactive and thereby help to
increase the performance of best-effort applications running in parallel to the
hard real-time applications. In addition to the formalized side conditions and
algorithms for guaranteeing timing correctness, we also presented an implemen-
tation of the scheme which we integrated as a new scheduling capability into a
contemporary micro-kernel.

References

1. Alhammad, A., Pellizzoni, R.: Schedulability analysis of global memory predictable
scheduling. In: 2014 International Conference on Embedded Software, EMSOFT
2014, NewDelhi, India, 12-17 October 2014, pp. 20:1–20:10 (2014)

2. Buttazzo, G.C.: Hard Real-time Computing Systems: Predictable Scheduling Algo-
rithms And Applications. Real-Time Systems Series. Springer, Santa Clara (2011)

3. EEMBC. http://www.eembc.org/
4. Flodin, J., Lampka, K., Yi, W.: Dynamic budgeting for settling DRAM contention

of co-running hard and soft real-time tasks. In: Proceedings of the 9th IEEE Inter-
national Symposium on Industrial Embedded Systems, SIES 2014, pp. 151–159
(2014)

5. Fohler, G.: Joint scheduling of distributed complex periodic and hard aperiodic
tasks in statically scheduled systems. In: Proceedings of the 16th IEEE Real-Time
Systems Symposium, pp. 152–161 (1995)

6. Giannopoulou, G., Stoimenov, N., Huang, P., Thiele, L., de Dinechin, B.D.: Mixed-
criticality scheduling on cluster-based manycores with shared communication and
storage resources. Real Time Syst. 51, 1–51 (2015)

7. Wang, A., Schild, H., Lackorzynski, A.: Faithful virtualization on a real-time oper-
ating system. In: 11th Real-Time Linux Workshopp (2009)

8. Lackorzynski, A., Warg, A.: Taming subsystems: capabilities as universal resource
access control in l4. In: Proceedings of the 2nd Workshop on Isolation and Inte-
gration in Embedded Systems, IIES 2009, pp. 25–30, ACM, New York (2009)

9. Lackorzyński, A., Warg, A., Völp, M., Härtig, H.: Flattening hierarchical schedul-
ing. In: Proceedings EMSOFT 2012, pp. 93–102. ACM, New York (2012)

10. Lampka, K., et al.: A formal approach to the WCRT analysis of multicore systems
with memory contention under phase-structured task sets. Real Time Syst. 50(5–
6), 736–773 (2014)

11. Peter, M., Schild, H., Lackorzynski, A., Warg, A., Virtual machines jailed: virtual-
ization in systems with small trusted computing bases. In: Proceedings of VDTS,
pp. 18–23. ACM, New York (2009)

12. Yun, H., Yao, G., Pellizzoni, R., Caccamo, M., Sha, L.: Memory access control in
multiprocessor for real-time systems with mixed criticality. In: 2012 24th Euromicro
Conference on Real-Time Systems (ECRTS), pp. 299–308 (2012)

13. Yun, H., Yao, G., Pellizzoni, R., Caccamo, M., Sha, L.: Memguard: memory band-
width reservation system for efficient performance isolation in multi-core platforms.
In: Real-Time and Embedded Technology and Applications Symposium (RTAS)
2013, pp. 55–64 (2013)

http://www.eembc.org/

The Weak Convergence of TCP
Bandwidth Sharing

Wolfram Lautenschlaeger(&)

Bell Labs, Nokia, Stuttgart, Germany
Wolfram.Lautenschlaeger@nokia.com

Abstract. TCP is the dominating transmission protocol in the Internet since
decades. It proved its flexibility to adapt to unknown and changing network
conditions. A distinguished TCP feature is the comparably fair resource sharing.
Unfortunately, this abstract fairness is frequently misinterpreted as convergence
towards equal sharing rates. In this paper we show in theory as well as in
experiment that TCP rate convergence does not exist. Instead, the individual
TCP flow rate is persistently fluctuating over a range close to one order of
magnitude. The fluctuations are not short term but correlated over long intervals,
such that the carried data volume converges rather slowly. The weak conver-
gence does not negate fairness in general. Nevertheless, a particular transmission
operation could deviate considerably.

Keywords: TCP � Congestion � Resource sharing � Fairness � Convergence

1 Introduction

The Transmission Control Protocol (TCP) is used for reliable data transmission over
packet switched networks. The TCP transmitter splits the data into segments, encap-
sulates them into IP packets, and sends them to the receiver. The receiver reassembles
the data from the incoming segments. Lost packets are detected by means of sequence
numbers. The receiver signals back to the transmitter the successful reception of data
by acknowledgement packets (ACK). Duplicate and selective acknowledgements
(SACK) are used to signal packet loss. The transmitter in turn retransmits the previ-
ously lost packets. Packet transmission and the acknowledgement back take some time,
in particular for forwarding, propagation, queuing, and processing in both directions,
which is altogether called the Round Trip Time (RTT).

TCP restricts its own transmission rate for congestion control. This is done by a
congestion window (cwnd) that at any time limits the amount of data that has been sent
out, but that has not been acknowledged yet (the so called data in flight). This way the
transmission rate is limited to cwnd divided by RTT (i.e. packets/s). Since the trans-
mitter typically does not know the available transmission capacity along the path, it
continuously probes for more bandwidth by gradually increasing the cwnd. In contrast,
as soon as packet loss is signaling congestion, the cwnd is shrunk, typically by half.
The succession of slow increases and abrupt decreases (sawtooth oscillation) eventually
stabilizes the transmission rate at the limit of the available transmission capacity [1].

© Springer International Publishing Switzerland 2016
A. Remke and B.R. Haverkort (Eds.): MMB & DFT 2016, LNCS 9629, pp. 153–167, 2016.
DOI: 10.1007/978-3-319-31559-1_13

If several TCP flows share the same limited transmission resource, then each of
them tries to get more of the shared resource at the cost of the others. Under the
assumption of similar conditions, it is natural to expect convergence of flow rates,
eventually leading to equal sharing. A first proof of rate convergence was given in [2].
The convergence speed was analyzed in [3], yielding a 98% convergence towards fair
sharing rate within seven sawtooth cycles. The convergence time into an ε-environment
of the fair sharing rate was frequently used for characterization of different TCP flavors
[4, 10].

Unfortunately, and in opposite to what the mentioned papers suggest, something
like a monotonic TCP rate convergence towards the fair sharing rate does not exist. In
this paper we show that the rate of a TCP flow walks randomly around its fair sharing
rate. It deviates down to 1/3 and up to the 3 fold of that rate, altogether within a 1:10
span of possible flow rates. The rate variations are not short term, so that no significant
averaging can be observed up to the minutes range, and it takes hours to get stable
average values. Why the theories on TCP rate convergence missed that effect? The
problem is typically linked to a premature average assumption in the course of mod-
elling the bandwidth sharing process, which finally proves only convergence of an
expectation value of the flow rate. However, the expectation value tells little about the
actual rate, its distribution, and its realization over time. What remains undisputed with
this paper is the equal cumulative rate sharing over infinite time, in contrast to other
potential assumptions like e.g. “winner takes all”.

The paper is structured as follows: After the introduction we elaborate in Sect. 2 the
theoretical TCP flow rate distribution at random packet loss. In Sect. 3 we reproduce
the distribution in an experiment with real network equipment. Then we show that
bandwidth sharing creates quite similar distributions like at purely random loss. Fur-
thermore we investigate the temporal aspects and show that rate deviations are not short
term, but much larger than the round trip time. In Sect. 4 we illustrate the consequences
of the weak convergence for streaming applications and for the flow completion times
of typical short lived flows. We further discuss the implications for Active Queue
Management (AQM) and the related experimental work. Section 5 summarizes the
findings.

2 TCP Bandwidth Theory

2.1 Basic TCP Equations

TCP operation in congestion avoidance mode as explained in the introduction follows a
number of well-known formulas that we recall here for reference:

With the maximum segment size MSS (roughly the packet size) in bits and the
round trip time RTT, the bit rate b of a congestion window cwnd limited TCP flow is

b ¼ MSS � cwnd
RTT

ð1Þ

154 W. Lautenschlaeger

For TCP Reno [17] the gradual additive increase of cwnd during congestion
avoidance per RTT is

cwnd cwndþ 1 ð2Þ

In reality it is cwnd ← cwnd + 1/cwnd per received acknowledgement. (Here, the
arrow sign ← represents an assignment operation.) Since cwnd segments are in flight,
cwnd acknowledgements return during one RTT, which yields Eq. 2. We will see later
that the real increase is slower due to the delayed acknowledgments. Other TCP flavors
like Cubic have variable and partially larger growth rates.

The abrupt multiplicative cwnd reduction due to loss detected follows

cwnd cwnd
2

ð3Þ

Here also variations are possible, e.g. Cubic does a smaller reduction according to
cwnd ← 0.7·cwnd.

The steady state performance of a TCP flow at certain packet loss probability Ploss

has been multiply derived [5–7]. Taking into account the delayed acknowledgment
ratio a = 2 (cf. Sect. 2.3) we get for the expected cwnd:

E cwnd½ � ¼
ffiffiffiffiffi
3
2a

r
1ffiffiffiffiffiffiffiffiffi
Ploss
p ð4Þ

Together with Eq. 1 the expected flow bit rate b is

E b½ � ¼
ffiffiffiffiffi
3
2a

r
MSSffiffiffiffiffiffiffiffiffi
Ploss
p

RTT
ð5Þ

Equation 5 can be reverted: Bandwidth sharing with certain flow bit rate b must
result in a corresponding packet loss ratio Ploss.

The behavior of TCP Cubic is slightly different. We recall here the formula from
the original Cubic paper [10]:

E cwndcubic½ � ¼ 1:17 � RTT
Ploss

� �3
4

ð6Þ

where RTT is given in seconds.

2.2 Origin of Packet Loss

Packets are almost exclusively lost due to buffer overflow in intermediate nodes. Other
sources of packet loss like bit errors or link degradation are out of scope of TCP for
different reasons: Wireline links operate at bit error rates below 10−12, thus causing
CRC errors on packet level by orders of magnitude below typical TCP loss rates.

The Weak Convergence of TCP Bandwidth Sharing 155

Wireless links use link layer handshake protocols for packet delivery to hide the drastic
loss rates from higher layers. TCP sees only throughput and delay degradations that in
turn might induce buffer overflow and retransmission time outs, but no packet drops.

Buffer overflow occurs due to deterministic queue filling by TCP sources, due to
stochastic reasons (typically modelled by M/D/1 queues or some kind of burstiness),
or, in practice, due to a combination of both. In the simplest case, one TCP flow
crossing one bottleneck link, the process is fully deterministic: If the link is already
loaded at 100%, any further cwnd increase grows the queue before the link until it
overflows the available buffer space. Finally, at overflow, one packet is dropped, TCP
reduces its cwnd by half, and the queue size goes down, accordingly. It looks like the
cwnd is oscillating between a maximum and half that value. Simple TCP theories are
built on that assumption. Nevertheless, it is not the cwnd maximum, but the queue size
that triggers the loss. It is just that both go synchronized in the single flow case.

If two (or more) TCP flows cross the same bottleneck, the initial picture looks
similar: The cumulative increase of cwnd in both sources grows the queue. But then, at
overflow, one or two packets are dropped. It is not assured that both flows catch a loss.
First of all it could be only one drop. Second, if two packets are dropped, they could
belong to one and the same flow, leaving the other one untouched. For the queue it
does not matter. It is sufficient that one source reduces its cwnd to get away from the
buffer limit. In either way, it is not the rule that both flows reduce their cwnd at the
same time. The two flows, even if started synchronous, move apart from each other.
One continues to grow its cwnd, while the other one resumes its cwnd growth at only
half that level. That inequality is going to be resolved at next drop cycle, right?
Unfortunately not. The cwnd size does not matter for the drop; only the queue matters,
which is identical for both flows. Admittedly, the flow with the larger cwnd sends more
packets than the other flow. This increases its probability to catch a drop, if one occurs.
In the long run this results in the (weak) convergence. But at the moment it is not
unlikely that the flow with the smaller cwnd catches once more the drop, and shrinks its
cwnd further, while the larger flow continues to grow.

A detailed mathematical analysis of the bandwidth sharing process can be found in
[7]. As one of the results, with a tail drop queue, approximately half of the competing
flows are affected by a single buffer overflow event. For this paper it does not really
matter how many packets are dropped at once and why. The only required plausible
insight is that, once drops occur, not all but only a random subset of flows is affected.
This is the main difference to the misleading convergence analysis of [2, 3].

2.3 Flow Rate at Random Packet Loss

In this section we investigate the probability distribution of TCP flow rates at random
drop, irrespective of a particular bandwidth sharing assumption. We presume that every
packet of a TCP flow is dropped at probability Ploss with no regard of preceding losses,
which results in a Poisson loss process. In context of bandwidth sharing the assumption
of a Poisson loss process per flow is not arbitrary. A proof in [13] (Sect. 7.7.1) indicates
that for an increasing set of concurrent flows the loss process per flow converges towards
independence of losses, no matter what loss distribution holds for the whole aggregate.

156 W. Lautenschlaeger

We analyze TCP Reno with Delayed Acknowledgements [14] but without
Appropriate Byte Counting (ABC) [15]. Delayed ACK means the receiver sends less
than one ACK per received segment for efficiency reasons, typically one ACK per two
segments. ABC was intended to compensate the delayed ACK effect on the cwnd
handling. However, in the Linux kernel the ABC feature was switched off by default
since years and recently it has been removed completely [16]. We account for the
uncompensated effect of delayed ACK by the acknowledgement ratio a = 2 (segments
per ACK).

The expected flow bit rate is given by Eq. 5. The probability distribution of the flow
bit rate can be obtained by investigating the evolution of the congestion window cwnd
as a continuous Markov chain. (We stick here to a method from [8].) Figure 1 shows a
fragment of the Markov chain, where the state nodes correspond to the actual cwnd
size, and transition arcs correspond to conditional transition rates between the states.
An arrow from node i to node j, labeled by rate rij, indicates that, if cwnd is in state i,
this state is left towards state j at rate rij. The absolute transition rate depends on the
probability pi to find cwnd in state i. Thus, the absolute rate from i to j is pi � rij. If we
assume for a moment that in a given state the sum of arriving rates is larger than the
sum of departing rates, obviously its probability would go up. Since probabilities are
static by definition, we need to find the equilibrium, where for all nodes the sum of
arriving rates equals the sum of departing rates. The equilibrium can be calculated as
follows:

For the upper part of Fig. 1 holds: The cwnd is incremented by an amount of 1/
cwnd for every arriving ACK. Since cwnd packets are in flight, after one RTT the total
cwnd increment should be one per RTT. Due to the uncompensated delayed ACKs,
however, only 1/a (i.e. half) of the 1/cwnd increments are executed. Hence, the rate of
cwnd increments is 1/a per one RTT; the transition rate from cwnd to cwnd+1 is:

rcwnd!cwndþ 1 ¼ 1
a � RTT ð7Þ

For the lower part of Fig. 1 holds: The actual packet rate is rpack=cwnd / RTT.
Packets are lost at probability Ploss. Correspondingly the packet loss rate (lost packets

RTT

cwnd
Ploss

RTT
cwndPloss

2

RTT

cwnd
Ploss

12 +

RTTa ⋅
1

RTTa ⋅
1

1−cwnd 1+cwnd

cwnd

⎥⎦
⎥

⎢⎣
⎢

2

cwnd
cwnd⋅2 12 +⋅cwnd

Fig. 1. Fragment of the congestion window state diagram

The Weak Convergence of TCP Bandwidth Sharing 157

per second) is rloss ¼ Ploss � rpack. Thus the cwnd halving rate (transition rate from state
cwnd to state cwnd/2) is:

rcwnd!cwnd
2
¼ Ploss

cwnd
RTT

ð8Þ

In fact, this reflects that, even though the drop probability Ploss is equal for all flows,
the hit rate of a particular flow depends on the amount of packets sent, so that larger
flows are more likely affected than smaller ones.

The equilibrium equation of state i, where incoming and outgoing rates are equal, is

ð1=aÞpi�1þ 2iPloss � p2iþð2iþ 1ÞPloss � p2iþ 1 ¼ ðPlossiþ 1=aÞpi ð9Þ

The state probabilities pi of cwnd to be in state i 2 1; cwndmax½ � form a set of linear
equations. In matrix notation the corresponding state probability vector Pcwnd ¼
p1; p2; � � � ; pcwndmaxð ÞT fulfills following equilibrium equation:

Pcwnd ¼ A � Pcwnd ð10Þ

The extreme cases need special care: TCP limits cwnd to at least 2 since otherwise
the loss detection by duplicate ACKs would not work anymore. As consequence, state
2 can be left only by increment, but not by cwnd halving. Furthermore state 2 can be
reached not only from states 4 and 5 by halving, but additionally from state 3. At the
other end, the maximum cwnd can be left only by halving, but not by increment.

With the shortcut P=a·Ploss the transition matrix A (with e.g. cwndmax=9) looks as
follows:

A ¼

0 0 0 0 0 0 0 0 0
1 0 3P

1
4P
1

5P
1 0 0 0 0

0 1
1þ 3P 0 0 0 6P

1þ 3P
7P

1þ 3P 0 0
0 0 1

1þ 4P 0 0 0 0 8P
1þ 4P

9P
1þ 4P

0 0 0 1
1þ 5P 0 0 0 0 0

0 0 0 0 1
1þ 6P 0 0 0 0

0 0 0 0 0 1
1þ 7P 0 0 0

0 0 0 0 0 0 1
1þ 8P 0 0

0 0 0 0 0 0 0 1
9P 0

2
66666666666664

3
77777777777775

ð11Þ

Since Eq. 10 is a homogeneous system, we replace for a numeric solution one of
the component equations by the normalizing condition Σ pi =1. Then, the bit rate
distribution is the cwnd state probability vector, scaled according to the TCP
throughput Eq. 1.

In Fig. 2, the graph labeled “theory” shows the numerically evaluated bit rate
probability density of a TCP flow. A similar result has been published already in [9].

The flow bit rate distribution has a substantial spreading. The 95% interval is
ranging roughly from less than 40% up to more than 200% of the expected rate.

158 W. Lautenschlaeger

Needless to say, that the equilibrium probability distribution is static. It holds whenever
the process is inspected at any arbitrary point in time, and it does not change or
converge. The spreading statement is quite strong. It holds for a wide range of loss
probabilities. Figure 3 shows numerically calculated cumulative distribution functions
(CDF) of the congestion window. The relative spreading is fairly constant over 5
decades of Ploss. For better understanding we complement the graphs with plots of the
log normal distribution

expected
bit rate

95%
interval

Fig. 2. Bit rate probability distribution of a TCP flow at random packet loss

Ploss=10-1 10-2 10-3 10-4 10-5

Fig. 3. Numerically calculated CDF of the congestion window cwnd; dashed lines are the log
normal CDF of Eq. 12; markers show the cwnd expectation value of Eq. 4

The Weak Convergence of TCP Bandwidth Sharing 159

FðcwndÞ ¼ U
ln

cwnd
E cwnd½ �
r

0
BB@

1
CCA; ð12Þ

where Φ is the cumulative standard normal distribution function, E[cwnd] – the
expectation value of cwnd according to Eq. 4, and σ = 0.41 – the constant logarithmic
standard deviation.

Obviously the cwnd and derived thereof the TCP flow bit rate have a stable spread
around the expectation value. The relative spread is nearly invariant of the packet drop
probability; it reaches an order of magnitude; and it does not vanish over time.

3 Experimental Evaluation

In this section we verify, if the theoretically calculated bit rate distribution can be
observed in practice. We present an experiment with just one TCP flow in an
uncongested network, but with artificial random packet drop, thus reproducing the
scenario of the theoretical analysis. Then we compare the results with bandwidth
sharing experiments with 2, 3, and 10 concurrent flows, but without artificial packet
drop. Here we show that the bit rate spreading is comparable with the random drop
case. Finally we investigate how long flow rate deviations persist and how fast devi-
ating flow rates return towards their fair sharing value.

The experiments have been executed on a networking testbed of Linux servers and
Ethernet switches. All connections are 10G Ethernet with all TCP offloading features
disabled. TCP parameters, if not specially mentioned, are the defaults of Linux kernel
3.16. The conditions are chosen such that each flow has a bit rate expectation value of
E[b]=10 Mbit/s. This way we exclude bit rate dependent transmitter or receiver specific
variations from our experiments. Round trip time, if not stated otherwise, was RTT =
100 ms. Duration of each run was 12 h. The total throughput of all bandwidth sharing
experiments was above 99% of the link capacity.

3.1 Random Packet Loss

In this experiment we use a single TCP flow. The transmitted packets are randomly
dropped by a specially adapted iptables rule. The rule draws for every arriving
packet a uniformly distributed random number between 0 and 1. The packet is dropped
if the random number is smaller than the requested drop probability. The 10G Ethernet
network is loaded in average at 10 Mbit/s so that no queuing or congestion impact is to
be expected. We performed the experiments with TCP Reno (the reference) and TCP
Cubic as the current Linux default. To reach the 10Mbit/s target we used a drop
probability according to Eq. 5 for TCP Reno, and for TCP Cubic according to Eq. 6
(i.e. Preno=1.1∙10

−4, Pcubic=3.4∙10
−4).The flow rate distribution is captured by counting

the carried bytes in one second intervals. The count values are then accumulated in the
bins of a histogram. More than 43,000 count values per experiment (12 h) have been
obtained to get a stable estimation of the distribution function.

160 W. Lautenschlaeger

Figure 2 of Sect. 2.3 shows besides the theoretical distribution a comparison with
the experimental results. Obviously the TCP Reno experiment reproduces exactly the
theoretically calculated flow rate distribution. Remaining deviations are so small that
they easily can be attributed to the finite duration of the experiment. The experiment
with TCP Cubic shows a small deviation. Nevertheless, the spreading of the distri-
bution is similar to TCP Reno.

3.2 Bandwidth Sharing

In this experiment we used 2, 3, or 10 identical TCP flows that share a common
bottleneck of 20, 30, or 100 Mbit/s, respectively, which results always in the same
target rate of 10Mbit/s per flow. The bottleneck and the corresponding queue are
created by the traffic control subsystem of an intermediate Linux server (the tc qdisc
command). The buffer size for the bottleneck queue was chosen according to the
bandwidth delay product rule (BDP). Figure 4 shows the flow rate distribution of the
bandwidth sharing experiments, again in comparison to the theoretical distribution at
random drop. The bit rate distribution has been measured for one arbitrarily picked
flow out of the 2, 3, or 10 flows by the same histogram method as in Sect. 3.1.

The shape and spread of the curves is similar to the theoretical distribution. TCP
Cubic shows a slightly more concentrated distribution around the expected bit rate of
10 Mbit/s. Nevertheless, in all cases the spread of flow rates is so large that deviations
down to half of the expectation value and up to double that value are possible. Even
after 12 h of continuous bandwidth sharing there is no sign of rate convergence.
Table 1 summarizes the experimental flow rate distributions by their mean and the 5%,
50%, and 95% quantiles.

TCP Reno TCP Cubic

Fig. 4. Experimental probability distribution of bandwidth sharing TCP flow rates

The Weak Convergence of TCP Bandwidth Sharing 161

3.3 Duration of Rate Variations

A frequently raised argument for a technical convergence is that the TCP flow rate
might be highly unsteady or even bursty at time scales of one RTT or below, but that
these variations quickly vanish if looking at the duration of typical TCP flows of few
RTTs. The argument silently assumes that there is no correlation over a distance of
more than a few RTTs. In this section we investigate how fast the average rate over
certain interval duration converges towards the expectation rate.

We repeated all experiments of the previous sections but with different interval
settings, i.e. we counted the carried bytes not only in intervals of 1 s but additionally in
intervals of 4, 16, 30, 60, 120, 300, and 600 s over a total time of 12 h. From the series
of count values we calculated the standard deviation of the flow rate at the particular
interval settings. Figure 5 shows the results. It reproduces the impression of the pre-
vious sections that the flow rate variations slightly grow with the number of flows, but
still stay below the value at purely random loss, and that they are larger in general for
TCP Reno than for TCP Cubic. As expected, the standard deviation shrinks with
increasing interval duration. However, the decline is very slow. It remains negligible up
to 20 – 30 s intervals, and even for 10 min intervals the standard deviation stays in the
range of 10% of the mean (10Mbit/s).

The graphs also justify our experimental approach for verification of the theory. In
fact, the theory of Sect. 2, if applied to bit rate, is correct in a strong sense for intervals
of one round trip, including the queuing delay, i.e. variable 100–200 ms, depending on
the actual queue size. In contrast, the experimental data have been obtained as data
volume carried over constant intervals of one second. In our case the graphs are
comparably flat in the neighborhood of one second, so that the interval mismatch with
the theory can be accepted.

In a further experiment we investigated the impact of the round trip time. Instead of
RTT = 100 ms (the default RTT in this study), we used an RTT of only 10 ms and a
corresponding bandwidth delay product (BDP) sized buffer. The results are shown in
Fig. 6.

Table 1. Flow rate statistics

Quantiles,
Mbit/s

Mean, Mbit/s

5% 50% 95%

Reno random drop (numeric) 4.7 10.0 19.0 10.7
random drop (experiment) 4.9 10.0 18.7 10.7
1 of 2 flows 5.0 10.0 15.0 10.0
1 of 3 flows 4.7 9.6 16.0 9.9
1 of 10 flows 4.5 8.9 16.6 9.5

Cubic random drop (experiment) 5.0 9.4 20.0 10.6
1 of 2 flows 6.5 10.0 13.6 10.0
1 of 3 flows 6.3 9.8 14.6 10.0
1 of 10 flows 6.1 9.8 16.0 10.3

162 W. Lautenschlaeger

As expected, the convergence slope shifts left, towards smaller intervals. The shift
is much more pronounced for TCP Reno than for Cubic, so that the mutual order
reverts. The shift for Reno is by a factor of 60, which can be weakly associated with the
theoretical sawtooth interval that scales quadratic with the RTT, i.e. a shift of 100 could
be expected. The shift for Cubic is much smaller, by a factor of 15, which is in line with
Cubic’s original intention to make TCP less RTT sensitive. Nevertheless, the reduction
is even larger than what Cubic’s performance Eq. 6 might suggest. We verified that by
measuring the actual packet loss rates and comparing them with the theory. The values
fit well for all experiments, except the 10 ms Cubic case. Here Cubic drops 5 times
more packets than required according to Eq. 6. The reason for this mismatch is a

Fig. 5. Standard deviation of short term average rates at different interval durations; bandwidth
sharing and random drop experiments

RTT=10ms

RTT=100ms

Fig. 6. Impact of the RTT on the convergence

The Weak Convergence of TCP Bandwidth Sharing 163

fallback heuristic in the Cubic algorithm (a bit misleadingly named tcp_friend-
liness): According to the original Cubic paper [10] it approximates, in addition to its
own cwnd, the corresponding TCP Reno window and takes the larger of the two
windows.

The experimental results are summarized in Table 2. The sawtooth interval is
calculated from the experimental loss ratio. The 50% convergence interval is the
duration where the carried data volume fluctuates just half as much as at the smallest
intervals. The last column is the ratio between convergence interval and sawtooth
interval.

4 Consequences

The bit rate of a bandwidth sharing TCP flow does not converge at all. Instead it walks
randomly around its fair sharing expectation value. Deviations are not small; they go
down to less than half of the fair sharing rate, and up to more than double that value.
Deviations are not short term; they last thousands of round trip times; in our experi-
ments many minutes. And the deviations do not attenuate over time; their spread stays
the same after many hours of continuous bandwidth sharing. Figure 7 illustrates these
facts for the last 10 min of a 12 h bandwidth sharing experiment with just two flows.
(The link was loaded all the time at constant 20 Mbit/s; the two flows complemented
each other at any time.)

The effect is relevant for streaming applications, like video streaming. These
applications rely on a continuous arrival of new content. They need sufficient margins
to cope with the rate variations or flatten the arrival by a playout buffer. Figure 5 gives
an impression of how long a playout buffer needs to store to get a reasonable flattening
effect.

The effect is also relevant for the flow completion time of finite TCP flows. In
general it is assumed that a new flow entering a congested link with N-1 pre-established
flows grabs a 1/N fraction of the link bandwidth and completes accordingly. However,
the actual flow rate variates according to Fig. 4. If the variations persist longer than the
flow duration, the actual flow completion time gets a similar spread, i.e. ranging from
half the expected duration up to more than double that time.

Table 2. RTT dependence of convergence

RTT Ploss Sawtooth
interval

50% convergence
interval

Ratio
Theory Experiment

reno 10 ms 3.8e-3 3.3e-3 0.37 s 4 s 11
100 ms 3.8e-5 4.0e-5 29.5 s 220 s 7.5

cubic 10 ms 6.2e-4 2.8e-3 0.42 s 9.5 s 22
100 ms 2.9e-4 2.5e-4 4.7 s 130 s 27

164 W. Lautenschlaeger

In the experiment of Fig. 8 we run 9 long lived TCP flows over a link of
100 Mbit/s. Then we launched repeatedly a 10th short lived flow with a data volume of
12 Mbyte. The expected rate is 10Mbit/s, the expected duration 10 s. The displayed
four shots carry all the same data volume, but it takes between 7 and up to 17 s till
completion. In a more exhaustive experiment with 2500 repetitions, 5% of the flows
take less than 8 s, whereas another 5% take more than 22 s till completion.

The weak convergence bears more implications on TCP rate control. It seems to be
impossible to directly control a TCP flow rate by applying random packet drop
according to the well-known TCP bandwidth formula Eq. 5. The reaction is too fuzzy,

Fig. 7. Random walk: Last minutes after 12 h of continuous bandwidth sharing; one of two TCP
Cubic flows at RTT=100 ms in 20Mbit/s link bandwidth

Fig. 8. Transmission of 12 Mbyte at expected fair sharing rate of 10Mbit/s; 4 independent shots
in an otherwise identical set-up

The Weak Convergence of TCP Bandwidth Sharing 165

and if relying on a cumulative effect, the response is much too slow. Existing Active
Queue Management (AQM) solutions like Random Early Detection (RED) [11] always
incorporate a queue. That queue is not acting just as an averaging device. Instead, in the
first instance it establishes equilibrium between the congestion windows of all involved
transmitters and the queueing delay, this way stabilizing the total rate. Only secondarily
RED confines the equilibrium queue to the available buffer space by random dropping.
Since the queue is unique for all flows, this approach stabilizes only the total rate of all
flows. The particular flow continues to spread out as of Fig. 4.

Since the weak convergence is rooted in the arbitrary assignment of packet drops to
the affected flows, it is unlikely to find AQM mitigation without some kind of flow
notion. In normal packet nodes this is not the case, impractical, or at least undesirable
due to the noticeable additional effort. For further reading we refer to the well-known
queueing disciplines Weighted Round Robin (WRR) or Stochastic Fairness Queueing
(SFQ) [12].

Special care is required in measurement experiments for characterization of novel
TCP and queuing approaches. Metrics like the ε-convergence time of [4] are inherently
undefined, since a flow that reached the ε environment of the expected rate is not
guaranteed, not even likely, to stay in that ε environment. Experiments that claim such
convergence anyway likely stopped prematurely at the first visit. In general, the
experimental acquisition of per flow metrics requires extremely long observation times
of hours or days, rather than seconds or minutes. Nonetheless, this must not be con-
fused with global metrics, characterizing the combined effect of all involved flows like
total rate, queue size, or drop ratio. These metrics usually converge much faster.

5 Summary

TCP is able to fill a network bottleneck at 100% of its transmission capacity. If multiple
flows share the same bottleneck, then the available bandwidth is distributed between
the flows in a comparably fair way: (1) None of the flows is able to monopolize the
available bandwidth. (2) None of the flows starves. Under uniform conditions (same
RTT, same TCP flavor) the rate expectation and the long term average are equal for all
sharing flows. The carried data volume of the flows converges to equal values at
infinity.

In this paper we investigate to which extent this “equal sharing” proposition can be
applied to technically relevant conditions. We show that the actual rate of a particular
flow does not converge at all. It deviates randomly down to one third and up to three
fold of its expected rate. The random deviations do not attenuate over time, neither in
theory nor in experiment. In our experiments they appear even after many hours of
continuous bandwidth sharing. And the deviations are long lasting. Their correlation
span is many times larger than the Round Trip Time or the TCP sawtooth interval.
Accordingly, the carried data volume converges only slowly after thousands of RTT.
The findings have been theoretically derived and subsequently verified by compre-
hensive series of bandwidth sharing experiments in a test bed of Ethernet servers and
switches.

166 W. Lautenschlaeger

Acknowledgement. This work has been funded in part by the German Bundesministerium für
Bildung und Forschung (Federal Ministry of Education and Research) in scope of project SASER
under grant No. 16BP12200.

References

1. Jacobson, V.: Congestion avoidance and control. In: Proceedings of the SIGCOMM 1988
(1988)

2. Chiu, D.-M., Jain, R.: Analysis of the increase and decrease algorithms for congestion
avoidance in computer networks. J. Comput. Netw. ISDN Syst. 17(1), 1–14 (1989)

3. Podlesny, M., Gorinsky, S.: Multimodal Congestion Control for Low Stable-State Queuing.
Technical Report WUCSE-2006–41, August 2006. http://openscholarship.wustl.edu/cse_
research/192

4. Li, Y.-T., Leith, D., Shorten, R.N.: Experimental Evaluation of TCP Protocols for
High-Speed Networks. IEEE/ACM Trans. Netw. 15(5), 1109–1122 (2007)

5. Mathis, M., Semke, J., Mahdavi, J., Ott, T.: The macroscopic behavior of the TCP
congestion avoidance algorithm. Comput. Commun. Rev. 27(3), 67–82 (1997)

6. Padhye, J., Firoiu, V., Towsley, D., Kurose, J.: Modeling TCP throughput: A simple model
and its empirical validation. In: Proceedings of the ACM SIGCOMM, 1998, pp. 303–314
(1998)

7. Lautenschlaeger, W.: A Deterministic TCP Bandwidth Sharing Model, April 2014. http://
arxiv.org/abs/1404.4173

8. Handbook Teletraffic Engineering, ITU-D Study Group 2 Question 16/2 (2008)
9. Bogoiavlenskaia, O.: Markovian Model of Internetworking Flow Control, Kalashnikov

Memorial Seminar, Petrozavodsk, Инфopмaциoнныe пpoцeccы, 2.2 (2002)
10. Ha, Sangtae, Rhee, Injong, Lisong, Xu: CUBIC: a new TCP-friendly high-speed TCP

variant. ACM SIGOPS Operating Syst. Rev. 42(5), 64–74 (2008)
11. Floyd, S., Jacobsen, V.: Random early detection gateways for congestion avoidance.

IEEE/ACM Trans. Netw. 1(4), 397–413 (1993)
12. McKenney, P.E.: Stochastic fairness queueing. In: Proceedings of the INFOCOM 1990

(1990)
13. Briscoe, R.: Re-feedback: Freedom with Accountability for Causing Congestion in a

Connectionless Internetwork, Diss. UC London (2009). http://www.bobbriscoe.net/projects/
refb/refb_dis.pdf

14. Braden, R. (ed.) Requirements for Internet Hosts - Communication Layers, IETF, RFC 1122
(1989)

15. Allman, M.: TCP Congestion Control with Appropriate Byte Counting (ABC), IETF, RFC
3465 (2003)

16. Hemminger, S.: tcp: remove Appropriate Byte Count support (2013). https://github.com/
torvalds/linux/commit/ca2eb5679f8ddffff60156af42595df44a315ef0

17. Allman, M., Paxson, V., Blanton, E.: TCP Congestion Control, IETF, RFC 5681 (2009)

The Weak Convergence of TCP Bandwidth Sharing 167

http://openscholarship.wustl.edu/cse_research/192
http://openscholarship.wustl.edu/cse_research/192
http://arxiv.org/abs/1404.4173
http://arxiv.org/abs/1404.4173
http://www.bobbriscoe.net/projects/refb/refb_dis.pdf
http://www.bobbriscoe.net/projects/refb/refb_dis.pdf
https://github.com/torvalds/linux/commit/ca2eb5679f8ddffff60156af42595df44a315ef0
https://github.com/torvalds/linux/commit/ca2eb5679f8ddffff60156af42595df44a315ef0

Analysis of Mitigation Measures for Timing
Attacks in Mobile-Cloud Offloading Systems

Tianhui Meng(B) and Katinka Wolter

Department of Mathematics and Computer Science, Freie Universität Berlin,
Takustr. 9, 14195 Berlin, Germany

{tianhui.meng,katinka.wolter}@fu-berlin.de

Abstract. Mobile cloud offloading has been proposed to migrate
complex computations from mobile devices to powerful servers. While
this may be beneficial from the performance and energy perspective, it
certainly exhibits new challenges in terms of security due to increased
data transmission over networks with potentially unknown threats.
Among possible security issues are timing attacks which are not pre-
vented by traditional cryptographic security. Usually random delays are
introduced in such systems as a popular countermeasure. Random delays
are easily deployed even if the source code of the application is not
at hand. While the benefits are obvious, a random delay introduces a
penalty that should be minimized. The challenge is to select the dis-
tribution from which to draw the random delays and to set mean and
variance in a suitable way such that the system security is maximized
and the overhead is minimized. To tackle this problem, we have imple-
mented a prototype that allows us to compare the impact of different
random distributions on the expected success of timing attacks. Based
on our model, the effect of random delay padding on the performance
and security perspective of offloading systems is analyzed in terms of
response time and optimal rekeying rate. We found that the variance of
random delays is the primary influencing factor to the mitigation effect.
Based on our approach, the system performance and security can be
improved as follows. Starting from the mission time of a computing job
one can select a desired padding policy. From this the optimal rekeying
interval can be determined for the offloading system.

Keywords: Mobile cloud offloading · Security attributes · Random
delays · Timing side-channels

1 Introduction

Mobile devices are now ubiquitous in the modern life, which are no longer used
only for voice communication and short message service (SMS); instead, they are
used for watching videos, gaming recording health data and social networking.
While the last decades witness great advances in hardware technology, mobile
devices still face the restriction of resources, such as battery life and network
bandwidth.
c© Springer International Publishing Switzerland 2016
A. Remke and B.R. Haverkort (Eds.): MMB & DFT 2016, LNCS 9629, pp. 168–182, 2016.
DOI: 10.1007/978-3-319-31559-1 14

Analysis of Mitigation Measures for Timing Attacks 169

“Mobile-cloud offloading” is a solution to augment these mobile systems’
capabilities by migrating computation to more resourceful computers (i.e.,
servers). Mobile-cloud offloading is different from the traditional client-server
architecture, where a thin client always migrates computation to a server [1]. In
many scenarios, the limited power storage of mobile systems can be enhanced
by mobile cloud offloading. One example is the working implementation of
CDroid [2], with the focus on offloading mobile computation to software clones
of real devices in the cloud, makes it enable to increase the gain of offload-
ing of computation-intensive apps. Another example is context-aware comput-
ing infrastructure [3] – where multiple streams of data from different sources
like GPS, maps, accelerometers and temperature sensors need to be analyzed
together in order to obtain real-time information about a user’s context.

However as more and more information on individuals and business are placed
in the cloud, concerns are beginning to spring up about how safe an environ-
ment it is. Despite of all the hype surrounding the cloud, enterprise customers
are still reluctant to deploy their business in the cloud [4]. Protecting user pri-
vacy and data secrecy from an adversary is a key to establish and maintain
consumers’ trust in the mobile platform, especially in mobile cloud computing.
Metrics on which offloading decisions are based must include security aspects in
addition to performance and energy-efficiency. Numerous works about security
in mobile cloud offloading and cloud computing have been presented in recent
years. Researchers in [5] present a mobile cloud computing platform which allows
users to choose to run their applications either in the cloud (for high security
guarantees), or on their local mobile device (for better user experience). [6] pro-
poses to enable a secure and efficient cloud-assisted image sharing architecture
for mobile devices. Indeed, security is such a big area covering large numbers
of issues. In this work, we deal with the specific threat of timing attacks whose
remote feasibility has been proved [7,8]. Remote timing attacks make a practical
threat against web services as well as offloading systems [9].

Quantitative analyses of system dependability and reliability have received
great attention for several decades [10]. However quantification of security has
only recently attracted more attention, and some initial conceptual work has
been published already decades ago, serious model-based evaluation of security
mechanisms has been published only recently. Previous work on the security of
computing and information systems has been mostly assessed from a level point
of view. The authors in [11] make an effort to examine the security vulnerabil-
ities of operating systems of routers within the cloud carrier by assessing the
risk based on the National Vulnerability Database (NVD) and gives a quantifi-
able security metrics for cloud carrier, which is very useful in the Service Level
Agreement (SLA) negotiation between a cloud consumer and a cloud provider.

To proceed to a quantitative analysis of the mitigation measure for timing
side-channel attacks in mobile cloud offloading systems we have improved our
hybrid CTMC (Continuous-time Markov chain) and queueing model. Our model
is aimed to deal with a general mobile cloud offloading system with a master
secret stored on the server side, where the attacking client can also get normal

170 T. Meng and K. Wolter

offloading service. In a timing attack to such a system, the attacker deduces infor-
mation about a secret key from runtime measurements of successive requests.
This process can be interrupted by changing the server secret frequently [12].
By solving the model, we propose security and performance metrics on which
offloading decisions can be based. One of the popular countermeasures against
timing attacks is to add random delays in every service response. While the ben-
efits are obvious, a random delay introduces a penalty that should be minimised.
The challenge is to select the distribution from which to draw the random delays
and how to set mean and variance in a suitable way such that the system secu-
rity is maximised while the overhead is minimised. To tackle this problem, we
have implemented a prototype that allows us to compare the impact of differ-
ent random distributions on the expected success of timing attacks. Afterwards,
Weibull distributed delays with different parameter sets are added to the Cloud
service side to mitigate timing attacks. Based on the proposed model, the effect
of random delay padding on the performance and security perspective of offload-
ing systems is analyzed in terms of response time and optimal rekeying rate. We
found that the variance of random delays is the primary influencing factor to
the mitigation effect. Meanwhile, using our approach one may improve system
performance and security as follows. Starting from the mission time of a com-
puting job one can select a desired padding policy, from which the optimal rekey
interval can be determined for the offloading system.

The remainder of this paper is structured as follows. In Sect. 2, we summarize
the system and attackers’ behavior and the random delay countermeasure. Then
we proposes a hybrid model for a generic offloading system. The system metrics
on which the evaluation based are addressed in Sect. 3. Section 4 shows a series
of experiments that have been performed to analyze the effectiveness of random
delay countermeasure. Section 5 gives discussion of the experiment results and
suggestions. Finally, the paper is concluded in Sect. 6.

2 System Overview and the Model

A mobile cloud offloading system is a common solution to enhance the capabili-
ties of the mobile system by migrating computation to more resourceful comput-
ers (i.e., servers) [13]. To quantitatively analyze the performance and security
attributes of such a system under the threat of timing attacks, we have to incor-
porate the actions of an attacker who is trying to capture sensitive information
in conjunction with the protective actions taken by the system. Therefore, we
have to develop a hybrid CTMC and queueing model that takes into account
the behavior of both actors.

2.1 Behavior of System and Attackers

In the considered offloading system, a master key stored in the server is used
for the RSA encryption and decryption operations of all user data. The keying
scheme is that the server regularly changes the master key, which is called the

Analysis of Mitigation Measures for Timing Attacks 171

rekeying process, with a rekeying rate. The system needs to process all user-files
with both the new and the old master key. In this process, the system does not
accept any other user commands. When user data is very large, this process will
take long. Therefore, it is reasonable to recommend an optimal interval time for
the master key replacement cycle, and select a suitable time, when there is a low
amount of user access (e.g. at night).

Implementations of cryptographic algorithms often perform computations in
non-constant time, due to performance optimization. If such operations involve
secret parameters, these timing variations can leak some information and a care-
ful statistical analysis could even lead to the total recovery of these secret keys.
Timing attacks gain secret information from the server response time and rather
than brute force attacks or theoretical weaknesses in the algorithms they are a
real threat to mobile cloud offloading systems. However this threat is not covered
by traditional notions of cryptographic security [14]. It was commonly believed
that timing attacks can be directed only towards smart cards or affect inter-
process locally, but more recent research reveals that remote timing attacks are
also possible and should be taken into consideration [7,8]. In this remote timing
attacks to our offloading system, an attacker continues to send normal requests
to the server and the obtained offloading service will be properly performed by
the server. In addition the attacker records each response time for a certain
service and tries to find clues to the master secret of the server by statisti-
cal analysis of the timing measurements. If the attacker successfully breaks the
secret information from the timing results, he may hack into the system, read
and even modify other users’ information without authorization. Systems that
perform cryptographic operations with inconstant response time are exposed to
such timing attacks, and no man-in-the-middle or other kind of attack is con-
sidered. It is worth mentioning that a timing attack also poses a threat to other
types of systems.

2.2 Random Delays

Random delays are easily deployed even if the source code of the application is
not at hand. Interposition of random delays in the cryptographic algorithm exe-
cution flow is a simple but rather effective countermeasure against side-channel
and fault attacks. Random delays are widely used for protection of cryptographic
implementations in embedded devices [15]. The first detailed analysis of the this
kind of countermeasure is shown in [16] that the number of traces for a suc-
cessful differential power analysis (DPA) attack grows quadratically or linearly
with the standard deviation of the delay, while the researchers in [17] imple-
ment random delays on FPGA and obtain the optimal parameters for delay
generators. To date, based on random delay insertion, an processor architecture
resistant to side-channel attacks was proposed in [18] using a combination of ran-
domized scheduling, randomized instruction insertion and randomized pipeline-
delay. Researchers in [19] presents a design and hardware implementation of
asynchronous AES with random noise injection for improved side-channel attack
resistance.

172 T. Meng and K. Wolter

In this paper, random delays are introduced in the offloading system to mit-
igate the timing information leakage.

2.3 The System Model

As compared to our previous work [20], in which the model only considered the
security attributes of offloading systems, the proposed hybrid CTMC and queue-
ing model in this work takes the performance properties of a generic offloading
system into account (Fig. 1). When jobs are generated by a mobile device, they
are either offloaded to the cloud or executed locally, expressed by the two queues,
respectively. The parameters λ and λ′ indicate the arrival rates for the two
queues. A job dispatched to offload comes to the upper queue and is processed
by the server with service rate μ, which also includes the data transmission time.
For jobs dispatched to execute locally, the service rate is μ′ which is assumed to
be lower than μ.

Fig. 1. State transition diagram for a generic offloading system (Color figure online)

The states and parameters of the CTMC state transition model are summa-
rized here:

– G Good state in which the offloading system works properly.
– T Timing attack happening state.
– C Compromised state after the attacker knows the secret of the system.
– R Rekeying state in which system renews its master secret.
– λ1 rate at which the system launches the rekeying process in state G and

state T .
– λ2 rate at which an attacker triggers a timing attack to the system.
– λ3 rate at which a timing attack succeeds to break the system secret.
– λ4 rate at which the system is brought back to the good state by the rekeying

process.
– λ5 rate at which the system launches the rekeying process in state C.

Analysis of Mitigation Measures for Timing Attacks 173

– λ6 rate at which the attacker fails to conduct a successful timing attack or
he successfully breaks the key, while fails at accessing the data.

The upper part of Fig. 1 shows a CTMC model representing the states of the
system. After initialization, the system starts to operate properly in the good
state G. The system is under the specific threat of timing attacks conducted by
random attackers. We describe the events that trigger transitions among states
in terms of transition rates. It is assumed that there is only one attacker in the
system at one time. If an attack happens, the system is brought to the timing
attack state T at rate λ2. In this state the attacker tries to break the server
encryption key by making time observations. So while the system is in state T ,
the attacker is not yet able to access confidential information.

It takes a certain time to perform the timing attack after which the attacker
may know the encryption key and the system moves to the compromised state C
at rate λ3. Consequently λ−1

3 is the mean time a timing attack takes. There is a
possibility indicated by the arc λ6 that the attacker fails to conduct a successful
timing attack due to connection failures or he successfully breaks the key, while
fails at accessing user data. If the attacker succeeds to determine the encryption
key through time measurements, confidential data will be disclosed which is
assumed to incur a high cost. This can only happen if the system is in the
compromised state C and we call the incident of entering the compromised state
a security failure. In this state, all jobs dispatched to offload are not secure any
more, therefore they must be repeated and do not contribute to the throughput.
The jobs lost is represented by the red arc in Fig. 1.

Renewing the server encryption key can prevent or interrupt a timing attack.
The arcs from other states to state R represent these operations in the server.
The rekeying rate is the parameter one can tune as a system administrator. It
indicates how often the system launches the rekeying process. The rate λ1 is the
rekeying rate when the system is in good state G or in the timing attack state
T . We assume the offloading system has intrusion detection mechanisms running
on it, that can find clues of compromised behavior, in which case the system will
trigger the rekeying process more frequently. So in the compromised state C, we
assume the rekeying process is triggered at a different rate, λ5 = nλ1(n > 1). The
parameter n is called the coefficient of rekeying in the compromised state because
it represent the relationship between the rekeying rate (or rekeying frequency)
in good state and the rekeying rate in compromised state. All these three paths
transfer the system to the rekeying state R from which it will finally return to
the initial state G. The challenge is to find an optimal value for the rekeying
interval. The rekeying should in the optimal case happen before or soon after
the system enters the compromised state.

In the rekeying state the system refuses all user requests. So we put a inhibitor
arc on the cloud server. All the jobs are dispatched to the local queue and some
jobs will be lost in this state. As a result, the system throughput is degraded.
The rekeying process will bring the system back to the initial state G at rate λ4.
Consequently, the mean time to perform the rekeying process is λ−1

4 and during
this time the server refuses user requests.

174 T. Meng and K. Wolter

When random delay padding is added after the cloud service, the attacker
needs more samples to successfully guess the secret in the server. So it takes
more time for him to conduct the timing attack. As a result, the rekeying rate
λ3 decreases as this mitigation method is taken.

3 Metrics

3.1 Security Metrics

After defining the model and its parameters, we must now establish the mea-
sures we want to investigate. We present security and performance metrics,
respectively. The security measures are defined in this work as confidentiality
and system (security) cost that are functions of the steady-state probabilities of
the CTMC model. The steady-state probabilities πi may be interpreted as the
proportion of time that the CTMC spends in state i, where i ∈ {R,G, T,C}.

If a timing attack to the offloading system is successful, the attacker obtains
the master key and can browse unauthorized files thereafter. The entered states
denote the loss of confidentiality. Therefore, the steady-state confidentiality mea-
sure can be computed as

Confid = 1 − πC . (1)

We also define a system cost metric. In our scenario, the offloading system
suffers from cost in two states, the compromised state C and the rekeying state
R. The system loses sensitive information in the compromised state, and cost
is also incurred when the system deploys a rekeying process. The rekeying cost
and the data disclosure cost are both interpreted as the proportion of system life
time, that is, the steady-state probability of the CTMC. We define a weight w
and its complement 1 − w for the two kinds of cost. We use normalised weights
for simplicity. So the system cost is defined as:

Cost = wπR + (1 − w)πC , (2)

where πi, i ∈ {R,C} denotes the steady-state probability that the continuous-
time Markov process is in state i. 0 ≤ w ≤ 1 is the weighting parameter used
to share relative importance between the loss of sensitive information and the
effort needed to rekey regularly.

3.2 Performance Metrics

The performance metrics we are interested in describe the system in terms of
its throughput, completion times, or response times, as defined e.g. in queueing
theory or networking. In this paper we use the response time as the performance
metric for the offloading system. By Little’s Law, the response time (denoted
E[R]) is defined as:

E[R] =
E[N]

λ
. (3)

Analysis of Mitigation Measures for Timing Attacks 175

For the offloading queue, the response time equals the average number of
jobs in the queueing station (E[N]) divided by arrival rate (λ).

4 Model Analysis

In this section, we derive and evaluate the security and performance attributes of
the offloading system using methods for quantitative assessment of dependability,
known as the dependability attributes, e.g. reliability, availability, and safety
which have been well established quantitatively.

4.1 CTMC Steady-State Probability Computation

For the system security attributes, we have described the system’s dynamic
behavior by a CTMC model with the state space Xs = {R,G, T,C} and the
transitions between these states. In order to carry out the security quantification
analysis, we need to determine the stationary distribution of the CTMC model.

The steady-state probabilities {πi, i ∈ Xs} of the CTMC can be computed
by solving the system of linear equations [21]

πQ = 0, (4)

where π = [πR, πG, πT , πC] and Q is the infinitesimal generator (or transition-
rate matrix) which can be written as:

Q =

R G T C
R
G
T
C

⎛
⎜⎜⎝

−λ4

λ1

λ1

λ5

λ4

−λ1 − λ2

λ6

0

0
λ2

−λ1 − λ3 − λ6

0

0
0
λ3

−λ5

⎞
⎟⎟⎠ (5)

In addition, we have the total probability relationship:∑
i

πi = 1 i ∈ Xs. (6)

The transition-rate matrix Q describes the dynamic behavior of the security
model as shown in Fig. 1. The first step towards quantitatively evaluating secu-
rity attributes is to find the steady-state probability vector π of the CTMC states
by solving Eqs. 4 and 6. We can get solutions:

πR =
[(λ1 + λ2)(λ1 + λ3) + λ1λ6]λ5

φ
, (7)

πG =
(λ1 + λ3 + λ6)λ4λ5

φ
, πT =

λ2λ4λ5

φ
, πC =

λ2λ3λ4

φ
.

For the sake of brevity, where:

φ = (λ1 + λ4)(λ1 + λ3 + λ6)λ5 + [(λ1 + λ4)λ5 + (λ4 + λ5)λ3]λ2.

176 T. Meng and K. Wolter

Given the steady-state probabilities of CTMC model, the Cost measure can
be computed:

Cost = w
[(λ1 + λ2)(λ1 + λ3) + λ1λ6]λ5

φ
+ (1 − w)

λ2λ3λ4

φ
. (8)

5 Evaluation

We performed a series of experiments to demonstrate the effectiveness of random
delay countermeasure against remote timing attacks.

5.1 Experiment Setup

Our server and client applications are developed using the OMNeT++ simula-
tion tool based on the INET 2.6 framework. The connection between two hosts
are enabled by TCP protocol. All tests were run under Mac OS X 10.10 on a
2.6 GHz Intel Core i5 processor with 8 GB 1600 MHz DDR3 RAM.

A timing attack uses statistical analysis of how long it takes one application
to do some calculation in order to learn about the secret it is operating on.
The key idea of conducting a timing attack is to find the time difference. For
simplifying the implementation, we mimic a timing attack by recording and
analyzing the amount of time takes by the server application to compare two
values bit by bit. Once the server finds one bit in the value received from the
client is different from what restored in the server, it send back the result to the
client immediately. Otherwise, the server continues to compare the next bit in
the received value.

5.2 Convolution Method for Timing Attack Distribution

Firstly, we analyze the completion time distribution for timing attacks. As the
implementation in [8], a complete remote timing attack can be viewed as a binary
search for a system secret and it consists of several steps to recover the ith bit of
the secret. The attacker repeats these steps to recover the secret bits one by one.
After recovering the half-most significant bits of the system secret, he can use
Coppersmith’s algorithm [22] to retrieve the complete factorization. Then the
system is successfully compromised by the attacker by timing attack. From the
setup of [8], a typical attack takes approximately 2 h, and to get its distribution
may take days. So we try to simplify this process by convolution method.

For each secret bit, the attacking behavior can be regarded as a single entity.
And these entities are assumed to be independent and identically distributed
(i.i.d.). When the distribution of the attack entity time is known, the cumula-
tive distribution function (CDF) of one complete attack duration can be com-
puted by interactively convolution method. It is needed 256 attack entities to
factor a RSA-1024 bit key. To simplify the computational process, we propose
Algorithm 1 by doing the convolution pairing.

Analysis of Mitigation Measures for Timing Attacks 177

Fig. 2. Test and verify the convolution method. (a) The time distribution for an attack
entity. (b) The time distribution of complete attacks which consists of 256 entities.
(c) The result of interactively convolution method. (d) The rescaled distribution of
complete attacks.

Algorithm 1. for i=1:8
p = conv (p,p);

end

Then we can get the 256 attack entities distribution by 8 self-convolutions.
The results are shown in Fig. 2. The mean of Fig. 2c is 2.181 h and the vari-
ance is 0.000264 respectively. For Fig. 2d, the mean is 2.179 h and the variance
is 0.000267. We test and verify that the convolution method is adequate for
our scenario. This method can radically decrease the computation time for the
subsequent evaluation.

5.3 Comparison of Different Distributions

This experiment aims at comparing the impact of different random distributions
to the limits of timing attacks against offloading systems. The parameters, the
mean and the variance of different distributions are shown in Table 1. We set
the mean of all random distribution as 0.1 ms while the variances are different
for the brevity of parameters. For the Erlang distribution, it is difficult to get a
large variance because the shape parameter has to be integer.

The attacking client sends two messages separately with a certain bit equals
0 and 1 to the server. Random delays are added after the server processes each
message received from the client. Different numbers of timing samples are taken
from the client measurement. When the client can distinguish the time difference

178 T. Meng and K. Wolter

Fig. 3. Comparison of different random delay distributions

Table 1. Continuous distributions

Mean Variance SCV

Weibull (0.05, 0.5) 0.1 0.05 5

Uniform (0, 0.2) 0.1 0.0033 0.33

Exponential (0.1) 0.1 0.01 1

Truncated normal (0.1, 0.1) 0.1 0.01 1

Erlang (5, 0.1) 0.1 0.002 0.2

of server application processing two different messages from statistical analysis
of the samples, we call it a success attack. We use the percentage of success
guesses to represent the moderating influence upon timing attacks exercised by
random delay countermeasure.

The result is depicted in Fig. 3. It shows that the Weibull distributed delays
can mitigate the timing attacks as the attacker needs more samples to guess the
secret than no random delays are added. The results of the rest three random
distributions are superposition of the result with no random added. The impact
of the rest three distributions is negligible because the variances are small.

In the next subsection, we choose Weibull distribution because it is widely
used in reliability engineering and failure analysis and it is easy to change the
variance of Weibull distribution by tuning the parameters.

5.4 Comparison of Weibull Distributed Delays with Different
Parameter-Sets

To compare the effect of the random delays countermeasure with Weibull dis-
tribution to mitigate timing attacks, we conduct this experiment by changing
the shape parameter k ∈ {0.5, 0.45, 0.4, 0.37, 0.35, 0.34} while keeping the scale
parameter η = 0.05.

Analysis of Mitigation Measures for Timing Attacks 179

Fig. 4. Comparison of Weibull distributed delays with different parameter-sets

Table 2. Parameter-set of Weibull distribution and the metrics

Mean Variance SCV Number of
samples

Optimal rekeying rate Response
time

No random 375 0.2996 7.7161

wei .5 0.1 0.0500 5 470 0.2705 7.8177

wei .45 0.1239 0.1043 6.7931 625 0.2372 7.8423

wei .4 0.1662 0.2725 9.865 830 0.2075 7.886

wei .37 0.2092 0.5642 12.8912 1070 0.1837 7.9305

wei .35 0.2515 0.9980 15.7774 1400 0.1614 7.9743

wei .34 0.2788 1.3682 17.6019 1610 0.1507 8.0027

Figure 4 shows the comparison of Weibull distributed delays with different
parameter-sets. It is assumed that the attacker use error detection and correction
strategy as described in [23], so 90% success guesses is adequate for his attack.
We record the numbers of samples on 90 percentage of success guesses and
calculate the Cost measure using Eq. 8 to obtain the corresponding optimal
rekeying rate as. The system cost metric changing with the rekeying rate λ1 is
shown in Fig. 5. We set the weighting parameter w = 0.5 to put equal importance
to the loss of sensitive information cost and the effort needed to rekey regularly.
As the administrator of an offloading system, one can set the optimal rekeying
rate to gain the lowest system cost for a particular random padding. Meanwhile,
the results and the properties of Weibull distributed delays are listed in Table 2.
The SCV property is the squared coefficient of variation which is defined as the
ratio of the variance and the square of the mean.

180 T. Meng and K. Wolter

Fig. 5. System measure cost as a function of the rekeying rate λ1

Fig. 6. Response time and optimal rekeying rate changes with different Weibull para-
meter sets

The results of this experiment show that the Weibull distribution random
delays padding can efficiently mitigate the timing attacks and the system cost
diminishes with decreasing shape parameter k of Weibull distribution.

6 Discussion

As depicted in Fig. 6, the growth of service response time is mainly due to the
increasing mean of the Weibull distribution when we diminish the shape para-
meter k while keeping the scale parameter steady. So one should use low mean
random padding to mitigate timing attacks.

The decrease of the optimal rekeying rate shows that the mitigating effect of
random delay measure increases with the variance of Weibull distribution. We
found that the variance of random delays is the primary influencing factor to the
mitigation effect. Thus, when random delays are deployed in offloading systems,
one should try to enlarge the variance of the random delay while keeping the
mean as low as possible by tuning the parameters, i.e., distributions with an
large coefficient of variation are recommended.

Analysis of Mitigation Measures for Timing Attacks 181

7 Conclusion

To add random delays into the process time is a popular strategy for defend-
ing against timing attacks. It can be easily deployed even the source code of
the application is hard to get touch. While the benefits are obvious, a random
delay introduces a penalty into the system. We have implemented a prototype
that allows us to compare the impact of different random distributions on the
expected success of timing attacks. Afterwards, Weibull distributed delays with
different parameter sets are added to the Cloud service side to mitigate timing
attacks. We found that the variance of random delays is the primary influencing
factor to the mitigation effect. So, one should tune the parameters to enlarge
the variance while keeping the mean as low as possible when random delays
are deployed in offloading systems. Meanwhile, one may improve system per-
formance and security using our results. Starting from the mission time of a
computing job one can select a desired padding policy, from which the optimal
rekey interval can be determined for the offloading system.

Extending the analysis to include a key refresh protocol and validating
against implementation will be the future work. At the same time, the analysis
will be extended to include fault models.

References

1. Kumar, K., Liu, J., Lu, Y.-H., Bhargava, B.: A survey of computation offloading
for mobile systems. Mob. Netw. Appl. 18(1), 129–140 (2013)

2. Barbera, M., Kosta, S., Mei, A., Perta, V., Stefa, J.: Mobile offloading in the wild:
findings and lessons learned through a real-life experiment with a new cloud-aware
system. In: INFOCOM, Proceedings of IEEE, pp. 2355–2363. IEEE (2014)

3. Hong, J.I., Landay, J.A.: An infrastructure approach to context-aware computing.
Hum.-Comput. Interact. 16(2), 287–303 (2001)

4. Subashini, S., Kavitha, V.: A survey on security issues in service delivery models
of cloud computing. J. Netw. Comput. Appl. 34(1), 1–11 (2011)

5. Hao, Z., Tang, Y., Zhang, Y., Novak, E., Carter, N., Li, Q.: SMOC: a secure mobile
cloud computing platform. In: IEEE Conference on Computer Communications
(INFOCOM), pp. 2668–2676. IEEE (2015)

6. Cui, H., Yuan, X., Wang, C.: Harnessing encrypted data in cloud for secure and
efficient image sharing from mobile devices. In: IEEE Conference on Computer
Communications (INFOCOM), pp. 2659–2667. IEEE (2015)

7. Brumley, B.B., Tuveri, N.: Remote timing attacks are still practical. In: Atluri, V.,
Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 355–371. Springer, Heidelberg
(2011)

8. Brumley, D., Boneh, D.: Remote timing attacks are practical. Comput. Netw.
48(5), 701–716 (2005)

9. Braun, B.A., Jana, S., Boneh, D.: Robust and efficient elimination of cache and
timing side channels (2015). arXiv preprint arxiv:1506.00189

10. Nicol, D.M., Sanders, W.H., Trivedi, K.S.: Model-based evaluation: from depend-
ability to security. IEEE Trans. Dependable Secure Comput. 1(1), 48–65 (2004)

http://arxiv.org/abs/1506.00189

182 T. Meng and K. Wolter

11. Lenkala, S.R., Shetty, S., Xiong, K.: Security risk assessment of cloud carrier. In:
13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), pp. 442–449. IEEE (2013)

12. Rebeiro, C., Mukhopadhyay, D., Bhattacharya, S.: An introduction to timing
attacks. In: Timing Channels in Cryptography, pp. 1–11. Springer, Switzerland
(2015)

13. Wu, H., Sun, Y., Wolter, K.: Analysis of the energy-response time tradeoff for
delayed mobile cloud offloading. SIGMETRICS Perform. Eval. Rev. 43, 33–35
(2015)

14. Köpf, B., Basin, D.: Automatically deriving information-theoretic bounds for adap-
tive side-channel attacks. J. Comput. Secur. 19(1), 1–31 (2011)

15. Coron, J.-S., Kizhvatov, I.: An efficient method for random delay generation in
embedded software. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747,
pp. 156–170. Springer, Heidelberg (2009)

16. Clavier, C., Coron, J.-S., Dabbous, N.: Differential power analysis in the presence
of hardware countermeasures. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS,
vol. 1965, pp. 252–263. Springer, Heidelberg (2000)

17. Lu, Y., O’Neill, M.P., McCanny, J.V.: FPGA implementation and analysis of ran-
dom delay insertion countermeasure against DPA. In: International Conference on
ICECE Technology, FPT 2008, pp. 201–208. IEEE (2008)

18. He, Z., Deng, X., Yang, B., Dai, K., Zou, X.: A SCA-resistant processor architecture
based on random delay insertion. In: International Conference on Computing and
Communications Technologies (ICCCT), pp. 278–281. IEEE (2015)

19. Kotipalli, S., Kim, Y.-B., Choi, M.: Asynchronous advanced encryption standard
hardware with random noise injection for improved side-channel attack resistance.
J. Electr. Comput. Eng. 2014, 19 (2014)

20. Meng, T., Wang, Q., Wolter, K.: Model-based quantitative security analysis of
mobile offloading systems under timing attacks. In: Remke, A., Manini, D.,
Gribaudo, M. (eds.) ASMTA 2015. LNCS, vol. 9081, pp. 143–157. Springer,
Heidelberg (2015)

21. Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation: The Math-
ematical Basis of Performance Modeling. Princeton University Press, Princeton
(2009)

22. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Crypt. 10(4), 233–260 (1997)

23. Chen, C., Wang, T., Tian, J.: Improving timing attack on RSA-CRT via error
detection and correction strategy. Inf. Sci. 232, 464–474 (2013)

Capabilities of Raspberry Pi 2 for Big Data
and Video Streaming Applications

in Data Centres

Nick J. Schot, Paul J.E. Velthuis, and Björn F. Postema(B)

Centre for Telematics and Information Technology,
University of Twente, Enschede, The Netherlands

{n.j.schot,p.j.e.velthuis}@student.utwente.nl, b.f.postema@utwente.nl

http://www.utwente.nl/ewi/dacs/

Abstract. Many new data centres have been built in recent years in
order to keep up with the rising demand for server capacity. These data
centres require a lot of electrical energy and cooling. Big data and video
streaming are two heavily used applications in data centres. This paper
experimentally investigates the possibilities and benefits of using cheap,
low power and widely supported hardware in the form of a micro data
centre with big data and video streaming as its main application area.
For this purpose, multiple Raspberry Pi 2 Model B (RPi2)’s have been
used in order to build a fully functional distributed Hadoop and video
streaming setup that has acceptable performance and extends to new
research opportunities. We experimentally validated the new setup to fit
in a data centre environment by analysis of its performance, scalability,
energy consumption, temperature and manageability. This paper pro-
poses a high concurrency and low power setup in a small 1U form factor
with an estimated number of 72 RPi2’s as an interesting alternative to
traditional rack servers.

Keywords: Micro data centre · Raspberry Pi 2 · Benchmarking ·
Hadoop · Big data · Video streaming · Cloud computing

1 Introduction

In data centres, the density of servers increased significantly in the past years
[16]. New technologies emerge, e.g., blade servers, that not only decrease the
physical appearance of what used to be an entire rack full of servers, but also
decrease power consumption by implementing new technologies. ARM proces-
sors, another relatively new technology, might actually fit the increasing demand
for modularity in data centres. Since Raspberry Pi’s are fully functional servers,
that have an ARM processor, a relatively powerful graphical chip onboard and

B.F. Postema—The work in this paper has been supported by the Dutch national
STW project Cooperative Networked Systems (CNS), as part of the program
“Robust Design of Cyber- Physical Systems” (CPS).

c© Springer International Publishing Switzerland 2016
A. Remke and B.R. Haverkort (Eds.): MMB & DFT 2016, LNCS 9629, pp. 183–198, 2016.
DOI: 10.1007/978-3-319-31559-1 15

184 N.J. Schot et al.

use little energy, these should be considered as a serious alternative. The main
challenge of this paper is to fit Raspberry Pi 2’s with ARM on-board in a data
centre. Two major data centre applications elaborated in this paper are (i) big
data; and (ii) video streaming. Big data solutions distribute data processing
among various servers often with a high demand on storage devices. Big data’s
main task is to query large chunks of data to retrieve valuable information. On
the other hand, demands with video streaming require more network capabil-
ities, since the main task of video streaming is to seamlessly deliver data for
the duration of the video. Many small tasks are processed in the case of video
streaming, while big data applications perform rather large tasks.

This paper contributes by investigating the capabilities of Raspberry Pi’s
for micro data centres, thereby focussing on benchmarks and measurements of
power, performance, temperature and hardware allocation of an experimental
setup with a data centre ready Raspberry Pi cluster. These aspects allow us to
analyse three main design criteria of a flexible future proof data centre [4, p. 6],
namely: scalability, performance and manageability.

First, background information on cloud computing with big data and video
streaming is elaborated in Sect. 2. A few cloud projects based on RPi hardware
are described in Sect. 3. Then our own proposed RPi2 cluster will be discussed,
and thoroughly tested with Hadoop and video streaming in order to investigate
the possibilities of the RPi2 in a micro data centre.

2 Two Key Applications for Data Centres

In this section background is given for the two main applications big data and
video streaming. Big data is about data too large and complex to be processed
by normal data applications. In Sect. 2.1, a solution to big data is discussed that
allows to distribute processing of these large chunks of data. Since the video
streaming service Netflix is responsible for approximately 30 % of the down-
stream traffic in the US [2], this relevant application domain is elaborated in
Sect. 2.2 by a short description of its operations and approach inspired by the
existing video streaming service Netflix.

2.1 Big Data

Apache Hadoop [25] is an open source framework which offers necessary compo-
nents for the distributed processing of large amounts of distributed data, using
simple programming models like map/reduce. It has been designed to scale well
from one to thousands of machines. Hadoop offers high-availability options for
detecting and recovering from failures in both hard- and software. Hadoop is
used for applications like risk modelling and recommendation engines which
have petabytes of data to be analysed.

Map/reduce [9] as implemented in Hadoop is a programming model to allow
for simple distributed processing of large data sets. A map/reduce program con-
sists of two steps. The map step performs filtering and sorting. The reduce step
can then do further computations on the output of the maps, which is usually

Capabilities of Raspberry Pi 2 in Data Centres 185

a summarizing operation. Depending on the program the map and/or reduce
tasks can be parallelised.

In Hadoop 2 Yet Another Resource Negotiator (YARN) was introduced as
a new resource management layer. YARN handles workload management and
monitoring, manages high availability features and allows for more programming
models next to just map/reduce.

Big server manufacturers like Dell, HP and SuperMicro offer all kinds of
servers for Hadoop applications. Hadoop usually runs on a multitude of 1U
rack servers containing eight or more storage drives. 1U rack servers are rela-
tively cheap, but bring a lot of space and energy overhead when you place a lot
of servers compared to more expensive, but more efficient solutions like blade
servers which are usually 10U [20]. Blade servers house vertically placed blades
combined with a single power supply and network access for all blades combined,
which makes them more space efficient [20] than traditional 1U servers. Hadoop
setups can start with just a single server and be scaled to thousands of servers.

2.2 Video Streaming

Large video streaming providers often require various operations to deliver videos
to their clients in an uninterrupted and fast manner. For this reason, the buffer
time of a video is minimized, such that videos are accessible at any given time.
These videos are then delivered by the server that has the best latency for the
client. Large video streaming providers like Netflix require the following three
operations for their services:

1. Content ingestion, which means that the studio master version of the films
are received and uploaded to the cloud.

2. Content processing, which means that in the cloud many different formats
are created for each video (e.g. AVI, MP4 and MKV format). These formats
are uploaded to the content distribution network (CDN), which is a network
of several data centres to spread the content to users. This means that all the
formats been made are distributed over the CDN.

Netflix has its own CDN allowing better analysis of the network and improve-
ments of load balancing and video streaming algorithms. In order to store all
the video data, Netflix uses the file storage systems Amazon’s AWS, simpleDB,
S3 and Cassandra [2].

Video streaming heavily relies on data storage, most of the time spinning
hard drives (HDD) are used. If a video is accessed frequently then a U1 SSD
server is used to make faster streaming possible. This means there are two types
of servers. The servers with HDD normally take 4U of server space and the SSD
variant with servers consumes 1U server space [27].

3 Related Work

There have been several cluster projects with the Raspberry Pi Model
B(+)(RPi).

186 N.J. Schot et al.

The Iridis-pi cluster with 64 RPi’s was built by Cox et al. [7]. A Message
Passing Interface was used to communicate between the Raspberry Pi’s. The
research was done to investigate what the performance of a low-power high
performance cluster was. It was designed as a portable and passively cooled
cluster for educational purposes.

Tso et al. [26] built a data centre consisting of 56 RPi’s that offers a
cloud computing testbed including virtualisation management tools called the
Glasgow Raspberry Pi Cloud. It was built for practical research on cloud com-
puting without the limitations of simulation.

Kiepert [17] created a Beowulf cluster for a PhD assignment. It was built
for collaboratively processing sensor data in a wireless sensor network. The
Raspberry Pi cluster offers an alternative in case of the main cluster is
unavailable.

The Bolzano Raspberry Pi cluster consists of 300 RPi’s and was made as an
affordable energy-efficient computer cluster by Abrahamsson et al. [1]. Applica-
tions such as a green research testbed and as a mobile data center are evaluated.
Their main goal was to introduce a cluster of RPi’s on a larger scale.

The RPi clusters described are for research, application performance and
cluster mobility. The projects described above applied the first generation RPi
which offers significantly lower performance than the newer second generation
RPi. This research distinguishes itself from other RPi clusters by providing
benchmarks of the temperature, power consumption and performance of the
Hadoop and video streaming applications.

4 System Description

In the system description the software and experiment setup are elaborated. First
short summary is given of the device used in the micro data centre, namely the
RPi2 in Sect. 4.1. In the experimental setup our own micro data centre is elabo-
rated for the Hadoop and video streaming variant in Sect. 4.2. The Hadoop soft-
ware needed for distributed processing is discussed in Sect. 4.3. Then the video
streaming software required for a large streaming service is elaborated in Sect. 4.4.

4.1 Raspberry Pi 2

The Raspberry Pi 2 Model B [24] is a small, cheap yet feature packed computer.
It is based on the Broadcom BCM2836 system on a chip which offers a 900 MHz
quad-core ARMv7 CPU combined with 1 GB of RAM and can currently be bought
for about $35. Detailed specifications can be found in Table 1. 16 GB Adata Pre-
mier Pro UHS-I microSD cards are used as the storage solution (Fig. 1).

4.2 Experimental Setup

A total number of eight RPi2’s is used in our experimental setup. A setup dia-
gram for Hadoop and video streaming is displayed in Figs. 2 and 3, respectively.

Capabilities of Raspberry Pi 2 in Data Centres 187

Fig. 1. Raspberry Pi 2 model B
[24]

Table 1. Raspberry Pi 2 Model B spec-
ifications [24]

System on Chip Broadcom BCM2836

Ethernet Onboard 10/100 Ethernet
RJ45 jack

USB Four USB 2.0

Video out HDMI 1.4

Audio 2 x analog

CPU 900 MHz quad-core ARM
Cortex-A7

GPU Dual Core VideoCore IV
Multimedia
Co-Processor

Card slot Micro SD

The numbers in the setup diagrams correspond to the physical setup shown in
Fig. 4. The number (2) indicates a small router/switch that is connected to the
power supply. The number (1) shows the eight RPi2’s. In case of video streaming
a load balancer and several video streamers are installed. For Hadoop there is
one masternode and several slavenodes.

Fig. 2. Hadoop design Fig. 3. Video streaming design

Dietpi [8] is used as the operating system for the individual nodes. It is
a lightweight version of Raspbian which is the Linux distribution specifically
tailored for the RPi2.

4.3 Hadoop Software

A basic Hadoop installation consists of three main parts: HDFS, YARN and the
JobHistoryServer.

HDFS is the Hadoop distributed file system and consists of a couple of
processes. The NameNode is the main process which keeps track of where all
files are distributed and replicated. It is the main access point for all clients

188 N.J. Schot et al.

Fig. 4. Project setup

and processes and runs on the master node. The SecondaryNameNode keeps a
recent backup of the NameNode so the NameNode can be restored if it might
go down. The DataNode processes run on the remaining slave nodes and handle
data storage and retrieval.

YARN consists of a ResourceManager, which manages all jobs in the system,
and on each slave node a NodeManager. The NodeManager process handles the
execution of jobs allocated to a slave node.

Finally, the JobHistoryServer keeps track of all completed jobs and their logs.
A natively compiled version of Hadoop 2.6.0 with YARN was configured in

conjunction with Oracle Java 7 ARM HF. Because there are only eight avail-
able RPi2’s, a single master node runs the NameNode, Secondary NameNode,
ResourceManager and the JobHistoryServer. The other (scalable) amount of
nodes act as slaves and each runs a NodeManager and a DataNode.

The setup has 91 GB of distributed storage available with the replication
factor of two, which resulted in an effective amount of roughly 45 GB. YARN
has been configured so that two containers can run concurrently on a single slave
node. This gives 14 available container slots for Hadoop to allocate tasks to in
the test setup.

4.4 Video Streaming Software

This video streaming software consist of four software programs: nginx, FFmpeg,
JW Player and Cassandra. For load balancing and streaming over HTTP, nginx
[23] is used. nginx has an efficient algorithm for HTTP load balancing. The Real
Time Messaging Protocol (RTMP) module from Arut for nginx is used to make a
media streaming server over HTTP [5]. This has an efficient algorithm to transfer
the HTTP with RTMP encapsulated data to the users. FFmpeg is a cross-
platform solution to record, convert and stream audio and video [11]. Using this
software makes adaptive streaming and streaming in different formats possible.
JW Player is a HTML5/flash embedded media player [18]. JW Player makes load
balancing possible dependable on the bit rate that is coming from the video. It

Capabilities of Raspberry Pi 2 in Data Centres 189

supports dynamic streaming, that consists of multiple single streams with the
same content, all in a different quality [18]. Cassandra is a database that helps
replicating data across multiple data centres [6]. The data can automatically
be replicated across the nodes for fault-tolerance. Therefore, the data is still
available when a node crashes.

5 Cluster Benchmarking

This section elaborates benchmarks and measurements on power, temperature,
storage, memory and network to test the cluster as if in a data centre environ-
ment.

5.1 Storage and Memory Performance

For basic system benchmarks, the SysBench suite [19] has been used. It serves as
a tool to quickly determine system performance without setting up any complex
software.

Table 2. SysBench storage & memory

Benchmark Transfer speed

Random storage read 9.9718 MB/s

Random storage write 1.2604 MB/s

Random storage read/write 3.4046 MB/s

Sequential storage read 17.7400 MB/s

Sequential storage write 6.3972 MB/s

Sequential storage rewrite 13.0000 MB/s

Sequential memory read 207.5000 MB/s

Sequential memory write 177.0200 MB/s

The SD card storage was tested by running random and sequential storage
tests. 4 GB of test data was prepared with SysBench. The benchmarks were run
with a maximum execution time of 300 s. The memory test sequentially read and
wrote 512 MB of data to memory.

Table 2 shows that the write performance of the SD cards is low. Read perfor-
mance is below what was expected from the SD card, which promised 40 MB/s
for sequential read operations but achieved barely half of that speed. The RPi2’s
memory is sequentially read at 207 MB/s while its write speed is 177 MB.

5.2 Energy Consumption

The energy consumption is measured with a simple setup. A prototyping PCB
with two USB connectors and some jumper wires are used to allow for a mul-
timeter (Elro M990) to connect for voltage and current measurements of a sin-
gle RPi2. This way the actual power usage of the RPi2 is measured, because the

190 N.J. Schot et al.

Table 3. Benchmarks to test energy consumption of Raspberry Pi 2 without power
supply losses

Current (A) Voltage (V) Power (W)

CPU 1 core 0.340 4.84 1.65

CPU 2 cores 0.365 4.79 1.75

CPU 3 cores 0.392 4.77 1.87

CPU 4 cores 0.415 4.78 1.99

Memory test 0.440 4.79 2.11

Storage read 0.442 4.77 2.11

Storage write 0.395 4.77 1.89

Idle 0.315 4.78 1.51

(in)efficiency of the power supply is not taken into account. When a measurement
would be done at the wall outlet, power usage is expected to be higher.

The power consumption was measured under several workloads to find out
what effect different kind of operations have on the power consumption of the
RPi2. SysBench is used to consistently stress different parts of the board.

The RPi2 has a power consumption of at most 2.1 W in this test as shown
in Table 3. A normal server needs about 500 W [21], so 238 RPi2’s take as much
power on one server.

5.3 Network Performance

Iperf3 [10] was used to find out whether the network, the storage or the memory is
a bottleneck by reading/writing from/to the different mediums [10]. The RPi2
uses a 100 Mbit Ethernet connection which is connected via a combined USB
2.0/Ethernet chip [22]. This is important as Hadoop shuffles a large amount of
data around the network, video streaming needs to transport a lot of data to
the user and in between the servers. To find out if there is a bottleneck, 60 s
iperf3 benchmarks with a congestion windows of 133 KB have been executed
from memory to memory, memory to storage and from storage to memory.

Table 4. Ethernet throughput benchmark with RPi2 memory and SD card storage

Write direction Avg. bandwidth (Mbit)

Memory → memory 93.4

Memory → storage 24.3

Storage → memory 94.2

For every throughput benchmarks the congestion window is 133 KB. From
the results in Table 4 the write performance of the Raspberry Pi 2 and/or the SD

Capabilities of Raspberry Pi 2 in Data Centres 191

card forms a bottleneck with only 3 MB/s. This number is in line with the results
from the SysBench write tests which were between 1.26 MB/s and 6.4 MB/s
for random and sequential writes respectively. USB 2.0/Ethernet causes some
overhead, therefore it has a throughput of around 94 Mbit.

5.4 Temperatures

CPU temperature measurements were taken under SysBench CPU stressing with
different numbers of threads. During this benchmark the temperature is mea-
sured by logging the operating systems data on temperatures with a shell script.
The temperature is measured on the CPU. Results are shown in Fig. 5. The room
temperature during this benchmark was around 23◦C. The cooldown phase, that
occurs after the benchmark has finished, is shown in Fig. 6. The room tempera-
ture during the cooldown phase was around 21◦C and has been measured during
a separate benchmark run. By default, the RPi2 is a passively cooled board with-
out any heat sink or fan.

Fig. 5. Temperature benchmark Fig. 6. Temperature cooldown

When running a four-thread CPU benchmark the maximum temperature is
60◦C and the temperature is 42◦C when idle, see Fig. 5. In Fig. 5, after a short
period of time, temperatures converge to an upper bound. After benchmark
completion, the CPU cools down quickly to idle temperature, as can be seen
in Fig. 6. Data centres require a temperature of around 26◦C and in order to
do this, additional energy is required for cooling [12]. The most common work-
load for Hadoop and video streaming would be two CPU threads for which the
temperature stays around 50◦C. So, if multiple RPi2’s are used, some cooling is
required in order to keep them working at optimal performance temperature.

192 N.J. Schot et al.

6 Application Benchmarking

In this section, several Hadoop and video streaming benchmarks are analysed
to show that in a data centre environment the proposed setup has acceptable
performance.

6.1 Hadoop Benchmarks

A selection of Hadoop benchmarks is made to cover the most important aspects
of a Hadoop cluster. The benchmarks are part of the HiBench benchmark suite
[13], the standard Hadoop test suite and cover CPU bound computation and
generic computation on distributed big data. A comparison is made with the
CTIT cluster of the University of Twente where Hadoop runs on 32 Dell R415
servers.

Terasort is a benchmark which measures sort speed on large distributed files.
The benchmark consists of a map/reduce job which creates and sorts a multiple
of 100 byte rows and validates the results. A replication factor of one for the
output files was forced instead of the cluster default. This way the replication of
data throughout the cluster does not affect actual map/reduce performance.

Table 5. TeraSort benchmark

Raspberry Pi 2 CTIT

Nodes 5 8 5 8 5 8 - - -

Slots 8 14 8 14 8 14 - - -

Maps 16 16 64 64 80 80 16 64 80

Reduces 8 8 8 8 8 8 8 8 8

Data (GB) 1 1 7 7 10 10 1 7 10

Total (s) 366 230 3584 1747 - 341 22 49 67

Avg. map (s) 70 72 144 141 - 261 7 10 11

Avg. shuffle (s) 70 88 - 698 - 830 4 19 24

Avg. reduce (s) 48 49 1741 406 - 550 2 15 21

The CTIT cluster has far more container slots and nodes than the RPi2
cluster. Enough slots were available to allocate all map/reduces at once in the
CTIT cluster and thus available slots are not mentioned in Table 5.

An inherent problem to a smaller cluster showed up in the 7 GB run on
five nodes and is caused by one of Hadoops optimizations for bigger clusters.
When a map task finishes on a node, Hadoop starts a reduce task on that same
node since the necessary data is already there. The nodes are configured to
run two concurrent tasks. With seven nodes available, this gives a total of 14
container slots of which one is the Application Master. With more map tasks

Capabilities of Raspberry Pi 2 in Data Centres 193

than the amount of available containers, part of the tasks will run sequentially.
The problem is that as soon as the first batch of map tasks finishes, reduce tasks
get started on the nodes, so only few containers are available for the relatively
high amount of map tasks to be completed. The reduce tasks will have a lot of
idle time, because input data from the map tasks becomes available at a low
pace. Adding more nodes would solve this problem as enough slots should be
available to allocate the map jobs. This would bring the total running time closer
to the average map time.

Since the 7 GB run allocated 64 map tasks, it took a total of 1747 s to com-
plete all jobs. The average reduce time is high, because the reducers were still
waiting for new input data. The shuffle time is the time to get the required data
as output by a map task to the correct reducer. As there are usually many more
map tasks then there are reduce tasks, this is a vital number for fast Hadoop
operations. The reducers were able to retrieve data from other nodes with a
reported speed of about 11 MB/s. This means Hadoop is most of the time writ-
ing into memory, as iperf3 showed that the write speed to the SD card is much
lower over the network.

The last problem showed up for the first time when TeraSort ran with 10GB
of data on 5 nodes. If Hadoop assigns two reduce tasks to a single node, they
have a lot of data to process, so the reduce tasks will use too much memory when
writing their results to HDFS causing the DataNode process to crash and get
kicked out of memory causing the reduce task to fail. Hadoop may then decide
to start two copies of the same job to the cluster. This amplifies the problem
with a small cluster, making the chance that two are running on a single node
significantly higher. This problem can likely be solved by changing the YARN
configuration so that only one reduce task may run on a single node.

Table 5 shows that the CTIT cluster’s total running time is ten times lower
when sorting 1 GB of data. The average map task also took roughly ten times
longer on the RPi2 cluster. The runs with more data were a lot slower on the
RPi2 cluster because not enough container slots were available in the cluster.
The average map took 24 times longer on the RPi2 cluster when sorting 10 GB
of data. This higher ratio could be the result of the low write speed to the SD
card when more data has to be handled.

Table 6. Pi benchmark for computation of the number π

Raspberry Pi 2 CTIT

Containers 8 8 14 - -

Maps 6 12 12 6 12

Total (s) 996 1975 996 40 40

Avg. map (s) 976 981 975 32 32

Avg. shuffle (s) 13 978 13 3 3

Avg. reduce (s) 2 2 2 0 0

194 N.J. Schot et al.

The Pi benchmark was executed with a setup of five nodes with eight contain-
ers and a setup of eight nodes with 14 containers. The number π was computed
in the benchmark with 109 samples per map. Increasing the maps or samples for
the benchmark makes the estimation of π more accurate. From the Pi bench-
marks in Table 6 it became clear that the average shuffle time depends on the
availability of the data for the reducers. The Pi benchmark generates very small
intermediate data which, if all maps can be allocated, takes only 13 s of shuffle
time which is mostly overhead time from Hadoop due to hard coded polling
intervals. The runs with 8 available containers show the impact of a setup with
fewer available slots than there are maps to be run, compared with 6 maps and
12 maps with enough available nodes, the total duration depends on the speed
with which individual maps are finished. The results in Table 6 show that the
amount of maps does not influence running time for the Pi benchmark if enough
container slots are available. Thus we can directly compare the results between
the two systems. The CTIT cluster took 40 s to complete the benchmark with
an average map time of 32 s. In comparison the RPi2 cluster took 996 s to com-
plete with an average map time of 975 s. This means that for this CPU bound
benchmark the processing cores in the CTIT cluster are roughly 30 times faster
than the processing cores from the RPi2.

6.2 Video Stream Benchmarks

The first benchmark streams and tests a video over the RTMP. Apache JMeter is
a benchmark tool that is executed on an external machine to measure the number
of streams a RPi2 can handle [3]. Apache JMeter allows to measure HTTP
capture. As a consequence, RTMP streams can be measured, since these are
encapsulated in HTTP. After the RTMP video stream is started, the workload
of the stream is analysed over HTTP by accessing a video via a web browser.
The RTMP stream has a rate of about 800 kbit/s for a small 230 MB video. The
following basic formula defines the theoretical maximum number of users:

max users =
bandwidth

bit rate stream
.

The theoretical maximum number of users with this formula is 118 with
100 Mbit bandwidth. The benchmark accessing videos through the web browser
allows 25 simultaneously connected users for streaming MPEG-4 (MP4) files
over HTTP. In the web browser less then the maximum users can connect, due
to the buffer and video conversion time.

For Synchronized Multimedia Integration Language (SMIL) a special SMIL
benchmark is used, that allows testing of different video streaming rates for
a single file. It is possible to switch the quality depending on the amount of
data that can get over the network, used in for example YouTube. Different
video qualities have been created by FFmpeg in the H.264 codec from a 230
MB source video, namely: 720p, 480p, 240p and 120p. During the test with
Apache JMeter 100 connections were simulated watching the video. There are
two scenarios that use server-side JW Player: the first allows the user to select

Capabilities of Raspberry Pi 2 in Data Centres 195

video quality, the second automatically switches to an appropriate quality based
on the maximum achievable bitrate. In the first scenario the user chooses between
the 120p, 240p or 480p version of the 230 MB video. When the 480p version is
in use, freezing occurs; with the 120p and 240p versions no freezing is observed.
As a consequence, freezing can occur when users are allowed to select their own
quality; however when quality is automatically selected based on the maximum
bitrate, no freezing occurs.

In order to test an automatic adjustable bit stream with quality constraints,
a Video on Demand (VOD) benchmark is created. First, the converters FFmpeg
and nginx need to be started to share a video over RTMP. The media player
VLC is opened to indicate if there are any differences between VOD and a RTMP
stream. VOD shows no signs of videos freezing. This is because, VOD is equipped
to adjust the bit stream depending on the quality the stream and RTMP is not.
RTMP only allows to watch the video that is played at that moment, which is
similar to normal television.

7 Cluster in Server Racks

For the RPi2 to be useful in an enterprise environment, it must fit in standardised
server racks. Hardware breaks all the time in data centres, so it should be easily
accessible and replaceable to keep the data centre manageable. One disadvantage
of current RPi2 is the placement of the power connector and Ethernet connector.
The connectors are placed perpendicular to each other which makes it harder
to place the boards in a confined space. To keep the manageability of the data
centre two designs are proposed.

The rack must contain a power supply with sufficient ports and power to
handle all RPi2. The casing must contain some fans to generate airflow.

Fig. 7. Vertical and tilted RPi2 in a
1U server

Fig. 8. Proposed RPi2 rack layout

Standard data centre racks contain often 42U of space. As defined by the EIA-
310 standard a single U is 44.50 mm high [14]. A 1U rack’s inside dimensions are
defined to be 450 mm wide, 44.43 mm high and at most 739.775 mm deep [15].
The RPi2 is 85.60 mm wide, 56 mm deep and 21 mm high. It has four standard
mounting holes for screws or spacers to fit through.

196 N.J. Schot et al.

The most efficient way to place the RPi2 in a small contained space is with
the power connector facing downwards. So it can be connected to power on the
bottom of the rack, and to Ethernet on the side, which would allow the easiest
access to a RPi2. Unfortunately, as can be seen in Fig. 7, a vertically placed
RPi2 is a little higher than a standard U, so a bigger 1.5U rack should be used
to make it fit. A variation can be tried by tilting the RPi2 boards so they fit
in a 1U rack. The effect of this approach is shown in Fig. 7. Because of the low
angle, practically no overlap between the RPi2’s can exist. This removes the
main advantage of this approach.

The most obvious way to place the boards is to stack them in pairs of two
and fill up the rack. Stacks can easily be secured on the bottom of the rack server
by using spacers. The downside to this approach is the accessibility of the RPi2,
as either the top one or both RPi2 have to be removed. 12 RPi2 fit next to each
other in the rack, this gives 24 boards for a single row. While keeping space for
all cables and connectors, four rows fit in the width of a rack server. With the
power supply the estimated amount is 72 RPi2 for a 1U rack, seen in Fig. 8.

In order to provide all boards with Ethernet a 2U switch will be needed as a
1U switch can house a maximum of 48 Ethernet ports.

8 Conclusion and Future Work

The contribution of this paper is a fully functional distributed Hadoop and video
streaming setup with acceptable performance in the form of a micro data centre
consisting of multiple Raspberry Pi 2 Model B (RPi2)’s. A high concurrency and
low power setup that fits in a small 1U standardised form factor is proposed.
This cheap setup is especially beneficial when lower performance is acceptable
compared to expensive performance clusters. In the case of our two applica-
tions, acceptable performance is indeed attained, which is shown with the aid
of several application specific benchmarks. Moreover, several benchmarks are
performed on the cluster to ensure it functions properly inside data centre. A
network benchmark confirms an acceptable performance by showing that both
applications approach the maximum network bandwidth of about 94 Mbit/s
under full load. An amount of 72 RPi2’s in a 1U rack is expected to result in
a highly concurrent rack with acceptable performance while using only roughly
160 W under full load. In comparison to the CTIT cluster that easily consumes
kilowatts of power, programs with bigger map/reduce jobs like TeraSort ran only
24 times slower than this cluster. These numbers are promising when realising
that the RPi2’s have not yet an optimised architecture for support of a gigabit
connection over USB and improved SD card reader performance. Before scaling
this setup in a data centre environment, an appropriate solution to the large
number of cables is still required for manageability purposes. Furthermore, the
proposed setup could be used as a cheap micro version of a data centre to simu-
late existing applications before implementing the applications in an expensive
cluster.

Capabilities of Raspberry Pi 2 in Data Centres 197

Acknowledgements. The authors would like to thank Marijn Jongerden and
Boudewijn Haverkort (both from University of Twente) for their constructive feed-
back.

References

1. Abrahamsson, P., Helmer, S., Phaphoom, N., Nicolodi, L., Preda, N., Miori, L.,
Angriman, M., Rikkila, J., Wang, X., Hamily, K., Bugoloni, S.: Affordable and
energy-efficient cloud computing clusters: the Bolzano Raspberry Pi cloud cluster
experiment. In: Proceedings of 5th International Conference on Cloud Computing
Technology and Science, vol. 2, pp. 170–175. IEEE (2013)

2. Adhikari, V., Guo, Y., Hao, F., Varvello, M., Hilt, V., Steiner, M., Zhang, Z.L.:
Unreeling netflix: understanding and improvingmulti-CDN movie delivery. In:
INFOCOM, 2012 Proceedings IEEE, pp. 1620–1628 (2012)

3. Apache Software Foundation: Apache JMeter (2015). http://jmeter.apache.org/
4. Arregoces, M., Portolani, M.: Data Center Fundamentals. Cisco Press, Indianapolis

(2003)
5. Arutyunyan, R.: NGINX-based Media Streaming Server (2015). https://github.

com/arut/nginx-rtmp-module
6. Cassandra: Welcome to Apache Cassandra (2015). http://cassandra.apache.org/
7. Cox, S.J., Cox, J.T., Boardman, R.P., Johnston, S.J., Scott, M., OBrien, N.S.:

Iridis-pi: a low-cost, compact demonstration cluster. Cluster Comput. 17(2), 349–
358 (2013)

8. Knight, D.: DietPi for Raspberry Pi’s (2014). http://fuzon.co.uk/phpbb/viewtopic.
php?f=8&t=6

9. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107 (2008)

10. ESnet: iperf/iperf3 (2015). http://fasterdata.es.net/performance-testing/network-
troubleshooting-tools/iperf-and-iperf3/

11. FFmpeg: FFmpeg (2015). https://www.ffmpeg.org/
12. Google: Google Datacenters (2015). http://www.google.com/about/datacenters/

efficiency/internal/#temperature
13. Huang, S., Huang, J., Liu, Y., Yi, L., Dai, J.: HiBench: a representative and compre-

hensive hadoop benchmark suite. In: Proceedings of 26th International Conference
on Data Engineering Workshops (2010)

14. Innovation First, inc: 19-inch rack (EIA-310) (2007). https://www.server-racks.
com/eia-310.html

15. Innovation First, inc: Rack Mounting Depth (2007). https://www.server-racks.
com/rack-mount-depth.html

16. Clark, J.: Raising Data Center Power Density (2013). http://www.datacenter
journal.com/raising-data-center-power-density/

17. Kiepert, J.: Creating a Raspberry Pi-Based Beowulf Cluster, May 2013. http://
coen.boisestate.edu/ece/files/2013/05/Creating.a.Raspberry.Pi-Based.Beowulf.
Cluster v2.pdf

18. JW Player: JW PLayer (2015). http://www.jwplayer.com/
19. Kopytov, A.: SysBench benchmark suite (2015). https://github.com/akopytov/

sysbench
20. Leigh, K., Ranganathan, P., Subhlok, J.: General-purpose blade infrastructure for

configurable system architectures. Distrib. Parallel Databases 21(2–3), 115–144
(2007)

http://jmeter.apache.org/
https://github.com/arut/nginx-rtmp-module
https://github.com/arut/nginx-rtmp-module
http://cassandra.apache.org/
http://fuzon.co.uk/phpbb/viewtopic.php?f=8&t=6
http://fuzon.co.uk/phpbb/viewtopic.php?f=8&t=6
http://fasterdata.es.net/performance-testing/network-troubleshooting-tools/iperf-and-iperf3/
http://fasterdata.es.net/performance-testing/network-troubleshooting-tools/iperf-and-iperf3/
https://www.ffmpeg.org/
http://www.google.com/about/datacenters/efficiency/internal/#temperature
http://www.google.com/about/datacenters/efficiency/internal/#temperature
https://www.server-racks.com/eia-310.html
https://www.server-racks.com/eia-310.html
https://www.server-racks.com/rack-mount-depth.html
https://www.server-racks.com/rack-mount-depth.html
http://www.datacenterjournal.com/raising-data-center-power-density/
http://www.datacenterjournal.com/raising-data-center-power-density/
http://coen.boisestate.edu/ece/files/2013/05/Creating.a.Raspberry.Pi-Based.Beowulf.Cluster_v2.pdf
http://coen.boisestate.edu/ece/files/2013/05/Creating.a.Raspberry.Pi-Based.Beowulf.Cluster_v2.pdf
http://coen.boisestate.edu/ece/files/2013/05/Creating.a.Raspberry.Pi-Based.Beowulf.Cluster_v2.pdf
http://www.jwplayer.com/
https://github.com/akopytov/sysbench
https://github.com/akopytov/sysbench

198 N.J. Schot et al.

21. Meisner, D., Gold, B.T., Wenisch, T.F.: Powernap: eliminating server idle power.
ACM SIGARCH Comput. Archit. News 37(1), 205–216 (2009)

22. Microchip: LAN9514-JZX (2012). http://ww1.microchip.com/downloads/en/
DeviceDoc/9514.pdf

23. Nginx: NGINX (2015). http://nginx.com/
24. Raspberry Pi Foundation: Raspberry Pi 2 Model B (2015). https://www.

raspberrypi.org/products/raspberry-pi-2-model-b/
25. The Apache software foundation: Welcome to Apache Hadoop! (2015). https://

hadoop.apache.org/
26. Tso, F.P., White, D.R., Jouet, S., Singer, J., Pezaros, D.P.: The Glasgow Raspberry

Pi cloud: a scale model for cloud computing infrastructures. In: Proceedings of 33rd
International Conference on Distributed Computing Systems Workshops, pp. 108–
112. IEEE (2013)

27. Uptime Institute: Designing Netflixs Content Delivery Network.Uptime Insti-
tute Symposium (2014). https://journal.uptimeinstitute.com/designing-netflixs-
content-delivery-network/

http://ww1.microchip.com/downloads/en/DeviceDoc/9514.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/9514.pdf
http://nginx.com/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://hadoop.apache.org/
https://hadoop.apache.org/
https://journal.uptimeinstitute.com/designing-netflixs-content-delivery-network/
https://journal.uptimeinstitute.com/designing-netflixs-content-delivery-network/

Ensemble-Based Uncertainty Quantification
for Smart Grid Co-simulation

Cornelius Steinbrink(B), Sebastian Lehnhoff, and Thole Klingenberg

OFFIS – Institute for Information Technology,
Escherweg 2, 26121 Oldenburg, Germany

cornelius.steinbrink@offis.de

http://www.offis.de

Abstract. Coupling of independent models in the form of a co-
simulation is a rather new approach for design and analysis of Smart
Grids. However, uncertainty of model parameters and outputs decreases
the significance of simulation results. Therefore, this paper presents an
ensemble-based uncertainty quantification system as an extension to the
already existing co-simulation framework mosaik.

Keywords: Smart Grid · Co-simulation · Uncertainty quantification ·
Mosaik

1 Introduction

Smart Grid co-simulation is a relatively new approach for the development of
future energy grids. It combines different pre-existing simulation models and thus
decreases the modeling complexity of “systems of systems”. The co-simulation
framework mosaik1 [1] has been developed to facilitate model coupling by pro-
viding an API for data exchange.

A crucial issue of simulation is the deviation between its results and observa-
tions made in the real world. This phenomenon is called uncertainty. It results
from model simplifications and errors in the model input. Thus, the concept of
uncertainty quantification (UQ) is used to compute the possible range of simu-
lation results.

UQ is especially crucial in the context of co-simulation, as illustrated in [2],
since the differently accurate component models make it hard for analysts to
assess the bias of the combined dynamics. However, due to the relative nov-
elty of Smart Grids and co-simulation, relevant UQ approaches are sparse and
oftentimes fail to address important aspects of the problem.

This paper illustrates a flexible UQ approach for co-simulation that is imple-
mented and tested within the mosaik framework.

1 For up to date documentation and source code see: http://mosaik.offis.de.

c© Springer International Publishing Switzerland 2016
A. Remke and B.R. Haverkort (Eds.): MMB & DFT 2016, LNCS 9629, pp. 199–202, 2016.
DOI: 10.1007/978-3-319-31559-1 16

http://mosaik.offis.de

200 C. Steinbrink et al.

2 Application: Smart Grid Co-simulation with Mosaik

The purpose and mechanics of mosaik may be best illustrated with the help of an
exemplary use case. We assume a set of simple models of a power grid [3], a fridge
(self-developed), and a PV panel [4], as well as a software module that provides
weather data. All of these components are called simulators when implemented
and integrated into the mosaik simulation environment. Since the modeling has
typically been done by another party, the mosaik users can concentrate on the
creation of a simulation scenario. Thus, every model is treated as a black box and
is described solely via meta information specifying the type of the modeled sys-
tem, the model’s parameters, and the in- and output variables, called attributes,
that are used to interconnect the models.

In the example scenario, an LV grid with four nodes is created. Each node
experiences feed-in of active power P from one PV panel, and active power con-
sumption by two fridges. The PV panels again receive irradiation input from the
weather data file. This scenario may be used, e.g., to test an algorithm for the
balancing of fluctuating producers and controllable consumers. However, due to
model errors and uncertainty in the parametrization, the algorithm might not be
exposed to all realisticly possible scenarios. A UQ system can help to calculate the
full range of possible simulation outputs. The design of the UQ system is subject
to a number of requirements, derived from the mosaik application use case:

– The user should not need to adjust the code of the black box models,
– uncertainty in parameters as well as attributes should be considered,
– probabilistic uncertainty should be considered where it can be assessed,
– simulation scenario creation should not be impeded by UQ.

3 UQ System Architecture

The presented UQ system (Fig. 1) is geared to the modular design of mosaik, i.e. a
distinct UQ process is conducted for every utilized simulator. This process is often-
times divided into two steps: assessment, i.e. the identification and modeling of
initial uncertainties, and the propagation of these uncertainties through a model.

For the assessment, the UQ system provides a set of different uncertainty
models so that users can represent their knowledge about uncertainty sources
adequately. The most basic model for uncertainty is an interval while the most
complete one is a probability distribution. Mixtures between these two are prob-
ability boxes and Dempster-Shafer structures that can easily be converted into
each other and their marginal cases [5]. Uncertainty in respect to the parame-
ter values or the output of a model can be specified by using one or more of
these structures. This task is best conducted by the original modeler, and the
uncertainty specification stored in a file.

The propagation is conducted by replacing each model instance in the sce-
nario with an ensemble of model instances. Each ensemble consists of an input
and an output module as well as a set of ensemble members (model instances).

Ensemble-Based Uncertainty Quantification for Smart Grid Co-simulation 201

Fig. 1. Software architecture of the UQ system.

Fig. 2. UQ results for the flow of active power between two grid nodes over the course
of one day.

Ensembles do not exchange single values like normal mosaik simulators. They
exchange uncertainty structures that represent one of the uncertainty models
discussed above. The input modules are responsible for splitting these struc-
tures into different input values for the ensemble members. The output modules
combine the members’ output values to a new uncertainty structure and add an
output error if defined in the assessment file. Additionally, each member receives
a different set of parameter values, also based on the assessment information.
The partitioning of the uncertainty structures for parameters and attributes is
based on a sampling scheme. For the standard cases, space-filling latin hypercube
sampling (e.g. [6]) is sufficient. If probabilistic uncertainty models are employed,
kernel density estimators are used to express the distributions numerically, and
copulas to account for correlation between uncertainty sources.

The scenario described in Sect. 2 has been used to illustrate the operation
of the UQ system. During the assessment phase, output uncertainty has been

202 C. Steinbrink et al.

assumed for the weather data simulator due to given measurement error values.
The uncertainty of the PV and fridge models are realized as variance in the
parameter values since they may differ between varying real-world systems.

Figure 2 displays statistic measures for the flow of active power between two
nodes of the power grid. The gray area depicts the range of possible values, the
dashed dark gray lines the 5 %- and 95 %-quantiles, and the black line the mean
value that lies within the same range as the original simulation results. It is
obvious that averaged simulation results are not sufficient for, e.g., testing under
extreme conditions.

4 Conclusion

The presented system provides ensemble-based UQ capabilities for Smart Grid
co-simulation while satisfying the requirements set up in Sect. 2. It utilizes the
mosaik interface to communicate with models so that users may still consider
them black boxes. Uncertainty in the model output attributes and parameters
may be considered explicitly via assessment files while uncertain model input is
handled implicitly via exchange of uncertainty structures. These structures can
incorporate different uncertainty models so that probabilistic knowledge can be
considered (if available to the user) but is no necessity. Finally, the replacement
of model instances by ensemble instances leads to a structure of UQ scenarios
that is similar to standard mosaik scenarios so that the use of the UQ system
should be rather simple and non-limiting for mosaik users.

The UQ system is currently still under development, but expected to be
released as a mosaik extension when completed.

References

1. Schütte, S., Scherfke, S., Tröschel, M.: Mosaik: a framework for modular simulation
of active components in smart grids. In: First International Workshop on Smart
Grid Modeling and Simulation (SGMS), pp. 55–60. IEEE (2011)

2. Steinbrink, C., Lehnhoff, S.: Challenges and necessity of systematic uncertainty
quantification in smart grid co-simulation. In: EUROCON 2015 - International Con-
ference on Computer as a Tool (EUROCON). IEEE (2015)

3. Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: MATPOWER: steady-
state operations, planning, and analysis tools for power system research and educa-
tion. IEEE Trans. Power Syst. 26, 12–19 (2011)

4. Soto, D., Adkins, E., Basinger, M., Menon, R., Rodriguez-Sanchez, S., Owczarek,
N., Willig, I., Modi, V.: A prepaid architecture for solar electricity delivery in rural
areas. In: Proceedings of the Fifth International Conference on Information and
Communication Technologies and Development, pp. 130–138. ACM (2012)

5. Ferson, S., Kreinovich, V., Ginzburg, L., Myers, D.S., Sentz, K.: Constructing Prob-
ability Boxes and Dempster-Shafer Structures. Technical report, Sandia National
Laboratories (2003)

6. Janssen, H.: Monte-Carlo based uncertainty analysis: sampling efficiency and sam-
pling convergence. Reliab. Eng. Syst. Saf. 109, 123–132 (2013)

Author Index

Awad, Abdalkarim 5

Bazan, Peter 5, 122
Berndt, Rüdiger 122
Bondorf, Steffen 9

Cerotti, Davide 25
Chen, Yixiang 77

Daduna, Hans 40

German, Reinhard 5, 92, 122
Gribaudo, Marco 25

Hajighasemi, Maryam 55
Hasslinger, Frank 60
Hasslinger, Gerhard 60
He, Kangli 77
Homm, Daniel 92
Hurink, Johann L. 55

Käßmeyer, Michael 122
Klingenberg, Thole 199
Kriege, Jan 107

Lackorzynski, Adam 137
Lampka, Kai 137

Lautenschlaeger, Wolfram 153
Lehnhoff, Sebastian 199

Meng, Tianhui 168

Ntougias, Konstantinos 60

Pinciroli, Riccardo 25
Postema, Björn F. 183
Pras, Aiko 1

Santanna, José Jair 1
Schmitt, Jens 9
Schot, Nick J. 183
Serazzi, Giuseppe 25
Smit, Gerard J.M. 55
Sperotto, Anna 1
Steinberger, Jessica 1
Steinbrink, Cornelius 199

Velthuis, Paul J.E. 183

Wolter, Katinka 168

Zhang, Min 77
Zhang, Yuanrui 77

	Preface
	Organization
	Abstracts of Invited Talks
	DDoS 3.0 - How Terrorists Bring Down the Internet
	Open Analysis of Crowdsourced Car Sensor Data - The enviroCar Project
	From Transient Analysis to Probabilistic Model Checking of Markov Regenerative Processes
	Critical Machine-to-Machine Communications: Performance Models vs. Reality in the 10210 Regime
	Contents
	DDoS 3.0 - How Terrorists Bring Down the Internet
	1 Current DDoS Attacks
	2 Analysis of Current DDoS Attacks
	3 How to Make DDoS Attacks More Powerful
	4 Conclusions
	References

	SGsim: Co-simulation Framework for ICT-Enabled Power Distribution Grids
	1 Introduction
	2 Description of SGsim
	3 Case Study: Conservation Voltage Reduction (CVR)
	References

	Improving Cross-Traffic Bounds in Feed-Forward Networks -- There is a Job for Everyone
	1 Introduction
	2 Related Work
	3 Network Calculus Background
	4 An Alternative Output Bound
	5 TFA-Assisted PBOO Arrival Bounding
	6 Feed-Forward Network Evaluation
	7 Conclusion
	References

	Stochastic Analysis of Energy Consumption in Pool Depletion Systems
	1 Introduction
	2 Energy Consumption
	3 Model Description
	3.1 Single-Class Model
	3.2 Multi-class Model
	3.3 Model Analysis

	4 Results
	4.1 Single-Class Model
	4.2 Multi-class Model

	5 Conclusion
	References

	Moving Queue on a Network
	1 Introduction
	2 Network Scenarios
	3 Standard Jackson Networks
	4 Injecting a Moving Queue into the Jackson Network
	5 Conclusion and Further Research
	References

	A Multi-commodity Simulation Tool Based on TRIANA
	1 Introduction
	2 The TRIANA Simulator
	3 Extending TRIANA with Heat Components
	4 Results
	5 Conclusion and Future Work
	References

	Performance and Precision of Web Caching Simulations Including a Random Generator for Zipf Request Pattern
	Abstract
	1 Introduction: Caching Strategies and Evaluation by Simulations
	2 Zipf’S Law for Access to Content on the Internet
	3 An Inversion Method for a Random Zipf Rank Generator
	4 Simulation of Caching Strategies: Run Time Versus Precision
	5 Hit Count Versus Sum of Cached Objects’ Request Probabilities
	6 2nd Order Statistics for the Precision in Multiple Time Scales
	7 Evaluation Comparing Pure LRU and SG-LRU
	8 Simulations Including Profiles of Varying Popularity of Objects
	9 Conclusions and Outlook
	Acknowledgements
	References

	PSTeC: A Location-Time Driven Modelling Formalism for Probabilistic Real-Time Systems
	1 Introduction
	2 Formal Definition of PSTeC
	2.1 Syntax
	2.2 Some Constraints
	2.3 Operational Semantics

	3 Automatic Spray Painting of a Custom Car
	4 Conclusion
	References

	Analysis of Hierarchical Semi-Markov Processes with Parallel Regions
	1 Introduction
	2 Definition of the Model and Introduction of Notation
	2.1 Semi-Markov Processes with Parallel Regions
	2.2 Notation to Refer to States, Regions, and Substates
	2.3 Notation for Further Quantities

	3 Analysis
	3.1 Analysis if All Sojourn Time Distributions Are Known
	3.2 Computation of Sojourn Time Distributions for Composite States
	3.3 Computation of Mean Sojourn Times in Composite States
	3.4 Solution of the EMC
	3.5 Computation of Substate Probabilities

	4 An Illustrative Example
	5 Computational Effort
	6 Conclusion
	References

	Combining Mobility Models with Arrival Processes
	1 Introduction
	2 Background and Notations
	2.1 Random Walk Mobility Model
	2.2 Random Waypoint Mobility Model
	2.3 Random Direction Mobility Model
	2.4 Scenario Generation
	2.5 Autoregressive-To-Anything Processes

	3 Mobility Models with Arrivals and Departures
	3.1 Arrival and Departure Generators
	3.2 Scenario Generation

	4 Experimental Evaluation
	4.1 Experiment Setup
	4.2 Experimental Results

	5 Conclusions
	References

	Product Line Fault Tree Analysis by Means of Multi-valued Decision Diagrams
	1 Introduction
	2 Related Work
	2.1 Fault Tree Analysis
	2.2 Multi-valued Decision Diagrams

	3 Modeling Systems with Variants
	3.1 Structure-Preserving Fault Trees
	3.2 Modular Systems with Variants

	4 MDD-Based Representation of Variant-Rich FTs
	5 MDD-Based Representation of Minimal Cut Sets
	5.1 Minimal Cut Sets
	5.2 Constructing the MDD Representation of the MCSs

	6 Conclusion and Future Work
	References

	Resolving Contention for Networks-on-Chips: Combining Time-Triggered Application Scheduling with Dynamic Budgeting of Memory Bus Use
	1 Introduction
	1.1 Motivation
	1.2 Own Contribution
	1.3 Organization

	2 Related Work
	3 Abstract System Model
	3.1 Basic Definitions
	3.2 Worst Case Execution Time When Sharing the Main Memory Bus
	3.3 Worst Case Response Time When Sharing the Main Memory

	4 Adaptively Budgeting Memory Accesses Under Time-Triggered Execution of Real-Time Tasks
	4.1 Time-Triggered Execution of Tasks
	4.2 Feasibility Checks with Budgets
	4.3 Enforcing Budgets at Run-Time

	5 Implementation and Evaluation
	5.1 Virtual Machine Monitor: Coordinating the Acces to a Shared Resource
	5.2 Hardware Performance Counters
	5.3 Flexible OS Support for Resource Budgets
	5.4 Using Performance Counters
	5.5 Memory Bus Usage
	5.6 Limiting Memory Access

	6 Conclusions
	References

	The Weak Convergence of TCP Bandwidth Sharing
	Abstract
	1 Introduction
	2 TCP Bandwidth Theory
	2.1 Basic TCP Equations
	2.2 Origin of Packet Loss
	2.3 Flow Rate at Random Packet Loss

	3 Experimental Evaluation
	3.1 Random Packet Loss
	3.2 Bandwidth Sharing
	3.3 Duration of Rate Variations

	4 Consequences
	5 Summary
	Acknowledgement
	References

	Analysis of Mitigation Measures for Timing Attacks in Mobile-Cloud Offloading Systems
	1 Introduction
	2 System Overview and the Model
	2.1 Behavior of System and Attackers
	2.2 Random Delays
	2.3 The System Model

	3 Metrics
	3.1 Security Metrics
	3.2 Performance Metrics

	4 Model Analysis
	4.1 CTMC Steady-State Probability Computation

	5 Evaluation
	5.1 Experiment Setup
	5.2 Convolution Method for Timing Attack Distribution
	5.3 Comparison of Different Distributions
	5.4 Comparison of Weibull Distributed Delays with Different Parameter-Sets

	6 Discussion
	7 Conclusion
	References

	Capabilities of Raspberry Pi 2 for Big Data and Video Streaming Applications in Data Centres
	1 Introduction
	2 Two Key Applications for Data Centres
	2.1 Big Data
	2.2 Video Streaming

	3 Related Work
	4 System Description
	4.1 Raspberry Pi 2
	4.2 Experimental Setup
	4.3 Hadoop Software
	4.4 Video Streaming Software

	5 Cluster Benchmarking
	5.1 Storage and Memory Performance
	5.2 Energy Consumption
	5.3 Network Performance
	5.4 Temperatures

	6 Application Benchmarking
	6.1 Hadoop Benchmarks
	6.2 Video Stream Benchmarks

	7 Cluster in Server Racks
	8 Conclusion and Future Work
	References

	Ensemble-Based Uncertainty Quantification for Smart Grid Co-simulation
	1 Introduction
	2 Application: Smart Grid Co-simulation with Mosaik
	3 UQ System Architecture
	4 Conclusion
	References

	Author Index

