
Efficient Implementation of AND, OR and NOT
Operators for ABCs

Antonio de la Piedra(B)

ICIS DS, Radboud University Nijmegen, Nijmegen, The Netherlands
a.delapiedra@cs.ru.nl

Abstract. In the last few years several practitioners have proposed
different strategies for implementing Attribute-based credentials (ABCs)
on smart cards. ABCs allow citizens to prove certain properties about
themselves without necessarily revealing their full identity. The Idemix
ABC is the most versatile ABC system proposed in the literature, sup-
porting peudonyms, equality proofs of representation, verifiable encryp-
tion of attributes and proving properties of attributes via AND, NOT and
OR operators. Recently, Vullers et al. and De La Piedra et al. addressed
the implementation of the selective disclosure operations, pseudonyms
and multi-credential proofs such as equality proofs of representation. In
this manuscript, we present implementation strategies for proving prop-
erties of user attributes via these operators and show how to combine
them via external and internal commitment reordering.

Keywords: Attribute-based credentials · Smart cards

1 Introduction

Our everyday life is full of situations where we must identify ourselves. This
is exemplified where we buy alcohol, cigarettes or other type of adult goods.
In such process, we usually rely on our IDs in order to show that our age is
consistent with the current legislation. However, in most of those operations we
do not need to reveal our full identity. ABCs solve these privacy breaches by
enabling users to reveal or hide the set of attributes that represent their iden-
tity according to the real need of the identification process. In so doing, the
usual identification operation is replaced by an authorization according to the
restricted set of attributes that are asked for. ABCs generally consist of a set of
signed attributes that through certain cryptographic primitives can be used for
authentication while tracing is avoided as well as ensuring that nobody can reuse
the credential attributes or have access to them. Modern anonymous credential
systems such as Idemix [8] and U-Prove [4] rely on blind and randomizable sig-
natures in combination with proofs of knowledge [13]. While some practitioners
have proposed several implementations of ABCs [3,19], the IRMA card1 is the

1 https://www.irmacard.org.

c© Springer International Publishing Switzerland 2016
M. Yung et al. (Eds.): INTRUST 2015, LNCS 9565, pp. 183–199, 2016.
DOI: 10.1007/978-3-319-31550-8 12

https://www.irmacard.org

184 A. de la Piedra

only open-source and practical implementation of Idemix. In this paper we rely
on the current version of the card.

The main operation of ABCs is the selective disclosure. A user can reveal
a reduced set of her attributes according to a presentation policy sent by a
verifier [6]. However, in certain cases it can be useful to prove relations across
attributes of the same credential. For instance, a restricted service can enforce
an access control based on the ownership of an attribute a OR another one b.
Moreover, it can ask if the cardholder is not owning a special type of attribute
e.g. one that describes that her age is NOT higher than 18. All these operations
are related to the AND, OR and NOT operators introduced by Camenisch et al. in
[7]. In this manuscript, we address their implementation on constrained devices.

In the next section, we describe the work of other practitioners who imple-
mented ABCs on smart cards and relate their performance figures with our work.
In Sect. 3 we describe the main building blocks of ABCs. In Sect. 4, we sketch
out the internals of the IRMA card. In Sects. 5 and 6 we present our strategies
for executing complex proofs based on the AND, OR and NOT operators. We
describe our results for combining them in Sect. 7. Finally, we end in Sect. 8 with
some conclusions.

2 Related Work

Bichsel et al. [3] presented in 2009 the first implementation of Idemix based on
Java Card (7.4 s, 1,280 bit RSA modulus) solely based on the selective disclosure
of one attribute. These results preceded the design of Sterckx et al. [19] (4.2 s,
1,024 bit RSA modulus). Using the MULTOS platform, Vullers et al. presented
an implementation of the issuing and verification operations of Idemix using cre-
dentials of 5 attributes (1–1.5 s, 1,024 bit RSA modulus). De La Piedra et al. [18]
proposed the implementation of larger credentials, pseudonyms (1,486.51 ms)
and multi-credential proofs (2,261.19 ms) on the same platform using a
PRNG and variable reconstruction in RAM relying on the implementation of
Vullers et al [18].

Contribution. In this manuscript, we present strategies for executing OR,
NOT and AND operators over credentials based on prime-encoded attributes as
described by [7]. Relying on the AND operator we found the limit of the amount
of attributes we can issued in the target device2 is 44. We always can perform
this operation using attributes of different lengths in less than 2.7 s whereas
issuing more than 5 attributes using traditional attributes requires more than
3 s [20]. This suggests that issuing prime-encoded attributes can be accompanied
by the computation of pseudonyms. On the other hand, we observed that the

2 Our performance figures have been extracted relying on a MULTOS ML3-R3-80K
smart card using the SCM Microsystems SCL011 reader in a Intel Core i5-3230M
CPU clocked at 2.60 GHz running Debian Linux 3.13.6-1, python 2.7.6, python-
pyscard 1.6.12.1-4 and CHARM 0.43 [2].

Efficient Implementation of AND, OR and NOT Operators for ABCs 185

verification of attributes using this operator is only optimal when none of the
attributes are revealed (1.2 s, Sect. 7.1.3). We also present the implementation of
the NOT operator using three approaches for solving the required Diophantine
equation. Using credentials of the same size of the IRMA card we can perform
the NOT operator in 1,974.96 ms with precomputatoin and between 2,016.41
and 2,135.53 ms using the extended Euclidean algorithm. We can perform the
OR operator using the same type of credentials in 1,885.96 ms. Finally, we pro-
pose the internal and external reorganization of commitments for making it
possible the combination of this operators: AND ∧ NOT (2,201.90 ms), AND ∧
OR (1,924.5 ms), NOT ∧ OR (2,122.20 ms) and AND ∧ NOT ∧ OR (2,252.60 ms).
By performing the proposed reorganizations of commitments we obtained reduc-
tions between 170.10 ms and 644.60 ms and between 9 · 74 and 1 · 74 bytes sav-
ings in RAM. Our results suggest that is actually possible to execute complex
proofs of knowledge on embedded devices in reasonable times for on-line set-
tings. Moreover, our performance figures are consistent with the current results
in the literature [18,20].

3 Preliminaries

The IRMA card relies on a subset of the Idemix specification [20]. In this
section, we describe the fundamentals of private ABCs and their main crypto-
graphic blocks: non-interactive commitment schemes, blind signatures and zero-
knowledge proofs. In this respect, we present the Camenisch-Lysyanskaya (CL)
digital signature [10], the Fujisaki-Okamoto commitment scheme [16] and the
Idemix ABC [8].

Non-interactive Commitment Schemes. These constructions are utilized
in Idemix for committing to secret values during the issuing and verification
operations. In so doing, one of the parties proves the knowledge of a committed
value such as an attribute that is not revealed. Typically, a commitment scheme
consists of two stages: commit and reveal i.e. a value x that is received as an
input in the first stage will be revealed during the second one. Idemix relies
on the Fujisaki-Okamoto commitment [16] scheme, which is statistically hiding
and computationally binding when factoring is a hard problem. Given an RSA
special modulo n, h ∈ QRn and g ∈< h >, the commitment function for an
input x, and random value r ∈ Zn is computed as gxhrmodn.

Zero-Knowledge Proofs. In a proof of knowledge, a verifier is convinced that
a witness w satisfies a polynomial time relation R only known by the prover.
If this is performed in a way that the verifier does not learn w, this is called a
zero-knowledge proof of knowledge. Damg̊ard proved that is possible to generate
zero-knowledge protocols via sigma protocols [14]. In Idemix, the typical three

186 A. de la Piedra

movement of sigma protocols (commitment, challenge and response3) is trans-
formed into a Non Interactive Proof of Knowledge (NIZK) via the Fiat-Shamir
heuristic [15] in the random oracle model. A variety of zero-knowledge protocols
are utilized in Idemix. For instance, proofs of knowledge of discrete logarithm
representation modulo a composite are used during issuing and verification [16].

The CL Digital Signature Scheme. The CL signature scheme is the main
block of Idemix [10]. It provides multi-show unlinkability via the randomization
of the issued signature. This signature is secure under the Strong RSA assump-
tion. A CL signature is generated (Gen) by a certain issuer according to her public
key (S,Z,R0, R1, ..., R5 ∈ QRn, n) using its secret key (p, q). For instance, a CL
signature over a set of attributes (m0, ...,m5) is computed by selecting A, e and
v s.t. Ae = ZR−m0

0 R−m1
1 R−m2

2 R−m3
3 R−m4

4 R−m5
5 S−v mod n. Then, a third party

can check the validity of the signature by using the issuer’s public key and the
triple (A, e, v) as Z ≡ AeRm0

0 Rm1
1 Rm2

2 Rm3
3 Rm4

4 Rm5
5 Sv mod n (Verify).

Private ABC Systems. In private ABCs systems [12], the users remain anony-
mous and are only known by their pseudonyms. They consist of organizations
that issue and verify credentials so a user can prove its identity to a verifier
while the issuer remains oblivious. In Idemix, this is performed via the multi-
show unlinkability property of the CL digital signature scheme. Avoiding the
transference of credentials between users is enforced using a secret key that is
only known to the user and not by the system (namely, a master secret m0 in
Idemix). In this system, there are two main protocols: issuing (or GrantCred [9])
and verification (or VerifyCred [9]). In the first one, a certain cardholder performs
a protocol for signing a committed value, for instance, a set of attributes that
represent her identity e.g. m0, ...,ml for l attributes. At the end of the proto-
col, she receives a signature σ whereas the signer did not learn anything about
m0, ...,ml. On the other hand, the verification operation serves for proving the
knowledge of a signature over a committed value, for instance a set of attributes
and the master secret m0 of the user for a pair cardholder/verifier. This pro-
tocol enables the possibility of using policies (see for instance [5]), i.e. a list of
attributes or conditions in a certain credential that must be fulfilled during an
authentication operation4.

3 In the first stage, the prover sends to the verifier a commitment message t or t value.
In the second move, the verifier sends to the prover a random challenge message c.
Finally, the last message sent by the prover includes a response value or s value.

4 For instance, an empty proof of possession over a set of attributes (m0, ..., m5) is
represented using the Camenisch-Staedler notation [11] as: NIZK: {(ε′, ν′, α0, ..., α5) :

Z ≡ ±Rα0
0 Rα1

1 Rα2
2 Rα3

3 Rα4
4 Rα5

5 Aε′
Sν′

mod n} being the Greek letters (ε′, ν′) and
(α0, ..., α5) the values of the signature and the set of attributes proved in zero knowl-
edge and not revealed.

Efficient Implementation of AND, OR and NOT Operators for ABCs 187

4 The IRMA Card

IRMA supports up to 5 attributes by credential and relies on 1,204 special
RSA modulus for performance reasons5. IRMA is based on the MULTOS card.
Particularly, our target device is the ML3-80K-R1 version. It is based on the SLE
78CX1280P chip by Infineon6. This processor, clocked up to 33 MHz, provides
an instruction set compatible with the Intel 8051 and hardware accelerators for
ECC, RSA, 3DES and AES.

Issuing in IRMA. Issuing in Idemix is related to the generation of a CL blind
signature over the attributes of the cardholder. In so doing, the issuer cannot
extract the master secret m0 of the cardholder and the generated tuple (A, e, v)
remains hidden too. However, in IRMA the cardholder’s attributes are never
revealed to the issuer.

Table 1. Message flow for issuing a CL signature over a set of attributes (I: Issuer,
C: Cardholder)

5 As described in [18], the attributes are represented as lm = 256 bits. The rest of
parameters are set as l′e = 120 (size of the interval where the e values are selected),
lø = 80 (security parameter of the statistical ZKP), lH = 256 (domain of the hash
function in the Fiat-Shamir heuristic), le = 504 (size of e), ln = 1, 024 (size of the
RSA modulus) and lv = 1, 604 bits (size of v).

6 http://www.infineon.com/dgdl/SPO SLE+78CX1280P 2012-07.pdf?
folderId=db3a304325afd6e00126508d47f72f66&fileId=
db3a30433fcce646013fe3d672214ab8 (Accessed 27 February 2015).

http://www.infineon.com/dgdl/SPO_SLE+78CX1280P_2012-07.pdf?folderId=db3a304325afd6e00126508d47f72f66&fileId=db3a30433fcce646013fe3d672214ab8
http://www.infineon.com/dgdl/SPO_SLE+78CX1280P_2012-07.pdf?folderId=db3a304325afd6e00126508d47f72f66&fileId=db3a30433fcce646013fe3d672214ab8
http://www.infineon.com/dgdl/SPO_SLE+78CX1280P_2012-07.pdf?folderId=db3a304325afd6e00126508d47f72f66&fileId=db3a30433fcce646013fe3d672214ab8

188 A. de la Piedra

Issuing requires two NIZK (Table 1). In IRMA, the issuing part of
Idemix mimics the Cardholder-Issuer interaction as a set of states:
ISSUE CREDENTIAL, ISSUE PUBLIC KEY, ISSUE ATTRIBUTES, ISSUE COMMITMENT,
ISSUE COMMITMENT PROOF, ISSUE CHALLENGE, ISSUE SIGNATURE and
ISSUE VERIFY. The first, state ISSUE CREDENTIAL, puts the card in issuance
mode, sends the identifier of the credential that will be issued and the context of
the operation. Then, during the ISSUE PUBLIC KEY state, the card accepts the
public key of the issuer: n, S, Z,R0, ..., R5. The attributes to be issued are sent to
the card in the ISSUE ATTRIBUTES state. The rest of the states are related to the
execution of the two NIZK. During ISSUE COMMITMENT the cardholder receives
the nonce n1, it computes U and returns it. Then, in ISSUE COMMITMENT PROOF,
the required values for proving the knowledge of ms in U : c, v̂′, ŝ are generated.
In ISSUE CHALLENGE, it sends n2. During the ISSUE SIGNATURE mode, the issuer
constructs the blinded CL signature and sends to the card the partial signa-
ture (A, e, v′′). Finally, in ISSUE VERIFY the card verifies the signature using the
values sent the verifier (c, Se).

We can model the latency of the issuing process in the IRMA card by rep-
resenting the time required for performing the operation described in Table 1
as Tissuing(n) where n is the number of attributes that will be issued in a cer-
tain credential. This latency would be result of summing up the time required
for getting the public key of the issuer, adding the computation of the involved
proofs and the process of obtaining and verifying the signature:

Tissuing(n) = Tsel cred +
∑

i=n,S,Z,Ri

Tget PK(i) +

n∑

i=1

Tget attr(i) + Tgen commitment +
∑

i=c,v̂′,ŝ
Tgen proof (i)+

∑

i=A,e,v′′
Tget signature(i) + Tverify(n)

(1)

From this model, we know that there are only two operations that depends on
the number of attributes issued that are part of a certain credential: Tget attr(i)
and Tverify(n). That would mean that in order to optimize the overall latency
of Tissuing(n) there are two strategies: (1) reduce the number of attributes that
are part of the credential (we analyze this aspect in Sect. 5.1) and (2) reduce
then number of operations in the verification part of the proof, which is already
implemented on the IRMA card where the second proof is optionally verified for
reducing the computational complexity of the operation.

Verification in IRMA. When the card receives a verification request, it
changes its initial state to PROVE CREDENTIAL. Then, it acquires a presentation
policy with the description of the attributes that must be revealed. Then, the
card performs the operations depicted in Table 2 (PROVE COMMITMENT). After-
wards, the card changes its working state to PROVE SIGNATURE. In this state, the
verifier can request the randomized tuple (A′, ê, v̂′). Finally, the card switches
to PROVE ATTRIBUTE, where the verifier is allowed to request the set of revealed
and hidden attributes related to the proof. This set of states is mapped to the
three moves described in Table 2.

Efficient Implementation of AND, OR and NOT Operators for ABCs 189

Table 2. Message flow for proving the ownership of a CL signature over a set of
attributes (V: Verifier, C: Cardholder)

As described in [18] the latency of the verification operation can be mod-
eled first according to the number of attributes per credential together with the
number of attributes that are revealed (r) or hidden.

Tverify(n, r) = Tsel cred + Tgen commit(n, r)

+
∑

i=A,e,v

Tget sig(i) +
n∑

i=1

Tget attr(i)
(2)

The time the PROVE CREDENTIAL state requires is represented by Tsel cred.
Further, Tgen commit(n, r) represents PROVE COMMITMENT. Finally, Tget sig(i)
is related to the PROVE SIGNATURE state whereas Tget attr(i) represents the
PROVE ATTRIBUTE state.

We rely on the PRNG proposed by De La Piedra et al. in [18] for recomputing
the associated pseudorandomness of the proofs. That approached made it pos-
sible to increase the number of attributes per credential by recomputing the m̃i

values. In so doing, it is possible to generate the associated pseudorandomness
during the generation of the t-values and obtain, on the fly, the same sequence
while generating the s values by resetting the PRNG as described in [18] e.g.
initPRNG() ⇒ m̃i ⇒ resetPRNG() ⇒ m̃i.

190 A. de la Piedra

5 Performance Evaluation of AND, OR and NOT
Operators

The main operation of Idemix is the modular exponentiation. This operation
is related to the number of attributes that a certain cardholder hides in an
operation. In [7], Camenisch et al. proposed encoding the user attributes as
prime numbers, reducing the overall number of modular exponentiations to 2.
In so doing, they only utilize a base R1 for encoding all the attributes as product
mt =

∏l
i=1 mi for l attributes. This encoding technique enables the possibility

of performing selective disclosure (namely, using the AND operator), proving the
absence of an attribute in a certain credential (NOT operator) and the possibility
that one or more attributes are presents in mt s.t. Rmt

1 via the OR operator. This
encoding technique is useful where the number of possible values in an attribute
is restricted to only some e.g. masculine or feminine, and each possibility has
associated a prime number.

We rely on the PRNG described in [18] for making it possible the execution
of these proofs. Moreover, we introduce two techniques (internal and external
commitment reorganizations) for reducing the amount of required exponentia-
tions and the RAM required for storing the respective commitment in each step.
External commitment reorganizations make it possible enabling the chaining of
several proofs using the AND, NOT and OR operators in tandem. The internal
reorganization of commitments means reordering the computations of commit-
ments of a certain proof in order to save the computation time and the amount
of utilized RAM.

5.1 The AND Operator

This operator performs the selective disclosure of these attributes by prov-
ing that a certain value mi (which can be one attribute or a product of sev-
eral ones) divides mt. In this respect, proving that a certain attribute m1

belongs to mt is represented in zero knowledge as NIZK: {(ε′, ν′, α0, α1) : Z ≡
±Rα0

0 (Rm1
1)α1Aε′

Sν′
mod n}. In addition, the commitments C = ZmtSr mod n,

C̃ = (Zm1)m̃hSr mod n and C̃0 = Zm̃tS r̃ mod n must be computed, where
mh = mt/mi and mi consists of the product of attributes that are revealed (in
this case mi = m1).

In this case, the PRNG would compute the following sequence: initPRNG() ⇒
m̃i ⇒ m̃h ⇒ r̃ ⇒ r ⇒ m̃t ⇒ resetPRNG() ⇒ m̃i ⇒ m̃h ⇒ r̃. Otherwise, not
revealing any attribute, that is, only proving the ownership of the signature
would be represented as NIZK: {(ε′, ν′, α0, α1) : Z ≡ ±Rα0

0 Rα1
1 Aε′

Sν′
mod n}.

This requires two exponentiations with independence of the number of attributes
hidden.

We can apply the internal organization of commitments. For instance, in the
computation of the AND proofs we need to commit to the mt value, i.e. the first
attribute of the first base as C = ZmtSr mod n. However, the next commitment
requires the computation of the Sr again as C̃ = (Zm1)m̃h)Sr. In order to avoid

Efficient Implementation of AND, OR and NOT Operators for ABCs 191

recomputing Sr, we can proceed by reordering all the computations and reuse
this value from the last commitment. In this case, the order of computations
would be (1) ZmtSr,(2) [Sr](Zm1)m̃h by leaving the result Sr in RAM and
proceeding with the next multiplication. This resulted in an speed up of 78 ms
per operation.

Issuing Prime-Encoded Attributes. Since the number of bases (and modu-
lar exponentiations) is reduced to the number of attributes in the credential to
2, we can compare the performance of the Idemix issuing operation using both
prime-encoded and traditional attributes [20]. In this respect, it is expected
that issuing prime-encoded attributes could reduce the latency associated to
Tissuing(n) as the number of attributes increase (Sect. 4). In the IRMA card,
only 5 attributes w.r.t. the bases R0, ..., R5 are used. On the other hand, we
can store any number of prime-encoded attributes s.t. the only limitation would
be the prime size. Hence, we can compare how the issuing operation in Idemix
scales and observe how many attributes we can issue in the limit case of IRMA
(5 attributes) [20].

We rely on the following methodology. First, we set a limit of 50 attributes
per credential. Then, the only restriction is that |mt| cannot be greater than
the lm = 256 bit limitation according to the Idemix specification. Hence, we
create the following cases: (1) one possibility per attribute: we rely on the first
50 primes, (2) 10 possibilities per attribute: we rely on the first 500 primes,
(3) 100 possibilities per attribute, we rely on the first 5,000 primes, (4) 1,000
possibilities per attribute, we rely on the first 50,000 primes. We select attributes
from the list of the first 50 primes, 500 primes, 5,000 primes, 50,000 primes and
so on in order to construct our credentials w.r.t. the mt exponent for the base
R1 as

∏l
i=0 mi for l = 50 − 1.

What we want to know is for each case, what is the maximum number of
attributes per credential we can store according to lm. Then, we create a list
of primes according to its possibilities in each case when 50, 500, 5,000, 50,000

 2500

 2600

 2700

 2800

 2900

 3000

 0 5 10 15 20 25 30 35 40

E
xe

cu
tio

n
tim

e
(m

s)

Number of attributes per credential

Credential issuing using traditional attributes

Traditional encoding
Prime encoding, case 1
Prime encoding, case 2
Prime encoding, case 3
Prime encoding, case 4

(a) Performance of issuing attributes via
prime-encoded and traditional attributes

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0 5 10 15 20 25 30 35 40

E
xe

cu
tio

n
tim

e
(m

s)

Number of revealed attributes

Selective disclosure using traditional and prime encoding attributes (AND)

Traditional encoding
Prime encoding, case 1
Prime encoding, case 2
Prime encoding, case 3
Prime encoding, case 4

(b) Performance of selective disclosure
using both types of encoding

Fig. 1. Issuing and verifying prime-encoded attributes

192 A. de la Piedra

primes are involved. We can randomly choose prime numbers from that list and
construct our credentials from 1 to 50 attributes, stopping when |mt| ≥ 256
bits. After repeating this experiment 100 times for each case, we obtained the
approximate maximum number of attributes: 44 attributes (case 1), 25 attributes
(case 2), 18 attributes (case 3) and 14 attributes (case 4).

In relation to Fig. 1 (a), we have used the total number of bits for encoding
the attributes for each case in order to obtain a fair comparison. As depicted, it
is possible to not cross the 3 s margin of issuing traditional attributes and at the
same time issue 44, 22, 18 and 14 attributes of different lengths under the 2.7 s
limit. This could mean that it would be possible to also associated a pseudonym
or several pseudonyms during the issuing of that credential and still maintain
a decent performance in comparison to the utilization of traditional attributes
but issuing from 3 to 8 times more attributes [20].

Verification of Prime-Encoded Attributes. Due to the computation of the
C, C̃o and C̃ commitments together with the two extra response values, revealing
attributes via the AND operator undermines any speed up in comparison to the
issuing operation relying on traditional attributes. We take the limit case of
IRMA (5 attributes) and compare it with verifying and hiding prime encoded
attributes in Fig. 1 (b). Hiding attributes is computationally more expensive
using traditional attributes in comparison to prime-encoded ones whereas hiding
attributes only has a constant performance related to prove the ownership of m0

and mt w.r.t. Rm0
0 Rmt

1 . Hence, only proving the ownership of a CL signature over
a set of attributes without revealing any only requires 1,198.21 ms. In contrast,
revealing all the attributes requires the computation of C, C̃ and C̃0.

Besides, the cost of this operation is related to the computation of the Zmr

exponentiation w.r.t. of mr as the product of the cardholder’s attributes that
are revealed together with the product itself (Tgen commit(n, r)). Therefore, it is
expected that the AND operator increases the computation time as the number
of attributes are revealed at a speed related to the primes utilized (Fig. 1 (b)).
In this respect, an alternative for reducing the latency of Tgen commit(n, r) is to
precompute a restricted set of combinations for revealing attributes Zmr and
store them in ROM so Tgen commit(n, r) is constant w.r.t. C,C0, C̃.

5.2 The NOT Operator

By using prime-encoded attributes it is possible to prove that an mi attribute or
set of attributes do not belong to mt. This is done by showing that the integers
x, y exists w.r.t. the following linear Diophantine equation x · mt + y · mi = 1.

We prove the ownership of a CL signature over m0,mt and the exis-
tence of (x, y) via zero knowledge as NIZK: {(ε′, ν′, α0, α1, χ, υ, ρ, ρ′) : Z ≡
±Rα0

0 Rα1
1 Aε′

Sν′
mod n ∧ C ≡ ±Zα1Sρ mod n ∧ Z ≡ ±Cχ(Zmi)υSρ′} mod n.

The card must compute the commitments C = ZmtSr mod n, C̃ =
C x̃(Zmi)ỹS r̃′

mod n and C̃c = Zm̃tS r̃ mod n where r̃, r̃′, x̃,ỹ are randomizers [7].

Efficient Implementation of AND, OR and NOT Operators for ABCs 193

In this case, the critical operation is the computation of the (a, b) pairs and
how this operation scales for large primes. We propose two type of implementa-
tions: (1) precomputing the pairs (x, y) and (2) solving the Diophantine equation
on the card. In the first case, given (x, y) for x · mi + y · mt = 1, mt has always
the same value and there are several combinations for mi. Those possibilities can
be stored in EEPROM if a small number of attributes is utilized. The number
of (x, y) pairs that must be stored is related to the number of attributes per

credential as
l∑

i=1

ci
n =

l∑

i=1

(
n

i

)

. Hence, for l = 2 attributes per credential, we

would have to store three (x, y) pairs. In the case of 4 attributes, we store 15
pairs.

The second design is related to the computation of the Extended Euclidean
algorithm on the smart card. We can use the instruction PRIM DIVIDEN from the
MULTOS specification that extracts the Euclidean division of two numbers i.e. q
and r (O(ln3 N)) in order to implement it. Other alternative is to use the binary
GCD or Stein’s algorithm [17]. This algorithm replaces the multiplications and
divisions by bit-wise operations. Finally, the Lehmer’s algorithm relies on the
following idea (O(ln2 N)). When a and b have the same size, the integer part w
of the quotient a/b has one only digit. The goal is to find w while it is small and
continue the involved operations via a matrix. The advantage of this method is
that a large division is only done when needed, if w is greater than a certain
base M .

In order to test the performance of these three algorithms, we have created
four possible cases and have extracted performance figures in our target device.
The attribute mi can vary according to the number of attributes that are proved
that are not in mt. Its length will be greater according to the number of possi-
bilities for each credential. In order to obtain an estimation of the computation
time of each method on the MULTOS card we take 4 cases. If we take the first
10,000 primes, the numbers consist of 2 to 104,729. We can encode these values
using 1 byte to 3 bytes (e.g. 0× 019919 in the case of 104,729). However, mi

and mt can increase according to all the possibilities an attribute can repre-
sent together with the number of involved attributes. We take four cases for an
implementation based on 5 attributes (mt) with different possibilities7. We rely
on credentials of 5 attributes in this case in order to compare the performance
of this operation with the selective disclosure via traditional attributes of the
IRMA card [20].

7 Thus, for one possibility per attribute, we prove the non-existence of one attribute
in mi. In this case, mi = 3 and mt = 5 ·7 ·11 ·13 (case 1). We consider 10 possibilities
per attribute (50 primes). We prove the non-existence of one attribute in mi. For
mi = 3, mt = 179·181·191·193 (case 2). We consider 1,000 possibilities per attribute
(i.e. 5,000 primes) and we prove the non-existence of two attributes in mt for mi =
1, 999 · 2, 161 and mt = 3, 323 · 3, 253 · 2, 897 · 2, 999 (case 3). Finally, we consider
10,000 possibilities per attribute (50,000 primes) and we proof the non-existence
of two primes mi = 91, 387 · 91, 393 in mt = 102, 461 · 102, 481 · 102, 497 · 102, 499
(case 4).

194 A. de la Piedra

Table 3. Performance of GCD using the proposed algorithms

Case |mi| (bytes) |mt| (bytes) Euclid (ms) Stein (ms) Lehmer (ms) Extended Euclidean

Algorithm (Euclid, ms)

1 1 2 17.05 70.62 18.43 21.51

2 1 4 17.52 131.78 18.92 21.76

3 3 6 37.49 254.37 38.86 65.64

4 5 9 68.07 289.58 95.61 131.47

The first aspect we notice from Table 3 is that the Stein’s variant obtained
the worst computational figures for the cases proposed despite it is been based on
bit-wise operations, that are suppose to require less time as claimed by Akhavi
et al. [1]. This is, however not true for MULTOS. For the maximum length of case
4 (9 bytes), we have measured the latency of all the operations involved: Euclid-
ean division (11.852 ms), comparison (11.047 ms), Boolean and (10.411 ms), right
shift (10.634 ms), increment (10.354 ms) and subtraction (10.647 ms). These
latencies make this option ill-suited when replacing the Euclidean division by
operations that are suppose to require less cycles. On one hand, the Stein’s
variant requires more control operations and branches and on the other one,
bit-wise operations have a similar latency than the Euclidean division. Due to
the proprietary nature of the SLE 78CX1280P chip we cannot claim that the
Euclidean division is being performed via the hardware accelerator of the target
device. Moreover, since MULTOS is based on MEL byte code that is executed
in a virtual machine, we cannot be sure that code optimizations (written in C)
can result in any speed up. Finally, we are unaware of any side channel analysis
(SCA) countermeasures implemented on the card, but there is a possibility that
the designers wanted to homogenize the latency of a group of simple arithmetic
operations in order to make them indistinguishable.

In the case of the Lehmer’s variant, for single-precision values of 32 bits or
less, we obtain similar results as the Euclidean algorithm. We believe that due to
that when we overcome that value (multi-precision), there are more calls to the
operating system for performing bit-wise operations, multiplications and divi-
sions that increase the latency of the algorithm despite this is not expected,
whereas in the traditional Euclidean algorithm we are only performing one
Euclidean division by step. Moreover, in our target device is not possible to
tune the precision and adjust the assembler code since that is then translated
into byte codes, executed by the virtual machine.

We have depicted in Table 48 the performance figures of the NOT operator
for each case. In the precomputation strategy we only show the first case since
increasing the length of the operand does not alter the result significantly. On
the other hand, the computation of the pairs (x, y) is performed during the

8 We use the following notation in Tables 4, 5 and 6: PRE means precomputation,
EUC 1-3 is related to the cases presented in Table 3, RA means Reveal all the
Attributes with the exception of the master secret and HA to hide every attribute
in the credential.

Efficient Implementation of AND, OR and NOT Operators for ABCs 195

Table 4. Performance figures of the NOT operator while precomputing the (x, y) pair
and relying on the Euclidean algorithm (ms)

Case Tsel cred Tgen commit Tget sig(A, e, v) Tget attr(m̂0, m̂t|r̂, r̂′, â, b̂, C) Total

NOT PRE 15.203 1,590.11 48.72 214.80 1,974.96

NOT EUC (1) 15.503 1,587.93 46.81 259.95 2,016.41

NOT EUC (2) 15.514 1,587.92 15.677, 47.10 260.53 2,017.23

NOT EUC (3) 15.510 1,587.93 46.87 306.28 2,063.63

NOT EUC (4) 15.511 1,587.91 46.85 376.28 2,135.35

OR 113.622 1,476.47 46.08 234.53 1,885.96

computation of â, adding its latency to Tget attr(i) (Sect. 2). Thanks to the low
latency operation of the PRIM DIVIDEN primitive we obtained latencies between
2,015.41 and 2,135.35 ms.

5.3 The OR Operator

The utilization of this operator enables the cardholder to prove that an attribute
mi or more attributes encoded as a product can be found in mt s.t. mt =

∏l
i=0

w.r.t. Rmt
1 . In so doing, we rely on the following fact: given an attribute mi ∈ mt,

an integer x exists s.t. x · mi =
∏l

i=1 mi = mt. This is proved in zero knowl-
edge as NIZK: {(ε′, ν′, α0, α1, χ, ρ, ρ′) : Z ≡ ±Rα0

0 Rα1
1 Aε′

Sν′
mod n ∧ C ≡

±Zα1Sρ mod n ∧ C′ ≡ ±CχSρ′} mod n9. The card must compute three com-
mitments C = Zmt · Sr mod n, C̃ = Zm̃t·Sr̃

mod n, T̃ = Cx̃ · Sr̃1 w.r.t x = mt

mi

s.t. Rmt
1 and r1 = −r0 · x where r, r0, r̃, r̃0, r̃1, m̃t, x̃ are randomizers. The first

obstacle for implementing this primitive was to over come the lack of support of
signed arithmetic on the card. This means creating wrappers over the multiplica-
tion and addition operations supporting sign extensions due to the computation
of r1 = r0 · x. Afterwards, the operation is performed in two’s complement.
By using the RAM reductions achieved thanks to the PRNG described in [18]
and executing all the two’s complement operations in RAM, we cold reduce the
computational time of r1 = −ρ0 · χ from 495.530 ms to 90.260 ms.

We have depicted in Table 4 the performance figures of case 1, described in
Sect. 5.1. We can compute this operation withing 1,885.96 ms. Since this oper-
ation scales with mi at the same pace of the AND, OR operators without the
mt product. Since the commitments utilized only involved two multi modular
exponentiations, we can obtain a reduction of 1,974.96 - 1,885.96 (89) ms in
comparison to the NOT operation.

9 In this manuscript we only address the first version of this NIZK described in [7] and
leave the second one beyond the scope of this work due the computation limitations
of our target device.

196 A. de la Piedra

Table 5. Estimation of the performance obtained by the combination of operators for
prime-encoded credentials (5 attributes)

Combination Cases Performance (ms) Performance after

optimization (ms)

AND ∧ NOT RA, PRE 2,485.3 2,201.9

AND ∧ NOT RA, EUC1 2,506.9 2,223.4

AND ∧ NOT RA, EUC2 2,507.1 2,223.7

AND ∧ NOT RA, EUC3 2,551.0 2,267.5

AND ∧ NOT RA, EUC4 2,616.8 2,333.4

AND ∧ OR RA, C1 2,247.7 1,924.5

NOT ∧ OR PRE, C1 2,292.3 2,122.2

NOT ∧ OR EUC1, C1 2,397.9 2,227.8

NOT ∧ OR EUC2, C1 2,365.2 2,195.1

NOT ∧ OR EUC3, C1 2,409.1 2,238.9

NOT ∧ OR EUC4, C1 2,474.9 2,304.8

AND ∧ NOT ∧ OR RA, PRE, C1 2,897.1 2,252.6

AND ∧ NOT ∧ OR RA, EUC1, C1 2,918.6 2,274.1

AND ∧ NOT ∧ OR RA, EUC2, C1 2,918.9 2,274.3

AND ∧ NOT ∧ OR RA, EUC3, C1 2,962.8 2,318.2

AND ∧ NOT ∧ OR RA, EUC4, C1 3,028.6 2,384.0

5.4 Combination of Operators for Prime-Encoded Credentials

It can be useful to prove certain properties of a prime-encoded credential by uti-
lizing a group of these operators. For instance, one could prove that an attribute
a is in mt s.t. Rmt

1 , b is NOT AND c OR d could be present. In so doing, it can
be possible to perform some degree of commitment reorganization (i.e. external
reorganization) in order to optimize the computation of the required commit-
ments and response values.

Given the AND, NOT and OR operators, we consider the following combi-
nations in order to obtain the best combination and estimate its performance.
First, we discuss AND ∧ NOT. In the AND proof we always to commit to mt as
C = Zmt · Sr in order to prove that a certain m1 can divide mt afterward and
utilize the m̃t, r̃ randomizers for proving the ownership of mt as C̃0 = Zm̃t · S r̃.
The response values m̂t, r̂ are created. The NOT operator follows a similar app-
roach for proving the ownership of mt in the case of the C and C̃c commitments
(Sect. 5.2). Hence, when proving both presence an absence of attributes one can
avoid computing these two commitments and their response values twice. More-
over, in the case of AND we can apply internal commitment reorganization.
Then, in AND ∧ OR, the OR operator (Sect. 5.3) proves the ownership of mt

as C = ZmtSr and generates C̃ as the AND and NOT operator as well as the
response values for m̂t, r̂. This means that it can be computed only one time

Efficient Implementation of AND, OR and NOT Operators for ABCs 197

Table 6. RAM savings by recomputing the pseudorandomnes in each primitive

when combined and the AND proof can be executed with the optimizations dis-
cussed in Sect. 5. In the case of NOT ∧ OR, both operators compute the C, C̃
commitments and only need to be obtained once. However, none of these oper-
ators enable the possibility of performing internal commitment reorganizations.
Finally, AND ∧ NOT ∧ OR. This is the combination that enable us to perform a
greater number of optimizations, First, C, C̃, m̂t, r̂ do not need to be performed
three times and the AND operator can be executed with internal commitment
reorganization.

By performing external commitment reorganization we can obtain reduc-
tions in performance between 170.10 ms and 644.60 ms (Table 5) as well as in
RAM (Table 6). This is mainly achieved where the three types of operators are
being used and the commitments C, C̃ are reused together with the randomizers
recomputed by the PRNG described in [18]. We rely on 5 attributes and on the
cases created for the NOT operator (Sect. 5.2) together with the option where
AND has the worst performance i.e. revealing all the attributes.

6 Conclusions

In this manuscript we have presented different strategies for implementing the
operators for prime-encoded attributes described in [7]. We showed that when the
number of attributes is large it can be possible to rely on prime-encoded proofs
for improving the issuing process. Moreover, this also applies to the verification
of a considerable amount of attributes. Besides, the selective disclosure operation
can be improved in cases where hiding is needed by relying on prime-encoded
attributes. Moreover, by externally and internally reordering the commitments
involved in chained AND,OR and NOT operators it can be possible to obtain
speed ups of 170.10-644.60 ms. These conclusions can be utilized as guidance in
the creation of presentation policies when utilizing contemporary smart cards,
taking into account that these operations are computational optimal in the target
device in comparison to other implementation options.

198 A. de la Piedra

References

1. Akhavi, A., Vallée, B.: Average Bit-Complexity of Euclidean Algorithms. In: Welzl,
E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 373–387.
Springer, Heidelberg (2000)

2. Akinyele, J.A., Garman, C., Miers, I., Pagano, M.W., Rushanan, M., Green, M.,
Rubin, A.D.: Charm: a framework for rapidly prototyping cryptosystems. J. Crypt.
Eng. 3(2), 111–128 (2013)

3. Bichsel, P., Camenisch, J., Groß, T., Shoup, V.: Anonymous credentials on a stan-
dard Java Card. In: ACM Conference on Computer and Communications Security,
pp. 600–610 (2009)

4. Brands, S.A.: Rethinking Public Key Infrastructures and Digital Certificates:
Building in Privacy. MIT Press, Cambridge (2000)

5. Camenisch, J., Dubovitskaya, M., Enderlein, R.R., Lehmann, A., Neven, G.,
Paquin, C., Preiss, F.-S.: Concepts and languages for privacy-preserving attribute-
based authentication. J. Inf. Sec. Appl. 19(1), 25–44 (2014)

6. Camenisch, J., Dubovitskaya, M., Lehmann, A., Neven, G., Paquin, C., Preiss, F.-
S.: Concepts and languages for privacy-preserving attribute-based authentication.
In: Fischer-Hübner, S., de Leeuw, E., Mitchell, C. (eds.) IDMAN 2013. IFIP AICT,
vol. 396, pp. 34–52. Springer, Heidelberg (2013)

7. Camenisch, J., Groß, T.: Efficient attributes for anonymous credentials (extended
version). IACR Cryptol. ePrint Arch. 2010, 496 (2010)

8. Camenisch, J., Van Herreweghen, E.: Design and implementation of the idemix
anonymous credential system. In: ACM Conference on Computer and Communi-
cations Security, pp. 21–30 (2002)

9. Camenisch, J.L., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, p. 93. Springer, Heidelberg (2001)

10. Camenisch, J.L., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003)

11. Camenisch, J.L., Stadler, M.A.: Efficient group signature schemes for large groups.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997)

12. Chaum, D.: Security without identification: Transaction systems to make big
brother obsolete. Commun. ACM 28(10), 1030–1044 (1985)

13. Damg̊ard, I.B.: Commitment schemes and zero-knowledge protocols. In: Damg̊ard,
I.B. (ed.) EEF School 1998. LNCS, vol. 1561, p. 63. Springer, Heidelberg (1999)

14. Damg̊ard, I.B.: Efficient concurrent zero-knowledge in the auxiliary string model.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer,
Heidelberg (2000)

15. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

16. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular
polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 16–30. Springer, Heidelberg (1997)

17. Knuth, D.E.: The Art of Computer Programming, Volume II: Seminumerical Algo-
rithms, vol. 2, 2nd edn. Addison-Wesley, Boston (1981)

Efficient Implementation of AND, OR and NOT Operators for ABCs 199

18. de la Piedra, A., Hoepman, J.-H., Vullers, P.: Towards a full-featured implemen-
tation of attribute based credentials on smart cards. In: Gritzalis, D., Kiayias,
A., Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 270–289. Springer,
Heidelberg (2014)

19. Sterckx, M., Gierlichs, B., Preneel, B., Verbauwhede, I.: Efficient implementation
of anonymous credentials on java card smart cards. In: 1st IEEE International
Workshop on Information Forensics and Security (WIFS), pp. 106–110. IEEE,
London, UK, 2009 (2009)

20. Vullers, P., Alpár, G.: Efficient selective disclosure on smart cards using idemix. In:
Fischer-Hübner, S., de Leeuw, E., Mitchell, C. (eds.) IDMAN 2013. IFIP AICT,
vol. 396, pp. 53–67. Springer, Heidelberg (2013)

	Efficient Implementation of AND, OR and NOT Operators for ABCs
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 The IRMA Card
	5 Performance Evaluation of AND, OR and NOT Operators
	5.1 The AND Operator
	5.2 The NOT Operator
	5.3 The OR Operator
	5.4 Combination of Operators for Prime-Encoded Credentials

	6 Conclusions
	References

