Chapter 8

Managing Software Process Evolution
for Spacecraft from a Customer’s
Perspective

Christian R. Prause, Markus Bibus, Carsten Dietrich and Wolfgang Jobi

Abstract The Space Administration of the German Aerospace Center designs and
implements the German space program. While project management rests with the
agency, suppliers are contracted for building devices and their software. As opposed
to many other domains, a spacecraft is a unique device with uncommon and custom-
built peripherals. Its software is specifically developed for a single mission only
and often controls critical functionality. A small coding error can mean the loss of
the spacecraft and mission failure. For this reason, customer and supplier closely
collaborate on the field of software quality. We report from a customer’s perspective
on how we manage software quality and ensure that suppliers evolve their processes:
‘We contribute to standards, tailor quality, and process requirements to establish them
in projects, and engage in cross-company product quality collaboration.

8.1 Introduction

The DLR is the national aeronautics and space research center of the Federal Repub-
lic of Germany. In addition to its own research, the DLR’s Space Administration
branch has been given responsibility for the planning and implementation of the
national space program. It acts as customer and project manager during the making
of hardware and software that it needs for executing its missions. The actual work
of making is outsourced to external contractors.

The space sector is peculiar with respect to the fact that many spacecraft are one of
the kind devices with uncommon and custom-built hardware and software. Scientific
missions have no insurance; a second unit is never built. If the mission goal is not

C.R. Prause (<) - M. Bibus - C. Dietrich - W. Jobi

Deutsches Zentrum fiir Luft- und Raumfahrt, DLR - Space Administration,
Konigswinterer Stralie, 522-524, 53227 Bonn, Germany

e-mail: christian.prause @dlr.de

M. Bibus
e-mail: markus.bibus@dIr.de

C. Dietrich
e-mail: carsten.dietrich@dlr.de

© Springer International Publishing Switzerland 2016 137
M. Kuhrmann et al. (eds.), Managing Software Process Evolution,
DOI 10.1007/978-3-319-31545-4_8

138 C.R. Prause et al.

reached, for whatever reason, there is no second chance. Preparing a single mission
and subsequent production of the spacecraft can take decades. Additionally, depend-
ability requirements are very high because servicing hardware in flight is impractical
to nearly impossible. Free-flying devices have to stay intact for decades under harsh
environmental conditions. Software can potentially be updated in flight but whoever
worked on 15-year-old software knows the troubles of maintaining aging software
in a fast-paced technology field. Moreover, software often controls critical function-
ality. A single software failure can mean the loss of a spacecraft and its mission, for
example, Ariane Flight 501 [11] or Mars Climate Orbiter [34]. Additionally, due to
limited contact times with ground stations, uploading new software versions can take
days. Therefore, higher efforts in avoiding software problems are justified [26, 28].

Project cost and time are nonetheless key topics: In the early 1990s, the NASA
(United States’ National Aeronautics and Space Administration) started its “Faster,
Better, Cheaper” initiative; capping maximum project cost, reducing bureaucracy,
and therefore enabling more parallel projects. The program put a high cost pres-
sure on projects. Software became more important as a sponge for complexity, as
“band-aid” for hardware design compromises [12, 28] and as a possibility to save on
hardware and missions costs [36]. However, when several such light-weight missions
failed, it became clear that it was necessary to reconcile speed with quality control
[28]. In Germany, the Space Administration reacted to similar experiences [1] by
significantly increasing its dedication to and efforts in hardware and software quality
assurance activities [33]. Since that time, the product assurance department of the
Space Administration is responsible for quality management in all major national
space projects.

The agency’s view on product assurance is dominated by the need for high qual-
ity and dependable products that result from novel and extreme technical challenges
(Fig. 8.1), and the ever-new organizational contexts with the Space Administration’s
role as a customer without own making responsibilities but with a wide range of
suppliers: Quality has to be—right from the start—built into the products that are
provided by suppliers with highly diverse quality capabilities. Therefore, the sup-
pliers’ processes and their evolution are in the center of attention. Major challenges
are, for example:

Harmonize development processes at international level and across organizations
Standardize tailoring to achieve consistent results and reduce subjective effects
Check that software and software processes conform to applicable requirements
Deal with suppliers’ resistance to adapt their development processes

Improve product assurance by exploring and introducing new methods and tools
Evolve software processes to ultimately assure the quality of procured products.

This chapter describes the work of the Space Administration’s software product
assurance: Sect. 8.2 provides the context and background of this chapter. Section 8.3
introduces the ECSS system of standards, which is a joint effort of European space
agencies and industries to harmonize their work. Section 8.4 explains how these
standards are turned into a national catalog of quality and process requirements.
Section 8.5 details the process of generating project-specific requirements from this

8 Managing Software Process Evolution for Spacecraft ... 139

Fig. 8.1 a Radar twin satellites TerraSAR-X and TanDEM-X. Source DLR, CC-BY 3.0. b Philae
touching down on Churyumov-Gerasimenko. Source DLR, CC-BY 3.0. ¢ Rocket launch in the
TEXUS Zero-G program in Kiruna. Source DLR, CC-BY 3.0. d Melting of materials without a
container on board the ISS. Source DLR, CC-BY 3.0. e Laser communication terminal for inter-
satellite and ground links. Source DLR. f TET-1 from FIREBIRD mission for detecting forest fires.
Source DLR, CC-BY 3.0

national catalog through a standardized tailoring process. Section 8.6 outlines the
responsibilities assumed by the DLR software product assurance during project exe-
cution including performance records, reviews, and technical visits. Section 8.7 gives
an experience report on how a single process improvement was made possible against
the initial resistance of suppliers. Finally, Sect. 8.8 concludes this chapter.

8.2 Background and Context

The DLR is Germany’s space agency.! It consists mainly of distributed institutes
that do research and development in the sectors of transportation, energy, flight,
security, and spaceflight. DLR’s Space Administration branch manages the German
space program in the name of the federal government. It commissions devices (e.g.,
spacecraft) for its missions from a diverse range of suppliers including industrial and
academic partners. It invites tenders, awards contracts for projects, supervises them
afterward, and promotes innovative ideas in research and industry. As opposed to
consumer products, devices are usually custom-built, expensive, and one-of-a-kind
devices with high technical risk. Continuous customer, i.e., DLR, involvement in the
process of making is therefore necessary. The role of the DLR Space Administration’s

! Note ESA—the European Space Agency—is an international organization with currently 22 mem-
ber states including Germany. DLR and ESA collaborate closely, and ESA committees include DLR
representatives. Yet, they are separate organizations, both doing their own missions, having their
own research divisions and mission operations, and procuring externally built devices.

140 C.R. Prause et al.

Product Assurance department is to accompany technical processes in order to ensure
product quality and successful completion of the project.

Product assurance is one of three primary project functions (the others being
project management and engineering). It is a management discipline assuming the
customers’ viewpoint on product quality within the seller’s organization. It supports
project management in steering the product life cycle, and controlling production
according to technical and programmatic requirements, while building on experience
and lessons learned. Software product assurance disciplines include quality assur-
ance with subordinate quality control, safety and dependability assurance, project
planning, (independent) validation and verification, testing and evaluation, configu-
ration management, and software measurement. Its functions are to observe, witness
tests, analyze, and recommend, but not to develop or test, manage people, or set
product requirements. Instead, it has organizational, budgetary, and product devel-
opmental independence meaning that it reports to highest management only, has its
own budget, and does not expend labor to help building a product [6, 10, 32].

Customer product assurance mirrors the sellers’ own product assurance func-
tion, acting as reviewer of contractors and technology providers ranging from large
companies to small enterprises, research institutes, and universities. With respect to
this, the function of product assurance is comparable to NASA’s Software Assurance
Technology Center (SATC; [3]). It assesses organizations and how they perform
development activities in order to obtain software products that are fit for use and
built in accordance with applicable project requirements [22]. For making sure that
improvement (or evolution) of processes happens, enforcement is often necessary.
This chapter makes a cross section through the several pillars of enforcement like
relevant standards, contractual agreements, and active supervision (e.g., milestone
reviews). It describes the managing of supplier software process evolution from a
customer’s perspective and through customer initiative.

Many organizations are usually cooperating in the production of a space device.
They are bound by legal contracts in the roles of customer and suppliers which in turn
act as customers to their lower tier suppliers. While the ECSS standards have no legal
standing by themselves, they are made applicable by invoking them in the business
agreements [15]. They provide a collection of what we call process requirements
here (another term would be software standards). These are not to be confused with
product requirements that describe what the product should do.

8.3 The ECSS Standards

Space technology is an extremely complex working field. In Europe, development and
manufacturing of space systems is influenced by the cooperation of space agencies
and industry since the beginning. One challenge of this work is the coordination of
the use of compatible materials and implementation of compatible interfaces to reach
quality and reliability as needed.

8 Managing Software Process Evolution for Spacecraft ... 141

ESA developed PSS (Procedures, Standards and Specifications) standards to
be applied in their projects for this purpose. Their use in projects of national
European space agencies and industry had to be negotiated individually because
national agencies developed standards individually and applied them to their projects.
Rising demands made this approach more and more ineffective. Back in 1988, it was
realized that there was the need of counteracting this trend [24].

In 1993 the European Cooperation for Space Standardization (ECSS) was founded
to harmonize the requirements of existing standards for space projects and to develop
and maintain a single, coherent set of standards for hardware, software, information
management, and activities to be used in European space projects. The purpose of
these standards is to continually improve the quality, reliability, functional integrity,
and compatibility of all project elements.

The ECSS standards documents contain sets of requirements. Each requirement
is verifiable, has a unique identification to allow full traceability and verification of
compliance, and is supported by a minimal description necessary to understand its
context. The documents themselves follow a systematic naming approach [15]:

ECSS- [branch] - [type]l-[major] [-minor] [version]

where

Branch One of the following values: P or S (ECSS system), M (management), E
(engineering), U (sustainability), or Q (product assurance)

Type The type is either ST (standard) or HB (handbook), which provides non-
mandatory background information and reading help for a corresponding
standard

Major A two-digit number to identify the domain of the standard within its
branch, e.g., software engineering (E-40) or risk management (M-80)

Minor An optional two-digit number specifying a specialized substandard of
a main standard, e.g., ASIC and FPGA development of the Electrical,
electronic and electromechanical components domain (Q-60-02)

Version A single letter from ‘A’ onwards for counting the major releases of the
standards system (issue C at the moment)

The ECSS standards first and foremost focus on what has to be accomplished rather
than on how to organize and perform the work. Interpretive help and details can,
instead, often be found in the corresponding handbooks. This approach allows dif-
ferent producers and customers to apply established processes where effective as
long as they remain within the fundamental constraints, and to improve and evolve
processes gradually [15].

8.3.1 ECSS Policy, Members, and Organization

The ECSS policy is to develop and maintain an integrated and coherent set of man-
agement, engineering, product assurance, and space sustainability standards. The

142 C.R. Prause et al.

Fig. 8.2 The ECSS
organizational structure [21] Steering Board

Executive secretariat

Technical Authority

Working Group Network of Experts
[

I

objectives of ECSS are to increase quality, reduce risks, improve competitiveness,
enhance safety and reliability, improve collaboration, and to develop and disseminate
fresh knowledge. Principles supporting these objectives are, for instance, to seek har-
monization with international standards by contributing to and ingesting from, e.g.,
ISO, CEN, and to continuously improve on the basis of user feedback. The standards
are made freely available® to promote their wider usage [38].

The members of the ECSS are from European space sector (industry and space
agencies) and associated organizations. They are differentiated between full mem-
bers, associated members, and observers. Full members are those who actively par-
ticipate in production, maintenance, and use of ECSS standards, like ESA, DLR,
several national agencies (from France, Italy, the Netherlands, Norway, and UK), and
Eurospace as representative of industry. Being an associated member (like Canada)
indicates the desire to participate in production of ECSS standards and their limited
application. Observers are those who desire to be formally informed about changes
and be able to provide input in case of a need for an update or new standard. For
instance, observers are the European Defence Agency or EUMETSAT.

The ECSS is organized in several bodies which also represent working levels
(see Fig.8.2). The top level is the ECSS Steering Board which defines ECSS objec-
tives, policy, strategy, and endorses the yearly work plan. The Technical Authority
implements the objectives, policy, and strategy defined by the steering board. It is
also responsible for setup, approval, implementation, and monitoring of the work
plan endorsed by the steering board. The elaboration of new and the maintenance of
existing ECSS standards has to be performed by the Working Groups according to
the work plan. Both Technical Authority and Working Groups are supported by the
Executive secretariat, which enforces drafting rules, provides administrative support,
and ensures promotion and interface with other standard development organizations.
The lowest level is a Network of Experts representing document and discipline focal

2Visit http://www.ecss.nl/ for online access to the standards.

http://www.ecss.nl/

8 Managing Software Process Evolution for Spacecraft ... 143

points, which give support to the Technical Authority and Executive secretariat in
specific tasks [24].

8.3.2 Production and Maintenance of ECSS Standards

The development and update of ECSS standards are iterative processes (see also
Fig.8.3). A new standard is initiated by ECSS members sending a document called
New Work Item Proposal (NWIP) to the Technical Authority, respectively, Executive
secretariat. The proposal describes the envisioned content and scope of the standard,
a justification for it, initial inputs, designated activities and milestones for Working
Groups, necessary resources (e.g., composition of Working Group in terms of mem-
ber organizations, manpower, and required meetings), and what the desired output
is. It is then provided to ECSS members for public review to identify the need of
extensions of the work item, and to recruit volunteer representatives from interested
organizations. After the new work item is approved, the Technical Authority appoints
the representatives to the Working Group, which then starts its work [21].

When the Working Group has prepared a draft version of the new standard, it
undergoes a public review for comments. It is provided to all member organizations
of the ECSS for this. All comments received are discussed by the Working Group
and a first decision about their implementation is taken. The decisions are then
communicated to the originators of the work item for agreement. Where no consensus
can be reached, a final decision is taken by the Technical Authority. After this, the
new ECSS standard is finalized [21].

If the need for an update of an existing ECSS Standards is identified, a formal
Change Request is submitted to the ECSS secretariat. The next steps then are as

Fig. 8.3 Preparing new

standard: information flow Originator
[14]
New work itemI l Terms of
proposa Reference
Technical Authority WG draft Working Group
——
Comments
Draft I]
Standard Comments
Steering Board

ECSS I
Standard

Users

144 C.R. Prause et al.

described above, starting with the preparation of a NWIP. If the Change Request
highlighted problems without getting concrete on how to solve them, the Technical
Authority calls for a special Working Group, a Task Force, to generate the NWIPs
[21]. Through this process, European space projects have continuously returned
feedback, corrections, and proposals to the ECSS standards and made the system
extensive, efficient, and stable. The ECSS continues to be evolved and improved,
also including the feedback processes themselves [38].

8.3.3 Software Standards in the ECSS System

Software pervades any space program and its product tree. For a concise overview
of software development based on ECSS, see [29]. Apart from many general ECSS
standards that are relevant to software development in space projects (e.g., configu-
ration and information management [19]), there are several standards and handbooks
specifically addressing software development.

The principles and requirements applicable to space software engineering are
defined in ECSS-E-ST-40 (Space engineering—Software). Its first version appeared
in 1999 as a specific adaptation of ISO/IEC 12207 to replace ESA’s proprietary stan-
dard PSS-05-0 [29]. The current version takes the existing ISO 9000 family of docu-
ments into account and is in line with EN 50128 (railway applications) and DO-178
(airborne systems and equipment). It addresses development and use of software for
manned and unmanned spacecraft, launchers, payloads, experiments and associated
ground equipment and facilities, and services implemented by software. Covered
aspects are software system engineering, requirements and architecture, design and
implementation, validation, verification, delivery and acceptance, operation, main-
tenance and management. It also applies to nondeliverable software which affects
the quality of products and services. The ECSS-E-HB-40A Software Engineering
Handbook was created for daily use by suppliers. It provides advice, interpretations,
elaborations, and best practices for the implementation of the requirements specified
in ECSS-E-ST-40.

The software product assurance standard ECSS-Q-ST-80C [18] complements
ECSS-E-ST-40C from the quality perspective. ECSS-Q-ST-80C interfaces with
space engineering and management branches of the ECSS, and explains how they
relate to product assurance processes. It is supplemented by five handbooks: ECSS-Q-
HB-80-01A addresses the Reuse of Existing Software. The two volumes Framework
and Assessor Instrument of the ECSS-Q-HB-80-02A Software Process Assessment
and Improvement are known as SPiCE for Space, a software process maturity model
derived from the SPiCE (Software Process Capability dEtermination) framework
based on ISO/IEC 15504. Requirements regarding Software Dependability and Safety
are further explained in ECSS-Q-HB-80-03A because dependability and safety are
issues of paramount importance in the development and operations of space sys-
tems [20]. Finally, guidelines for Software Metrication Programme Definition and
Implementation are provided through ECSS-Q-HB-80-04A.

8 Managing Software Process Evolution for Spacecraft ... 145

Recently, the ECSS started to work on a handbook for agile development to live
up to the growing interest in methodologies like Scrum and Extreme Programming.
A respective standard is not yet planned due to a lack of consensus among partners
regarding potential conflicts with established standards. Exactly this tension between
agile and plan-driven development is further addressed in Chap.2, where Diebold
and Zehler also treat two approaches (evolutionary and revolutionary) for adding
agility to plan-based processes.

8.4 Pre-Tailoring in the German National Space Program

Fig.8.4a depicts different levels at which standardization can occur: international,
regional, national, and company. International standards are usually rather specific
in their scope. As opposed to this, the standardization process requires a very long
time until consensus among diverse partners is found. On the other extreme are
company-level standards. These in-house standards are the result of quickly made
decisions among much more homogeneous parties, and they often cover a broader
scope. Ideally, the different levels of standards are complementary, i.e., lower level
standards only add details to a common, shared, higher level standard. In reality,
however, the situation is not perfect. Standards at different levels overlap, and worse,
sometimes contradict one another [24].

The reasons can be found, for example, in history (national space endeavors pre-
date ESA), in corporate and national culture, in the different agencies’ policies, or
in different national interests. Likewise, German space industry differs from other

a b —
Scope Tailoring
Requirements
Catalog
Statement of
))
3 Compliance
@
Q
& 1
4 2 Plans of Process
= o) i
g International m Implementation
8 | |
Regional =3)
(Europe) S Implsmentatlon of
rocesses
/ National \ 1
Review: Evidence,
Company Documentation

Fig. 8.4 a Time/scope relationship for different levels of standardization [24]. b Development
process adaptation in project

http://dx.doi.org/10.1007/978-3-319-31545-4_2

146 C.R. Prause et al.

European countries’ space industry, and DLR differs from ESA. For example, con-
duction of advanced static analysis is a national requirement not found in ECSS.

So-called pre-tailoring is therefore regarded as necessary. It breaks the com-
plex systems of standards down to national needs. These national needs are based on
Germany’s space strategy and cover also general project boundaries like environmen-
tal conditions, functionality, mission lifetime, and experiences from other projects.
The standards considered for the pre-tailoring are national laws and standards, ECSS,
ISO, military and NASA standards as well as requirements raised by the Russian
space agency. The challenge of pre-tailoring is to identify requirements which are
necessary for Germany’s space projects but not contradicting rules and laws of other
nations or organizations, which are partners. As an example, consider a project in
which DLR delivers a payload for a satellite built by ESA: The industry contracted
to manufacture the payload has not only to fulfill the requirements of DLR but also
the ones from ESA. Due to the fact that Germany is no launch authority itself, the
requirements of different launch authorities like Arianespace or NASA have to be
considered, too.

8.4.1 Outline of the Pre-Tailoring Process

With pre-tailoring we denote a process that takes regional standards (ECSS) to turn
them into a lower level but broader national catalog of requirements. The process is
basically analogous to other tailoring processes as the 7-step process described in
ECSS-S-ST-00C [15]. Of course, this tailoring is not yet aimed at a single project
but at the virtual set of projects from the national space program. The steps are

1. Identification of possible types of projects and their characteristics.

2. Analysis of project characteristics with respect to cost, risk, technical drivers,
critical issues, and specific constraints.

3. Selection of applicable ECSS standards as basis for pre-tailoring; standards ref-
erenced as applicable by selected standards become themselves selected.

4. Selection of applicable ECSS requirements from the selected standards by making
a decision for each contained requirement.

5. Addition of new requirements specific to the national space program where ECSS
is deemed lacking.

6. Harmonization of applicable requirements with respect to coherence and consis-
tency of the overall set of requirements.

7. Documenting ECSS standards and requirements applicability.

On the one hand, by selecting requirements from several applicable standards at
regional level, the scope of the resulting national standard broadens (as described for
Fig.8.4a). On the other hand, flexibility and time scale improve. For example, the
ECSS is not yet harmonized with space standards from USA, Russia, or China [24].
On national level, however, consensus on integration can be reached easier.

8 Managing Software Process Evolution for Spacecraft ... 147

National

Projects Step 1: Identification Step 5:
(DLR) Additional Requirements
! |) DLR (DLR)
Step 2: Analysis (DLR)
« Step 3: Step 4: Step 6: Step 7: Tailoring of Requirements
’g Relevant Standards Filtering Negotiation Finalization for Projects
° (DLR) (DLR) (Expert Group) (Expert Group) (DLR)
a
g v T AIIIocati}gg gational
2 ailoring Keys: atalog i i
k] N ECSS |_ Yol | Fine Tuning
s —X W T
8 Levels
g U NASA X X {Q' Si Wi g g - Project PA-
© T . Requirements
15 Signatures
g X /i i m
S s
X r: Tailorin:
- 1SO i yaS NG - Keys

Fig. 8.5 Pre-tailoring, the national catalog, and computer-aided single-source tailoring

8.4.2 Pre-Tailoring Process Details

This section details the outline of the pre-tailoring process for the German national
program (see also Fig.8.5). Step 1 of pre-tailoring (in analogy to ECSS-S-ST-00C
[15] tailoring) is to extract distinguishing characteristics from projects of the national
space program. Relying on long experience, we selected several characteristics that
distinguish projects in the national program. Such characteristics are, for example, the
Space Flight Type, i.e., what kind of spacecraft, or Utilization, e.g., if the device is a
free-flying satellite or used inside or outside of manned platforms like ISS or the space
shuttle. In Step 2, these characteristics are complemented with refinement analyses
regarding cost, risk, technical drivers, etc. Characteristics plus refinements form the
dimensions of a nominal scale vector space. Any project can later be described as
vector p consisting of these basic characterizations:

p € C = Cispi,14,U,0,Mr,5r,Fa} X R(L.B,C.Tr Rp) 8.1

Step 3 of the pre-tailoring is to identify the relevant standards for software qual-
ity. First and foremost, this is the ECSS software product assurance standard [18]
and parts of its complementary software engineering standard [17]. However, also
requirements from other standards are integrated, for instance, configuration man-
agement (from [19]) or nonconformance reporting (from [16]).

In Step 4, every requirement is checked for its applicability to the national space
program. For example, several requirements regarding software maintenance (ECSS-
Q-ST-80C [18]; Sect.6.3.8) were excluded because operations are out of scope of
the space administration’s product assurance.

Step 5 allows to add additional requirements to the catalog that are not yet con-
sidered by ECSS. For example, NASA and Roskosmos standards are necessary for
ISS missions as these organizations are the safety authorities there. This step also
allows to include novel processes not yet reflected in other standards (Sect. 8.7).

148 C.R. Prause et al.

After the requirements have been gathered, they must be checked for internal
coherence and consistency. Furthermore, it is necessary for later tailoring (Sect. 8.5)
to discriminate more and less demanding process requirements. For this purpose,
one or more requirement level tags are assigned to each requirement. Require-
ments imposed on software-specific processes are classified with one of four levels
w e W, = {W;, W,, W3, W,}. The more rigorous requirement levels always include
the all requirements of more light-weight levels: W; 2> W, © W3 2 W,. The lower
the level’s number, the more demanding or expensive the process requirement is. For
example, requiring the conduction of Independent Software Verification and Valida-
tion (ISVV) by a third party is at level W . It results in very high cost for the supplier.
As opposed to this, software configuration management (W,) is considered basic
engineering rigor that should always be done.

In addition to software-specific process requirements, the software process is
also influenced by cross-domain requirements from generic quality management
and safety. They are classified analogously according to four Q levels, e.g., having
a nonconformance control system in place is at Q4. For safety, three S levels are
defined, e.g., requiring conduction of software safety analysis is at S3.

This sixth step is very work intensive and requires deep knowledge of the various
requirements in order to assess their benefits, costs, effects, and cross-relations. It is
therefore addressed by a work group of experts (Sect. 8.4.3).

Finally, as Step 7, the results of the requirements work group are documented in
the product assurance requirements catalog [27]. They are additionally stored in a
database used for automated tailoring (see Sect. 8.5).

8.4.3 Detalils for Step 6: Pre-Tailoring Expert Group

Every few years, the pre-tailoring expert group is convened to update the requirements
catalog. It officially consists of one representative of every major stakeholder in
the national program, i.e., from space administration and national industry. These
formal representatives commonly have a Head of Quality-role or equivalent in their
organization, and are supported by their domain/software expert. The expert group’s
input is an initial set of process requirements (partly from the previous version of the
catalog) and its output is the national catalog. It enables

e to cope with the large amount of work associated with updating the catalog,
e to gather the necessary amount of practice and experience in one place, and
e to attain far-reaching justification and prominence for the resulting catalog.

Work starts by assigning so-called field captains to thematic subsets of the require-
ments, e.g., software product assurance, engineering management, or configuration
management. The field captains then write a short review for each of their require-
ments. They see the item’s ID, source, title, descriptive text, and requirement level
tags (Ws, S»). Additionally, they take into account aspects like cross-relations (dupli-
cations, contradictions, ...) or practical impact. They can propose a new title or text,

8 Managing Software Process Evolution for Spacecraft ... 149

write a review comment, and propose a resolution of accept, reject or modify (accept
means that the requirement should be included in the catalog, reject the opposite,
and modify that first it should be changed in the specified way).

Next, all experts provide a comment and cast one vote on the proposed resolution,
which can also be accept, reject, or modify. If all experts accept, the resolution
is accepted. If at least one expert rejects the resolution or requests modification,
the field captain has to make a proposal how to proceed. The proposal consists of
an explanatory comment and a revised requirement text. All other experts again
vote on the requirement using accept or reject as answers. If the majority accepts
the modified requirement, it is included in the catalog. Otherwise, the requirement
remains in conflict state until the decision is finally made in a round table discussion.

The expert group meets physically once when it constitutes and once it finishes. For
the weeks in-between, work is supported by a web-based tool specifically developed
for this purpose. It lets contributors view a list of all requirements along with key facts
like if there is a controversy about resolution or if it is included in the catalog. The
software furthermore tracks open points, allows contributors to write their reviews,
cast their votes, and view details of the entailing discussions. Finally, it documents
decisions and maintains the database with the catalog of requirements. The catalog
is additionally printed as book and signed off [27] by all representatives to confirm
its symbolic value.

8.4.4 Lessons Learned

Pre-tailoring enables a gradual, smooth, and careful while steady transition from
traditional processes toward the ECSS standards. Over the years, the percentage of
ECSS requirements reflected in the national catalog has constantly risen, reaching
43 % in 2008, 57 % in 2010, and 63 % in 2012. Howeyver, it also shows that national
needs still differ from European ones.

The catalog also forms an agreed baseline for the national space industry. As
the major players get their votes in the expert group, where they can veto against
unreasonable process requirements, it gets more difficult for them to argue against
those requirements later in the projects. Interestingly, only very few requirements
are actually rejected through the expert group.

Pre-tailoring provides a consensual, objective, mission-independent balancing of
benefits and costs of requirements because contents of the catalog are discussed
decoupled from actual missions. It ensures that the selection of requirements in the
scope of projects is not based on the personal preferences of the person who tailors the
process requirements for the project, but is instead based on a systematic, repeatable,
and standardized process. Decisions are made against the specific background and
needs of the German space program.

150 C.R. Prause et al.

In contrast to the ECSS, where DLR is only one partner, influence at national level
as the leading customer is unevenly greater. It is much better possible to position and
later realize software process improvements through requirements. We will come
back to this later in the experience report in Sect.8.7. The small group of experts
allows faster decision making when meeting every few years, and is more open to
try out not-yet widespread technologies.

The ECSS system is yet to be harmonized with the standards of the traditional
space-faring nations like USA or Russia. But because Germany does not have its own
launch capacities or sites, it needs freedom to choose its partners; and it therefore
needs to implement foreign standards at national level.

Maintaining the catalog is a costly endeavor that should not be underestimated.
Working through several standards each with hundreds of requirements takes its time.
And the work needs to be repeated every few years in order to keep up with changes
in the still developing ECSS standards system. Besides the discipline and endurance
that are necessary anyways, the expert group is an important ingredient to dealing
with the efforts. The web-based content management reduces the amount of required
co-location time. It enables several people with densely filled appointment calendars
to still collaborate.

8.5 Tailoring the Requirements for a Project

The ECSS is a system of coherent standards that supports a wide range of diverse
space projects. In its original form, it might therefore not yet suit the individual project
very much. This can result in reduced project performance in terms of technical
performance, life cycle cost-effectiveness, or timeliness of deliveries [15], and is
therefore considered as a major project risk (cf. [31]). In order to reduce this risk,
tailoring is “the act of adjusting the definition and/or particularizing the terms of a
general description to derive a description applicable to an alternate (less general)
environment” [25]. Tailoring means fitting requirements placed on the process to the
specifics of individual projects [15].

The basis for tailoring is the national catalog of product assurance requirements,
as mentioned in Sect. 8.4. Three functions

fw:C— W, (8.2)
Jo:C— 0O (8.3)
fs:C—> 8 (8.4)

process the project vector p € C in order to obtain the applicable requirement levels.
The requirement levels then select or deselect the individual requirements, resulting in
the set of requirements applicable to the software development process. This tailoring
is, for the most part, automated through the software tool QMExpert Tailoring.

8 Managing Software Process Evolution for Spacecraft ... 151

8.5.1 The QMExpert Tailoring Tool

Tailoring the software process requirements for a new project begins with collecting
the basic characteristics and analyses for the vector p € C, where

CICSﬁXCL,«XCUXCOXCMrXCSrXCFaXRLXRBXRCxRTrXRRp
(8.5)
The basic characteristic dimensions and their values are summarized in Table8.1.

Figure 8.6 shows the first input screen. The characteristics and their possible values
are further explained at the bottom of the screen to ease the selection of the correct
value: For example, the Lander Spacecraft in the Space Flight Type dimension is
“designed to reach the surface of a planet and survive long enough to telemeter data
back to Earth. ESA’s Rosetta spacecraft [...] comprises a large orbiter, [...] and a small
lander. Each of these carries a large complement of scientific experiments designed
to complete the most detailed study of a comet ever attempted” [27].

The next step is to refine the choice of basic characteristics entered on the first
screen according to analyses regarding the characteristics shown in Table 8.2. Here,
for example, the Technology Risk value low means that for “the realisation of the
product proven technology that are state of the art are available and can be applied”
[27]. As shown in Fig. 8.7, the selections made here directly lead to the applicable
requirement levels for W, O, and S.

Table 8.1 QMExpert tailoring tool dimensions and values

Name Values

Csyy Space flight type Robotic Maintenance System, Orbiter Spacecraft, Flyby
Spacecraft, Lander Spacecraft, Rover Spacecraft, Application
Satellite, Manned Flight, Military Spacecraft, Scientific
Observatory Spacecraft

Cr; Launcher type Expendable, Manned Reusable, Unmanned Reusable, Unmanned
nonreusable Automated Transfer
Cy Utilization Free-Flyer, ISS internal, ISS external, Manned Launch Vehicle
Co Objective Spacecraft, Payload
Cur Maintainability Generic, Advanced, Complete
requirements

Csy Safety requirements Generic, Advanced, Complete
Cra Flight authority ESA, NASA, Roscosmos

Table 8.2 QMExpert tailoring tool project characteristics

Name Values
Ry Lifetime >7 years, 2—7 years, < 2 years
Rp Budget >50M EUR, 25-50M EUR, 10-25M EUR, < 10M EUR
Rc Complexity High, Low
Ry Technology risk High, Low

Rgp Risk policy High, Low

C.R. Prause et al.

Skisoxmine Extras ?

— -Jelx

B « - & - o | & H i Q
Stermio NEU | Requiremerts PA-Katalog DRD-Katalog Kompress DB Livellpdate MySQL Exit

[Smep1 | Ch ics - Slop2 | Taioring - Stop 3 1 Selection Summary 1

conor [(UOBSOREI rocom [NSTRI e e |
Type Launcher

Rovois Tarrwrcs | [rmr—

| RVmO.STSIV |

i paracn —r e —

Landes Spacecran Utiisation SR " R

P o Sl | BN T T

Applicaion Spacecral | ¥ Agd availabiy requirements

Miliary Spacecrat 155 - intorna

e, L AD Manned

MannedMizzion |[2 ‘“M s

NASA
AkA

Oegectve
‘ [Spacecrat | Sub-System] |
[instrument/ Experiment | -

Launcher:

Expendable Launch Vehicle [ELV)
A

‘ground-taunched propulsion vehicle, capable of placing a paylosd into Earth-orbit or Earth-escape trajectony, whose various stages
are not dassgned for, nor intendad for recovery andior reuse

Newes S1enano erstelien

Beenden det Anwendung METZ3 TE

Fig. 8.6 Starting tailoring: screenshot of the project characteristics input screen

Orbiter Spacecraft. Instument Type 12 [INST12)

Fig. 8.7 Screenshot of adjusting tailoring parameters and resulting requirement levels Wo, Q9,
and S

After that, the tailoring tool picks the requirements for inclusion in the product
assurance requirements document. As described before, all requirements in the cat-
alog were tagged during pre-tailoring with one or more requirement level tags. For

8 Managing Software Process Evolution for Spacecraft ... 153

example, the requirement that a hardware—software interaction analysis should be
conducted is tagged with S, and W3. It means that the requirement is included if the
safety level is s < 2 or if the software level is w < 3, which is all applications that
are safety critical or which have important software parts.

Next, the user is presented with a preview of the requirements, and an overview
of which ones were selected and deselected. For fine-tuning, he can select additional
requirements, or deselect requirements that he wants to be removed. The tailoring tool
also ensures consistency by making sure that all requirements are included which are
not themselves selected but which are referenced from other requirements. Finally,
the tool exports into a Word document for further processing (e.g., including in
contractual documents). Front matters, table of contents, abbreviation lists, chapters,
and the like are generated automatically.

8.5.2 Lessons Learned

Tailoring is necessary for fitting coherent but generic standards to the specificities of a
project. However, the national catalog contains hundreds of requirements applicable
to software development. Manually tailoring them would be a huge effort, influenced
subjectively by the tailoring product assurance manager’s perceptions and emotions,
and difficult to validate against corporate rules.

Our semi-automated tailoring process based on the QMExpert Tailoring tool is
without frills but sophisticated. It is straight forward enough to be practicable. A
single person can tailor a complete product assurance requirements document for a
project in a short time. While manual intervention is still needed in several phases of
the process, the tool significantly reduces the efforts for tailoring. Manual adjustments
can be summarized in a report for validation by higher-ups.

Through the years, the tool has aged technically—it relies on dated libraries
and technologies—but the process it supports and its contents have matured. A lot
of tacit knowledge and experience went into the requirement level classifications,
contributing to the quality of the tailoring results. Of course, much effort has been
invested in the catalog data itself.

8.6 Cross-Company Product Quality Management

Unless a customer accepts any project result and quality, customer and supplier will
seek visibility in order to mitigate the high risks of, for instance, untested technolo-
gies, large sums of money, or loss of life. Possible ways to achieve visibility are

e to negotiate contracts with intermediate products and partial payments, and
e to increase customer involvement in the development process [10].

154 C.R. Prause et al.

8.6.1 Customer Product Assurance

Regarding intermediate products, space projects are executed in a series of phases
cf. [29]. Each of the phases includes end milestones in the form of project reviews,
the outcome of which determine payments and readiness of the project to move
forward to the next phase. These reviews are the main interaction points between
customer and supplier. Regarding customer involvement, the three primary project
functions (project management, engineering, and product assurance) are present on
the customer side as interfaces to their supplier counter-parts.

All three functions take their roles in ensuring the desired outcome of the devel-
opment project: Project management is typically interested in getting the project out
the door, thinking that engineers will take care of its quality. Engineers, however,
are too concerned with getting the product to work that they will not see risks and
potential weaknesses. The role of product assurance is that of a devil’s advocate in
a constructive and non-confrontational way. Product assurance benevolently probes
the software product’s contents. It has organizational and budgetary independence,
and helps shaping but not building the product [10].

In the Space Administration, the product assurance department assumes the role
of customer-side quality assurance for the procurement of space devices. It inter-
acts with the supplier-side product quality functions, and primarily with quality
improvement function in order to trigger improvements in the suppliers’ develop-
ment processes where necessary. Yet, the interaction between customer and sup-
plier is not a one-way street: feedback, experiences, and knowledge generated from
project execution is used to improve product quality management on the customer’s
side (Fig. 8.8). The toolbox of processes, methods, and tools for product assurance is
continuously evolved. As a member of the ECSS standardization body, knowledge
generated in the national program is forwarded further upstream and may eventually
find its way into the ECSS standards system.

Product Quality

Quality Quality

Planning Planning
Quallty Quallty — Quality ; Quality
m Customer Assurance = Improvement Supplier Assurance

Cross- \ l
Qualit company Qualit
o uali yI Product Quality uality
ontro Management Control

Fig. 8.8 Cross-company product quality assurance

8 Managing Software Process Evolution for Spacecraft ... 155

8.6.2 The Implementation Process

Members of the customer product assurance are involved in project activities from
the beginning. Software process requirements tailored from the national catalog
(Sect.8.5) are included in the contract as part of the work description. It is the
foundation of product assurance work and defines objectives, policies, and rules for
design, development, procurement, integration, and testing processes.

As part of the contractual negotiations, the supplier states his compliance to the
prescribed development process requirements (see also Fig.8.4b). The statement
of compliance is a matrix indicating for each requirement the compliance status:
either fully compliant, partially compliant, non-compliant, or not applicable. Unless
a supplier declares full compliance with a requirement, the deviation and its reasons
have to be explained in a commentary column of the matrix, and have to be accepted
by the customer.

During the project, the supplier adapts its processes in order to comply with the
requirements. For example, there is the general requirement of having established
product assurance functions. While project management and engineering are com-
monly present on the suppliers’ side, product assurance might be missing. Donaldson
and Siegel [10] recommend to seriously question the maturity of such a supplier and
its capability to ensure product delivery. In the national space program, however,
the diverse small enterprises, universities, and research institutes often miss product
assurance but still have to be involved for various reasons like promoting research
and lack of alternatives. So one of the first process improvements is to establish
product assurance.

As the requirements only prescribe what should be achieved but not how, the
actual implementation is documented in respective plans, e.g., a Software Product
Assurance Plan. The plans are reviewed at milestones for the customer to agree to their
implementation. They serve to improve the visibility of the supplier’s work, and are
proofs of the implementation of requested processes. Besides milestone reviews, the
customer’s product assurance attends progress meetings, and looks out for deviations
and defines the actions necessary to reach compliance. While most work is based on
documents, the customer retains the right to visit a supplier’s facilities any time and
to perform inspections of work products.

In case a nonconformance is detected, product assurance participates in a Non-
conformance Review Board, where further measures like root cause analysis, mod-
ification measures, and verifications are discussed and agreed upon. Typically, the
supplier is capable of handling this by applying his quality management processes.
If, however, the deviation’s root cause is found to be in the supplier’s processes, the
deficiency is to be eliminated in the frame of process improvements.

156 C.R. Prause et al.

8.6.3 Lessons Learned

The statement of compliance simplifies communication between customer and
supplier by clearly summarizing the agreed-upon baseline of product assurance mea-
sures. It is part of the contract and often a major point of discussions and negotia-
tions. Originally, suppliers only created plans in reaction to the requirements. This
allowed them to more easily stretch requirement interpretations, and to better hide
non-compliances. Through the statement of compliance, contradictions come up
clearly and early in the project, reducing the risks of discovering them late.

Negotiating a statement of compliance that is accepted by both parties can be
work intensive. Once agreed, however, it restates commitment of supplier project
management to the development requirements. It is particularly valuable if a dispute
arises during the project.

Attention should be paid to the understandability of comments in the statement
of compliance because some projects last for many years. A change in personnel can
mean that comments written too briefly may no longer be understood and cause new,
unnecessary discussions. To reduce interpretive freedom and to avoid comments that
negate a seeming compliance, we decided that comments (even explanatory ones)
are not allowed for “fully compliant” responses.

8.7 Experience Report: Introducing Advanced Static
Analysis

This section provides an experience report of how advanced static analysis was intro-
duced in the German national space program. Static analysis is a widely used tech-
nology for detecting potential problems in software by analyzing human-readable or
binary code without executing it. The ECSS prefers testing over static analysis for
validation. But analysis is still recommended for verifying source code robustness
and finding errors that are difficult to detect at runtime [17, 22]. The capabilities
and complexity of static analysis techniques vary greatly from simple source code
pattern analysis to formal methods including abstract interpretation [8].

In contrast to simpler analysis methods, tools based on abstract interpretation can
prove the absence of several runtime errors (e.g., division by zero, arithmetic under-
and overflows). Such a tool is also called sound [13]. One of the first commercially
available tools capable of analyzing large code bases was Polyspace.> Compared to
common simpler static analyzers, it is expensive with regard to financial cost and
efforts. Annual license costs are tens of thousands of Euros plus one-time costs and
initial trainings, and even on modern hardware analyses can run for hours.

3 Available from: http://de.mathworks.com/products/polyspace/.

http://de.mathworks.com/products/polyspace/

8 Managing Software Process Evolution for Spacecraft ... 157

8.7.1 Polyspace Pilot Project

As a first step, a pilot project was set up. The purpose was to try out the capabilities
of Polyspace, test if it will hold its promises, get a feeling for its handling, estimate if
it is worth the cost, and generally build up expertise. The idea was to also try out, if
Polyspace would fit into a toolbox for conducting software inspections as customer;
metaphorically speaking, if it could be the software analogy to a magnifying glass a
hardware customer uses when attending a key inspection point meeting.

For the pilot project, a Polyspace server was set up. One of the space projects
that were just finishing volunteered to make available its satellite’s flight software
source code, which was about 22,000 lines of code. The software had passed all
other validation and verification activities and was ready to be delivered. Next, it was
imported into the Polyspace tool.

Polyspace decides for each line of code if the line is guaranteed to not contain the
specified runtime errors (green), if the line will definitely cause a runtime error (red),
dead code (gray), or if a decision could not be made (orange). The vendor forecast that
in software of this maturity, Polyspace would still find about one runtime error per
1,000 lines of code. This forecast was met exactly. Consequently, several function-
critical errors in the flight software could be fixed that might otherwise have caused
serious troubles.

Yet, one drop of bitterness are the orange lines and computation time. The number
of orange lines can be traded off against analysis computation time by adjusting the
precision level. In our experience from other projects, rarely more than 20 % of lines
are marked orange. This percentage and even lower values are also reported by other
researchers [5]. Still, the undecided orange lines can cause non-negligible additional
effort; in particular, as finding the root cause for a false positive (reported, but actually
no error) located elsewhere in the code may require a thorough analysis.

Making rough estimates from the data provided in Emanuelsson and Nilsson
[13], and Brat and Klemm [5], one can expect in 60,000 lines of fresh code: 40 error
reports from tools like Coverity or Klocwork (both unsound), 9,000 orange lines from
Polyspace, and 1,200,000 reports from FlexeLint (unsound) tool, which, however,
can be tweaked down to 1,000 reports without thorough analysis. This means two
things: First, unless one is willing to risk false negatives, i.e., missing out on certain
errors, checking all suspect reports means a lot of work. So one better starts early.
Second, a supplier may prefer to use an unsound tool in order to reduce the effort
needed for checking suspects. The liability implications of knowing about potential
errors (orange code) but not acting on them are, at best, unclear. But if the supplier
did not know about the problems because he used an unsound tool, he can still plead
research risks in case of an accident due to a software problem.

The pilot project showed that sound analysis is worth it because several criti-
cal errors were found in thoroughly tested code. However, it is not suitable for a
quick inspection because major efforts are associated with importing the code into
Polyspace, running the analyses, and checking orange code.

158 C.R. Prause et al.

8.7.2 Toward Wider Adoption

The implication of the pilot project is that in order to reap the rewards of sound
analysis, major efforts have to be invested in executing it. These efforts are beyond the
capacity of customer software product assurance. Instead, industry should perform
the analyses themselves. Only the reports were to be delivered for review. They serve
as evidence that the analysis was executed, and allow to detect irregularities.

However, use of verification tools to demonstrate software quality is not explicitly
specified in ECSS standards. Further, depending on the supplier, different tools are
used. At the time we wanted to field Polyspace analysis processes, three projects were
moving to their next phase. This meant that contracts (including software process
requirements) were re-negotiated. Although the times were favorable, it turned out
that introducing Polyspace was not simple. Separate and tiring negotiations for each
project were necessary to place sound analysis. The space sector is conservative and
dismissive toward changes to established processes. A common saying is “Only fly
what has flown before!” The need for changing established processes and the costs
associated with Polyspace (monetary license prices, and in terms of effort and legal
risks) made it no surprise that industry would not easily agree. This holds true, in
particular, if a process requirement is seemingly only imposed on a single project.
But implementing a change from top-down through the ECSS standards seemed
infeasible because consensus on multinational level would take many years and was
further improbable to pass the respective committees without success stories.

In this situation, the convening of the pre-tailoring expert group offered the oppor-
tunity to implant the change on national scope. The invited top-level quality managers
could be convinced of the net benefits of the sound static analysis, and without a con-
crete project in the background, the associated costs were too far away. In the end,
the national catalog was extended correspondingly with a requirement regarding
the proof of absence of several types of runtime errors. From there it gets tailored
into requirements whenever a project moves to the next phase, and has nation-wide
legitimation.

Meanwhile, sound static analysis is rather widely employed by suppliers. Even
without being forced by a requirement, major suppliers have started procuring it
for their other projects. However, every now and then, discussions still arise about
sound static analysis during project execution. For example, if a supplier or one of
its divisions are for their first time confronted with the need to provide the required
report for a review. A supplier can then be pointed to the statement of compliance
they signed (Sect. 8.6.2). If represented in the expert group, they can additionally be
referred to the signing of the catalog by their head of quality (Sect. 8.4.3).

8.7.3 Lessons Learned

Conducting a pilot project first was important to learn that static analysis is a valuable
addition to testing but also that it is not suitable as a tool for on-site inspections by the

8 Managing Software Process Evolution for Spacecraft ... 159

customer. Instead, the verification itself has to be executed by the supplier according
to contractual requirements. Evidence is provided in form of a report.

Strong rejection was a real problem initially. It was not practically feasible to
overcome this rejection. This achievement was made possible only by establishing
and exploiting the right management tools (pre-tailoring, expert group, and statement
of compliance). Today, sound static analysis is broadly accepted by suppliers who
worked with it. Only every now and then there is a new supplier or branch that has
not worked with it. For these cases, the right management tools are in place.

The experience report provided here is only one example of a software process
improvement. Further technologies are continuously researched and evaluated, and,
if considered fitting, introduced into the national program.

8.8 Conclusion

In this chapter we presented software process evolution from the viewpoint of a
customer. Our goal is to assure the quality of a product that is developed for a single
purpose: to assume critical functions in a spaceflight mission. To reach our goal,
we set the frame for development: We manage software process evolution through
requirements from a strategic perspective, not how evolution is actually implemented
by the providers organizationally. At that strategic level, we

e seek harmonization with ECSS and other standards,
e ensure implementation of process requirements at suppliers, and
e generate and disseminate knowledge to continuously advance processes.

However, it is difficult to harmonize and improve the processes in a sector with
unequal histories and objectives, and diverse players. We revisited several levels at
which the strategic frames for process evolution are defined, starting at the level of

international and regional standards, moving on to the

national catalog of the German space program, and further to the
tailoring of process requirements at project-level, and the

quality improvement efforts through cross-company quality management.

Taking the example of advanced static analysis, we described typical problems that
can be encountered. It shows how the management tools at different implementation
levels can be used to trigger process evolutions.

Many (if not all) organizations try to improve their processes by themselves. This,
of course, is very important. However, they might have a different focus on what is
important to optimize with priority. In a small market where products cannot be
bought off-the-shelf but where products are unique specimen specifically developed
for the customer, close collaboration between customer and supplier is necessary.
Given visibility and trust, both sides profit from cross-company quality management.

160 C.R. Prause et al.

8.9 Further Reading

Quality, software processes, and their improvement are an all-pervading topic in
the knowledge areas of software engineering [4]. Our work* is distinguished from
others through the fact that we describe how we address the evolution of software
development processes toward higher quality from a customer’s point of view. On
the one hand, countless publications focus on organizations’ work on improving their
own software processes, e.g., [23, 26]. Doing so, indeed, is very important. On the
other hand, much effort has been put into standards and maturity levels as a means
of giving customers ways to assess the capability of suppliers. For instance, see
ISO/IEC 15504 or CMMI [7, 30]. Furthermore, Rosenberg and Gallo [37] describe
software product assurance at the NASA. However, not much has been published
on the daily work of product assurance as a customer, and how software, tools, and
methods improve this work.

In the space domain, tailoring of requirements to software development processes
is omnipresent for aligning customer quality expectations with development effec-
tiveness and efficiency [38]. Most ECSS standards already include a tailoring
notice that explicitly encourages tailoring the standard. The ECSS-S-ST-00C further
explains a formal tailoring approach based on the ECSS Applicable Requirements
Matrix. It advocates putting all requirements with their identifiers in a table, and
marking them as either applicable without change, applicable with modification, not
applicable, and newly generated [15]. An adaptation of this approach is to include all
requirements in their original form, and then record any changes or deletions after
the original text, which, of course, can lead to very long documents. Currently, the
ECSS is working on a more complex standard for the tailoring of ECSS standards.

ECSS-E-ST-40C and ECSS-Q-ST-80C are “self-tailoring.” It means that both
standards’ annexes provide a table that lists for each requirement if it should be
included in software with a certain criticality from A (most critical) to D (least
critical). To determine the criticality category of each software item, a safety and
dependability analysis and a hardware—software interaction analysis are conducted.
The severity of the consequences of possible failures determine the criticality level.

A software tool for tailoring the ECSS-E-ST-40 Issue B is provided by the ESA.
The wizard-style tool first takes the user through a questionnaire containing single-
choice questions in several areas, e.g., project characteristics (novelty, complexity,
expected lifetime, use of commercial off-the-shelf items, ...), stakeholders (who is
the customer, supplier, maintainer, user, ...), risks (e.g., long-term use, tricky design),
verification, and so on. It then outputs a table that proposes for each requirement in the
standard whether it should be included or not. Ddler et al. [9] presented a web-based
tool capable of tailoring several standards including ECSS-E-ST-40B, ECSS-Q-ST-
80B, DIN EN 50128 (railway applications), internal standards, and RTCA/DO-178B
(airborne systems). Again characteristics like technical domain, software type, and
operational complexity are queried using 17 nonredundant single-choice questions.
The tailoring rules are based on comparisons with other standards and long-term

4 An earlier version of this chapter was published as [35].

8 Managing Software Process Evolution for Spacecraft ... 161

experience from working in space projects. However, both tools seem to be no longer
actively maintained. Rumor has it that the tedious maintenance of the requirements
and rule database might have been too costly.

Armbrust et al. [2] address product quality through scoping, i.e., what to include
in a process and what not. Their approach is similar in that it characterizes space
projects using criteria like mission type, complexity, or criticality that then result
in adapted processes. Their view complements ours as it is technical and supplier-
oriented: For example, cooperation with ESA triggered process evolution on their
side.

Kalus and Kuhrmann [31] present a systematic literature review of criteria for
software process tailoring. They identified 49 tailoring criteria, such as team size,
project budget, project duration, the degree of technology knowledge, the availability
of commercial off-the-shelf products, tool infrastructure, legal aspects, or the domain.

In Chap. 10, the authors describe an assembly-based method of process evolution.
A focus of their work is the enactability and assurance of the enactment of activities
imposed through regulatory needs or our requirements. With the same goal, Chap. 11
explains how to adapt case management techniques to deal with problems that stem
from trying to achieve flexibility and compliance at the same time.

Chapter 13 addresses the co-evolution of development processes and model-driven
engineering. They research the implied consequences for costs and success of process
tailoring. This happens against the background of the importance of customization
and optimization for staying efficient and dealing with arising new challenges.

References

1. Abbott, A.: Battery fault ends X-ray satellite mission. Nature 399, 93ff (1999)

2. Armbrust, O., Katahira, M., Miyamoto, Y., Miinch, J., Nakao, H., Ocampo, A.: Scoping soft-
ware process models—initial concepts and experience from defining space standards. Making
Globally Distributed Software Development a Success Story. Lecture Notes in Computer Sci-
ence, pp. 160-172. Springer, Berlin (2008)

3. Basili, V.R., McGarry, EE., Pajerski, R., Zelkowitz, M.V.: Lessons learned from 25 years
of process improvement: the rise and fall of the nasa software engineering laboratory. In:
Proceedings of the International Conference on Software Engineering, pp. 69-79. ACM, New
York, NY (2002)

4. Bourque, P, Fairley, R.E. (eds.): SWEBOK V3.0—Guide to the Software Engineering Body
of Knowledge. IEEE Computer Society, Washington (2014)

5. Brat, G., Klemm, R.: Static analysis of the mars exploration rover flight software. In: Pro-
ceedings of the First International Space Mission Challenges for Information Technology, pp.
321-326 (2003)

6. Card, D.N.: Software product assurance: measurement and control. Inf. Softw. Technol. 30(6),
322-330 (1988)

7. CMMI Product Team: CMMI for development, version 1.3 (2010)

8. Cousot, P, Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of pro-
grams by construction or approximation of fixpoints. In: Proceedings of the ACM Symposium
on Principles of Programming Languages, pp. 238-252. ACM, New York (1977)

http://dx.doi.org/10.1007/978-3-319-31545-4_10
http://dx.doi.org/10.1007/978-3-319-31545-4_11
http://dx.doi.org/10.1007/978-3-319-31545-4_13

162

9.

10.
11.
12.
13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

C.R. Prause et al.

Déler, N., Herrmann, A., Tapper, U., Hempel, R.: Ecss application in dlr space projects—
experiences and suggestions for enhancement. Presentation slides from the ECSS Developer
Day at ESTEC (Noordwijk) (2005)

Donaldson, S.E., Siegel, S.G.: Successful Software Development, 2nd edn. Prentice-Hall,
Upper Saddle River (2001)

Dowson, M.: The ariane 5 software failure. ACM SIGSOFT Softw. Eng. Notes 22(2), 84 (1997)
Dvorak, D.L.: Nasa study on flight software complexity: Final report. NASA (2007)
Emanuelsson, P., Nielsson, U.: A comparative study of industrial static analysis tools. Electron.
Notes Theor. Comput. Sci. 217, 5-21 (2008)

ECSS Secretariat (publ.): ECSS—standardization objectives, policies and organization. ECSS
Standard ECSS-P-00A, European Cooperation for Space Standardization (2000)

ECSS Secretariat (publ.): ECSS system—description, implementation and general require-
ments. ECSS Standard ECSS-S-ST-00C, European Cooperation for Space Standardization
(2008)

ECSS Secretariat (publ.): Space product assurance—product assurance management. ECSS
Standard ECSS-Q-ST-10C, European Cooperation for Space Standardization (2008)

ECSS Secretariat (publ.): Space engineering—software. ECSS Standard ECSS-E-ST-40C,
European Cooperation for Space Standardization (2009)

ECSS Secretariat (publ.): Space product assurance—software product assurance. ECSS Stan-
dard ECSS-Q-ST-80C, European Cooperation for Space Standardization (2009)

ECSS Secretariat (publ.): Space project management—configuration and information man-
agement. ECSS Standard ECSS-M-ST-40C, European Cooperation for Space Standardization
(2009)

ECSS Secretariat (publ.): Space product assurance—software dependability and safety. ECSS
Standard ECSS-Q-HB-80-03A, European Cooperation for Space Standardization (2012)
ECSS Secretariat (publ.): ECSS—standardization objectives, policies and organization. ECSS
Standard ECSS-P-00C, European Cooperation for Space Standardization (2013)

ECSS Secretariat (publ.): Space engineering—software engineering handbook. ECSS Standard
ECSS-E-HB-40A, European Cooperation for Space Standardization (2013)

Falessi, D., Shaw, M., Mullen, K.: Achieving and maintaining CMMI maturity level 5 in a
small organization. IEEE Softw. 31(5), 80-86 (2014)

Gammal, Y.E., Kriedte, W.: ECSS—an initiative to develop a single set of european space
standards. In: Proceedings of Product Assurance Symposium and Software Product Assurance
Workshop, pp. 43-50. ESA (1996)

Ginsberg, M.P., Quinn, L.: Process tailoring and the software capability maturity model. Techni-
cal Report CMU/SEI-94-TR-024, Carnegie Mellon University, Software Engineering Institute
(1995)

Holzmann, G.J.: Mars code. Commun. ACM 57(2), 64-73 (2014)

Jobi, W.: Tailoring catalogue: product assurance & safety requirements for dlr space projects.
Technical report, Deutsches Zentrum fiir Luft- und Raumfahrt (2012)

Johnson, C.W.: The natural history of bugs: Using formal methods to analyse software related
failures in space missions. FM 2005: Formal Methods. Lecture Notes in Computer Science,
pp. 9-25. Springer, Berlin (2005)

Jones, M., Gomez, E., Matineo, A., Mortensen, U.K.: Introducing ECSS software-engineering
standards within ESA. ESA Bull. 111, 132-139 (2002)

JTC 1 SC 7: Information technology—process assessment—part 1: Concepts and vocabulary.
International Standard ISO/IEC 15504-1:2012, International Organization for Standardization
(2012)

Kalus, G., Kuhrmann, M.: Criteria for software process tailoring: A systematic review. In:
Proceedings of the International Conference on Software and System Process, pp. 171-180.
ACM, New York (2013)

Ley, W.: Management von Raumfahrtprojekten. Handbuch der Raumfahrttechnik, 4th edn, pp.
715-764. Carl Hanser Verlag, Germany (2011)

Marsiske, H.A.: Wendepunkt Mars. http://www.heise.de/tp/artikel/6/6775/1.html (2000)

http://www.heise.de/tp/artikel/6/6775/1.html

8 Managing Software Process Evolution for Spacecraft ... 163

34.
35.

36.

37.

38.

Oberg, J.: Why the mars probe went off course. IEEE Spec. 36(12), 34-39 (1999)

Prause, C., Bibus, M., Dietrich, C., Jobi, W.: Tailoring process requirements for software
product assurance. In: Proceedings of the International Conference on Software and System
Process, pp. 67-71. ACM, New York (2015)

Rechtin, E.: Remarks on reducing space science mission costs. In: Proceedings of the Workshop:
Reducing the Costs of Space Science Research Missions, p. 23ff. National Academy Press,
Washington (1997)

Rosenberg, L.H., Albert M. Gallo, J.: Software quality assurance engineering at nasa. In:
Proceedings of the IEEE Aerospace Conference, vol. 5, pp. 5:2569-5:2575. IEEE, Washington
(2002)

Schiller, D., Heinemann, J.: ECSS—20 years of collaboration for european spaceflight. DLR
Newsl. Countdown 24, 32-35 (2014)

	8 Managing Software Process Evolution for Spacecraft from a Customer's Perspective
	8.1 Introduction
	8.2 Background and Context
	8.3 The ECSS Standards
	8.3.1 ECSS Policy, Members, and Organization
	8.3.2 Production and Maintenance of ECSS Standards
	8.3.3 Software Standards in the ECSS System

	8.4 Pre-Tailoring in the German National Space Program
	8.4.1 Outline of the Pre-Tailoring Process
	8.4.2 Pre-Tailoring Process Details
	8.4.3 Details for Step 6: Pre-Tailoring Expert Group
	8.4.4 Lessons Learned

	8.5 Tailoring the Requirements for a Project
	8.5.1 The QMExpert Tailoring Tool
	8.5.2 Lessons Learned

	8.6 Cross-Company Product Quality Management
	8.6.1 Customer Product Assurance
	8.6.2 The Implementation Process
	8.6.3 Lessons Learned

	8.7 Experience Report: Introducing Advanced Static Analysis
	8.7.1 Polyspace Pilot Project
	8.7.2 Toward Wider Adoption
	8.7.3 Lessons Learned

	8.8 Conclusion
	8.9 Further Reading
	References

