
Chapter 3
Assessing Product Development Agility

Daniel X. Houston and Stephen W. Rosemergy

Abstract Agile software development grew out of a variety of alternative software
development methods that shared a common set of values and principles. After two
decades with these alternative methods, agile software development remains loosely
defined, but has been widely accepted. This acceptance has gained the attention
of other fields with discussions of applying agile to their work, for example agile
systems engineering and agile programmanagement. However, within the larger field
of product development, agilitywas defined in terms of software development, both in
practice and in principle. This chapter focuses on a set of general agile characteristics
derived from the agile values and principles embraced by many software developers.
This set of characteristics provides a basis for (a) assessing difficulties in software
development projects employing agile practices, (b) applying concepts of agility to
other disciplines beyond software development, and (c)measuring agility. In addition
to deriving general agile characteristics, this chapter relates two stories of agile
methods adoption that illustrate both the need for and the utility of general agile
characteristics.

3.1 Introduction

According to the American Society for Quality, the quality movement can be traced
to the trade groups of medieval Europe in which craftsman organized into guilds
that used strict rules for applications of their crafts. During the industrial revolution,
factories produced more specialized work and, in the late nineteenth century, fac-
tory planning became a discipline for increasing productivity. In the early twentieth
century, process improvement was formalized with time and motion studies and sta-
tistical quality control. In the mid-twentieth century, emphasis shifted to the quality
of both production and produced items in the Toyota Production System, Total Qual-

D.X. Houston (B) · S.W. Rosemergy
The Aerospace Corporation, Los Angeles, CA 90009-2957, USA
e-mail: dan.houston@aero.org

S.W. Rosemergy
e-mail: steven.rosemergy@aero.org

© Springer International Publishing Switzerland 2016
M. Kuhrmann et al. (eds.), Managing Software Process Evolution,
DOI 10.1007/978-3-319-31545-4_3

39

40 D.X. Houston and S.W. Rosemergy

ity Management, ISO 9000 series of quality management standards, Six Sigma, and
Lean Product Development [1].

Viewed in the broadest context of development and production processes, contem-
porary system and software development share the ancestry of the quality movement.
In balancing concerns for product quality, technical features, cost and timely com-
pletion, and productivity, emphasis has varied over the centuries, especially in the
last century. The nascent agile movement that was underway in the early 1990s in
business and manufacturing [13] had a coincident expression in alternative software
development methods that later came to be grouped under the label “agile.” This
movement exhibited another emphasis in product development, one focused on flex-
ibility and leanness [8]. Conboy [8] systematically developed a definition of agility
based on these two concepts of flexibility and leanness. In this chapter, we take an
alternative approach and develop general characteristics of agility based on experi-
ences with the alternative software development methods that were distilled in the
Agile Manifesto of 2001 [3].

3.2 Background and Context

The agile movement in product development has been fueled particularly by the field
of software development. Software development was dubbed “software engineering”
in 1968 and major advances in the ways of producing software took on the charac-
ter of large engineering programs with the specification of requirements, design of
architectures and details, and implementation followed by stages of integration and
testing. The ability for an organization to develop software according to engineering
methods was canonized in standards and in levels of capability maturity. However,
the poorly understood dynamics of product development that challenges most engi-
neering endeavors were especially troublesome in software projects, which—due to
software’s less tangible nature—seem to amplify the effects of “inadequate” pre-
scriptive planning.

During the1990s, some software developers reacted against the generally accepted
engineering approach and tried various alternative practices and techniques.Methods
such as eXtreme Programming, Scrum, Feature Driven Development, and Crystal
Clear arose in this period, each with its own discipline for developing software.
As these methods and their practices were published, software development groups
began to embrace them. The authors of the various alternative methods convened in
2001 to produce the well-known Agile Manifesto, with a set of values and principles
that called for a re-evaluation of software development processes. A later entry was
LeanSoftwareDevelopment,which abstracted principles from theToyota Production
Systems and applied them to software development.

After 2001, the various alternativemethodsbegan tobe referred to as agilemethods
with development groups referring to themselves as “agile.” As the agile movement
gained prominence, less and less attention was given to the disciplines underlying
each of the methods. Thus the agile software development movement has exhibited a

3 Assessing Product Development Agility 41

tendency toward homogenization of the different methods that gave rise to it. Today,
agile software development is amindset with a set of values, principles, and practices,
but does not prescribe a particular process or set of processes.

With increasing acceptance of agile values, principles, and practices, several phe-
nomena have occurred.

• Concept adaptation. In recent years, the idea of agile development has been applied
widely, both within and outside the field of product development. Within product
development, agile concepts have been applied to software requirements, systems
engineering, product architecture, project management, and process improvement.
Outside the field of product development, agile concepts have been applied to
enterprises, business intelligence, supply chains, defense acquisitions, research
methodology, and so forth.

• Agile precedents. Students of agile methods have found software development
programs that preceded the current agile movement, but can now be described as
agile. Duvall [11] provides eight examples of DoD programs that exhibited agile
characteristics well before the agile movement in software development. Reagan
and Rico [23] provide a similar list.

• Research growth. Because agile software development was largely a practitioner-
led movement, it received almost no attention from academic researchers prior
to 2001. Between 2001 and 2005, 36 empirical studies were found [12]. A 2012
study of agile methods research demonstrates growing research attention [10].

These phenomena all affect the meaning of “agile.” Broad application of agile con-
cepts has resulted in semantic inflation: agile development no longer refers clearly
to the software development methods from which it arose. Similarly, searches for
precedents have found agile characteristics in development programs of previous
decades. On the other hand, research counters semantically inflationary effects by
requiring clear definitions for the sake of answering questions such as “What consti-
tutes agility?” “Under what circumstances is agility beneficial?,” and “How does one
become agile?” This chapter is motivated by the first question and seeks to address
that question with derivation of a set of agile characteristics and a proposal for using
the characteristics to answer other research questions.

3.3 Software Development Dynamics and the Need for Agility

The agilemovement in software development arose out of need to harness the dynam-
ics of software development beyond what software engineering had accomplished.
The dynamics that drive product development projects out of control are amplified
in software development because software is less tangible and unconstrained by
physics. Therefore, functional specifications are more likely to over-reach what can
be accomplished realistically with available resources while underestimation is more
likely. Furthermore, functional changes are expected to be easier in software than in
hardware. This section offers a brief explanation of software development dynamics

42 D.X. Houston and S.W. Rosemergy

Requirements Design Implementation
Validation &
Verification Delivery

Fig. 3.1 A plan-driven process

that is intended to demonstrate the need for the agile movement and provide some
hints as to what allows agility to work.

In the engineering or plan-driven approach to developing software-intensive sys-
tems, plans are made for producing a system with specified functional capabilities
and a sequence of steps is followed, at least at a high level (Fig. 3.1). However, Fig. 3.1
does not show the rework cycles, both within and between development phases.

Rework cycles in product development have been studied extensively in the Sys-
tem Dynamics Modeling community. The underlying problem with most product
development plans is that they measure progress based on the plan and are unable
to account for product quality and undiscovered rework in their progress measures.
Consequently, quality shortcomings accrue until the need for rework delays progress.
The product development rework cycle (Fig. 3.2) has come to be recognized as the
central structure for modeling development projects because it is the most important
feature for explaining project behavior.

Consider the rework cycle in a plan-driven process. For rework that is found in-
phase, for example design errors found in the design phase, delays are incurred,
but the cost of rework can be relatively low. For problems found in later phases
(highlighted arrows in Fig. 3.2), the delays are much longer and the rework costs
much higher. For example, a misinterpretation of a requirement that is not discovered
until V&V testingmeans reworking artifacts in all phases from requirements through
V&V. Changes to requirements during development produce rework that propagates
through the development process. To complicate the project, delays put the project
under schedule pressure.Developersworkingunder schedule pressure aremore likely

Fig. 3.2 The product
development rework cycle

Produce

Check

Rework Produce

Check

Rework

3 Assessing Product Development Agility 43

Fig. 3.3 An agile process

Requirements

Design

Implementation
Validation &
Verification

Delivery

to make errors and to skip quality-inducing steps, such as peer reviews of work,
thereby increasing the cycling of rework.

Agile software development, first and foremost, accepts changes as a fact of life
and seeks to incorporate them in an ordinary workflow. Thus, the moniker, “agile.”
To accomplish the goal of an agile development process, the development cycle is
scaled down to produce a smaller working product in a shorter amount of time.
The sequence of phases is visited in every delivery cycle (Fig. 3.3). By approaching
development incrementally and delivering an increment of system capability, say
every fewmonths, the rework cycles are dramatically shortened. Rather than building
up schedule pressure over many months and incurring all its corrosive effects, delays
are absorbed prior to each release by delivering only asmuchworking functionality as
possible. Thus, agile trades off a commitment to a delivery date against a plan-driven
commitment to required functionality.

3.4 Development Challenges and Agile Methods

Since the Agile Manifesto, its proponents argue that the key to building better soft-
ware is to view it not as a destination, but as a journey supported by underlying values
and principles that deemphasize (but do not eliminate) practices and work products
associated with project management best practices [7]. After more than two decades
of discussion, debate, and informative evidence, we continue to debate the merits of
agile software development. Both proponents and opponents agree that agile meth-
ods provide benefits in the forms of improved communication, team coordination,
increased customer focus, less process overhead, and improved predictability [18].

Nonetheless, practitioners report issues (Table3.1) that may be perceived as insur-
mountable challenges to agile software development teams, most notably project
scaling, use of geographically distributed teams, cultural barriers to successful adop-
tion, and applicability of agile principles to other technical domains [4, 8, 18]. Even
though these challenges are reported often, examples of overcoming them success-

44 D.X. Houston and S.W. Rosemergy

Table 3.1 Perceived issues that plague agile teams [17]

Issue Description

Project scaling Increasing team size also increases the amount of interaction required to
coordinate, allocate, and integrate work between team members.
Coordinating change across a large team is difficult [18]

Distributed teams Frequent team interactions are not always possible with geographically
distributed teams; remote teams lack the necessary accessibility to the
product owner and are unable to develop and maintain the level of
contextual expertise required to support the project [8, 18]

Culture change Adoption of agile methods decentralizes day-to-day decision-making.
Decentralized decision-making breaks down functional/hierarchical silos;
organizational hierarchies are large impediments to decentralized
decisions [19]

Technical domain Agile methods are not applicable to non-software development or
multidiscipline projects [8]

fully are available [6]. The following story illustrates the use of agile software devel-
opment principles in addressing one of the most common challenges, geographically
distributed teams.

3.4.1 Project Scaling and Geographic Distribution

Company A was a mid-size (8000 employees) software company that developed
small-business software products. Based out of San Jose, California, they also
employed an offshore team located in Hong Kong. This team provided specialized
expertise in support of product internationalization. The remote team used Scrum
very successfully for integrating application content and layout to support foreign
language usage in U.S. markets. The San Jose team was happy with both the respon-
siveness and quality of the work delivered by the remote team. With the expanded
language support of their products, demand for products tailored to locales outside
the United States increased.

3.4.1.1 Transitioning to Global Product Development

Because Company A architected their system as a product line, whereby core assets
could be quickly applied for new variant products [15], they were confident that their
product was well positioned to address global markets. Having proven their ability
to support Internationalization, Company A expanded the scope of the team in Hong
Kong, to address International markets, starting with Asia (Fig. 3.4).

The two teams met in San Jose, agreed to continue using Scrum for their develop-
ment method, e-mail and Skype for collaboration, and a common infrastructure for

3 Assessing Product Development Agility 45

US Office Hong-Kong Office

-Architects,
-Business Analysts
-PMS

-PM,
-Developers
-Testers

-Developers
-Testers

Product-Line
Developers

Customers

Functional
Requirements

Delivered
Subsystem

Business
Drivers

Technical
Priorities

Technical
Solutions

Core
Assets

Technical
Drivers

Fig. 3.4 Company A globalization

storing source code and documentation, instead of transferring files between sites.
The San Jose team would host daily meetings, and because of time-zone differences,
the Hong Kong team would shift their workweek by one day (Tuesday through Sat-
urday).

3.4.1.2 Global Software Development Challenges and Agile

Although work progressed on schedule for each of the teams, trouble began as the
San Jose team integrated and tested the software developed by the remote team. As
both the frequency and severity of problems rose, tension between the two teams
mounted. Daily standup meetings increased in length from 20min each to 1.5h, with
most of the time devoted to reporting on status.

In trying to understand their problems, the company initially assumed that the
scope of their endeavor (large-scale software development) and geographically dis-
tributed development were a mismatch with their agile method. They called for a
face-to-face meeting of key contributors in San Jose where the two teams gathered at
a local hotel to share their concerns. Their findings, which were consistent with other
software development companies managing geographically distributed projects [19],
did not point to agile development practices as the source of their problems. Rather,
they indicated a failure to adhere to the principles of agile software development as
they expanded their efforts. Specifically, the San Jose team had ignored the impacts
of their locale-specific organizational constructs and delegated responsibility in what
seemed the most expedient manner, not cognizant of the effects on the remote team.
Changes were neither well-coordinated nor welcomed across teams, and interactions
between teams became increasingly transactional, with emphasis placed on status
rather than cooperation and collaboration.

46 D.X. Houston and S.W. Rosemergy

3.4.1.3 Addressing the Challenges

Company A soon realized that in order to be responsive to customer needs, both
locally and internationally, they needed to realign their efforts. In doing so, they eval-
uated their organizational structure, project responsibility partitioning, and project
infrastructure in view of the agile software development principles and values.

They found that by scaling the teams in the most expedient manner, that is divid-
ing responsibility functionally, instead of organizing around motivated individuals,
they had inadvertently formed organizational barriers to communication and collab-
oration. Furthermore, collaboration and tacit knowledge transfer between the remote
team and the customer was no longer practical because they had placed an inter-
mediary between the remote team and the customer. So while both the local and
remote teams embraced the principles of frequent delivery, face-to-face communi-
cations, and measured and constant progress, the remote team became information-
constrained and were trusted only to organize themselves around the functions they
were to deliver to the project. Both teams depended on each other to deliver, but
neither team, particularly the remote team, had the authority or access to evolve the
requirements, architecture, and designs.

After realizing their mistake, Company A revised its organizational structure
(Fig. 3.5). The new organizational model established three distinctly separate devel-
opment teams, one at each locale, and a product-line team, managed by a single
team distributed across the two locales. In addition, Company A co-located archi-
tects, business analysts, and project manager in each locale—with responsibility
partitioned by customer product, rather than by functional responsibility [20].

To anchor implementation efforts across teams, the Product-Line Development
team established a continuous integration environment and collaboration environ-
ment to link communication, configurationmanagement, and testing, anddeployment
of software releases [20]. Scrum Master roles were tailored to facilitate cross-team

US Office Hong-Kong Office

-Architects,
-Business Analysts
-PMS

-Developers
-Testers Product-Line Developers

Customers

Business
Drivers

Technical
Priorities

Technical
Solutions

Core
Assets

Technical
Drivers

-Developers
-Testers

-Architects,
-Business Analysts
-PMS

Technical
Priorities

Technical
Solutions

Technical
Drivers

Business
Drivers

Customers

Business
Drivers

Fig. 3.5 Company A’s revised organizational model

3 Assessing Product Development Agility 47

coordination and collaboration, surface problems during coordination meetings, and
to remove barriers [2].

The preceding story demonstrates that impediments to agility can be difficult to
identify, much less, solve. Had this organization not revisited the principles and val-
ues of agile software development, they might have concluded incorrectly that agile
methods could not work for their business or that globalization was incompatible
with their business objectives. Not all software development is well suited to agile
practices and not all software organizations are disposed to employing agile meth-
ods. Nonetheless, the story suggests that periodically revisiting principles of agile
software development can help a software business using agile practices recognize
ways in which development problems can be addressed. Taking this a step further,
we propose that the values and principles of agile software development can be gen-
eralized so that they can be applied to other disciplines in product development. The
following section pursues the question of the nature of product development agility
in an effort to identify a set of general agile characteristics derived from software
development experience.

3.5 The Nature of Product Development Agility

The task of characterizing product development agility can be pursued in different
ways. Conboy [8] takes a conceptual approach to developing a definition and taxon-
omy of agility by starting with its conceptual underpinnings and progressing through
16 steps. This chapter takes another approach that builds on the distilled experience
of agile software development. The agile software development values and principles
are distillations of the experiences of the practitioners of agile methods. Although
the methods, and the practices that comprise them, are the building blocks of the
agile software development movement, the values and principles have provided the
movement a unifying identity.

3.5.1 Agile Values, Principles, and Practices

The self-dubbed agile alliance defined itself through values and principles. These
were published as fixed lists [3], in contrast with practices often embraced by agile
methods. Although lists of agile practices are available, the lists are not definitive
because agile software development is not limited to any particular practices. In
fact, whatever practices promote agility in a given circumstance may be regarded
as agile practices. Furthermore, some agile practices originated decades earlier in
the history of software development. Therefore, any published list of agile software
development practices remains open-ended, guided by the values and principles as
well as empirical success. For this reason, we focus on the values and principles for
deriving general characteristics of agility.

48 D.X. Houston and S.W. Rosemergy

Table 3.2 Agile software development principles

Issue Description

Continuous value delivery Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software

Welcome change Welcome changing requirements, even late in development. Agile
processes harness change for the customer’s competitive advantage

Frequent delivery Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale

Business-developer
collaboration

Business people and developers must work together daily
throughout the project

Motivation centricity Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the job
done

Face-to-face conversation The most efficient and effective method of conveying information
to and within a development team is face-to-face conversation

Progress measure Working software is the primary measure of progress

Constant pace indefinitely Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant pace
indefinitely

Technical excellence Continuous attention to technical excellence and good design
enhances agility

Simplicity Simplicity—the art of maximizing the amount of work not
done—is essential

Self-organizing teams The best architectures, requirements, and designs emerge from
self-organizing teams

Reflect and adjust At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly

Table3.2 lists the principles of agile software development, preceded by phrases
used in Table3.3. Table3.3 relates the values and principles, indicating the degree
to which the principles address or explicitly support the values. For example, “con-
tinuous value delivery” strongly supports “working software.” Séguin et al. [25]
performed a similar assessment of correspondence between the principles and val-
ues. In terms of correspondence, Table3.3 agrees with their results in 96% of the
cells.

Table3.3 indicates that the values are not supported equally by the principles.
Not only does each value statement represent a prioritization, but the set of prin-
ciples represents a prioritization of the four values: “individuals and interactions”
and “working software” are more supported by the principles than “responding to
change” and “customer collaboration.”

Agile software development started with practices that sought to improve the pro-
duction of software. Some of the practices, such as pair programming and story point
estimation, were created to satisfy a specific objective. Others, such as iterations and
test-driven development, were refined from ideas used in early computer program-

3 Assessing Product Development Agility 49

Table 3.3 Agile values and principles matrix (�: major, ��: moderate, and �: minor support)

Agile software development values

Agile software
development
principles

Individuals and
interactions over
processes and
tools

Working software
over
comprehensive
documentation

Customer
collaboration over
contract
negotiation

Responding to
change over
following a plan

Continuous value
delivery

� �� ��
Welcome change � �
Frequent delivery � ��
Business-
developer
collaboration

� ��

Motivation
centricity

�
Face-to-face
conversation

� �
Progress measure �
Constant pace
indefinitely

�� ��
Technical
excellence

�
Simplicity � ��
Self-organizing
teams

� ��
Reflect and adjust � ��

ming. Still others, such as coding standards and software configuration management,
were simply included fromaccepted software engineering practice.As practiceswere
created or appropriated, and refined, they were collected and their use integrated into
methods or processes. Agile software development practices continue to evolve,
guided by the values and principles.

With alliance of the “agilists” and identification of the various alternative soft-
ware development approaches as “agile,” the practices formerly identified with each
method have become pooled as agile software development practices. Consequently,
whenmembers of a software development group describe themselves as “agile,” they
must further explain the practices they employ. Referencing a specific agile method
may be helpful also.

50 D.X. Houston and S.W. Rosemergy

3.5.2 Deriving General Agile Characteristics

The matrix of Table3.3 indicates intersections that can be aggregated and abstracted
to produce general characteristics of agility beyond software development. Abstract-
ing these characteristics should also remove overlaps in the values and principles.
The following list of general agile characteristics (GAC) was abstracted from the
agile values and principles.

• Interpersonal interaction
• Working product or service
• Customer/user collaboration
• Responsiveness to change
• Continual delivery of customer value
• Self-organizing, multifunctional collaboration
• Leadership by the motivated
• Technical excellence and simplicity

Table3.4 uses a checkmark (✓) to relate these characteristics to the agile software
development values and principles (a) to demonstrate that the characteristics cover
the values and principles, and (b) to define the meaning of each characteristic in
terms of the values and principles.

3.5.3 Comparison of General Agile Characteristics
with Other Sources

Turner [31] has also produced a list of key characteristics of agile software develop-
ment though he does not provide a derivation for his list.

• Learning attitude
• Focus on customer value
• Short iterations delivering value
• Neutrality to change (design processes and system for change)
• Continuous integration
• Test-driven (demonstrable progress)
• Lean attitude (remove no-value-added activities)
• Team ownership

This list compares well with the preceding list, though the two lists have a few dif-
ferences. Turner’s list does not explicitly include product characteristics of technical
excellence and simplicity, but it does include “learning attitude,” which may refer to
learning about both the product under development and the development processes
employed. Also, Turner’s list does not mention leadership motivation. His list does
introduce lean attitude as a willingness to remove non-value-added activities.

3 Assessing Product Development Agility 51

Ta
bl
e
3.
4

G
en
er
al
ag
ile

ch
ar
ac
te
ri
st
ic
s
de
fin

ed
fr
om

ag
ile

so
ft
w
ar
e
de
ve
lo
pm

en
tv

al
ue
s
an
d
pr
in
ci
pl
es

G
en
er
al
ag
ile

ch
ar
ac
te
ri
st
ic
s

A
gi
le
so
ft
w
ar
e
de
ve
lo
pm

en
t

va
lu
es

an
d
pr
in
ci
pl
es

In
te
rp
er
so
na
l

in
te
ra
ct
io
n

C
us
to
m
er
/u
se
r

co
lla

bo
ra
tio

n
R
es
po
ns
iv
en
es
s

to
ch
an
ge

C
on
tin

ua
l

de
liv

er
y
of

cu
st
om

er
va
lu
e

Se
lf
-o
rg
an
iz
in
g,

m
ul
tif
un

ct
io
na
l

te
am

L
ea
de
rs
hi
p
by

th
e
m
ot
iv
at
ed

Te
ch
ni
ca
l

ex
ce
lle

nc
e
an
d

si
m
pl
ic
ity

In
di
vi
du
al
s
an
d
in
te
ra
ct
io
ns

✓
✓

✓
✓

W
or
ki
ng

so
ft
w
ar
e

✓
✓

C
us
to
m
er

co
lla

bo
ra
tio

n
✓

✓
✓

✓

R
es
po
nd
in
g
to

ch
an
ge

✓
✓

✓

C
on
tin

uo
us

va
lu
e
de
liv

er
y

✓

W
el
co
m
e
ch
an
ge

✓
✓

Fr
eq
ue
nt

de
liv

er
y

✓

B
us
in
es
s-
de
ve
lo
pe
r

co
lla

bo
ra
tio

n
✓

✓
✓

M
ot
iv
at
io
n
ce
nt
ri
ci
ty

✓
✓

Fa
ce
-t
o-
fa
ce

co
nv
er
sa
tio

n
✓

Pr
og
re
ss

m
ea
su
re

✓

C
on

st
an
tp

ac
e
in
de
fin

ite
ly

✓
✓

✓

Te
ch
ni
ca
le
xc
el
le
nc
e

✓
✓

Si
m
pl
ic
ity

✓
✓

Se
lf
-o
rg
an
iz
in
g
te
am

s
✓

✓
✓

R
efl

ec
ta
nd

ad
ju
st

✓
✓

✓
✓

✓

52 D.X. Houston and S.W. Rosemergy

Diebold and Zehler, Chap. 2, also produced a list of characteristics that they claim
describe all known agile methods. They say that these characteristics are based on
principles defined in the Agile Manifesto, but do not offer a derivation.

• Self-organizing teams
• Evolutionary development with short iterations and release cycles
• Active involvement of the customer with feedback
• Simple reactions and quick changes without formal change requests
• Simple design
• Test as central point in the development

This set of characteristics compares well with the derived set of GAC. With the
exception of Interpersonal Interaction and Leadership by the Motivated, a one-to-
one correspondence can be drawn between the derived general characteristics and
Diebold and Zehler’s set.

Conboy’s [8] Taxonomy of Information Systems Development (ISD) agility pro-
vides another example of a set of characteristics of agility.

1. To be agile, an ISD method component must contribute to one or more of the
following:

a. Creation of change
b. Proaction in advance of change
c. Reaction to change
d. Learning from change

2. To be agile, an ISD method component must contribute to one or more of the
following, and must not detract from any:

a. Perceived economy
b. Perceived quality
c. Perceived simplicity

3. To be agile, an ISD method component must be continually ready, i.e., minimal
time and cost to prepare the component for use.

Conboy derived his taxonomy rigorously from definitions of “leanness” and “flexi-
bility” rather than from agile values and principles. Consequently, it has a different
structure than the previous sets of characteristics of agility. Nonetheless, it provides
a useful set of characteristics for comparison.

Comparing the four sets of agility characteristics, several observations can be
made.

• Only the GAC explicitly lists “interpersonal interaction,” a strong motivator in the
agile software development movement for increasing agility by reducing docu-
mentation. Table3.3 illustrates that this value underlies six of the principles, so
the other sets of characteristics likely treat this implicitly as an enabler of other
characteristics.

http://dx.doi.org/10.1007/978-3-319-31545-4_2

3 Assessing Product Development Agility 53

• Turner [31] and Conboy [8] each include similar characteristics that the other
two sets do not include. Turner includes “lean attitude (remove no-value-added
activities)” and Conboy includes “perceived economy.” These do not trace directly
to agile values and principles, but do trace to an agile method, Lean Software
Development, and to one of Conboy’s starting concepts, “leanness.”

• Another characteristic that Turner and Conboy include, but is not included in the
other two sets, is learning: “learning attitude” (Turner) and “learning from change”
(Conboy). In addition to Conboy’s derivation, this characteristic is traced to the
agile principle of “reflect and adjust.”

3.6 Agility and Other Endeavors

A general set of characteristics provides a basis for discriminating between con-
formance and nonconformance to an ideal: a product development program can be
described as agile to the extent to which it exhibits the characteristics. Thus, one can
use such a set of characteristics to assess, at least qualitatively, whether a develop-
ment program is behaving as an agile program is expected to behave. Because the set
of characteristics is generalized, this included not only software development, but
also other types of development programs. Furthermore, the set of characteristics
could serve as a basis for developing a quantitative measure of agility.

To illustrate how we can use these characteristics to evaluate the degree of agility,
we will examine the use of agile methods in the context of another domain: highly
regulated systems development.

3.6.1 Development Process Agility in Highly Regulated
Environments

Company B was a small (200 employees) bio-tech software start-up based in North
America. Their primary product offering was an enterprise medical informatics
diagnosis and digital record keeping software system. In spite of its relative size,
Company B dominated the clinical informatics industry by virtue of its patented
high-performance image streaming and business process automation technology.
Company C was an established international medical device company, with over
100,000 employees worldwide. In addition to medical imaging devices, Company
C sold enterprise business process automation tools, similar to that of Company B.
However, Company C’s product offering was not competitive due to Company B’s
patented streaming technology, which gave Company B a market share advantage of
more than 40% over Company C.

In order to gain market share in the clinical informatics industry, Company C
acquired Company B. Company C had a reputation for delivering high-quality, inno-

54 D.X. Houston and S.W. Rosemergy

vative products to themarketplace.Moreover, because theEuropeanmedical industry
is highly regulated, CompanyC had established corporate-wide engineering policies,
documented practices, and work product standards that ensured both transparency
and compliance with IEC 62304 standards for medical device software development
[14]. In contrast, Company B had used test-driven development (TTD) methods,
with an emphasis on test automation. Having already built a testing infrastructure to
accommodate both regression testing and just-in-time product enhancements, Com-
pany B delivered new capability for customer evaluation every four weeks. Company
C, concerned for the success of their acquisition and the perceived risk of delivering
new capability compliant with IEC and ISO standards, (a) investigated the possibility
of imposing anymandates on the TDD team and (b) sought to learn from the software
development successes of Company B.

Through interviews with Company B’s software development team, and assess-
ments of their product related work products, Company C found the following
strengths:

1. While company B placed less emphasis on developing detailed documented
requirements, they were able to trace driving requirements from user stories,
to test cases, to documented design decisions (through both their feature tracking
tools and the source code), and finally to test results.

2. Architectural decisions and constraints, while discussed only in face-to-face
forums, were well understood by all internal stakeholders (well beyond the soft-
ware engineers).

3. Product implementation followed establishment of requirements mandates and
constraints through the creation and execution of tests, each of which served as a
mechanism for demonstrating technical progress and achievement of both quality
attributes and functional requirements alike.

4. Customers drove feature innovation, based on real-world use and evaluation of
prototypes. Company B’s mechanism for evaluating product features with cus-
tomers, early and often, pruned unimportant features from the product line.

On the other hand, Company C found that although Company B products were not
subject to medical device regulatory standards (ANSI, AAMI, IEC, and ISO) [24],
theywere not compliant with corporate IT safety standards (IEC 60950-1). Also, they
found no mechanisms for demonstrating compliance with regulatory requirements
if they chose to integrate their medical imaging products directly with Company B
products.

3.6.2 Addressing Regulatory Concerns with an Agile Process

Company C’s evaluation of Company B’s practices and work products found that B’s
practices served as a motivating force for innovation, collaboration, and the delivery
of both high-quality and marketplace-relevant products. They also determined that
dismantling B’s approaches could put the company acquisition at risk. The biggest

3 Assessing Product Development Agility 55

Fig. 3.6 Pre-acquisition
company product
development comparison
using general agile
characteristics

challenge they faced was incorporating ISO and IEC medical device safety compli-
ance standards, so they approached B’s development team and asked them how they
could demonstrate compliance with these regulatory standards while maintaining the
general characteristics of agility.

CompanyB’s development team reviewed both the regulatory standards andCom-
pany C’s compliant practices against the general agile characteristics. Next, the team
engaged Company C’s compliance experts and developers to assess all development
practices (of both companies), using the agile general agile characteristics (Fig. 3.6).
Understanding that relative agility was not reflective of product quality, together they
found significant differences with respect to development practices, each of which
either promoted or inhibited the general agile characteristics. Next, the team evalu-
ated the regulatory constraints and requirements to determine the extent towhich they
might inhibit (or possibly promote) development agility. Together they determined
the following points.

1. They could, with careful attention, maintain performance that exhibited all the
general agile characteristics.

2. TDD provided the infrastructure for demonstrating compliance with regulatory
requirements but required some enhancements to be fully compliant.

3. With the help of good coaching and an embedded subjectmatter expert, they could
demonstrate traceability to regulatory and safety standards at each delivery, and
the acquiring organization could adopt agile practices.

4. Integration with external safety critical software/hardware would need to be
decoupled architecturally to ensure that their certification would not impede the
deployment of new products.

56 D.X. Houston and S.W. Rosemergy

Fig. 3.7 Pre-acquisition and
post-acquisition company
product development
comparison using general
agile characteristics

3.6.3 Epilogue: Further Adoption of Agile Approaches

After finalizing the acquisition of Company B, Company C created a new business
unit to house its medical informatics product suite, and then incrementally migrated
its existing customer base to the acquiredproduct suite.Within twoyears, thefinancial
performance of the new business unit eclipsed the combined performance of all
Company C’s other medical business units.

Under stakeholder pressure to improve the financial performance of the other
business units, Company C embarked on a two-year plan to adopt agile methods on
all software-intensive systems. To this end, they created an Agile Center of Excel-
lence (ACE) led by a long-time Company C leader. Because the company was more
than 100 years old, this action met with initial resistance and distrust. After four
years of coaching and mentoring both leaders and individual contributors (more than
5000 employees), the company has strongly embraced agile approaches to product
development, as shown in the results of an assessment against general agile charac-
teristics (Fig. 3.7). In terms of business value, the company attributed its profits to
their “Agile Renewal.”

3.7 Measurement of Agility

The preceding story demonstrates the value of using GAC as a basis for measuring
agility.Measurement of agility has been a topic of discussion in product development
[29] and production research [30] for over a decade. In software development circles,
a number of agility measures have been discussed in various forms and for various
purposes.

3 Assessing Product Development Agility 57

• Datta [9] has proposed an AgileMeasurement Index based on five software project
dimensions, for use in selecting a development methodology.

• Bock [5] suggests Agility Index Measurements for comparing capabilities of soft-
ware development teams using seven scales.

• Seuffert [26] uses an 11-item questionnaire to measure degree of agile adoption.
• Kurian [16] produced a fuzzy model for measuring agility based on seven project
characteristics.

• Lappo and Andrew [17] categorize agile goals and offer an example of collecting
data for assessing a goal.

• Shawky and Ali [27] produced a measure of change rate, or entropy as an indicator
of agility.

• Qumer and Henderson-Sellers [22] developed a four-dimensional framework (4-
DAT) for evaluating the degree of agility in agile methods.

Of these six proposals, the first, the fourth, and the seventh hold the most promise.
They are based on project characteristics, recognize degrees of agility, can produce
leading indicators, and can be extended beyond software development. However,
the first of these three have two shortcomings: (1) neither use characteristics that
have been verified as dominant variables for measuring product development agility;
and (2) the scales and mathematical models employed by each require validation
for their ability to produce meaningful measures. Using the Agile Manifesto as a
starting point, Tables3.3 and 3.4 have sought to address the first shortcoming with
a set of characteristics that are clearly traceable to a widely accepted set of values
and principles that define agile software development. The second aforementioned
shortcoming remains to be addressed.

The seven proposals indicate needs for measuring agility and hint at some of the
potential benefits. One of the benefits would be overcoming the popular misconcep-
tion of a binary approach to agile development: either a development organization is
agile or it is not.Measureable definitions of agilitywould recognize that organizations
demonstrate degrees of agility and would facilitate discussion of those degrees.

Another benefit of measuring agility is technical definition. “Agile” is a word so
broadly used that its meaning has been overly inflated. Ironically, it fails to carry
substantial meaning for people who must manage technical development processes.
Measurement of agility would provide a technical basis for the term and support
clear communication about the merits, shortcomings, and suitability of development
processes. Measurement of agility would lend objectivity to a number of practical
concerns, from guiding and supporting process improvement decisions, to choosing
a development method for a specific project, and to choosing the best group for a
development project.

Each agile software development method is usually recognized by its practices,
but practices may be modified to fit a particular circumstance (a combination of
development organization, customer, software type, product domain, contract, regu-
lations, and so forth). In a multi-case study of Scrum projects, Diebold and Zehler,

58 D.X. Houston and S.W. Rosemergy

Chap. 2, found deviations, variations, and adaptations of Scrum. When such varia-
tions are undertaken, the question may arise as to the ability to perform agilely. As
the preceding story illustrates, measuring agility from a set of characteristics can
produce valuable results.

3.8 Conclusion

Product development always requires balancing concerns for cost, duration, features,
and product quality. Although business and manufacturing had begun developing
agile production concepts, the authors of the agile manifesto took a step forward by
producing a set of values and principles based on a decade of experience using vari-
ous alternative software development practices and methods. From those values and
principles we have distilled a set of general agile characteristics and demonstrated
the usefulness of these characteristics in facilitating software-intensive systems suc-
cess. As general characteristics, they can be applied to other product development
domains.More importantly, they provide a basis for judging the agility of a particular
development process. The stories in this chapter suggest that qualitative assessments
are the usual means of judging process agility, but somework has pursued quantifica-
tion. More work is necessary to develop good measurement scales based on general
agile characteristics.

3.9 Further Reading

Balancing Agility and Discipline: A Guide for the Perplexed, by Barry Boehm and
Richard Turner, shows that agile and disciplined methods lie on a continuum. They
have worked out guidelines for determining where on the continuum a project lies
and how agile or disciplined a method must be.

For readers interested in degrees of agility, we recommend the following works
cited in the References section: Conboy [8], Chow and Cao [6], and Qumer and
Henderson-Sellers [22]. Qumer and Henderson-Sellers [21] provide more back-
ground on the 4-DAT analytical framework for evaluating methods from the per-
spective of agility in their article. Sheffield and Lemétayer [28] discuss factors that
indicate software project agility and project success.

“The Right Degree of Agility in Rich Processes,” by Diebold and Zehler, is the
Chap. 2 in this volume. It discusses two approaches, evolutionary and revolutionary,
to integrating of agile software development practices into a structured process.

http://dx.doi.org/10.1007/978-3-319-31545-4_2
http://dx.doi.org/10.1007/978-3-319-31545-4_2

3 Assessing Product Development Agility 59

References

1. American Society for Quality: ASQ history of quality. Available from http://asq.org/learn-
about-quality/history-of-quality/overview/overview.html

2. Bass, J.: Scrum master activities: process tailoring in large enterprise projects. In: Proceedings
of the International Conference on Global Software Engineering, pp. 6–15. IEEE,Washington,
DC, USA (2014)

3. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Gren-
ning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C., Mellor, S.,
Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for Agile Software Development. http://
agilemanifesto.org (2001)

4. Begel, A., Nagappan, N.: Usage and perceptions of agile software development in an industrial
context: an exploratory study. In: Proceedings of the International Symposium on Empirical
Software Engineering and Measurement, pp. 255–264. IEEE Computer Society, Washington,
DC, USA (2007)

5. Book, D.: Improving your processes? Aim high. http://jroller.com/bokmann/entry/improving_
your_processes_aim_high

6. Chow, T., Cao, D.B.: A survey study of critical success factors in agile software projects. J.
Syst. Softw. 81(6), 961–971 (2008)

7. Chrissis, M., Konrad, M., Shurm, S.: CMMI. Guidelines for Process Integration and Product
Improvement, 2nd edn. Addison Wesley, Boston, MA (2007)

8. Conboy, K.: Agility from first principles: reconstructing the concept of agility in information
systems development. Inf. Syst. Res. 20(3), 329–354 (2009)

9. Datta, S.: Agility measurement index: a metric for the crossroads of software development
methodologies. In: Proceedings of the Southeast Regional Conference, pp. 271–273. ACM,
New York, NY, USA (2006)

10. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies: towards
explaining agile software development. J. Syst. Softw. 85(6), 1213–1221 (2012)

11. Duvall, L.: Be quick, be useable, be on time: lessons in agile delivery of defense analytic tools.
21st Century Defense Initiative Policy Paper (2012)

12. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: a systematic review.
Inf. Softw. Technol. 50(9–10), 833–859 (2008)

13. Goldman, S., Nagel, R., Preiss, K., Dove, R.: Iacocca Institute: 21st Century Manufacturing
Enterprise Strategy: An Industry Led View. Iacocca Institute, Bethlehem (1991)

14. ISO/TC 210: Medical device software – software lifecycle processes. International Standard
IEC 62304:2006, International Standards Organization (2006)

15. Krueger, C.: Software product line reuse in practice. In: Proceddings of the IEEE Symposium
on Application-Specific Systems and Software Engineering Technology, pp. 117–118. IEEE,
Washington, DC, USA (2000)

16. Kurian, T.: A fuzzy based approach for estimating agility of an embedded soft-
ware process. http://www.siliconindia.com/events/siliconindia_events/Global_Embedded_
conf/Globa_Embedded_Conf_PPT_final_tisni.pdf (2011)

17. Lappo, P., Andrew, H.: Assessing agility. Extreme Programming and Agile Processes in Soft-
ware Engineering. Lecture Notes in Computer Science, vol. 3092, pp. 331–338. Springer,
Berlin (2004)

18. Murphy, B., Bird, C., Zimmermann, T., Williams, L., Nagappan, N., Begel, A.: Have agile
techniques been the silver bullet for software development at Microsoft? In: Proceeding of the
International Symposium on Empirical Software Engineering and Measurement, pp. 75–84.
IEEE, Washington, DC, USA (2013)

19. Niazi, M., Mahmood, S., Alshayeb, M., Rehan Riaz, M., Faisal, K., Cerpa, N.: Challenges
of project management in global software development: initial results. In: Proceedings of the
Science and Information Conference, pp. 202–206. IEEE, Washington, DC, USA (2013)

http://asq.org/learn-about-quality/history-of-quality/overview/overview.html
http://asq.org/learn-about-quality/history-of-quality/overview/overview.html
http://agilemanifesto.org
http://agilemanifesto.org
http://jroller.com/bokmann/entry/improving_your_processes_aim_high
http://jroller.com/bokmann/entry/improving_your_processes_aim_high
http://www.siliconindia.com/events/siliconindia_events/Global_Embedded_conf/Globa_Embedded_Conf_PPT_final_tisni.pdf
http://www.siliconindia.com/events/siliconindia_events/Global_Embedded_conf/Globa_Embedded_Conf_PPT_final_tisni.pdf

60 D.X. Houston and S.W. Rosemergy

20. Phalnikar, R., Deshpande, V., Joshi, S.: Applying agile principles for distributed software
development. In: Proceedings of the International Conference on Advanced Computer Control,
pp. 535–539. IEEE, Washington, DC, USA (2009)

21. Qumer, A., Henderson-Sellers, B.: An evaluation of the degree of agility in six agile methods
and its applicability for method engineering. Inf. Softw. Technol. 50(4), 280–295 (2008)

22. Qumer, A., Henderson-Sellers, B.: A framework to support the evaluation, adoption and
improvement of agile methods in practice. J. Syst. Softw. 81(11), 1899–1919 (2008)

23. Reagan, R., Rico, D.: Lean and agile acquisition and systems engineering, a paradigm whose
time has come. Defense Acquisition University, Defense AT&L (2010)

24. Rottier, P., Rodrigues, V.: Agile development in a medical device company. In: Proceedings of
the Agile Conference, pp. 218–223. IEEE, Washington, DC, USA (2008)

25. Séguin, N., Tremblay, G., Bagane, H.: Agile principles as software engineering principles: an
analysis. Agile Processes in Software Engineering and Extreme Programming. Lecture Notes
in Business Information Processing, vol. 111, pp. 1–15. Springer, Berlin (2012)

26. Seuffert, M.: Agile Karlskrona Test. http://mayberg.se/archive/Agile_Karlskrona_Test.pdf
(2009)

27. Shawky, D., Ali, A.: A practical measure for the agility of software development processes. In:
Proceedings of the International Conference on Computer Technology and Development, pp.
230–234. IEEE, Washington, DC, USA (2010)

28. Sheffield, J., Lemétayer, J.: Factors associated with the software development agility of suc-
cessful projects. Int. J. Proj. Manag. 31(3), 459–472 (2013)

29. Sieger, D.B., Badiru, A.B., Milatovic, M.: A metric for agility measurement in product devel-
opment. IIE Trans. 32(7), 637–645 (2000)

30. Somanath, N., Sabu, K., Krishnanakutty, K.V.: Measuring agility of organizations - a compre-
hensive agility measurement tool (camt). Int. J. Innov. Res. Sci. Eng. Technol. 2(1), 666–670
(2013)

31. Turner, R.: Toward agile systems engineering processes. CROSSTALK the Journal of Defense
Software Engineering, pp. 11–15 (2007)

http://mayberg.se/archive/Agile_Karlskrona_Test.pdf

	3 Assessing Product Development Agility
	3.1 Introduction
	3.2 Background and Context
	3.3 Software Development Dynamics and the Need for Agility
	3.4 Development Challenges and Agile Methods
	3.4.1 Project Scaling and Geographic Distribution

	3.5 The Nature of Product Development Agility
	3.5.1 Agile Values, Principles, and Practices
	3.5.2 Deriving General Agile Characteristics
	3.5.3 Comparison of General Agile Characteristics with Other Sources

	3.6 Agility and Other Endeavors
	3.6.1 Development Process Agility in Highly Regulated Environments
	3.6.2 Addressing Regulatory Concerns with an Agile Process
	3.6.3 Epilogue: Further Adoption of Agile Approaches

	3.7 Measurement of Agility
	3.8 Conclusion
	3.9 Further Reading
	References

